
JAXB Release Documentation

JAXB Release Documentation

iii

Table of Contents
Overview .. 1

1. Documentation ... 1
2. Software Licenses ... 1
3. Sample Apps .. 2

3.1. Using the Runtime Binding Framework .. 2
Release Notes .. 6

1. Java™ 2 Platform, Standard Edition (J2SE™) Requirements .. 7
2. Identifying the JAR Files ... 7
3. Locating the Normative Binding Schema .. 7
4. Changelog ... 7

4.1. Changes between 2.2.10 to 2.2.11 ... 7
4.2. Changes between 2.2.9 to 2.2.10 ... 8
4.3. Changes between 2.2.8 to 2.2.9 ... 8
4.4. Changes between 2.2.7 to 2.2.8 ... 8
4.5. Changes between 2.2.6 to 2.2.7 ... 10
4.6. Changes between 2.2.5-2 to 2.2.6 .. 10
4.7. Changes between 2.2.5-1 to 2.2.5-2 .. 11
4.8. Changes between 2.2.5 to 2.2.5-1 .. 11
4.9. Changes between 2.2.4-1 to 2.2.5 .. 11
4.10. Changes between 2.2.4 to 2.2.4-1 ... 12
4.11. Changes between 2.2.3u2 to 2.2.4 .. 12
4.12. Notable Changes between 2.2.3u1 to 2.2.3u2 .. 14
4.13. Notable Changes between 2.2.3 to 2.2.3u1 ... 14
4.14. Notable Changes between 2.2.2 to 2.2.3 .. 14
4.15. Notable Changes between 2.2.1.1 to 2.2.2 .. 14
4.16. Notable Changes between 2.2.1 to 2.2.1.1 .. 14
4.17. Notable Changes between 2.2 to 2.2.1 ... 14
4.18. Notable Changes between 2.1.12 to 2.2 ... 15
4.19. Notable Changes between 2.1.12 to 2.1.13 ... 15
4.20. Notable Changes between 2.1.11 to 2.1.12 ... 15
4.21. Notable Changes between 2.1.10 to 2.1.11 ... 15
4.22. Notable Changes between 2.1.9 to 2.1.10 ... 15
4.23. Notable Changes between 2.1.8 to 2.1.9 .. 15
4.24. Notable Changes between 2.1.7 to 2.1.8 .. 15
4.25. Notable Changes between 2.1.6 to 2.1.7 .. 15
4.26. Notable Changes between 2.1.5 to 2.1.6 .. 16
4.27. Notable Changes between 2.1.4 to 2.1.5 .. 16
4.28. Notable Changes between 2.1.3 to 2.1.4 .. 16
4.29. Notable Changes between 2.1.2 to 2.1.3 .. 16
4.30. Notable Changes between 2.1.1 to 2.1.2 .. 16
4.31. Notable Changes between 2.1 First Customer Ship (FCS) to 2.1.1 16
4.32. Notable Changes between 2.1 Early Access 2 to 2.1 First Customer Ship (FCS) 16
4.33. Notable Changes between 2.0.2 to 2.0.3 .. 16
4.34. Notable Changes between 2.0.1 to 2.0.2 .. 17
4.35. Notable Changes between 2.0 to 2.0.1 ... 17
4.36. Notable Changes between 2.0 Early Access 3 and 2.0 First Customer Ship (FCS)
... 17
4.37. Notable Changes between 2.0 Early Access 2 and 2.0 Early Access 3 18
4.38. Notable Changes between 2.0 Early Access and 2.0 Early Access 2 18
4.39. Notable Changes between 1.0.x FCS and 2.0 Early Access 19

JAXB Users Guide ... 20

JAXB Release Documentation

iv

1. Compiling XML Schema .. 21
1.1. Dealing with errors ... 21
1.2. Fixing broken references in schema .. 23
1.3. Mapping of <xs:any /> ... 25
1.4. Mapping of <xs:element /> to JAXBElement ... 27
1.5. How modularization of schema interacts with XJC .. 27
1.6. Adding behaviors .. 27
1.7. Avoid strong databinding ... 30
1.8. Working with generated code in memory .. 31

2. Customization of Schema Compilation .. 31
2.1. Customizing Java packages .. 31
2.2. Using SCD for customizations .. 32
2.3. Using different datatypes .. 33

3. Annotating Your Classes .. 34
3.1. Mapping your favorite class .. 34
3.2. Mapping interfaces .. 36
3.3. Evolving annotated classes ... 41
3.4. XML layout and in-memory data layout .. 43
3.5. Mapping cyclic references to XML .. 45

4. Unmarshalling .. 48
4.1. @XmlRootElement and unmarshalling .. 48
4.2. Unmarshalling is not working! Help! .. 49
4.3. Element default values and unmarshalling ... 50
4.4. Dealing with large documents ... 51

5. Marshalling .. 52
5.1. Changing prefixes ... 52
5.2. Element default values and marshalling .. 52
5.3. Different ways of marshalling ... 53
5.4. Interaction between marshalling and DOM .. 55

6. Schema Generation .. 57
6.1. Invoking schemagen programatically .. 57
6.2. Generating Schema that you want .. 58

7. Deployment .. 58
7.1. Migrating JAXB 2.0 applications to JavaSE 6 .. 58
7.2. Which JAXB RI is included in which JDK? .. 59
7.3. Running JAXB 1.0 and 2.x side by side .. 60
7.4. Migrating JAXB 1.0 applications to JAXB 2.x ... 60
7.5. Runtime Errors ... 61

8. Other Miscellaneous Topics .. 62
8.1. Performance and thread-safety ... 62
8.2. Compiling DTD ... 62
8.3. Using JAXB from Maven ... 64
8.4. Designing a client/server protocol in XML .. 64

Tools .. 66
1. XJC .. 66

1.1. xjc Overview ... 66
1.2. Launching xjc .. 66
1.3. xjc Syntax ... 67
1.4. Compiler Restrictions .. 70
1.5. Generated Resource Files ... 71

2. XJC Ant Task .. 71
2.1. xjc Task Overview .. 71
2.2. xjc Task Attributes ... 71
2.3. Generated Resource Files ... 74

JAXB Release Documentation

v

2.4. Up-to-date Check .. 74
2.5. Schema Language Support ... 74
2.6. xjc Examples ... 75

3. SchemaGen .. 76
3.1. schemagen Overview .. 76
3.2. Launching schemagen ... 76
3.3. schemagen Syntax .. 76
3.4. Generated Resource Files ... 77

4. SchemaGen Ant Task .. 77
4.1. schemagen Task Overview ... 77
4.2. schemagen Task Attributes .. 77
4.3. schemagen Examples .. 78

5. 3rd Party Tools ... 78
5.1. Maven JAXB Plugin ... 78
5.2. JAXB Workshop .. 79
5.3. XJC Plugins ... 79
5.4. RDBMS Persistence .. 79

JAXB RI Extensions ... 80
1. Overview ... 80
2. Runtime Properties .. 80

2.1. Marshaller Properties ... 80
3. XJC Customizations .. 86

3.1. Customizations ... 86
4. DTD ... 92

4.1. DTD ... 92
5. Develop Plugins .. 93

5.1. What Can A Plugin Do? .. 93
Frequently Asked Questions ... 94
Related Articles .. 98

1. Introductory ... 98
2. Blogs .. 98
3. Interesting articles ... 98

1

Overview

Table of Contents
1. Documentation ... 1
2. Software Licenses ... 1
3. Sample Apps .. 2

3.1. Using the Runtime Binding Framework .. 2

The Java™ Architecture for XML Binding (JAXB) provides an API and tools that automate the mapping
between XML documents and Java objects.

The JAXB framework enables developers to perform the following operations:

• Unmarshal XML content into a Java representation

• Access and update the Java representation

• Marshal the Java representation of the XML content into XML content

JAXB gives Java developers an efficient and standard way of mapping between XML and Java code. Java
developers using JAXB are more productive because they can write less code themselves and do not have
to be experts in XML. JAXB makes it easier for developers to extend their applications with XML and
Web Services technologies.

1. Documentation
Documentation for this release consists of the following:

• Release Notes

• Running the binding compiler (XJC): [XJC, XJC Ant Task]

• Running the schema generator (schemagen): [SchemaGen, SchemaGen Ant Task]

• JAXB Users Guide

• Javadoc API documentation (javax.xml.bind.*) [api/]

• Sample Apps

• JAXB FAQs [Frequently Asked Questions, java.sun.com [http://java.sun.com/xml/jaxb/faq.html]]

2. Software Licenses
• 2013 Oracle Corporation and/or its affiliates. All rights reserved.

• The JAXB RI ${release.impl.version}${release.impl.version.suffix} Release is covered by the dual li-
cense between Common Development and Distribution License (CDDL) and GNU Public License v2
+ classpath exception [license.txt]

api/
api/
http://java.sun.com/xml/jaxb/faq.html
http://java.sun.com/xml/jaxb/faq.html
license.txt
license.txt
license.txt
license.txt

Overview

2

• Additional copyright notices and license terms applicable to portions of the software are set forth in the
3rd Party License README [ThirdPartyLicense.txt]

3. Sample Apps
This page summarizes basic use-cases for Java-2-Schema, Schema-2-Java, and lists all of the sample ap-
plications that ship with JAXB.

3.1. Using the Runtime Binding Framework

3.1.1. Schema-2-Java

Schema-2-Java is the process of compiling one or more schema files into generated Java classes. Here are
some of the basic steps for developing an app:

1. Develop/locate your schema

2. Annotate the schema with binding customizations if necessary (or place them in an external bindings
file)

3. Compile the schema with the XJC binding compiler

4. Develop your JAXB client application using the Java content classes generated by the XJC binding
compiler along with the javax.xml.bind runtime framework

5. Set your CLASSPATH to include all of the Identifying the JAR Files

6. Compile all of your Java sources with javac

7. Run it!

3.1.2. Java-2-Schema

Java-2-Schema is the process of augmenting existing Java classes with the annotations defined in the
javax.xml.bind.annotation package so that the JAXB runtime binding framework is capable of
performing the (un)marshal operations. Here are the basic steps for developing an app:

1. Develop your data model in Java

2. Apply the javax.xml.bind.annotation annotations to control the binding process

3. Set your CLASSPATH to include all of the Identifying the JAR Files

4. Compile your data model with javac

Important

Make sure that you CLASSPATH includes jaxb-xjc.jar before running javac.

5. The resulting class files will contain your annotations as well other default annotations needed by the
JAXB runtime binding framework

6. Develop your client application that uses the data model and develop the code that uses the JAXB
runtime binding framework to persist your data model using the (un)marshal operations.

ThirdPartyLicense.txt
ThirdPartyLicense.txt

Overview

3

7. Compile and run your client application!

For more information about this process, see the the Java WSDP Tutorial [http://docs.oracle.com/javaee/6/
tutorial/doc/gijti.html] and the extensive Sample Apps documentation.

3.1.3. Building and Running the Sample Apps with Ant

To run the sample applications, just go into each sample directory, and run ant without any option.

A few sample applications do not use Ant. For those samples, refer to the included readme.txt files
for instructions.

3.1.4. List of Sample Apps

samples/catalog-resolver This example demonstrates how to use the -catalog compiler
switch to handle references to schemas in external web sites.

samples/character-escape This example shows how you can use
the new JAXB RI Marshaller proper-
ty com.sun.xml.bind.characterEscapeHandler to
change the default character escaping behavior.

samples/class-resolver This little DI-container-by-JAXB example demonstrates how one
can avoid passing in a list of classes upfront, and instead load class-
es lazily.

samples/create-marshal This sample application demonstrates how to use the Object-
Factory class to create a Java content tree from scratch and mar-
shal it to XML data. It also demonstrates how to add content to a
JAXB List property.

samples/cycle-recovery JAXB RI's vendor extension CycleRecoverable provides ap-
plication a hook to handle cycles in the object graph. Advanced.

samples/datatypeconvert-
er

This sample application is very similar to the inline-customize sam-
ple application (formerly SampleApp6), but illustrates an easier,
but not as robust, <jaxb:javaType> customization.

samples/dtd This sample application illustrate some of the DTD support avail-
able in the JAXB RI's extension mode. Please refer to the JAXB RI
Extensions page for more detail.

samples/element-substi-
tution

This sample application illustrates how W3C XML Schema substi-
tution groups are supported in JAXB RI's extension mode. Please
refer to the JAXB RI Extensions page for more detail.

samples/external-cus-
tomize

This sample application is identical to the datatypeconverter sam-
ple application (formerly SampleApp7) except that the binding cus-
tomizations are contained in an external binding file.

samples/fix-collides Another binding customization example that illustrates how to re-
solve name conflicts. Running this sample without the binding file
will result in name collisions (see readme.txt) . Running ant
will use the binding customizations to resolve the name conflicts
while compiling the schema.

http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html
http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html
http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html

Overview

4

samples/inline-customize This sample application demonstrates how to customize the default
binding produced by the XJC binding compiler.

samples/j2s-crete-mar-
shal

This sample application demonstrates marshalling, unmarshalling
and unmarshal validation with existing Java classes annotated with
JAXB annotations.

samples/j2s-xmlAcces-
sorOrder

This sample application demonstrates the use of mapping annota-
tions @XmlAccessorOrder and @XmlType.propOrder in
Java classes for ordering properties and fields in Java to schema
bindings.

samples/j2s-xmlAdapter This sample application demonstrates the use of interface Xm-
lAdapter and annotation XmlJavaTypeAdapter for custom
marshaling/unmarshaling XML content into/out of a Java type.

samples/j2s-xmlAttribute This sample application demonstrates the use of annotation @Xm-
lAttribute for defining Java properties and fields as XML at-
tributes.

samples/j2s-xmlRootEle-
ment

This sample application demonstrates the use of annotation @Xml-
RootElement to define a class to be an XML element.

samples/j2s-xmlSchemat-
Type

This sample application demonstrates the use of annotation
@XmlSchemaType to customize the mapping of a property or
field to an XML built-in type.

samples/j2s-xmlType This sample application demonstrates the use of mapping annota-
tions @XmlAccessorOrder and @XmlType.propOrder in
Java classes for ordering properties and fields in Java to schema
bindings.

samples/locator-support This sample shows how to use the new non-standard loca-
tor support. By following the instructions in the readme.txt
file, you can cause all of the generated impl classes to imple-
ment a new interface that provides more information about er-
ror locations. When a ValidationEvent happens on your
content tree, simply retrieve the object and cast it down to
com.sun.xml.bind.extra.Locatable.

samples/modify-marshal This sample application demonstrates how to modify a java content
tree and marshal it back to XML data.

samples/namespace-prefix This sample application demonstrates how to
use the new JAXB RI Marshaller property
com.sun.xml.bind.namespacePrefixMapper to cus-
tomize the namespace prefixes generated during marshalling.

samples/partial-unmar-
shalling

In this example, the input document will be unmarshalled a small
chunk at a time, instead of unmarshalling the whole document at
once.

samples/pull-parser This sample app demonstrates how a pull-parser can be used with
JAXB to increase the flexibility of processing.

samples/streaming-unmar-
shalling

This example illustrates a different approach to the streaming un-
marshalling, which is suitable for processing a large document.

Overview

5

samples/synchro-
nized-methods

This sample shows how to use the new non-standard syn-
chronized method support. By following the instructions in the
readme.txt, you can cause all of the generated impl class meth-
ods signatures to contain the synchronized keyword.

samples/type-substitu-
tion

This sample app demonstrates type substitution using the W3C
XML Schema Part 0: Primer international purchase order schema.

samples/ubl This project processes a UBL (Universal Business Language) order
instance and prints a report to the screen.

samples/unmarshal-read This sample application demonstrates how to unmarshal an instance
document into a Java content tree and access data contained within
it.

samples/unmarshal-vali-
date

This sample application demonstrates how to enable validation dur-
ing the unmarshal operations.

samples/updateablePar-
tialBind

This sample application demonstrates how to partially map a DOM
tree to JAXB (using JAXP 1.3 XPath), modify JAXB mapped in-
stance and then update modifications back to the DOM tree.

samples/vendor-exten-
sions

This example demonstrates how to use <xjc:superClass>
vendor extensions provided by Sun's JAXB RI, as well as
<jaxb:serializable> customization.

samples/xml-channel This example demonstrates how one can use one communication
channel (such as a socket) to send multiple XML messages, and
how it can be combined with JAXB.

samples/xml-stylesheet A common customization need for the marshalling output is about
introducing extra processing instruction and/or DOCTYPE decla-
ration. This example demonstrates how such modification can be
done easily.

6

Release Notes

Table of Contents
1. Java™ 2 Platform, Standard Edition (J2SE™) Requirements .. 7
2. Identifying the JAR Files ... 7
3. Locating the Normative Binding Schema .. 7
4. Changelog ... 7

4.1. Changes between 2.2.10 to 2.2.11 ... 7
4.2. Changes between 2.2.9 to 2.2.10 ... 8
4.3. Changes between 2.2.8 to 2.2.9 ... 8
4.4. Changes between 2.2.7 to 2.2.8 ... 8
4.5. Changes between 2.2.6 to 2.2.7 ... 10
4.6. Changes between 2.2.5-2 to 2.2.6 .. 10
4.7. Changes between 2.2.5-1 to 2.2.5-2 .. 11
4.8. Changes between 2.2.5 to 2.2.5-1 .. 11
4.9. Changes between 2.2.4-1 to 2.2.5 .. 11
4.10. Changes between 2.2.4 to 2.2.4-1 ... 12
4.11. Changes between 2.2.3u2 to 2.2.4 .. 12
4.12. Notable Changes between 2.2.3u1 to 2.2.3u2 .. 14
4.13. Notable Changes between 2.2.3 to 2.2.3u1 ... 14
4.14. Notable Changes between 2.2.2 to 2.2.3 .. 14
4.15. Notable Changes between 2.2.1.1 to 2.2.2 .. 14
4.16. Notable Changes between 2.2.1 to 2.2.1.1 .. 14
4.17. Notable Changes between 2.2 to 2.2.1 ... 14
4.18. Notable Changes between 2.1.12 to 2.2 ... 15
4.19. Notable Changes between 2.1.12 to 2.1.13 ... 15
4.20. Notable Changes between 2.1.11 to 2.1.12 ... 15
4.21. Notable Changes between 2.1.10 to 2.1.11 ... 15
4.22. Notable Changes between 2.1.9 to 2.1.10 .. 15
4.23. Notable Changes between 2.1.8 to 2.1.9 .. 15
4.24. Notable Changes between 2.1.7 to 2.1.8 .. 15
4.25. Notable Changes between 2.1.6 to 2.1.7 .. 15
4.26. Notable Changes between 2.1.5 to 2.1.6 .. 16
4.27. Notable Changes between 2.1.4 to 2.1.5 .. 16
4.28. Notable Changes between 2.1.3 to 2.1.4 .. 16
4.29. Notable Changes between 2.1.2 to 2.1.3 .. 16
4.30. Notable Changes between 2.1.1 to 2.1.2 .. 16
4.31. Notable Changes between 2.1 First Customer Ship (FCS) to 2.1.1 16
4.32. Notable Changes between 2.1 Early Access 2 to 2.1 First Customer Ship (FCS) 16
4.33. Notable Changes between 2.0.2 to 2.0.3 .. 16
4.34. Notable Changes between 2.0.1 to 2.0.2 .. 17
4.35. Notable Changes between 2.0 to 2.0.1 ... 17
4.36. Notable Changes between 2.0 Early Access 3 and 2.0 First Customer Ship (FCS) 17
4.37. Notable Changes between 2.0 Early Access 2 and 2.0 Early Access 3 18
4.38. Notable Changes between 2.0 Early Access and 2.0 Early Access 2 18
4.39. Notable Changes between 1.0.x FCS and 2.0 Early Access .. 19

This document contains information that should help you use this software library more effectively. See
the Frequently Asked Questions for additional information.

The most up-to-date version of this document can be foundon-line [http://jaxb.java.net/].

http://jaxb.java.net/
http://jaxb.java.net/

Release Notes

7

1. Java™ 2 Platform, Standard Edition
(J2SE™) Requirements

This release of the JAXB Reference Implementation requires Java SE 6 or higher.

2. Identifying the JAR Files
Use Description Jars

Runtime Jars required to deploy a JAXB
2.x client

jaxb-api.jar, jaxb-
core.jar, jaxb-impl.jar,

Compiler Jars required at your development
environment (but not runtime)

jaxb-api.jar, jaxb-
core.jar, jaxb-impl.jar,
jaxb-xjc.jar

3. Locating the Normative Binding Schema
You may find information about the normative binding schema defined in the JAXB Specification athttp://
java.sun.com/xml/ns/jaxb.

4. Changelog
The JAXB 2.x RI is a major reimplementation to meet the requirements of the 2.x specifications.

Please refer to the jaxb-1-0-x-changelog [https://jaxb.java.net/nonav/2.0.1/docs/changelog.html] for older
releases.

4.1. Changes between 2.2.10 to 2.2.11
• Bug fixes:

• Fixed split Message bundles between modules

• Changed Codemodel to allow correct functioning of BeanValidation Plugin for XJC

• Security fixes

• Fixed '-disableXmlSecurity' flag usage

• Fixed redundant namespace prefixes

• Fixed mixed content for StAX

• Now we generate OSGI manifests for jaxb-core, jaxb-impl, jaxb-xjc anc jaxb-jxc

• Marked com.sun.org.apache.xml.internal.resolver and
com.sun.org.apache.xml.internal.resolver.tools as optional. They are part of
JDK.

• JAXB-973 [https://java.net/jira/browse/JAXB-973]: generated code should be compilable with '-
Xdoclint:all'

http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxb
https://jaxb.java.net/nonav/2.0.1/docs/changelog.html
https://jaxb.java.net/nonav/2.0.1/docs/changelog.html
https://java.net/jira/browse/JAXB-973
https://java.net/jira/browse/JAXB-973

Release Notes

8

• JAXB-598 [https://java.net/jira/browse/JAXB-598]: XJC generates ordered ObjectFactories,
@XmlSeeAlso annotations and episode files.

4.2. Changes between 2.2.9 to 2.2.10
• Bug fixes:

• Fixed for preserving whitespaces within xsd:any mixed element

• Security fixes

• Fixed circular dependency between SAAJ and JAXB; stax-ex changed not to use SAAJ-API

• Fixed catalog logging. Allow user to disable usage of system proxies. Force CatalogResolver to set
verbosity level.

• Fixed stream handling

• Fixed EnvelopeFactory

4.3. Changes between 2.2.8 to 2.2.9
• Bug fixes:

• Security fixes.

• JAXB-926 [https://java.net/jira/browse/JAXB-926] - Fixed optional property behavior for PRIMI-
TIVE value.

• Fixed wrong ref element generation

• Fixed OSGi bug: NoClassDefFoundError javax/xml/soap/soapelement

4.4. Changes between 2.2.7 to 2.2.8
• This release is integrated into JDK 8. (Build 2.2.8-b130911.1802)

• JAXB RI project is now mavenized. New maven groupId introduced: org.glassfish.jaxb So if you are
use maven you can simply add dependency block:

 <dependency>
 <groupId>org.glassfish.jaxb</groupId>
 <artifactId>jaxb-bom</artifactId>
 <version>2.2.8</version>
 <type>pom</type>
 </dependency>

• From now JAXB RI project uses GIT VCS. You can get our sources from:

 Java.net: git clone git://java.net/jaxb~v2
 GitHub: git clone https://github.com/gf-metro/
jaxb.git

https://java.net/jira/browse/JAXB-598
https://java.net/jira/browse/JAXB-598
https://java.net/jira/browse/JAXB-926
https://java.net/jira/browse/JAXB-926

Release Notes

9

• Bug fixes:

• Integrated new osgi-fied api

• Fixed the bug with namespaces. Namespace must match in order to be able to generate ref otherwise
the generated element ref belongs to different namespace. Ref generation is isolated only to cases
where package mapping prevails

• Updated access to JAX-WS

• New JAXP version support added.

• Fixed broken links in documentation

• Fixed userguide

• [14606308, 14743364] - Fix resolution of referenced simpleType

• JXC findBugs fixes.

• Added txw to jaxb source repo

• Fixed bug when JAXB marshaller setting xsi:nil as true for non-nillable elements

• Fixed event handling for missing xsi type

• added errorCounter

• added logging level check

• Updated JAXB API with licence/fbugs fixes, and osgi fix

• JAX_WS-1114 [https://java.net/jira/browse/JAX_WS-1114]: Fixed marshalling of gMonth type.

• To enable old behavior use switch: jaxb.ri.useOldGmonthMapping

• JAXB-937 [https://java.net/jira/browse/JAXB-937]: Fixed Coordinator ThreadLocal

• Fixed invalid absolute URL

• Removed the need for synchronization - tailor can still happen multiple times under specific circum-
stances, but it's better than contention within multiple threads on one class

• Fixed SimpleNameClass dependency

• Fixed managing of nested collections.

• Fixed maven configuration: made JDK deps required, map jaxb-extra-osgi exports by version, re-
moved dep on com.sun.nio

• Codemodel is imported into JAXB project tree

• Security fixes

• Added JAXB OSGi test.

https://java.net/jira/browse/JAX_WS-1114
https://java.net/jira/browse/JAX_WS-1114
https://java.net/jira/browse/JAXB-937
https://java.net/jira/browse/JAXB-937

Release Notes

10

4.5. Changes between 2.2.6 to 2.2.7
• JAXB 1.0 runtime is restored. It's bundled into the jaxb-extra-osgi.jar now. Required libraries

are located in $JAXB_HOME/tools/jaxb1_libs folder.

• The processing of -source XJC option is removed. We use 2.0 version of the schema compiler. For
generating 1.0.x code, please use an installation of the 1.0.x codebase.

• resolver.jar is not bundled by JAXB anymore. It's already part of JDK. If you are us-
ing JDK which doesn't contain it - you have to download it manually (e.g. from maven:
com.sun.org.apache.xml.internal:resolver).

• JAXB project was split into several modules: core, impl, xjc and jxc. So now it is possible to use XJC
with other JAXB runtime implementation (e.g. EclipseLink MOXy). While using XJC be aware of
having any runtime JAXB implementation (respectively jaxb-impl.jar) on classpath.

• Bug fixes:

• JAXB-452 [https://java.net/jira/browse/JAXB-452] - Embedded DOM Elements may lose locally
defined namespace prefixes

• JAXB-915 [https://java.net/jira/browse/JAXB-915] - Cannot generate java classes from xjc

• JAXB-919 [https://java.net/jira/browse/JAXB-919] - xjc - proxy authentication fails

• JAXB-922 [https://java.net/jira/browse/JAXB-922] - JAXB samples fail

• JAXB-939 [https://java.net/jira/browse/JAXB-939] - '#' at the end of a namespace : different of be-
havior, sometimes a underscore is added, sometimes not.

• JAXB-940 [https://java.net/jira/browse/JAXB-940] - wrong default value for "target" parameter for
xjc ant task

• JAXB-948 [https://java.net/jira/browse/JAXB-948] - JAXB differences in JDK 7 in com/sun/
xml/internal/bind/v2/
runtime/reflect/Lister.java#Lister.CollectionLister.endPacking

• Improvement:

• JAXB-912 [https://java.net/jira/browse/JAXB-912] - XJC split

4.6. Changes between 2.2.5-2 to 2.2.6
• Project cleaning done:

• JAXB 1.0 is not bundled anymore.

• Libraries jaxb1-xjc.jar , msv.jar was removed.

• Package com/sun/msv/datatype was extracted to jaxb-extra-osgi.jar

• Bug fixes:

• JAXB-890 [https://java.net/jira/browse/JAXB-890] - JAXB Unmarshaller tries to instantiate abstract
class ignoring xsi:type if nillable="true".

https://java.net/jira/browse/JAXB-452
https://java.net/jira/browse/JAXB-452
https://java.net/jira/browse/JAXB-915
https://java.net/jira/browse/JAXB-915
https://java.net/jira/browse/JAXB-919
https://java.net/jira/browse/JAXB-919
https://java.net/jira/browse/JAXB-922
https://java.net/jira/browse/JAXB-922
https://java.net/jira/browse/JAXB-939
https://java.net/jira/browse/JAXB-939
https://java.net/jira/browse/JAXB-940
https://java.net/jira/browse/JAXB-940
https://java.net/jira/browse/JAXB-948
https://java.net/jira/browse/JAXB-948
https://java.net/jira/browse/JAXB-912
https://java.net/jira/browse/JAXB-912
https://java.net/jira/browse/JAXB-890
https://java.net/jira/browse/JAXB-890

Release Notes

11

• JAXB-871 [https://java.net/jira/browse/JAXB-871] - Disabled fields and multiple-inherence (over-
ride once => override for sub-classes).

• JAXB-900 [https://java.net/jira/browse/JAXB-900] - MarshalException for XmlIDREF used on in-
terfaces.

4.7. Changes between 2.2.5-1 to 2.2.5-2
• Fixed version number in OSGi bundles

4.8. Changes between 2.2.5 to 2.2.5-1
• JAX_WS-1059 [https://java.net/jira/browse/JAX_WS-1059] - wsimport Ant tasks causes NoClassDef-

FoundError

4.9. Changes between 2.2.4-1 to 2.2.5
• JAXB-415 [https://java.net/jira/browse/JAXB-415] - Marshaller.marshall throws NPE if an adapter

adapts a non-null bound value to null.

• JAXB-488 [https://java.net/jira/browse/JAXB-488] - compatibility issue with JAXB 2.0

• JAXB-608 [https://java.net/jira/browse/JAXB-608] - javax.xml.bind.DatatypeConverter.parseBoolean
incorrect

• JAXB-616 [https://java.net/jira/browse/JAXB-616] - XMLCatalog not used from xjc/xjctask when
strict validation is enabled

• JAXB-617 [https://java.net/jira/browse/JAXB-617] - setting Marshaller CharacterEncodingHandler
with utf-8 does not work

• JAXB-790 [https://java.net/jira/browse/JAXB-790] - Whitespace processing for xs:anyURI type

• JAXB-794 [https://java.net/jira/browse/JAXB-794] - Classes annotated with @XmlTransient are
still mapped to XML

• JAXB-795 [https://java.net/jira/browse/JAXB-795] - Catalog passed to XJC is not used during the
schema correctness check

• JAXB-814 [https://java.net/jira/browse/JAXB-814] - Failing with 'no-arg default constructor' on @Xml-
Transient

• JAXB-825 [https://java.net/jira/browse/JAXB-825] - Attribute with default generates different types for
get and set methods

• JAXB-831 [https://java.net/jira/browse/JAXB-831] - Memory leak in
com.sun.xml.bind.v2.ClassFactory

• JAXB-834 [https://java.net/jira/browse/JAXB-834] - Cannot use binding file on Windows

• JAXB-836 [https://java.net/jira/browse/JAXB-836] - CLONE -Marshaller.marshall throws NPE if an
adapter adapts a non-null bound value to null.

• JAXB-837 [https://java.net/jira/browse/JAXB-837] - XJC generated code misses out some fields from
XML

https://java.net/jira/browse/JAXB-871
https://java.net/jira/browse/JAXB-871
https://java.net/jira/browse/JAXB-900
https://java.net/jira/browse/JAXB-900
https://java.net/jira/browse/JAX_WS-1059
https://java.net/jira/browse/JAX_WS-1059
https://java.net/jira/browse/JAXB-415
https://java.net/jira/browse/JAXB-415
https://java.net/jira/browse/JAXB-488
https://java.net/jira/browse/JAXB-488
https://java.net/jira/browse/JAXB-608
https://java.net/jira/browse/JAXB-608
https://java.net/jira/browse/JAXB-616
https://java.net/jira/browse/JAXB-616
https://java.net/jira/browse/JAXB-617
https://java.net/jira/browse/JAXB-617
https://java.net/jira/browse/JAXB-790
https://java.net/jira/browse/JAXB-790
https://java.net/jira/browse/JAXB-794
https://java.net/jira/browse/JAXB-794
https://java.net/jira/browse/JAXB-795
https://java.net/jira/browse/JAXB-795
https://java.net/jira/browse/JAXB-814
https://java.net/jira/browse/JAXB-814
https://java.net/jira/browse/JAXB-825
https://java.net/jira/browse/JAXB-825
https://java.net/jira/browse/JAXB-831
https://java.net/jira/browse/JAXB-831
https://java.net/jira/browse/JAXB-834
https://java.net/jira/browse/JAXB-834
https://java.net/jira/browse/JAXB-836
https://java.net/jira/browse/JAXB-836
https://java.net/jira/browse/JAXB-837
https://java.net/jira/browse/JAXB-837

Release Notes

12

• JAXB-843 [https://java.net/jira/browse/JAXB-843] - Marshaller holds reference after marshalling for
the writer that was used to marshal into

• JAXB-844 [https://java.net/jira/browse/JAXB-844] - Memory Leak in
com.sun.xml.bind.v2.runtime.Coordinator

• JAXB-847 [https://java.net/jira/browse/JAXB-847] - DataTypeConverterImpl patch causes corrupted
stream generation in some cases

• JAXB-849 [https://java.net/jira/browse/JAXB-849] - JAXB:Invalid boolean values added to lists as
'false'

• JAXB-856 [https://java.net/jira/browse/JAXB-856] - xs:import namespace="http://
www.w3.org/2005/05/xmlmime" is not generated

• JAXB-858 [https://java.net/jira/browse/JAXB-858] - xjc generates no JAXBElement for nillable ele-
ment with required attribute

• JAXB-859 [https://java.net/jira/browse/JAXB-859] - Corrupt license file in the distribution

• JAXB-860 [https://java.net/jira/browse/JAXB-860] - NullPointerException
com.sun.xml.bind.v2.runtime.ClassBeanInfoImpl.checkOverrideProperties(ClassBeanInfoImpl.java:205)

• JAXB-867 [https://java.net/jira/browse/JAXB-867] - jax-ws / jax-b / glassfish 3.1.1 web services fail
to send data from beans based on variable name.

• JAXB-868 [https://java.net/jira/browse/JAXB-868] - Escape policy for quote (") is different when the
serialization is performed to OutputStream or Writer

• JAXB-869 [https://java.net/jira/browse/JAXB-869] - Multiple <any /> elements on a schema : second
element is not loaded

• JAXB-882 [https://java.net/jira/browse/JAXB-882] - Marshalling Objects extending JAXBElement
linked by @XmlElementRef

• JAXB-445 [https://java.net/jira/browse/JAXB-445] - Generated episode bindings should contain target
package name

• JAXB-499 [https://java.net/jira/browse/JAXB-499] - Umbrella issue for all XJC related encoding issues
wrt xjc itself and maven plugins/ant tasks

• JAXB-839 [https://java.net/jira/browse/JAXB-839] - More Schema Annotations/Documentation to
Javadoc

4.10. Changes between 2.2.4 to 2.2.4-1
• JAXB-834 [https://java.net/jira/browse/JAXB-834] - Cannot use binding file on Windows

• JAXB-835 [https://java.net/jira/browse/JAXB-835] - XJC fails with project path that contains spaces

4.11. Changes between 2.2.3u2 to 2.2.4
• JAXB-413 [https://java.net/jira/browse/JAXB-413] - Redundant cast to byte[] in code generated by

XJCTask

• JAXB-416 [https://java.net/jira/browse/JAXB-416] - Ant XJC task problems with spaces in paths

https://java.net/jira/browse/JAXB-843
https://java.net/jira/browse/JAXB-843
https://java.net/jira/browse/JAXB-844
https://java.net/jira/browse/JAXB-844
https://java.net/jira/browse/JAXB-847
https://java.net/jira/browse/JAXB-847
https://java.net/jira/browse/JAXB-849
https://java.net/jira/browse/JAXB-849
https://java.net/jira/browse/JAXB-856
https://java.net/jira/browse/JAXB-856
https://java.net/jira/browse/JAXB-858
https://java.net/jira/browse/JAXB-858
https://java.net/jira/browse/JAXB-859
https://java.net/jira/browse/JAXB-859
https://java.net/jira/browse/JAXB-860
https://java.net/jira/browse/JAXB-860
https://java.net/jira/browse/JAXB-867
https://java.net/jira/browse/JAXB-867
https://java.net/jira/browse/JAXB-868
https://java.net/jira/browse/JAXB-868
https://java.net/jira/browse/JAXB-869
https://java.net/jira/browse/JAXB-869
https://java.net/jira/browse/JAXB-882
https://java.net/jira/browse/JAXB-882
https://java.net/jira/browse/JAXB-445
https://java.net/jira/browse/JAXB-445
https://java.net/jira/browse/JAXB-499
https://java.net/jira/browse/JAXB-499
https://java.net/jira/browse/JAXB-839
https://java.net/jira/browse/JAXB-839
https://java.net/jira/browse/JAXB-834
https://java.net/jira/browse/JAXB-834
https://java.net/jira/browse/JAXB-835
https://java.net/jira/browse/JAXB-835
https://java.net/jira/browse/JAXB-413
https://java.net/jira/browse/JAXB-413
https://java.net/jira/browse/JAXB-416
https://java.net/jira/browse/JAXB-416

Release Notes

13

• JAXB-450 [https://java.net/jira/browse/JAXB-450] - Reusing unmarshaller results in an unexpected
result

• JAXB-549 [https://java.net/jira/browse/JAXB-549] - Unescaped javadoc in @XmlElements

• JAXB-602 [https://java.net/jira/browse/JAXB-602] - Different unmarshalling behavior between primi-
tive type and simpletype with enumeration under restriction

• JAXB-618 [https://java.net/jira/browse/JAXB-618] - XJC generates certain code lines in a random order

• JAXB-620 [https://java.net/jira/browse/JAXB-620] - Problems with abstract classes and @XMLValue

• JAXB-652 [https://java.net/jira/browse/JAXB-652] - JAXB 2.2 API should be changed to work with
old 2.1 jaxb implementation in JDK

• JAXB-696 [https://java.net/jira/browse/JAXB-696] - Incorrect implementation/documentation of
javax.xml.bind.annotation.adapters.NormalizedStringAdapter

• JAXB-726 [https://java.net/jira/browse/JAXB-726] - Missing keyword 'throw'

• JAXB-761 [https://java.net/jira/browse/JAXB-761] - DatatypeConverterInterface.printDate inconsis-
tencies

• JAXB-774 [https://java.net/jira/browse/JAXB-774] - Extra slash in XSD location prevents customiza-
tion

• JAXB-803 [https://java.net/jira/browse/JAXB-803] - 2.2.2 strips schemaLocation in binding files

• JAXB-804 [https://java.net/jira/browse/JAXB-804] - JAXB 2.x : How to override an XmlElement an-
notation from parent class - Mission Impossible?

• JAXB-813 [https://java.net/jira/browse/JAXB-813] - Preserving white-space in XML (xs:string enu-
meration value) does not work

• JAXB-815 [https://java.net/jira/browse/JAXB-815] - Binding file cannot refer to schema file with space
in file name.

• JAXB-816 [https://java.net/jira/browse/JAXB-816] - Incorrect System property to define the provider
factory class

• JAXB-821 [https://java.net/jira/browse/JAXB-821] - Global customization are not applied to xjc when
input document is WSDL

• JAXB-824 [https://java.net/jira/browse/JAXB-824] - API files in javax.xml.bind need to be updated for
references to JLS with editions/hyperlinks

• JAXB-826 [https://java.net/jira/browse/JAXB-826] - JAXB fails to unmarshal attributes as properties
on aix

• JAXB-268 [https://java.net/jira/browse/JAXB-268] - Map handling broken

• JAXB-470 [https://java.net/jira/browse/JAXB-470] - Potential changes to make JAXB work better with
OSGi

• JAXB-478 [https://java.net/jira/browse/JAXB-478] - jaxb2-sources : Allow compilation under Java 6

• JAXB-633 [https://java.net/jira/browse/JAXB-633] - JDefinedClass getMods()

https://java.net/jira/browse/JAXB-450
https://java.net/jira/browse/JAXB-450
https://java.net/jira/browse/JAXB-549
https://java.net/jira/browse/JAXB-549
https://java.net/jira/browse/JAXB-602
https://java.net/jira/browse/JAXB-602
https://java.net/jira/browse/JAXB-618
https://java.net/jira/browse/JAXB-618
https://java.net/jira/browse/JAXB-620
https://java.net/jira/browse/JAXB-620
https://java.net/jira/browse/JAXB-652
https://java.net/jira/browse/JAXB-652
https://java.net/jira/browse/JAXB-696
https://java.net/jira/browse/JAXB-696
https://java.net/jira/browse/JAXB-726
https://java.net/jira/browse/JAXB-726
https://java.net/jira/browse/JAXB-761
https://java.net/jira/browse/JAXB-761
https://java.net/jira/browse/JAXB-774
https://java.net/jira/browse/JAXB-774
https://java.net/jira/browse/JAXB-803
https://java.net/jira/browse/JAXB-803
https://java.net/jira/browse/JAXB-804
https://java.net/jira/browse/JAXB-804
https://java.net/jira/browse/JAXB-813
https://java.net/jira/browse/JAXB-813
https://java.net/jira/browse/JAXB-815
https://java.net/jira/browse/JAXB-815
https://java.net/jira/browse/JAXB-816
https://java.net/jira/browse/JAXB-816
https://java.net/jira/browse/JAXB-821
https://java.net/jira/browse/JAXB-821
https://java.net/jira/browse/JAXB-824
https://java.net/jira/browse/JAXB-824
https://java.net/jira/browse/JAXB-826
https://java.net/jira/browse/JAXB-826
https://java.net/jira/browse/JAXB-268
https://java.net/jira/browse/JAXB-268
https://java.net/jira/browse/JAXB-470
https://java.net/jira/browse/JAXB-470
https://java.net/jira/browse/JAXB-478
https://java.net/jira/browse/JAXB-478
https://java.net/jira/browse/JAXB-633
https://java.net/jira/browse/JAXB-633

Release Notes

14

• JAXB-768 [https://java.net/jira/browse/JAXB-768] - Mailing list consolidation suggestions

• JAXB-784 [https://java.net/jira/browse/JAXB-784] - JAnnotationUse should provide getters for clazz
and memberValues properties

• JAXB-406 [https://java.net/jira/browse/JAXB-406] - Allow setting of access modifiers in JMods

• JAXB-769 [https://java.net/jira/browse/JAXB-769] - Update to command-line help text

• JAXB-772 [https://java.net/jira/browse/JAXB-772] - Updates to XJC.html page and -Xpropertyacces-
sors plugin

• JAXB-783 [https://java.net/jira/browse/JAXB-783] - I18N: xjc generates localized strings of AM/PM
so compilation fails

4.12. Notable Changes between 2.2.3u1 to 2.2.3u2
• JAXB-826 [https://java.net/jira/browse/JAXB-826] - JAXB fails to unmarshal attributes as properties

on AIX

4.13. Notable Changes between 2.2.3 to 2.2.3u1
• JAXB-805 [https://java.net/jira/browse/JAXB-805] - SpecJ performance regression

4.14. Notable Changes between 2.2.2 to 2.2.3
• 6975714 - JAXB 2.2 throws IAE for invalid Boolean values

• JAXB-620 [https://java.net/jira/browse/JAXB-620] - Problems with abstract classes (xsi type process-
ing)

• Regression in Jersey JSON mapping

4.15. Notable Changes between 2.2.1.1 to 2.2.2
• Specification changelog [http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/

index2.html]

• Fixes to bugs reported in java.net [http://jaxb.java.net/issues/buglist.cgi?
component=jaxb&issue_status=RESOLVED&issue_status=VERIFIED&issue_statu]

4.16. Notable Changes between 2.2.1 to 2.2.1.1
• This minor-minor release contains only changes relevant to GlassFish OSGi environment

4.17. Notable Changes between 2.2 to 2.2.1
• Specification changelog [http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/

index2.html]

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10781]

https://java.net/jira/browse/JAXB-768
https://java.net/jira/browse/JAXB-768
https://java.net/jira/browse/JAXB-784
https://java.net/jira/browse/JAXB-784
https://java.net/jira/browse/JAXB-406
https://java.net/jira/browse/JAXB-406
https://java.net/jira/browse/JAXB-769
https://java.net/jira/browse/JAXB-769
https://java.net/jira/browse/JAXB-772
https://java.net/jira/browse/JAXB-772
https://java.net/jira/browse/JAXB-783
https://java.net/jira/browse/JAXB-783
https://java.net/jira/browse/JAXB-826
https://java.net/jira/browse/JAXB-826
https://java.net/jira/browse/JAXB-805
https://java.net/jira/browse/JAXB-805
https://java.net/jira/browse/JAXB-620
https://java.net/jira/browse/JAXB-620
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jaxb.java.net/issues/buglist.cgi?component=jaxb&issue_status=RESOLVED&issue_status=VERIFIED&issue_statu
http://jaxb.java.net/issues/buglist.cgi?component=jaxb&issue_status=RESOLVED&issue_status=VERIFIED&issue_statu
http://jaxb.java.net/issues/buglist.cgi?component=jaxb&issue_status=RESOLVED&issue_status=VERIFIED&issue_statu
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10781
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10781
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10781

Release Notes

15

4.18. Notable Changes between 2.1.12 to 2.2
• Specification changelog [http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html]

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10780]

4.19. Notable Changes between 2.1.12 to 2.1.13
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10770]

4.20. Notable Changes between 2.1.11 to 2.1.12
• http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6846148 [http://bugs.sun.com/bug-

database/view_bug.do?bug_id=6846148]

• https://java.net/jira/browse/JERSEY-113

• https://java.net/jira/browse/JERSEY-272

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10769]

4.21. Notable Changes between 2.1.10 to 2.1.11
• Minor licencing and legal fixes. No changes to source code.

4.22. Notable Changes between 2.1.9 to 2.1.10
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10767]

4.23. Notable Changes between 2.1.8 to 2.1.9
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10779]

4.24. Notable Changes between 2.1.7 to 2.1.8
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10778]

4.25. Notable Changes between 2.1.6 to 2.1.7
• Fixed documentation that incorrectly showed that JAXB RI is CDDL only (it's actually CD-

DL/GPLv2+classpath dual license)

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10777]

http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr222/index2.html
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10780
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10780
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10780
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10770
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10770
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10770
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6846148
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6846148
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6846148
https://java.net/jira/browse/JERSEY-113
https://java.net/jira/browse/JERSEY-272
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10769
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10769
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10769
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10767
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10767
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10767
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10779
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10779
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10779
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10778
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10778
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10778
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10777
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10777
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10777

Release Notes

16

4.26. Notable Changes between 2.1.5 to 2.1.6
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10776]

4.27. Notable Changes between 2.1.4 to 2.1.5
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10775]

4.28. Notable Changes between 2.1.3 to 2.1.4
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10774]

4.29. Notable Changes between 2.1.2 to 2.1.3
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10773]

4.30. Notable Changes between 2.1.1 to 2.1.2
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10772]

4.31. Notable Changes between 2.1 First Customer Ship
(FCS) to 2.1.1

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10766]

• Allow separate compilations to perform element substitutions

4.32. Notable Changes between 2.1 Early Access 2 to 2.1
First Customer Ship (FCS)

• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?
projectId=10198&version=10795]

• Bug fix: #6483368 javax.xml.bind.Binder.marshal() doesn't throw expected MarshalException [http://
find.me/id/6483368]

• Bug fix: #6483953 javax.xml.bind.Binder.getJAXBNode(null) doesn't throw documented exception
[http://find.me/id/6483953]

• More bug fixes

4.33. Notable Changes between 2.0.2 to 2.0.3
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10759]

https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10776
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10776
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10776
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10775
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10775
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10775
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10774
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10774
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10774
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10773
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10773
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10773
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10772
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10772
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10772
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10766
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10766
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10766
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10795
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10795
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10795
http://find.me/id/6483368
http://find.me/id/6483368
http://find.me/id/6483368
http://find.me/id/6483953
http://find.me/id/6483953
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10759
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10759
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10759

Release Notes

17

• JavaSE 6 release is expected to include this version of the JAXB RI (certainly as of build 102.)

4.34. Notable Changes between 2.0.1 to 2.0.2
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10758]

• Bug fix: #6372392 Unmarshaller should report validation error for elements with xsi:nil="true" and
content [http://find.me/id/6372392]

• Bug fix: #6449776 ClassCastException in JAXB when using interfaces as parameters [http://find.me/
id/6449776]

• More bug fixes

4.35. Notable Changes between 2.0 to 2.0.1
• Fixes to bugs reported in java.net [https://java.net/jira/secure/ReleaseNote.jspa?

projectId=10198&version=10757]

• More bug fixes

• The simpler and better binding mode is improved

• JAXB unofficial user's guide [http://jaxb.java.net/guide/] is available now, though it's still a work in
progress

4.36. Notable Changes between 2.0 Early Access 3 and
2.0 First Customer Ship (FCS)

• Java to schema samples are added

• Added <xjc:javaType> vendor customization

• Added experimental <xjc:simple> vendor customization, which brings in a new simpler and better bind-
ing mode

• The spec has renamed AccessType toXmlAccessType, and @AccessorType
to@XmlAccessorType.

• Various error handling improvements

• Experimental canonicaliztion support is added.

• The '-b' option can now take a directory and recursively search for all "*.xjb" files.

• Fixed various issues regarding using JAXB from codef inside a restricted security sandbox.

• Added more pluggability points for plugins to customize the code generation behavior.

• Some of the code is split into a separate istack-commons project to promote more reuse among
projects.

• Made a few changes so that RetroTranslator can translate the JAXB RI (and its generated code) to run
it on JDK 1.4 and earlier

https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10758
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10758
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10758
http://find.me/id/6372392
http://find.me/id/6372392
http://find.me/id/6372392
http://find.me/id/6449776
http://find.me/id/6449776
http://find.me/id/6449776
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10757
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10757
https://java.net/jira/secure/ReleaseNote.jspa?projectId=10198&version=10757
http://jaxb.java.net/guide/
http://jaxb.java.net/guide/

Release Notes

18

• Improved the quality of the generated code by removing unnecessary imports.

• Other countless bug fixes

4.37. Notable Changes between 2.0 Early Access 2 and
2.0 Early Access 3

• Map property can be now correctly bound to XML Schema

• Default marshaller error handling behavior became draconian (previously errors were ignored.)

• @link to a parameterized type is now correctly generated

• started producing architecture document for those who want to build plugins or play with the RI internal.

• XJC now uses the platform default proxy setting by default.

• @XmlAccessorOrder, @XmlSchemaType and @XmlInlineBinaryData are implemented

• @XmlJavaTypeAdapter on a class/package is implemented

• Marshaller life-cycle events are implemented

• Integration to FastInfoset is improved in terms of performance

• XJC can generate @Generated

• The unmarshaller is significantly rewritten for better performance

• Added schemagen tool and its Ant task

• Various improvements in error reporting during unmarshalling/marshalling

• JAXB RI is now under CDDL

4.38. Notable Changes between 2.0 Early Access and 2.0
Early Access 2

• The default for @XmlAccessorType was changed to PUBLIC_MEMBER

• Optimized binary data handling enabled by callbacks in package javax.xml.bind.attachment. Standards
supported include MTOM/XOP and WS-I AP 1.0 ref:swaRef.

• Unmarshal/marshal support of element defaulting

• Improved the quality of the generated Java code

• Fixed bugs in default value handling

• Runtime performance improvements, memory usage improvements

• Added support for <xjc:superInterface> vendor extension

• Migrated source code to http://jaxb2-sources.dev.java.net

• Published NetBeans project file for JAXB RI

Release Notes

19

• Added more support to the schema generator: anonymous complex types, attribute refs, ID/IDREF, etc

• Implemented javax.xml.bind.Binder support (not 100% done yet)

• Implemented marshal-time validation

• Improved xjc command line interface - better support for proxy options, more options for specifying
schema files

• Added schema-2-Java support for simple type substitution

• Added support for the new <jaxb:globalBindings localScoping="nested" |
"toplevel"> customization which helps control deeply nested classes

• Made the default ValidationEventHandler more forgiving in 2.0 than it was in 1.0 (The class
still behaves the same as it did when used by a 1.0 app)

• Added wildcard support for DTD

• Numerous other small changes and bugfixes....

4.39. Notable Changes between 1.0.x FCS and 2.0 Early
Access

• Support for 100% W3C XML Schema (not all in EA, but planned for FCS)

• Support for binding Java to XML

• Addition of javax.xml.bind.annotation package for controling the binding from Java to XML

• Significant reduction in the number of generated schema-derived classes

• Per complex type definition, generate one value class instead of an interface and implementation class.

• Per global element declaration, generate a factory method instead of generating a schema-derived
interface and implementation class.

• Replaced the validation capabilities in 1.0 with JAXP 1.3 validation API's

• Smaller runtime libraries

• Numerous other changes...

20

JAXB Users Guide
Abstract

This document explains various interesting/complex/tricky aspects of JAXB, based on questions posted on
the JAXB users forum [http://forums.java.net/jive/forum.jspa?forumID=46] and answers I provided. This is
an ongoing work-in-progress. Any feedback [mailto:users@jaxb.java.net] appreciated.

Table of Contents
1. Compiling XML Schema .. 21

1.1. Dealing with errors ... 21
1.2. Fixing broken references in schema ... 23
1.3. Mapping of <xs:any /> ... 25
1.4. Mapping of <xs:element /> to JAXBElement ... 27
1.5. How modularization of schema interacts with XJC .. 27
1.6. Adding behaviors .. 27
1.7. Avoid strong databinding ... 30
1.8. Working with generated code in memory .. 31

2. Customization of Schema Compilation .. 31
2.1. Customizing Java packages .. 31
2.2. Using SCD for customizations .. 32
2.3. Using different datatypes .. 33

3. Annotating Your Classes .. 34
3.1. Mapping your favorite class .. 34
3.2. Mapping interfaces .. 36
3.3. Evolving annotated classes ... 41
3.4. XML layout and in-memory data layout .. 43
3.5. Mapping cyclic references to XML .. 45

4. Unmarshalling .. 48
4.1. @XmlRootElement and unmarshalling .. 48
4.2. Unmarshalling is not working! Help! .. 49
4.3. Element default values and unmarshalling ... 50
4.4. Dealing with large documents ... 51

5. Marshalling .. 52
5.1. Changing prefixes ... 52
5.2. Element default values and marshalling .. 52
5.3. Different ways of marshalling ... 53
5.4. Interaction between marshalling and DOM .. 55

6. Schema Generation .. 57
6.1. Invoking schemagen programatically .. 57
6.2. Generating Schema that you want .. 58

7. Deployment .. 58
7.1. Migrating JAXB 2.0 applications to JavaSE 6 .. 58
7.2. Which JAXB RI is included in which JDK? .. 59
7.3. Running JAXB 1.0 and 2.x side by side .. 60
7.4. Migrating JAXB 1.0 applications to JAXB 2.x ... 60
7.5. Runtime Errors ... 61

8. Other Miscellaneous Topics .. 62
8.1. Performance and thread-safety .. 62
8.2. Compiling DTD ... 62

http://forums.java.net/jive/forum.jspa?forumID=46
http://forums.java.net/jive/forum.jspa?forumID=46
mailto:users@jaxb.java.net
mailto:users@jaxb.java.net

JAXB Users Guide

21

8.3. Using JAXB from Maven .. 64
8.4. Designing a client/server protocol in XML .. 64

1. Compiling XML Schema

1.1. Dealing with errors

1.1.1. Schema errors

Because XML Schema is so complicated, and because there are a lot of tools out there do not implement the
spec correctly, it is often the case that a schema you are trying to compile has some real errors in it. When
this is the case, you'll see XJC reporting somewhat cryptic errors such as rcase-RecurseLax.2:
There is not a complete functional mapping between the particles.

The JAXB RI uses the schema correctness checker from the underlying JAXP implementation, which
is the JAXP RI in a typical setup. The JAXP RI is one of the most conformant schema validators, and
therefore most likely correct. So the first course of action usually is to fix problems in the schema.

However, in some situations, you might not have an authority to make changes to the schema. If that is
the case and you really need to compile the schema, you can bypass the correctness check by using the
-nv option in XJC. When you do this, keep in mind that you are possibly feeding "garbage" in, so you
may see XJC choke with some random exception.

1.1.2. Property 'fooBarZot' is already defined

One of the typical errors you'll see when compiling a complex schema is:

Example 1. Multiple property definitions error

parsing a schema...
[ERROR] Property "MiOrMoOrMn" is already defined.
 line 132 of
file:/C:/kohsuke/Sun/JAXB/jaxb-unit/schemas/individual/MathML2/presentation/
scripts.xsd

[ERROR] The following location is relevant to the above error
 line 138 of
file:/C:/kohsuke/Sun/JAXB/jaxb-unit/schemas/individual/MathML2/presentation/
scripts.xsd

This is an actual example of the offending part of a schema, taken from MathML. If you go to line 132 of
scripts.xsd, you'll see that it has a somewhat complicated content model definition:

Example 2. Multiple property definitions in MathML

<xs:group name="mmultiscripts.content">
 <xs:sequence>
 <xs:group ref="Presentation-expr.class"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded"> <!-- line 132
 -->
 <xs:group ref="Presentation-expr-or-none.class"/>
 <xs:group ref="Presentation-expr-or-none.class"/>
 </xs:sequence>
 <xs:sequence minOccurs="0">
 <xs:element ref="mprescripts"/>

JAXB Users Guide

22

 <xs:sequence maxOccurs="unbounded"> <!-- line 138
 -->
 <xs:group ref="Presentation-expr-or-none.class"/>
 <xs:group ref="Presentation-expr-or-none.class"/>
 </xs:sequence>
 </xs:sequence>
 </xs:sequence>
</xs:group>

This is a standard technique in designing a schema. When you want to say "in this element, B can occur
arbitrary times, but C can occur only up to once", you write this as B*,(C,B*)?. This, however, confuses
JAXB, because it tries to bind the first B to its own property, then C to its own property, then the second
B to its own property, and so we end up having a collision again.

In this particular case, B isn't a single element but it's a choice of large number of elements abstracted away
in <xs:group>s, so they are hard to see. But if you see the same content model referring to the same
element/group twice in a different place, you can suspect this.

In this case, you'd probably want the whole thing to map to a single list so that you can retain the order
those elements show up in the document. You can do this by putting the same <jaxb:property>
customization on the whole "mmultiscripts.content" model group, like this (or you can do it
externally with XPath):

Example 3. How to fix the problem?

<xs:groupname="mmultiscripts.content">
<xs:annotation>
 <xs:appinfo>
 <jaxb:propertyname="content"/>
 </xs:appinfo>
</xs:annotation>
<xs:sequence>
<xs:groupref="Presentation-expr.class"/>

Another way to fix this problem is to use the simpler and better binding mode [http://weblogs.java.net/
blog/kohsuke/archive/2006/03/simple_and_bett.html] in XJC, which is a JAXB RI vendor extension.

1.1.3. Two declarations cause a collision in the ObjectFactory class

When schemas contain similar looking element/type names, they can result in "Two declarations cause a
collision in the ObjectFactory class" errors. To be more precise, for each of all types and many elements
(exactly what elements get a factory and what doesn't is bit tricky to explain), XJC produces one method
on the ObjectFactory class in the same package. The ObjectFactory class is created for each
package that XJC generates some files into. The name of the method is derived from XML element/type
names, and the error is reported if two elements/types try to generate the same method name.

There are two approaches to fix this problem. If the collision is coming from two different schemas with
different target namespaces, then you can easily avoid the collision by compiling them into different Ja-
va packages. To do this, use <schemabindings> [http://jaxb.java.net/nonav/2.0/binding-customiza-
tion/http.java.sun.com.xml.n/element/schemabindings.html] customization on two schemas and specify
the package name.

Another way to fix this problem is to use <factoryMethod> [http://jaxb.java.net/nonav/2.0/bind-
ing-customization/http.java.sun.com.xml.n/element/factorymethod.html] customization on two conflict-
ing elements/types to specify different factory method names. This can be used in all cases, but if you have
a large number of conflicts, you'll have to specify this customization one by one.

http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/schemabindings.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/schemabindings.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/schemabindings.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/factorymethod.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/factorymethod.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/factorymethod.html

JAXB Users Guide

23

Notice that <class> [http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/ele-
ment/class.html] customization doesn't affect the ObjectFactory method name by itself.

1.1.4. Customization errors

1.1.4.1. XPath evaluation of ... results in empty target node

External JAXB customizations are specified by using XPath (or using SCD [customization-of-schema-
compilation-using-scd-for-customizations].) This works by writing an XPath expression that matches a
particular element in the schema document. For example, given the following schema and binding file:

Example 4. Schema and external binding file

test.xsd.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexTypename="foo"/>
</xs:schema>

test.xjb.

<bindings version="2.0" xmlns="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <bindings schemaLocation="test.xsd">
 <bindings node="//xs:complexType[@name='foo']">
 <classname="Bar"/>
 </bindings>
 </bindings>
</bindings>

will be interpreted as if the class customization is attached to the complex type 'foo'.

For this to work, the XPath expression needs to match one and only one element in the schema document.
When the XPath expression is incorrect and it didn't match anything, you get this "XPath evaluation of ...
results in empty target node" problem.

Common causes of this problem include typos, incorrect namespace URI declarations, and misunderstand-
ing of XPath.

1.2. Fixing broken references in schema
Sometimes a schema may refer to another schema document without indicating where the schema file can
be found, like this:

Example 5. Schema reference without location

<xs:import namespace="http://www.w3.org/1999/xlink" />

In other cases, a schema may refer to another schema on the network, which often slows down your
compilation process and makes it unreliable. Yet in some other cases, a schema may reference another
schema in relative path, and that may not match your directory structure.

XJC bundles a catalog resolver [http://xml.apache.org/commons/components/resolver/re-
solver-article.html] so that you can work around these situations without changing the schema documents.
The main idea behind the catalog is "redirection" --- when XJC is about to fetch resources, it will consult
the catalog resolver to see if it can find the resource elsewhere (which is usually your local resources.)

http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
customization-of-schema-compilation-using-scd-for-customizations
customization-of-schema-compilation-using-scd-for-customizations
customization-of-schema-compilation-using-scd-for-customizations
http://xml.apache.org/commons/components/resolver/resolver-article.html
http://xml.apache.org/commons/components/resolver/resolver-article.html
http://xml.apache.org/commons/components/resolver/resolver-article.html

JAXB Users Guide

24

1.2.1. Catalog format

The catalog resolver supports many different formats, but the easiest one is a line based *.cat format.
Other than comments and empty lines, the file mainly consists of two kinds of declarations, SYSTEM,
and PUBLIC.

Example 6. sample-catalog.cat

--
 sample catalog file.

 double hyphens are used to begin and end a comment section.
--

SYSTEM "http://www.w3.org/2001/xml.xsd" "xml.xsd"

PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "s4s/XMLSchema.dtd"

1.2.2. Resolve by system ID

The SYSTEM entry has the format of "SYSTEM REFERENCE ACTUAL-LOCATION", which defines
a simple redirection. Every time XJC loads any resource (be it schemas, DTDs, any entities referenced
within), it will first resolve relative paths to absolute paths, then looks for a matching REFERENCE line.
If it is found, the specified actual location is read instead. Otherwise XJC will attempt to resolve the
absolutepath.

ACTUAL-LOCATION above accepts relative paths, and those are resolved against the catalog file itself (so
in the above example, xml.xsd is assumed to be in the same directory with sample-catalog.cat.

What you need to be careful is the fact that the REFERENCE portion must be absolute, and when XJC
finds a reference in schema, it will first convert that to the absolute path before checking the catalog. So
what this means is that if your schema is written like this:

Example 7. Schema reference by relative path

<xs:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="xlink.xsd" />

Then your catalog entry would have to look like this:

Example 8. xlink.cat

-- this doesn't work because xlink.xsd will be turned into absolute path --
SYSTEM "xlink.xsd" "http://www.w3.org/2001/xlink.xsd"

-- this will work, assuming that the above schema is in /path/to/my/test.xsd
 --
SYSTEM "/path/to/my/xlink.xsd" "http://www.w3.org/2001/xlink.xsd"

1.2.3. Resolve by public ID / namespace URI

Another kind of entry has the format of "PUBLIC PUBLICID ACTUAL-LOCATION" or "PUBLIC
NAMESPACEURI ACTUAL-LOCATION".

The "PUBLICID" version is used to resolve DTDs and entities in DTDs. But this type of entry is also
used to resolve <xs:import> statements. XJC will match the value of the namespace attribute and see
if there's any matching entry. So given a schema like this:

JAXB Users Guide

25

Example 9. Schema import

<xs:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="xlink.xsd" />
<xs:import namespace="http://www.w3.org/1998/Math/MathML" />

The following catalog entries will match them.

Example 10. by-publicid.cat

PUBLIC "http://www.w3.org/1999/xlink" "http://www.w3.org/2001/xlink.xsd"
PUBLIC "http://www.w3.org/1998/Math/MathML" "/path/to/my/mathml.xsd"

As you can see, XJC will check the PUBLIC entries regardless of whether <xs:import> has the
schemaLocation attribute or not. As with the case with the SYSTEM entry, the ACTUAL-LOCATION
part can be relative to the location of the catalog file.

1.2.4. Specifying the catalog file

Once you write a catalog file, you'd need to specify that when you invoke XJC.

CLI To do this from the CLI, use the -catalog option. See xjc -help for more details [/non-
av/2.1.4/docs/xjc.html].

Ant Use the catalog attribute on the <xjc> task. See XJC ant task documentation [/nonav/2.1.4/docs/
xjcTask.html] for more details.

Maven For the Maven plugin [https://maven-jaxb2-plugin.java.net/], use the <catalog> element in
the configuration:

<plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <configuration>
 <!-- relative to the POM file -->
 <catalog>mycatalog.cat</catalog>
 </copnfiguration>
</plugin>

1.2.5. Debugging catalog file

If you are trying to write a catalog file and banging your head against a wall because it's not working,
you should enable the verbose option of the catalog resolver. How you do this depends on what interface
you use:

CLI Specify export XJC_OPTS="-Dxml.catalog.verbosity=999" then run XJC.

Ant/Maven Add -Dxml.catalog.verbosity=999 as a command line option to Ant/Maven.

If you are otherwise invoking XJC programmatically, you can set the above system property before in-
voking XJC.

1.3. Mapping of <xs:any />
XJC binds <xs:any /> in the following ways:

/nonav/2.1.4/docs/xjc.html
/nonav/2.1.4/docs/xjc.html
/nonav/2.1.4/docs/xjc.html
/nonav/2.1.4/docs/xjcTask.html
/nonav/2.1.4/docs/xjcTask.html
/nonav/2.1.4/docs/xjcTask.html
https://maven-jaxb2-plugin.java.net/
https://maven-jaxb2-plugin.java.net/

JAXB Users Guide

26

1.3.1. processContents="skip"

<xs:any /> with processContents=skip means any well-formed XML elements can be placed.
Therefore, XJC binds this to DOM Element interface.

Example 11. Any/Skip schema

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:any processContents="skip" maxOccurs="unbounded" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Example 12. Any/Skip binding

import org.w3c.dom.Element;

@XmlRootElement
class Person {
 public String getName();
 public void setName(String);

 @XmlAnyElement
 public List<Element> getAny();
}

1.3.2. processContents="strict"

<xs:any /> with processContents=strict (or <xs:any /> without any processContents
attribute, since it defaults to "strict") means any XML elements placed here must have corresponding
schema definitions. This mode is not what people typically expect as "wildcard", but this is the default.
The following shows this binding. (lax=true is unintuitive, but it's not an error in this document):

Example 13. Any/Strict schema

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:any maxOccurs="unbounded" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Example 14. Any/Strict binding

@XmlRootElement
class Person {
 public String getName();
 public void setName(String);

 @XmlAnyElement(lax=true)
 public List<Object> getAny();
}

JAXB Users Guide

27

JAXB binds any such element to an Object, and during unmarshalling, all elements encountered are
unmarshalled into corresponding JAXB objects (including JAXBElements if necessary) and placed in
this field. If it encounters elements that cannot be unmarshalled, DOM elements are produced instead.

At runtime, you can place either DOM elements or some JAXB objects that map to elements. A typical
mistake is to put a String that contains XML fragment, but this won't work; you'd have to first read
that into a DOM.

1.3.3. processContents="lax"

<xs:any /> with processContents=lax means any XML elements can be placed here, but if their
element names match those defined in the schema, they have to be valid. XJC actually handles this exactly
like processContents='strict', since the strict binding allows unknown elements anyway.

1.4. Mapping of <xs:element /> to JAXBElement
Sometimes XJC binds an element declaration to JAXBElement. Sometimes XJC binds an element dec-
laration to a Java class. What makes this difference?

TODO: Copy from http://weblogs.java.net/blog/kohsuke/archive/2006/03/why_does_jaxb_p.html

1.5. How modularization of schema interacts with XJC
Over time schema authors have developed several techniques to modularize large schemas. Some of those
techniques have some noteworthy interactions with XJC.

1.5.1. Chameleon schema

Chameleon schema" [http://www.xfront.com/ZeroOneOrManyNamespaces.html#mixed] (read more
[http://www.google.com/search?q=chameleon+schema], in particular this [http://www.kohsuke.org/
xmlschema/XMLSchemaDOsAndDONTs.html#avoid_chameleon]) is a technique used to define multiple
almost-identical sets of definitions into multiple namespaces from a single schema document.

For example, with this technique, you can write just one "foo" complex type and define it into namespace X
and Y. In this case, one tends to hope that XJC will only give you one Foo class for this, but unfortunately
because it's actually defined in two namespaces, JAXB needs two Java classes to distinguish X:foo and
Y:foo, so you'll get multiple copies.

If you find this to be problematic, there are a few ways to work around the problem.

1. If you are in control of the schema, see if you can rewrite the schema to avoid using this technique. In
some cases, the schema doesn't actually exploit the additional power of this technique, so this translation
can be done without affecting XML instance documents. In some other cases, the chameleon schema
can be argued as a bad schema design, as it duplicates definitions in many places.

2. If you are not in control of the schema, see if you can rewrite the schema nevertheless. This will only
work if your transformation doesn't affect XML instance documents.

3. Perhaps there can be a plugin that eases the pain of this, such as by defining common interfaces among
copies.

1.6. Adding behaviors
Adding behaviors to the generated code is one area that still needs improvement. Your feedback is appre-
ciated.

http://weblogs.java.net/blog/kohsuke/archive/2006/03/why_does_jaxb_p.html
http://www.xfront.com/ZeroOneOrManyNamespaces.html#mixed
http://www.xfront.com/ZeroOneOrManyNamespaces.html#mixed
http://www.google.com/search?q=chameleon+schema
http://www.google.com/search?q=chameleon+schema
http://www.kohsuke.org/xmlschema/XMLSchemaDOsAndDONTs.html#avoid_chameleon
http://www.kohsuke.org/xmlschema/XMLSchemaDOsAndDONTs.html#avoid_chameleon
http://www.kohsuke.org/xmlschema/XMLSchemaDOsAndDONTs.html#avoid_chameleon

JAXB Users Guide

28

Suppose if JAXB generated the following classes.

Example 15. Simple JAXB Generated Code

package org.acme.foo;

@XmlRootElement
class Person {
 private String name;

 public String getName() { return name; }
 public void setName(String) { this.name=name; }
}

@XmlRegistry
class ObjectFactory {
 Person createPerson() { ... }
}

To add a behavior, first write a class that extends from Person. You also need to extend ObjectFactory
to return this new class. Notice that neither classes have any JAXB annotation, and I put them in a separate
package. This is because we'd like PersonEx class to be used in place of Person, and we don't want
PersonEx to be bound to its own XML type.

Example 16. Extended Person class

package org.acme.foo.impl;

class PersonEx extends Person {
 @Override
 public void setName(String name) {
 if(name.length()<3) throw new IllegalArgumentException();
 super.setName(name);
 }
}

@XmlRegistry
class ObjectFactoryEx extends ObjectFactory {
 @Override
 Person createPerson() {
 return new PersonEx();
 }
}

At runtime, you can create JAXBContext normally, like this.

Example 17. Creating JAXBContext

JAXBContext context = JAXBContext.newInstance(ObjectFactory.class);
// or JAXBContext.newInstance("org.acme.foo");

PersonEx can be marshalled out just like Person:

Example 18. Marshalling

Person p = new PersonEx();
context.createMarshaller().marshal(p,System.out);
// this will produce <person />

JAXB Users Guide

29

To unmarshal XML documents into PersonEx, you'll need to configure the unmarshaller to use your
ObjectFactoryEx as the factory, like this:

Example 19. Unmarshalling

Unmarshaller u = context.createUnmarshaller();
u.setProperty("com.sun.xml.bind.ObjectFactory",new ObjectFactoryEx());
PersonEx p = (PersonEx)u.unmarshal(new StringReader("<person />"));

If you have multiple packages and thus multiple ObjectFactorys, you can pass in an array of them
(new Object[]{new OFEx1(),new OFEx2(),...}.)

1.6.1. Inserting your class in the middle

If you have a type hierarchy and would like to insert your class in the middle, you can use the
combination of XmlTransient [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/
bind/annotation//1.6.1XmlTransient.html] and @implClass of <class> [http://jaxb.java.net/non-
av/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html] customization. See the follow-
ing example:

Example 20. Hierarchy of types and <jaxb:class implClass>

<xs:schema ...>
 <xs:complexType name="vehicle">
 <xs:annotation><xs:appinfo>
 <jaxb:class implClass="MyVehicle" />
 </xs:appinfo></xs:annotation>
 </xs:complexType>

 <xs:complexType name="car">
 <xs:complexContent>
 <xs:extension base="vehicle" />
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="bicycle">
 <xs:complexContent>
 <xs:extension base="vehicle" />
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Example 21. This creates a class hierarchy like the following (among the generated
Java code):

 Vehicle
 ^
 |
 MyVehicle
 ^
 _____|______
 | |
 Car Bicycle

You'll then manually write MyVehicle class that extends from Vehicle. Annotate this
class with XmlTransient [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/
annotation//1.6.1XmlTransient.html] to achieve the desired effect.

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
http://jaxb.java.net/nonav/2.0/binding-customization/http.java.sun.com.xml.n/element/class.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//1.6.1XmlTransient.html

JAXB Users Guide

30

1.7. Avoid strong databinding
Under some limited circumstances, a weaker databinding is preferable for various reasons. JAXB does
offer a few ways for you to achieve this.

1.7.1. Avoid mapping to enum

The following customization will stop binding a simple type to a type-safe enum. This can be convenient
when number of constants is too large to be an useful enum (by default, the JAXB spec won't generate
enum with more than 256 constants, but even 100 might be too large for you.)

Example 22. Avoid mapping one simple type

<xs:simpleType name="foo">
 <xs:annotation><xs:appinfo>
 <jaxb:typesafeEnumClass map="false" />
 </xs:appinfo></xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="x" />
 <xs:enumeration value="y" />
 <xs:enumeration value="z" />
 </xs:restriction>
</xs:simpleType>

To disable such type-safe enum binding altogether for the entire schema, use a global binding setting like
this (this is actually telling XJC not to generate enums if a simple type has more than 0 constants --- the
net effect is no enum generation):

Example 23. Avoid generating enums at all

<xs:schema ...>
 <xs:annotation><xs:appinfo>
 <jaxb:globalBindings typesafeEnumMaxMembers="0" />
 </xs:appinfo></xs:annotation>
 ...
</xs:schema>

1.7.2. Mapping to DOM

The <jaxb:dom>customization allows you to map a certain part of the schema into a DOM tree. This
customization can be attached to the following schema components:

• Wildcards (<xs:any>)

• Type definitions (<xs:complexType> and <xs:simpleType>)

• Model groups (<xs:choice>,<xs:all>,<xs:sequence>)

• Model group declarations (<xs:group>)

• Particles

• Element declarations (<xs:element>)

In the following example, a wildcard is mapped to a DOM node. Each element that matches to the wildcard
will be turned into a DOM tree.

JAXB Users Guide

31

Example 24. Dom Customization example

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">

 <xs:element>
 <xs:complexType>
 <xs:sequence>
 <xs:any maxOccurs="unbounded" processContents="skip">
 <xs:annotation><xs:appinfo>
 <jaxb:dom/>
 </xs:appinfo></xs:annotation>
 </xs:any>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 .
 .
 .
 </xs:schema>

This extension can be used to access wildcard content or can be used to process a part of a document by
using other technologies that require "raw" XML. By default, JAXB generates a getContent() method
for accessing wildcard content, but it only supports "lax" handling which means that unknown content is
discarded. You may find more information in 7.12 chapter of JAXB 2 specification [http://www.jcp.org/
en/jsr/detail?id=222].

1.8. Working with generated code in memory

1.8.1. Cloning

The generated beans (and in particular the JAXBElement class) do not support the clone operation. There
was a suggestion by another user that beanlib [http://beanlib.sourceforge.net/] has been used successfully
to clone JAXB objects.

2. Customization of Schema Compilation
2.1. Customizing Java packages

The JAXB specification provides a <jaxb:schemaBindings> customization so that you can control
which namespace goes to which package. See the example below:

Example 25. package customization

 <jaxb:schemaBindings>
 <jaxb:package name="org.acme.foo"/>
 </jaxb:schemaBindings>

You can do this as an internal customization (in which case you put this in
<xs:annotation><xs:appinfo> under place it right under the <xs:schema> element), or do
this as an external customization, like this:

Example 26. External package customization

<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.1">

http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
http://beanlib.sourceforge.net/
http://beanlib.sourceforge.net/

JAXB Users Guide

32

 <bindings schemaLocation="../path/to/my.xsd">
 <schemaBindings>
 <package name="org.acme.foo"/>
 </schemaBindings>
 </bindings>
</bindings>

Note that this customization is per namespace. That is, even if your schema is split into multiple schema
documents, you cannot put them into different packages if they are all in the same namespace.

2.1.1. Tip: get rid of the org.w3._2001.xmlschema package

Under some rare circumstances, XJC will generate some Java classes into a package called
org.w3._2001.xmlschema. This happens when XJC decides that it needs some Java artifacts for the
XML Schema built-in namespace of http://www.w3.org/2001/XMLSchema.

Since this package name is most often problematic, you can rename this by simply saving the following
text in an .xsd file and submitting it to XJC along with the other schemas you have:

Example 27. Schemalet to get rid of org.w3._2001.xmlschema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation><appinfo>
 <jaxb:schemaBindings>
 <jaxb:package name="org.acme.foo"/>
 </jaxb:schemaBindings>
 </appinfo></annotation>
</schema>

This is bit tricky, but the idea is that since you can define a schema for one namespace in multiple schema
documents, this makes XJC think that this schema is a part of the built-in "XML Schema for XML
Schema".

2.2. Using SCD for customizations
When using an external customization file, the JAXB spec requires that you use XPath as a means to specify
what your customization is attached to. For example, if you want to change the class name generated from
a complex type, you'd write something like:

Example 28. External customization example

<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <bindings schemaLocation="../path/to/my.xsd" node="/xs:schema/
xs:complexType[@name='foo']">
 <class name="FooType"/>
 </bindings>
</bindings>

While the above process works, the problem with this is that the XPath+ schemaLocation combo
tends to be verbose and error prone. It's verbose, because often a trivial target schema component like
this "global complex type foo" takes up a lot of characters. The xs namespace declaration also takes up
some space, although in this case we managed to avoid declaring the "tns" namespace (that represents the
namespace that the schema defines.)

JAXB Users Guide

33

It's also error prone, because it relies on the way schema documents are laid out, because the schemaLo-
cation attribute needs to point to the right schema document file. When a schema is split into multiple files
for modularity (happens especially often with large schemas), then you'd have to find which schema file
it is. Even though you can use relative paths, this hard-coding of path information makes it hard to pass
around the binding file to other people.

JAXB RI 2.1 and onward offers a better way to do this as a vendor extension.

The key technology to solve this problem is a "schema component designator" [http://
www.w3.org/TR/xmlschema-ref/] (SCD.) This is a path language just like XPath, but whereas XPath is
designed to refer to XML infoset items like elements and attributes, SCD is designed to refer to schema
components like element declarations or complex types.

With SCD, the above binding can be written more concisely as follows:

Example 29. External customization by SCD

<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.1"
 xmlns:tns="http://my.namespace/">
 <bindings scd="/type::tns:foo">
 <class name="FooType"/>
 </bindings>
</bindings>

/type::tns:foo can be written more concisely as /~tns:foo, too. If you are interested in more
about the syntax of SCDs, read the example part of the spec [http://www.w3.org/TR/xmlschema-ref/
#section-path-examples], and maybe EBNF [http://www.w3.org/TR/xmlschema-ref/#section-path-ebnf].
If you know XPath, I think you'll find this fairly easy to learn.

Another benefit of an SCD is that tools will have easier time generating SCDs than XPath, as XPaths
are often vulnerable to small changes in the schema document, while SCDs are much more robust. The
downside of using SCD is as of JAXB 2.1, this feature is a vendor extension and not defined in the spec.

2.3. Using different datatypes
JAXB has a built-in table that determines what Java classes are used to represent what XML Schema built-
in types, but this can be customized.

One of the common use cases for customization is to replace the XMLGregorianCalendar with the
friendlier Calendar or Date. XMLGregorianCalendar is designed to be 100% compatible with
XML Schema's date/time system, such as providing infinite precision in sub-seconds and years, but often
the ease of use of those familiar Java classes win over the precise compatibility.

One very easy way to do this is to simply use your IDE (or even "sed") to replace all the references to
XMLGregorianCalendar by Calendar. This is of course not a very attractive option if your build
process runs XJC as a part of it.

Alternatively, the following customization file can be used to do this. When using external customization
file, the JAXB spec requires you to use XPath as a means to specify what your customization is attached to.
For example, if you want to change the class name generated from a complex type, you'd use the following
customization:

Example 30. Customization to use Calendar for xs:date

<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

http://www.w3.org/TR/xmlschema-ref/
http://www.w3.org/TR/xmlschema-ref/
http://www.w3.org/TR/xmlschema-ref/
http://www.w3.org/TR/xmlschema-ref/#section-path-examples
http://www.w3.org/TR/xmlschema-ref/#section-path-examples
http://www.w3.org/TR/xmlschema-ref/#section-path-examples
http://www.w3.org/TR/xmlschema-ref/#section-path-ebnf
http://www.w3.org/TR/xmlschema-ref/#section-path-ebnf

JAXB Users Guide

34

 <globalBindings>
 <javaType name="java.util.Calendar" xmlType="xs:date"
 parseMethod="javax.xml.bind.DatatypeConverter.parseDate"
 printMethod="javax.xml.bind.DatatypeConverter.printDate"
 />
 </globalBindings>
</bindings>

Save this in a file and specify this to JAXB with the "-b" option.

To use the Date class, you'll need to do a bit more work. First, put the following class into your source tree:

Example 31. Adapter for Date

package org.acme.foo;
public class DateAdapter {
 public static Date parseDate(String s) {
 return DatatypeConverter.parseDate(s).getTime();
 }
 public static String printDate(Date dt) {
 Calendar cal = new GregorianCalendar();
 cal.setTime(dt);
 return DatatypeConverter.printDate(cal);
 }
}

... then your binding file will be the following:

Example 32. Customization to use Date for xs:date

<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <globalBindings>
 <javaType name="java.util.Date" xmlType="xs:date"
 parseMethod="org.acme.foo.DateAadpter.parseDate"
 printMethod="org.acme.foo.DateAdapter.printDate"
 />
 </globalBindings>
</bindings>

If you are using JAXB 2.0, and not 2.1, see this blog entry [http://weblogs.java.net/blog/kohsuke/
archive/2006/03/how_do_i_map_xs.html] for how to do this for 2.0.

3. Annotating Your Classes

3.1. Mapping your favorite class

3.1.1. ResultSet

JAXB (or any other databinding engine, for that matter) is for binding strongly-typed POJO-like objects
to XML, such as AddressBook class, PurchaseOrder class, and so on, where you have fields and
methods that shape a class.

There are other kinds of classes that are more close to reflection. Those classes don't have methods like
getAddress, and instead you'd do get("Address"). JDBC ResultSet is one of those classes. It's one
class that represents million different data structures, be it a customer table or a product table. Generally

http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html

JAXB Users Guide

35

speaking, these classes does not allow JAXB to statically determine what the XML representation should
look like. Instead, you almost always need to look at an instance to determine the shape of XML.

These classes are not really suitable for binding in JAXB. If this is the only object that you'd want to write
out, then you'd be better off using XMLStreamWriter or some such XML infoset writing API. There are a
few online articles [http://www.google.com/search?q=ResultSet+XML] that cover this topic. Also, many
modern database offers a native ability to export a query into XML, which is supposed to work a lot faster
than you'd do in Java (and saves your time of writing code.)

If you are using ResultSet as a part of your object tree that you want to marshal to JAXB, then you can
use XmlJavaTypeAdapter.

3.1.2. HashMap

JAXB spec defines a special handling for Map when it's used as a propety of a bean. For example, the
following bean would produce XMLs like the following:

Example 33. Bean with Map

@XmlRootElement
class Foo {
 public HashMap<String,Integer> map;
}

Example 34. XML representation

<foo>
 <map>
 <entry>
 <key>a</key>
 <value>1</value>
 </entry>
 <entry>
 <key>b</key>
 <value>2</value>
 </entry>
 </map>
</foo>

Unfortunately, as of 2.1, this processing is only defined for bean properties and not when you marshal
HashMap as a top-level object (such as a value in JAXBElement.) In such case, HashMap will be
treated as a Java bean, and when you look at HashMap as a bean it defines no getter/setter property pair,
so the following code would produce the following XML:

Example 35. Bean with Map

m = new HashMap();
m.put("abc",1);
marshaller.marshal(new JAXBElement(new
 QName("root"),HashMap.class,m),System.out);

Example 36. XML representation

<root />

This issue has been recorded as #223 [https://java.net/jira/browse/JAXB-223] and the fix needs to happen
in later versions of the JAXB spec.

http://www.google.com/search?q=ResultSet+XML
http://www.google.com/search?q=ResultSet+XML
http://www.google.com/search?q=ResultSet+XML
https://java.net/jira/browse/JAXB-223
https://java.net/jira/browse/JAXB-223

JAXB Users Guide

36

In the mean time, such top-level objects have to be first adapted to a bean that JAXB can process. This
has added benefit of being able to control XML representation better. The following code illustrates how
to do this:

Example 37. Adapting HashMap

public class MyHashMapType {
 public List<MyHashMapEntryType> entry = new
 ArrayList<MyHashMapEntryType>();
 public MyHashMapType(Map<String,Integer> map) {
 for(Map.Entry<String,Integer> e : map.entrySet())
 entry.add(new MyHashMapEntryType(e));
 }
 public MyHashMapType() {}
}

public class MyHashMapEntryType {
 @XmlAttribute // @XmlElement and @XmlValue are also fine
 public String key;

 @XmlAttribute // @XmlElement and @XmlValue are also fine
 public int value;

 public MyHashMapEntryType() {}
 public MyHashMapEntryType(Map.Entry<String,Integer> e) {
 key = e.getKey();
 value = e.getValue();
 }
}

marshaller.marshal(new JAXBElement(new QName("root"),MyHashMapType.class,new
 MyHashMapType(m)),System.out);

If you have a lot of difference kinds of Map, you can instead use Object as the key and the value type. In
that way, you'll be able to use maps with different type parameters, at the expense of seeing xsi:type
attribute on the instance document.

3.2. Mapping interfaces
Because of the difference between the XML type system induced by W3C XML Schema and the Java type
system, JAXB cannot bind interfaces out of the box, but there are a few things you can do.

3.2.1. Use @XmlRootElement

When your interface is implemented by a large number of sub-classes, consider
using XmlRootElement [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/
annotation//3.2.1XmlRootElement.html] annotation like this:

Example 38. XmlRootElement for open-ended interfaces

@XmlRootElement
class Zoo {
 @XmlAnyElement
 public List<Animal> animals;
}

interface Animal {

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlRootElement.html

JAXB Users Guide

37

 void sleep();
 void eat();
 ...
}

@XmlRootElement
class Dog implements Animal { ... }

@XmlRootElement
class Lion implements Animal { ... }

This will produce XML documents like this:

Example 39. XML for XmlRootElement

<zoo>
 <lion> ... </lion>
 <dog> ... </dog>
</zoo>

The key characteristics of this approach is:

1. Implementations are open-ended; anyone can implement those interfaces, even by different people from
different modules, provided they are all given to the JAXBContext.newInstance method. There's
no need to list all the implementation classes in anywhere.

2. Each implementation of the interface needs to have an unique element name.

3. Every reference to interface needs to have the XmlElementRef [http://jaxb.java.net/
nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlElementRef.html] anno-
tation. The type=Object.class portion tells JAXB that the greatest common base type of all im-
plementations would be java.lang.Object.

@XmlElementWrapper is often useful with this, as it allows you need to group them. Such as:

Example 40. XmlRootElement for open-ended interfaces

@XmlRootElement
class Zoo {
 @XmlElementWrapper
 @XmlAnyElement
 public List<Animal> onExhibit;
 @XmlElementWrapper
 @XmlAnyElement
 public List<Animal> resting;
}

Example 41. Effect of XmlElementWrapper

<zoo>
 <onExhibit>
 <lion> ... </lion>
 <dog> ... </dog>
 </onExhibit>
 <resting>
 <lion> ... </lion>
 <dog> ... </dog>
 </resting>

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlElementRef.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlElementRef.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.1XmlElementRef.html

JAXB Users Guide

38

</zoo>

3.2.2. Use @XmlJavaTypeAdapter

When you use interfaces just to hide your implementation classes from exposure, and when
there's 1-to-1 (or close to 1-on-1) relationship between a class and an interface, Xml-
JavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/anno-
tation//adapters/XmlJavaTypeAdapter.html] can be used like below.

Example 42. XmlJavaTypeAdapter for interfaces

@XmlJavaTypeAdapter(FooImpl.Adapter.class)
interface IFoo {
 ...
}
class FooImpl implements IFoo {
 @XmlAttribute
 private String name;
 @XmlElement
 private int x;

 ...

 static class Adapter extends XmlAdapter<FooImpl,IFoo> {
 IFoo unmarshal(FooImpl v) { return v; }
 FooImpl marshal(IFoo v) { return (FooImpl)v; }
 }
}

class Somewhere {
 public IFoo lhs;
 public IFoo rhs;
}

Example 43. XML of XmlJavaTypeAdapter

<somewhere>
 <lhs name="...">
 <x>5</x>
 </lhs>
 <rhs name="...">
 <x>5</x>
 </rhs>
</somewhere>

The key characteristics of this approach is:

1. Interface and implementation will be tightly coupled through an adapter, although changing an adapter
code will allow you to support multiple implementations.

2. There's no need of any annotation in where interfaces are used.

A variation of this technique is when you have a few implementations for interface, not just one.

Example 44. XmlJavaTypeAdapter for interfaces with multiple implementations

@XmlJavaTypeAdapter(AbstractFooImpl.Adapter.class)
interface IFoo {
 ...

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html

JAXB Users Guide

39

}
abstract class AbstractFooImpl implements IFoo {
 ...

 static class Adapter extends XmlAdapter<AbstractFooImpl,IFoo> {
 IFoo unmarshal(AbstractFooImpl v) { return v; }
 AbstractFooImpl marshal(IFoo v) { return (AbstractFooImpl)v; }
 }
}

class SomeFooImpl extends AbstractFooImpl {
 @XmlAttribute String name;
 ...
}

class AnotherFooImpl extends AbstractFooImpl {
 @XmlAttribute int id;
 ...
}

class Somewhere {
 public IFoo lhs;
 public IFoo rhs;
}

Example 45. XML of XmlJavaTypeAdapter with multiple implementations

<somewhere>
 <lhs xsi:type="someFooImpl" name="...">
 </lhs>
 <rhs xsi:type="anotherFooImpl" id="3" />
</somewhere>

Note that SomeFooImpl and AnotherFooImpl must be submitted to
JAXBContext.newInstance one way or the other.

To take this example a bit further, you can use Object instead of AbstractFooImpl. The following
example illustarates this:

Example 46. XmlJavaTypeAdapter for interfaces with multiple implementations

@XmlJavaTypeAdapter(AnyTypeAdapter.class)
interface IFoo {
 ...
}
public class AnyTypeAdapter extends XmlAdapter<Object,Object> {
 Object unmarshal(Object v) { return v; }
 Object marshal(Object v) { return v; }
}

class SomeFooImpl implements IFoo {
 @XmlAttribute String name;
 ...
}

class Somewhere {
 public IFoo lhs;
 public IFoo rhs;
}

JAXB Users Guide

40

Example 47. Corresponding schema

<xs:complexType name="somewhere">
 <xs:sequence>
 <xs:element name="lhs" type="xs:anyType" minOccurs="0"/>
 <xs:element name="rhs" type="xs:anyType" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

As you can see, the schema will generated to accept xs:anyType which is more relaxed than what the
Java code actually demands. The instance will be the same as the above example. Starting from JAXB
RI 2.1, we bundle the com.sun.xml.bind.AnyTypeAdapter class in the runtime that defines this
adapter. So you won't have to write this adapter in your code.

3.2.3. Use @XmlElement

If the use of interface is very little and there's 1-to-1 (or close to) relationship between interfaces
and implementations, then you might find XmlElement [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/
index.html?javax/xml/bind/annotation//3.2.3XmlElement.html] to be the least amount of work.

Example 48. XmlElement for interfaces

interface IFoo {
 ...
}
class FooImpl implements IFoo {
 ...
}

class Somewhere {
 @XmlElement(type=FooImpl.class)
 public IFoo lhs;
}

Example 49. XML of XmlElement

<somewhere>
 <lhs> ... </lhs>
</somewhere>

This effectively tells JAXB runtime that "even though the field is IFoo, it's really just FooImpl.

In this approach, a reference to an interface has to have knowledge of the actual implementation class. So
while this requires the least amount of typing, it probably wouldn't work very well if this crosses module
boundaries.

Like the XmlJavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/
xml/bind/annotation//adapters/XmlJavaTypeAdapter.html] approach, this can be used even when there are
multiple implementations, provided that they share the common ancestor.

The extreme of this case is to specify @XmlElement(type=Object.class).

3.2.4. Hand-write schema

Occasionally the above approaches cause the generated schema to become somewhat ugly, even though it
does make the JAXB runtime work correctly. In such case you can choose not to use the generated schema
and instead manually modify/author schemas tht better match your needs.

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.3XmlElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.3XmlElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.2.3XmlElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html

JAXB Users Guide

41

3.2.5. Do schema-to-java

With sufficient knowlege, one can also use <jaxb:class ref="..."/> annotation so that you can
cause XJC to use the classes you already wrote. See this thread for an example. TODO: more details and
perhaps an example.

3.2.6. DOESN'T WORK: Have JAXB generate interaces and swap dif-
ferent implementations

Some users attempted to use the "generateValueClass" customization and see if they can completely
replace the generated implementations with other implementations. Unfortunately, this does not work.

Even with the interface/implementation mode, JAXB runtime still requires that the implementation classes
have all the JAXB annotations. So just implementing interfaces is not sufficient. (This mode is mainly
added to simplify the migration from JAXB 1.0 to JAXB 2.0, and that's a part of the reason why things
are done this way.)

3.3. Evolving annotated classes

Here is the basic problem of evolution. You got your CoolApp v1, which contains class Foo that has some
JAXB annotations. Now you are working towawrd CoolApp v2, and you want to make some changes to
Foo. But you want to do so in such a way that v1 and v2 can still talk to each other.

The evolution compatibility has two different aspects. One is the schema compatibility, which is about the
relationship between the v1 schema and the v2 schema. The other is about runtime compatibility, which
is about reading/writing documents between two versions.

3.3.1. Runtime compatibility

There are two directions in the runtime compatibility. One is whether v1 can still read what v2 write
(forward compatible), and the other is whether v2 can read what v1 wrote (backward compatible).

3.3.2. "Semi-compatible"

JAXB can read XML documents that don't exactly match what's expected. This is the default behavior
of the JAXB unmarshaller, yet you can change it to a more draconian behavior (TODO: pointer to the
unmarshalling section.)

When we are talking about evolving classes, it's often convenient to leave it in the default behavior, as
that would allow JAXB to nicely ignore elements/attributes newly added in v2. So we call it backward
semi-compatible if v2 can read what v1 wrote in this default unmarshalling mode, and similarly forward
semi-compatible if v1 can read what v2 wrote in this default unmarshalling mode.

Technically, these are weaker than true backward/forward compatibility (since you can't do a draconian
error detection), yet in practice it works just fine.

3.3.3. Adding/removing/changing non-annotated things

You can add, remove, or change any non-annotated fields, methods, inner/nested types, constructors, in-
terfaces. Those changes are both backward and forward compatible, as they don't cause any change to the
XML representation.

JAXB Users Guide

42

Adding super class is backward compatible and forward semi-compatible. Similarly, removing super class
is forward compatible and backward semi-compatible.

3.3.4. Adding/removing/changing properties

Adding new annotated fields or methods is backward compatible and forward semi-compatible. Similarly,
removing them is forward compatible and backward semi-compatible.

Changing a property is bit more tricky.

1. If you change the property name from X to Y, that would be the equivalent of deleting X and adding
Y, so it would be backward and forward semi-compatible. What JAXB really cares is properties' XML
names and not Java names, so by using the name parameter of XmlElement [http://jaxb.java.net/non-
av/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html] ,
XmlAttribute [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annota-
tion//adapters/XmlJavaTypeAdapter.html] et al, you can change Java property names without affecting
XML, or change XML without affecting Java properties. These are backward and forward semi-com-
patible. See below:

2. Example 50. Changing Java without affecting XML

// BEFORE
public class Foo {
 public String abc;
}
// AFTER: Java name changed, but XML remains the same
public class Foo {
 @XmlElement(name="abc")
 public String def;
}

Example 51. Changing XML without affecting Java

// BEFORE
public class Foo {
 public String abc;
}
// AFTER: no Java change, but XML will look different
public class Foo {
 @XmlElement(name="def")
 public String abc;
}

3. If you change a property type, generally speaking it will be not compatible at all. For example, you
can't change from java.util.Calendar to int and expect it to work. To make it a somewhat
compatible change, the old type and the new type has to be related. For example, String can represent
all int values, so changing int to String would be a backward compatible and forward semi-com-
patible change. XmlJavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?
javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html] allows you to make changes to Java
without affecting XML (or vice versa.)

3.3.5. Changing class names

XmlType [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/
annotation//3.3.1.4XmlType.html] and XmlRootElement [http://jaxb.java.net/nonav/jaxb20-fcs/docs/
api/index.html?javax/xml/bind/annotation//3.3.1.4XmlRootElement.html] allows you to change a class
name without affecting XML.

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlType.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlType.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlType.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.3.1.4XmlRootElement.html

JAXB Users Guide

43

Example 52. Changing class name without affecting XML (1)

// BEFORE
@XmlRootElement
public class Foo { ... }

// AFTER: no XML change
@XmlRootElement(name="foo")
@XmlType(name="foo")
public class Bar { ... }

Example 53. Changing class name without affecting XML (2)

// BEFORE
public class Foo { ... }

// AFTER: no XML change
@XmlType(name="foo")
public class Bar { ... }

3.3.6. Schema Compatibility

TODO.

3.4. XML layout and in-memory data layout
Your program sometimes needs to have a different in-memory data structure from its XML representation.
JAXB has a few different ways to achieve this.

3.4.1. XmlJavaTypeAdapter

XmlJavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/
annotation//adapters/XmlJavaTypeAdapter.html] allows you to de-couple the in-memory representation
and the XML representation by introducing an intermediate representation. The basic model is as follows:

In-memory objects <===> Intermediate objects <===>
XML
 adapter JAXB

Your adapter code will be responsible for converting in-memory objects to/from intermedi-
ate objects. Intermediate objects are then bound to XML by following the standard JAXB
rules. See XmlAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/an-
notation//adapters/XmlAdapter.html] for a general description of how adapters works.

Adapters extend from the XmlAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?
javax/xml/bind/annotation//adapters/XmlAdapter.html] class and provide two methods "unmar-
shal" and "marshal" that converts values in both directions, and then the Xml-
JavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/anno-
tation//adapters/XmlJavaTypeAdapter.html] annotation is used to tell JAXB where and what adapters kick
in.

(TODO: more info about XmlJavaTypeAdapter needed)

1. adapting a class

2. adapting a property

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html

JAXB Users Guide

44

3. adapting an external class

4. adapting a collection and its effect

5. adapting and using interfaces

3.4.2. Using XmlJavaTypeAdapter for element/attribute values

One of the common use cases of XmlJavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/
api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html] is to map a "value ob-
ject" to a string in XML. The following example illustrates how to do this, by using java.awt.Color
as an example.

Example 54. Mapping Color to #RRGGBB

@XmlRootElement
class Box {
 @XmlJavaTypeAdapter(ColorAdapter.class)
 @XmlElement
 Color fill;
}

class ColorAdapter extends XmlAdapter<String,Color> {
 public Color unmarshal(String s) {
 return Color.decode(s);
 }
 public String marshal(Color c) {
 return "#"+Integer.toHexString(c.getRGB());
 }
}

This maps to the following XML representation:

Example 55. Box instance

<box>
 <fill>#112233</fill>
</box>

Since XmlJavaTypeAdapter [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/
bind/annotation//adapters/XmlJavaTypeAdapter.html] is on a field, this adapter only kicks in for this par-
ticular field. If you have many Color fields and would like them all to use the same adapter, you can
move the annotation to a package:

Example 56. package-info.java

@XmlJavaTypeAdapter(type=Color.class,value=ColorAdapter.class)
package foo;

Example 57. Box.java

@XmlRootElement
class Box {
 @XmlElement Color fill;
 @XmlElement Color border;
}

This causes all the fields in the classes in the foo package to use the same specified adapter.

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//adapters/XmlJavaTypeAdapter.html

JAXB Users Guide

45

Also see the DatatypeConverter class that defines a series of basic conversion routines that you may
find useful.

3.4.3. Pair property

Another useful technique is to define two properties, one for JAXB and the other for your application.
See the following example:

Example 58. Pair property sample

@XmlRootElement
class Person {
 private int age;

 // This public property is for users
 @XmlTransient
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }

 // This property is for JAXB
 @XmlAttribute(name="age")
 private String getAge_() {
 if(age==-1) return "dead";
 else return String.valueOf(age);
 }
 private void setAge_(String v) throws NumberFormatException {
 if(v.equals("dead")) this.age=-1;
 else this.age=Integer.parseInt(age);
}

The main "age" property is public, but marked as XmlTransient [http://jaxb.java.net/nonav/jaxb20-
fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlTransient.html] , so it's exposed in your
program, but JAXB will not map this to XML. There's another private "age_" property. Since this
is marked with XmlAttribute [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/
bind/annotation//3.4.2XmlAttribute.html] , this is what JAXB is going to use to map to the attribute. The
getter and setter methods on this property will handle the conversion between the in-memory representa-
tion and the XML representation.

3.5. Mapping cyclic references to XML
Object models designed in Java often have cycles, which prevent straight-forward conversion to XML by
JAXB. In fact, when you try to marshal an object tree that contains a cycle, the JAXB marshaller reports
an error, pointing out the objects that formed the cycle. This is because JAXB by itself cannot figure out
how to cut cycles into a tree.

Thus it is your responsibility to annotate classes and use other means to "tell" JAXB how to handle a cycle.
This chapter talks about various techniques to do this.

3.5.1. Parent pointers

One of the very common forms of cycle is a parent pointer. The following example illustrates a typical
parent pointer, and how this can be turned into "natural" XML:

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlAttribute.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlAttribute.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.4.2XmlAttribute.html

JAXB Users Guide

46

Example 59. Classes with parent pointer

@XmlRootElement
class Department {
 @XmlAttribute
 String name;
 @XmlElement(name="employee")
 List<Employee> employees;
}

class Employee {
 @XmlTransient
 Department department; // parent pointer
 @XmlAttribute
 String name;

 public void afterUnmarshal(Unmarshaller u, Object parent) {
 this.department = (Department)parent;
 }
}

This will produce the following XML:

Example 60. XML view of department

<department name="accounting">
 <employee name="Joe Chin" />
 <employee name="Adam Smith" />
 ...
</department>

And reading this document back into Java objects will produce the expected tree with all the proper parent
pointers set up correctly.

The first technique here is the use of XmlTransient [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/
index.html?javax/xml/bind/annotation//3.5.1XmlTransient.html] on the parent pointer. This tells JAXB
that you don't need this parent pointer to be represented explicitly in XML, because the fact that employ-
ee is always contained inside department implies the parent/child relationship. This causes the mar-
shaller to produce the expected XML. However, when you unmarshal it, since this field is not bound, the
Employee.department field will be left null.

That's where the second technique comes in, which is the use of the afterUnmarshal callback. This
method is invoked by the JAXB implementation on each instance when the unmarshalling of a Employee
object completes. Furthermore, the second parameter to the method is the parent object, which in this case
is a Department object. So in this example, this sets up the parent pointer correctly.

This callback can be also used to perform other post-unmarshalling set up work.

3.5.2. Many-to-many relationship

TBD

3.5.3. @XmlID and @XmlIDREF

When a reference to another object is annotated with XmlIDREF [http://jaxb.java.net/nonav/jaxb20-fcs/
docs/api/index.html?javax/xml/bind/annotation//3.5.3XmlIDREF.html] , its corresponding XML it will be
referenced by xs:IDREF, instead of containment. See below for an example:

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.1XmlTransient.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.3XmlIDREF.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.3XmlIDREF.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//3.5.3XmlIDREF.html

JAXB Users Guide

47

Example of @XmlID and @XmlIDREF

@XmlRootElement
class Root {
 List<Foo> foos;
 List<Bar> bars;
}
class Foo {
 // you don't have to make it an attribute, but that's more common
 @XmlAttribute @XmlIDREF Bar bar;
}
class Bar {
 // you don't have to make it an attribute, but that's more common
 @XmlAttribute @XmlID String id;
}

Example 61. Schema for above

<xs:complexType name="foo">
 <xs:sequence/>
 <xs:attribute name="bar" type="xs:IDREF"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="bar">
 <xs:sequence/>
 <xs:attribute name="id" type="xs:ID"/>
</xs:complexType>

Example 62. A sample instance

<root>
 <foo bar="x"/>
 <foo bar="y"/>
 <bar id="x"/>
 <bar id="y"/>
</root>

There are a few things to consider when you do this. First, the object to be referenced must have an ID that
is unique within the whole document. You'd also need to ensure that the referenced objects are contained
somewhere else (like in the Root class in this case), or else Bar objects will never be marshalled. This
technique can be used to remove the cyclic references, but it's only possible when your object model has
an easy cut point.

3.5.4. Use the CycleRecoverable interface

Starting 2.1 EA2, the JAXB RI exposes CycleRecoverable [https://java.net/projects/jaxb/sources/
version2/content/trunk/jaxb-ri/runtime/src/com/sun/xml/bind/CycleRecoverable.java] interface. Applica-
tions can choose to implement this interface in some of its objects. When a cyclic reference is detected
during marshalling, and if the object that formed a cycle implements this interface, then the method on
this interface is called to allow an application to nominate its replacement to be written to XML. In this
way, the application can recover from a cycle gracefully.

This technique allows you to cope with a situation where you cannot easily determine upfront as to where
a cycle might happen. On the other hand, this feature is a JAXB RI feature. Another downside of this is
that unless you nominate your replacement carefully, you can make the marshalling output invalid with
respect to the schema, and thus you might hit another problem when you try to read it back later.

https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/runtime/src/com/sun/xml/bind/CycleRecoverable.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/runtime/src/com/sun/xml/bind/CycleRecoverable.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/runtime/src/com/sun/xml/bind/CycleRecoverable.java

JAXB Users Guide

48

4. Unmarshalling

4.1. @XmlRootElement and unmarshalling
Classes with XmlRootElement [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/
bind/annotation//4.1XmlRootElement.html] can be unmarshalled from XML elements simply by invoking
the unmarshal method that takes one parameter. This is the simplest mode of unmarshalling.

Unmarshalling with @XmlRootElement

@XmlRootElement
class Foo {
 @XmlAttribute
 String name;
 @XmlElement
 String content;
}

Unmarshaller u = ...;
Foo foo = (Foo)u.unmarshal(new File("foo.xml"));

Example 63. foo.xml

<foo name="something">
 <content>abc</content>
</foo>

However, sometimes you may need to unmarshal an instance of a type that does not
have an XmlRootElement [http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/
annotation//4.1XmlRootElement.html] . For example, you might dynamically find out at the runtime that
a certain element has a certain type. For example, the following document illustrates an XML instance
where the content of <someOtherTagName> element is represented by the Foo class.

Example 64. foo2.xml

<someOtherTagName name="something">
 <content>abc</content>
</someOtherTagName>

To unmarshal this into a Foo class, use the version of the unmarshal method that takes the 'expected-
Type' argument, as follows:

Example 65. Unmarshalling into a known type

Unmarshaller u = ...;
JAXBElement<Foo> root = u.unmarshal(new StreamSource(new
 File("foo.xml")),Foo.class);
Foo foo = root.getValue();

To reduce the number of the unmarshal methods, this two-argument version is not defined for every
single-argument version. So as in this example, you might need to perform additional wrapping of the
input parameter.

This instructs JAXB that the caller is expecting to unmarshal Foo instance. JAXB returns a JAXBEle-
ment of Foo, and this JAXBElement captures the tag name of the root element.

http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html
http://jaxb.java.net/nonav/jaxb20-fcs/docs/api/index.html?javax/xml/bind/annotation//4.1XmlRootElement.html

JAXB Users Guide

49

4.2. Unmarshalling is not working! Help!
There are a few common causes for this problem. These causes often exhibit similar symptoms:

1. Instance documents are invalid

2. JAXBContext is not created correctly.

4.2.1. Make sure your instance document is valid

First, use an independent schema validator to check if your document is really valid with respect to the
schema you compiled. When the root element of a document is invalid, then the unmarshaller will issue
"unexpected element" errors. When a portion of a document is invalid, JAXB skips that portion, so the end
result is that the unmarshalling returns normally, yet you notice that a part of the content tree is missing.
This is often the desirable behavior, but it sometimes ends up masking a problem.

Also, try to install ValidationEventHandler on the unmarshaller. When a portion of a document
is skipped, the unmarshaller notifies a ValidationEventHandler, so it allows you to see what's
going on.

Example 66. Installing ValidationEventHandler

Unmarshaller u = ...;
// this implementation is a part of the API and convenient for trouble-
shooting,
// as it prints out errors to System.out
u.setEventHandler(new
 javax.xml.bind.helpers.DefaultValidationEventHandler());

u.unmarshal(new File("foo.xml"));

Also consider installing a Schema object to the unmarshaller, so that the unmarshaller performs a schema
validation while unmarshalling. Earlier I suggested that you try an independent schema validator, but for
various reasons (not all tools are reliable, you might have made an error and used a different schema/
instance), using validating unmarshalling is a better way to guarantee the validity of your instance docu-
ment being unmarshalled. Please follow the JAXP tutorial [http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
JAXPIntro.html#wp65584] for more about how to construct a Schema object from your schema.

If you are unmarshalling from XML parser APIs (such as DOM, SAX, StAX), then also make sure that
the parser/DOM is configured with the namespace enabled.

4.2.2. Check if your JAXBContext is correct

(TODO: This also applies to the marshaller. Think about moving it.)

The other possibility is that JAXBContext is not set up correctly. JAXBContext "knows" a set of
classes, and if it doesn't know a class that it's supposed to know, then the unmarshaller may fail to perform
as you expected.

To verify that you created JAXBContext correctly, call JAXBContext.toString(). It will output
the list of classes it knows. If a class is not in this list, the unmarshaller will never return an instance of
that class. Make you see all the classes you expect to be returned from the unmarshaller in the list. When
dealing with a large schema that spans across a large number of classes and packages, this is one possible
cause of a problem.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPIntro.html#wp65584
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPIntro.html#wp65584
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPIntro.html#wp65584

JAXB Users Guide

50

If you noticed that a class is missing, explicitly specify that to JAXBContext.newInstance. If you
are binding classes that are generated from XJC, then the easiest way to include all the classes is to specify
the generated ObjectFactory class(es).

4.3. Element default values and unmarshalling
Because of the "strange" way that element default values in XML Schema work, people often get confused
about their behavior. This section describes how this works.

When a class has an element property with the default value, and if the document you are reading is missing
the element, then the unmarshaller does not fill the field with the default value. Instead, the unmarshaller
fills in the field when the element is present but the content is missing. See below:

Example 67. XML instance 1

<foo />

Example 68. XML instance 2

<foo>
 <a/> <!-- or <a> -->
</foo>

Example 69. XML instance 3

<foo>
 <a>abc
</foo>

Example 70. Element defaults and XML

@XmlRootElement
class Foo {
 @XmlElement(defaultValue="value") public String a=null;
}

Foo foo = unmarshaller.unmarshal("instance1.xml");
System.out.println(foo.a); // null

Foo foo = unmarshaller.unmarshal("instance2.xml");
System.out.println(foo.a); // "value". The default kicked in.

Foo foo = unmarshaller.unmarshal("instance3.xml");
System.out.println(foo.a); // "abc". Read from the instance.

This is consistent with the XML Schema spec, where it essentially states that the element defaults do not
kick in when the element is absent, so unfortunately we can't change this behavior.

Depending on your expectation, using a field initializer may achieve what you are looking for. See below:

Example 71. Possible changes by using field initializer

@XmlRootElement
class Foo {
 @XmlElement public String a="value";
}

JAXB Users Guide

51

Foo foo = unmarshaller.unmarshal("instance1.xml");
System.out.println(foo.a); // "value", because JAXB didn't overwrite the
 value

Foo foo = unmarshaller.unmarshal("instance2.xml");
System.out.println(foo.a); // "", because <a> element had 0-length string
 in it

Foo foo = unmarshaller.unmarshal("instance3.xml");
System.out.println(foo.a); // "abc". Read from the instance.

Alternatively, attribute default values work in a way that agrees with the typical expectation, so consider
using that. Also, see Element default values and marshalling.

4.4. Dealing with large documents
JAXB API is designed to make it easy to read the whole XML document into a single tree of JAXB objects.
This is the typical use case, but in some situations this is not desirable. Perhaps:

1. A document is huge and therefore the whole may not fit the memory.

2. A document is a live stream of XML (such as XMPP [http://www.xmpp.org/]) and therefore you can't
wait for the EOF.

3. You only need to databind the portion of a document and would like to process the rest in other XML
APIs.

This section discusses several advanced techniques to deal with these situations.

4.4.1. Processing a document by chunk

When a document is large, it's usually because there's repetitive parts in it. Perhaps it's a purchase order
with a large list of line items, or perhaps it's an XML log file with large number of log entries.

This kind of XML is suitable for chunk-processing; the main idea is to use the StAX API, run a loop,
and unmarshal individual chunks separately. Your program acts on a single chunk, and then throws it
away. In this way, you'll be only keeping at most one chunk in memory, which allows you to process
large documents.

See the streaming-unmarshalling example and the partial-unmarshalling example in the JAXB RI distri-
bution for more about how to do this. The streaming-unmarshalling example has an advantage that it can
handle chunks at arbitrary nest level, yet it requires you to deal with the push model --- JAXB unmarshaller
will "push" new chunk to you and you'll need to process them right there.

In contrast, the partial-unmarshalling example works in a pull model (which usually makes the processing
easier), but this approach has some limitations in databinding portions other than the repeated part.

4.4.2. Processing a live stream of XML

The techniques discussed above can be used to handle this case as well, since they let you unmarshal chunks
one by one. See the xml-channel example in the JAXB RI distribution for more about how to do this.

4.4.3. Creating virtual infosets

For further advanced cases, one could always run a streaming infoset conversion outside JAXB API and
basically curve just the portion of the infoset you want to data-bind, and feed it as a complete infoset into

http://www.xmpp.org/
http://www.xmpp.org/

JAXB Users Guide

52

JAXB API. JAXB API accepts XML infoset in many different forms (DOM, SAX, StAX), so there's a
fair amount of flexibility in choosing the right trade off between the development effort in doing this and
the runtime performance.

For more about this, refer to the respective XML infoset API.

5. Marshalling

5.1. Changing prefixes
By default, a JAXB marshaller uses random namespace prefixes (such as ns1, ns2, ...) when it needs to
declare new namespace URIs. While this is perfectly valid XML wrt the schema, for human readability,
you might want to change them to something that makes more sense.

The JAXB RI defines NamespacePrefixMapper to allow you to do this. See the namespace-prefix
sample in the distribution for more details.

5.2. Element default values and marshalling
Because of a "strange" way element default values in XML Schema work, people often get confused about
its behavior. This section describes how this works.

When a class has an element property with the default value, and if a value is null, then the marshaller will
not produce the corresponding element in XML:

Example 72. Element defaults and XML

@XmlRootElement
class Foo {
 @XmlElement(defaultValue="value") public String a=null;
}

marshaller.marshal(new Foo(),System.out);

Example 73. Marshalling output from above

<foo />

This is consistent with the XML Schema spec, where it essentially states that the element defaults do
not kick in when the element is absent. Attribute default values do not have this problem, so if you can
change the schema, changing it to an attribute is usually a better idea. Alternatively, depending on your
expectation, setting the field to a default value in Java may achieve what you are looking for.

Example 74. Possible changes

@XmlRootElement
class Foo {
 @XmlElement public String a="value";
}
@XmlRootElement
class Bar {
 @XmlAttribute public String a;
}

JAXB Users Guide

53

marshaller.marshal(new Foo(),System.out);
marshaller.marshal(new Bar(),System.out);

Example 75. Marshalling output from above

<foo>
 <a>value
</foo>

<bar/>

Also, see Element default values and unmarshalling.

5.3. Different ways of marshalling

5.3.1. Different output media

The most basic notion of the marshalling is to take a JAXB-bound object that has @XmlRootElement,
and write it out as a whole XML document. So perhaps you have a class like this:

Example 76. JAXB POJO

class Point {
 @XmlElement
 public int x;
 @XmlElement
 public int y;
 Point(...) { ... }
}

Then you can do:

Example 77. Plain marshalling

marshaller.marshal(new Point(1,3), System.out);
marshaller.marshal(new Point(1,3), new File("out.xml"));

.. and so on. There're seven Marshaller.marshal methods that takes different output media as the
second parameter. If you are writing to a file, a socket, or memory, then you should use the version that
takes OutputStream. Unless you change the target encoding to something else (default is UTF-8),
there's a special marshaller codepath for OutputStream, which makes it run really fast. You also don't
have to use BufferedOutputStream, since the JAXB RI does the adequate buffering.

You can also write to Writer, but in this case you'll be responsible for encoding characters, so in general
you need to be careful. If you want to marshal XML into an encoding other than UTF-8, it's best to use
the JAXB_ENCODING property and then write to OutputStream, as it escapes characters to things like
ᠤ correctly.

The next medium we support is W3C DOM. This is bit unintuitive, but you'll do it like this:

Example 78. Marshal to DOM

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
Document doc = dbf.newDocumentBuilder().newDocument();

JAXB Users Guide

54

marshaller.marshal(new Point(1,3), doc);

And after the method invocation you get a complete DOM tree that represents the marshalled document.

The other versions of the marshal methods are there to write XML documents in terms of other XML APIs,
such as SAX and StAX. The version that takes ContentHandler is useful when you need a custom
formatting needs (like you want each attribute to be in new line, etc), but otherwise they are not very
interesting if you are writing a whole document.

5.3.2. Marshalling into a subtree

Another common use of JAXB is where you are writing a bigger document, and you use JAXB to generate
part(s) of it. The JAX-WS RI is the prime example. It produces a SOAP message, and JAXB is only used
to produce the body. When you are doing this, you first set JAXB_FRAGMENT property on the marshaller.
This changes the behaviors of the marshaller so that it works better in this situation.

If you are writing to an OutputStream or Writer and generally sending it to someone else, you can
do something like this:

Example 79. Marshalling into a subtree

System.out.println("<envelope>");
marshaller.marshal(object, System.out);
System.out.println("</envelope>");

Like I mentioned, this is probably the fastest, even though println isn't very pretty. JAXB_FRAGMENT
prevents the marshaller from producing an XML declaration, so the above works just fine. The downside
of this approach is that if the ancestor elements declare the namespaces, JAXB won't be able to take
advantage of them.

You can also marshal an object as a subtree of an existing DOM tree. To do this, you pass the Element
object as the second parameter, and the marshaller will marshal an object as a child of this node.

StAX is also very convenient for doing this sort of things. You can create XMLStreamWriter, write
some stuff, and then pass that to the marshaller. JAXB_FRAGMENT prevents the marshaller from produc-
ing startDocument and endDocument token. When doing this sub-tree marshaling to DOM and
StAX, JAXB can take advantage of available in-scope namespace bindings.

Finally, you can marshal an object as a subtree into ContentHandler, but it requires a fair amount of
SAX programming experience, and it goes beyond the scope of this entry.

5.3.3. Marshalling a non-element

Another common use case is where you have an object that doesn't have @XmlRootElement on it.
JAXB allows you to marshal it like this:

Example 80. Marshalling a non-element

marshaller.marshal(new JAXBElement(
 new QName("","rootTag"),Point.class,new Point(...)));

This puts the <rootTag> element as the root element, followed by the contents of the object, then </
rootTag>. You can actually use it with a class that has @XmlRootElement, and that simply renames
the root element name.

JAXB Users Guide

55

At the first glance the second Point.class parameter may look redundant, but it's actually necessary
to determine if the marshaller will produce (infamous) @xsi:type. In this example, both the class and the
instance are Point, so you won't see @xsi:type. But if they are different, you'll see it.

This can be also used to marshal a simple object, like String or an integer.

Marshalling a non-element with @xsi:type

marshaller.marshal(new JAXBElement(
 new QName("","rootTag"),String.class,"foo bar"));

But unfortunately it cannot be used to marshal objects like List or Map, as they aren't handled as the
first-class citizen in the JAXB world.

5.3.4. Connecting to other XML APIs

Because of the Source and Result support, JAXB objects can be easily marshalled into other XML
APIs that are not mentioned here. For example, dom4j [http://www.dom4j.org/] has DocumentResult
that extends Result, so you can do:

Example 81. Marshalling to dom4j

DocumentResult dr = new DocumentResult();
marshaller.marshal(object, dr);
o = dr.getDocument();

Similar mechanism is available for JDOM and XOM. This conversion is much more efficient than first
marshalling to ByteArrayOutputStream and then read it back into these DOMs. The same mecha-
nism can be used to marshal to FastInfoset [http://fi.java.net/] or send the marshaled document to an XSLT
engine (TransformerHandler.)

The other interesting connector is JAXBSource, which wraps a marshaller and allows a JAXB object to
be used as a "source" of XML. Many XML APIs take Source as an input, and now JAXB object can
be passed to them directly.

For example, you can marshal a JAXB object and unmarshal it into another JAXBContext like this:

Example 82. Loading into a different JAXBContext

JAXBContext context1 = ... ;
JAXBContext context2 = ... ;

context1.createUnmarshaller().unmarshal(new JAXBSource(context2,object));

This amounts to looking at the same XML by using different schema, and again this is much more efficient
than going through ByteArrayOutputStream.

5.4. Interaction between marshalling and DOM
Sometimes you may notice that JAXB is producing XML with seemingly unnecessary namespace decla-
rations. In this section, we'll discuss the possible causes and how to resolve this.

5.4.1. Caused by DOM mapping

The #1 cause of extra namespace declarations is due to the DOM mapping. This mainly happens because
of a schema construct that forces XJC to generate a property with DOM. This includes the use of wildcard
<xs:any/> (see more about this Mapping of <xs:any />), as well as xs:anyType (which can also

http://www.dom4j.org/
http://www.dom4j.org/
http://fi.java.net/
http://fi.java.net/

JAXB Users Guide

56

happen by omission, such as <xs:element name="foo"/>, which is interpreted as <xs:element
name="foo" type="xs:anyType" />.

During unmarshalling, when a subtree of the input XML is converted into XML, JAXB copies all the in-
scope namespace bindings active at that time to the root of the DOM element. So for example, given the
following Java class and XML, the DOM tree that the child field will get will look like the following:

Example 83. Bean with wildcard

@XmlRootElement
class Foo {
 @XmlAnyElement
 public Element child;
}

Example 84. Instance with subtree matching wildcard

<foo xmlns:a="a" xmlns:b="b" xmlns:c="c">
 <subtree xmlns:c="cc">
 <data>a:xyz</data>
 </subtree>
</foo>

Example 85. DOM tree to be stored in Foo.child

<subtree xmlns:a="a" xmlns:b="b" xmlns:c="cc">
 <data>a:xyz</data>
 </subtree>

Note that the two namespace declarations are copied over, but c is not because it's overridden. Also not that
JAXB is not touching the whitespace in document. This copying of namespace declarations is necessary
to preserve the infoset in the input document. For example, if the <data> is a QName, its meaning would
change if JAXB unmarshaller doesn't copy it.

Now, imagine what happens when you marshal this back to XML. Despite the fact that in this example
neither b nor c prefixes are in use, JAXB cannot delete them, because it doesn't know if those attributes are
significant to the application or not. Therefore, this could end up producing XML with "extra namespace
declarations" like:

Example 86. DOM tree to be stored in Foo.child

<foo>
 <subtree xmlns:a="a" xmlns:b="b" xmlns:c="cc">
 <data>a:xyz</data>
 </subtree>
</foo>

Resolving this problem is not possible in the general case, but sometimes one of the following strategy
works:

1. Sometimes schema author incorrectly assumes that <xs:element name="foo"/> means
<xs:element name="foo" type="xs:string"/>, because attribute declarations work
somewhat like this. In such a case, adding explicit type attribute avoids the use of DOM, so things
will work as expected.

2. The wildcard processing mode " strict" would force a typed binding, and thereby eliminate any
DOM mapping.

JAXB Users Guide

57

3. You might be able to manulally go into the DOM tree and remove unnecessary namespace declarations,
if your application knows what are necessary and what are not.

6. Schema Generation

6.1. Invoking schemagen programatically
Schemagen tools by default come in as CLI, ant task, and Maven plugin. These interfaces allow you to
invoke schemagen functionality from your program.

6.1.1. At runtime

If the classes you'd like to generate schema from are already available as java.lang.Class objects
(meaning they are already loaded and resolved in the current JVM), then the easiest way to generate a
schema is to use the JAXB API:

Example 87. Generate schema at runtime

File baseDir = new File(".");

class MySchemaOutputResolver extends SchemaOutputResolver {
 public Result createOutput(String namespaceUri, String
 suggestedFileName) throws IOException {
 return new StreamResult(new File(baseDir,suggestedFileName));
 }
}

JAXBContext context = JAXBContext.newInstance(Foo.class, Bar.class, ...);
context.generateSchema(new MySchemaOutputResolver());

6.1.2. CLI interface

The CLI interface (public static int
com.sun.tools.jxc.SchemaGenerator.run(String[])) [https://java.net/projects/jaxb/
sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java] is the easiest
API to access. You can pass in all the schemagen command-line arguments as a string array, and get the
exit code as an int value. Messages are sent to System.err and System.out.

6.1.3. Ant interface

Ant task can be invoked very easily from a non-Ant program. The schemagen ant task is defined
in the SchemaGenTask class [https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/fa-
cade/com/sun/tools/jxc/SchemaGenTask.java],

6.1.4. Native Java API

The above two interfaces are built on top of externally committed contracts, so they'll evolve only in a
compatibile way. The downside is that the amount of control you can exercise over them would be limited.

So yet another approach to invoke schemagen is to use JAXB RI's internal interfaces. But be warned that
those interfaces are subject to change in the future versions, despite our best effort to preserve them. This
is the API that the JAX-WS RI uses to generate schema inside WSDL when they generate WSDL, so does
some other web services toolkits that work with the JAXB RI.

https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/facade/com/sun/tools/jxc/SchemaGenTask.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/facade/com/sun/tools/jxc/SchemaGenTask.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/facade/com/sun/tools/jxc/SchemaGenTask.java

JAXB Users Guide

58

Most of those interfaces are defined and well-documented in the com.sun.tools.xjc.api package [https://
java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/xjc/api/]. You can see
how the schemagen tools are eventually calling into this API at the implementaion of SchemaGener-
ator class [https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/
SchemaGenerator.java].

6.2. Generating Schema that you want
This section discusses how you can change the generated XML schema. For changes that also affect the
infoset (such as changing elements to attributes, namespaces, etc.), refer to a different section "XML layout
and in-memory data layout".

6.2.1. Adding facets to datatypes

As of JAXB 2.1.4, currently no support for this, although there has been several discussions in the users
alias.

The JAXB project is currently lacking resources to attack this problem, and therefore looking for volunteers
to work on this project. The basic idea would be to define enough annotations to cover the basic constraint
facets (such as length, enumerations, pattern, etc.) The schema generator would have to be then extended
to honor those annotations and generate schemas accordingly.

Some users pointed out relevance of this to JSR 303: Bean Validation [http://jcp.org/en/jsr/detail?id=303].
If you are interested in picking up this task, let us know!

7. Deployment

7.1. Migrating JAXB 2.0 applications to JavaSE 6
JavaSE 6 ships with its own JAXB 2.0 implementation. This implementation is based on the JAXB RI,
where the only differences are:

• No RI-specific vendor extensions are supported: This is so that portability across different JavaSE
6 implementations will be guaranteed.

• Code in JavaSE 6 is hosted in its own packages to avoid conflicts: This allows applications to con-
tinue to use a specific version of the JAXB RI that they choose to use.

Therefore, if you develop an application that uses JAXB 2.0 for JavaSE 5 today, the easiest way to upgrade
to JavaSE 6 is to do nothing. You should keep the JAXB RI in your development environment, keep
bundling the JAXB RI runtime jars to your app, just like you do that today.

7.1.1. Reducing footprint

If you'd like to reduce the footprint of your application by taking advantage of a JAXB implementation
in JavaSE, you can take the following steps:

1. You will no longer have to ship jaxb-api.jar in your application. This doesn't require any change
to your code.

2. If your application does not use any of the vendor extension features of the JAXB RI runtime (such
as unmarshaller/marshaller properties whose names start with "com.sun."), then you will no longer

https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/xjc/api/
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/xjc/api/
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/xjc/api/
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
https://java.net/projects/jaxb/sources/version2/content/trunk/jaxb-ri/xjc/src/com/sun/tools/jxc/SchemaGenerator.java
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303

JAXB Users Guide

59

have to ship jaxb-impl.jar (nor jaxb1-impl.jar, jaxb-libs.jar.) When you do this, be
sure to test your application since it's not very easy to find all such dependencies.

7.1.2. Using JAXB with Java SE

JavaSE comes with JAXB 2.x API/implementation in rt.jar. Each version of JavaSE (6, 7, 8, ...) con-
tains different version of JAXB 2.x API. Therefore, if you want to use different version of JAXB API/
implementation than the one present in your version of JDK, you are required to override a portion of
rt.jar with the new API. There are several ways to achieve this:

1. Place the jaxb-api.jar into $JRE_HOME/lib/endorsed. Do not put other JAXB jars into
the endorsed directory. And put jaxb-impl, jaxb-core to classpath of your application. This essentially
makes your JRE to "JRE X + JAXB 2.y". This would affect any other applications that use this JRE,
and it's easy. On the other hand, in various scenarios you may not be able to alter the JRE.

2. Use the system property java.endorsed.dirs when you launch your application, and have it
point to the directory which contains the jaxb-api.jar only. The directory must not contain any
other jaxb artifacts (like jaxb-impl.jar or jaxb-xjc.jar). This allows you use to use different version
of JAXB for different applications.

No matter which approach you take, make sure not to include jar files other than jaxb-api.jar. Doing
so, for example including jaxb-xjc.jar, may result in classloading related errors such as "taskdef A
class needed by class com.sun.tools.xjc.XJCTask cannot be found: org/apache/tools/ant/...."

See the endorsed directory mechanism [http://docs.oracle.com/javase/6/docs/technotes/guides/standards/]
for more details.

7.1.3. Where's the XJC ant task?

JavaSE has never shipped an Ant task implementation, so we are just following that tradition. There's
an (process-wise) overhead of adding additional dependencies during the JavaSE build, and there would
likely be some runtime dependency issues in having a class in tools.jar that would require the ant
classes, due to class loader delegation.

We are thinking about perhaps releasing a small jar that only contains the ant task for JDK6.

Please also note that the syntax of <xjc> task is neither defined in the JAXB spec nor in the JavaSE spec.
Therefore other JavaSE vendors may not implement that at all, or do so in a different class name, etc.
Therefore, from a portability perspective, if you choose to depend on the <xjc> task you should bundle
the JAXB RI.

7.2. Which JAXB RI is included in which JDK?
This table captures the history of the JAXB RI integration into JDK. This is for information purposes only.
In particular, the JAXB RI in JDK is package renamed to avoid any conflict with the stand-alone JAXB
RI distribution or with the jaxb2-reflection library. You can use any version of these with any version of
JDK without worrying about implementation conflicts.

JDK6 first release - JDK6 u3 JAXB RI 2.0.3 [/2.0.3/]

JDK6 u4 JAXB RI 2.1.3 [/2.1.3/]

JDK6 u14 JAXB RI 2.1.10 [/2.1.10/]

JDK7 first release JAXB RI 2.2.4-1 [/2.2.4-1/]

JDK8 first release JAXB RI 2.2.8 (b130911.1802)

http://docs.oracle.com/javase/6/docs/technotes/guides/standards/
http://docs.oracle.com/javase/6/docs/technotes/guides/standards/
/2.0.3/
/2.0.3/
/2.1.3/
/2.1.3/
/2.1.10/
/2.1.10/
/2.2.4-1/
/2.2.4-1/

JAXB Users Guide

60

7.3. Running JAXB 1.0 and 2.x side by side
You should still be able to use the legacy compatible jaxb1-impl.jar:
http://search.maven.org/remotecontent?filepath=com/sun/xml/bind/jaxb1-
impl/2.2.5-1/jaxb1-impl-2.2.5-1.jar with your application. Note however that this jar is
no longer distributed with JAXB 2.2.x releases and this functionality is no longer supported.

7.4. Migrating JAXB 1.0 applications to JAXB 2.x
While it's always possible to keep your JAXB 1.0 applications as-is and run them on the JAXB 2.x runtime,
or have some parts of your application use JAXB 1.0 while others use 2.x, there are situations where you
might prefer to migrate your existing applications from JAXB 1.0 to JAXB 2.x.

Common reasons why people would like to migrate includes:

• Taking advantage of the flexible, robust unmarshalling in JAXB 2.0

• Exposing the JAXB-bound objects through JAX-WS as web services

7.4.1. Typical migration work

This section outlines how the typical migration work proceeds:

1. Replace the invocation of XJC 1.0.x with XJC 2.x. Both the CLI and ant task syntax are backward-com-
patible to make this easier.

2. Re-compile your schema with XJC 2.x. This will generate a new and different set of classes and meth-
ods.

3. Update your application code that deals with the generated code to use the newer classes and methods.
This step is mostly straight-forward but may be time consuming, especially if your project is big.

4. Remove the JAXB 1.0.x runtime from your application, and place in JAXB 2.x runtime instead. See the
list for what jars were used in 1.0 [http://java.sun.com/webservices/docs/1.5/jaxb/ReleaseNotes.html]
and what are used in 2.0 [http://jaxb.java.net/nonav/2.1.3/docs/ReleaseNotes.html].

The classes generated from JAXB 2.x tends to be a lot more compact [http://weblogs.java.net/blog/
kohsuke/archive/2005/08/a_story_of_migr.html].

JAXB RI 2.x ships many of the same samples that JAXB RI 1.0.x shipped, except that they are updated
to work with JAXB 2.0. So comparing those samples may help you better understand what this type of
migration involves.

7.4.2. Other Miscellaneous Notes

• JAXB 2.x requires JavaSE 5 or above, whereas JAXB 1.0 runs on JavaSE 1.3 or above.

• The javax.xml.bind interfaces remain the same. So the part of the code that deals with those in-
terfaces may remain the same.

• JAXB 1.0 unmarshaller was a lot more draconian to the errors in the input document than 2.0 is. In
a sense, you can think of the 1.0 unmarshaller as equivalent to the 2.0 unmarshaller + validator. If
your application was relying on this behaivior, you may want to enable validation in 2.0 by using
Unmarshaller.setSchema.

http://java.sun.com/webservices/docs/1.5/jaxb/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.5/jaxb/ReleaseNotes.html
http://jaxb.java.net/nonav/2.1.3/docs/ReleaseNotes.html
http://jaxb.java.net/nonav/2.1.3/docs/ReleaseNotes.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/a_story_of_migr.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/a_story_of_migr.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/a_story_of_migr.html

JAXB Users Guide

61

• JAXB 2.x by default creates plain Java beans, whereas in 1.0 it created separated interfaces and imple-
mentations. Many people find beans to be easier to work with, but you can use the following customiza-
tion to tell JAXB 2.x to generate interfaces and implementations in a similar fashion.

Example 88. Interface/Implementation customization

<jxb:bindings version="2.1"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb">
 <jxb:globalBindings generateValueClass="false" />
</jxb:bindings>

• When creating instances of the generated classes, JAXB 1.0 required that you do so through Ob-
jectFactory, like new ObjectFactory().createAbc(). With 2.0, you can simply do new
Abc(). This no longer throws JAXBExceptions, either.

• Binding customization syntax of 2.0 is backward compatible with 1.0. However, there are several cus-
tomizations that were previously allowed in 1.0 but not in 2.0, such as using class customizations on
model groups.

7.5. Runtime Errors

7.5.1. Illegal class modifiers for package-info: 0x1600

When you compile your sources files with JDK from Java6 and try to run it on Java5 JVMs, you may see
a ClassFormatError at runtime like this:

main" java.lang.ClassFormatError: Illegal class modifiers in class
com/alu/parentalcontrol/jaxb/package-info: 0x1600
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:620)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:260)
at java.net.URLClassLoader.access$100(URLClassLoader.java:56)
at java.net.URLClassLoader$1.run(URLClassLoader.java:195)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass(ClassLoader.java:306)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:268)
at java.lang.ClassLoader.loadClass(ClassLoader.java:251)
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:319)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:242)
at java.lang.Package.getPackageInfo(Package.java:350)
at java.lang.Package.getAnnotation(Package.java:361)
at
 com.sun.xml.bind.v2.model.annotation.RuntimeInlineAnnotationReader.getPackageAnnotation(RuntimeInlineAnnotationReader.java:125)
at
 com.sun.xml.bind.v2.model.annotation.RuntimeInlineAnnotationReader.getPackageAnnotation(RuntimeInlineAnnotationReader.java:53)
at
 com.sun.xml.bind.v2.model.impl.TypeInfoImpl.parseElementName(TypeInfoImpl.java:122)
at
 com.sun.xml.bind.v2.model.impl.ClassInfoImpl.<init>(ClassInfoImpl.java:166)

This is due to a bug, and so far the only way to fix this is to compile your project with JavaSE 5.

Here is what's happening. Java5 added a new class file modifier attribute called ACC_SYNTHETIC, whose
bit value is 0x1000. This attribute marks types and methods that are not present in the source file but
generated by the compiler. When package-info.java is compiled into package-info.class,

JAXB Users Guide

62

javac in Java5 apparently only put 0x0600 (= ACC_ABSTRACT|ACC_INTERFACE.) Some time during
Java6 development, someone filed a bug, saying it should also include ACC_SYNTHETIC bit [http://
bugs.sun.com/bugdatabase/view_bug.do?bug_id=6232928], since it was a synthesized class.

Later it is discovered that the corresponding VM change needs to be made to allow this 0x1600 combina-
tion [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6313196], but apparently no one realized the
real implication of this --- namely, 0x1600 will break all the past JVMs. Of course, this problem is eventu-
ally discovered [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6553734], but as of this writing
there's still no fix for this.

So as you see, this is why the only workaround is to use javac from Java5.

8. Other Miscellaneous Topics

8.1. Performance and thread-safety
The JAXBContext class is thread safe, but the Marshaller, Unmarshaller, and Validator classes are not
thread safe.

For example, suppose you have a multi-thread server application that processes incoming XML documents
by JAXB. In this case, for the best performance you should have just one instance of JAXBContext in
your whole application like this:

Example 89. Singleton JAXBContext

class MyServlet extends HttpServlet {
 static final JAXBContext context = initContext();

 private static JAXBContext initContext() {
 return JAXBContext.newInstance(Foo.class,Bar.class);
 }
}

And each time you need to unmarshal/marshal/validate a document. Just create a new Unmarshaller/Mar-
shaller/Validator from this context, like this:

Example 90. Thread local Unmarshaller

 public void doGet(HttpServletRequest req, HttpServletResponse) {
 Unmarshaller u = context.createUnmarshaller();
 u.unmarshal(...);
 }

This is the simplest safe way to use the JAXB RI from multi-threaded applications.

If you really care about the performance, and/or your application is going to read a lot of small documents,
then creating Unmarshaller could be relatively an expensive operation. In that case, consider pooling Un-
marshaller objects. Different threads may reuse one Unmarshaller instance, as long as you don't use one
instance from two threads at the same time.

8.2. Compiling DTD
The JAXB RI is shipped with an "experimental" DTD support, which let's you compile XML DTDs. It is
marked "experimental" not because the feature is unstable nor unreliable, but rather because it's not a part
of the JAXB specification and therefore the level of commitment to compatibility is lower.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6232928
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6232928
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6232928
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6313196
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6313196
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6313196
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6553734
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6553734
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6553734

JAXB Users Guide

63

Example 91. To compile a DTD, run the XJC binding compiler as follows:

$ xjc.sh -dtd test.dtd

All the other command-line options of the XJC binding compiler can be applied. Similarly, the XJC ant
task supports DTD. The generated code will be no different from what is generated from W3C XML
Schema. You'll use the same JAXB API to access the generated code, and it is portable in the sense that
it will run on any JAXB 2.0 implementation.

DTD long predates XML namespace, although people since then developed various techniques to use
XML namespaces in conjunction with DTD. Because of this, XJC is currently unable to reverse-engineer
the use of XML namespace from DTD. If you compile DTDs that use those techniques, you'd either man-
uallly modify the generated code, or you can try a tool like Trang [http://www.thaiopensource.com/re-
laxng/trang.html] that can convert DTD into XML Schema in ways that better preserves XML namespaces.

8.2.1. Customizations

The customization syntax for DTD is roughly based on the ver.0.21 working draft of the JAXB specifica-
tion, which is available at xml.coverpages.org [http://xml.coverpages.org/jaxb0530spec.pdf]. The devia-
tions from this document are:

• The whitespace attribute of the conversion element takes " preserve", " replace", and "
collapse" instead of " preserve", " normalize", and " collapse" as specified in the docu-
ment.

• The interface customization just generates marker interfaces with no method.

8.2.2. Compiling DTD from Maven2

Example 92. The following POM snippest describes how to invoke XJC to compile
DTD from a Maven 2 project:

<plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generate</goal>
 </goals>
 <configuration>
 <!-- if you want to put DTD somewhere else
 <schemaDirectory>src/main/jaxb</schemaDirectory>
 -->
 <extension>true</extension>
 <schemaLanguage>DTD</schemaLanguage>
 <schemaIncludes>
 <schemaInclude>*.dtd</schemaInclude>
 </schemaIncludes>
 <bindingIncludes>
 <bindingInclude>*.jaxb</bindingInclude>
 </bindingIncludes>
 <args>
 <arg>-Xinject-listener-code</arg>
 </args>
 </configuration>
 </execution>

http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
http://xml.coverpages.org/jaxb0530spec.pdf
http://xml.coverpages.org/jaxb0530spec.pdf

JAXB Users Guide

64

 </executions>
 <dependencies>
 <dependency>
 <groupId>org.jvnet.jaxb2-commons</groupId>
 <artifactId>property-listener-injector</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
</plugin>

Example 93. The dependencies section inside the plugin element can be used to
specify additional XJC plugins. If you'd like to use more recent version of the JAXB
RI, you can specify a dependency to XJC here to do so, like this:

<dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-xjc</artifactId>
 <version>2.1.2</version>
</dependency>

The complete sample project is available from here [http://weblogs.java.net/blog/kohsuke/
archive/20070130/dtd.zip].

8.3. Using JAXB from Maven

Example 94. If you are using Maven 2 as your build system, you can declare the
following dependencies in your POM for using the JAXB RI. Replace the version
with the version of your choice.

<dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>&jaxb.release.impl.version;</version>
</dependency>

This artifact is available in the java.net Maven repository [http://maven-repository.java.net/], so you also
need the following <repository> declaration in your POM:

<repository>
 <id>java.net</id>
 <url>https://maven.java.net/content/repositories/releases/</url>
 <layout>default</layout>
</repository>

For a list of available artifacts and versions, see this [https://maven.java.net/content/repositories/releas-
es/com/sun/xml/bind/]. In addition to the runtime jar, XJC is available under the artifact Id "jaxb-xjc".

You can also invoke XJC through a Maven plugin by using the Maven2 JAXB 2.x plugin [https://maven-
jaxb2-plugin.java.net/].

8.4. Designing a client/server protocol in XML
Occasionally, people try to define a custom protocol that allows multiple XML requests/responses to be
sent over a single transport channel. This section discusses the non-trivial interaction between XML and
sockets, and how you can design a protocol correctly.

http://weblogs.java.net/blog/kohsuke/archive/20070130/dtd.zip
http://weblogs.java.net/blog/kohsuke/archive/20070130/dtd.zip
http://weblogs.java.net/blog/kohsuke/archive/20070130/dtd.zip
http://maven-repository.java.net/
http://maven-repository.java.net/
https://maven.java.net/content/repositories/releases/com/sun/xml/bind/
https://maven.java.net/content/repositories/releases/com/sun/xml/bind/
https://maven.java.net/content/repositories/releases/com/sun/xml/bind/
https://maven-jaxb2-plugin.java.net/
https://maven-jaxb2-plugin.java.net/
https://maven-jaxb2-plugin.java.net/

JAXB Users Guide

65

XML1.0 requires a conforming parser to read the entire data till end of the stream (because a parser needs
to handle documents like <root/><!-- post root comment -->). As a result, a naive attempt
to keep one OutputStream open and marshal objects multiple times fails.

Example 95. One easy way to work around this limitation is to design your protocol
so that the data on the wire will look like the following:

<conversation>
 <!-- message 1 -->
 <message>
 ...
 </message>

 <!-- message 2 -->
 <message>
 ...
 </message>

 ...
</conversation>

The <conversation> start tag is sent immediately after the socket is opened. This works as a container
to send multiple "messages", and this is also an excellent opportunity to do the hand-shaking (e.g., pro-
tocol-version='1.0' attribute.) Once the <conversation> tag is written, multiple messages
can be marshalled as a tree into the channel, possibly with a large time lag in between. You can use the
JAXB marshaller to produce such message. When the sender wants to disconnect the channel, it can do so
by sending the </conversation> end tag, followed by the socket disconnection.

Of course, you can choose any tag names freely, and each message can have different tag names.

The receiver would use the StAX API and use XMLStreamReader to read this stream. You'd have to use
this to process the first <conversation> start tag. After that, every time you call a JAXB unmarshaller,
you'll get the next message.

For the concrete code, see the xml-channel example in the JAXB RI distribution.

66

Tools

Table of Contents
1. XJC .. 66

1.1. xjc Overview ... 66
1.2. Launching xjc .. 66
1.3. xjc Syntax ... 67
1.4. Compiler Restrictions .. 70
1.5. Generated Resource Files ... 71

2. XJC Ant Task .. 71
2.1. xjc Task Overview .. 71
2.2. xjc Task Attributes ... 71
2.3. Generated Resource Files ... 74
2.4. Up-to-date Check .. 74
2.5. Schema Language Support ... 74
2.6. xjc Examples ... 75

3. SchemaGen .. 76
3.1. schemagen Overview .. 76
3.2. Launching schemagen ... 76
3.3. schemagen Syntax .. 76
3.4. Generated Resource Files ... 77

4. SchemaGen Ant Task .. 77
4.1. schemagen Task Overview .. 77
4.2. schemagen Task Attributes .. 77
4.3. schemagen Examples .. 78

5. 3rd Party Tools ... 78
5.1. Maven JAXB Plugin ... 78
5.2. JAXB Workshop .. 79
5.3. XJC Plugins ... 79
5.4. RDBMS Persistence .. 79

1. XJC

1.1. xjc Overview
JAXB RI also provides an Ant task to run the binding complier - see the instructions for XJC Ant Task.

1.2. Launching xjc
The binding compiler can be launched using the appropriate xjc shell script in the bin directory for
your platform.

• Solaris/Linux

% /path/to/jaxb/bin/xjc.sh -help

• Windows

> c:\path\to\jaxb\bin\xjc.bat -help

Tools

67

1.2.1. Execute the jaxb-xjc.jar JAR File

If all else fails, you should be able to execute the jaxb-xjc.jar file:

• Solaris/Linux

% java -jar $JAXB_HOME/lib/jaxb-xjc.jar -help

• Windows

> java -jar %JAXB_HOME%\lib\jaxb-xjc.jar -help

This is equivalent of running xjc.sh or xjc.bat, and it allows you to set the JVM parameters.

1.3. xjc Syntax

xjc [OPTION]... <schema file/URL/dir/jar> [-b <binding>...]

Usage: xjc [-options ...] <schema file/URL/dir/jar> ... [-b <bindinfo>] ...
If dir is specified, all schema files in it will be compiled.
If jar is specified, /META-INF/sun-jaxb.episode binding file will be
 compiled.
Options:
 -nv : do not perform strict validation of the input
 schema(s)
 -extension : allow vendor extensions - do not strictly follow the
 Compatibility Rules and App E.2 from the JAXB Spec
 -b <file/dir> : specify external bindings files (each <file> must
 have its own -b)
 If a directory is given, **/*.xjb is searched
 -d <dir> : generated files will go into this directory
 -p <pkg> : specifies the target package
 -httpproxy <proxy> : set HTTP/HTTPS proxy. Format is
 [user[:password]@]proxyHost:proxyPort
 -httpproxyfile <f> : Works like -httpproxy but takes the argument in a
 file to protect password
 -classpath <arg> : specify where to find user class files
 -catalog <file> : specify catalog files to resolve external entity
 references
 support TR9401, XCatalog, and OASIS XML Catalog
 format.
 -readOnly : generated files will be in read-only mode
 -npa : suppress generation of package level annotations (**/
package-info.java)
 -no-header : suppress generation of a file header with timestamp
 -target (2.0|2.1) : behave like XJC 2.0 or 2.1 and generate code that
 doesn't use any 2.2 features.
 -encoding <encoding> : specify character encoding for generated source
 files
 -enableIntrospection : enable correct generation of Boolean getters/
setters to enable Bean Introspection apis
 -disableXmlSecurity : disables XML security features when parsing XML
 documents
 -contentForWildcard : generates content property for types with multiple
 xs:any derived elements
 -xmlschema : treat input as W3C XML Schema (default)
 -relaxng : treat input as RELAX NG (experimental,unsupported)

Tools

68

 -relaxng-compact : treat input as RELAX NG compact syntax
 (experimental,unsupported)
 -dtd : treat input as XML DTD (experimental,unsupported)
 -wsdl : treat input as WSDL and compile schemas inside it
 (experimental,unsupported)
 -verbose : be extra verbose
 -quiet : suppress compiler output
 -help : display this help message
 -version : display version information
 -fullversion : display full version information

Extensions:
 -Xinject-code : inject specified Java code fragments into the
 generated code
 -Xlocator : enable source location support for generated code
 -Xsync-methods : generate accessor methods with the 'synchronized'
 keyword
 -mark-generated : mark the generated code as
 @javax.annotation.Generated
 -episode : generate the episode file for separate compilation
 -Xpropertyaccessors : Use XmlAccessType PROPERTY instead of FIELD for
 generated classes

1.3.1. Summary of Command Line Options

-nv By default, the XJC binding compiler performs strict validation of
the source schema before processing it. Use this option to disable
strict schema validation. This does not mean that the binding com-
piler will not perform any validation, it simply means that it will
perform less-strict validation.

-extension By default, the XJC binding compiler strictly enforces the rules out-
lined in the Compatibility chapter of the JAXB Specification. Ap-
pendix E.2 defines a set of W3C XML Schema features that are not
completely supported by JAXB v1.0. In some cases, you may be al-
lowed to use them in the "-extension" mode enabled by this switch.
In the default (strict) mode, you are also limited to using only the
binding customizations defined in the specification. By using the "-
extension" switch, you will be allowed to use the Overview.

-b <file> Specify one or more external binding files to process. (Each bind-
ing file must have it's own -b switch.) The syntax of the external
binding files is extremely flexible. You may have a single binding
file that contains customizations for multiple schemas or you can
break the customizations into multiple bindings files:

xjc schema1.xsd schema2.xsd schema3.xsd -b
 bindings123.xjb
xjc schema1.xsd schema2.xsd schema3.xsd -b
 bindings1.xjb -b bindings2.xjb -b bindings3.xjb

In addition, the ordering of the schema files and binding files on the
command line does not matter.

-d <dir> By default, the XJC binding compiler will generate the Java con-
tent classes in the current directory. Use this option to specify an
alternate output directory. The output directory must already exist,
the XJC binding compiler will not create it for you.

Tools

69

-encoding <encoding> Set the encoding name for generated sources, such as EUC-JP or
UTF-8. If -encoding is not specified, the platform default en-
coding is used.

-p <pkg> Specifying a target package via this command-line option overrides
any binding customization for package name and the default pack-
age name algorithm defined in the specification.

-httpproxy <proxy> Specify the HTTP/HTTPS proxy. The format is
[user[:password]@]proxyHost[:proxyPort]. The old -host and -
port are still supported by the RI for backwards compatibility, but
they have been deprecated.

-httpproxyfile <f> Same as the -httpproxy <proxy> option, but it takes the
<proxy> parameter in a file, so that you can protect the password
(passing a password in the argument list is not safe.)

-classpath <arg> Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog <file> Specify catalog files to resolve external entity references. Supports
TR9401, XCatalog, and OASIS XML Catalog format. Please read
the XML Entity and URI Resolvers [catalog.html] document or the
catalog-resolver sample application.

-readOnly By default, the XJC binding compiler does not write-protect the Ja-
va source files it generates. Use this option to force the XJC binding
compiler to mark the generated Java sources read-only.

-npa Supress the generation of package level annotations into **/pack-
age-info.java. Using this switch causes the generated code to inter-
nalize those annotations into the other generated classes.

-no-header Supress the generation of a file header comment that includes some
note and timestamp. Using this makes the generated code more
diff-friendly.

-target (2.0|2.1) Avoid generating code that relies on any JAXB 2.1|2.2 features.
This will allow the generated code to run with JAXB 2.0 runtime
(such as JavaSE 6.)

-xmlschema treat input schemas as W3C XML Schema (default). If you do not
specify this switch, your input schemas will be treated as W3C
XML Schema.

-relaxng Treat input schemas as RELAX NG (experimental, unsupported).
Support for RELAX NG schemas is provided as a Overview.

-relaxng-compact Treat input schemas as RELAX NG compact syntax(experimental,
unsupported). Support for RELAX NG schemas is provided as a
Overview.

-dtd Treat input schemas as XML DTD (experimental, unsupported).
Support for RELAX NG schemas is provided as a Overview.

-wsdl Treat input as WSDL and compile schemas inside it
(experimental,unsupported).

catalog.html
catalog.html

Tools

70

-quiet Suppress compiler output, such as progress information and warn-
ings..

-verbose Be extra verbose, such as printing informational messages or dis-
playing stack traces upon some errors..

-help Display a brief summary of the compiler switches.

-version Display the compiler version information.

<schema file/URL/dir> Specify one or more schema files to compile. If you specify a di-
rectory, then xjc will scan it for all schema files and compile them.

-Xlocator This feature causes the generated code to expose SAX Locator in-
formation about the source XML in the Java bean instances after
unmarshalling.

-Xsync-methods This feature causes all of the generated method signatures to include
the synchronized keyword.

-mark-generated This feature causes all of the generated code to have
@Generated [http://docs.oracle.com/javaee/5/api/javax/annota-
tion/Generated.html] annotation.

-episode <FILE> Generate an episode file from this compilation, so that other
schemas that rely on this schema can be compiled later and rely
on classes that are generated from this compilation. The generated
episode file is really just a JAXB customization file (but with ven-
dor extensions.)

-Xinject-code Inject specified Java code fragments into the generated code;
see here [http://weblogs.java.net/blog/kohsuke/archive/2005/06/
writing_a_plugi.html] for more details.

-Xpropertyaccessors> Annotate the @XmlAccessorType of generated classes with
XmlAccessType PROPERTY instead of FIELD

1.3.2. Summary of Deprecated and Removed Command Line Op-
tions

-host & -port These options have been deprecated and replaced with the -http-
proxy option. For backwards compatibility, we will continue to
support these options, but they will no longer be documented and
may be removed from future releases.

-use-runtime Since the JAXB 2.0 specification has defined a portable runtime, it
is no longer necessary for the JAXB RI to generate **/impl/runtime
packages. Therefore, this switch is obsolete and has been removed.

1.4. Compiler Restrictions

In general, it is safest to compile all related schemas as a single unit with the same binding compiler
switches.

http://docs.oracle.com/javaee/5/api/javax/annotation/Generated.html
http://docs.oracle.com/javaee/5/api/javax/annotation/Generated.html
http://docs.oracle.com/javaee/5/api/javax/annotation/Generated.html
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html

Tools

71

Please keep the following list of restrictions in mind when running xjc. Most of these issues only apply
when compiling multiple schemas with multiple invocations of xjc.

• To compile multiple schemas at the same time, keep the following precedence rules for the target Java
package name in mind:

1. The -p command line option takes the highest precedence.

2. <jaxb:package> customization

3. If targetNamespace is declared, apply targetNamespace -> Java package name algorithm
defined in the specification.

4. If no targetNamespace is declared, use a hardcoded package named "generated".

• It is not legal to have more than one < jaxb:schemaBindings> per namespace, so it is impossible
to have two schemas in the same target namespace compiled into different Java packages.

• All schemas being compiled into the same Java package must be submitted to the XJC binding compiler
at the same time - they cannot be compiled independently and work as expected.

• Element substitution groups spread across multiple schema files must be compiled at the same time.

1.5. Generated Resource Files
XJC produces a set of packages containing Java source files and also jaxb.properties files, depend-
ing on the binding options you used for compilation. When generated, jaxb.properties files must be
kept with the compiled source code and made available on the runtime classpath of your client applications:

2. XJC Ant Task

2.1. xjc Task Overview
The jaxb-xjc.jar file contains the XJCTask.class file, which allows the XJC binding compiler to
be invoked from the Ant [http://jakarta.apache.org/ant] build tool. To use XJCTask, include the following
statement in your build.xml file:

<taskdef name="xjc" classname="com.sun.tools.xjc.XJCTask">
 <classpath>
 <fileset dir="path/to/jaxb/lib" includes="*.jar"/>
 </classpath>
</taskdef>

This maps XJCTask to an Ant task named xjc. For detailed examples of using this task, refer to any of
the build.xml files used by the Sample Apps.

2.2. xjc Task Attributes

2.2.1. Environment Variables

• ANT_OPTS [http://wiki.apache.org/ant/TheElementsOfAntStyle] - command-line arguments that
should be passed to the JVM. For example, you can define system properties or set the maximum Java
heap size here.

http://jakarta.apache.org/ant
http://jakarta.apache.org/ant
http://wiki.apache.org/ant/TheElementsOfAntStyle
http://wiki.apache.org/ant/TheElementsOfAntStyle

Tools

72

2.2.2. Parameter Attributes

xjc supports the following parameter attributes.

Attribute Description Required

schema A schema file to be compiled. A
file name (can be relative to the
build script base directory), or an
URL.

This or nested < schema> ele-
ments are required.

binding An external binding file that will
be applied to the schema file.

No

package If specified, generated code will
be placed under this Java pack-
age. This option is equivalent to
the "-p" command-line switch.

No

destdir Generated code will be written
under this directory. If you spec-
ify destdir="abc/def" and
package="org.acme", then
files are generated to abc/def/
org/acme.

Yes

encoding Set the encoding name for gener-
ated sources, such as EUC-JP or
UTF-8. If it is not specified, the
platform default encoding is used.

No

readonly Generate Java source files in the
read-only mode if true is speci-
fied. false by default.

No

header Generate a header in each gener-
ated file indicating that this file is
generated by such and such ver-
sion of JAXB RI when. true by
default.

No

extension If set to true, the XJC binding
compiler will run in the extension
mode. Otherwise, it will run in the
strict conformance mode. Equiva-
lent of the " -extension" com-
mand line switch. The default is
false.

No

catalog Specify the catalog file to resolve
external entity references. Sup-
port TR9401, XCatalog, and OA-
SIS XML Catalog format. See the
catalog-resolver sample for de-
tails.

No

removeOldOutput Used in pair with nested <pro-
duces> elements. When this at-
tribute is specified as " yes", the
files pointed to by the <pro-

No

Tools

73

Attribute Description Required

duces> elements will be all
deleted before the XJC binding
compiler recompiles the source
files. See the up-to-date check
section for details.

target Specifies the runtime environ-
ment in which the generated code
is supposed to run. Expects 2.0
or 2.1 values. This allows more
up-to-date versions of XJC to be
used for developing applications
that run on earlier JAXB versions.

No, defaults to "2.2"

language Specifies the schema language
to compile. Supported values are
"WSDL", "XMLSCHEMA", and
"WSDL." Case insensitive.

No, defaults to "XMLSCHEMA"

2.2.3. Nested Elements

xjc supports the following nested element parameters.

2.2.3.1. schema

To compile more than one schema at the same time, use a nested <schema> element, which has the same
syntax as <fileset> [http://ant.apache.org/manual/Types/fileset.html].

2.2.3.2. binding

To specify more than one external binding file at the same time, use a nested <binding> element, which
has the same syntax as <fileset> [http://ant.apache.org/manual/Types/fileset.html].

2.2.3.3. classpath

To specify locations of the user-defined classes necessary during the compilation (such as an user-defined
type that is used through a <javaType> customization), use nested <classpath> elements. For the
syntax, see "path-like structure" [http://jakarta.apache.org/ant/manual/using.html#path] .

2.2.3.4. arg

Additional command line arguments passed to the XJC. For details about the syntax, see the relevant
section [http://ant.apache.org/manual/using.html#arg] in the Ant manual. This nested element can be used
to specify various options not natively supported in the xjc Ant task. For example, currently there is no
native support for the following xjc command-line options:

• -nv

• -use-runtime

• -schema

• -dtd

• -relaxng

• -Xlocator

http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://jakarta.apache.org/ant/manual/using.html#path
http://jakarta.apache.org/ant/manual/using.html#path
http://ant.apache.org/manual/using.html#arg
http://ant.apache.org/manual/using.html#arg
http://ant.apache.org/manual/using.html#arg

Tools

74

• -Xsync-methods

To use any of these features from the <xjc> Ant task, you must specify the appropriate nested < arg>
elements.

2.2.3.5. depends

Files specified with this nested element will be taken into account when the XJC task does the up-
to-date check. See the up-to-date check section for details. For the syntax, see <fileset> [http://
ant.apache.org/manual/Types/fileset.html].

2.2.3.6. produces

Files specified with this nested element will be taken into account when the XJC task does the up-
to-date check. See the up-to-date check section for details. For the syntax, see <fileset> [http://
ant.apache.org/manual/Types/fileset.html].

2.2.3.7. xmlcatalog

The xmlcatalog [http://ant.apache.org/manual/Types/xmlcatalog.html] element is used to resolve entities
when parsing schema documents.

2.3. Generated Resource Files
Please see the Generated Resource Files for more detail.

2.4. Up-to-date Check
By default, the XJC binding compiler always compiles the inputs. However, with a little additional setting,
it can compare timestamps of the input files and output files and skip compilation if the files are up-to-date.

Ideally, the program should be able to find out all the inputs and outputs and compare their timestamps, but
this is difficult and time-consuming. So you have to tell the task input files and output files manually by
using nested <depends> and <produces> elements. Basically, the XJC binding compiler compares
the timestamps specified by the <depends> elements against those of the <produces> set. If any one
of the "depends" file has a more recent timestamp than some of the files in the "produces" set, it will
compile the inputs. Otherwise it will skip the compilation.

This will allow you to say, for example "if any of the .xsd files in this directory are newer than the .java
files in that directory, recompile the schema".

Files specified as the schema files and binding files are automatically added to the "depends" set as well, but
if those schemas are including/importing other schemas, you have to use a nested <depends> elements.
No files are added to the <produces> set, so you have to add all of them manually.

A change in a schema or an external binding file often results in a Java file that stops being generated. To
avoid such an "orphan" file, it is often desirable to isolate all the generated code into a particular package
and delete it before compiling a schema. This can be done by using the removeOldOutput attribute.
This option allows you to remove all the files that match the "produces" filesets before a compilation. Be
careful when you use this option so that you don't delete important files.

2.5. Schema Language Support
This release of the JAXB RI includes experimental support for RELAX NG, DTD, and WSDL. To compile
anything other than W3C XML Schema from the xjc Ant task, you must use the nested < arg> element

http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/xmlcatalog.html
http://ant.apache.org/manual/Types/xmlcatalog.html

Tools

75

to specify the appropriate command line switch, such as -dtd, -relaxng, or -wsdl. Otherwise, your
input schemas will be treated as W3C XML Schema and the binding compiler will fail.

2.6. xjc Examples
Compile myschema.xsd and place the generated files under src/org/acme/foo:

<xjc schema="src/myschema.xsd" destdir="src" package="org.acme.foo"/>

Compile all XML Schema files in the src directory and place the generated files under the appropriate
packages in the src directory:

<xjc destdir="src">
 <schema dir="src" includes="*.xsd"/>
</xjc>

Compile all XML Schema files in the src directory together with binding files in the same directory and
places the generated files under the appropriate packages in the src directory. This example assumes
that binding files contain package customizations. This example doesn't search subdirectories of the src
directory to look for schema files.

<xjc destdir="src">
 <schema dir="src" includes="*.xsd"/>
 <binding dir="src" includes="*.xjb"/>
</xjc>

Compile abc.xsd with an up-to-date check. Compilation only happens when abc.xsd is newer than
any of the files in the src/org/acme/foo directory (and its impl subdirectory). Files in these two
directories will be wiped away before a compilation, so don't add your own code in those directories. Note
that the additional mkdir task is necessary because Ant's fileset requires the directory specified by the
dir attribute to exist.

<mkdir dir="src/org/acme/foo"/>
<xjc destdir="src" schema="abc.xsd" removeOldOutput="yes"
 package="org.acme.foo">
 <produces dir="src/org/acme/foo" includes="* impl/*"/>
</xjc>

More complicated example of up-to-date check. In this example, we assume that you have a large set of
schema documents that reference each other, with DTDs that describe the schema documents. An explicit
<depends> is necessary so that when you update one of the DTDs, XJC will recompile your schema. But
<depends> don't have to re-specify all the schema files, because you've already done that via <schema>.

<mkdir dir="src/org/acme/foo"/>
<xjc destdir="src" removeOldOutput="yes"
 package="org.acme.foo">
 <schema dir="schema" includes="*.xsd"/>
 <depends dir="schema" includes="*.dtd"/>
 <produces dir="build/generated-src/org/acme/foo"
 includes="**/*"/>
</xjc>

Compile all XML Schema files in the src directory and subdirectories, excluding files named
debug.xsd, and place the generated files under the appropriate packages in the src directory. This
example also specifies the -nv option, which disables the strict schema correctness checking:

<xjc destdir="src">

Tools

76

 <schema dir="src" includes="**/*.xsd"
 excludes="**/debug.xsd"/>
 <arg value="-nv"/>
</xjc>

If you depend on a proxy server to resolve the location of imported or included schemas (as you might if
you're behind a firewall), you need to make the hostname and port number accessible to the JVM hosting
ant. Do this by setting the environment variable ANT_OPTS to a string containing the appropriate java
options. For example, from DOS:

> set ANT_OPTS=-Dhttp.proxyHost=webcache.east
> set ANT_OPTS=%ANT_OPTS% -Dhttp.proxyPort=8080
> ant

3. SchemaGen

3.1. schemagen Overview
The current schema generator can process either Java source files or class files.

We also provide an Ant task to run the schema generator - see the instructions for SchemaGen Ant Task.

3.2. Launching schemagen
The schema generator can be launched using the appropriate schemagen shell script in the bin directory
for your platform.

If your java sources/classes reference other classes, they must be accessable on your system CLASSPATH
environment variable, or they need to be given to the tool by using the -classpath/ -cp options.
Otherwise you will see errors when generating your schema.

• Solaris/Linux

% path/to/jaxb/bin/schemagen.sh Foo.java Bar.java ...
Note: Writing schema1.xsd

• Windows

> path\to\jaxb\bin\schemagen.bat Foo.java Bar.java ...
Note: Writing schema1.xsd

3.3. schemagen Syntax
schemagen [OPTION]... <java files>

Usage: schemagen [-options ...] <java files>

Options:
 -d <path> : Specify where to place processor and javac generated
 class files
 -cp <path> : Specify where to find user specified files
 -classpath <path> : Specify where to find user specified files
 -episode <file> : generate episode file for separate compilation
 -version : display version information
 -help : Display this usage message

Tools

77

3.3.1. Summary of Command Line Options

-episode Generates the "episode file", which is really just a JAXB customization file (but with vendor
extensions specific to the JAXB RI, as of 2.1.) When people develop additional schemas
that depend on what this schemagen invocation produces, they can use this episode file to
have their generated code refer to your classes.

3.4. Generated Resource Files
The current schema generator simply creates a schema file for each namespace referenced in your Java
classes. There is no way to control the name of the generated schema files at this time. Use SchemaGen
Ant Task for that purpose.

4. SchemaGen Ant Task

4.1. schemagen Task Overview
The jaxb-xjc.jar file contains the SchemaGenTask.class file, which allows the schema gen-
erator to be invoked from the Ant [http://jakarta.apache.org/ant] build tool. To use SchemaGenTask,
include the following statement in your build.xml file:

<taskdef name="schemagen"
 classname="com.sun.tools.jxc.SchemaGenTask">
 <classpath>
 <fileset dir="path/to/jaxb/lib" includes="*.jar"/>
 </classpath>
</taskdef>

This maps SchemaGenTask to an Ant task named schemagen. For detailed examples of using this
task, refer to the build.xml files used by the java to schema Sample Apps.

4.2. schemagen Task Attributes

4.2.1. Environment Variables

• ANT_OPTS [http://wiki.apache.org/ant/TheElementsOfAntStyle] - command-line arguments that
should be passed to the JVM. For example, you can define system properties or set the maximum Java
heap size here.

4.2.2. Parameter Attributes

schemagen supports most of the attributes defined by the javac task [http://ant.apache.org/manual/Core-
Tasks/javac.html], plus the following parameter attributes.

Attribute Description Required

destdir Base directory to place the gener-
ated schema files

No

classpath Works just like the nested <class-
path> element

No

episode If specified, generate an episode
file in the specified name. For

No

http://jakarta.apache.org/ant
http://jakarta.apache.org/ant
http://wiki.apache.org/ant/TheElementsOfAntStyle
http://wiki.apache.org/ant/TheElementsOfAntStyle
http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/CoreTasks/javac.html

Tools

78

Attribute Description Required

more about the episode file, see -
episode.

4.2.3. Nested Elements

xjc supports all the nested elements defined by the javac task [http://ant.apache.org/manual/Core-
Tasks/javac.html], the following nested element parameters.

4.2.3.1. schema

Control the file name of the generated schema. This element takes a mandatory namespace attribute
and a mandaotry file attribute. When this element is present, the schema document generated for the
specified namespace will be placed in the specified file name.

The file name is interpreted as relative to the destdir attribute. In the absence of the destdir attribute, file
names are relative to the project base directory. This element can be specified multiple times.

4.2.3.2. classpath

A path-like structure [http://ant.apache.org/manual/using.html#path] that represents the classpath. If your
Java sources/classes depend on other libraries, they need to be available in the classpath.

4.3. schemagen Examples
Generate schema files from source files in the src dir and place them in the build/schemas directory.

<schemagen srcdir="src" destdir="build/schemas">

Compile a portion of the source tree.

<schemagen destdir="build/schemas">
 <src path="src"/>
 <exclude name="Main.java"/>
</schemagen>

Set schema file names.

<schemagen srcdir="src" destdir="build/schemas">
 <schema namespace="http://myschema.acme.org/common"
 file="myschema-common.xsd"/>
 <schema namespace="http://myschema.acme.org/onion"
 file="myschema-onion.xsd"/>
</schemagen>

5. 3rd Party Tools

5.1. Maven JAXB Plugin
The Maven2 plugin for JAXB2 [http://maven-jaxb2-plugin.java.net/] is hosted at java.net. If you are using
Maven, JAXB jars are available in the java.net maven repository [https://maven.java.net/content/reposi-
tories/releases/]. This repository is synced with maven central, so usually you find all JAXB releases in
maven central after ~ 1 day after java.net release.

http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/using.html#path
http://ant.apache.org/manual/using.html#path
http://maven-jaxb2-plugin.java.net/
http://maven-jaxb2-plugin.java.net/
https://maven.java.net/content/repositories/releases/
https://maven.java.net/content/repositories/releases/
https://maven.java.net/content/repositories/releases/

Tools

79

5.2. JAXB Workshop
JAXB Workshop [http://jaxb-workshop.java.net/] hosts a collection of visual tools and IDE plugins useful
for working with JAXB.

5.3. XJC Plugins
Various people in the community have developed plugins for XJC that you can use today. These plugins
allow you to enhance/alter the code generation of XJC in many different ways. See the list of plugins
[http://jaxb2-commons.java.net/] (if you are interested in hosting your plugin here, let us know.)

5.4. RDBMS Persistence
Lexi has developed the HyperJAXB3 project [http://confluence.highsource.org/display/HJ3/Home] for
RDBMS persistence support for the JAXB RI.

http://jaxb-workshop.java.net/
http://jaxb-workshop.java.net/
http://jaxb2-commons.java.net/
http://jaxb2-commons.java.net/
http://confluence.highsource.org/display/HJ3/Home
http://confluence.highsource.org/display/HJ3/Home

80

JAXB RI Extensions

Table of Contents
1. Overview ... 80
2. Runtime Properties .. 80

2.1. Marshaller Properties ... 80
3. XJC Customizations .. 86

3.1. Customizations ... 86
4. DTD ... 92

4.1. DTD ... 92
5. Develop Plugins .. 93

5.1. What Can A Plugin Do? .. 93

1. Overview
This page contains information about vendor-specific features provided by the JAXB RI.

Runtime Properties This document describes JAXB RI specific properties that affect the way
that the JAXB runtime library behaves.

XJC Customizations This document describes additional binding customizations that can be used
to control the generated source code.

DTD This document describes the JAXB RI's experimental support for W3C XML
Schema features not currently described in the JAXB Specification as well
as support for other schema languages (RELAX NG and DTD).

2. Runtime Properties
2.1. Marshaller Properties

The JAXB RI provides additional Marshaller properties that are not defined by the JAXB specification.
These properties allow you to better control the marshalling process, but they only work with the JAXB
RI; they may not work with other JAXB providers.

2.1.1. Index of Marshaller Properties

• Namespace Prefix Mapping

• Indentation

• Character Escaping Control

• XML Declaration Control

• Jaxb Annotation Control

2.1.2. Namespace Prefix Mapping

Property name: com.sun.xml.bind.namespacePrefixMapper

Type: com.sun.xml.bind.marshaller.NamespacePrefixMapper

JAXB RI Extensions

81

Default value: null

The JAXB RI provides a mechanism for users to control declarations of namespace URIs and what prefixes
they will be bound to. This is the general procedure:

1. The application developer provides an implementation of
com.sun.xml.bind.marshaller.NamespacePrefixMapper.

2. This class is then set on the marshaller via the RI specific property
com.sun.xml.bind.namespacePrefixMapper.

3. Each time the marshaller sees a URI, it performs a callback on the mapper: "What prefix do you want
for this namespace URI?"

4. If the mapper returns something, the marshaller will try to use it.

The com.sun.xml.bind.marshaller.NamespacePrefixMapper class has the following
method that you need to implement:

/**
 * Implemented by the user application to determine URI -> prefix
 * mapping.
 *
 * This is considered as an interface, though it's implemented
 * as an abstract class to make it easy to add new methods in
 * a future.
 *
 * @author
 * Kohsuke Kawaguchi (kohsuke.kawaguchi@sun.com)
 */
public abstract class NamespacePrefixMapper {

 private static final String[] EMPTY_STRING = new String[0];

 /**
 * Returns a preferred prefix for the given namespace URI.
 *
 * This method is intended to be overrided by a derived class.
 *
 * <p>
 * As noted in the return value portion of the javadoc, there
 * are several cases where the preference cannot be honored.
 * Specifically, as of JAXB RI 2.0 and onward:
 *
 *
 *
 * If the prefix returned is already in use as one of the in-scope
 * namespace bindings. This is partly necessary for correctness
 * (so that we don't unexpectedly change the meaning of QNames
 * bound to {@link String}), partly to simplify the marshaller.
 *
 * If the prefix returned is "" yet the current {@link JAXBContext}
 * includes classes that use the empty namespace URI. This allows
 * the JAXB RI to reserve the "" prefix for the empty namespace URI,
 * which is the only possible prefix for the URI.
 * This restriction is also to simplify the marshaller.
 *
 *
 * @param namespaceUri

JAXB RI Extensions

82

 * The namespace URI for which the prefix needs to be found.
 * Never be null. "" is used to denote the default namespace.
 * @param suggestion
 * When the content tree has a suggestion for the prefix
 * to the given namespaceUri, that suggestion is passed as a
 * parameter. Typicall this value comes from the QName.getPrefix
 * to show the preference of the content tree. This parameter
 * may be null, and this parameter may represent an already
 * occupied prefix.
 * @param requirePrefix
 * If this method is expected to return non-empty prefix.
 * When this flag is true, it means that the given namespace URI
 * cannot be set as the default namespace.
 *
 * @return
 * null if there's no prefered prefix for the namespace URI.
 * In this case, the system will generate a prefix for you.
 *
 * Otherwise the system will try to use the returned prefix,
 * but generally there's no guarantee if the prefix will be
 * actually used or not.
 *
 * return "" to map this namespace URI to the default namespace.
 * Again, there's no guarantee that this preference will be
 * honored.
 *
 * If this method returns "" when requirePrefix=true, the return
 * value will be ignored and the system will generate one.
 *
 * @since JAXB 1.0.1
 */
 public abstract String getPreferredPrefix(String namespaceUri, String
 suggestion, boolean requirePrefix);

 /**
 * Returns a list of namespace URIs that should be declared
 * at the root element.
 *
 * <p>
 * By default, the JAXB RI 1.0.x produces namespace declarations only
 when
 * they are necessary, only at where they are used. Because of this
 * lack of look-ahead, sometimes the marshaller produces a lot of
 * namespace declarations that look redundant to human eyes. For example,
 * <pre><xmp>
 * <?xml version="1.0"?>
 * <root>
 * <ns1:child xmlns:ns1="urn:foo"> ... </ns1:child>
 * <ns2:child xmlns:ns2="urn:foo"> ... </ns2:child>
 * <ns3:child xmlns:ns3="urn:foo"> ... </ns3:child>
 * ...
 * </root>
 * </xmp></pre>
 *
 * <p>
 * The JAXB RI 2.x mostly doesn't exhibit this behavior any more,
 * as it declares all statically known namespace URIs (those URIs
 * that are used as element/attribute names in JAXB annotations),
 * but it may still declare additional namespaces in the middle of
 * a document, for example when (i) a QName as an attribute/element value

JAXB RI Extensions

83

 * requires a new namespace URI, or (ii) DOM nodes as a portion of an
 object
 * tree requires a new namespace URI.
 *
 * <p>
 * If you know in advance that you are going to use a certain set of
 * namespace URIs, you can override this method and have the marshaller
 * declare those namespace URIs at the root element.
 *
 * <p>
 * For example, by returning <code>new String[]{"urn:foo"}</code>,
 * the marshaller will produce:
 * <pre><xmp>
 * <?xml version="1.0"?>
 * <root xmlns:ns1="urn:foo">
 * <ns1:child> ... </ns1:child>
 * <ns1:child> ... </ns1:child>
 * <ns1:child> ... </ns1:child>
 * ...
 * </root>
 * </xmp></pre>
 * <p>
 * To control prefixes assigned to those namespace URIs, use the
 * {@link #getPreferredPrefix(String, String, boolean)} method.
 *
 * @return
 * A list of namespace URIs as an array of {@link String}s.
 * This method can return a length-zero array but not null.
 * None of the array component can be null. To represent
 * the empty namespace, use the empty string <code>""</code>.
 *
 * @since
 * JAXB RI 1.0.2
 */
 public String[] getPreDeclaredNamespaceUris() {
 return EMPTY_STRING;
 }

 /**
 * Similar to {@link #getPreDeclaredNamespaceUris()} but allows the
 * (prefix,nsUri) pairs to be returned.
 *
 * <p>
 * With {@link #getPreDeclaredNamespaceUris()}, applications who wish to
 control
 * the prefixes as well as the namespaces needed to implement both
 * {@link #getPreDeclaredNamespaceUris()} and {@link
 #getPreferredPrefix(String, String, boolean)}.
 *
 * <p>
 * This version eliminates the needs by returning an array of pairs.
 *
 * @return
 * always return a non-null (but possibly empty) array. The array
 stores
 * data like (prefix1,nsUri1,prefix2,nsUri2,...) Use an empty string
 to represent
 * the empty namespace URI and the default prefix. Null is not
 allowed as a value
 * in the array.

JAXB RI Extensions

84

 *
 * @since
 * JAXB RI 2.0 beta
 */
 public String[] getPreDeclaredNamespaceUris2() {
 return EMPTY_STRING;
 }

 /**
 * Returns a list of (prefix,namespace URI) pairs that represents
 * namespace bindings available on ancestor elements (that need not be
 repeated
 * by the JAXB RI.)
 *
 * <p>
 * Sometimes JAXB is used to marshal an XML document, which will be
 * used as a subtree of a bigger document. When this happens, it's nice
 * for a JAXB marshaller to be able to use in-scope namespace bindings
 * of the larger document and avoid declaring redundant namespace URIs.
 *
 * <p>
 * This is automatically done when you are marshalling to {@link
 XMLStreamWriter},
 * {@link XMLEventWriter}, {@link DOMResult}, or {@link Node}, because
 * those output format allows us to inspect what's currently available
 * as in-scope namespace binding. However, with other output format,
 * such as {@link OutputStream}, the JAXB RI cannot do this
 automatically.
 * That's when this method comes into play.
 *
 * <p>
 * Namespace bindings returned by this method will be used by the JAXB
 RI,
 * but will not be re-declared. They are assumed to be available when you
 insert
 * this subtree into a bigger document.
 *
 * <p>
 * It is NOT OK to return the same binding, or give
 * the receiver a conflicting binding information.
 * It's a responsibility of the caller to make sure that this doesn't
 happen
 * even if the ancestor elements look like:
 * <pre><xmp>
 * <foo:abc xmlns:foo="abc">
 * <foo:abc xmlns:foo="def">
 * <foo:abc xmlns:foo="abc">
 * ... JAXB marshalling into here.
 * </foo:abc>
 * </foo:abc>
 * </foo:abc>
 * </xmp></pre>
 *
 * @return
 * always return a non-null (but possibly empty) array. The array
 stores
 * data like (prefix1,nsUri1,prefix2,nsUri2,...) Use an empty string
 to represent
 * the empty namespace URI and the default prefix. Null is not
 allowed as a value

JAXB RI Extensions

85

 * in the array.
 *
 * @since JAXB RI 2.0 beta
 */
 public String[] getContextualNamespaceDecls() {
 return EMPTY_STRING;
 }
}

See the Sample Apps sample application for a detailed example.

2.1.3. Indentation

Property name: com.sun.xml.bind.indentString

Type: java.lang.String

Default value: " " (four whitespaces)

This property controls the string used for the indentation of XML. An element of depth k will be in-
dented by printing this string k times. Note that the "jaxb.formatted.output" property needs to
be set to "true" for the formatting/indentation of the output to occur. See the API documentation for
javax.xml.bind.Marshaller [api/javax/xml/bind/Marshaller.html] interface for details of this
property.

2.1.4. Character Escaping Control

Property name: com.sun.xml.bind.characterEscapeHandler

Type: com.sun.xml.bind.marshaller.CharacterEscapeHandler

Default value: null

By default, the marshaller implementation of the JAXB RI tries to escape characters so they can be safely
represented in the output encoding (by using Unicode numeric character references of the form &#dddd;)

Unfortunately, due to various technical reasons, the default behavior may not meet your expectations. If
you need to handle escaping more adroitly than the default manner, you can do so by doing the following:

1. Write a class that implements the
com.sun.xml.bind.marshaller.CharacterEscapeHandler interface.

2. Create a new instance of it.

3. Set that instance to the Marshaller by using this property.

See the Sample Apps sample application for more details.

2.1.5. XML Declaration Control

Property name: com.sun.xml.bind.xmlDeclaration

Type: boolean

Default value: true

This experimental JAXB RI 1.0.x property has been adopted as a standard in JAXB 2.0. The 2.0 RI will
continue to support this property, but client code should be using the Marshaller.JAXB_FRAGMENT [api/

api/javax/xml/bind/Marshaller.html
api/javax/xml/bind/Marshaller.html
api/javax/xml/bind/Marshaller.html#JAXB_FRAGMENT
api/javax/xml/bind/Marshaller.html#JAXB_FRAGMENT

JAXB RI Extensions

86

javax/xml/bind/Marshaller.html#JAXB_FRAGMENT] property instead. Please refer to the Marshaller
javadoc [api/javax/xml/bind/Marshaller.html#supportedProps] for a complete description of the behavior.

In JAXB 2.0, calling:

marshaller.setProperty("com.sun.xml.bind.xmlDeclaration", true);

is equivalent to calling:

marshaller.setProperty(Marshaller.JAXB_FRAGMENT, true);

JAXB 1.0 generated code and clients will continue to work exactly the same on the JAXB 2.0 runtime as
they did on the JAXB 1.0 runtime.

Enabling fragment marshalling could be useful if you are inserting the output of the XML into another
XML.

2.1.6. XML Preamble Control

Property name: com.sun.xml.bind.xmlHeaders

Type: java.lang.String

Default value: null

This property allows you to specify an XML preamble (<?xml ...> declaration) and any additional PIs,
comments, DOCTYPE declaration that follows it. This property takes effect only when you are mar-
shalling to OutputStream, Writer, or StreamResult. Note that this property interacts with the
Marshaller.JAXB_FRAGMENT property. If that property is untouched or set to false, then JAXB
would always write its XML preamble, so this property can be only used to write PIs, comments, DOC-
TYPE, etc. On the other hand, if it is set to true, then JAXB will not write its own XML preamble, so this
property may contain custom XML preamble.

2.1.7. Jaxb Annotation Control

Property name: com.sun.xml.bind.XmlAccessorFactory

Type: boolean

Default value: false

This property provides support for a custom com.sun.xml.bind.v2.runtime.reflect.Accessor implementa-
tion. It allows the user to control the access to class fields and properties.

In JAXB 2.1, set the property to enable:

marshaller.setProperty("com.sun.xml.bind.XmlAccessorFactory", true);

3. XJC Customizations

3.1. Customizations
The JAXB RI provides additional customizations that are not defined by the JAXB specification. Note
the following:

api/javax/xml/bind/Marshaller.html#JAXB_FRAGMENT
api/javax/xml/bind/Marshaller.html#supportedProps
api/javax/xml/bind/Marshaller.html#supportedProps
api/javax/xml/bind/Marshaller.html#supportedProps

JAXB RI Extensions

87

• These features may only be used when the JAXB XJC binding compiler is run in the -extension
mode.

• All of the JAXB RI vendor extensions are defined in the "http://java.sun.com/xml/ns/
jaxb/xjc" namespace.

• The namespaces containing extension binding declarations are specified to a JAXB processor by the
occurrence of the global attribute @jaxb:extensionBindingPrefixes within an instance of
<xs:schema> element. The value of this attribute is a whitespace-separated list of namespace prefix-
es. For more information, please refer to section 6.1.1 of the JAXB Specification.

3.1.1. Index of Customizations

• SCD Support

• Extending a Common Super Class - Extending a Common Super Class

• Extending a Common Super Interface - Extending a Common Super Interface

• Enhanced <jaxb:javaType> - Enhanced <jaxb:javaType> customization

• Experimental simpler & better binding mode - Experimental simpler & better binding mode

• Alternative Derivation-by-restriction Binding Mode - Alternative derivation-by-restriction binding
mode

• Allow separate compilations to perform element substitutions - Allow separate compilations to perform
element substitutions

3.1.2. SCD Support

The JAXB RI supports the use of schema component designator [http://www.w3.org/TR/2005/WD-
xmlschema-ref-20050329/] as a means of specifying the customization target (of all standard JAXB cus-
tomizations as well as vendor extensions explained below.) To use this feature, use the scd attribute on
<bindings> element instead of the schemaLocation and node attributes.

<bindings xmlns:tns="http://example.com/myns"
 xmlns="http://java.sun.com/xml/ns/jaxb" version="2.1">
 <bindings
 ...
 scd="tns:foo">
 <!-- this customization applies to the global element declaration -->
 <!-- 'foo' in the http://example.com/myns namespace -->
 <class name="FooElement"/>
 </bindings>
 <bindings
 ...
 scd="~tns:bar">
 <!-- this customization applies to the global type declaration -->
 <!-- 'bar' in the http://example.com/myns namespace -->
 <class name="BarType"/>
 </bindings>
</bindings>

Compared to the standard XPath based approach, SCD allows more robust and concise way of identifying
a target of a customization. For more about SCD, refer to the scd example. Note that SCD is a W3C
working draft, and may change in the future.

http://www.w3.org/TR/2005/WD-xmlschema-ref-20050329/
http://www.w3.org/TR/2005/WD-xmlschema-ref-20050329/
http://www.w3.org/TR/2005/WD-xmlschema-ref-20050329/

JAXB RI Extensions

88

3.1.3. Extending a Common Super Class

The <xjc:superClass> customization allows you to specify the fully qualified name of the Ja-
va class that is to be used as the super class of all the generated implementation classes. The
<xjc:superClass> customization can only occur within your <jaxb:globalBindings> cus-
tomization on the <xs:schema> element:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings>
 <xjc:superClass
 name="org.acme.RocketBooster"/>
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 ...

</xs:schema>

In the sample above, the <xjc:superClass> customization will cause all of the generated implemen-
tation classes to extend the named class, org.acme.RocketBooster.

3.1.4. Extending a Common Super Interface

The <xjc:superInterface> customization allows you to specify the fully qualified name of
the Java interface that is to be used as the root interface of all the generated interfaces. The
<xjc:superInterface> customization can only occur within your <jaxb:globalBindings>
customization on the <xs:schema> element:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings>
 <xjc:superInterface
 name="org.acme.RocketBooster"/>
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 ...

</xs:schema>

In the sample above, the <xjc:superInterface> customization will cause all of the generated in-
terfaces to extend the named interface, org.acme.RocketBooster.

JAXB RI Extensions

89

3.1.5. Enhanced <jaxb:javaType>

The <xjc:javaType> customization can be used just like the standard <jaxb:javaType> customization,
except that it allows you to specify an XmlAdapter-derived class, instead of parse&print method pair.

This customization can be used in all the places <jaxb:javaType> is used, but nowhere else:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 ...

 <xsd:simpleType name="LayerRate_T">
 <xsd:annotation>
 <xsd:appinfo>
 <xjc:javaType name="org.acme.foo.LayerRate"
 adapter="org.acme.foo.LayerRateAdapter"/>
 </xsd:appinfo>
 </xsd:annotation>

 ... gory simple type definition here ...

 </xsd:simpleType>
</xsd:schema>

In the above example, LayerRate_T simple type is adapted by
org.acme.foo.LayerRateAdapter, which extends from XmlAdapter.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xsd:annotation>
 <xsd:appinfo>
 <jaxb:globalBindings>
 <xjc:javaType name="org.acme.foo.MyDateType"
 xmlType="xsd:dateTime"
 adapter="org.acme.foo.MyAdapterImpl"/>
 </jaxb:globalBindings>
 </xsd:appinfo>
 </xsd:annotation>

 ...

</xsd:schema>

In the above example, all the use of xsd:dateTime type is adapter by
org.acme.foo.MyAdapterImpl to org.acme.foo.MyDateType

3.1.6. Experimental simpler & better binding mode

This experimental binding mode can be enabled as a part of the global binding. See below:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

JAXB RI Extensions

90

 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings generateValueClass="false">
 <xjc:simple/>
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 ...

</xs:schema>

When enabled, XJC produces Java source code that are more concise and easier to use. Improvements
include:

1. Some content model definitions, such as A,B,A, which used to cause an XJC compilation error and
required manual intervention, now compile out of the box without any customization.

2. Some content model definitions that used to bind to a non-intuitive Java class now binds to a much
better Java class:

<!-- schema -->
<xs:complexType name="foo">
 <xs:choice>
 <xs:sequence>
 <xs:element name="a" type="xs:int"/>
 <xs:element name="b" type="xs:int"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="b" type="xs:int"/>
 <xs:element name="c" type="xs:int"/>
 </xs:sequence>
 </xs:choice>
</xs:complexType>

// before
class Foo {
 List<JAXBElement<Integer>> content;
}

// in <xjc:simple> binding
class Foo {
 Integer a;
 int b; // notice that b is effectively mandatory, hence primitive
 Integer c;
}

3. When repetable elements are bound, the method name will become plural.

<!-- schema -->
<xs:complexType name="person">
 <xs:sequence>
 <xs:element name="child" type="xs:string"
 maxOccurs="unbounded"/>
 <xs:element name="parent" type="xs:string"

JAXB RI Extensions

91

 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

// before
public class Person {
 protected List<String> child;
 protected List<String> parent;
}

// in <xjc:simple> binding
public class Person {
 protected List<String> children;
 protected List<String> parents;
}

Once again, readers are warned that this is an experimental binding mode, and therefore the binding is
subject to change in future versions of the JAXB RI without notice. Please send feedbacks on this binding
to users@jaxb.java.net [mailto:users@jaxb.java.net]

3.1.7. Alternative Derivation-by-restriction Binding Mode

Normally, the JAXB specification requires that a derivation-by-restriction be mapped to an inheritance
betwee n two Java classes. This is necessary to preserve the type hierarchy, but one of the downsides is that
the derived class does not really provide easy-to-use properties that reflect the restricted content model.

This experimental <xjc:treatRestrictionLikeNewType> changes this behavior by not preserving the type
inheritance to Java. Instead, it generates two unrelated Java classes, both with proper properties. For ex-
ample, given the following schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0"
 elementFormDefault="qualified">

 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings>
 <xjc:treatRestrictionLikeNewType/>
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 <xs:complexType name="DerivedType">
 <xs:complexContent>
 <xs:restriction base="ResponseOptionType">
 <xs:sequence>
 <xs:element name="foo" type="xs:string"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="ResponseOptionType">
 <xs:sequence>
 <xs:element name="foo" type="xs:string"
 maxOccurs="unbounded"/>

mailto:users@jaxb.java.net
mailto:users@jaxb.java.net

JAXB RI Extensions

92

 </xs:sequence>
 </xs:complexType>

</xs:schema>

The generated Derived class will look like this (comment and annotations removed for brevity):

public class DerivedType {
 protected String foo;

 public String getFoo() { return foo; }
 public void setFoo(String value) { this.foo = value; }
}

In contrast, without this customization the Derived class would look like the following:

public class DerivedType extends ResponseOptionType {

 // it simply inherits List<String> ResponseOptionType.getFoo()

}

3.1.8. Allow separate compilations to perform element substitutions

In an attempt to make the generated code easier to use, the JAXB specification sometimes choose bindings
based on how certain feature is used. One of them is element substitution feature. If no actual element
substitution happens in the schema, JAXB assumes that the element is not used for substitution, and gen-
erates code that assumes it.

Most of the time this is fine, but when you expect other "extension" schemas to be compiled later on top of
your base schema, and if those extension schemas do element substitutions, this binding causes a problem
(see example [https://java.net/jira/browse/JAXB-289].)

<xjc:substitutable> customization is a work around for this issue. It explicitly tells XJC that a certain
element is used for element substitution head, even though no actual substitution might be present in the
current compilation. This customization should be attached in the element declaration itself, like this:

<xs:element name="Model" type="Model">
 <xs:annotation>
 <xs:appinfo>
 <xjc:substitutable/>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

4. DTD

4.1. DTD
The JAXB RI is shipped with experimental DTD support, which lets you compile XML DTDs.

To compile a DTD test.dtd, run the XJC binding compiler as follows:

$ xjc.sh -dtd test.dtd

All the other command-line options of the XJC binding compiler can be applied. Similarly, the xjc ant
[http://jakarta.apache.org/ant/] task supports DTD. The generated code will be no different from what is

https://java.net/jira/browse/JAXB-289
https://java.net/jira/browse/JAXB-289
http://jakarta.apache.org/ant/
http://jakarta.apache.org/ant/

JAXB RI Extensions

93

generated from W3C XML Schema. You'll use the same JAXB API to access the generated code, and it
is portable in the sense that it will run on any JAXB 2.0 implementation.

4.1.1. Customization

The customization syntax for DTD is roughly based on the ver.0.21 working draft of the JAXB specifica-
tion, which is available at xml.coverpages.org [http://xml.coverpages.org/jaxb0530spec.pdf]. The devia-
tions from this document are:

• The whitespace attribute of the conversion element takes " preserve", " replace", and "
collapse" instead of " preserve"," normalize", and " collapse" as specified in the docu-
ment.

• The interface customization just generates marker interfaces with no method.

5. Develop Plugins
This document describes how to write an XJC plugin to extend the code generation of XJC.

5.1. What Can A Plugin Do?
An XJC plugin participates in the code generation from a schema. It can define its own customizations
that users can use to control it, it can access the code that the JAXB RI generates, it can generate additional
classes/methods/fields/annotations/comments, and it can also replace some of the pluggability points in
the compilation process, such as XML name -> Java name conversion.

As a show case of what a plugin can do, take a look at plugins hosted at JAXB2-commons [http://jaxb2-
commons.java.net/].

5.1.1. Quick Start

To write a plugin, do the following simple steps.

1. Write a class, say, org.acme.MyPlugin by extending com.sun.tools.xjc.Plugin. See
javadoc for how to implement methods.

2. Write the name of your plugin class in a text file and put it as /META-INF/ser-
vices/com.sun.tools.xjc.Plugin in your jar file.

Users can then use your plugins by declaring an XJC ant task with your jar files.

<taskdef name="xjc" classname="com.sun.tools.xjc.XJCTask">
 <classpath>
 <fileset dir="jaxb-ri/lib" includes="*.jar"/>
 <fileset dir="your-plugin" includes="*.jar"/>
 </classpath>
</taskdef>

5.1.2. Resources

See this page [http://jaxb.java.net/plugin.html] for more detailed, up-to-date information.

Although we will do our best to maintain the compatibility of the interfaces, it is still subject to change
at this point.

http://xml.coverpages.org/jaxb0530spec.pdf
http://xml.coverpages.org/jaxb0530spec.pdf
http://jaxb2-commons.java.net/
http://jaxb2-commons.java.net/
http://jaxb2-commons.java.net/
http://jaxb.java.net/plugin.html
http://jaxb.java.net/plugin.html

94

Frequently Asked Questions
1. JAXB 2.0 .. 94

Q: Which version of J2SE does JAXB 2.0 require? ... 94
Q: Can I run my existing JAXB 1.0.x applications on the JAXB 2.0 runtime? 94
Q: What if I want to port my JAXB 1.0.x application to JAXB 2.0? 94
Q: Are the JAXB runtime API's thread safe? ... 94
Q: Why can't I cast the unmarshalled object into the generated type. 95
Q: Which jar files do I need to distribute with my application that uses the JAXB RI? 96
Q: How can I cause the Marshaller to generate CDATA blocks? 96
Q: Can I access <xs:any/> as a DOM node? .. 96
Q: How do I use JAXB with Java WebStart? ... 96
Q: How do I find out which version of the JAXB RI I'm using? .. 96

1. JAXB 2.0

Q: Which version of J2SE does JAXB 2.0 require?

A: Java SE 6 or higher.

Q: Can I run my existing JAXB 1.0.x applications on the JAXB 2.0 runtime?

A: This is no longer supported. However, you should be able to
deploy http://search.maven.org/remotecontent?filepath=com/sun/xml/
bind/jaxb1-impl/2.2.5-1/jaxb1-impl-2.2.5-1.jar with your with your applica-
tion application.

Q: What if I want to port my JAXB 1.0.x application to JAXB 2.0?

A: You need to recompile your schema with the newer JAXB 2.0 xjc and modify your application code
to work with the new bindings.

Q: Are the JAXB runtime API's thread safe?

A: The JAXB Specification currently does not address the thread safety of any of the runtime classes.
In the case of the Oracle JAXB RI, the JAXBContext class is thread safe, but the Marshaller,
Unmarshaller, and Validator classes are not thread safe.

For example, suppose you have a multi-thread server application that processes incoming XML
documents by JAXB. In this case, for the best performance you should have just one instance of
JAXBContext in your whole application like this:

class MyServlet extends HttpServlet {
 static final JAXBContext context = initContext();

 private static JAXBContext initContext() {
 return JAXBContext.newInstance("....",
 MyServlet.class.getClassLoader());
 }
}

And each time you need to unmarshal/marshal/validate a document. Just create a new Unmar-
shaller/Marshaller/Validator from this context, like this:

public void doGet(HttpServletRequest req, HttpServletResponse resp) {

Frequently Asked Questions

95

 Unmarshaller u = context.createUnmarshaller();
 u.unmarshal(...);
}

This is the simplest safe way to use the JAXB RI from multi-threaded applications.

If you really care about the performance, and/or your application is going to read a lot of small
documents, then creating Unmarshaller could be relatively an expensive operation. In that case,
consider pooling Unmarshaller objects. Different threads may reuse one Unmarshaller in-
stance, as long as you don't use one instance from two threads at the same time.

Q: Why can't I cast the unmarshalled object into the generated type.

A: When you invoke JAXBContext.newInstance("aaa.bbb.ccc"), it tries to load classes
and resources using the same classloader used to load the JAXBContext class itself. This class-
loader may be different from the classloader which was used to load your application (see the picture
Parent/Child classloader). In this case, you'll see the above error. This problem is often seen with
application servers, J2EE containers, Ant, JUnit, and other applications that use sophisticated class
loading mechanisms.

Figure 1. Parent/Child classloader

With some applications, things get even more complicated when the JAXB-generated code can be
loaded by either classloader. In this case, JAXBContext.newInstance("aaa.bbb.ccc")
will work but the JVM ends up loading two copies of the generated classes for each class loader. As
a result, unmarshalling works but an attempt to cast the returned object into the expected type will
fail, even though its getClass().getName() returns the expected name.

The solution for both situations is to pass your curent class loader like this:

Frequently Asked Questions

96

JAXBContext.newInstance("aaa.bbb.ccc", this.getClass().getClassLoader());

In general, if you are writing code that uses JAXB, it is always better to explicitly pass in a class
loader, so that your code will work no matter where it is deployed.

Q: Which jar files do I need to distribute with my application that uses the JAXB RI?

A: For JAXB 2.2.x:

$JAXB_HOME/lib/jaxb-api.jar
$JAXB_HOME/lib/jaxb-impl.jar

Q: How can I cause the Marshaller to generate CDATA blocks?

A: This functionality is not available from JAXB directly, but you can configure an Apache Xerces-J
XMLSerializer to produce CDATA blocks. Please review the JaxbCDATASample.java [down-
load/JaxbCDATASample.java] sample app for more detail.

Q: Can I access <xs:any/> as a DOM node?

A: In JAXB 2.0, <xs:any/> is handled correctly without any customization.

1. If it's strict, it will map to Object or List<Object> and when you unmarshal documents,
you'll get objects that map to elements (such as JAXBElements or classes that are annotated
with XmlRootElement).

2. If it's skip, it will map to org.w3c.dom.Element or List<Element> and when you
unmarshal documents, you'll get DOM elements.

3. If it's lax, it will map to the same as with strict, and when you unmarshal documents, you'll
get either:

a. JAXBElements

b. classes that are annotated with XmlRootElement

c. DOM elements

Q: How do I use JAXB with Java WebStart?

A: Please refer to Fabien Tison's post [https://jaxb.java.net/servlets/ReadMsg?
list=users&msgNo=3440] on the JAXB mailing list.

You can also search the mailing list for other Java WebStart messages [https://jaxb.java.net/servlets/
SearchList?list=users&searchText=%22web+start%22&defaultField=body&Search=Search].

Q: How do I find out which version of the JAXB RI I'm using?

A: Run the following command

$ java -jar jaxb-xjc.jar -version

Alternatively, each JAXB jar has version information in its META-INF/MANIFEST.MF, such as
this:

Manifest-Version: 1.0

download/JaxbCDATASample.java
download/JaxbCDATASample.java
download/JaxbCDATASample.java
https://jaxb.java.net/servlets/ReadMsg?list=users&msgNo=3440
https://jaxb.java.net/servlets/ReadMsg?list=users&msgNo=3440
https://jaxb.java.net/servlets/ReadMsg?list=users&msgNo=3440
https://jaxb.java.net/servlets/SearchList?list=users&searchText=%22web+start%22&defaultField=body&Search=Search
https://jaxb.java.net/servlets/SearchList?list=users&searchText=%22web+start%22&defaultField=body&Search=Search
https://jaxb.java.net/servlets/SearchList?list=users&searchText=%22web+start%22&defaultField=body&Search=Search

Frequently Asked Questions

97

Ant-Version: Apache Ant 1.8.2
Created-By: 1.6.0_29-b11 (Sun Microsystems Inc.)
Specification-Title: Java Architecture for XML Binding
Specification-Version: 2.2.6
Specification-Vendor: Oracle Corporation
Implementation-Title: JAXB Reference Implementation
Implementation-Version: 2.2.5-SNAPSHOT
Implementation-Vendor: Oracle Corporation
Implementation-Vendor-Id: com.sun
Extension-Name: com.sun.xml.bind
Build-Id: 02/09/2012 01:42PM (hudson)
Class-Path: jaxb-api.jar

98

Related Articles

Table of Contents
1. Introductory ... 98
2. Blogs .. 98
3. Interesting articles ... 98

1. Introductory
• Exchanging Data with XML and JAXB, Part I [https://blogs.oracle.com/CoreJavaTechTips/en-

try/exchanging_data_with_xml_and] and Part II [https://blogs.oracle.com/CoreJavaTechTips/en-
try/exchanging_data_with_xml_and1] by Jennie Hall

2. Blogs
• Martin Grebac's blog [https://blogs.oracle.com/mgrebac/]

• Kohsuke Kawaguchi's blog [http://www.java.net/blog/108]

• Aleksei Valikov's blog [http://lexicore.blogspot.com/]

3. Interesting articles
• JXPath and JAXB [http://weblogs.java.net/blog/richunger/archive/2005/06/bean_browsing_w_1.html]

• JAXB 1.0.5 and RELAX NG support [http://www.devx.com/xml/Article/28784/0/page/4]

• Using XmlJavaTypeAdapter [http://weblogs.java.net/blog/kohsuke/archive/2005/09/
using_jaxb_20s.html]

• Using FastInfoset with JAXB [http://weblogs.java.net/blog/kohsuke/archive/2005/09/
using_fastinfos.html]

• Introducing jaxb2-reflection project [http://weblogs.java.net/blog/kohsuke/archive/2005/08/
introducing_jax.html]

• Pluggable ID/IDREF handling [http://weblogs.java.net/blog/kohsuke/archive/2005/08/
pluggable_ididr.html]

• Writing a JAXB plugin [http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html]

• 101 ways to marshal objects with JAXB [http://weblogs.java.net/blog/kohsuke/
archive/2005/10/101_ways_to_mar.html]

• JAXB and XInclude [http://weblogs.java.net/blog/kohsuke/archive/2006/01/xinclude_and_ja.html]

• JAXB and XInclude - Alternative to XIncluder [http://amazing-development.com/archives/2005/12/08/
xml-with-schema-and-xinclude-in-java/]

• Why does JAXB put @XmlRootElement sometimes but not always? [http://weblogs.java.net/blog/
kohsuke/archive/2006/03/why_does_jaxb_p.html]

https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and
https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and
https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and
https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and1
https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and1
https://blogs.oracle.com/CoreJavaTechTips/entry/exchanging_data_with_xml_and1
https://blogs.oracle.com/mgrebac/
https://blogs.oracle.com/mgrebac/
http://www.java.net/blog/108
http://www.java.net/blog/108
http://lexicore.blogspot.com/
http://lexicore.blogspot.com/
http://weblogs.java.net/blog/richunger/archive/2005/06/bean_browsing_w_1.html
http://weblogs.java.net/blog/richunger/archive/2005/06/bean_browsing_w_1.html
http://www.devx.com/xml/Article/28784/0/page/4
http://www.devx.com/xml/Article/28784/0/page/4
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_jaxb_20s.html
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_fastinfos.html
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_fastinfos.html
http://weblogs.java.net/blog/kohsuke/archive/2005/09/using_fastinfos.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/introducing_jax.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/introducing_jax.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/introducing_jax.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/pluggable_ididr.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/pluggable_ididr.html
http://weblogs.java.net/blog/kohsuke/archive/2005/08/pluggable_ididr.html
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html
http://weblogs.java.net/blog/kohsuke/archive/2005/10/101_ways_to_mar.html
http://weblogs.java.net/blog/kohsuke/archive/2005/10/101_ways_to_mar.html
http://weblogs.java.net/blog/kohsuke/archive/2005/10/101_ways_to_mar.html
http://weblogs.java.net/blog/kohsuke/archive/2006/01/xinclude_and_ja.html
http://weblogs.java.net/blog/kohsuke/archive/2006/01/xinclude_and_ja.html
http://amazing-development.com/archives/2005/12/08/xml-with-schema-and-xinclude-in-java/
http://amazing-development.com/archives/2005/12/08/xml-with-schema-and-xinclude-in-java/
http://amazing-development.com/archives/2005/12/08/xml-with-schema-and-xinclude-in-java/
http://weblogs.java.net/blog/kohsuke/archive/2006/03/why_does_jaxb_p.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/why_does_jaxb_p.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/why_does_jaxb_p.html

Related Articles

99

• Handling Union in JAXB [http://weblogs.java.net/blog/kohsuke/archive/2006/03/
handling_union.html]

• Canonicalization support in the JAXB RI [http://weblogs.java.net/blog/kohsuke/archive/2006/03/
canonicalizatio.html]

• Simpler and better binding mode for JAXB 2.0 [http://weblogs.java.net/blog/kohsuke/archive/2006/03/
simple_and_bett.html]

• How do I map xs:date to java.util.Date? [http://weblogs.java.net/blog/kohsuke/archive/2006/03/
how_do_i_map_xs.html]

• Why doesn't JAXB find my subclass? [http://weblogs.java.net/blog/kohsuke/archive/2006/04/
why_doesnt_jaxb.html]

• Detailed instructions to resolve a property name collision [http://weblogs.java.net/blog/kohsuke/
archive/2005/05/compiling_mathm_1.html]

• Kohmori Reports now using JAXB! [http://www.jroller.com/gmazza/en-
try/kohmori_reports_now_using_jaxb]

http://weblogs.java.net/blog/kohsuke/archive/2006/03/handling_union.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/handling_union.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/handling_union.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/canonicalizatio.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/canonicalizatio.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/canonicalizatio.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/simple_and_bett.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html
http://weblogs.java.net/blog/kohsuke/archive/2006/03/how_do_i_map_xs.html
http://weblogs.java.net/blog/kohsuke/archive/2006/04/why_doesnt_jaxb.html
http://weblogs.java.net/blog/kohsuke/archive/2006/04/why_doesnt_jaxb.html
http://weblogs.java.net/blog/kohsuke/archive/2006/04/why_doesnt_jaxb.html
http://weblogs.java.net/blog/kohsuke/archive/2005/05/compiling_mathm_1.html
http://weblogs.java.net/blog/kohsuke/archive/2005/05/compiling_mathm_1.html
http://weblogs.java.net/blog/kohsuke/archive/2005/05/compiling_mathm_1.html
http://www.jroller.com/gmazza/entry/kohmori_reports_now_using_jaxb
http://www.jroller.com/gmazza/entry/kohmori_reports_now_using_jaxb
http://www.jroller.com/gmazza/entry/kohmori_reports_now_using_jaxb

