
Drools Documentation
Version 6.0.2-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

iii

.. xi

I. Welcome .. 1

1. Introduction ... 3

1.1. Introduction .. 3

1.2. Getting Involved .. 3

1.2.1. Sign up to jboss.org ... 4

1.2.2. Sign the Contributor Agreement .. 4

1.2.3. Submitting issues via JIRA ... 5

1.2.4. Fork GitHub ... 6

1.2.5. Writing Tests ... 6

1.2.6. Commit with Correct Conventions ... 8

1.2.7. Submit Pull Requests ... 9

1.3. Installation and Setup (Core and IDE) .. 11

1.3.1. Installing and using .. 11

1.3.2. Building from source ... 21

1.3.3. Eclipse ... 22

2. Release Notes .. 29

2.1. New and Noteworthy in KIE API 6.0.0 .. 29

2.1.1. New KIE name ... 29

2.1.2. Maven aligned projects and modules and Maven Deployment 29

2.1.3. Configuration and convention based projects 30

2.1.4. KieBase Inclusion ... 30

2.1.5. KieModules, KieContainer and KIE-CI .. 31

2.1.6. KieScanner .. 31

2.1.7. Hierarchical ClassLoader .. 32

2.1.8. Legacy API Adapter ... 32

2.1.9. KIE Documentation .. 32

2.2. What is New and Noteworthy in Drools 6.0.0 .. 33

2.2.1. PHREAK - Lazy rule matching algorithm .. 33

2.2.2. Automatically firing timed rule in passive mode 33

2.2.3. Expression Timers .. 34

2.2.4. RuleFowGroup and AgendaGroups are merged 35

2.3. New and Noteworthy in KIE Workbench 6.0.0 ... 35

2.4. New and Noteworthy in Integration 6.0.0 .. 38

2.4.1. CDI ... 38

2.4.2. Spring .. 39

2.4.3. Aries Blueprints .. 39

2.4.4. OSGi Ready .. 39

3. Compatibility matrix ... 41

II. KIE ... 43

4. KIE ... 45

4.1. Overview .. 45

4.1.1. Anatomy of Projects ... 45

4.1.2. Lifecycles ... 46

Drools Documentation

iv

4.2. Build, Deploy, Utilize and Run ... 47

4.2.1. Introduction .. 47

4.2.2. Building ... 50

4.2.3. Deploying .. 67

4.2.4. Running ... 73

4.2.5. Installation and Deployment Cheat Sheets 88

4.2.6. Build, Deploy and Utilize Examples ... 89

4.3. Security .. 101

4.3.1. Security Manager ... 101

III. Drools Runtime and Language .. 105

5. Hybrid Reasoning .. 107

5.1. Artificial Intelligence ... 107

5.1.1. A Little History ... 107

5.1.2. Knowledge Representation and Reasoning 108

5.1.3. Rule Engines and Production Rule Systems (PRS) 109

5.1.4. Hybrid Reasoning Systems (HRS) ... 111

5.1.5. Expert Systems .. 114

5.1.6. Recommended Reading .. 115

5.2. Rete Algorithm .. 118

5.3. ReteOO Algorithm ... 125

5.4. PHREAK Algorithm ... 126

6. User Guide ... 135

6.1. The Basics ... 135

6.1.1. Stateless Knowledge Session .. 135

6.1.2. Stateful Knowledge Session .. 138

6.1.3. Methods versus Rules .. 143

6.1.4. Cross Products .. 144

6.2. Execution Control .. 145

6.2.1. Agenda .. 145

6.2.2. Rule Matches and Conflict Sets. .. 146

6.2.3. Declarative Agenda .. 153

6.3. Inference .. 155

6.3.1. Bus Pass Example ... 155

6.4. Truth Maintenance with Logical Objects .. 158

6.4.1. Overview .. 158

6.5. Decision Tables in Spreadsheets ... 162

6.5.1. When to Use Decision Tables ... 163

6.5.2. Overview .. 163

6.5.3. How Decision Tables Work ... 165

6.5.4. Spreadsheet Syntax ... 169

6.5.5. Creating and integrating Spreadsheet based Decision Tables 179

6.5.6. Managing Business Rules in Decision Tables 179

6.5.7. Rule Templates .. 180

6.6. Logging .. 183

v

7. Rule Language Reference .. 185

7.1. Overview .. 185

7.1.1. A rule file ... 185

7.1.2. What makes a rule ... 186

7.2. Keywords .. 186

7.3. Comments .. 188

7.3.1. Single line comment ... 188

7.3.2. Multi-line comment ... 189

7.4. Error Messages .. 189

7.4.1. Message format ... 189

7.4.2. Error Messages Description .. 190

7.4.3. Other Messages ... 194

7.5. Package ... 194

7.5.1. import .. 195

7.5.2. global ... 196

7.6. Function ... 197

7.7. Type Declaration ... 198

7.7.1. Declaring New Types ... 199

7.7.2. Declaring Metadata .. 201

7.7.3. Declaring Metadata for Existing Types ... 208

7.7.4. Parametrized constructors for declared types 208

7.7.5. Non Typesafe Classes .. 209

7.7.6. Accessing Declared Types from the Application Code 209

7.7.7. Type Declaration 'extends' .. 211

7.7.8. Traits ... 211

7.8. Rule ... 218

7.8.1. Rule Attributes ... 219

7.8.2. Timers and Calendars .. 223

7.8.3. Left Hand Side (when) syntax ... 227

7.8.4. The Right Hand Side (then) .. 280

7.8.5. Conditional named consequences ... 282

7.8.6. A Note on Auto-boxing and Primitive Types 284

7.9. Query ... 285

7.10. Domain Specific Languages ... 288

7.10.1. When to Use a DSL ... 288

7.10.2. DSL Basics .. 288

7.10.3. Adding Constraints to Facts .. 291

7.10.4. Developing a DSL .. 293

7.10.5. DSL and DSLR Reference .. 293

8. Complex Event Processing .. 299

8.1. Complex Event Processing .. 299

8.2. Drools Fusion ... 300

8.3. Event Semantics ... 302

8.4. Event Processing Modes ... 303

Drools Documentation

vi

8.4.1. Cloud Mode ... 304

8.4.2. Stream Mode ... 305

8.5. Session Clock ... 307

8.5.1. Available Clock Implementations ... 308

8.6. Sliding Windows .. 309

8.6.1. Sliding Time Windows .. 309

8.6.2. Sliding Length Windows .. 310

8.7. Streams Support ... 311

8.7.1. Declaring and Using Entry Points .. 312

8.8. Memory Management for Events .. 314

8.8.1. Explicit expiration offset .. 314

8.8.2. Inferred expiration offset ... 314

8.9. Temporal Reasoning ... 315

8.9.1. Temporal Operators .. 316

IV. Drools Integration ... 331

9. Drools Commands ... 333

9.1. API ... 333

9.1.1. XStream .. 333

9.1.2. JSON ... 333

9.1.3. JAXB ... 333

9.2. Commands supported ... 334

9.2.1. BatchExecutionCommand ... 336

9.2.2. InsertObjectCommand .. 337

9.2.3. RetractCommand .. 339

9.2.4. ModifyCommand .. 340

9.2.5. GetObjectCommand ... 341

9.2.6. InsertElementsCommand .. 342

9.2.7. FireAllRulesCommand .. 344

9.2.8. StartProcessCommand ... 345

9.2.9. SignalEventCommand ... 347

9.2.10. CompleteWorkItemCommand .. 348

9.2.11. AbortWorkItemCommand .. 349

9.2.12. QueryCommand ... 350

9.2.13. SetGlobalCommand .. 351

9.2.14. GetGlobalCommand ... 353

9.2.15. GetObjectsCommand .. 354

10. CDI ... 357

10.1. Introduction ... 357

10.2. Annotations ... 357

10.2.1. @KReleaseId ... 357

10.2.2. @KContainer .. 357

10.2.3. @KBase .. 358

10.2.4. @KSession for KieSession .. 359

10.2.5. @KSession for StatelessKieSession .. 360

vii

10.3. API Example Comparison .. 361

11. Integration with Spring .. 363

11.1. Important Changes for Drools 6.0 ... 363

11.2. Integration with Drools Expert .. 363

11.2.1. KieModule .. 363

11.2.2. KieBase ... 364

11.2.3. IMPORTANT NOTE .. 365

11.2.4. KieSessions ... 365

11.2.5. Event Listeners .. 366

11.2.6. Loggers .. 370

11.2.7. Defining Batch Commands .. 372

11.2.8. Persistence .. 373

11.3. Integration with jBPM Human Task ... 374

11.3.1. How to configure Spring with jBPM Human task 374

12. Apache Camel Integration .. 379

12.1. Camel ... 379

13. Drools Camel Server .. 383

13.1. Introduction ... 383

13.2. Deployment ... 383

13.3. Configuration ... 383

13.3.1. REST/Camel Services configuration ... 383

14. JMX monitoring with RHQ/JON .. 389

14.1. Introduction ... 389

14.1.1. Enabling JMX monitoring in a Drools application 389

14.1.2. Installing and running the RHQ/JON plugin 389

V. Drools Workbench ... 391

15. Workbench ... 393

15.1. Installation .. 393

15.1.1. War installation ... 393

15.1.2. Workbench data ... 393

15.1.3. System properties ... 393

15.2. Quick Start .. 395

15.2.1. Add repository .. 395

15.2.2. Add project .. 397

15.2.3. Define Data Model .. 400

15.2.4. Define Rule .. 404

15.2.5. Build and Deploy .. 406

15.3. Administration ... 408

15.3.1. Administration overview .. 408

15.3.2. Organizational unit .. 408

15.3.3. Repositories ... 409

15.4. Configuration ... 411

15.4.1. User management .. 411

15.4.2. Roles ... 412

Drools Documentation

viii

15.4.3. Restricting access to repositories ... 413

15.4.4. Command line config tool .. 413

15.5. Introduction ... 415

15.5.1. Log in and log out .. 415

15.5.2. Home screen .. 415

15.5.3. Workbench concepts .. 415

15.5.4. Initial layout .. 416

15.6. Changing the layout .. 417

15.6.1. Resizing ... 417

15.6.2. Repositioning .. 418

15.7. Authoring .. 419

15.7.1. Artifact Repository .. 419

15.7.2. Asset Editor ... 421

15.7.3. Project Explorer .. 424

15.7.4. Project Editor ... 432

15.7.5. Validation ... 436

15.7.6. Data Modeller ... 438

15.7.7. Categories Editor .. 466

15.8. Embedding Workbench In Your Application ... 468

16. Authoring Assets ... 471

16.1. Creating a package ... 471

16.1.1. Empty package .. 472

16.1.2. Copy, Rename and Delete Packages ... 473

16.2. Business rules with the guided editor .. 475

16.2.1. Parts of the Guided Rule Editor ... 475

16.2.2. The "WHEN" (left-hand side) of a Rule ... 476

16.2.3. The "THEN" (right-hand side) of a Rule .. 480

16.2.4. Optional attributes .. 483

16.2.5. Pattern/Action toolbar .. 483

16.2.6. User driven drop down lists ... 483

16.2.7. Augmenting with DSL sentences ... 484

16.2.8. A more complex example: ... 485

16.3. Templates of assets/rules .. 486

16.3.1. Creating a rule template .. 487

16.3.2. Define the template .. 487

16.3.3. Defining the template data .. 488

16.3.4. Generated DRL .. 492

16.4. Guided decision tables (web based) ... 494

16.4.1. Types of decision table ... 494

16.4.2. Main components\concepts ... 495

16.4.3. Defining a web based decision table .. 498

16.4.4. Rule definition .. 513

16.4.5. Audit Log ... 514

16.5. Spreadsheet decision tables .. 516

ix

16.6. Scorecards .. 517

16.6.1. (a) Setup Parameters ... 518

16.6.2. (b) Characteristics .. 519

16.7. Test Scenario .. 521

16.7.1. Given Section ... 524

16.7.2. Expect Section ... 524

16.7.3. Global Section .. 525

16.7.4. New Input Section .. 525

16.8. Functions .. 525

16.9. DSL editor .. 526

16.10. Data enumerations (drop down list configurations) 527

16.10.1. Advanced enumeration concepts ... 528

16.11. Technical rules (DRL) .. 529

17. Workbench Integration ... 531

17.1. REST ... 531

17.1.1. Job calls .. 531

17.1.2. Repository calls .. 532

17.1.3. Organizational unit calls .. 534

17.1.4. Maven calls .. 535

17.1.5. REST summary .. 535

18. Workbench High Availability .. 537

18.1. .. 537

18.1.1. VFS clustering .. 537

18.1.2. jBPM clustering .. 541

VI. Drools Examples .. 543

19. Examples .. 545

19.1. Getting the Examples .. 545

19.2. Hello World ... 545

19.3. State Example .. 551

19.3.1. Understanding the State Example .. 551

19.4. Fibonacci Example .. 558

19.5. Banking Tutorial .. 565

19.6. Pricing Rule Decision Table Example ... 579

19.6.1. Executing the example .. 579

19.6.2. The decision table .. 580

19.7. Pet Store Example .. 582

19.8. Honest Politician Example ... 594

19.9. Sudoku Example ... 598

19.9.1. Sudoku Overview ... 599

19.9.2. Running the Example ... 599

19.9.3. Java Source and Rules Overview .. 605

19.9.4. Sudoku Validator Rules (validate.drl) .. 605

19.9.5. Sudoku Solving Rules (sudoku.drl) .. 606

19.10. Number Guess .. 607

Drools Documentation

x

19.11. Conway's Game Of Life ... 614

19.12. Pong ... 621

19.13. Adventures with Drools .. 622

19.14. Wumpus World .. 623

19.15. Miss Manners and Benchmarking ... 626

19.15.1. Introduction .. 627

19.15.2. In depth Discussion .. 630

19.15.3. Output Summary .. 636

xi

xii

Part I. Welcome
Welcome and Release Notes

Chapter 1.

3

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.

A big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the

system. Building and deploying now align with Maven and the utilization is now convention and

configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible

and better integrated solution; with panels and perspectives via plugins. The base workbench

has been spun off into a standalone project called UberFire, so that anyone now can build high

quality web based workbenches. In the longer term it will facilitate user customised Drools and

jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for

content that has strong tooling support. There has been a refocus on simplicity away from

databases with an aim of storing everythign as as text file, even meta data is just a file. The

database is just there to provide fast indexing and search via Lucene. This will allow repositories

now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form

builders, class modellers, execution servers and runtime management. All fully integrated into the

new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related

technologies together under one roof. It also acts as the core shared around for our projects. So

expect to see it a lot.

1.2. Getting Involved

We are often asked "How do I get involved". Luckily the answer is simple, just write some code

and submit it :) There are no hoops you have to jump through or secret handshakes. We have

a very minimal "overhead" that we do request to allow for scalable project development. Below

we provide a general overview of the tools and "workflow" we request, along with some general

advice.

If you contribute some good work, don't forget to blog about it :)

Chapter 1. Introduction

4

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http://

www.jboss.org/ and click "Register".

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.

As the image below says "This establishes the terms and conditions for your contributions and

ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Submitting issues via JIRA

5

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.

This ensures that all requests are logged and allocated to a release schedule and all discussions

captured in one place. Bug reports, bug fixes, feature requests and feature submissions should

all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue

created.

https://issues.jboss.org/browse/JBRULES [???](Drools)

https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Chapter 1. Introduction

6

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be

ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.

The fork will create a copy in your own GitHub space which you can work on at your own pace.

If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository

provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL

fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Writing Tests

7

then using a String is not practical so then by all means place them in separate DRL files instead

to be loaded from the classpath. If your tests need to use a model, please try to use those that

already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have

the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/

integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Chapter 1. Introduction

8

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the

JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,

so we can see all commits for a given issue in the same place. After the id the title of the issue

should come next. Then use a newline, indented with a dash, to provide additional information

Submit Pull Requests

9

related to this commit. Use an additional new line and dash for each separate point you wish to

make. You may add additional JIRA cross references to the same commit, if it's appropriate. In

general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back

to your fork.

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can

now submit your work as a pull request. If you look at the top of the page in GitHub for your work

area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the

submission of your pull request.

Chapter 1. Introduction

10

The pull request then goes into a queue for everyone to see and comment on. Below you can see

a typical pull request. The pull requests allow for discussions and it shows all associated commits

and the diffs for each commit. The discussions typically involve code reviews which provide helpful

suggestions for improvements, and allows for us to leave inline comments on specific parts of the

code. Don't be disheartened if we don't merge straight away, it can often take several revisions

before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do

some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted

tests that come with a fix will generally be applied quite quickly, where as just tests will often way

until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request

from time to time, otherwise over time it will have merge conflicts and core developers will general

ignore those.

Installation and Setup (Core and IDE)

11

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)

is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the

Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will

provide you with all the dependencies you need to get going: you can simply create a new rule

project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE

for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping

a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the

case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People

have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your

projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,

and some are required at runtime. In many cases, people will simply want to include all the

dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some

may prefer to have their "runtime" stripped down to the bare minimum, as they will be deploying

rules in binary form - this is also possible. The core runtime engine can be quite compact, and

only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

• knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is

intended as a user API and what is just an engine API.

• knowledge-internal-api.jar - this provides internal interfaces and factories.

• drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine

and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and

deploying via Package or RuleBase objects).

• drools-compiler.jar - this contains the compiler/builder components to take rule source, and build

executable rule bases. This is often a runtime dependency of your application, but it need not

be if you are pre-compiling your rules. This depends on drools-core.

• drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over

the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all

features are easily exposed via this interface. In some cases, it will be easier to go direct to the

Drools API, but in some environments the JSR-94 is mandated.

Chapter 1. Introduction

12

• drools-decisiontables.jar - this is the decision tables 'compiler' component, which uses the

drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which

are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note

are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing

for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues

with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":

For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found

on the Maven repository.

1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|

ga|1|org.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/

index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom.xml like this:

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.drools</groupId>

 <artifactId>drools-bom</artifactId>

 <type>pom</type>

 <version>...</version>

 <scope>import</scope>

 </dependency>

 ...

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.kie</groupId>

 <artifactId>kie-api</artifactId>

 </dependency>

 <dependency>

 <groupId>org.drools</groupId>

 <artifactId>drools-compiler</artifactId>

 <scope>runtime</scope>

 </dependency>

 ...

 <dependencies>

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Installing and using

13

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

If you're still using Ant (without Ivy), copy all the JARs from the download zip's binaries directory

and manually verify that your classpath doesn't contain duplicate JARs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form

(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature

that allows you to keep your runtime very light. You may use drools-compiler to produce rule

packages "out of process", and then deploy them to a runtime system. This runtime system only

requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,

and many people do not need to "trim" their application this much, but it is an ideal option for

certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse

GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre

packaged, as well as a choice of other tools separate to rules. You can choose just to install rules

from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (a required dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components

in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or

downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,

as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.

Location is:

http://download.eclipse.org/tools/gef/updates/releases/

Next you choose the GEF plug-in:

Chapter 1. Introduction

14

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is

completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in

directory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-

in directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your

main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs

end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the

'Open Perspective' button in the top right corner of your Eclipse window, select 'Other...' and

pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

http://www.jboss.org/drools/downloads.html

Installing and using

15

perspectives, the installation probably was unsuccessful. Check whether you executed each of

the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have

Eclipse GEF installed (check whether the org.eclipse.gef_3.4.*.jar exists in the plugins directory

in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the

org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot

find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found

no our homepage here:

http://www.jboss.org/drools/

1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release

of the Drools project JARs. To create a runtime, you must point the IDE to the release of your

choice. If you want to create a new runtime based on the latest Drools project JARs included in

the plugin itself, you can also easily do that. You are required to specify a default Drools runtime

for your Eclipse workspace, but each individual project can override the default and select the

appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.

To open up your preferences, in the menu Window select the Preferences menu item. A new

preferences dialog should show all your preferences. On the left side of this dialog, under the

Drools category, select "Installed Drools runtimes". The panel on the right should then show the

currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something

like the figure below.

http://www.jboss.org/drools/

Chapter 1. Introduction

16

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,

requiring the name for your runtime and the location on your file system where it can be found.

Installing and using

17

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can

create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."

button. A file browser will show up, asking you to select the folder on your file system where

you want this runtime to be created. The plugin will then automatically copy all required

dependencies to the specified folder. After selecting this folder, the dialog should look like the

figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on

your file system that contains all the necessary Drools libraries and dependencies. Instead of

creating a new Drools runtime as explained above, give your runtime a name and select the

location of this folder containing all the required JARs.

Chapter 1. Introduction

18

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,

as shown below. Click on checkbox in front of the newly created runtime to make it the default

Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project

that have not selected a project-specific runtime.

You can add as many Drools runtimes as you need. For example, the screenshot below shows

a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

Installing and using

19

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.

Note that you will need to restart Eclipse if you changed the default runtime and you want to make

sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an

existing Java project to a Drools project using the "Convert to Drools Project" action that is shown

when you are in the Drools perspective and you right-click an existing Java project), the plugin

will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for

that project, unless you specify a project-specific one. You can do this in the final step of the New

Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox

and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace

settings ..." link, the workspace preferences showing the currently installed Drools runtimes will

be opened, so you can add new runtimes there.

Chapter 1. Introduction

20

You can change the runtime of a Drools project at any time by opening the project properties

(right-click the project and select Properties) and selecting the Drools category, as shown below.

Check the "Enable project specific settings" checkbox and select the appropriate runtime from the

drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences

showing the currently installed Drools runtimes will be opened, so you can add new runtimes

there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime

as defined in your global preferences.

Building from source

21

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source

JAR. The same source JARs are also included in the download zips. However, if you want to build

from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are

hosted on GitHub [https://github.com]:

• https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our

latest changes regularly and optionally share your changes with us. To learn more about git, read

the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Chapter 1. Introduction

22

$ git clone git@github.com:droolsjbpm/guvnor.git

...

$ cd guvnor

$ mvn clean install -DskipTests -Dfull

...

However, there are a lot potential pitfalls, so if you're serious about building from source and

possibly contributing to the project, follow the instructions in the README file in droolsjbpm-

build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/

README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting

Eclipse open the workspace in the root of your subversion checkout.

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Eclipse

23

Chapter 1. Introduction

24

Eclipse

25

When calling mvn install all the project dependencies were downloaded and added to the local

Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository

is. To do this setup an M2_REPO classpath variable.

Chapter 1. Introduction

26

Eclipse

27

Chapter 1. Introduction

28

Chapter 2.

29

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE API 6.0.0

2.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues

to grow. KIE is also used for the generic parts of unified API; such as building, deploying and

loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

Figure 2.1. KIE Anatomy

2.1.2. Maven aligned projects and modules and Maven

Deployment

One of the biggest complaints during the 5.x series was the lack of defined methodology for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.

A big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the

system. Building and deploying activities are now aligned with Maven and Maven repositories.

Chapter 2. Release Notes

30

The utilization for loading rules and processess is now convention and configuration oriented,

instead of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven

repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to

access.

2.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults

are used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="kbase1" packages="org.mypackages>

 <ksession name="ksession1"/>

 </kbase>

</kmodule>

Example 2.2. Utilize the KieSession

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

2.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This

means that the second KieBase, in addition to all the rules, function and processes directly defined

into it, will also contain the ones created in the included KieBase. This inclusion can be done

declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="kbase2" includes="kbase1">

 <ksession name="ksession2"/>

 </kbase>

</kmodule>

KieModules, KieContainer and KIE-CI

31

or programmatically using the KieModuleModel.

Example 2.4. Including a KieBase into another programmatically

KieModuleModel kmodule = KieServices.Factory.get().newKieModuleModel();

KieBaseModel kieBaseModel1 = kmodule.newKieBaseModel("KBase2").addInclude("KBase1");

2.1.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loaded

from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency

is on the classpath it embeds Maven and all resolving is done automatically using Maven and can

access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,

via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies

for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are

supported.

Example 2.5. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.newKieContainer(

 ks.newReleaseId("org.mygroup", "myartefact", "1.0"));

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

KieContainers can be dynamically updated to a specific version, and resolved through Maven

if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally

updated.

Example 2.6. Dynamically Update - Java

KieContainer kContainer.updateToVersion(

 ks.newReleaseId("org.mygroup", "myartefact", "1.1"));

2.1.6. KieScanner

The KieScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.

It continuously monitors your Maven repository to check if a new release of a Kie project has

Chapter 2. Release Notes

32

been installed and if so, deploys it in the KieContainer wrapping that project. The use of the

KieScanner requires kie-ci.jar to be on the classpath.

A KieScanner can be registered on a KieContainer as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "myartifact", "1.0-

SNAPSHOT");

KieContainer kContainer = kieServices.newKieContainer(releaseId);

KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start the KieScanner polling the Maven repository every 10 seconds

kScanner.start(10000L);

In this example the KieScanner is configured to run with a fixed time interval, but it is also possible

to run it on demand by invoking the scanNow() method on it. If the KieScanner finds, in the Maven

repository, an updated version of the Kie project used by that KieContainer it automatically

downloads the new version and triggers an incremental build of the new project. From this moment

all the new KieBases and KieSessions created from that KieContainer will use the new project

version.

2.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance

problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is

at the KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add

and remove rules, but there can now be no referencing between namespaces in DRL files; i.e.

functions can only be used by the namespaces that declared them. The recommendation is to

use static Java methods in your project, which is visible to all namespaces; but those cannot (like

other classes on the root KieContainer ClassLoader) be dynamically updated.

2.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through

Maven dependency "knowledge-api-legacy5-adapter". Because the nature of deployment has

significantly changed in 6.0, it was not possible to provide an adapter bridge for the

KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll

fix for 6.1

2.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire

documentation has not yet been brought up to date. For this reason there will be continued

What is New and Noteworthy in Drools 6.0.0

33

references to old terminologies. Apologies in advance, and thank you for your patience. We hope

those in the community will work with us to get the documentation updated throughout, for 6.1

2.2. What is New and Noteworthy in Drools 6.0.0

2.2.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm

that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now

help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now 'modify' is allowed. While there is

no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated

will see the more recent data as a result of 'modify'. This is more inline with how people intuitively

think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and

then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was

considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,

the rule order in the file is preserved via the diff processing.

2.2.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire

consequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change

this default behavior by configuring the KieSession with a TimedRuleExectionOption as shown

in the following example.

Example 2.8. Configuring a KieSession to automatically execute timed rules

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();

ksconf.setOption(TimedRuleExectionOption.YES);

KSession ksession = kbase.newKieSession(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically

executed. To do this it is necessary to set a FILTERED TimedRuleExectionOption that allows to

define a callback to filter those rules, as done in the next example.

Example 2.9. Configuring a filter to choose which timed rules should be

automatically executed

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(new TimedRuleExectionOption.FILTERED(new TimedRuleExecutionFilter() {

 public boolean accept(Rule[] rules) {

Chapter 2. Release Notes

34

 return rules[0].getName().equals("MyRule");

 }

}));

2.2.3. Expression Timers

It is now possible to define both the delay and interval of an interval timer as an expression instead

of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated

by "expr:") as in the following example:

Example 2.10. An Expression Timer Example

declare Bean

 delay : String = "30s"

 period : long = 60000

end

rule "Expression timer"

 timer(expr: $d, $p)

when

 Bean($d : delay, $p : period)

then

end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching

part of the rule and can be any String that can be parsed in a time duration or any numeric value

that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and

"repeat-limit". When one or more of these parameters are used the first part of the timer definition

must be followed by a semicolon ';' and the parameters have to be separated by a comma ',' as

in the following example:

Example 2.11. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN-2010, end=5-JAN-2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,

or more in general any Number, that will be transformed in a Java Date applying the following

conversion:

new Date(((Number) n).longValue())

RuleFowGroup and AgendaGroups are merged

35

Conversely the repeat-limit can be only an integer and it defines the maximum number of

repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer

will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning

of the phase is given by the start itself plus the eventual delay. In other words in this case the

timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the

rule having the following interval timer

timer (int: 30s 1m; start="3-JAN-2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This

also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't

be scheduled immediately but will preserve the phase defined by the timer and so it will be

scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused

(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only

once to recover from missing activations (regardless of how many activations we missed) and

subsequently it will be scheduled again in phase with the timer.

2.2.4. RuleFowGroup and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroup's behave the same as

AgendaGroups. The get methods have been left, for deprecation reasons, but both return the

same underlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups

and AgendaGroups when used together was a continued source of errors. It also aligns the

codebase, towards PHREAK and the multi-core explotation that is planned in the future.

2.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is

inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.

The end result is not only a richer experience for our end users, but we can now develop more

rapidly with a clean component based architecture. If you like he Workbench experience you can

use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there

is an utility project to help with migration. Git is the most scalable and powerful source repository

bar none. JGit provides a solid OSS implementation for Git. This addresses the continued

performance problems with the various JCR implementations, which would slow down once the

number of files and number of versions become too high. There has been a big "low tech" drive,

Chapter 2. Release Notes

36

to remove complexity. Everything is now stored as a file, including meta data. The database is

only there to provide fast indexing and search. So importing and exporting is all standard Git and

external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team

provider. This team provider was not full featured and not available outside Eclipse. Git enables

our repository to work any existing Git tool or team provider. While not yet supported in the UI, this

will be added over time, it is possible to connect to the repo and tag and branch and restore things.

Figure 2.2. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,

like Decision Tables, being considered Guvnor components instead of Drools components. This

wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus

has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building

a web based IDE. Such as Maven integration for building and deploying, management of Maven

repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions

using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own

plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called

KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

New and Noteworthy in KIE Workbench 6.0.0

37

plugins. The jBPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-

WB.

Figure 2.3. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,

Maven based Projects, Maven Artifact Repository. These common features are

described in more detail throughout this documentation.

The two primary distributions consist of:

• KIE Drools Workbench

• Drools Editors, for rules and supporting assets.

Chapter 2. Release Notes

38

• jBPM Designer, for Rule Flow and supporting assets.

• KIE Workbench

• Drools Editors, for rules and supporting assets.

• jBPM Designer, for BPMN2 and supporting assets.

• jBPM Console, runtime and Human Task support.

• jBPM Form Builder.

• BAM.

Workbench highlights:

• New flexible Workbench environment, with perspectives and panels.

• New packaging and build system following KIE API.

• Maven based projects.

• Maven Artifact Repository replaces Global Area, with full dependency support.

• New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java

classes to the authoring environment. Java classes are packaged into the project and can be

used within rules, processes etc and externally in your own applications.

• Virtual File System replaces JCR with a default Git based implementation.

• Default Git based implementation supports remote operations.

• External modifications appear within the Workbench.

• Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the

package definition to individual editors so you need only import types used for an asset and not

the package as a whole.

2.4. New and Noteworthy in Integration 6.0.0

2.4.1. CDI

CDI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and

KieBases.

@Inject

@KSession("kbase1")

Spring

39

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieBase kbase1v10;

@Inject

@KBase("kbase1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieBase kbase1v10;

Figure 2.4. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieSession ksessionv10;

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieSession ksessionv11;

Figure 2.5. Side by side version loading for 'jar1.KBase1' KieBase

2.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'

with a more powerful spring version. The aim is for consistency with kmodule.xml

2.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for

consistency with spring and kmodule.xml

2.4.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing

has been moved to PAX.

40

Chapter 3.

41

Chapter 3. Compatibility matrix
Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and

OptaPlanner follow the same version numbering.

42

Part II. KIE
KIE is the shared core for Drools and jBPM.It provides a unified methodology and programming

model for building, deploying and utilizing resources.

Chapter 4.

45

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply

used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.

As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,

was chosen as the new group name. The KIE name is also used for the shared aspects of the

system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is

now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while

having strong Drools integration, has long been independant of Drools.

Chapter 4. KIE

46

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder

which provides powerful reporting capabities. Dashboard Builder is currently a temporary name

and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant

of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire

provides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The

project is independant of Drools and jBPM and anyone can use it as a basis of building flexible and

powerful workbenches. UberFire will be used for console and workbench development throughout

JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the

authoring metaphors, like Decision Tables, being considered Guvnor components instead of

Drools components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor.

In 6.0 Guvnor's focus has been narrowed to encapsulate the set of UberFire plugins that provide

the basis for building a web based IDE. Such as Maven integration for building and deploying,

management of Maven repositories and activity notifications via inboxes. Drools and jBPM build

workbench distributions using Uberfire as the base and including a set of plugins, such as Guvnor,

along with their own plugins for things like decision tables, guided editors, BPMN2 designer,

human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that

combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't

actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can

typically be broken down into the following:

• Author

• Authoring of knowledge using a UI metaphor, such as: DRL, BPMN2, decision table, class

models.

• Build

• Builds the authored knowledge into deployable units.

• For KIE this unit is a JAR.

• Test

• Test KIE knowedge before it's deployed to the application.

• Deploy

• Deploys the unit to a location where applications may utilize (consume) them.

Build, Deploy, Utilize and Run

47

• KIE uses Maven style repository.

• Utilize

• The loading of a JAR to provide a KIE session (KieSession), for which the application can

interact with.

• KIE exposes the JAR at runtime via a KIE container (KieContainer).

• KieSessions, for the runtime's to interact with, are created from the KieContainer.

• Run

• System interaction with the KieSession, via API.

• Work

• User interaction with the KieSession, via command line or UI.

• Manage

• Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead

of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as

it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply

a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The

kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those

knowledge bases and sessions. There is also alternative XML support via Spring and OSGi

BluePrints.

While standard Maven can build and package KIE resources, it will not provide validation at build

time. There is a Maven plugin which is recommended to use to get build time validation. The plugin

also generates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

Chapter 4. KIE

48

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the

simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for

discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other

applications on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote

Maven repository. Building the Application will pull in the KieModule and populate the local Maven

repository in the process.

Introduction

49

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR

in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the

classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the

KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to

the two loading approaches. While dynamic modules supports side by side versioning, classpath

modules do not. Further once a module is on the classpath, no other version may be loaded

dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight

to the examples section, which is fairly self-explanatory on the different use cases.

Chapter 4. KIE

50

4.2.2. Building

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including

a kmodule.xml file defining in a declaratively way the KieBases and KieSessions that can be

created from it. This file has to be placed in the resources/META-INF folder of the Maven project

while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources

folder or in any other subfolder under it.

Building

51

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xml version="1.0" encoding="UTF-8"?>

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule"/>

In this way the kmodule will contain one single default KieBase. All Kie assets stored under the

resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building

of these artifacts it is enough to create a KieContainer for them.

Figure 4.5. KieContainer

For this simple case it is enough to create a KieContainer that reads the files to be built from

the classpath:

Chapter 4. KIE

52

Example 4.2. Creating a KieContainer from the classpath

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

KieServices is the interface from where it possible to access all the Kie building and runtime

facilities:

Building

53

Figure 4.6. KieServices

Chapter 4. KIE

54

In this way all the Java sources and the Kie resources are compiled and deployed into the

KieContainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As explained in the former section, the kmodule.xml file is the place where it is possible to

declaratively configure the KieBase(s) and KieSession(s) that can be created from a KIE project.

In particular a KieBase is a repository of all the application's knowledge definitions. It will contain

rules, processes, functions, and type models. The KieBase itself does not contain data; instead,

sessions are created from the KieBase into which data can be inserted and from which process

instances may be started. Creating the KieBase can be heavy, whereas session creation is very

light, so it is recommended that KieBase be cached where possible to allow for repeated session

creation. However end-users usually shouldn't worry about it, because this caching mechanism

is already automatically provided by the KieContainer.

Building

55

Figure 4.7. KieBase

Conversely the KieSession stores and executes on the runtime data. It is created from the

KieBase or more easily can be created directly from the KieContainer if it has been defined in

the kmodule.xml file

Chapter 4. KIE

56

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more KieBases and for each KieBase all

the different KieSessions that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="KBase1" default="true" eventProcessingMode="cloud" equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">

 <ksession name="KSession2_1" type="stateful" default="true/">

 <ksession name="KSession2_1" type="stateless" default="false/

" beliefSystem="jtms">

 </kbase>

 <kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,

 org.domain.pkg3" includes="KBase1">

 <ksession name="KSession2_1" type="stateful" default="false" clockType="realtime">

 <fileLogger file="drools.log" threaded="true" interval="10"/>

 <workItemHandlers>

 <workItemHandler name="name" type="org.domain.WorkItemHandler"/>

 </workItemHandlers>

 <listeners>

 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener"/>

 <agendaEventListener type="org.domain.FirstAgendaListener"/>

 <agendaEventListener type="org.domain.SecondAgendaListener"/>

 <processEventListener type="org.domain.ProcessListener"/>

 </listeners>

 </ksession>

 </kbase>

</kmodule>

Building

57

Here 2 KieBases have been defined and it is possible to instance 2 different types of KieSessions

from the first one, while only one from the second. A list of the attributes that can be defined on

the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with

which retrieve this

KieBase from the

KieContainer. This is

the only mandatory

attribute.

includes none any comma separated

list

A comma separated

list of other KieBases

contained in this

kmodule. The artifacts

of all these KieBases

will be also included in

this one.

packages all any comma separated

list

By default all

the Drools artifacts

under the resources

folder, at any level,

are included into

the KieBase. This

attribute allows to limit

the artifacts that will

be compiled in this

KieBase to only the

ones belonging to the

list of packages.

default false true, false Defines if this KieBase

is the default one

for this module, so

it can be created

from the KieContainer

without passing any

name to it. There

can be at most one

default KieBase in

each module.

equalsBehavior identity identity, equality Defines the behavior

of Drools when a

Chapter 4. KIE

58

Attribute name Default value Admitted values Meaning

new fact is inserted

into the Working

Memory. With identity

it always create a new

FactHandle unless the

same object isn't

already present in

the Working Memory,

while with equality

only if the newly

inserted object is not

equal (according to its

equal method) to an

already existing fact.

eventProcessingMode cloud cloud, stream When compiled in

cloud mode the

KieBase treats events

as normal facts, while

in stream mode allow

temporal reasoning on

them.

declarativeAgenda disabled disabled, enabled Defines if the

Declarative Agenda is

enabled or not.

Similarly all attributes of the ksession tag (except of course the name) have meaningful default.

They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values Meaning

name none any Unique name of

this KieSession. Used

to fetch the

KieSession from the

KieContainer. This is

the only mandatory

attribute.

type stateful stateful, stateless A stateful session

allows to iteratively

work with the Working

Memory, while a

stateless one is a

Building

59

Attribute name Default value Admitted values Meaning

one-off execution of a

Working Memory with

a provided data set.

default false true, false Defines if this

KieSession is the

default one for this

module, so it can

be created from the

KieContainer without

passing any name to

it. In each module

there can be at

most one default

KieSession for each

type.

clockType realtime realtime, pseudo Defines if events

timestamps are

determined by the

system clock or

by a psuedo clock

controlled by the

application. This clock

is specially useful for

unit testing temporal

rules.

beliefSystem simple simple, jtms,

defeasible

Defines the type of

belief system used by

the KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on

each KieSession a file (or a console) logger, one or more WorkItemHandlers and some

listeners that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and

processEventListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply

retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

KieBase kBase1 = kContainer.getKieBase("KBase1");

Chapter 4. KIE

60

KieSession kieSession1 = kContainer.newKieSession("KSession2_1");

StatelessKieSession kieSession2 = kContainer.newStatelessKieSession("KSession2_2");

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first

is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the

KieContainer according to their declared type. If the type of the KieSession requested to the

KieContainer doesn't correspond with the one declared in the kmodule.xml file the KieContainer

will throw a RuntimeException. Also since a KieBase and a KieSession have been flagged as

default is it possible to get them from the KieContainer without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the

KieContainer

KieContainer kContainer = ...

KieBase kBase1 = kContainer.getKieBase(); // returns KBase1

KieSession kieSession1 = kContainer.newKieSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupId, artifactId and version declared in the

pom.xml file are used to generate a ReleaseId that uniquely identifies this project inside your

application. This allows creation of a new KieContainer from the project by simply passing its

ReleaseId to the KieServices.

Example 4.6. Creating a KieContainer of an existing project by ReleaseId

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "myartifact", "1.0");

KieContainer kieContainer = kieServices.newKieContainer(releaseId);

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is

recommended that this is used at all times. To use the plugin simply add it to the build section

of the Maven pom.xml

Example 4.7. Adding the KIE plugin to a Maven pom.xml

 <build>

 <plugins>

 <plugin>

 <groupId>org.kie</groupId>

Building

61

 <artifactId>kie-maven-plugin</artifactId>

 <version>${project.version}</version>

 <extensions>true</extensions>

 </plugin>

 </plugins>

 </build>

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting

JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there

are compilation issues it will return a null KieContainer. It also pushes the compilation overhead

to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the KieBases and KieSessions belonging to a KieModule

programmatically instead of the declarative definition in the kmodule.xml file. The same

programmatic API also allows in explicitly adding the file containing the Kie artifacts instead of

automatically read them from the resources folder of your project. To do that it is necessary to

create a KieFileSystem, a sort of virtual file system, and add all the resources contained in your

project to it.

Figure 4.9. KieFileSystem

Like all other Kie core components you can obtain an instance of the KieFileSystem from the

KieServices. The kmodule.xml configuration file must be added to the filesystem. This is a

mandatory step. Kie also provides a convenient fluent API, implemented by the KieModuleModel,

to programmatically create this file.

Chapter 4. KIE

62

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a KieModuleModel from the KieServices, configure

it with the desired KieBases and KieSessions, convert it in XML and add the XML to the

KieFileSystem. This process is shown by the following example:

Example 4.8. Creating a kmodule.xml programmatically and adding it to a

KieFileSystem

KieServices kieServices = KieServices.Factory.get();

KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1 ")

 .setDefault(true)

 .setEqualsBehavior(EqualityBehaviorOption.EQUALITY)

 .setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1")

 .setDefault(true)

 .setType(KieSessionModel.KieSessionType.STATEFUL)

 .setClockType(ClockTypeOption.get("realtime"));

KieFileSystem kfs = kieServices.newKieFileSystem();

At this point it is also necessary to add to the KieFileSystem, through its fluent API, all others

Kie artifacts composing your project. These artifacts have to be added in the same position of a

corresponding usual Maven project.

Building

63

Example 4.9. Adding Kie artifacts to a KieFileSystem

KieFileSystem kfs = ...

kfs.write("src/main/resources/KBase1/

ruleSet1.drl", stringContainingAValidDRL)

 .write("src/main/resources/dtable.xls",

 kieServices.getResources().newInputStreamResource(dtableFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as

Resources. In the latter case the Resources can be created by the KieResources factory, also

provided by the KieServices. The KieResources provides many convenient factory methods to

convert an InputStream, a URL, a File, or a String representing a path of your file system to a

Resource that can be managed by the KieFileSystem.

Chapter 4. KIE

64

Figure 4.11. KieResources

Normally the type of a Resource can be inferred from the extension of the name used to add

it to the KieFileSystem. However it also possible to not follow the Kie conventions about file

extensions and explicitly assign a specific ResourceType to a Resource as shown below:

Building

65

Example 4.10. Creating and adding a Resource with an explicit type

KieFileSystem kfs = ...

kfs.write("src/main/resources/myDrl.txt",

 kieServices.getResources().newInputStreamResource(drlStream)

 .setResourceType(ResourceType.DRL));

Add all the resources to the KieFileSystem and build it by passing the KieFileSystem to a

KieBuilder

Figure 4.12. KieBuilder

When the contents of a KieFileSystem are successfully built, the resulting KieModule is

automatically added to the KieRepository. The KieRepository is a singleton acting as a

repository for all the available KieModules.

Chapter 4. KIE

66

Figure 4.13. KieRepository

After this it is possible to create through the KieServices a new KieContainer for that

KieModule using its ReleaseId. However, since in this case the KieFileSystem don't contain

any pom.xml file (it is possible to add one using the KieFileSystem.writePomXML method), Kie

cannot determine the ReleaseId of the KieModule and assign to it a default one. This default

ReleaseId can be obtained from the KieRepository and used to identify the KieModule inside

the KieRepository itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a

KieContainer

KieServices kieServices = KieServices.Factory.get();

KieFileSystem kfs = ...

kieServices.newKieBuilder(kfs).buildAll();

KieContainer kieContainer = kieServices.newKieContainer(kieServices.getRepository().getDefaultReleaseId());

At this point it is possible to get KieBases and create new KieSessions from this KieContainer

exactly in the same way as in the case of a KieContainer created directly from the classpath.

It is a best practice to check the compilation results. The KieBuilder reports compilation results

of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the compilation

of the project failed and in the case no KieModule is produced and nothing is added to the

KieRepository. WARNING and INFO results can be ignored, but are available for inspection.

Example 4.12. Checking that a compilation didn't produce any error

KieBuilder kieBuilder = kieServices.newKieBuilder(kfs).buildAll();

Deploying

67

assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,

when a new rule with the same name of an existing rule is added to a package, the default behavior

is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most

use cases, but in some deployments the user might want to prevent the rule update and report

it as an error.

Changing the default severity for a result type, configured like any other option in Drools, can be

done by API calls, system properties or configuration files. As of this version, Drools supports

configurable result severity for rule updates and function updates. To configure it using system

properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

// sets the severity of rule updates

drools.kbuilder.severity.duplicateRule = <INFO|WARNING|ERROR>

// sets the severity of function updates

drools.kbuilder.severity.duplicateFunction = <INFO|WARNING|ERROR>

4.2.3. Deploying

4.2.3.1. KieBase

The KieBase is a repository of all the application's knowledge definitions. It will contain rules,

processes, functions, and type models. The KieBase itself does not contain data; instead,

sessions are created from the KieBase into which data can be inserted and from which process

instances may be started. The KieBase can be obtained from the KieContainer containing the

KieModule where the KieBase has been defined.

Chapter 4. KIE

68

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the KieBase needs to resolve types that are not

in the default class loader. In this case it will be necessary to create a KieBaseConfiguration

with an additional class loader and pass it to KieContainer when creating a new KieBase from it.

Deploying

69

Example 4.14. Creating a new KieBase with a custom ClassLoader

KieServices kieServices = KieServices.Factory.get();

KieBaseConfiguration kbaseConf = kieServices.newKieBaseConfiguration(null, MyType.class.getClassLoader());

KieBase kbase = kieContainer.newKieBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running". The KieBase creates and

returns KieSession objects, and it may optionally keep references to those. When KieBase

modifications occur those modifications are applied against the data in the sessions. This

reference is a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The KieScanner allows continuous monitoring of your Maven repository to check whether a new

release of a Kie project has been installed. A new release is deployed in the KieContainer

wrapping that project. The use of the KieScanner requires kie-ci.jar to be on the classpath.

Figure 4.15. KieScanner

A KieScanner can be registered on a KieContainer as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "myartifact", "1.0-

SNAPSHOT");

KieContainer kContainer = kieServices.newKieContainer(releaseId);

KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start the KieScanner polling the Maven repository every 10 seconds

Chapter 4. KIE

70

kScanner.start(10000L);

In this example the KieScanner is configured to run with a fixed time interval, but it is also possible

to run it on demand by invoking the scanNow() method on it. If the KieScanner finds in the

Maven repository an updated version of the Kie project used by that KieContainer it automatically

downloads the new version and triggers an incremental build of the new project. From this moment

all the new KieBases and KieSessions created from that KieContainer will use the new project

version.

4.2.3.4. Maven Versions and Dependencies

Maven supports a number of mechanisms to manage versioning and dependencies within

applications. Modules can be published with specific version numbers, or they can use the

SNAPSHOT suffix. Dependencies can specify version ranges to consume, or take avantage of

SNAPSHOT mechanism.

StackOverflow provides a very good description for this, which is reproduced below.

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-

dependency [http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-

version-of-a-dependency]

If you always want to use the newest version, Maven has two keywords you can use as an

alternative to version ranges. You should use these options with care as you are no longer in

control of the plugins/dependencies you are using.

When you depend on a plugin or a dependency, you can use the a version value of LATEST

or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact,

the most recently deployed artifact in a particular repository. RELEASE refers to the last non-

snapshot release in the repository. In general, it is not a best practice to design software which

depends on a non-specific version of an artifact. If you are developing software, you might want

to use RELEASE or LATEST as a convenience so that you don't have to update version numbers

when a new release of a third-party library is released. When you release software, you should

always make sure that your project depends on specific versions to reduce the chances of your

build or your project being affected by a software release not under your control. Use LATEST

and RELEASE with caution, if at all.

See the POM Syntax section of the Maven book for more details.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html

[http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html]

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-

dependencies.html

Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has

the following metadata:

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html

Deploying

71

<metadata>

 <groupId>com.foo</groupId>

 <artifactId>my-foo</artifactId>

 <version>2.0.0</version>

 <versioning>

 <release>1.1.1</release>

 <versions>

 <version>1.0</version>

 <version>1.0.1</version>

 <version>1.1</version>

 <version>1.1.1</version>

 <version>2.0.0</version>

 </versions>

 <lastUpdated>20090722140000</lastUpdated>

 </versioning>

</metadata>

If a dependency on that artifact is required, you have the following options (other version ranges

can be specified of course, just showing the relevant ones here): Declare an exact version (will

always resolve to 1.0.1):

<version>[1.0.1]</version>

Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven

will select a matching version):

<version>1.0.1</version>

Declare a version range for all 1.x (will currently resolve to 1.1.1):

<version>[1.0.0,2.0.0)</version>

Declare an open-ended version range (will resolve to 2.0.0):

<version>[1.0.0,)</version>

Declare the version as LATEST (will resolve to 2.0.0):

Chapter 4. KIE

72

<version>LATEST</version>

Declare the version as RELEASE (will resolve to 1.1.1):

<version>RELEASE</version>

Note that by default your own deployments will update the "latest" entry in the Maven metadata,

but to update the "release" entry, you need to activate the "release-profile" from the Maven super

POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"

4.2.3.5. Settings.xml and Remote Repository Ssetup

The maven settings.xml is used to configure Maven execution. Detailed instructions can be found

at the Maven website:

http://maven.apache.org/settings.html

The settings.xml file can be located in 3 locations, the actual settings used is a merge of those

3 locations.

• The Maven install: $M2_HOME/conf/settings.xml

• A user's install: ${user.home}/.m2/settings.xml

• Folder location specified by the system propert kie.maven.settings.custom

The settings.xml is used to specify the location of remote repositories. It is important that

you activate the profile that specifies the remote repository, typically this can be done using

"activeByDefault":

<profiles>

 <profile>

 <id>profile-1</id>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 ...

 </profile>

</profiles>

Maven provides detailed documentation on using multiple remote repositories:

http://maven.apache.org/guides/mini/guide-multiple-repositories.html

http://maven.apache.org/settings.html
http://maven.apache.org/guides/mini/guide-multiple-repositories.html

Running

73

4.2.4. Running

4.2.4.1. KieBase

The KieBase is a repository of all the application's knowledge definitions. It will contain rules,

processes, functions, and type models. The KieBase itself does not contain data; instead,

sessions are created from the KieBase into which data can be inserted and from which process

instances may be started. The KieBase can be obtained from the KieContainer containing the

KieModule where the KieBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

KieBase kBase = kContainer.getKieBase();

4.2.4.2. KieSession

The KieSession stores and executes on the runtime data. It is created from the KieBase.

Figure 4.16. KieSession

Example 4.17. Create a KieSession from a KieBase

KieSession ksession = kbase.newKieSession();

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The KieRuntime provides methods that are applicable to both rules and processes, such as setting

globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

Chapter 4. KIE

74

Figure 4.17. KieRuntime

4.2.4.3.1.1. Globals

Globals are named objects that are made visible to the rule engine, but in a way that is

fundamentally different from the one for facts: changes in the object backing a global do not trigger

reevaluation of rules. Still, globals are useful for providing static information, as an object offering

services that are used in the RHS of a rule, or as a means to return objects from the rule engine.

When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect

changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

global java.util.List list

Running

75

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call

ksession.setGlobal() with the global's name and an object, for any session, to associate the

object with the global. Failure to declare the global type and identifier in DRL code will result in

an exception being thrown from this call.

List list = new ArrayList();

ksession.setGlobal("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results

in a NullPointerException.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,

objects being asserted, etc. This allows separation of logging and auditing activities from the main

part of your application (and the rules).

The KieRuntimeEventManager interface is implemented by the KieRuntime which provides

two interfaces, RuleRuntimeEventManager and ProcessEventManager. We will only cover the

RuleRuntimeEventManager here.

Figure 4.18. KieRuntimeEventManager

The RuleRuntimeEventManager allows for listeners to be added and removed, so that events for

the working memory and the agenda can be listened to.

Chapter 4. KIE

76

Figure 4.19. RuleRuntimeEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a

session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksession.addEventListener(new DefaultAgendaEventListener() {

 public void afterMatchFired(AfterMatchFiredEvent event) {

 super.afterMatchFired(event);

 System.out.println(event);

 }

});

Drools also provides DebugRuleRuntimeEventListener and DebugAgendaEventListener which

implement each method with a debug print statement. To print all Working Memory events, you

add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener

ksession.addEventListener(new DebugRuleRuntimeEventListener());

All emitted events implement the KieRuntimeEvent interface which can be used to retrieve the

actual KnowlegeRuntime the event originated from.

Running

77

Figure 4.20. KieRuntimeEvent

The events currently supported are:

• MatchCreatedEvent

• MatchCancelledEvent

• BeforeMatchFiredEvent

• AfterMatchFiredEvent

• AgendaGroupPushedEvent

• AgendaGroupPoppedEvent

• ObjectInsertEvent

• ObjectDeletedEvent

• ObjectUpdatedEvent

• ProcessCompletedEvent

• ProcessNodeLeftEvent

• ProcessNodeTriggeredEvent

• ProcessStartEvent

4.2.4.5. KieRuntimeLogger

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log

that can be used to log the execution of an application for later inspection, using tools such as

the Eclipse audit viewer.

Chapter 4. KIE

78

Figure 4.21. KieLoggers

Example 4.20. FileLogger

KieRuntimeLogger logger =

 KieServices.Factory.get().newFileLogger(ksession, "logdir/mylogfile");

...

logger.close();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been

covered, which use the standard KieRuntime, and can be worked with iteratively over time.

Stateless is a one-off execution of a KieRuntime with a provided data set. It may return some

results, with the session being disposed at the end, prohibiting further iterative interactions. You

can think of stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecutor interface, which both the stateful and stateless

interfaces extend. This returns an ExecutionResults:

Figure 4.22. CommandExecutor

Running

79

Figure 4.23. ExecutionResults

The CommandExecutor allows for commands to be executed on those sessions, the only difference

being that the StatelessKieSession executes fireAllRules() at the end before disposing the

session. The commands can be created using the CommandExecutor .The Javadocs provide the

full list of the allowed comands using the CommandExecutor.

setGlobal and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates whether the command

should return the global's value as part of the ExecutionResults. If true it uses the same name

as the global name. A String can be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

StatelessKieSession ksession = kbase.newStatelessKieSession();

ExecutionResults bresults =

 ksession.execute(CommandFactory.newSetGlobal("stilton", new Cheese("stilton"), true);

Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an

alternative return name.

Example 4.22. Get Global Command

StatelessKieSession ksession = kbase.newStatelessKieSession();

Chapter 4. KIE

80

ExecutionResults bresults =

 ksession.execute(CommandFactory.getGlobal("stilton");

Cheese stilton = bresults.getValue("stilton");

All the above examples execute single commands. The BatchExecution represents a composite

command, created from a list of commands. It will iterate over the list and execute each command

in turn. This means you can insert some objects, start a process, call fireAllRules and execute a

query, all in a single execute(...) call, which is quite powerful.

The StatelessKieSession will execute fireAllRules() automatically at the end. However the

keen-eyed reader probably has already noticed the FireAllRules command and wondered how

that works with a StatelessKieSession. The FireAllRules command is allowed, and using it will

disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned

ExecutionResults instance. Let's look at a simple example to see how this works. The example

presented includes command from the Drools and jBPM, for the sake of illustration. They are

covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

StatelessKieSession ksession = kbase.newStatelessKieSession();

List cmds = new ArrayList();

cmds.add(CommandFactory.newInsertObject(new Cheese("stilton", 1), "stilton"));

cmds.add(CommandFactory.newStartProcess("process cheeses"));

cmds.add(CommandFactory.newQuery("cheeses"));

ExecutionResults bresults = ksession.execute(CommandFactory.newBatchExecution(cmds));

Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults qresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the

ExecutionResults. The query command defaults to use the same identifier as the query name,

but it can also be mapped to a different identifier.

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.

This is covered in section XXX.

4.2.4.7. StatelessKieSession

The StatelessKieSession wraps the KieSession, instead of extending it. Its main focus is on the

decision service type scenarios. It avoids the need to call dispose(). Stateless sessions do not

support iterative insertions and the method call fireAllRules() from Java code; the act of calling

execute() is a single-shot method that will internally instantiate a KieSession, add all the user

data and execute user commands, call fireAllRules(), and then call dispose(). While the main

Running

81

way to work with this class is via the BatchExecution (a subinterface of Command) as supported by

the CommandExecutor interface, two convenience methods are provided for when simple object

insertion is all that's required. The CommandExecutor and BatchExecution are talked about in

detail in their own section.

Figure 4.24. StatelessKieSession

Our simple example shows a stateless session executing a given collection of Java objects using

the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

StatelessKieSession ksession = kbase.newStatelessKieSession();

ksession.execute(collection);

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements

Command

ksession.execute(CommandFactory.newInsertElements(collection));

Chapter 4. KIE

82

If you wanted to insert the collection itself, and the collection's individual elements, then

CommandFactory.newInsert(collection) would do the job.

Methods of the CommandFactory create the supported commands, all of which can be marshalled

using XStream and the BatchExecutionHelper. BatchExecutionHelper provides details on the

XML format as well as how to use Drools Pipeline to automate the marshalling of BatchExecution

and ExecutionResults.

StatelessKieSession supports globals, scoped in a number of ways. We cover the non-

command way first, as commands are scoped to a specific execution call. Globals can be resolved

in three ways.

• The StatelessKieSession method getGlobals() returns a Globals instance which provides

access to the session's globals. These are shared for all execution calls. Exercise caution

regarding mutable globals because execution calls can be executing simultaneously in different

threads.

Example 4.26. Session scoped global

StatelessKieSession ksession = kbase.newStatelessKieSession();

// Set a global hbnSession, that can be used for DB interactions in the rules.

ksession.setGlobal("hbnSession", hibernateSession);

// Execute while being able to resolve the "hbnSession" identifier.

ksession.execute(collection);

• Using a delegate is another way of global resolution. Assigning a value to a global (with

setGlobal(String, Object)) results in the value being stored in an internal collection

mapping identifiers to values. Identifiers in this internal collection will have priority over any

supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate

global (if any) will be used.

• The third way of resolving globals is to have execution scoped globals. Here, a Command to set

a global is passed to the CommandExecutor.

The CommandExecutor interface also offers the ability to export data via "out" parameters. Inserted

facts, globals and query results can all be returned.

Example 4.27. Out identifiers

// Set up a list of commands

List cmds = new ArrayList();

cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));

cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));

cmds.add(CommandFactory.newQuery("Get People" "getPeople");

Running

83

// Execute the list

ExecutionResults results =

 ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the ArrayList

results.getValue("list1");

// Retrieve the inserted Person fact

results.getValue("person");

// Retrieve the query as a QueryResults instance.

results.getValue("Get People");

4.2.4.8. Marshalling

The KieMarshallers are used to marshal and unmarshal KieSessions.

Figure 4.25. KieMarshallers

An instance of the KieMarshallers can be retrieved from the KieServices. A simple example

is shown below:

Example 4.28. Simple Marshaller Example

// ksession is the KieSession

// kbase is the KieBase

ByteArrayOutputStream baos = new ByteArrayOutputStream();

Marshaller marshaller = KieServices.Factory.get().getMarshallers().newMarshaller(kbase);

marshaller.marshall(baos, ksession);

Chapter 4. KIE

84

baos.close();

However, with marshalling, you will need more flexibility when dealing with

referenced user data. To achieve this use the ObjectMarshallingStrategy interface.

Two implementations are provided, but users can implement their own. The two

supplied strategies are IdentityMarshallingStrategy and SerializeMarshallingStrategy.

SerializeMarshallingStrategy is the default, as shown in the example above, and

it just calls the Serializable or Externalizable methods on a user instance.

IdentityMarshallingStrategy creates an integer id for each user object and stores them

in a Map, while the id is written to the stream. When unmarshalling it accesses the

IdentityMarshallingStrategy map to retrieve the instance. This means that if you use the

IdentityMarshallingStrategy, it is stateful for the life of the Marshaller instance and will create

ids and keep references to all objects that it attempts to marshal. Below is the code to use an

Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

ByteArrayOutputStream baos = new ByteArrayOutputStream();

KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()

ObjectMarshallingStrategy oms = kMarshallers.newIdentityMarshallingStrategy()

Marshaller marshaller =

 kMarshallers.newMarshaller(kbase, new ObjectMarshallingStrategy[]{ oms });

marshaller.marshall(baos, ksession);

baos.close();

Im most cases, a single strategy is insufficient. For added flexibility, the

ObjectMarshallingStrategyAcceptor interface can be used. This Marshaller has a chain of

strategies, and while reading or writing a user object it iterates the strategies asking if they

accept responsibility for marshalling the user object. One of the provided implementations is

ClassFilterAcceptor. This allows strings and wild cards to be used to match class names. The

default is "*.*", so in the above example the Identity Marshalling Strategy is used which has a

default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use

identity lookup, we could do the following:

Example 4.30. IdentityMarshallingStrategy with Acceptor

ByteArrayOutputStream baos = new ByteArrayOutputStream();

KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()

ObjectMarshallingStrategyAcceptor identityAcceptor =

 kMarshallers.newClassFilterAcceptor(new String[] { "org.domain.pkg1.*" });

ObjectMarshallingStrategy identityStrategy =

 kMarshallers.newIdentityMarshallingStrategy(identityAcceptor);

Running

85

ObjectMarshallingStrategy sms = kMarshallers.newSerializeMarshallingStrategy();

Marshaller marshaller =

 kMarshallers.newMarshaller(kbase,

 new ObjectMarshallingStrategy[]{ identityStrategy, sms });

marshaller.marshall(baos, ksession);

baos.close();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)

they are marshallable only if, before you use it, you configure your KieSession to use a trackable

timer job factory manager as follows:

Example 4.31. Configuring a trackable timer job factory manager

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();

ksconf.setOption(TimerJobFactoryOption.get("trackable"));

KSession ksession = kbase.newKieSession(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.

It is necessary to have some implementation of the Java Transaction API (JTA) installed. For

development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and

works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

KieServices kieServices = KieServices.Factory.get();

Environment env = kieServices.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY,

 Persistence.createEntityManagerFactory("emf-name"));

env.set(EnvironmentName.TRANSACTION_MANAGER,

 TransactionManagerServices.getTransactionManager());

// KieSessionConfiguration may be null, and a default will be used

KieSession ksession =

 kieServices.getStoreServices().newKieSession(kbase, null, env);

int sessionId = ksession.getId();

UserTransaction ut =

 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();

ksession.insert(data1);

ksession.insert(data2);

Chapter 4. KIE

86

ksession.startProcess("process1");

ut.commit();

To use a JPA, the Environment must be set with both the EntityManagerFactory and the

TransactionManager. If rollback occurs the ksession state is also rolled back, hence it is possible

to continue to use it after a rollback. To load a previously persisted KieSession you'll need the

id, as shown below:

Example 4.33. Loading a KieSession

KieSession ksession =

 kieServices.getStoreServices().loadKieSession(sessionId, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example

below:

Example 4.34. Configuring JPA

<persistence-unit name="org.drools.persistence.jpa" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/BitronixJTADataSource</jta-data-source>

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update" />

 <property name="hibernate.show_sql" value="true" />

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup" />

 </properties>

</persistence-unit>

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways

of doing this, and its documentation should be consulted for details. For a quick start, here is the

programmatic approach:

Example 4.35. Configuring JTA DataSource

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/BitronixJTADataSource");

ds.setClassName("org.h2.jdbcx.JdbcDataSource");

Running

87

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:mem:mydb");

ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a

jndi.properties file to your META-INF folder and add the following line to it:

Example 4.36. JNDI properties

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

Chapter 4. KIE

88

4.2.5. Installation and Deployment Cheat Sheets

Figure 4.26. Installation Overview

Build, Deploy and Utilize Examples

89

Figure 4.27. Deployment Overview

4.2.6. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-examples-

api" contains a number of examples, and can be found at GitHub:

Chapter 4. KIE

90

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest (most of the options are

defaulted) and working its way up to more complex use cases.

The Deploy use cases shown below all involve mvn install. Remote deployment of JARs in

Maven is well covered in Maven literature. Utilize refers to the initial act of loading the resources

and providing access to the KIE runtimes. Where as Run refers to the act of interacting with those

runtimes.

4.2.6.1. Default KieSession

• Project: default-kesession.

• Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a

single default KieBase. The example shows the retrieval of the default KieSession from the

classpath.

An empty kmodule.xml will produce a single KieBase that includes all files found under resources

path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single

default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule"> </kmodule>

Example 4.38. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed

onto the environment classpath. kContainer.newKieSession() creates the default KieSession.

Notice that you no longer need to look up the KieBase, in order to create the KieSession. The

KieSession knows which KieBase it's associated with, and use that, which in this case is the

default KieBase.

Example 4.39. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Build, Deploy and Utilize Examples

91

KieSession kSession = kContainer.newKieSession();

kSession.setGlobal("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

4.2.6.2. Named KieSession

• Project: named-kiesession.

• Summary: kmodule.xml that has one named KieBase and one named KieSession. The

examples shows the retrieval of the named KieSession from the classpath.

kmodule.xml will produce a single named KieBase, 'kbase1' that includes all files found under

resources path, be it DRL, BPMN2, XLS etc. KieSession 'ksession1' is associated with that

KieBase and can be created by name.

Example 4.40. Author - kmodule.xml

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="kbase1">

 <ksession name="ksession1"/>

 </kbase>

</kmodule>

Example 4.41. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed

onto the environment classpath. This time the KieSession uses the name 'ksession1'. You do not

need to lookup the KieBase first, as it knows which KieBase 'ksession1' is assocaited with.

Example 4.42. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.setGlobal("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

Chapter 4. KIE

92

kSession.fireAllRules();

4.2.6.3. KieBase Inheritence

• Project: kiebase-inclusion.

• Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from

another KieBase, from another KieModule. In this case it inherits the named KieBase from the

'name-kiesession' example. The included KieBase can be from the current KieModule or any

other KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under

resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the

KieBase 'kbase1', due to the use of the 'includes' attribute. KieSession 'ksession2' is associated

with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase name="kbase2" includes="kbase1">

 <ksession name="ksession2"/>

</kbase>

This example requires that the previous example, 'named-kiesession', is built and installed to the

local Maven repository first. Once installed it can be included as a dependency, using the standard

Maven <dependencies> element.

Example 4.44. Author - pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.drools</groupId>

 <artifactId>drools-examples-api</artifactId>

 <version>6.0.0/version>

 </parent>

 <artifactId>kiebase-inclusion</artifactId>

 <name>Drools API examples - KieBase Inclusion</name>

 <dependencies>

 <dependency>

 <groupId>org.drools</groupId>

Build, Deploy and Utilize Examples

93

 <artifactId>drools-compiler</artifactId>

 </dependency>

 <dependency>

 <groupId>org.drools</groupId>

 <artifactId>named-kiesession</artifactId>

 <version>6.0.0</version>

 </dependency>

 </dependencies>

</project>

Once 'named-kiesession' is built and installed this example can be built and installed as normal.

Again the act of installing, will force the unit tests to run, demonstrating the use case.

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed

onto the environment classpath. This time the KieSession uses the name 'ksession2'. You do

not need to lookup the KieBase first, as it knows which KieBase 'ksession1' is assocaited with.

Notice two rules fire this time, showing that KieBase 'kbase2' has included the resources from the

dependency KieBase 'kbase1'.

Example 4.46. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

KieSession kSession = kContainer.newKieSession("ksession2");

kSession.setGlobal("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

kSession.insert(new Message("Dave", "Open the pod bay doors, HAL."));

kSession.fireAllRules();

4.2.6.4. Multiple KieBases

• Project: 'multiple-kbases.

• Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or

KieSession declarations. Introduces the 'packages' attribute to select the folders for the

resources to be included in the KieBase.

Chapter 4. KIE

94

kmodule.xml produces 6 different named KieBases. 'kbase1' includes all resources from the

KieModule. The other KieBases include resources from other selected folders, via the 'packages'

attribute. Note the use of wildcard '*', to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="kbase1">

 <ksession name="ksession1"/>

 </kbase>

 <kbase name="kbase2" packages="org.some.pkg">

 <ksession name="ksession2"/>

 </kbase>

 <kbase name="kbase3" includes="kbase2" packages="org.some.pkg2">

 <ksession name="ksession3"/>

 </kbase>

 <kbase name="kbase4" packages="org.some.pkg, org.other.pkg">

 <ksession name="ksession4"/>

 </kbase>

 <kbase name="kbase5" packages="org.*">

 <ksession name="ksession5"/>

 </kbase>

 <kbase name="kbase6" packages="org.some.*">

 <ksession name="ksession6"/>

 </kbase>

</kmodule>

Example 4.48. Build and Install - Maven

mvn install

Only part of the example is included below, as there is a test method per KieSession, but each

one is a repetition of the other, with different list expectations.

Example 4.49. Utilize and Run - Java

@Test

public void testSimpleKieBase() {

Build, Deploy and Utilize Examples

95

 List<Integer> list = useKieSession("ksession1");

 // no packages imported means import everything

 assertEquals(4, list.size());

 assertTrue(list.containsAll(asList(0, 1, 2, 3)));

}

//.. other tests for ksession2 to ksession6 here

private List<Integer> useKieSession(String name) {

 KieServices ks = KieServices.Factory.get();

 KieContainer kContainer = ks.getKieClasspathContainer();

 KieSession kSession = kContainer.newKieSession(name);

 List<Integer> list = new ArrayList<Integer>();

 kSession.setGlobal("list", list);

 kSession.insert(1);

 kSession.fireAllRules();

 return list;

}

4.2.6.5. KieContainer from KieRepository

• Project: kcontainer-from-repository

• Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any

dependencies for other KieModules. Instead the Java code demonstrates the loading of a

dynamic KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this

uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.drools</groupId>

 <artifactId>drools-examples-api</artifactId>

 <version>6.0.0</version>

 </parent>

 <artifactId>kiecontainer-from-kierepo</artifactId>

 <name>Drools API examples - KieContainer from KieRepo</name>

Chapter 4. KIE

96

 <dependencies>

 <dependency>

 <groupId>org.kie</groupId>

 <artifactId>kie-ci</artifactId>

 </dependency>

 </dependencies>

</project>

Example 4.51. Build and Install - Maven

mvn install

In the previous examples the classpath KieContainer used. This example creates a dynamic

KieContainer as specified by the ReleaseId. The ReleaseId uses Maven conventions for group id,

artifact id and version. It also obeys LATEST and SNAPSHOT for versions.

Example 4.52. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

// Install example1 in the local Maven repo before to do this

KieContainer kContainer = ks.newKieContainer(ks.newReleaseId("org.drools", "named-

kiesession", "6.0.0-SNAPSHOT"));

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.setGlobal("out", out);

Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me,

 HAL?");

kSession.insert(msg1);

kSession.fireAllRules();

4.2.6.6. Default KieSession from File

• Project: default-kiesession-from-file

• Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded

KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting

JAR, in the target folder, can be referenced as a File.

Build, Deploy and Utilize Examples

97

Example 4.53. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once

deployed in the KieRepository it can be resolved via its ReleaseId. Note neither Maven or kie-ci

are needed here. It will not set up a transitive dependency parent classloader.

Example 4.54. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieRepository kr = ks.getRepository();

KieModule kModule = kr.addKieModule(ks.getResources().newFileSystemResource(getFile("default-

kiesession")));

KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());

KieSession kSession = kContainer.newKieSession();

kSession.setGlobal("out", out);

Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me,

 HAL?");

kSession.insert(msg1);

kSession.fireAllRules();

4.2.6.7. Named KieSession from File

• Project: named-kiesession-from-file

• Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded

KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting

JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in

the KieRepository it can be resolved via its ReleaseId. Note neither Maven or kie-ci are needed

here. It will not setup a transitive dependency parent classloader.

Chapter 4. KIE

98

Example 4.56. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieRepository kr = ks.getRepository();

KieModule kModule = kr.addKieModule(ks.getResources().newFileSystemResource(getFile("named-

kiesession")));

KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.setGlobal("out", out);

Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me,

 HAL?");

kSession.insert(msg1);

kSession.fireAllRules();

4.2.6.8. KieModule with Dependent KieModule

• Project: kie-module-form-multiple-files

• Summary: Programmatically provide the list of dependant KieModules, without using Maven to

resolve anything.

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built

first, so that the resulting JARs, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn install

Creates two resources. One is for the main KieModule 'exRes1' the other is for the dependency

'exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the

dependencies, this shows how you can manually specify the dependent KieModules, for the

vararg.

Example 4.58. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieRepository kr = ks.getRepository();

Resource ex1Res = ks.getResources().newFileSystemResource(getFile("kiebase-

inclusion"));

Build, Deploy and Utilize Examples

99

Resource ex2Res = ks.getResources().newFileSystemResource(getFile("named-

kiesession"));

KieModule kModule = kr.addKieModule(ex1Res, ex2Res);

KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());

KieSession kSession = kContainer.newKieSession("ksession2");

kSession.setGlobal("out", out);

Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me,

 HAL?");

kSession.insert(msg1);

kSession.fireAllRules();

Object msg2 = createMessage(kContainer, "Dave", "Open the pod bay doors, HAL.");

kSession.insert(msg2);

kSession.fireAllRules();

4.2.6.9. Programmaticaly build a Simple KieModule with Defaults

• Project: kiemoduelmodel-example

• Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are

all defaulted. This is the quickest out of the box approach, but should not be added to a Maven

repository.

Example 4.59. Build and Install - Maven

mvn install

This programmatically builds a KieModule. It populates the model that represents the ReleaseId

and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the ReleaseId.

Example 4.60. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieRepository kr = ks.getRepository();

KieFileSystem kfs = ks.newKieFileSystem();

kfs.write("src/main/resources/org/kie/example5/HAL5.drl", getRule());

KieBuilder kb = ks.newKieBuilder(kfs);

kb.buildAll(); // kieModule is automatically deployed to KieRepository if

 successfully built.

Chapter 4. KIE

100

if (kb.getResults().hasMessages(Level.ERROR)) {

 throw new RuntimeException("Build Errors:\n" + kb.getResults().toString());

}

KieContainer kContainer = ks.newKieContainer(kr.getDefaultReleaseId());

KieSession kSession = kContainer.newKieSession();

kSession.setGlobal("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

4.2.6.10. Programmaticaly build a KieModule using Meta Models

• Project: kiemoduelmodel-example

• Summary: Programmaticaly build a KieModule, by creating its kmodule.xml meta model

resources.

Example 4.61. Build and Install - Maven

mvn install

This programmatically builds a KieModule. It populates the model that represents the ReleaseId

and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the

ReleaseId.

Example 4.62. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieFileSystem kfs = ks.newKieFileSystem();

Resource ex1Res = ks.getResources().newFileSystemResource(getFile("named-

kiesession"));

Resource ex2Res = ks.getResources().newFileSystemResource(getFile("kiebase-

inclusion"));

ReleaseId rid = ks.newReleaseId("org.drools", "kiemodulemodel-example", "6.0.0-

SNAPSHOT");

kfs.generateAndWritePomXML(rid);

KieModuleModel kModuleModel = ks.newKieModuleModel();

kModuleModel.newKieBaseModel("kiemodulemodel")

 .addInclude("kiebase1")

Security

101

 .addInclude("kiebase2")

 .newKieSessionModel("ksession6");

kfs.writeKModuleXML(kModuleModel.toXML());

kfs.write("src/main/resources/kiemodulemodel/HAL6.drl", getRule());

KieBuilder kb = ks.newKieBuilder(kfs);

kb.setDependencies(ex1Res, ex2Res);

kb.buildAll(); // kieModule is automatically deployed to KieRepository if

 successfully built.

if (kb.getResults().hasMessages(Level.ERROR)) {

 throw new RuntimeException("Build Errors:\n" + kb.getResults().toString());

}

KieContainer kContainer = ks.newKieContainer(rid);

KieSession kSession = kContainer.newKieSession("ksession6");

kSession.setGlobal("out", out);

Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me,

 HAL?");

kSession.insert(msg1);

kSession.fireAllRules();

Object msg2 = createMessage(kContainer, "Dave", "Open the pod bay doors, HAL.");

kSession.insert(msg2);

kSession.fireAllRules();

Object msg3 = createMessage(kContainer, "Dave", "What's the problem?");

kSession.insert(msg3);

kSession.fireAllRules();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a

multitude of declarative abstractions and metaphores, like rules, processes, decision tables and

etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group

inside the same company, a group from a partner company, or even anonymous third parties on

the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such

cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should

be allowed to create a classloader (what could open the system to an attack) and certainly it

should not be allowed to make a call to System.exit().

Chapter 4. KIE

102

The Java Platform provides a very comprehensive and well defined security framework that allows

users to define policies for what a system can do. The KIE platform leverages that framework

and allow application developers to define a specific policy to be applied to any execution of user

provided code, be it in rules, processes, work item handlers and etc.

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform

many complex operations in order to work. Examples are: it needs to create classloaders, read

system properties, access the file system, etc.

Once a security manager is installed, though, it will apply restrictions to all the code executing

in the JVM according to the defined policy. For that reason, KIE allows the user to define two

different policy files: one for the engine itself and one for the assets deployed into and executed

by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while

providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more

details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

A permissive policy file for the engine can look like the following:

Example 4.63. A sample engine.policy file

grant {

 permission java.security.AllPermission;

}

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {

 permission java.util.PropertyPermission "*", "read";

 permission java.lang.RuntimePermission "accessDeclaredMembers";

}

Please note that depending on what the rules and processes are supposed to do, many more

permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files

as parameters to the JVM. Three parameters are required:

Security Manager

103

Table 4.3. Parameters

Parameter Meaning

-Djava.security.manager Enables the security manager

-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to

the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and

processes

For instance:

java -Djava.security.manager -Djava.security.policy=global.policy -

Dkie.security.policy=rules.policy foo.bar.MyApp

Note

When executing the engine inside a container, use your container's documentation

to find out how to configure the Security Manager and how to define the global

security policy. Define the kie security policy as described above and set the

kie.security.policy system property in order to configure the engine to use it.

Note

Please note that unless a Security Manager is configured, the

kie.security.policy will be ignored.

Note

A Security Manager has a high performance impact in the JVM. Applications

with strict performance requirements are strongly discouraged of using a Security

Manager. An alternative is the use of other security procedures like the auditing

of rules/processes before testing and deployment to prevent malicious code from

being deployed to the environment.

104

Part III. Drools

Runtime and Language
Drools is a powerful Hybrid Reasoning System.

Chapter 5.

107

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (AI) became an unpopular term, with

the well-known "AI Winter" [http://en.wikipedia.org/wiki/AI_winter]. There were large boasts

from scientists and engineers looking for funding, which never lived up to expectations,

resulting in many failed projects. Thinking Machines Corporation [http://en.wikipedia.org/wiki/

Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wiki/

Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading AI firms in 1990, it had sales of nearly $65

million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see

and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has

a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/

magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy

relationship with Thinking Machines and DARPA [http://en.wikipedia.org/wiki/DARPA] over-

heated the market, to the point of collapse. It explains how and why commerce moved away from

AI and towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next

generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated

circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine

capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,

that caused much of the AI bubble. The 5GP would provide massive multi-cpu parallel processing

hardware along with powerful knowledge representation and reasoning software via Prolog; a

type of expert system. By 1992 the project was considered a failure and cancelled. It was the

largest and most visible commercial venture for Prolog, and many of the failures are pinned on

the problems of trying to run a logic based programming language concurrently on multi CPU

hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog

and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/

whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term AI became less used, many green shoots

where planted and continued more quietly under discipline specific names: cognitive systems,

machine learning, intelligent systems, knowledge representation and reasoning. Offshoots of

these then made their way into commercial systems, such as expert systems in the Business

Rules Management System (BRMS) market.

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Chapter 5. Hybrid Reasoning

108

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have

dominated the last 20 years, enabled by the practicality of the languages and ability to run

with good performance on commodity hardware. However many believe there is a renaissance

underway in the field of AI, spurred by advances in hardware capabilities and AI research. In

2005 Heather Havenstein authored "Spring comes to AI winter" [http://www.computerworld.com/s/

article/99691/Spring_comes_to_AI_winter] which outlines a case for this resurgence. Norvig and

Russel dedicate several pages to what factors allowed the industry to overcome it's problems and

the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology of

work in artificial intelligence. It is now more common to build on existing theories

than to propose brand-new ones, to base claims on rigorous theorems or hard

experimental evidence rather than on intuition, and to show relevance to real-

world applications rather than toy examples.

—Artificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reasoning

(KRR) have made great strides towards becoming practical in commercial environments. For

example, vision-based systems can now fully map out and navigate their environments with

strong recognition skills. As a result we now have self-driving cars about to enter the commercial

market. Ontological research, based around description logic, has provided very rich semantics

to represent our world. Algorithms such as the tableaux algorithm have made it possible to use

those rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in

5GP, were dogged by the limited semantic capabilities and memory restrictions on the size of

those ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about AI as a broader subject and touches on Knowledge Representation

and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.

Reasoning is about how we go about the act of thinking using this knowledge. System based

object-oriented languages, like C++, Java and C#, have data definitions called classes for

describing the composition and behaviour of modeled entities. In Java we call exemplars of these

described things beans or instances. However those classification systems are limited to ensure

computational efficiency. Over the years researchers have developed increasingly sophisticated

ways to represent our world. Many of you may already have heard of OWL (Web Ontology

Language). There is always a gap between what can be theoretically represented and what can be

used computationally in practically timely manner, which is why OWL has different sub-languages

from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,

algorithmic advances continue to narrow that gap and improve the expressiveness available to

reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard

discussions comparing the merits of forward chaining, which is reactive and data driven, with

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Rule Engines and Production Rule Systems (PRS)

109

backward chaining, which is passive and query driven. Many other types of reasoning techniques

exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a

few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal

reasoning and correlation. You don't need to understand all these terms to understand and use

Drools. They are just there to give an idea of the range of scope of research topics, which is

actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Artificial Intelligence. Even when using biological

approaches like neural networks, which model the brain and are more about pattern recognition

than thinking, they still build on KRR theory. My first endeavours with Drools were engineering

oriented, as I had no formal training or understanding of KRR. Learning KRR has allowed me to

get a much wider theoretical background. Allowing me to better understand both what I've done

and where I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really

is a vast and fascinating subject that will pay dividends for those who take the time to learn. I

know it did and still does for me. Bracham and Levesque have written a seminal piece of work,

called "Knowledge Representation and Reasoning" that is a must read for anyone wanting to build

strong foundations. I would also recommend the Russel and Norvig book "Artificial Intelligence,

a modern approach" which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of AI and learnt that the core of AI is formed around KRR.

We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving

Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a

high level it has three components:

• Ontology

• Rules

• Data

As previously mentioned the ontology is the representation model we use for our "things". It could

use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,

i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL

based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,

that can be applied to data to produce outcomes. This includes simple systems like form validation

and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by

Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter

a database schema to hold validation rules. The book then shows how to generate Visual Basic

code from those validation rules to validate data entry. While perfectly valid, this is very different

to what we are talking about.

Chapter 5. Hybrid Reasoning

110

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was

based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).

The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule

System and is able to scale to a large number of rules and facts. A Production Rule is a two-part

structure: the engine matches facts and data against Production Rules - also called Productions

or just Rules - to infer conclusions which result in actions.

when

 <conditions>

then

 <actions>;

The process of matching the new or existing facts against Production Rules is called pattern

matching, which is performed by the inference engine. Actions execute in response to changes

in data, like a database trigger; we say this is a data driven approach to reasoning. The actions

themselves can change data, which in turn could match against other rules causing them to fire;

this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named

ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete

algorithm for object oriented systems. Other Rete based engines also have marketing terms

for their proprietary enhancements to Rete, like RetePlus and Rete III. The most common

enhancements are covered in "Production Matching for Large Learning Systems" (1995) by Robert

B. Doorenbos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named

PHREAK; which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches

against are kept in the Working Memory. Facts are asserted into the Working Memory where they

may then be modified or retracted. A system with a large number of rules and facts may result in

many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda

manages the execution order of these conflicting rules using a Conflict Resolution strategy.

Hybrid Reasoning Systems (HRS)

111

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data

driven) or backward chaining (passive query). Here is a quick explanation of these two main types

of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working

memory, which results in one or more rules being concurrently true and scheduled for execution

by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a

conclusion.

Chapter 5. Hybrid Reasoning

112

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven", meaning that we start with a conclusion which the engine

tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as

subgoals, that will help satisfy some unknown part of the current goal. It continues this process

until either the initial conclusion is proven or there are no more subgoals. Prolog is an example

of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as

derivation queries.

Hybrid Reasoning Systems (HRS)

113

Figure 5.3. Backward Chaining

Chapter 5. Hybrid Reasoning

114

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog

(backward). Nowadays many modern systems provide both types of reasoning capabilities. There

are also many other types of reasoning techniques, each of which enlarges the scope of the

problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty

factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems

are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning

as well as some functional programming styles. For this reason we now prefer the term Hybrid

Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this

will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.

Work is also under way to bring OWL based ontological reasoning, which will integrate with our

traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-

like systems. While this is normally acceptable, it's technically incorrect as these are frameworks

to build expert systems with, rather than expert systems themselves. It becomes an expert system

once there is an ontological model to represent the domain and there are facilities for knowledge

acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic

literature, such as the recommended book "Expert Systems" by Peter Jackson.

Recommended Reading

115

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General AI, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly

recommend the following books. "Artificial Intelligence: A Modern Approach" is a must have, for

anyone's bookshelf.

• Introduction to Expert Systems

• Peter Jackson

• Expert Systems: Principles and Programming

Chapter 5. Hybrid Reasoning

116

• Joseph C. Giarratano, Gary D. Riley

• Knowledge Representation and Reasoning

• Ronald J. Brachman, Hector J. Levesque

• Artificial Intelligence : A Modern Approach.

• Stuart Russell and Peter Norvig

Figure 5.5. Recommended Reading

Recommended Reading

117

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

• Production Matching for Large Learning Systems: Rete/UL (1993)

• Robert B. Doorenbos

• Advances In Rete Pattern Matching

• Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

• Collection-Oriented Match

• Anurag Acharya and Milind Tambe (1993)

• The Leaps Algorithm

• Don Batery (1990)

• Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing

• Eric Hanson , Mohammed S. Hasan (1993)

Drools Books

There are currently three Drools books, all from Packt Publishing.

• JBoss Drools Business Rules

• Paul Browne

• Drools JBoss Rules 5.0 Developers Guide

• Michal Bali

• Drools Developer's Cookbook

• Lucas Amador

Chapter 5. Hybrid Reasoning

118

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in

1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/

context/505087/0). The latin word "rete" means "net" or "network". The Rete algorithm can be

broken into 2 parts: rule compilation and runtime execution.

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Rete Algorithm

119

The compilation algorithm describes how the Rules in the Production Memory are processed to

generate an efficient discrimination network. In non-technical terms, a discrimination network is

used to filter data as it propagates through the network. The nodes at the top of the network would

have many matches, and as we go down the network, there would be fewer matches. At the very

bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic

nodes: root, 1-input, 2-input and terminal.

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the

ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do

more work than it needs to. For example, say we have 2 objects: Account and Order. If the rule

engine tried to evaluate every single node against every object, it would waste a lot of cycles. To

make things efficient, the engine should only pass the object to the nodes that match the object

type. The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input

nodes descend from it. This way, if an application asserts a new Account, it won't propagate to

the nodes for the Order object. In Drools when an object is asserted it retrieves a list of valid

ObjectTypesNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist

it scans all the ObjectTypeNodes finding valid matches which it caches in the list. This enables

Drools to match against any Class type that matches with an instanceof check.

Chapter 5. Hybrid Reasoning

120

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftInputAdapterNodes and BetaNodes.

AlphaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality

conditions, many RETE implementations support other operations. For example, Account.name

== "Mr Trout" is a literal condition. When a rule has multiple literal conditions for a single object

type, they are linked together. This means that if an application asserts an Account object, it must

first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's

paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode

combinations for Cheese(name == "cheddar", strength == "strong"):

Figure 5.9. AlphaNodes

Rete Algorithm

121

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using

hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key

to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType

node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode

from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes.

BetaNodes are used to compare 2 objects, and their fields, to each other. The objects may be the

same or different types. By convention we refer to the two inputs as left and right. The left input for

a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.

Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left

input is called the Beta Memory and remembers all incoming tuples. The right input is called the

Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing

on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String

field, as each object enters we can do a hash lookup on that String value. This means when facts

enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup

returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the

Object; which is referred to as a partial match; and then propagated to the next node.

Chapter 5. Hybrid Reasoning

122

Figure 5.10. JoinNode

To enable the first Object, in the above case Cheese, to enter the network we use a

LeftInputNodeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we

say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule

generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows

us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule

when

 Cheese($cheddar : name == "cheddar")

 $person : Person(favouriteCheese == $cheddar)

Rete Algorithm

123

then

 System.out.println($person.getName() + " likes cheddar");

end

rule

when

 Cheese($cheddar : name == "cheddar")

 $person : Person(favouriteCheese != $cheddar)

then

 System.out.println($person.getName() + " does not like cheddar");

end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the

beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the

same it would have also been shared.

Chapter 5. Hybrid Reasoning

124

Figure 5.11. Node Sharing

ReteOO Algorithm

125

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm

and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing

• Sharing is applied to both the alpha and beta network. The beta network sharing is always from

the root pattern.

Alpha indexing

• Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

• Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts

for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

• Join matches did not contain any references to their parent or children matches. Deletions would

have to recalculate all join matches again, which involves recreating all those join match objects,

to be able to find the parts of the network where the tuples should be deleted. This is called

symmetrical propagation. A tree graph provides parent and children references, so a deletion

is just a matter of following those references. This is asymmetrical propagation. The result is

faster and less impact on the GC, and more robust because changes in values will not cause

memory leaks if they happen without the engine being notified.

Modify-in-place

• Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as

a single pass, every node is inspected

Property reactive

• Also called "new trigger condition". Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion

and also helps with performance.

Sub-networks

• Not, Exists and Accumulate can each have nested conditional elements, which forms sub

networks.

Chapter 5. Hybrid Reasoning

126

Backward Chaining

• Prolog style derivation trees for backward chaining are supported. The implementation is stack

based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

• Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS

only turns it on, on first use. Further it's only turned on for that object type, so other object types

do not incur the runtime cost.

Heap based agenda

• The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear

search or maintenance approach.

Dynamic Rules

• Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.

The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,

and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer

classified as a RETE implementation. In the same way that once an animal evolves beyond a

certain point and key characteristics are changed, the animal becomes classified as new species.

There are two key RETE characteristics that strongly identify any derivative strains, regardless of

optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,

update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is

characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.

Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,

RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO

section. In addition it adds the following set of enhancements, which are explained in more detail

in the following paragraphs.

• Three layers of contextual memory; Node, Segment and Rule memories.

• Rule, segment and node based linking.

• Lazy (delayed) rule evaluation.

PHREAK Algorithm

127

• Isolated rule evaluation.

• Set oriented propagations.

• Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can

happen while rules are unlinked. The insert, update and deletes actions are queued before

entering the beta network. A simple heuristic, based on the rule most likely to result in firings, is

used to select the next rule for evaluation; this delays the evaluation and firing of the other rules.

Only once a rule has all right inputs populated will the rule be considered linked in, although no

work is yet done. Instead a goal is created, that represents the rule, and placed into a priority

queue; which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only

the active AgendaGroup will inspect its queue, popping the goal for the rule with the highest

salience and submitting it for evaluation. So the work done shifts from the insert, update, delete

phase to the fireAllRules phase. Only the rule for which the goal was created is evaluated, other

potential rule evaluations from those facts are delayed. While individual rules are evaluated, node

sharing is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be

propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.

For each child node that it reaches it will attempt to join with the other side of the node, again each

successful join attempt will be propagated straight away. This creates a descent recursion effect.

Thrashing the network of nodes as it ripples up and down, left and right from the point of entry

into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule

being evaluated it will visit the first node and process all queued insert, update and deletes. The

results are added to a set and the set is propagated to the child node. In the child node all queued

inset, update and deletes are processed, adding the results to the same set. Once finished that set

is propagated to the next child node, and so on until the terminal node is reached. This creates a

single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a

batch process effect which can provide performance advantages for certain rule constructs; such

as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-

core machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.

When the rule network is built segments are created for nodes that are shared by the same set

of rules. A rule itself is made up from a path of segments, although if there is no sharing that will

be a single segment. A bit-mask offset is assigned to each node in the segment. Also another

bit mask (the layering) is assigned to each segment in the rule's path. When there is at least

one input (data propagation) the node's bit is set to on. When each node has its bit set to on the

segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also

set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal

is created to schedule the rule for evaluation. The same bit-mask technique is used to also track

dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation

if it's considered dirty since it was last evaluated.

Chapter 5. Hybrid Reasoning

128

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule

instances because one of the joins has no data. This is possible in RETE and it will merrily churn

away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are

used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future

work would attempt to delay the linking even further; using techniques such as arc consistency to

determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of

memory. This allows for much more contextual understanding during evaluation of a Rule.

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with

bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

PHREAK Algorithm

129

Figure 5.13. Example1: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.

A is placed in its own segment, resulting in two segments per rule. Those two segments form a

path, for their respective rules. The first segment is shared by both paths. When A is linked the

segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to

on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bit 2 to

be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created

to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each

segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was

to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a

segmentation split and will create peered tuples for each insert, update and delete in the set and

add them to R2's staging memory. Those tuples will be merged with any existing staged tuples

and wait for R2 to eventually be evaluated.

Chapter 5. Hybrid Reasoning

130

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only

the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has

3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared

by R3 and R4.

PHREAK Algorithm

131

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.

In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does

not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network

forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

Chapter 5. Hybrid Reasoning

132

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-

network. This results in the sub-network segment being split into two.

PHREAK Algorithm

133

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink

a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has

already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused

and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment

and the sub-network segment. The sub-network segment is evaluated first, when the set reaches

the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The

previous StackEntry is then resumed where it can process the results of the sub network. This

has the added benefit that all work is processed in a batch, before propagating to the child node;

which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation

reaches a query node it again pauses the current evaluation, by placing it on the stack. The query

is then evaluated which produces a result set, which is saved in a memory location for the resumed

StackEntry to pick up and propagate to the child node. If the query itself called other queries the

Chapter 5. Hybrid Reasoning

134

process would repeat, with the current query being paused and a new evaluation setup for the

current query node.

One final point on performance. One single rule in general will not evaluate any faster with

PHREAK than it does with RETE. For a given rule and same data set, which using a root context

object to enable and disable matching, both attempt the same amount of matches and produce

the same number of rule instances, and take roughly the same time. Except for the use case with

subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and

with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the

joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system

grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times,

regardless of the group. The same is true for salience. Which is why root context objects are often

used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and

within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule

instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root

context objects are no longer needed and potentially counter productive to performance, as they

force the flushing and recreation of matches for rules.

Chapter 6.

135

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a

rule engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the

complexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be

called like a function passing it some data and then receiving some results back. Some common

use cases for stateless sessions are, but not limited to:

• Validation

• Is this person eligible for a mortgage?

• Calculation

• Compute a mortgage premium.

• Routing and Filtering

• Filter incoming messages, such as emails, into folders.

• Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {

 private String name;

 private int age;

 private boolean valid;

 // getter and setter methods here

}

Now that we have our data model we can write our first rule. We assume that the application uses

rules to reject invalid applications. As this is a simple validation use case we will add a single rule

to disqualify any applicant younger than 18.

package com.company.license

rule "Is of valid age"

when

Chapter 6. User Guide

136

 $a : Applicant(age < 18)

then

 $a.setValid(false);

end

To make the engine aware of data, so it can be processed against the rules, we have to insert

the data, much like with a database. When the Applicant instance is inserted into the engine it

is evaluated against the constraints of the rules, in this case just two constraints for one rule.

We say two because the type Applicant is the first object type constraint, and age < 18 is the

second field constraint. An object type constraint plus its zero or more field constraints is referred

to as a pattern. When an inserted instance satisfies both the object type constraint and all the field

constraints, it is said to be matched. The $a is a binding variable which permits us to reference the

matched object in the consequence. There its properties can be updated. The dollar character ('$')

is optional, but it helps to differentiate variable names from field names. The process of matching

patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short

for "Drools Rule Language". Let's call this file licenseApplication.drl, and store it in a Kie Project.

A Kie Project has the structure of a normal Maven project with an additional file (kmodule.xml)

defining the KieBases and KieSessions that can be created. This file has to be placed in the

resources/META-INF folder of the Maven project while all the other Drools artifacts, such as the

licenseApplication.drl containing the former rule, must be stored in the resources folder or in any

other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

<?xml version="1.0" encoding="UTF-8"?>

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule"/>

At this point it is possible to create a KieContainer that reads the files to be built, from the

classpath.

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

The above code snippet compiles all the DRL files found on the classpath and put the result of

this compilation, a KieModule, in the KieContainer. If there are no errors, we are now ready to

create our session from the KieContainer and execute against some data:

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

Stateless Knowledge Session

137

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of

18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can

execute against any object implementing Iterable, such as a collection. Let's add another class

called Application, which has the date of the application, and we'll also move the boolean valid

field to the Application class.

public class Applicant {

 private String name;

 private int age;

 // getter and setter methods here

}

public class Application {

 private Date dateApplied;

 private boolean valid;

 // getter and setter methods here

}

We will also add another rule to validate that the application was made within a period of time.

package com.company.license

rule "Is of valid age"

when

 Applicant(age < 18)

 $a : Application()

then

 $a.setValid(false);

end

rule "Application was made this year"

when

 $a : Application(dateApplied > "01-jan-2009")

then

 $a.setValid(false);

end

Chapter 6. User Guide

138

Unfortunately a Java element does not implement the Iterable interface, so we have to use

the JDK converter method Arrays.asList(...). The code shown below executes against an

iterable list, where all collection elements are inserted before any matched rules are fired.

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

Application application = new Application();

assertTrue(application.isValid());

ksession.execute(Arrays.asList(new Object[] { application, applicant }));

assertFalse(application.isValid());

The two execute methods execute(Object object) and execute(Iterable objects) are

actually convenience methods for the interface BatchExecutor's method execute(Command

command).

The KieCommands commands factory, obtainable from the KieServices like all other factories of

the KIE API, is used to create commands, so that the following is equivalent to execute(Iterable

it):

ksession.execute(kieServices.getCommands().newInsertElements(Arrays.asList(new Object[] { application, applicant }));

Batch Executor and Command Factory are particularly useful when working with multiple

Commands and with output identifiers for obtaining results.

KieCommands kieCommands = kieServices.getCommands();

List<Command> cmds = new ArrayList<Command>();

cmds.add(kieCommands.newInsert(new Person("Mr John

 Smith"), "mrSmith", true, null));

cmds.add(kieCommands.newInsert(new Person("Mr John

 Doe"), "mrDoe", true, null));

BatchExecutionResults results = ksession.execute(kieCommands.newBatchExecution(cmds));

assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

CommandFactory supports many other Commands that can be used in the BatchExecutor like

StartProcess, Query, and SetGlobal.

6.1.2. Stateful Knowledge Session

Stateful Sessions are long lived and allow iterative changes over time. Some common use cases

for Stateful Sessions are, but not limited to:

• Monitoring

Stateful Knowledge Session

139

• Stock market monitoring and analysis for semi-automatic buying.

• Diagnostics

• Fault finding, medical diagnostics

• Logistics

• Parcel tracking and delivery provisioning

• Compliance

• Validation of legality for market trades.

In contrast to a Stateless Session, the dispose() method must be called afterwards to ensure

there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions

when they are created. Since Stateful Knowledge Session is the most commonly used session

type it is just named KieSession in the KIE API. KieSession also supports the BatchExecutor

interface, like StatelessKieSession, the only difference being that the FireAllRules command

is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four

classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,

we represent that with a single Fire instance.

public class Room {

 private String name

 // getter and setter methods here

}

public class Sprinkler {

 private Room room;

 private boolean on;

 // getter and setter methods here

}

public class Fire {

 private Room room;

 // getter and setter methods here

}

public class Alarm {

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data

were introduced. That example assumed that only a single instance of each object type was ever

inserted and thus only used literal constraints. However, a house has many rooms, so rules must

express relationships between objects, such as a sprinkler being in a certain room. This is best

done by using a binding variable as a constraint in a pattern. This "join" process results in what

is called cross products, which are covered in the next section.

Chapter 6. User Guide

140

When a fire occurs an instance of the Fire class is created, for that room, and inserted into the

session. The rule uses a binding on the room field of the Fire object to constrain matching to

the sprinkler for that room, which is currently off. When this rule fires and the consequence is

executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler"

when

 Fire($room : room)

 $sprinkler : Sprinkler(room == $room, on == false)

then

 modify($sprinkler) { setOn(true) };

 System.out.println("Turn on the sprinkler for room " + $room.getName());

end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule

we use the modify statement, which acts as a sort of "with" statement. It may contain a series

of comma separated Java expressions, i.e., calls to setters of the object selected by the modify

statement's control expression. This modifies the data, and makes the engine aware of those

changes so it can reason over them once more. This process is called inference, and it's essential

for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the

engine does not need to be aware of changes to data. Inference can also be turned off explicitly

by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?

How do we determine that a fire has been extinguished, i.e., that there isn't a Fire object any

more? Previously the constraints have been sentences according to Propositional Logic, where

the engine is constraining against individual instances. Drools also has support for First Order

Logic that allows you to look at sets of data. A pattern under the keyword not matches when

something does not exist. The rule given below turns the sprinkler off as soon as the fire in that

room has disappeared.

rule "When the fire is gone turn off the sprinkler"

when

 $room : Room()

 $sprinkler : Sprinkler(room == $room, on == true)

 not Fire(room == $room)

then

 modify($sprinkler) { setOn(false) };

 System.out.println("Turn off the sprinkler for room " + $room.getName());

end

While there is one sprinkler per room, there is just a single alarm for the building. An Alarm object

is created when a fire occurs, but only one Alarm is needed for the entire building, no matter how

Stateful Knowledge Session

141

many fires occur. Previously not was introduced to match the absence of a fact; now we use its

complement exists which matches for one or more instances of some category.

rule "Raise the alarm when we have one or more fires"

when

 exists Fire()

then

 insert(new Alarm());

 System.out.println("Raise the alarm");

end

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used

again.

rule "Cancel the alarm when all the fires have gone"

when

 not Fire()

 $alarm : Alarm()

then

 delete($alarm);

 System.out.println("Cancel the alarm");

end

Finally there is a general health status message that is printed when the application first starts

and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"

when

 not Alarm()

 not Sprinkler(on == true)

then

 System.out.println("Everything is ok");

end

As we did in the Stateless Session example, the above rules should be placed in a single DRL

file and saved into the resouces folder of your Maven project or any of its subfolder. As before,

we can then obtain a KieSession from the KieContainer. The only difference is that this time

we create a Stateful Session, whereas before we created a Stateless Session.

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

Chapter 6. User Guide

142

KieSession ksession = kContainer.newKieSession();

With the session created it is now possible to iteratively work with it over time. Four Room objects

are created and inserted, as well as one Sprinkler object for each room. At this point the engine

has done all of its matching, but no rules have fired yet. Calling ksession.fireAllRules() allows

the matched rules to fire, but without a fire that will just produce the health message.

String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};

Map<String,Room> name2room = new HashMap<String,Room>();

for(String name: names){

 Room room = new Room(name);

 name2room.put(name, room);

 ksession.insert(room);

 Sprinkler sprinkler = new Sprinkler(room);

 ksession.insert(sprinkler);

}

ksession.fireAllRules();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned FactHandle.

A Fact Handle is an internal engine reference to the inserted instance and allows instances to be

retracted or modified at a later point in time. With the fires now in the engine, once fireAllRules()

is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(name2room.get("kitchen"));

Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);

FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

> Raise the alarm

> Turn on the sprinkler for room kitchen

> Turn on the sprinkler for room office

Methods versus Rules

143

After a while the fires will be put out and the Fire instances are retracted. This results in the

sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed

again.

ksession.delete(kitchenFireHandle);

ksession.delete(officeFireHandle);

ksession.fireAllRules();

> Cancel the alarm

> Turn off the sprinkler for room office

> Turn off the sprinkler for room kitchen

> Everything is ok

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value

and power of a declarative rule system.

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do I call a rule?"

After the last section, you are now feeling like a rule expert and the answer to that is obvious, but

let's summarize the differences nonetheless.

public void helloWorld(Person person) {

 if (person.getName().equals("Chuck")) {

 System.out.println("Hello Chuck");

 }

}

• Methods are called directly.

• Specific instances are passed.

• One call results in a single execution.

rule "Hello World" when

 Person(name == "Chuck")

then

 System.out.println("Hello Chuck");

end

• Rules execute by matching against any data as long it is inserted into the engine.

Chapter 6. User Guide

144

• Rules can never be called directly.

• Specific instances cannot be passed to a rule.

• Depending on the matches, a rule may fire once or several times, or not at all.

6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment

that the data from the fire alarm example were used in combination with the following rule where

there are no field constraints:

rule "Show Sprinklers" when

 $room : Room()

 $sprinkler : Sprinkler()

then

 System.out.println("room:" + $room.getName() +

 " sprinkler:" + $sprinkler.getRoom().getName());

end

In SQL terms this would be like doing select * from Room, Sprinkler and every row in the

Room table would be joined with every row in the Sprinkler table resulting in the following output:

room:office sprinkler:office

room:office sprinkler:kitchen

room:office sprinkler:livingroom

room:office sprinkler:bedroom

room:kitchen sprinkler:office

room:kitchen sprinkler:kitchen

room:kitchen sprinkler:livingroom

room:kitchen sprinkler:bedroom

room:livingroom sprinkler:office

room:livingroom sprinkler:kitchen

room:livingroom sprinkler:livingroom

room:livingroom sprinkler:bedroom

room:bedroom sprinkler:office

room:bedroom sprinkler:kitchen

room:bedroom sprinkler:livingroom

room:bedroom sprinkler:bedroom

These cross products can obviously become huge, and they may very well contain spurious data.

The size of cross products is often the source of performance problems for new rule authors. From

this it can be seen that it's always desirable to constrain the cross products, which is done with

the variable constraint.

Execution Control

145

rule

when

 $room : Room()

 $sprinkler : Sprinkler(room == $room)

then

 System.out.println("room:" + $room.getName() +

 " sprinkler:" + $sprinkler.getRoom().getName());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually

HQL) the corresponding query would be select * from Room, Sprinkler where Room ==

Sprinkler.room.

room:office sprinkler:office

room:kitchen sprinkler:kitchen

room:livingroom sprinkler:livingroom

room:bedroom sprinkler:bedroom

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule

that execution in a deterministic order.

During actions on the RuleRuntime, rules may become fully matched and eligible for execution;

a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a

Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.

The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence

(the RHS itself) or the main Java application process. Once the Consequence has finished or

the main Java application process calls fireAllRules() the engine switches to the Agenda

Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it

fires the found rule, switching the phase back to Rule Runtime Actions.

Chapter 6. User Guide

146

Figure 6.1. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling

application. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a

new example will be explored that handles cashflow calculations over date periods. The state of

the engine will be illustratively shown at key stages to help get a better understanding of what

is actually going on under the hood. Three classes will be used, as shown below. This will help

us grow our understanding of pattern matching and joins further. We will then use this to illustate

different techniques for execution control.

public class CashFlow {

 private Date date;

 private double amount;

 private int type;

 long accountNo;

 // getter and setter methods here

}

Rule Matches and Conflict Sets.

147

public class Account {

 private long accountNo;

 private double balance;

 // getter and setter methods here

}

public AccountPeriod {

 private Date start;

 private Date end;

 // getter and setter methods here

}

By now you already know how to create KieBases and how to instantiate facts to populate the

KieSession, so tables will be used to show the state of the inserted data, as it makes things

clearer for illustration purposes. The tables below show that a single fact was inserted for the

Account. Also inserted are a series of debits and credits as CashFlow objects for that account,

extending over two quarters.

Figure 6.2. CashFlows and Account

Two rules can be used to determine the debit and credit for that quarter and update the Account

balance. The two rules below constrain the cashflows for an account for a given time period. Notice

the "&&" which use short cut syntax to avoid repeating the field name twice.

rule "increase balance for credits"

when

 ap : AccountPeriod()

 acc : Account($accountNo :

 accountNo)

 CashFlow(type == CREDIT,

 accountNo == $accountNo,

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance += $amount;

rule "decrease balance for debits"

when

 ap : AccountPeriod()

 acc : Account($accountNo :

 accountNo)

 CashFlow(type == DEBIT,

 accountNo == $accountNo,

 date >= ap.start && <=

 ap.end,

 $amount : amount)

then

Chapter 6. User Guide

148

end acc.balance -= $amount;

end

Earlier we showed how rules would equate to SQL, which can often help people with an SQL

background to understand rules. The two rules above can be represented with two views and a

trigger for each view, as below:

Table 6.1.

select * from Account acc,

 Cashflow cf,

 AccountPeriod ap

where acc.accountNo == cf.accountNo

 and

 cf.type == CREDIT and

 cf.date >= ap.start and

 cf.date <= ap.end

select * from Account acc,

 Cashflow cf,

 AccountPeriod ap

where acc.accountNo == cf.accountNo

 and

 cf.type == DEBIT and

 cf.date >= ap.start and

 cf.date <= ap.end

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

If the AccountPeriod is set to the first quarter we constrain the rule "increase balance for credits"

to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched

during the insertion stage and, as you discovered in the previous chapter, does not fire straight

away, but only after fireAllRules() is called. Meanwhile, the rule plus its matched data is placed

on the Agenda and referred to as an RuIe Match or Rule Instance. The Agenda is a table of Rule

Matches that are able to fire and have their consequences executed, as soon as fireAllRules()

is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is

determine by a conflict resolution strategy. Notice that the order of execution so far is considered

arbitrary.

Rule Matches and Conflict Sets.

149

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Figure 6.5. CashFlows and Account

If the AccountPeriod is updated to the second quarter, we have just a single matched row of

data, and thus just a single Rule Match on the Agenda.

The firing of that Activation results in a balance of 25.

Figure 6.6. CashFlows and Account

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule

Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to

Chapter 6. User Guide

150

determine the order of execution. The Drools strategy is very simple and based around a salience

value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value

the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author

the rules without worrying about a "flow". However when a flow is needed a number of possibilities

exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore

facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be

executed after all the debits and credits have been applied for all accounts. We achieve this by

assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.

rule "Print balance for AccountPeriod"

 salience -50

 when

 ap : AccountPeriod()

 acc : Account()

 then

 System.out.println(acc.accountNo + " : " + acc.balance);

end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in

arbitrary order, while the print rule is ranked last, to execute afterwards.

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The

stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

Rule Matches and Conflict Sets.

151

ksession.getAgenda().getAgendaGroup("Group A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is

poped from the stack and the next group is evaluated.

Table 6.3.

rule "increase balance for credits"

 agenda-group "calculation"

when

 ap : AccountPeriod()

 acc : Account($accountNo :

 accountNo)

 CashFlow(type == CREDIT,

 accountNo == $accountNo,

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance += $amount;

end

rule "Print balance for AccountPeriod"

 agenda-group "report"

when

 ap : AccountPeriod()

 acc : Account()

then

 System.out.println(acc.accountNo +

 " : " +

 acc.balance);

end

First set the focus to the "report" group and then by placing the focus on "calculation" we ensure

that group is evaluated first.

Agenda agenda = ksession.getAgenda();

agenda.getAgendaGroup("report").setFocus();

agenda.getAgendaGroup("calculation").setFocus();

ksession.fireAllRules();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively

specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools

plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed

before the reporting rules.

Chapter 6. User Guide

152

The use of the ruleflow-group attribute in a rule is shown below.

Table 6.4.

rule "increase balance for credits"

 ruleflow-group "calculation"

when

 ap : AccountPeriod()

 acc : Account($accountNo :

 accountNo)

 CashFlow(type == CREDIT,

 accountNo == $accountNo,

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance += $amount;

end

rule "Print balance for AccountPeriod"

 ruleflow-group "report"

when

 ap : AccountPeriod()

 acc : Account()

then

 System.out.println(acc.accountNo +

 " : " +

 acc.balance);

end

Declarative Agenda

153

6.2.3. Declarative Agenda

Warning

Declarative Agenda is experimental, and all aspects are highly likely to change

in the future. @Eager and @Direct are temporary annotations to control the

behaviour of rules, which will also change as Declarative Agenda evolves.

Annotations instead of attributes where chosen, to reflect their experimental nature.

The declarative agenda allows to use rules to control which other rules can fire and when. While

this will add a lot more overhead than the simple use of salience, the advantage is it is declarative

and thus more readable and maintainable and should allow more use cases to be achieved in

a simpler fashion.

This feature is off by default and must be explicitly enabled, that is because it is considered highly

experimental for the moment and will be subject to change, but can be activated on a given

KieBase by adding the declarativeAgenda='enabled' attribute in the corresponding kbase tag of

the kmodule.xml file as in the following example.

Example 6.1. Enabling the Declarative Agenda

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="DeclarativeKBase" declarativeAgenda="enabled">

 <ksession name="KSession">

 </kbase>

</kmodule>

The basic idea is:

• All rule's Matches are inserted into WorkingMemory as facts. So you can now do pattern

matching against a Match. The rule's metadata and declarations are available as fields on the

Match object.

• You can use the kcontext.blockMatch(Match match) for the current rule to block the selected

match. Only when that rule becomes false will the match be eligible for firing. If it is already

eligible for firing and is later blocked, it will be removed from the agenda until it is unblocked.

• A match may have multiple blockers and a count is kept. All blockers must became false for the

counter to reach zero to enable the Match to be eligible for firing.

• kcontext.unblockAllMatches(Match match) is an over-ride rule that will remove all blockers

regardless

Chapter 6. User Guide

154

• An activation may also be cancelled, so it never fires with cancelMatch

• An unblocked Match is added to the Agenda and obeys normal salience, agenda groups,

ruleflow groups etc.

• The @Direct annotations allows a rule to fire as soon as it's matched, this is to be used for rules

that block/unblock matches, it is not desirable for these rules to have side effects that impact

else where.

Example 6.2. New RuleContext methods

void blockMatch(Match match);

void unblockAllMatches(Match match);

void cancelMatch(Match match);

Here is a basic example that will block all matches from rules that have metadata

@department('sales'). They will stay blocked until the blockerAllSalesRules rule becomes false,

i.e. "go2" is retracted.

Example 6.3. Block rules based on rule metadata

rule rule1 @Eager @department('sales') when

 $s : String(this == 'go1')

then

 list.add(kcontext.rule.name + ':' + $s);

end

rule rule2 @Eager @department('sales') when

 $s : String(this == 'go1')

then

 list.add(kcontext.rule.name + ':' + $s);

end

rule blockerAllSalesRules @Direct @Eager when

 $s : String(this == 'go2')

 $i : Match(department == 'sales')

then

 list.add($i.rule.name + ':' + $s);

 kcontext.blockMatch($i);

end

Warning

Further than annotate the blocking rule with @Direct, it is also necessary to

annotate all the rules that could be potentially blocked by it with @Eager. This

is because, since the Match has to be evaluated by the pattern matching of the

Inference

155

blocking rule, the potentially blocked ones cannot be evaluated lazily, otherwise

won't be any Match to be evaluated.

This example shows how you can use active property to count the number of active or inactive

(already fired) matches.

Example 6.4. Count the number of active/inactive Matches

rule rule1 @Eager @department('sales') when

 $s : String(this == 'go1')

then

 list.add(kcontext.rule.name + ':' + $s);

end

rule rule2 @Eager @department('sales') when

 $s : String(this == 'go1')

then

 list.add(kcontext.rule.name + ':' + $s);

end

rule rule3 @Eager @department('sales') when

 $s : String(this == 'go1')

then

 list.add(kcontext.rule.name + ':' + $s);

end

rule countActivateInActive @Direct @Eager when

 $s : String(this == 'go2')

 $active : Number(this == 1) from accumulate($a : Match(department ==

 'sales', active == true), count($a))

 $inActive : Number(this == 2) from accumulate($a : Match(department

 == 'sales', active == false), count($a))

then

 kcontext.halt();

end

6.3. Inference

6.3.1. Bus Pass Example

Inference has a bad name these days, as something not relevant to business use cases and

just too complicated to be useful. It is true that contrived and complicated examples occur with

inference, but that should not detract from the fact that simple and useful ones exist too. But more

than this, correct use of inference can crate more agile and less error prone business rules, which

are easier to maintain.

So what is inference? Something is inferred when we gain knowledge of something from using

previous knowledge. For example, given a Person fact with an age field and a rule that provides

age policy control, we can infer whether a Person is an adult or a child and act on this.

Chapter 6. User Guide

156

rule "Infer Adult"

when

 $p : Person(age >= 18)

then

 insert(new IsAdult($p))

end

Due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted

for them. This fact is special in that it is known as a relation. We can use this inferred relation

in any rule:

$p : Person()

IsAdult(person == $p)

So now we know what inference is, and have a basic example, how does this facilitate good rule

design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children

become adults, henceforth referred to as ID department. They might have a decision table that

includes logic like this, which says when an adult living in London is 18 or over, issue the card:

However the ID department does not set the policy on who an adult is. That's done at a central

government level. If the central government were to change that age to 21, this would initiate a

change management process. Someone would have to liaise with the ID department and make

sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an

agile environment, and change becomes costly and error prone. Also the card department is

managing more information than it needs to be aware of with its "monolithic" approach to rules

management which is "leaking" information better placed elsewhere. By this I mean that it doesn't

care what explicit "age >= 18" information determines whether someone is an adult, only that they

are an adult.

Bus Pass Example

157

In contrast to this, let's pursue an approach where we split (de-couple) the authoring

responsibilities, so that both the central government and the ID department maintain their own

rules.

It's the central government's job to determine who is an adult. If they change the law they just

update their central repository with the new rules, which others use:

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the

seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.

Now if anyone uses the above rules, they no longer need to be aware of explicit information that

determines whether someone is an adult or not. They can just use the inferred fact:

While the example is very minimal and trivial it illustrates some important points. We started with a

monolithic and leaky approach to our knowledge engineering. We created a single decision table

that had all possible information in it and that leaks information from central government that the

ID department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it

needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The

use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=

18".

So a general rule of thumb when doing your knowledge engineering is:

• Bad

• Monolithic

Chapter 6. User Guide

158

• Leaky

• Good

• De-couple knowledge responsibilities

• Encapsulate knowledge

• Provide semantic abstractions for those encapsulations

6.4. Truth Maintenance with Logical Objects

6.4.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was

asserted will be automatically retracted when the conditions that asserted it in the first place are

no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't

any single condition that supports the logical assertion.

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.

Using a HashMap and a counter, we track how many times a particular equality is stated; this

means we count how many different instances are equal.

When we logically insert an object during a RHS execution we are said to justify it, and it is

considered to be justified by the firing rule. For each logical insertion there can only be one equal

object, and each subsequent equal logical insertion increases the justification counter for this

logical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and

the counter is decreased accordingly. As soon as we have no more justifications the logical object

is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return

null. If we state an object that has an existing equal object that is justified we override the Fact;

how this override works depends on the configuration setting WM_BEHAVIOR_PRESERVE. When the

property is set to discard we use the existing handle and replace the existing instance with the

new Object, which is the default behavior; otherwise we override it to stated but we create an

new FactHandle.

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it

returns a new FactHandle, this also indicates the Object was propagated through the network.

Overview

159

Figure 6.9. Stated Insertion

Chapter 6. User Guide

160

Figure 6.10. Logical Insertion

6.4.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,

either a child or adult pass.

rule "Issue Child Bus Pass" when

 $p : Person(age < 16)

then

 insert(new ChildBusPass($p));

end

rule "Issue Adult Bus Pass" when

 $p : Person(age >= 16)

then

 insert(new AdultBusPass($p));

Overview

161

end

As before the above example is considered monolithic, leaky and providing poor separation of

concerns.

As before we can provide a more robust application with a separation of concerns using inference.

Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when

 $p : Person(age < 16)

then

 insertLogical(new IsChild($p))

end

rule "Infer Adult" when

 $p : Person(age >= 16)

then

 insertLogical(new IsAdult($p))

end

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). When a fact is logically

inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule

becomes false the fact is automatically retracted. This works particularly well as the two rules are

mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once

the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

Returning to the code to issue bus passes, these two rules can + logically insert the ChildBusPass

and AdultBusPass facts, as the TMS + supports chaining of logical insertions for a cascading set

of retracts.

rule "Issue Child Bus Pass" when

 $p : Person()

 IsChild(person == $p)

then

 insertLogical(new ChildBusPass($p));

end

rule "Issue Adult Bus Pass" when

 $p : Person(age >= 16)

 IsAdult(person =$p)

then

 insertLogical(new AdultBusPass($p));

end

Chapter 6. User Guide

162

Now when a person changes from being 15 to 16, not only is the IsChild fact automatically

retracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the

'not' conditional element to handle notifications, in this situation, a request for the returning of the

pass. So when the TMS automatically retracts the ChildBusPass object, this rule triggers and

sends a request to the person:

rule "Return ChildBusPass Request "when

 $p : Person()

 not(ChildBusPass(person == $p))

then

 requestChildBusPass($p);

end

6.4.1.2. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your

Fact objects (which may be JavaBeans) must override equals and hashCode methods (from

java.lang.Object) correctly. As the truth maintenance system needs to know when two different

physical objects are equal in value, both equals and hashCode must be overridden correctly, as

per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their

hashCode methods return the same values. See the Java API for more details (but do keep in

mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always

equality.

6.5. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact" (ref. Wikipedia) way of representing conditional logic,

and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),

and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,

OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table

editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very

briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered

into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can

be taken advantage of.

When to Use Decision Tables

163

6.5.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates

and data: each row of a decision table provides data that is combined with a template to generate

a rule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy

to continue this way, you can also manage your business rules this way. This also assumes you are

happy to manage packages of rules in .xls or .csv files. Decision tables are not recommended

for rules that do not follow a set of templates, or where there are a small number of rules (or if there

is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there

can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

6.5.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

Figure 6.11. Using Excel to edit a decision table

Chapter 6. User Guide

164

Figure 6.12. Multiple actions for a rule row

Figure 6.13. Using OpenOffice.org

In the above examples, the technical aspects of the decision table have been collapsed away

(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,

E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning

is indicated by the headers in Row 16. Column B is just a description. It is customary to use color

to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not

necessarily the case. Ideally, rules are authored without regard for the order of

How Decision Tables Work

165

rows, simply because this makes maintenance easier, as rows will not need to be

shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules

that match may fire. (Some people are confused by this. It is possible to clear the agenda when a

rule fires and simulate a very simple decision table where only the first match effects an action.)

Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped

where they share common templates, yet at the end of the day they are all combined into one rule

package. Decision tables are essentially a tool to generate DRL rules automatically.

Figure 6.14. A real world example using multiple tables for grouping like

rules

6.5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in

that row is either a condition or action for that rule.

Chapter 6. User Guide

166

Figure 6.15. Rows and columns

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the

starting row and column). Other keywords are also used to define other package level attributes

(covered later). It is important to keep the keywords in one column. By convention the second

column ("B") is used for this, but it can be any column (convention is to leave a margin on the

left for notes). In the following diagram, C is actually the column where it starts. Everything to the

left of this is ignored.

If we expand the hidden sections, it starts to make more sense how it works; note the keywords

in column C.

How Decision Tables Work

167

Figure 6.16. Expanded for rule templates

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name

to be used in the rule package that will encompass all the rules. This name is optional, using a

default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The

RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule

templates. After the RuleTable keyword there is a name, used to prefix the names of the generated

rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all

spreadsheet files in the same KieBase. If that's not the case, some rules might

have the same name and only 1 of them will be applied. To show such ignored

rules, raise the severity of such rule name conflicts.

The column of RuleTable indicates the column in which the rules start; columns to the left are

ignored.

Chapter 6. User Guide

168

Note

In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and

ACTION indicate that the data in the columns below are for either the LHS or the RHS parts of a

rule. There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option

is not in use, the row must be left blank; however this option is usually found to be quite useful.

When using this row, the values in the cells below (row 16) become constraints on that object type.

In the above case, it generates Person(age=="42") and Cheese(type=="stilton"), where 42

and "stilton" come from row 18. In the above example, the "==" is implicit; if just a field name is

given the translator assumes that it is to generate an exact match.

Note

An ObjectType declaration can span columns (via merged cells), meaning that all

columns below the merged range are to be combined into one set of constraints

within a single pattern matching a single fact at a time, as opposed to non-merged

cells containing the same ObjectType, but resulting in different patterns, potentially

matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to

indicate where data from the cells below should be interpolated. (For multiple insertions, use "$1",

"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;

it may contain textual descriptions of the column's purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to

generate rules. If a cell contains no data, then its template is ignored. (This would mean that some

condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.

Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row

positions of keywords like this do not matter (most people put them at the top) but their column

should be the same one where the RuleTable or RuleSet keywords should appear. In our case

column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18

rule "Cheese_fans_18"

when

 Person(age=="42")

 Cheese(type=="stilton")

then

Spreadsheet Syntax

169

 list.add("Old man stilton");

end

Note

The constraints age=="42" and type=="stilton" are interpreted as single

constraints, to be added to the respective ObjectType in the cell above. If the cells

above were spanned, then there could be multiple constraints on one "column".

Warning

Very large decision tables may have very large memory requirements.

6.5.4. Spreadsheet Syntax

6.5.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,

marked by a cell labelled RuleSet, defines all DRL items except rules. The other one may occur

repeatedly and is to the right and below a cell whose contents begin with RuleTable. These areas

represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the RuleSet cell and containing a keyword

designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the

rules derived from it, actions for the consequences of the rules, and the values of individual rule

attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and

actions, and an arbitrary selection of columns for rule attributes, at most one column for each of

these. The first four rows following the row with the cell marked with RuleTable are earmarked

as header area, mostly used for the definition of code to construct the rules. It is any additional

row below these four header rows that spawns another rule, with its data providing for variations

in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.

While entries for constructs may be used repeatedly, each rule attribute may be given at most

once, and it applies to all rules unless it is overruled by the same attribute being defined within

the Rule Table area.

Chapter 6. User Guide

170

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a

keyword and the one to its right the value, as shown in the table below. This sequence of cell

pairs may be interrupted by blank rows or even a Rule Table, as long as the column marked by

RuleSet is upheld as the one containing the keyword.

Table 6.5. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the

generated DRL file. Optional,

the default is rule_table.

Must be First entry.

Sequential "true" or "false". If "true", then

salience is used to ensure that

rules fire from the top down.

Optional, at most once. If

omitted, no firing order is

imposed.

EscapeQuotes "true" or "false". If "true", then

quotation marks are escaped

so that they appear literally in

the DRL.

Optional, at most once. If

omitted, quotation marks are

escaped.

Import A comma-separated list of

Java classes to import.

Optional, may be used

repeatedly.

Variables Declarations of DRL globals,

i.e., a type followed by a

variable name. Multiple global

definitions must be separated

with a comma.

Optional, may be used

repeatedly.

Functions One or more function

definitions, according to DRL

syntax.

Optional, may be used

repeatedly.

Queries One or more query definitions,

according to DRL syntax.

Optional, may be used

repeatedly.

Declare One or more declarative types,

according to DRL syntax.

Optional, may be used

repeatedly.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth

" differently, which will cause a compilation error. The difference is often hard to

see. For example: “A” will fail, but "A" will work.

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the

entries in the following table. Notice, however, that the proper keyword must be used. Also, each

of these attributes may be used only once.

Spreadsheet Syntax

171

Table 6.6. Rule attribute entries in the Rule Set area

Keyword Initial Value

PRIORITY P An integer defining the

"salience" value for the

rule. Overridden by the

"Sequential" flag.

DURATION D A long integer value defining

the "duration" value for the

rule.

TIMER T A timer definition. See "Timers

and Calendars".

ENABLED B A Boolean value. "true"

enables the rule; "false"

disables the rule.

CALENDARS E A calendars definition. See

"Timers and Calendars".

NO-LOOP U A Boolean value. "true"

inhibits looping of rules due

to changes made by its

consequence.

LOCK-ON-ACTIVE L A Boolean value. "true" inhibits

additional activations of all

rules with this flag set within

the same ruleflow or agenda

group.

AUTO-FOCUS F A Boolean value. "true" for a

rule within an agenda group

causes activations of the rule

to automatically give the focus

to the group.

ACTIVATION-GROUP X A string identifying an

activation (or XOR) group.

Only one rule within an

activation group will fire, i.e.,

the first one to fire cancels any

existing activations of other

rules within the same group.

AGENDA-GROUP G A string identifying an agenda

group, which has to be

activated by giving it the

"focus", which is one way of

Chapter 6. User Guide

172

Keyword Initial Value

controlling the flow between

groups of rules.

RULEFLOW-GROUP R A string identifying a rule-flow

group.

6.5.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the

same cell. The string is used as the initial part of the name for all rules derived from this Rule

Table, with the row number appended for distinction. (This automatic naming can be overridden

by using a NAME column.) All other cells defining rules of this Rule Table are below and to the

right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or

the consequence, or providing some rule attribute, the rule name or a comment. The table below

shows which column headers are available; additional columns may be used according to the table

showing rule attribute entries given in the preceding section. Note that each attribute column may

be used at most once. For a column header, either use the keyword or any other word beginning

with the letter given in the "Initial" column of these tables.

Table 6.7. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name

for the rule generated

from that row. The

default is constructed

from the text following

the RuleTable tag and

the row number.

At most one column

DESCRIPTION I A text, resulting in a

comment within the

generated rule.

At most one column

CONDITION C Code snippet and

interpolated values

for constructing a

constraint within a

pattern in a condition.

At least one per rule

table

ACTION A Code snippet and

interpolated values for

constructing an action

for the consequence

of the rule.

At least one per rule

table

Spreadsheet Syntax

173

Keyword Initial Value Usage

METADATA @ Code snippet and

interpolated values

for constructing a

metadata entry for the

rule.

Optional, any number

of columns

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

• Text in the first cell below CONDITION develops into a pattern for the rule condition, with

the snippet in the next line becoming a constraint. If the cell is merged with one or more

neighbours, a single pattern with multiple constraints is formed: all constraints are combined

into a parenthesized list and appended to the text in this cell. The cell may be left blank, which

means that the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another

pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may

be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for

inclusion into a pair of parentheses after "eval".

• Text in the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in

the column. If you want to create a constraint consisting of a comparison using "==" with

the value from the cells below, the field selector alone is sufficient. Any other comparison

operator must be specified as the last item within the snippet, and the value from the cells

below is appended. For all other constraint forms, you must mark the position for including

the contents of a cell with the symbol $param. Multiple insertions are possible by using the

symbols $1, $2, etc., and a comma-separated list of values in the cells below.

A text according to the pattern forall(delimiter){snippet} is expanded by repeating the

snippet once for each of the values of the comma-separated list of values in each of the cells

below, inserting the value in place of the symbol $ and by joining these expansions by the

given delimiter. Note that the forall construct may be surrounded by other text.

2. If the cell in the preceding row is not empty, the completed code snippet is added to the

conditional element from that cell. A pair of parentheses is provided automatically, as well as

a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

• Text in the third cell below CONDITION is for documentation only. It should be used to indicate

the column's purpose to a human reader.

Chapter 6. User Guide

174

• From the fourth row on, non-blank entries provide data for interpolation as described above. A

blank cell results in the omission of the conditional element or constraint for this rule.

Given a column headed ACTION, the cells in successive lines result in an action statement.

• Text in the first cell below ACTION is optional. If present, it is interpreted as an object reference.

• Text in the second cell below ACTION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in the

column. For a singular insertion, mark the position for including the contents of a cell with

the symbol $param. Multiple insertions are possible by using the symbols $1, $2, etc., and a

comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.

In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

2. If the first cell is not empty, its text, followed by a period, the text in the second cell and a

terminating semicolon are stringed together, resulting in a method call which is added as an

action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

• Text in the third cell below ACTION is for documentation only. It should be used to indicate the

column's purpose to a human reader.

• From the fourth row on, non-blank entries provide data for interpolation as described above. A

blank cell results in the omission of the action statement for this rule.

Note

Using $1 instead of $param works in most cases, but it will fail if the replacement

text contains a comma: then, only the part preceding the first comma is inserted.

Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation

for the generated rules.

• Text in the first cell below METADATA is ignored.

• Text in the second cell below METADATA is subject to interpolation, as described above, using

values from the cells in the rule rows. The metadata marker character @ is prefixed automatically,

and thus it should not be included in the text for this cell.

• Text in the third cell below METADATA is for documentation only. It should be used to indicate

the column's purpose to a human reader.

Spreadsheet Syntax

175

• From the fourth row on, non-blank entries provide data for interpolation as described above. A

blank cell results in the omission of the metadata annotation for this rule.

6.5.4.4. Examples

The various interpolations are illustrated in the following example.

Example 6.5. Interpolating cell data

If the template is Foo(bar == $param) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42,43, the result will be

Foo(bar < 42, baz ==43).

The template forall(&&){bar != $} with a cell containing 42,43 results in bar != 42 &&

bar != 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code

snippet below it.

This spreadsheet section shows how the Person type declaration spans 2 columns, and thus both

constraints will appear as Person(age == ..., type == ...). Since only the field names are

present in the snippet, they imply an equality test.

In the following example the marker symbol $param is used.

Chapter 6. User Guide

176

The result of this column is the pattern Person(age == "42")). You may have noticed that the

marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

Here, appending the value from the cell is implied, resulting in Person(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

Spreadsheet Syntax

177

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided

automatically. Actually, anything can be placed in the object type row. Apart from the definition of

a binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

The cell below the ACTION header is left blank. Using this style, anything can be placed in

the consequence, not just a single method call. (The same technique is applicable within a

CONDITION column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error

to have no value below a column header (as in the NO-LOOP column): here, the attribute will not

be applied in any of the rules.

Chapter 6. User Guide

178

Figure 6.17. Example usage of keywords for imports, headers, etc.

And, finally, here is an example of Import, Variables and Functions.

Figure 6.18. Example usage of keywords for functions, etc.

Multiple package names within the same cell must be separated by a comma. Also, the pairs of

type and variable names must be comma-separated. Functions, however, must be written as they

appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could

be above, between or below all the rule rows.

Note

It may be more convenient to use Import, Variables, Functions and Queries

repeatedly rather than packing several definitions into a single cell.

Creating and integrating Spreadsheet based Decision Tables

179

6.5.5. Creating and integrating Spreadsheet based Decision

Tables

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There

is really only one class to look at: SpreadsheetCompiler. This class will take spreadsheets in

various formats, and generate rules in DRL (which you can then use in the normal way). The

SpreadsheetCompiler can just be used to generate partial rule files if it is wished, and assemble

it into a complete rule package after the fact (this allows the separation of technical and non-

technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being

used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an

xls compatible spreadsheet editor will need to be used).

Figure 6.19. Wizard in the IDE

6.5.6. Managing Business Rules in Decision Tables

6.5.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend

themselves to close collaboration between IT and domain experts, while making the business

rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be

something like:

1. Business analyst takes a template decision table (from a repository, or from IT)

2. Decision table business language descriptions are entered in the table(s)

3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language

(descriptions) to scripts (this may involve software development of course, if it is a new

application or data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around

is also fine etc).

Chapter 6. User Guide

180

7. In parallel, the technical person can develop test cases for the rules (liaising with business

analysts) as these test cases can be used to verify rules and rule changes once the system

is running.

6.5.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into

spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to

provide valid lists of values for cells, like in the following diagram.

<title> Wizard in the IDE </title>

Figure 6.20.

Some applications provide a limited ability to keep a history of changes, but it is recommended to

use an alternative means of revision control. When changes are being made to rules over time,

older versions are archived (many open source solutions exist for this, such as Subversion or Git).

6.5.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates" (in

the drools-templates module). These use any tabular data source as a source of rule data -

populating a template to generate many rules. This can allow both for more flexible spreadsheets,

but also rules in existing databases for instance (at the cost of developing the template up front

to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which

part of the rule is data-driven. So whilst you can do everything you could do in decision tables

you can also do the following:

• store your data in a database (or any other format)

• conditionally generate rules based on the values in the data

• use data for any part of your rules (e.g. condition operator, class name, property name)

• run different templates over the same data

Rule Templates

181

As an example, a more classic decision table is shown, but without any hidden rows for the rule

meta data (so the spreadsheet only contains the raw data to generate the rules).

Figure 6.21. Template data

See the ExampleCheese.xls in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows

1 and 2 containing rule metadata. With rule templates the data is completely separate from the

rules. This has two handy consequences - you can apply multiple rule templates to the same data

and your data is not tied to your rules at all. So what does the template look like?

1 template header

2 age

3 type

4 log

5

6 package org.drools.examples.templates;

7

8 global java.util.List list;

9

10 template "cheesefans"

11

12 rule "Cheese fans_@{row.rowNumber}"

13 when

14 Person(age == @{age})

15 Cheese(type == "@{type}")

16 then

17 list.add("@{log}");

18 end

19

20 end template

Annotations to the preceding program listing:

• Line 1: All rule templates start with template header.

Chapter 6. User Guide

182

• Lines 2-4: Following the header is the list of columns in the order they appear in the data. In

this case we are calling the first column age, the second type and the third log.

• Line 5: An empty line signifies the end of the column definitions.

• Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the

generated DRL. Put the package statement and any imports and global and function definitions

into this section.

• Line 10: The keyword template signals the start of a rule template. There can be more than

one template in a template file, but each template should have a unique name.

• Lines 11-18: The rule template - see below for details.

• Line 20: The keywords end template signify the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is

currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of

data and enables you to generate unique rule names. For each row of data a rule will be generated

with the values in the data substituted for the tokens in the template. With the example data above

the following rule file would be generated:

package org.drools.examples.templates;

global java.util.List list;

rule "Cheese fans_1"

when

 Person(age == 42)

 Cheese(type == "stilton")

then

 list.add("Old man stilton");

end

rule "Cheese fans_2"

when

 Person(age == 21)

 Cheese(type == "cheddar")

then

 list.add("Young man cheddar");

end

The code to run this is simple:

DecisionTableConfiguration dtableconfiguration =

Logging

183

 KnowledgeBuilderFactory.newDecisionTableConfiguration();

dtableconfiguration.setInputType(DecisionTableInputType.XLS);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource(getSpreadsheetName(),

 getClass()),

 ResourceType.DTABLE,

 dtableconfiguration);

6.6. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that

can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a

dependency to the logging adaptor for your logging framework of choice. If you're not using any

logging framework yet, you can use Logback by adding this Maven dependency:

 <dependency>

 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

 <version>1.x</version>

 </dependency>

Note

If you're developing for an ultra light environment, use slf4j-nop or slf4j-simple

instead.

Configure the logging level on the package org.drools. For example:

In Logback, configure it in your logback.xml file:

<configuration>

 <logger name="org.drools" level="debug"/>

 ...

<configuration>

In Log4J, configure it in your log4j.xml file:

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 6. User Guide

184

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <category name="org.drools">

 <priority value="debug" />

 </category>

 ...

</log4j:configuration>

Chapter 7.

185

Chapter 7. Rule Language

Reference

7.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports

natural and domain specific languages via "expanders" that allow the language to morph to your

problem domain. This chapter is mostly concerted with this native rule format. The diagrams used

to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the

language terms. The technically very keen may also refer to DRL.g which is the Antlr3 grammar

for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with

content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure

for you.

7.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries

and functions, as well as some resource declarations like imports, globals and attributes that

are assigned and used by your rules and queries. However, you are also able to spread your

rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -

spreading rules across files can help with managing large numbers of rules. A DRL file is simply

a text file.

The overall structure of a rule file is:

Example 7.1. Rules file

package package-name

imports

globals

functions

queries

rules

The order in which the elements are declared is not important, except for the package name that,

if declared, must be the first element in the rules file. All elements are optional, so you will use

only those you need. We will discuss each of them in the following sections.

Chapter 7. Rule Language Refe...

186

7.1.2. What makes a rule

For the inpatients, just as an early view, a rule has the following rough structure:

rule "name"

 attributes

 when

 LHS

 then

 RHS

end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are

optional, as are newlines. Attributes are simple (always optional) hints to how the rule should

behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered

below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific

languages, where lines are processed one by one and spaces may be significant to the domain

language.

7.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,

properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

• true

• false

• null

Soft keywords are just recognized in their context, enabling you to use these words in any other

place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.

Here is a list of the soft keywords:

• lock-on-active

• date-effective

• date-expires

• no-loop

Keywords

187

• auto-focus

• activation-group

• agenda-group

• ruleflow-group

• entry-point

• duration

• package

• import

• dialect

• salience

• enabled

• attributes

• rule

• extend

• when

• then

• template

• query

• declare

• function

• global

• eval

• not

• in

• or

• and

• exists

Chapter 7. Rule Language Refe...

188

• forall

• accumulate

• collect

• from

• action

• reverse

• result

• end

• over

• init

Of course, you can have these (hard and soft) words as part of a method name in camel case,

like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if

you absolutely need to use them as identifiers instead of keywords, the DRL language provides

the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave

accents, like this:

Holiday(̀ true` == "yes") // please note that Drools will resolve that reference

 to the method Holiday.isTrue()

7.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when

they are encountered, except inside semantic code blocks, like the RHS of a rule.

7.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after

the comment symbol. Example:

rule "Testing Comments"

when

 // this is a single line comment

 eval(true) // this is a comment in the same line of a pattern

then

 // this is a comment inside a semantic code block

Multi-line comment

189

end

Warning

'#' for comments has been removed.

7.3.2. Multi-line comment

Figure 7.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.

Example:

rule "Test Multi-line Comments"

when

 /* this is a multi-line comment

 in the left hand side of a rule */

 eval(true)

then

 /* and this is a multi-line comment

 in the right hand side of a rule */

end

7.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find

and resolve problems in a easier and faster way. In this section you will learn how to identify and

interpret those error messages, and you will also receive some tips on how to solve the problems

associated with them.

7.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use

the following example:

Figure 7.2. Error Message Format

Chapter 7. Rule Language Refe...

190

1st Block: This area identifies the error code.

2nd Block: Line and column information.

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where

the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.

7.4.2. Error Messages Description

7.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify

an alternative. Here are some examples:

Example 7.2.

1: rule one

2: when

3: exists Foo()

4: exits Bar()

5: then

6: end

The above example generates this message:

• [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next

example:

Example 7.3.

1: package org.drools.examples;

2: rule

3: when

4: Object()

5: then

6: System.out.println("A RHS");

7: end

Now the above code generates this message:

Error Messages Description

191

• [ERR 101] Line 3:2 no viable alternative at input 'WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but

it's in the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a

sample of a lexical problem:

Example 7.4.

1: rule simple_rule

2: when

3: Student(name == "Andy)

4: then

5: end

The above code misses to close the quotes and because of this the parser generates this error

message:

• [ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule simple_rule in pattern Student

Note

Usually the Line and Column information are accurate, but in some cases (like

unclosed quotes), the parser generates a 0:-1 position. In this case you should

check whether you didn't forget to close quotes, apostrophes or parentheses.

7.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the

current input position. Here are some samples:

Example 7.5.

1: rule simple_rule

2: when

3: foo3 : Bar(

The above example generates this message:

• [ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule simple_rule in pattern Bar

Chapter 7. Rule Language Refe...

192

To fix this problem, it is necessary to complete the rule statement.

Note

Usually when you get a 0:-1 position, it means that parser reached the end of

source.

The following code generates more than one error message:

Example 7.6.

1: package org.drools.examples;

2:

3: rule "Avoid NPE on wrong syntax"

4: when

5: not(Cheese((type == "stilton", price == 10) || (type == "brie",

 price == 15)) from $cheeseList)

6: then

7: System.out.println("OK");

8: end

These are the errors associated with this source:

• [ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule "Avoid NPE on wrong syntax" in

pattern Cheese

• [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"

• [ERR 102] Line 5:106 mismatched input ')' expecting 'then' in rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (',') by AND

operator ('&&').

Note

In some situations you can get more than one error message. Try to fix one

by one, starting at the first one. Some error messages are generated merely as

consequences of other errors.

7.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to

identify soft keywords. This sample shows exactly this situation:

Error Messages Description

193

Example 7.7.

 1: package nesting;

 2: dialect "mvel"

 3:

 4: import org.drools.compiler.Person

 5: import org.drools.compiler.Address

 6:

 7: fdsfdsfds

 8:

 9: rule "test something"

10: when

11: p: Person(name=="Michael")

12: then

13: p.name = "other";

14: System.out.println(p.name);

15: end

With this sample, we get this error message:

• [ERR 103] Line 7:0 rule 'rule_key' failed predicate:

{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword rule.

Note

This error is very similar to 102: Mismatched input, but usually involves soft

keywords.

7.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with

a semicolon. Check this example:

Example 7.8.

1: rule simple_rule

2: when

3: eval(abc();)

4: then

5: end

Chapter 7. Rule Language Refe...

194

Due to the trailing semicolon within eval, we get this error message:

• [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.

7.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,

but the subrule did not match anything. Simply put: the parser has entered a branch from where

there is no way out. This example illustrates it:

Example 7.9.

1: template test_error

2: aa s 11;

3: end

This is the message associated to the above sample:

• [ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'aa' in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type

which might begin a new template slot nor a possible start for any other rule file construct.

7.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development

team.

7.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The

package members are typically related to each other - perhaps HR rules, for instance. A package

represents a namespace, which ideally is kept unique for a given grouping of rules. The package

name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package

configuration that all the rules are kept under (when the rules are assembled). Although, it is not

possible to merge into the same package resources declared under different names. A single

Rulebase may, however, contain multiple packages built on it. A common structure is to have

all the rules for a package in the same file as the package declaration (so that is it entirely self-

contained).

import

195

The following railroad diagram shows all the components that may make up a package. Note that

a package must have a namespace and be declared using standard Java conventions for package

names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,

they can appear in any order in the rule file, with the exception of the package statement, which

must be at the top of the file. In all cases, the semicolons are optional.

Figure 7.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at

package level, superseding the attribute's default value. The modified default may still be replaced

by an attribute setting within a rule.

7.5.1. import

Figure 7.4. import

Import statements work like import statements in Java. You need to specify the fully qualified paths

and type names for any objects you want to use in the rules. Drools automatically imports classes

from the Java package of the same name, and also from the package java.lang.

Chapter 7. Rule Language Refe...

196

7.5.2. global

Figure 7.5. global

With global you define global variables. They are used to make application objects available

to the rules. Typically, they are used to provide data or services that the rules use, especially

application services used in rule consequences, and to return data from the rules, like logs or

values added in rule consequences, or for the rules to interact with the application, doing callbacks.

Globals are not inserted into the Working Memory, and therefore a global should never be used to

establish conditions in rules except when it has a constant immutable value. The engine cannot be

notified about value changes of globals and does not track their changes. Incorrect use of globals

in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and

all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List myGlobalList;

rule "Using a global"

when

 eval(true)

then

 myGlobalList.add("Hello World");

end

2. Set the global value on your working memory. It is a best practice to set all global values before

asserting any fact to the working memory. Example:

List list = new ArrayList();

WorkingMemory wm = rulebase.newStatefulSession();

wm.setGlobal("myGlobalList", list);

Note that these are just named instances of objects that you pass in from your application to

the working memory. This means you can pass in any object you want: you could pass in a

Function

197

service locator, or perhaps a service itself. With the new from element it is now common to pass

a Hibernate session as a global, to allow from to pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the

rule engine, you obtain your emailService object, and then set it in the working memory. In the

DRL, you declare that you have a global of type EmailService, and give it the name "email". Then

in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that

purpose. Rules always reason and react to the working memory state, so if you want to pass data

from rule to rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend

to you always set the value from your application using the working memory interface.

7.6. Function

Figure 7.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java

classes. They can't do anything more than what you can do with helper classes. (In fact, the

compiler generates the helper class for you behind the scenes.) The main advantage of using

functions in a rule is that you can keep the logic all in one place, and you can change the functions

as needed (which can be a good or a bad thing). Functions are most useful for invoking actions

on the consequence (then) part of a rule, especially if that particular action is used over and over

again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String name) {

Chapter 7. Rule Language Refe...

198

 return "Hello "+name+"!";

}

Note that the function keyword is used, even though its not really part of Java. Parameters to

the function are defined as for a method, and you don't have to have parameters if they are not

needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo.hello(). Drools supports

the use of function imports, so all you would need to do is:

import function my.package.Foo.hello

Irrespective of the way the function is defined or imported, you use a function by calling it by its

name, in the consequence or inside a semantic code block. Example:

rule "using a static function"

when

 eval(true)

then

 System.out.println(hello("Bob"));

end

7.7. Type Declaration

Figure 7.7. meta_data

Declaring New Types

199

Figure 7.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,

and to allow the declaration of metadata for types.

• Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,

however, users may want to define the model directly to the rules engine, without worrying about

creating models in a lower level language like Java. At other times, there is a domain model

already built, but eventually the user wants or needs to complement this model with additional

entities that are used mainly during the reasoning process.

• Declaring metadata: facts may have meta information associated to them. Examples of meta

information include any kind of data that is not represented by the fact attributes and is consistent

among all instances of that fact type. This meta information may be queried at runtime by the

engine and used in the reasoning process.

7.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword declare, followed by the list of fields,

and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an

existing fact class in the classpath and raise an error if not found.

Chapter 7. Rule Language Refe...

200

Example 7.10. Declaring a new fact type: Address

declare Address

 number : int

 streetName : String

 city : String

end

The previous example declares a new fact type called Address. This fact type will have three

attributes: number, streetName and city. Each attribute has a type that can be any valid Java

type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Person:

Example 7.11. declaring a new fact type: Person

declare Person

 name : String

 dateOfBirth : java.util.Date

 address : Address

end

As we can see on the previous example, dateOfBirth is of type java.util.Date, from the Java

API, while address is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using

the import clause, as previously discussed.

Example 7.12. Avoiding the need to use fully qualified class names by using

import

import java.util.Date

declare Person

 name : String

 dateOfBirth : Date

 address : Address

end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements

a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean

mapping of the type definition. So, for the previous example, the generated Java class would be:

Declaring Metadata

201

Example 7.13. generated Java class for the previous Person fact type

declaration

public class Person implements Serializable {

 private String name;

 private java.util.Date dateOfBirth;

 private Address address;

 // empty constructor

 public Person() {...}

 // constructor with all fields

 public Person(String name, Date dateOfBirth, Address address) {...}

 // if keys are defined, constructor with keys

 public Person(...keys...) {...}

 // getters and setters

 // equals/hashCode

 // toString

}

Since the generated class is a simple Java class, it can be used transparently in the rules, like

any other fact.

Example 7.14. Using the declared types in rules

rule "Using a declared Type"

when

 $p : Person(name == "Bob")

then

 // Insert Mark, who is Bob's mate.

 Person mark = new Person();

 mark.setName("Mark");

 insert(mark);

end

7.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes

and rules. Drools uses the at sign ('@') to introduce metadata, and it always uses the form:

@metadata_key(metadata_value)

Chapter 7. Rule Language Refe...

202

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like author, whose value is Bob, you

could simply write:

Example 7.15. Declaring a metadata attribute

@author(Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special

meaning to the engine, while others are simply available for querying at runtime. Drools allows the

declaration of metadata both for fact types and for fact attributes. Any metadata that is declared

before the attributes of a fact type are assigned to the fact type, while metadata declared after an

attribute are assigned to that particular attribute.

Example 7.16. Declaring metadata attributes for fact types and attributes

import java.util.Date

declare Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)

 dateOfBirth : Date

 address : Address

end

In the previous example, there are two metadata items declared for the fact type (@author and

@dateOfCreation) and two more defined for the name attribute (@key and @maxLength). Please

note that the @key metadata has no required value, and so the parentheses and the value were

omitted.:

7.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is

a list of some of these predefined annotations and their meaning.

7.7.2.1.1. @role(<fact | event>)

The @role annotation defines how the engine should handle instances of that type: either as

regular facts or as events. It accepts two possible values:

• fact : this is the default, declares that the type is to be handled as a regular fact.

• event : declares that the type is to be handled as an event.

Declaring Metadata

203

The following example declares that the fact type StockTick in a stock broker application is to be

handled as an event.

Example 7.17. declaring a fact type as an event

import some.package.StockTick

declare StockTick

 @role(event)

end

The same applies to facts declared inline. If StockTick was a fact type declared in the DRL itself,

instead of a previously existing class, the code would be:

Example 7.18. declaring a fact type and assigning it the event role

declare StockTick

 @role(event)

 datetime : java.util.Date

 symbol : String

 price : double

end

7.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides

a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all

constraints are generated as MVEL constraints and executed dynamically. This can be important

when dealing with collections that do not have any generics or mixed type collections.

7.7.2.1.3. @timestamp(<attribute name>)

Every event has an associated timestamp assigned to it. By default, the timestamp for a given

event is read from the Session Clock and assigned to the event at the time the event is inserted

into the working memory. Although, sometimes, the event has the timestamp as one of its own

attributes. In this case, the user may tell the engine to use the timestamp from the event's attribute

instead of reading it from the Session Clock.

@timestamp(<attributeName>)

To tell the engine what attribute to use as the source of the event's timestamp, just list the attribute

name as a parameter to the @timestamp tag.

Chapter 7. Rule Language Refe...

204

Example 7.19. declaring the VoiceCall timestamp attribute

declare VoiceCall

 @role(event)

 @timestamp(callDateTime)

end

7.7.2.1.4. @duration(<attribute name>)

Drools supports both event semantics: point-in-time events and interval-based events. A point-in-

time event is represented as an interval-based event whose duration is zero. By default, all events

have duration zero. The user may attribute a different duration for an event by declaring which

attribute in the event type contains the duration of the event.

@duration(<attributeName>)

So, for our VoiceCall fact type, the declaration would be:

Example 7.20. declaring the VoiceCall duration attribute

declare VoiceCall

 @role(event)

 @timestamp(callDateTime)

 @duration(callDuration)

end

7.7.2.1.5. @expires(<time interval>)

Important

This tag is only considered when running the engine in STREAM mode. Also,

additional discussion on the effects of using this tag is made on the Memory

Management section. It is included here for completeness.

Events may be automatically expired after some time in the working memory. Typically this

happens when, based on the existing rules in the knowledge base, the event can no longer match

and activate any rules. Although, it is possible to explicitly define when an event should expire.

@expires(<timeOffset>)

Declaring Metadata

205

The value of timeOffset is a temporal interval in the form:

[#d][#h][#m][#s][#[ms]]

Where [] means an optional parameter and # means a numeric value.

So, to declare that the VoiceCall facts should be expired after 1 hour and 35 minutes after they

are inserted into the working memory, the user would write:

Example 7.21. declaring the expiration offset for the VoiceCall events

declare VoiceCall

 @role(event)

 @timestamp(callDateTime)

 @duration(callDuration)

 @expires(1h35m)

end

The @expires policy will take precedence and override the implicit expiration offset calculated

from temporal constraints and sliding windows in the knowledge base.

7.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can

be annotated so that the engine register itself to listen for changes on fact properties. The boolean

parameter that was used in the insert() method in the Drools 4 API is deprecated and does not

exist in the drools-api module.

Example 7.22. @propertyChangeSupport

declare Person

 @propertyChangeSupport

end

7.7.2.1.7. @propertyReactive

Make this type property reactive. See Fine grained property change listeners section for details.

7.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined

attribute annotations.

Chapter 7. Rule Language Refe...

206

7.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class

will implement the equals() and hashCode() methods taking the attribute into account when

comparing instances of this type.

2. Drools will generate a constructor using all the key attributes as parameters.

For instance:

Example 7.23. example of @key declarations for a type

declare Person

 firstName : String @key

 lastName : String @key

 age : int

end

For the previous example, Drools will generate equals() and hashCode() methods that will check

the firstName and lastName attributes to determine if two instances of Person are equal to each

other, but will not check the age attribute. It will also generate a constructor taking firstName and

lastName as parameters, allowing one to create instances with a code like this:

Example 7.24. creating an instance using the key constructor

Person person = new Person("John", "Doe");

7.7.2.2.2. @position

Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position

maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).

The semicolon ';' is important so that the engine knows that everything before it is a positional

argument. Otherwise we might assume it was a boolean expression, which is how it could be

interpreted after the semicolon. You can mix positional and named arguments on a pattern by

using the semicolon ';' to separate them. Any variables used in a positional that have not yet been

bound will be bound to the field that maps to that position.

declare Cheese

 name : String

Declaring Metadata

207

 shop : String

 price : int

end

The default order is the declared order, but this can be overridden using @position

declare Cheese

 name : String @position(1)

 shop : String @position(2)

 price : int @position(0)

end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate

original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of

classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to

differentiate the positional section from the named argument section. Variables and literals and

expressions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

@Position is inherited when beans extend each other; while not recommended, two fields may

have the same @position value, and not all consecutive values need be declared. If a @position

is repeated, the conflict is solved using inheritance (fields in the superclass have the precedence)

and the declaration order. If a @position value is missing, the first field without an explicit @position

(if any) is selected to fill the gap. As always, conflicts are resolved by inheritance and declaration

order.

declare Cheese

 name : String

 shop : String @position(2)

 price : int @position(0)

end

declare SeasonedCheese extends Cheese

 year : Date @position(0)

 origin : String @position(6)

 country : String

Chapter 7. Rule Language Refe...

208

end

In the example, the field order would be : price (@position 0 in the superclass), year (@position

0 in the subclass), name (first field with no @position), shop (@position 2), country (second field

without @position), origin.

7.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when

declaring metadata attributes for new fact types. The only difference is that there are no fields

in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata

for it, it's possible to write the following code:

Example 7.25. Declaring metadata for an existing type

import org.drools.examples.Person

declare Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

end

Instead of using the import, it is also possible to reference the class by its fully qualified name,

but since the class will also be referenced in the rules, it is usually shorter to add the import and

use the short class name everywhere.

Example 7.26. Declaring metadata using the fully qualified class name

declare org.drools.examples.Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

end

7.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

declare Person

 firstName : String @key

Non Typesafe Classes

209

 lastName : String @key

 age : int

end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key

fields, and one with all fields.

Person() // parameterless constructor

Person(String firstName, String lastName)

Person(String firstName, String lastName, int age)

7.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are

compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour

by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL

constraints and executed dynamically. This can be important when dealing with collections that

do not have any generics or mixed type collections.

7.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the

model between rules and applications. Although, sometimes, the application may need to access

and handle facts from the declared types, especially when the application is wrapping the rules

engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,

as we know, that usually requires a lot of work for small results. Therefore, Drools provides a

simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package

where it was declared. So, for instance, in the example below, Person will belong to the

org.drools.examples package, and so the fully qualified name of the generated class will be

org.drools.examples.Person.

Example 7.27. Declaring a type in the org.drools.examples package

package org.drools.examples

import java.util.Date

declare Person

 name : String

 dateOfBirth : Date

 address : Address

Chapter 7. Rule Language Refe...

210

end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,

the application will only have access to them at application run time. Therefore, these classes are

not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the

application code: org.drools.definition.type.FactType. Through this interface, the user can

instantiate, read and write fields in the declared fact types.

Example 7.28. Handling declared fact types through the API

// get a reference to a knowledge base with a declared type:

KieBase kbase = ...

// get the declared FactType

FactType personType = kbase.getFactType("org.drools.examples",

 "Person");

// handle the type as necessary:

// create instances:

Object bob = personType.newInstance();

// set attributes values

personType.set(bob,

 "name",

 "Bob");

personType.set(bob,

 "age",

 42);

// insert fact into a session

KieSession ksession = ...

ksession.insert(bob);

ksession.fireAllRules();

// read attributes

String name = personType.get(bob, "name");

int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values

from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection

underneath, relying on much more performant accessors implemented with generated bytecode.

Type Declaration 'extends'

211

7.7.7. Type Declaration 'extends'

Type declarations now support 'extends' keyword for inheritance

In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in

a declare statement without any fields.

b org.people.Person

declare Person end

declare Student extends Person

 school : String

end

declare LongTermStudent extends Student

 years : int

 course : String

end

7.7.8. Traits

WARNING : this feature is still experimental and subject to changes

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.

Traits allow to model this very common scenario. A trait is an interface that can be applied (and

eventually removed) to an individual object at runtime. To create a trait rather than a traditional

bean, one has to declare them explicitly as in the following example:

Example 7.29.

declare trait GoldenCustomer

 // fields will map to getters/setters

 code : String

 balance : long

 discount : int

 maxExpense : long

end

At runtime, this declaration results in an interface, which can be used to write patterns, but can

not be instantiated directly. In order to apply a trait to an object, we provide the new don keyword,

which can be used as simply as this:

Chapter 7. Rule Language Refe...

212

Example 7.30.

when

 $c : Customer()

then

 GoldenCustomer gc = don($c, GoldenCustomer.class);

end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated

lazily for each core/trait class combination). The proxy instance, which wraps the core object and

implements the trait interface, is inserted automatically and will possibly activate other rules. An

immediate advantage of declaring and using interfaces, getting the implementation proxy for free

from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The

core classes, however, need not implement any of those interfaces statically, also facilitating the

use of legacy classes as cores. In fact, any object can don a trait, provided that they are declared

as @Traitable. Notice that this annotation used to be optional, but now is mandatory.

Example 7.31.

import org.drools.core.factmodel.traits.Traitable;

declare Customer

 @Traitable

 code : String

 balance : long

end

The only connection between core classes and trait interfaces is at the proxy level: a trait is not

specifically tied to a core class. This means that the same trait can be applied to totally different

objects. For this reason, the trait does not transparently expose the fields of its core object. So,

when writing a rule using a trait interface, only the fields of the interface will be available, as usual.

However, any field in the interface that corresponds to a core object field, will be mapped by the

proxy class:

Example 7.32.

when

 $o: OrderItem($p : price, $code : custCode)

 $c: GoldenCustomer(code == $code, $a : balance, $d: discount)

then

 $c.setBalance($a - $p*$d);

end

Traits

213

In this case, the code and balance would be read from the underlying Customer object. Likewise,

the setAccount will modify the underlying object, preserving a strongly typed access to the data

structures. A hard field must have the same name and type both in the core class and all donned

interfaces. The name is used to establish the mapping: if two fields have the same name, then they

must also have the same declared type. The annotation @org.drools.core.factmodel.traits.Alias

allows to relax this restriction. If an @Alias is provided, its value string will be used to resolve

mappings instead of the original field name. @Alias can be applied both to traits and core beans.

Example 7.33.

import org.drools.core.factmodel.traits.*;

declare trait GoldenCustomer

 balance : long @Alias("org.acme.foo.accountBalance")

end

declare Person

 @Traitable

 name : String

 savings : long @Alias("org.acme.foo.accountBalance")

end

when

 GoldenCustomer(balance > 1000) // will react to new Person(2000)

then

end

More work is being done on reaxing this constraint (see the experimental section on "logical"

traits later). Now, one might wonder what happens when a core class does NOT provide the

implementation for a field defined in an interface. We call hard fields those trait fields which are also

core fields and thus readily available, while we define soft those fields which are NOT provided

by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.

Hidden fields are normally only accessible using the core class directly. However, the "fields" Map

can be used on a trait interface to access a hidden field. If the field can't be resolved, null will be

returned. Notice that this feature is likely to change in the future.

Example 7.34.

when

 $sc : GoldenCustomer(fields["age"] > 18) // age is declared by the

 underlying core class, but not by GoldenCustomer

then

Chapter 7. Rule Language Refe...

214

Soft fields, instead, are stored in a Map-like data structure that is specific to each core object

and referenced by the proxy(es), so that they are effectively shared even when an object dons

multiple traits.

Example 7.35.

when

 $sc : GoldenCustomer($c : code, // hard getter

 $maxExpense : maxExpense > 1000 // soft getter

)

then

 $sc.setDiscount(...); // soft setter

end

A core object also holds a reference to all its proxies, so that it is possible to track which type(s)

have been added to an object, using a sort of dynamic "instanceof" operator, which we called isA.

The operator can accept a String, a class literal or a list of class literals. In the latter case, the

constraint is satisfied only if all the traits have been donned.

Example 7.36.

$sc : GoldenCustomer($maxExpense : maxExpense > 1000,

 this isA "SeniorCustomer", this isA [NationalCustomer.class,

 OnlineCustomer.class]

)

Eventually, the business logic may require that a trait is removed from a wrapped object. To this

end, we provide two options. The first is a "logical don", which will result in a logical insertion of

the proxy resulting from the traiting operation. The TMS will ensure that the trait is removed when

its logical support is removed in the first place.

Example 7.37.

then

 don($x, // core object

 Customer.class, // trait class

 true // optional flag for logical insertion

)

The second is the use of the "shed" keyword, which causes the removal of any type that is a

subtype (or equivalent) of the one passed as an argument. Notice that, as of version 5.5, shed

would only allow to remove a single specific trait.

Traits

215

Example 7.38.

then

 Thing t = shed($x, GoldenCustomer.class) // also removes any trait that

This operation returns another proxy implementing the org.drools.core.factmodel.traits.Thing

interface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared

traits are generated to extend this interface (in addition to any others specified). This allows to

preserve the wrapper with the soft fields which would otherwise be lost.

A trait and its proxies are also correlated in another way. Starting from version 5.6, whenever

a core object is "modified", its proxies are "modified" automatically as well, to allow trait-based

patterns to react to potential changes in hard fields. Likewise, whenever a trait proxy (mached by

a trait pattern) is modified, the modification is propagated to the core class and the other traits.

Morover, whenever a don operation is performed, the core object is also modified automatically,

to reevaluate any "isA" operation which may be triggered.

Potentially, this may result in a high number of modifications, impacting performance (and

correctness) heavily. So two solutions are currently implemented. First, whenever a core object

is modified, only the most specific traits (in the sense of inheritance between trait interfaces) are

updated and an internal blocking mechanism is in place to ensure that each potentially matching

pattern is evaluated once and only once. So, in the following situation:

declare trait GoldenCustomer end

declare trait NationalGoldenustomer extends GoldenCustomer end

declare trait SeniorGoldenCustomer extends GoldenCustomer end

a modification of an object that is both a GoldenCustomer, a NationalGoldenCustomer and

a SeniorGoldenCustomer wold cause only the latter two proxies to be actually modified. The

first would match any pattern for GoldenCustomer and NationalGoldenCustomer; the latter

would instead be prevented from rematching GoldenCustomer, but would be allowed to match

SeniorGoldenCustomer patterns. It is not necessary, instead, to modify the GoldenCustomer

proxy since it is already covered by at least one other more specific trait.

The second method, up to the usr, is to mark traits as @PropertyReactive. Property reactivity

is trait-enabled and takes into account the trait field mappings, so to block unnecessary

propagations.

7.7.8.1. Cascading traits

WARNING : This feature is extremely experimental and subject to changes

Normally, a hard field must be exposed with its original type by all traits donned by an object, to

prevent situations such as

Chapter 7. Rule Language Refe...

216

Example 7.39.

declare Person

 @Traitable

 name : String

 id : String

end

declare trait Customer

 id : String

end

declare trait Patient

 id : long // Person can't don Patient, or an exception will be thrown

end

Should a Person don both Customer and Patient, the type of the hard field id would be ambiguous.

However, consider the following example, where GoldenCustomers refer their best friends so that

they become Customers as well:

Example 7.40.

declare Person

 @Traitable(logical=true)

 bestFriend : Person

end

declare trait Customer end

declare trait GoldenCustomer extends Customer

 refers : Customer @Alias("bestFriend")

end

Aside from the @Alias, a Person-as-GoldenCustomer's best friend might be compatible

with the requirements of the trait GoldenCustomer, provided that they are some kind of

Customer themselves. Marking a Person as "logically traitable" - i.e. adding the annotation

@Traitable(logical = true) - will instruct the engine to try and preserve the logical consistency

rather than throwing an exception due to a hard field with different type declarations (Person vs

Customer). The following operations would then work:

Example 7.41.

Person p1 = new Person();

Person p2 = new Person();

Traits

217

p1.setBestFriend(p2);

...

Customer c2 = don(p2, Customer.class);

...

GoldenCustomer gc1 = don(p1, GoldenCustomer.class);

...

p1.getBestFriend(); // returns p2

gc1.getRefers(); // returns c2, a Customer proxy wrapping p2

Notice that, by the time p1 becomes GoldenCustomer, p2 must have already become a

Customer themselves, otherwise a runtime exception will be thrown since the very definition of

GoldenCustomer would have been violated.

In some cases, however, one might want to infer, rather than verify, that p2 is a Customer by virtue

that p1 is a GoldenCustomer. This modality can be enabled by marking Customer as "logical",

using the annotation @org.drools.core.factmodel.traits.Trait(logical = true). In this case, should

p2 not be a Customer by the time that p1 becomes a GoldenCustomer, it will be automatically don

the trait Customer to preserve the logical integrity of the system.

Notice that the annotation on the core class enables the dynamic type management for its

fields, whereas the annotation on the traits determines whether they will be enforced as integrity

constraints or cascaded dynamically.

Example 7.42.

import org.drools.factmodel.traits.*;

declare trait Customer

 @Trait(logical = true)

end

Chapter 7. Rule Language Refe...

218

7.8. Rule

Figure 7.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side

(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common

question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"

is normally part of a procedural execution flow, where, at a specific point in time, a condition is

to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific

evaluation sequence or point in time, but that it happens continually, at any time during the life

time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same

DRL it produces an error while loading. If you add a DRL that includes a rule name already in the

package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be

enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows

the then keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules

cannot be nested.

Rule Attributes

219

Example 7.43. Rule Syntax Overview

rule "<name>"

 <attribute>*

when

 <conditional element>*

then

 <action>*

end

Example 7.44. A simple rule

rule "Approve if not rejected"

 salience -100

 agenda-group "approval"

 when

 not Rejection()

 p : Policy(approved == false, policyState:status)

 exists Driver(age > 25)

 Process(status == policyState)

 then

 log("APPROVED: due to no objections.");

 p.setApproved(true);

end

7.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite

simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools

you should make sure you have a proper understanding of each attribute.

Chapter 7. Rule Language Refe...

220

Figure 7.10. rule attributes

no-loop

default value: false

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule

with the current set of facts.

ruleflow-group

default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that

are assembled by the same ruleflow-group identifier fire only when their group is active.

Rule Attributes

221

lock-on-active

default value: false

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule

within that group that has lock-on-active set to true will not be activated any more; irrespective

of the origin of the update, the activation of a matching rule is discarded. This is a stronger

version of no-loop, because the change could now be caused not only by the rule itself. It's

ideal for calculation rules where you have a number of rules that modify a fact and you don't

want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or

the agenda-group loses the focus those rules with lock-on-active set to true become eligible

again for their activations to be placed onto the agenda.

salience

default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or

positive. Salience is a form of priority where rules with higher salience values are given higher

priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound

variables.

Example 7.45. Dynamic Salience

rule "Fire in rank order 1,2,.."

 salience(-$rank)

 when

 Element($rank : rank,...)

 then

 ...

end

agenda-group

default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only

rules in the agenda group that has acquired the focus are allowed to fire.

auto-focus

default value: false

Chapter 7. Rule Language Refe...

222

type: Boolean

When a rule is activated where the auto-focus value is true and the rule's agenda group

does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group

default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will

only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all

pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear

people mention Xor group; just swap that term in your mind with activation-group.

dialect

default value: as specified by the package

type: String

possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS

code block. Currently two dialects are available, Java and MVEL. While the dialect can be

specified at the package level, this attribute allows the package definition to be overridden

for a rule.

date-effective

default value: N/A

type: String, containing a date and time definition

A rule can only activate if the current date and time is after date-effective attribute.

date-expires

default value: N/A

type: String, containing a date and time definition

A rule cannot activate if the current date and time is after the date-expires attribute.

duration

default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

Timers and Calendars

223

Example 7.46. Some attribute examples

rule "my rule"

 salience 42

 agenda-group "number 1"

 when ...

7.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration

attribute.

Example 7.47. Sample timer attribute uses

timer (int: <initial delay> <repeat interval>?)

timer (int: 30s)

timer (int: 30s 5m)

timer (cron: <cron expression>)

timer (cron:* 0/15 * * * ?)

Interval (indicated by "int:") timers follow the semantics of java.util.Timer objects, with an initial

delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron

expressions:

Example 7.48. A Cron Example

rule "Send SMS every 15 minutes"

 timer (cron:* 0/15 * * * ?)

when

 $a : Alarm(on == true)

then

 channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on");

end

A rule controlled by a timer becomes active when it matches, and once for each individual match.

Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as

the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the

Engine remains reactive to any changes made to the Working Memory. For instance, removing

a fact that was involved in triggering the timer rule's execution causes the repeated execution to

terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine

Chapter 7. Rule Language Refe...

224

is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion

done asynchronously will not happen until the next execution of a timer-controlled rule. Disposing

a session puts an end to all timer activity.

Conversely when the rule engine runs in passive mode (i.e.: using fireAllRules instead of

fireUntilHalt) by default it doesn't fire consequences of timed rules unless fireAllRules isn't invoked

again. However it is possible to change this default behavior by configuring the KieSession with

a TimedRuleExectionOption as shown in the following example.

Example 7.49. Configuring a KieSession to automatically execute timed

rules

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();

ksconf.setOption(TimedRuleExectionOption.YES);

KSession ksession = kbase.newKieSession(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically

executed. To do this it is necessary to set a FILTERED TimedRuleExectionOption that allows to

define a callback to filter those rules, as done in the next example.

Example 7.50. Configuring a filter to choose which timed rules should be

automatically executed

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(new TimedRuleExectionOption.FILTERED(new TimedRuleExecutionFilter() {

 public boolean accept(Rule[] rules) {

 return rules[0].getName().equals("MyRule");

 }

}));

For what regards interval timers it is also possible to define both the delay and interval as an

expression instead of a fixed value. To do that it is necessary to use an expression timer (indicated

by "expr:") as in the following example:

Example 7.51. An Expression Timer Example

declare Bean

 delay : String = "30s"

 period : long = 60000

end

rule "Expression timer"

 timer(expr: $d, $p)

Timers and Calendars

225

when

 Bean($d : delay, $p : period)

then

end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching

part of the rule and can be any String that can be parsed in a time duration or any numeric value

that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and

"repeat-limit". When one or more of these parameters are used the first part of the timer definition

must be followed by a semicolon ';' and the parameters have to be separated by a comma ',' as

in the following example:

Example 7.52. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN-2010, end=5-JAN-2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,

or more in general any Number, that will be transformed in a Java Date applying the following

conversion:

new Date(((Number) n).longValue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of

repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer

will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning

of the phase is given by the start itself plus the eventual delay. In other words in this case the

timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the

rule having the following interval timer

timer (int: 30s 1m; start="3-JAN-2010")

Chapter 7. Rule Language Refe...

226

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This

also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't

be scheduled immediately but will preserve the phase defined by the timer and so it will be

scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused

(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only

once to recover from missing activations (regardless of how many activations we missed) and

subsequently it will be scheduled again in phase with the timer.

Calendars are used to control when rules can fire. The Calendar API is modelled on Quartz [http://

www.quartz-scheduler.org/]:

Example 7.53. Adapting a Quartz Calendar

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)

Calendars are registered with the KieSession:

Example 7.54. Registering a Calendar

ksession.getCalendars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute

"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 7.55. Using Calendars and Timers together

rule "weekdays are high priority"

 calendars "weekday"

 timer (int:0 1h)

when

 Alarm()

then

 send("priority high - we have an alarm#);

end

rule "weekend are low priority"

 calendars "weekend"

 timer (int:0 4h)

when

 Alarm()

then

 send("priority low - we have an alarm#);

end

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Left Hand Side (when) syntax

227

7.8.3. Left Hand Side (when) syntax

7.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero

or more Conditional Elements. If the LHS is empty, it will be considered as a condition element

that is always true and it will be activated once, when a new WorkingMemory session is created.

Figure 7.11. Left Hand Side

Example 7.56. Rule without a Conditional Element

rule "no CEs"

when

 // empty

then

 ... // actions (executed once)

end

// The above rule is internally rewritten as:

rule "eval(true)"

when

 eval(true)

then

 ... // actions (executed once)

end

Conditional elements work on one or more patterns (which are described below). The most

common conditional element is "and". Therefore it is implicit when you have multiple patterns in

the LHS of a rule that are not connected in any way:

Example 7.57. Implicit and

rule "2 unconnected patterns"

when

 Pattern1()

 Pattern2()

then

 ... // actions

end

Chapter 7. Rule Language Refe...

228

// The above rule is internally rewritten as:

rule "2 and connected patterns"

when

 Pattern1()

 and Pattern2()

then

 ... // actions

end

Note

An "and" cannot have a leading declaration binding (unlike for example or). This

is obvious, since a declaration can only reference a single fact at a time, and when

the "and" is satisfied it matches both facts - so which fact would the declaration

bind to?

// Compile error

$person : (Person(name == "Romeo") and Person(name == "Juliet"))

7.8.3.2. Pattern (conditional element)

7.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact

that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad

diagram below shows the syntax for this.

Figure 7.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In

the following case the type is Cheese, which means that the pattern will match against all Person

objects in the Working Memory:

Person()

Left Hand Side (when) syntax

229

The type need not be the actual class of some fact object. Patterns may refer to superclasses or

even interfaces, thereby potentially matching facts from many different classes.

Object() // matches all objects in the working memory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that

pattern. For example, with a age related constraint:

Person(age == 100)

Note

For backwards compatibility reasons it's allowed to suffix patterns with the ;

character. But it is not recommended to do that.

7.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 7.58. Pattern with a binding variable

rule ...

when

 $p : Person()

then

 System.out.println("Person " + $p);

end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps

to easily differentiate between variables and fields, but it is not mandatory.

7.8.3.3. Constraint (part of a pattern)

7.8.3.3.1. What is a constraint?

A constraint is an expression that returns true or false. This example has a constraint that states

5 is smaller than 6:

Person(5 < 6) // just an example, as constraints like this would be useless

 in a real pattern

Chapter 7. Rule Language Refe...

230

In essence, it's a Java expression with some enhancements (such as property access) and a few

differences (such as equals() semantics for ==). Let's take a deeper look.

7.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean

getter: a method getMyProperty() (or isMyProperty() for a primitive boolean) which takes no

arguments and return something. For example: the age property is written as age in DRL instead

of the getter getAge():

Person(age == 50)

// this is the same as:

Person(getAge() == 50)

Drools uses the standard JDK Introspector class to do this mapping, so it follows the standard

Java bean specification.

Note

We recommend using property access (age) over using getters explicitly

(getAge()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may

effect the rules. Remember that the rule engine effectively caches the results of its

matching in between invocations to make it faster.

public int getAge() {

 age++; // Do NOT do this

 return age;

}

public int getAge() {

 Date now = DateUtil.now(); // Do NOT do this

 return DateUtil.differenceInYears(now, birthday);

}

Left Hand Side (when) syntax

231

To solve this latter case, insert a fact that wraps the current date into working

memory and update that fact between fireAllRules as needed.

Note

The following fallback applies: if the getter of a property cannot be found, the

compiler will resort to using the property name as a method name and without

arguments:

Person(age == 50)

// If Person.getAge() does not exists, this falls back to:

Person(age() == 50)

Nested property access is also supported:

Person(address.houseNumber == 50)

// this is the same as:

Person(getAddress().getHouseNumber() == 50)

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the

Working Memory is not aware of any of the nested values, and does not know when

they change. Either consider them immutable while any of their parent references

are inserted into the Working Memory. Or, instead, if you wish to modify a nested

value you should mark all of the outer facts as updated. In the above example,

when the houseNumber changes, any Person with that Address must be marked

as updated.

7.8.3.3.3. Java expression

You can use any Java expression that returns a boolean as a constraint inside the parentheses of

a pattern. Java expressions can be mixed with other expression enhancements, such as property

access:

Chapter 7. Rule Language Refe...

232

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or

mathematical expression:

Person(age > 100 && (age % 10 == 0))

It is possible to reuse Java methods:

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a

way that may affect the rules. Any method executed on a fact in the LHS should

be a read only method.

Person(incrementAndGetAge() == 10) // Do NOT do this

Warning

The state of a fact should not change between rule invocations (unless those facts

are marked as updated to the working memory on every change):

Person(System.currentTimeMillis() % 1000 == 0) // Do NOT do this

Normal Java operator precedence applies, see the operator precedence list below.

Important

All operators have normal Java semantics except for == and !=.

The == operator has null-safe equals() semantics:

Left Hand Side (when) syntax

233

// Similar to: java.util.Objects.equals(person.getFirstName(),

 "John")

// so (because "John" is not null) similar to:

// "John".equals(person.getFirstName())

Person(firstName == "John")

The != operator has null-safe !equals() semantics:

// Similar to: !java.util.Objects.equals(person.getFirstName(),

 "John")

Person(firstName != "John")

Type coercion is always attempted if the field and the value are of different types; exceptions will

be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric

evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always

in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

7.8.3.3.4. Comma separated AND

The comma character (',') is used to separate constraint groups. It has implicit AND connective

semantics.

// Person is at least 50 and weighs at least 80 kg

Person(age > 50, weight > 80)

// Person is at least 50, weighs at least 80 kg and is taller than 2 meter.

Person(age > 50, weight > 80, height > 2)

Note

Although the && and , operators have the same semantics, they are resolved with

different priorities: The && operator precedes the || operator. Both the && and ||

operator precede the , operator. See the operator precedence list below.

Chapter 7. Rule Language Refe...

234

The comma operator should be preferred at the top level constraint, as it makes

constraints easier to read and the engine will often be able to optimize them better.

The comma (,) operator cannot be embedded in a composite constraint expression, such as

parentheses:

Person((age > 50, weight > 80) || height > 2) // Do NOT do this: compile error

// Use this instead

Person((age > 50 && weight > 80) || height > 2)

7.8.3.3.5. Binding variables

A property can be bound to a variable:

// 2 persons of the same age

Person($firstAge : age) // binding

Person(age == $firstAge) // constraint expression

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps

to easily differentiate between variables and fields.

Note

For backwards compatibility reasons, It's allowed (but not recommended) to mix a

constraint binding and constraint expressions as such:

// Not recommended

Person($age : age * 2 < 100)

// Recommended (separates bindings and constraint expressions)

Person(age * 2 < 100, $age : age)

Bound variable restrictions using the operator == provide for very fast execution as it use hash

indexing to improve performance.

Left Hand Side (when) syntax

235

7.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to

derivation query unification. While positional arguments are always processed with unification

a special unification symbol, ':=', was introduced for named arguments named arguments. The

following "unifies" the age argument across two people.

Person($age := age)

Person($age := age)

In essence unification will declare a binding for the first occurrence and constrain to the same

value of the bound field for sequence occurrences.

7.8.3.3.7. Grouped accessors for nested objects

Often it happens that it is necessary to access multiple properties of a nested object as in the

following example

Person(name == "mark", address.city == "london", address.country == "uk")

These accessors to nested objects can be grouped with a '.(...)' syntax providing more readable

rules as in

Person(name== "mark", address.(city == "london", country == "uk"))

Note the '.' prefix, this is necessary to differentiate the nested object constraints from a method call.

7.8.3.3.8. Inline casts and coercion

When dealing with nested objects, it also quite common the need to cast to a subtype. It is possible

to do that via the # symbol as in:

Person(name=="mark", address#LongAddress.country == "uk")

This example casts Address to LongAddress, making its getters available. If the cast is not possible

(instanceof returns false), the evaluation will be considered false. Also fully qualified names are

supported:

Person(name=="mark", address#org.domain.LongAddress.country == "uk")

Chapter 7. Rule Language Refe...

236

It is possible to use multiple inline casts in the same expression:

Person(name == "mark", address#LongAddress.country#DetailedCountry.population

 > 10000000)

moreover, since we also support the instanceof operator, if that is used we will infer its results for

further uses of that field, within that pattern:

Person(name=="mark", address instanceof LongAddress, address.country == "uk")

7.8.3.3.9. Special literal support

Besides normal Java literals (including Java 5 enums), this literal is also supported:

7.8.3.3.9.1. Date literal

The date format dd-mmm-yyyy is supported by default. You can customize this by providing an

alternative date format mask as the System property named drools.dateformat. If more control

is required, use a restriction.

Example 7.59. Date Literal Restriction

Cheese(bestBefore < "27-Oct-2009")

7.8.3.3.10. List and Map access

It's possible to directly access a List value by index:

// Same as childList(0).getAge() == 18

Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

// Same as credentialMap.get("jsmith").isValid()

Person(credentialMap["jsmith"].valid)

7.8.3.3.11. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&

or ||. Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

Left Hand Side (when) syntax

237

Figure 7.13. Abbreviated combined relation condition

Figure 7.14. Abbreviated combined relation condition with parentheses

// Simple abbreviated combined relation condition using a single &&

Person(age > 30 && < 40)

// Complex abbreviated combined relation using groupings

Person(age ((> 30 && < 40) ||

 (> 20 && < 25)))

// Mixing abbreviated combined relation with constraint connectives

Person(age > 30 && < 40 || location == "london")

7.8.3.3.12. Special DRL operators

Figure 7.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.

7.8.3.3.12.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <

means before, for String fields, it means alphabetically lower.

Person(firstName < $otherFirstName)

Chapter 7. Rule Language Refe...

238

Person(birthDate < $otherBirthDate)

Only applies on Comparable properties.

7.8.3.3.12.2. Null-safe dereferencing operator

The !. operator allows to derefencing in a null-safe way. More in details the matching algorithm

requires the value to the left of the !. operator to be not null in order to give a positive result for

pattern matching itself. In other words the pattern:

Person($streetName : address!.street)

will be internally translated in:

Person(address != null, $streetName : address.street)

7.8.3.3.12.3. The operator matches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,

but variables that resolve to a valid regexp are also allowed.

Example 7.60. Regular Expression Constraint

Cheese(type matches "(Buffalo)?\\S*Mozarella")

Note

Like in Java, regular expressions written as string literals need to escape '\'.

Only applies on String properties. Using matches against a null value always evaluates to false.

7.8.3.3.12.4. The operator not matches

The operator returns true if the String does not match the regular expression. The same rules

apply as for the matches operator. Example:

Example 7.61. Regular Expression Constraint

Cheese(type not matches "(Buffulo)?\\S*Mozarella")

Left Hand Side (when) syntax

239

Only applies on String properties. Using not matches against a null value always evaluates

to true.

7.8.3.3.12.5. The operator contains

The operator contains is used to check whether a field that is a Collection or elements contains

the specified value.

Example 7.62. Contains with Collections

CheeseCounter(cheeses contains "stilton") // contains with a String literal

CheeseCounter(cheeses contains $var) // contains with a variable

Only applies on Collection properties.

7.8.3.3.12.6. The operator not contains

The operator not contains is used to check whether a field that is a Collection or elements does

not contain the specified value.

Example 7.63. Literal Constraint with Collections

CheeseCounter(cheeses not contains "cheddar") // not contains with a String

 literal

CheeseCounter(cheeses not contains $var) // not contains with a variable

Only applies on Collection properties.

Note

For backward compatibility, the excludes operator is supported

as a synonym for not contains.

7.8.3.3.12.7. The operator memberOf

The operator memberOf is used to check whether a field is a member of a collection or elements;

that collection must be a variable.

Example 7.64. Literal Constraint with Collections

CheeseCounter(cheese memberOf $matureCheeses)

Chapter 7. Rule Language Refe...

240

7.8.3.3.12.8. The operator not memberOf

The operator not memberOf is used to check whether a field is not a member of a collection or

elements; that collection must be a variable.

Example 7.65. Literal Constraint with Collections

CheeseCounter(cheese not memberOf $matureCheeses)

7.8.3.3.12.9. The operator soundslike

This operator is similar to matches, but it checks whether a word has almost the same sound

(using English pronunciation) as the given value. This is based on the Soundex algorithm (see

http://en.wikipedia.org/wiki/Soundex).

Example 7.66. Test with soundslike

// match cheese "fubar" or "foobar"

Cheese(name soundslike 'foobar')

7.8.3.3.12.10. The operator str

This operator str is used to check whether a field that is a String starts with or ends with a

certain value. It can also be used to check the length of the String.

Message(routingValue str[startsWith] "R1")

Message(routingValue str[endsWith] "R2")

Message(routingValue str[length] 17)

7.8.3.3.12.11. The operators in and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.

Currently only the in and not in evaluators support this. The second operand of this operator

must be a comma-separated list of values, enclosed in parentheses. Values may be given as

variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,

internally rewritten as a list of multiple restrictions using the operators != and ==.

Left Hand Side (when) syntax

241

Figure 7.16. compoundValueRestriction

Example 7.67. Compound Restriction using "in"

Person($cheese : favouriteCheese)

Cheese(type in ("stilton", "cheddar", $cheese))

7.8.3.3.13. Inline eval operator (deprecated)

Figure 7.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive

boolean. The expression must be constant over time. Any previously bound variable, from the

current or previous pattern, can be used; autovivification is also used to auto-create field binding

variables. When an identifier is found that is not a current variable, the builder looks to see if the

identifier is a field on the current object type, if it is, the field binding is auto-created as a variable

of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the

variable age is auto-created in the second pattern by the autovivification process.

Example 7.68. Return Value operator

Person(girlAge : age, sex = "F")

Person(eval(age == girlAge + 2), sex = 'M') // eval() is actually obsolete

 in this example

Chapter 7. Rule Language Refe...

242

Note

Inline eval's are effectively obsolete as their inner syntax is now directly supported.

It's recommended not to use them. Simply write the expression without wrapping

eval() around it.

7.8.3.3.14. Operator precedence

The operators are evaluated in this precedence:

Table 7.1. Operator precedence

Operator type Operators Notes

(nested / null safe) property

access

. !. Not normal Java semantics

List/Map access [] Not normal Java semantics

constraint binding : Not normal Java semantics

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == != Does not use normal

Java (not) same semantics:

uses (not) equals semantics

instead.

non-short circuiting AND &

non-short circuiting exclusive

OR

^

non-short circuiting inclusive

OR

|

logical AND &&

logical OR ||

ternary ? :

Comma separated AND , Not normal Java semantics

7.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position

maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).

Left Hand Side (when) syntax

243

The semicolon ';' is important so that the engine knows that everything before it is a positional

argument. Otherwise we might assume it was a boolean expression, which is how it could be

interpreted after the semicolon. You can mix positional and named arguments on a pattern by

using the semicolon ';' to separate them. Any variables used in a positional that have not yet been

bound will be bound to the field that maps to that position.

declare Cheese

 name : String

 shop : String

 price : int

end

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to

differentiate the positional section from the named argument section. Variables and literals and

expressions using just literals are supported in positional arguments, but not variables. Positional

arguments are always resolved using unification.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

Positional arguments that are given a previously declared binding will constrain against that using

unification; these are referred to as input arguments. If the binding does not yet exist, it will create

the declaration binding it to the field represented by the position argument; these are referred to

as output arguments.

7.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a

revaluation of all patterns of the matching object type in the knowledge base. This can can lead

to unwanted and useless evaluations and in the worst cases to infinite recursions. The only

workaround to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship

with the original object.

This feature allows the pattern matching to only react to modification of properties actually

constrained or bound inside of a given pattern. That will help with performance and recursion and

avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible

with the former releases. When you want to activate it on a specific bean you have to annotate it

with @propertyReactive. This annotation works both on DRL type declarations:

declare Person

Chapter 7. Rule Language Refe...

244

@propertyReactive

 firstName : String

 lastName : String

end

and on Java classes:

@PropertyReactive

 public static class Person {

 private String firstName;

 private String lastName;

}

In this way, for instance, if you have a rule like the following:

rule "Every person named Mario is a male" when

 $person : Person(firstName == "Mario")

then

 modify ($person) { setMale(true) }

end

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the

engine recognizes that the pattern matching is done on the 'firstName' property while the RHS of

the rule modifies the 'male' one. Note that this feature does not work for update(), and this is one of

the reasons why we promote modify() since it encapsulates the field changes within the statement.

Moreover, on Java classes, you can also annotate any method to say that its invocation actually

modifies other properties. For instance in the former Person class you could have a method like:

@Modifies({ "firstName", "lastName" })

public void setName(String name) {

 String[] names = name.split("\\s");

 this.firstName = names[0];

 this.lastName = names[1];

}

That means that if a rule has a RHS like the following:

modify($person) { setName("Mario Fusco") }

Left Hand Side (when) syntax

245

it will correctly recognize that the values of both properties 'firstName' and 'lastName' could

have potentially been modified and act accordingly, not missing of reevaluating the patterns

constrained on them. At the moment the usage of @Modifies is not allowed on fields but only on

methods. This is coherent with the most common scenario where the @Modifies will be used for

methods that are not related with a class field as in the Person.setName() in the former example.

Also note that @Modifies is not transitive, meaning that if another method internally invokes

the Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it

is necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies

transitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other

words a pattern matching like:

Person (address.city.name == "London)

will be revaluated only for modification of the 'address' property of a Person object. In the same

way the constraints analysis is currently strictly limited to what there is inside a pattern. Another

example could help to clarify this. An LHS like the following:

$p : Person()

Car(owner = $p.name)

will not listen on modifications of the person's name, while this one will do:

Person($name : name)

Car(owner = $name)

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

$p : Person() @watch (name)

Car(owner = $p.name)

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for

which that pattern will react. Note that the properties named in the @watch annotation are actually

added to the ones automatically inferred, but it is also possible to explicitly exclude one or more

of them prepending their name with a ! and to make the pattern to listen for all or none of the

properties of the type used in the pattern respectively with the wildcrds * and !*. So, for example,

you can annotate a pattern in the LHS of a rule like:

// listens for changes on both firstName (inferred) and lastName

Chapter 7. Rule Language Refe...

246

Person(firstName == $expectedFirstName) @watch(lastName)

// listens for all the properties of the Person bean

Person(firstName == $expectedFirstName) @watch(*)

// listens for changes on lastName and explicitly exclude firstName

Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// listens for changes on all the properties except the age one

Person(firstName == $expectedFirstName) @watch(*, !age)

Since doesn't make sense to use this annotation on a pattern using a type not annotated with

@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the

duplicated usage of the same property in @watch (for example like in: @watch(firstName, !

firstName)) will end up in a compilation error. In a next release we will make the automatic

detection of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely

disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new

PropertySpecificOption can have one of the following 3 values:

- DISABLED => the feature is turned off and all the other related annotations

 are just ignored

- ALLOWED => this is the default behavior: types are not property reactive unless

 they are not annotated with @PropertySpecific

- ALWAYS => all types are property reactive by default

So, for example, to have a KnowledgeBuilder generating property reactive types by default you

could do:

KnowledgeBuilderConfiguration config =

 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();

config.setOption(PropertySpecificOption.ALWAYS);

KnowledgeBuilder kbuilder =

 KnowledgeBuilderFactory.newKnowledgeBuilder(config);

In this last case it will be possible to disable the property reactivity feature on a specific type by

annotating it with @ClassReactive.

Left Hand Side (when) syntax

247

7.8.3.6. Basic conditional elements

7.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical

conjunction. Drools supports both prefix and and infix and.

Figure 7.18. infixAnd

Traditional infix and is supported:

//infixAnd

Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

//infixAnd with grouping

(Cheese(cheeseType : type) and

 (Person(favouriteCheese == cheeseType) or

 Person(favouriteCheese == cheeseType))

Note

The symbol && (as an alternative to and) is deprecated. But it is still supported in

the syntax for backwards compatibility.

Figure 7.19. prefixAnd

Prefix and is also supported:

(and Cheese(cheeseType : type)

 Person(favouriteCheese == cheeseType))

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

Chapter 7. Rule Language Refe...

248

Example 7.69. implicit root prefixAnd

when

 Cheese(cheeseType : type)

 Person(favouriteCheese == cheeseType)

then

 ...

7.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.

Drools supports both prefix or and infix or.

Figure 7.20. infixOr

Traditional infix or is supported:

//infixOr

Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

//infixOr with grouping

(Cheese(cheeseType : type) or

 (Person(favouriteCheese == cheeseType) and

 Person(favouriteCheese == cheeseType))

Note

The symbol || (as an alternative to or) is deprecated. But it is still supported in

the syntax for backwards compatibility.

Figure 7.21. prefixOr

Left Hand Side (when) syntax

249

Prefix or is also supported:

(or Person(sex == "f", age > 60)

 Person(sex == "m", age > 65)

Note

The behavior of the Conditional Element or is different from the connective ||

for constraints and restrictions in field constraints. The engine actually has no

understanding of the Conditional Element or. Instead, via a number of different

logic transformations, a rule with or is rewritten as a number of subrules. This

process ultimately results in a rule that has a single or as the root node and one

subrule for each of its CEs. Each subrule can activate and fire like any normal rule;

there is no special behavior or interaction between these subrules. - This can be

most confusing to new rule authors.

The Conditional Element or also allows for optional pattern binding. This means that each resulting

subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using

eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "m", age > 65))

(or pensioner : Person(sex == "f", age > 60)

 pensioner : Person(sex == "m", age > 65))

Since the conditional element or results in multiple subrule generation, one for each possible

logically outcome, the example above would result in the internal generation of two rules. These

two rules work independently within the Working Memory, which means both can match, activate

and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more

similar rules. When you think of it that way, it's clear that for a single rule there could be multiple

activations if two or more terms of the disjunction are true.

Chapter 7. Rule Language Refe...

250

7.8.3.6.3. Conditional Element not

Figure 7.22. not

The CE not is first order logic's non-existential quantifier and checks for the non-existence of

something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest

case of a single pattern (like below) you may optionally omit the parentheses.

Example 7.70. No Busses

not Bus()

Example 7.71. No red Busses

// Brackets are optional:

not Bus(color == "red")

// Brackets are optional:

not (Bus(color == "red", number == 42))

// "not" with nested infix and - two patterns,

// brackets are requires:

not (Bus(color == "red") and

 Bus(color == "blue"))

7.8.3.6.4. Conditional Element exists

Figure 7.23. exists

The CE exists is first order logic's existential quantifier and checks for the existence of something

in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from

just having the pattern on its own, which is more like saying "for each one of...". If you use exists

with a pattern, the rule will only activate at most once, regardless of how much data there is in

working memory that matches the condition inside of the exists pattern. Since only the existence

matters, no bindings will be established.

Left Hand Side (when) syntax

251

The keyword exists must be followed by parentheses around the CEs that it applies to. In the

simplest case of a single pattern (like below) you may omit the parentheses.

Example 7.72. At least one Bus

exists Bus()

Example 7.73. At least one red Bus

exists Bus(color == "red")

// brackets are optional:

exists (Bus(color == "red", number == 42))

// "exists" with nested infix and,

// brackets are required:

exists (Bus(color == "red") and

 Bus(color == "blue"))

7.8.3.7. Advanced conditional elements

7.8.3.7.1. Conditional Element forall

Figure 7.24. forall

The Conditional Element forall completes the First Order Logic support in Drools. The

Conditional Element forall evaluates to true when all facts that match the first pattern match all

the remaining patterns. Example:

rule "All English buses are red"

when

 forall($bus : Bus(type == 'english')

 Bus(this == $bus, color = 'red'))

then

 // all English buses are red

end

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that

matches this pattern we evaluate the following patterns and if they match, the forall CE will

evaluate to true.

Chapter 7. Rule Language Refe...

252

To state that all facts of a given type in the working memory must match a set of constraints,

forall can be written with a single pattern for simplicity. Example:

Example 7.74. Single Pattern Forall

rule "All Buses are Red"

when

 forall(Bus(color == 'red'))

then

 // all Bus facts are red

end

Another example shows multiple patterns inside the forall:

Example 7.75. Multi-Pattern Forall

rule "all employees have health and dental care programs"

when

 forall($emp : Employee()

 HealthCare(employee == $emp)

 DentalCare(employee == $emp)

)

then

 // all employees have health and dental care

end

Forall can be nested inside other CEs. For instance, forall can be used inside a not CE. Note

that only single patterns have optional parentheses, so that with a nested forall parentheses

must be used:

Example 7.76. Combining Forall with Not CE

rule "not all employees have health and dental care"

when

 not (forall($emp : Employee()

 HealthCare(employee == $emp)

 DentalCare(employee == $emp))

)

then

 // not all employees have health and dental care

end

As a side note, forall(p1 p2 p3...) is equivalent to writing:

Left Hand Side (when) syntax

253

not(p1 and not(and p2 p3...))

Also, it is important to note that forall is a scope delimiter. Therefore, it can use any previously

bound variable, but no variable bound inside it will be available for use outside of it.

7.8.3.7.2. Conditional Element from

Figure 7.25. from

The Conditional Element from enables users to specify an arbitrary source for data to be matched

by LHS patterns. This allows the engine to reason over data not in the Working Memory. The

data source could be a sub-field on a bound variable or the results of a method call. It is a

powerful construction that allows out of the box integration with other application components

and frameworks. One common example is the integration with data retrieved on-demand from

databases using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL

syntax. Therefore, it allows you to easily use object property navigation, execute method calls and

access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zipcode"

when

 Person($personAddress : address)

 Address(zipcode == "23920W") from $personAddress

then

 // zip code is ok

end

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this

problem many ways. This is the same but shows how you can use a graph notation with the 'from':

rule "validate zipcode"

when

 $p : Person()

 $a : Address(zipcode == "23920W") from $p.address

then

 // zip code is ok

end

Chapter 7. Rule Language Refe...

254

Previous examples were evaluations using a single pattern. The CE from also support object

sources that return a collection of objects. In that case, from will iterate over all objects in the

collection and try to match each of them individually. For instance, if we want a rule that applies

10% discount to each item in an order, we could do:

rule "apply 10% discount to all items over US$ 100,00 in an order"

when

 $order : Order()

 $item : OrderItem(value > 100) from $order.items

then

 // apply discount to $item

end

The above example will cause the rule to fire once for each item whose value is greater than 100

for each given order.

You must take caution, however, when using from, especially in conjunction with the lock-on-

active rule attribute as it may produce unexpected results. Consider the example provided earlier,

but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person()

 $a : Address(state == "NC") from $p.address

then

 modify ($p) {} // Assign person to sales region 1 in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person()

 $a : Address(city == "Raleigh") from $p.address

then

 modify ($p) {} // Apply discount to person in a modify block

end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive

a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only

the second rule fires.

Left Hand Side (when) syntax

255

If you were to turn on the audit log, you would also see that when the second rule fires, it

deactivates the first rule. Since the rule attribute lock-on-active prevents a rule from creating

new activations when a set of facts change, the first rule fails to reactivate. Though the set of facts

have not changed, the use of from returns a new fact for all intents and purposes each time it

is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules

across different rule-flow groups. When rules modify working memory and other rules downstream

of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of modify is

critical. You don't, however, want other rules in the same rule-flow group to place activations on

one another recursively. In this case, the no-loop attribute is ineffective, as it would only prevent

a rule from activating itself recursively. Hence, you resort to lock-on-active.

There are several ways to address this issue:

• Avoid the use of from when you can assert all facts into working memory or use nested object

references in your constraint expressions (shown below).

• Place the variable assigned used in the modify block as the last sentence in your condition

(LHS).

• Avoid the use of lock-on-active when you can explicitly manage how rules within the same

rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of from when you can assert all your facts into working

memory directly. In the example above, both the Person and Address instance can be asserted

into working memory. In this case, because the graph is fairly simple, an even easier solution is

to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person(address.state == "NC")

then

 modify ($p) {} // Assign person to sales region 1 in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person(address.city == "Raleigh")

then

 modify ($p) {} //Apply discount to person in a modify block

end

Chapter 7. Rule Language Refe...

256

Now, you will find that both rules fire as expected. However, it is not always possible to access

nested facts as above. Consider an example where a Person holds one or more Addresses and

you wish to use an existential quantifier to match people with at least one address that meets

certain conditions. In this case, you would have to resort to the use of from to reason over the

collection.

There are several ways to use from to achieve this and not all of them exhibit an issue with the use

of lock-on-active. For example, the following use of from causes both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person($addresses : addresses)

 exists (Address(state == "NC") from $addresses)

then

 modify ($p) {} // Assign person to sales region 1 in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person($addresses : addresses)

 exists (Address(city == "Raleigh") from $addresses)

then

 modify ($p) {} // Apply discount to person in a modify block

end

However, the following slightly different approach does exhibit the problem:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $assessment : Assessment()

 $p : Person()

 $addresses : List() from $p.addresses

 exists (Address(state == "NC") from $addresses)

then

 modify ($assessment) {} // Modify assessment in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

Left Hand Side (when) syntax

257

when

 $assessment : Assessment()

 $p : Person()

 $addresses : List() from $p.addresses

 exists (Address(city == "Raleigh") from $addresses)

then

 modify ($assessment) {} // Modify assessment in a modify block

end

In the above example, the $addresses variable is returned from the use of from. The example

also introduces a new object, assessment, to highlight one possible solution in this case. If the

$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,

both rules fire as expected.

Though the above examples demonstrate how to combine the use of from with lock-on-active

where no loss of rule activations occurs, they carry the drawback of placing a dependency on the

order of conditions on the LHS. In addition, the solutions present greater complexity for the rule

author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses

may be asserted into working memory and the use of from would not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we

need to find other solutions. Another option is to reevaluate the need for lock-on-active. An

alternative to lock-on-active is to directly manage how rules within the same rule-flow group

activate one another by including conditions in each rule that prevent rules from activating each

other recursively when working memory is modified. For example, in the case above where a

discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether

the discount has already been applied. If so, the rule does not activate.

7.8.3.7.3. Conditional Element collect

Figure 7.26. collect

The Conditional Element collect allows rules to reason over a collection of objects obtained

from the given source or from the working memory. In First Oder Logic terms this is the cardinality

quantifier. A simple example:

Chapter 7. Rule Language Refe...

258

import java.util.ArrayList

rule "Raise priority if system has more than 3 pending alarms"

when

 $system : System()

 $alarms : ArrayList(size >= 3)

 from collect(Alarm(system == $system, status == 'pending'))

then

 // Raise priority, because system $system has

 // 3 or more alarms pending. The pending alarms

 // are $alarms.

end

In the above example, the rule will look for all pending alarms in the working memory for each

given system and group them in ArrayLists. If 3 or more alarms are found for a given system,

the rule will fire.

The result pattern of collect can be any concrete class that implements the

java.util.Collection interface and provides a default no-arg public constructor. This means

that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as

long as it implements the java.util.Collection interface and provide a default no-arg public

constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the collect CE are in the scope of both source and result patterns

and therefore you can use them to constrain both your source and result patterns. But note that

collect is a scope delimiter for bindings, so that any binding made inside of it is not available

for use outside of it.

Collect accepts nested from CEs. The following example is a valid use of "collect":

import java.util.LinkedList;

rule "Send a message to all mothers"

when

 $town : Town(name == 'Paris')

 $mothers : LinkedList()

 from collect(Person(gender == 'F', children > 0)

 from $town.getPeople()

)

then

 // send a message to all mothers

end

Left Hand Side (when) syntax

259

7.8.3.7.4. Conditional Element accumulate

Figure 7.27. accumulate

The Conditional Element accumulate is a more flexible and powerful form of collect, in the sense

that it can be used to do what collect does and also achieve results that the CE collect is not

capable of achieving. Accumulate allows a rule to iterate over a collection of objects, executing

custom actions for each of the elements, and at the end, it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom

code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,

and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level

accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

7.8.3.7.4.1. Accumulate CE (preferred syntax)

The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax

is as follows:

accumulate(<source pattern>; <functions> [;<constraints>])

For instance, a rule to calculate the minimum, maximum and average temperature reading for a

given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the

average is over 70C degrees could be written in the following way, using Accumulate:

Chapter 7. Rule Language Refe...

260

Note

The DRL language defines "acc" as a synonym of "accumulate". The author might

prefer to use "acc" as a less verbose keyword or the full keyword "accumulate"

for legibility.

rule "Raise alarm"

when

 $s : Sensor()

 accumulate(Reading(sensor == $s, $temp : temperature);

 $min : min($temp),

 $max : max($temp),

 $avg : average($temp);

 $min < 20, $avg > 70)

then

 // raise the alarm

end

In the above example, min, max and average are Accumulate Functions and will calculate the

minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

• average

• min

• max

• count

• sum

• collectList

• collectSet

These common functions accept any expression as input. For instance, if someone wants to

calculate the average profit on all items of an order, a rule could be written using the average

function:

rule "Average profit"

when

 $order : Order()

 accumulate(OrderItem(order == $order, $cost : cost, $price : price);

 $avgProfit : average(1 - $cost / $price))

then

Left Hand Side (when) syntax

261

 // average profit for $order is $avgProfit

end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific

functions can easily be added to the engine and rules can start to use them without any restrictions.

To implement a new Accumulate Function all one needs to do is to create a Java class that

implements the org.drools.core.runtime.rule.TypedAccumulateFunction interface. As an

example of an Accumulate Function implementation, the following is the implementation of the

average function:

/**

 * An implementation of an accumulator capable of calculating average values

 */

public class AverageAccumulateFunction implements org.drools.core.runtime.rule.TypedAccumulateFunction {

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {

 }

 public void writeExternal(ObjectOutput out) throws IOException {

 }

 public static class AverageData implements Externalizable {

 public int count = 0;

 public double total = 0;

 public AverageData() {}

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {

 count = in.readInt();

 total = in.readDouble();

 }

 public void writeExternal(ObjectOutput out) throws IOException {

 out.writeInt(count);

 out.writeDouble(total);

 }

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#createContext()

 */

 public Serializable createContext() {

 return new AverageData();

 }

Chapter 7. Rule Language Refe...

262

 /* (non-Javadoc)

 * @see

 org.drools.core.base.accumulators.AccumulateFunction#init(java.lang.Object)

 */

 public void init(Serializable context) throws Exception {

 AverageData data = (AverageData) context;

 data.count = 0;

 data.total = 0;

 }

 /* (non-Javadoc)

 * @see

 org.drools.core.base.accumulators.AccumulateFunction#accumulate(java.lang.Object,

 java.lang.Object)

 */

 public void accumulate(Serializable context,

 Object value) {

 AverageData data = (AverageData) context;

 data.count++;

 data.total += ((Number) value).doubleValue();

 }

 /* (non-Javadoc)

 * @see

 org.drools.core.base.accumulators.AccumulateFunction#reverse(java.lang.Object,

 java.lang.Object)

 */

 public void reverse(Serializable context,

 Object value) throws Exception {

 AverageData data = (AverageData) context;

 data.count--;

 data.total -= ((Number) value).doubleValue();

 }

 /* (non-Javadoc)

 * @see

 org.drools.core.base.accumulators.AccumulateFunction#getResult(java.lang.Object)

 */

 public Object getResult(Serializable context) throws Exception {

 AverageData data = (AverageData) context;

 return new Double(data.count == 0 ? 0 : data.total / data.count);

 }

 /* (non-Javadoc)

 * @see

 org.drools.core.base.accumulators.AccumulateFunction#supportsReverse()

 */

 public boolean supportsReverse() {

Left Hand Side (when) syntax

263

 return true;

 }

 /**

 * {@inheritDoc}

 */

 public Class< ? > getResultType() {

 return Number.class;

 }

}

The code for the function is very simple, as we could expect, as all the "dirty" integration work

is done by the engine. Finally, to use the function in the rules, the author can import it using the

"import accumulate" statement:

import accumulate <class_name> <function_name>

For instance, if one implements the class some.package.VarianceFunction function that

implements the variance function and wants to use it in the rules, he would do the following:

Example 7.77. Example of importing and using the custom "variance"

accumulate function

import accumulate some.package.VarianceFunction variance

rule "Calculate Variance"

when

 accumulate(Test($s : score), $v : variance($s))

then

 // the variance of the test scores is $v

end

Note

The built in functions (sum, average, etc) are imported automatically by the engine.

Only user-defined custom accumulate functions need to be explicitly imported.

Chapter 7. Rule Language Refe...

264

Note

For backward compatibility, Drools still supports the configuration of accumulate

functions through configuration files and system properties, but this is a deprecated

method. In order to configure the variance function from the previous example

using the configuration file or system property, the user would set a property like

this:

drools.accumulate.function.variance = some.package.VarianceFunction

Please note that "drools.accumulate.function." is a prefix that must always

be used, "variance" is how the function will be used in the drl files, and

"some.package.VarianceFunction" is the fully qualified name of the class that

implements the function behavior.

7.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and

expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility

purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may

add a pattern for the result object and use the "from" keyword to link it to the accumulate result.

Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

rule "Apply 10% discount to orders over US$ 100,00"

when

 $order : Order()

 $total : Number(doubleValue > 100)

 from accumulate(OrderItem(order == $order, $value : value),

 sum($value))

then

 # apply discount to $order

end

In the above example, the accumulate element is using only one function (sum), and so, the rules

author opted to explicitly write a pattern for the result type of the accumulate function (Number)

and write the constraints inside it. There are no problems in using this syntax over the compact

syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to

use both the return type and the functions binding in the same accumulate statement.

Left Hand Side (when) syntax

265

7.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several

reasons, including difficulties on maintaining and testing rules that use them, as

well as the inability of reusing that code. Implementing your own accumulate

functions is very simple and straightforward, they are easy to unit test and to use.

This form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using

accumulate functions. As noted on the previous warned, this is discouraged though for the stated

reasons.

The general syntax of the accumulate CE with inline custom code is:

<result pattern> from accumulate(<source pattern>,

 init(<init code>),

 action(<action code>),

 reverse(<reverse code>),

 result(<result expression>))

The meaning of each of the elements is the following:

• <source pattern>: the source pattern is a regular pattern that the engine will try to match against

each of the source objects.

• <init code>: this is a semantic block of code in the selected dialect that will be executed once

for each tuple, before iterating over the source objects.

• <action code>: this is a semantic block of code in the selected dialect that will be executed for

each of the source objects.

• <reverse code>: this is an optional semantic block of code in the selected dialect that if present

will be executed for each source object that no longer matches the source pattern. The objective

of this code block is to undo any calculation done in the <action code> block, so that the engine

can do decremental calculation when a source object is modified or deleted, hugely improving

performance of these operations.

• <result expression>: this is a semantic expression in the selected dialect that is executed after

all source objects are iterated.

• <result pattern>: this is a regular pattern that the engine tries to match against the object

returned from the <result expression>. If it matches, the accumulate conditional element

Chapter 7. Rule Language Refe...

266

evaluates to true and the engine proceeds with the evaluation of the next CE in the rule. If it

does not matches, the accumulate CE evaluates to false and the engine stops evaluating CEs

for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% discount to orders over US$ 100,00"

when

 $order : Order()

 $total : Number(doubleValue > 100)

 from accumulate(OrderItem(order == $order, $value : value),

 init(double total = 0;),

 action(total += $value;),

 reverse(total -= $value;),

 result(total))

then

 # apply discount to $order

end

In the above example, for each Order in the Working Memory, the engine will execute the init

code initializing the total variable to zero. Then it will iterate over all OrderItem objects for that

order, executing the action for each one (in the example, it will sum the value of all items into

the total variable). After iterating over all OrderItem objects, it will return the value corresponding

to the result expression (in the above example, the value of variable total). Finally, the engine

will try to match the result with the Number pattern, and if the double value is greater than 100,

the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon

as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an

expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply

to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user

writes it in order to benefit from the improved performance on update and delete.

The accumulate CE can be used to execute any action on source objects. The following example

instantiates and populates a custom object:

rule "Accumulate using custom objects"

when

 $person : Person($likes : likes)

 $cheesery : Cheesery(totalAmount > 100)

 from accumulate($cheese : Cheese(type == $likes),

 init(Cheesery cheesery = new Cheesery();),

 action(cheesery.addCheese($cheese);),

 reverse(cheesery.removeCheese($cheese);),

Left Hand Side (when) syntax

267

 result(cheesery));

then

 // do something

end

7.8.3.8. Conditional Element eval

Figure 7.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that

returns a primitive boolean) to be executed. This code can refer to variables that were bound in the

LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness

of your rules and can result in a poorly performing engine. While eval can be used anywhere in

the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes

them ideal for being used when functions return values that change over time, which is not allowed

within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are

equivalent to binding a variable to an appropriate type, and then using it in an eval node.

p1 : Parameter()

p2 : Parameter()

eval(p1.getList().containsKey(p2.getItem()))

p1 : Parameter()

p2 : Parameter()

// call function isValid in the LHS

eval(isValid(p1, p2))

7.8.3.9. Railroad diagrams

Chapter 7. Rule Language Refe...

268

Left Hand Side (when) syntax

269

Chapter 7. Rule Language Refe...

270

Left Hand Side (when) syntax

271

Chapter 7. Rule Language Refe...

272

Left Hand Side (when) syntax

273

Chapter 7. Rule Language Refe...

274

Left Hand Side (when) syntax

275

Chapter 7. Rule Language Refe...

276

Left Hand Side (when) syntax

277

Chapter 7. Rule Language Refe...

278

Left Hand Side (when) syntax

279

Chapter 7. Rule Language Refe...

280

7.8.4. The Right Hand Side (then)

7.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;

this part should contain a list of actions to be executed. It is bad practice to use imperative or

conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then

do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus

keeping it declarative and readable. If you find you need imperative and/or conditional code in the

RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose of

the RHS is to insert, delete or modify working memory data. To assist with that there are a few

convenience methods you can use to modify working memory; without having to first reference

a working memory instance.

update(object, handle); will tell the engine that an object has changed (one that has been bound

to something on the LHS) and rules may need to be reconsidered.

update(object); can also be used; here the Knowledge Helper will look up the facthandle for you,

via an identity check, for the passed object. (Note that if you provide Property Change Listeners

to your Java beans that you are inserting into the engine, you can avoid the need to call update()

when the object changes.). After a fact's field values have changed you must call update before

changing another fact, or you will cause problems with the indexing within the rule engine. The

modify keyword avoids this problem.

insert(new Something()); will place a new object of your creation into the Working Memory.

insertLogical(new Something()); is similar to insert, but the object will be automatically

deleted when there are no more facts to support the truth of the currently firing rule.

delete(handle); removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the KnowledgeHelper

instance that lets you access your Working Memory from rules files. The predefined variable

drools of type KnowledgeHelper lets you call several other useful methods. (Refer to the

KnowledgeHelper interface documentation for more advanced operations).

• The call drools.halt() terminates rule execution immediately. This is required for returning

control to the point whence the current session was put to work with fireUntilHalt().

The Right Hand Side (then)

281

• Methods insert(Object o), update(Object o) and delete(Object o) can be called on

drools as well, but due to their frequent use they can be called without the object reference.

• drools.getWorkingMemory() returns the WorkingMemory object.

• drools.setFocus(String s) sets the focus to the specified agenda group.

• drools.getRule().getName(), called from a rule's RHS, returns the name of the rule.

• drools.getTuple() returns the Tuple that matches the currently executing rule, and

drools.getActivation() delivers the corresponding Activation. (These calls are useful for

logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcontext, of

type KieContext. Its method getKieRuntime() delivers an object of type KieRuntime, which, in

turn, provides access to a wealth of methods, many of which are quite useful for coding RHS logic.

• The call kcontext.getKieRuntime().halt() terminates rule execution immediately.

• The accessor getAgenda() returns a reference to this session's Agenda, which in turn provides

access to the various rule groups: activation groups, agenda groups, and rule flow groups. A

fairly common paradigm is the activation of some agenda group, which could be done with the

lengthy call:

// give focus to the agenda group CleanUp

kcontext.getKieRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

(You can achieve the same using drools.setFocus("CleanUp").)

• To run a query, you call getQueryResults(String query), whereupon you may process the

results, as explained in section Query.

• A set of methods dealing with event management lets you, among other things, add and remove

event listeners for the Working Memory and the Agenda.

• Method getKieBase() returns the KieBase object, the backbone of all the Knowledge in your

system, and the originator of the current session.

• You can manage globals with setGlobal(...), getGlobal(...) and getGlobals().

• Method getEnvironment() returns the runtime's Environment which works much like what

you know as your operating system's environment.

7.8.4.2. The modify Statement

This language extension provides a structured approach to fact updates. It combines the update

operation with a number of setter calls to change the object's fields. This is the syntax schema

for the modify statement:

Chapter 7. Rule Language Refe...

282

modify (<fact-expression>) {

 <expression> [, <expression>]*

}

The parenthesized <fact-expression> must yield a fact object reference. The expression list in

the block should consist of setter calls for the given object, to be written without the usual object

reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 7.78. A modify statement

rule "modify stilton"

when

 $stilton : Cheese(type == "stilton")

then

 modify($stilton){

 setPrice(20),

 setAge("overripe")

 }

end

The advantages in using the modify statment are particularly clear when used in conjuction with

fine grained property change listeners. See the corresponding section for more details.

7.8.5. Conditional named consequences

Sometimes the constraint of having one single consequence for each rule can be somewhat

limiting and leads to verbose and difficult to be maintained repetitions like in the following example:

rule "Give 10% discount to customers older than 60"

when

 $customer : Customer(age > 60)

then

 modify($customer) { setDiscount(0.1) };

end

rule "Give free parking to customers older than 60"

when

 $customer : Customer(age > 60)

 $car : Car (owner == $customer)

then

 modify($car) { setFreeParking(true) };

end

Conditional named consequences

283

It is already possible to partially overcome this problem by making the second rule extending the

first one like in:

rule "Give 10% discount to customers older than 60"

when

 $customer : Customer(age > 60)

then

 modify($customer) { setDiscount(0.1) };

end

rule "Give free parking to customers older than 60"

 extends "Give 10% discount to customers older than 60"

when

 $car : Car (owner == $customer)

then

 modify($car) { setFreeParking(true) };

end

Anyway this feature makes it possible to define more labelled consequences other than the default

one in a single rule, so, for example, the 2 former rules can be compacted in only one like it follows:

rule "Give 10% discount and free parking to customers older than 60"

when

 $customer : Customer(age > 60)

 do[giveDiscount]

 $car : Car (owner == $customer)

then

 modify($car) { setFreeParking(true) };

then[giveDiscount]

 modify($customer) { setDiscount(0.1) };

end

This last rule has 2 consequences, the usual default one, plus another one named "giveDiscount"

that is activated, using the keyword do, as soon as a customer older than 60 is found in the

knowledge base, regardless of the fact that he owns a car or not. The activation of a named

consequence can be also guarded by an additional condition like in this further example:

rule "Give free parking to customers older than 60 and 10% discount to golden

 ones among them"

when

 $customer : Customer(age > 60)

 if (type == "Golden") do[giveDiscount]

 $car : Car (owner == $customer)

then

Chapter 7. Rule Language Refe...

284

 modify($car) { setFreeParking(true) };

then[giveDiscount]

 modify($customer) { setDiscount(0.1) };

end

The condition in the if statement is always evaluated on the pattern immediately preceding it. In

the end this last, a bit more complicated, example shows how it is possible to switch over different

conditions using a nested if/else statement:

rule "Give free parking and 10% discount to over 60 Golden customer and 5% to

 Silver ones"

when

 $customer : Customer(age > 60)

 if (type == "Golden") do[giveDiscount10]

 else if (type == "Silver") break[giveDiscount5]

 $car : Car (owner == $customer)

then

 modify($car) { setFreeParking(true) };

then[giveDiscount10]

 modify($customer) { setDiscount(0.1) };

then[giveDiscount5]

 modify($customer) { setDiscount(0.05) };

end

Here the purpose is to give a 10% discount AND a free parking to Golden customers over 60, but

only a 5% discount (without free parking) to the Silver ones. This result is achieved by activating

the consequence named "giveDiscount5" using the keyword break instead of do. In fact do just

schedules a consequence in the agenda, allowing the remaining part of the LHS to continue of

being evaluated as per normal, while break also blocks any further pattern matching evaluation.

Note, of course, that the activation of a named consequence not guarded by any condition with

break doesn't make sense (and generates a compile time error) since otherwise the LHS part

following it would be never reachable.

7.8.6. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound

to an int primitive when used in a code block or expression will no longer need manual unboxing;

unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable

bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to

handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system

attempts to coerce one of the values into a comparable format; so a primitive is comparable to

an object wrapper.

Query

285

7.9. Query

Figure 7.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.

Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"

nor "then". A query has an optional set of parameters, each of which can be optionally typed. If

the type is not given, the type Object is assumed. The engine will attempt to coerce the values

as needed. Query names are global to the KieBase; so do not add queries of the same name to

different packages for the same RuleBase.

To return the results use ksession.getQueryResults("name"), where "name" is the query's

name. This returns a list of query results, which allow you to retrieve the objects that matched

the query.

The first example presents a simple query for all the people over the age of 30. The second one,

using parameters, combines the age limit with a location.

Example 7.79. Query People over the age of 30

query "people over the age of 30"

 person : Person(age > 30)

end

Example 7.80. Query People over the age of x, and who live in y

query "people over the age of x" (int x, String y)

Chapter 7. Rule Language Refe...

286

 person : Person(age > x, location == y)

end

We iterate over the returned QueryResults using a standard "for" loop. Each element is a

QueryResultsRow which we can use to access each of the columns in the tuple. These columns

can be accessed by bound declaration name or index position.

Example 7.81. Query People over the age of 30

QueryResults results = ksession.getQueryResults("people over the age of 30");

System.out.println("we have " + results.size() + " people over the age of 30");

System.out.println("These people are are over 30:");

for (QueryResultsRow row : results) {

 Person person = (Person) row.get("person");

 System.out.println(person.getName() + "\n");

}

Support for positional syntax has been added for more compact code. By default the declared

type order in the type declaration matches the argument position. But it possible to override these

using the @position annotation. This allows patterns to be used with positional arguments, instead

of the more verbose named arguments.

declare Cheese

 name : String @position(1)

 shop : String @position(2)

 price : int @position(0)

end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate

original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of

classes is supported, but not interfaces or methods. The isContainedIn query below demonstrates

the use of positional arguments in a pattern; Location(x, y;) instead of Location(thing ==

x, location == y).

Queries can now call other queries, this combined with optional query arguments provides

derivation query style backward chaining. Positional and named syntax is supported for

arguments. It is also possible to mix both positional and named, but positional must come first,

separated by a semi colon. Literal expressions can be passed as query arguments, but at this

stage you cannot mix expressions with variables. Here is an example of a query that calls another

query. Note that 'z' here will always be an 'out' variable. The '?' symbol means the query is pull only,

once the results are returned you will not receive further results as the underlying data changes.

Query

287

declare Location

 thing : String

 location : String

end

query isContainedIn(String x, String y)

 Location(x, y;)

 or

 (Location(z, y;) and ?isContainedIn(x, z;))

end

As previously mentioned you can use live "open" queries to reactively receive changes over time

from the query results, as the underlying data it queries against changes. Notice the "look" rule

calls the query without using '?'.

query isContainedIn(String x, String y)

 Location(x, y;)

 or

 (Location(z, y;) and isContainedIn(x, z;))

end

rule look when

 Person($l : likes)

 isContainedIn($l, 'office';)

then

 insertLogical($l 'is in the office');

end

Drools supports unification for derivation queries, in short this means that arguments are optional.

It is possible to call queries from Java leaving arguments unspecified using the static field

org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of

Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at

compile time whether an argument is in or an out, this can be defined purely at runtime on each

use. The following example will return all objects contained in the office.

results = ksession.getQueryResults("isContainedIn", new Object[] { Variable.v,

 "office" });

l = new ArrayList<List<String>>();

for (QueryResultsRow r : results) {

 l.add(Arrays.asList(new String[] { (String) r.get("x"), (String)

 r.get("y") }));

}

Chapter 7. Rule Language Refe...

288

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

• List and Map unification

• Variables for the fields of facts

• Expression unification - pred(X, X + 1, X * Y / 7)

7.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to

your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"

to DRL constructs, which lets you use of all the underlying rule language and engine features.

Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.

But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,

and you can use those as well, although they may not provide you with the full DSL functionality.

7.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the

technical intricacies resulting from the modelling of domain object and the rule engine's native

language and methods. If your rules need to be read and validated by domain experts (such as

business analysts, for instance) who are not programmers, you should consider using a DSL; it

hides implementation details and focuses on the rule logic proper. DSL sentences can also act as

"templates" for conditional elements and consequence actions that are used repeatedly in your

rules, possibly with minor variations. You may define DSL sentences as being mapped to these

repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring

a special parser and transformer.

7.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence

actions. A global substitution mechanism ("keyword") is also available.

Example 7.82. Example DSL mapping

[when]Something is {colour}=Something(colour=="{colour}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid

for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you

DSL Basics

289

use in the rule; typically a natural language expression, but it doesn't have to be. The part to the

right of the equal sign ("=") is the mapping of the expression into the rule language. The form of

this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term

according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in

the DSL definition, it performs three steps of string manipulation. First, it extracts the string values

appearing where the expression contains variable names in braces (here: {colour}). Then, the

values obtained from these captures are then interpolated wherever that name, again enclosed

in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces

whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as

regular expressions in a pattern matching operation against a line of the DSL rule file, matching all

or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character

is optional. One good reason to use this is to overcome variations in natural language phrases of

your DSL. But, given that these expressions are regular expression patterns, this also means that

all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\').

It is important to note that the compiler transforms DSL rule files line by line. In the above example,

all the text after "Something is " to the end of the line is captured as the replacement value for

"{colour}", and this is used for interpolating the target string. This may not be exactly what you

want. For instance, when you intend to merge different DSL expressions to generate a composite

DRL pattern, you need to transform a DSLR line in several independent operations. The best way

to achieve this is to ensure that the captures are surrounded by characteristic text - words or even

single characters. As a result, the matching operation done by the parser plucks out a substring

from somewhere within the line. In the example below, quotes are used as distinctive characters.

Note that the characters that surround the capture are not included during interpolation, just the

contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also

enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by

the following example. Note that a single line such as Something is "green" and another

solid thing is now correctly expanded.

Example 7.83. Example with quotes

[when]something is "{colour}"=Something(colour=="{colour}")

[when]another {state} thing=OtherThing(state=="{state}"

It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions

as much as possible. The main reason is that punctuation is easy to forget for rule authors

using your DSL. Another reason is that parentheses, the period and the question mark are magic

characters, requiring escaping in the DSL definition.

Chapter 7. Rule Language Refe...

290

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or

reference, resulting in a capture. If they should occur literally, either in the expression or within the

replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then]do something= if (foo) \{ doSomething(); \}

Note

If braces "{" and "}" should appear in the replacement string of a DSL definition,

escape them with a backslash ('\').

Example 7.84. Examples of DSL mapping entries

This is a comment to be ignored.

[when]There is a person with name of "{name}"=Person(name=="{name}")

[when]Person is at least {age} years old and lives in "{location}"=

 Person(age >= {age}, location=="{location}")

[then]Log "{message}"=System.out.println("{message}");

[when]And = and

Given the above DSL examples, the following examples show the expansion of various DSLR

snippets:

Example 7.85. Examples of DSL expansions

There is a person with name of "Kitty"

 ==> Person(name="Kitty")

Person is at least 42 years old and lives in "Atlanta"

 ==> Person(age >= 42, location="Atlanta")

Log "boo"

 ==> System.out.println("boo");

There is a person with name of "Bob" and Person is at least 30 years old and

 lives in "Utah"

 ==> Person(name="Bob") and Person(age >= 30, location="Utah")

Adding Constraints to Facts

291

Note

Don't forget that if you are capturing plain text from a DSL rule line and want to

use it as a string literal in the expansion, you must provide the quotes on the right

hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where

one ends and the next one begins and where the text representing a parameter ends. (Otherwise

you risk getting all the text until the end of the line as a parameter value.) The DSL expressions

are tried, one after the other, according to their order in the DSL definition file. After any match,

all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text

are written as \n.

7.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination

of constraints to a pattern. Given that a fact type may have many fields, having to provide an

individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL

expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,

consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and

country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any

combination of constraint involving these fields.

[when]There is a Cheese with=Cheese()

[when]- age is less than {age}=age<{age}

[when]- type is '{type}'=type=='{type}'

[when]- country equal to '{country}'=country=='{country}'

You can then write rules with conditions like the following:

There is a Cheese with

 - age is less than 42

Chapter 7. Rule Language Refe...

292

 - type is 'stilton'

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,

inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age

is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you

can define DSL phrases for the various operators and even a generic expression that handles

any field constraint, as shown below. (Notice that the expression definition contains a regular

expression in addition to the variable name.)

[when][]is less than or equal to=<=

[when][]is less than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when][]equals===

[when][]There is a Cheese with=Cheese()

[when][]- {field:\w*} {operator} {value:\d*}={field} {operator} {value}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with

 - age is less than 42

 - rating is greater than 50

 - type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches

the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to

the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=='stilton')

Developing a DSL

293

Note

The order of the entries in the DSL is important if separate DSL expressions are

intended to match the same line, one after the other.

7.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,

and to test them as you develop. This will provide you with a stable framework of conditional

elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to

the data model representing the application data that should be subject to the reasoning process

defined in rules. Notice that writing rules is generally easier if most of the data model's types are

facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and

to mark variable parts as parameters. This provides reliable leads as to what might be a handy

DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and

base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first

design phase by leaving certain conditional elements and actions in their DRL form by prefixing a

line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty

quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter

to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL

sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL

should still be able to identify DSL phrases by some fixed text.

7.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file

into a file according to DRL syntax.

• A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.

A comment line starting with "#/" is scanned for words requesting a debug option, see below.

• Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry

definition.

• Any other line is appended to the preceding DSL entry definition, with the line end replaced

by a space.

Chapter 7. Rule Language Refe...

294

A DSL entry consists of the following four parts:

• A scope definition, written as one of the keywords "when" or "condition", "then" or

"consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the

DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication

of "keyword" means that the entry has global significance, i.e., it is recognized anywhere in a

DSLR file.

• A type definition, written as a Java class name, enclosed in brackets. This part is optional unless

the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

• A DSL expression consists of a (Java) regular expression, with any number of embedded

variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces

("{" and "}"). It consists of a variable name and two optional attachments, separated by colons

(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned

to the variable; if there are two attachments, the first one is a hint for the GUI editor and the

second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a

preceding backslash ("\") if they should occur literally within the expression.

• The remaining part of the line after the delimiting equal sign is the replacement text for any

DSLR text matching the regular expression. It may contain variable references, i.e., a variable

name enclosed in braces. Optionally, the variable name may be followed by an exclamation

mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should

occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with

"#/" which may contain one or more words from the table presented below. The resulting output

is written to standard output.

Table 7.2. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and

consequence lines.

keyword Dumps the internal representation of all DSL

entries with scope "keyword".

when Dumps the internal representation of all DSL

entries with scope "when" or "*".

then Dumps the internal representation of all DSL

entries with scope "then" or "*".

DSL and DSLR Reference

295

Word Description

usage Displays a usage statistic of all DSL entries.

Below are some sample DSL definitions, with comments describing the language features they

illustrate.

Comment: DSL examples

#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"

[keyword][]regula=rule

conditional element: "T" or "t", "a" or "an", convert matched word

[when][][Tt]here is an? {entity:\w+}=

 ${entity!lc}: {entity!ucfirst} ()

consequence statement: convert matched word, literal braces

[then][]update {entity:\w+}=modify(${entity!lc})\{ \}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the

keyword definition is modified by replacing white space sequences with a pattern matching any

number of white space characters, and by replacing variable definitions with a capture made

from the regular expression provided with the definition, or with the default (".*?"). Then, the

DSLR text is searched exhaustively for occurrences of strings matching the modified regular

expression. Substrings of a matching string corresponding to variable captures are extracted

and replace variable references in the corresponding replacement text, and this text replaces

the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are

located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears

in the DSL file. Its regular expression part is modified: white space is replaced by a pattern

matching any number of white space characters; variable definitions with a regular expression

are replaced by a capture with this regular expression, its default being ".*?". If the resulting

regular expression matches all or part of the line, the matched part is replaced by the suitably

modified replacement text.

Modification of the replacement text is done by replacing variable references with the text

corresponding to the regular expression capture. This text may be modified according to the

string transformation function given in the variable reference; see below for details.

Chapter 7. Rule Language Refe...

296

If there is a variable reference naming a variable that is not defined in the same entry, the

expander substitutes a value bound to a variable of that name, provided it was defined in one

of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted

into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of

parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)

is simply inserted, otherwise a comma (",") is inserted beforehand.

If a DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted

into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and

"}"). If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

Note

It is currently not possible to use a line with a leading hyphen to insert text into

other conditional element forms (e.g., "accumulate") or it may only work for the first

insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 7.3. String transformation functions

Name Description

uc Converts all letters to upper case.

lc Converts all letters to lower case.

ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the

last two digits in the original string are preceded

by "." or ",", a decimal period is inserted in the

corresponding position.

a?b/c Compares the string with string a, and if they

are equal, replaces it with b, otherwise with c.

But c can be another triplet a, b, c, so that the

entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions

[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()

[when][]- with an? {attr} greater than {amount}={attr} <= {amount!num}

DSL and DSLR Reference

297

[when][]- with a {what} {attr}={attr} {what!positive?>0/negative?%lt;0/zero?==0/

ERROR}

A file containing a DSL definition has to be put under the resources folder or any of its subfolders

like any other drools artifact. It must have the extension .dsl, or alternatively be marked with

type ResourceType.DSL. when programmatically added to a KieFileSystem. For a file using DSL

definition, the extension .dslr should be used, while it can be added to a KieFileSystem with

type ResourceType.DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.

Thus, the parser can "recognize" the DSL expressions and transform them into native rule

language expressions.

298

Chapter 8.

299

Chapter 8. Complex Event

Processing

8.1. Complex Event Processing

There is no broadly accepted definition on the term Complex Event Processing. The term Event

by itself is frequently overloaded and used to refer to several different things, depending on the

context it is used. Defining terms is not the goal of this guide and as so, lets adopt a loose definition

that, although not formal, will allow us to proceed with a common understanding.

So, in the scope of this guide:

Important

 Event, is a record of a significant change of state in the application domain at a

given point in time.

For instance, on a Stock Broker application, when a sale operation is executed, it causes a change

of state in the domain. This change of state can be observed on several entities in the domain,

like the price of the securities that changed to match the value of the operation, the ownership of

the traded assets that changed from the seller to the buyer, the balance of the accounts from both

seller and buyer that are credited and debited, etc. Depending on how the domain is modelled, this

change of state may be represented by a single event, multiple atomic events or even hierarchies

of correlated events. In any case, in the context of this guide, Event is the record of the change

of a particular piece of data in the domain.

Events are processed by computer systems since they were invented, and throughout the

history, systems responsible for that were given different names and different methodologies were

employed. It wasn't until the 90's though, that a more focused work started on EDA (Event Driven

Architecture) with a more formal definition on the requirements and goals for event processing.

Old messaging systems started to change to address such requirements and new systems started

to be developed with the single purpose of event processing. Two trends were born under the

names of Event Stream Processing and Complex Event Processing.

In the very beginnings, Event Stream Processing was focused on the capabilities of processing

streams of events in (near) real time, while the main focus of Complex Event Processing was on

the correlation and composition of atomic events into complex (compound) events. An important

(maybe the most important) milestone was the publishing of Dr. David Luckham's book "The

Power of Events" in 2002. In the book, Dr Luckham introduces the concept of Complex Event

Processing and how it can be used to enhance systems that deal with events. Over the years,

both trends converged to a common understanding and today these systems are all referred to

as CEP systems.

Chapter 8. Complex Event Proc...

300

This is a very simplistic explanation to a really complex and fertile field of research, but sets a high

level and common understanding of the concepts that this guide will introduce.

The current understanding of what Complex Event Processing is may be briefly described as the

following quote from Wikipedia:

Important

"Complex Event Processing, or CEP, is primarily an event

processing concept that deals with the task of processing multiple

events with the goal of identifying the meaningful events within

the event cloud. CEP employs techniques such as detection

of complex patterns of many events, event correlation and

abstraction, event hierarchies, and relationships between events

such as causality, membership, and timing, and event-driven

processes."

—Wikipedia [http://en.wikipedia.org/wiki/

Complex_event_processing]

In other words, CEP is about detecting and selecting the interesting events (and only them) from

an event cloud, finding their relationships and inferring new data from them and their relationships.

Note

For the remaining of this guide, we will use the terms Complex Event Processing

and CEP as a broad reference for any of the related technologies and techniques,

including but not limited to, CEP, Complex Event Processing, ESP, Event Stream

Processing and Event Processing in general.

8.2. Drools Fusion

Event Processing use cases, in general, share several requirements and goals with Business

Rules use cases. These overlaps happen both on the business side and on the technical side.

On the Business side:

• Business rules are frequently defined based on the occurrence of scenarios triggered by events.

Examples could be:

• On an algorithmic trading application: take an action if the security price increases X%

compared to the day opening price, where the price increases are usually denoted by events

on a Stock Trade application.

• On a monitoring application: take an action if the temperature on the server room increases

X degrees in Y minutes, where sensor readings are usually denoted by events.

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

Drools Fusion

301

• Both business rules and event processing queries change frequently and require immediate

response for the business to adapt itself to new market conditions, new regulations and new

enterprise policies.

From a technical perspective:

• Both require seamless integration with the enterprise infrastructure and applications, specially

on autonomous governance, including, but not limited to, lifecycle management, auditing,

security, etc.

• Both have functional requirements like pattern matching and non-functional requirements like

response time and query/rule explanation.

Even sharing requirements and goals, historically, both fields were born appart and although

the industry evolved and one can find good products on the market, they either focus on event

processing or on business rules management. That is due not only because of historical reasons

but also because, even overlapping in part, use cases do have some different requirements.

Important

Drools was also born as a rules engine several years ago, but following the vision

of becoming a single platform for behavioral modelling, it soon realized that it could

only achieve this goal by crediting the same importance to the three complementary

business modelling techniques:

• Business Rules Management

• Business Processes Management

• Complex Event Processing

In this context, Drools Fusion is the module responsible for adding event processing capabilities

into the platform.

Supporting Complex Event Processing, though, is much more than simply understanding what an

event is. CEP scenarios share several common and distinguishing characteristics:

• Usually required to process huge volumes of events, but only a small percentage of the events

are of real interest.

• Events are usually immutable, since they are a record of state change.

• Usually the rules and queries on events must run in reactive modes, i.e., react to the detection

of event patterns.

Chapter 8. Complex Event Proc...

302

• Usually there are strong temporal relationships between related events.

• Individual events are usually not important. The system is concerned about patterns of related

events and their relationships.

• Usually, the system is required to perform composition and aggregation of events.

Based on this general common characteristics, Drools Fusion defined a set of goals to be achieved

in order to support Complex Event Processing appropriately:

• Support Events, with their proper semantics, as first class citizens.

• Allow detection, correlation, aggregation and composition of events.

• Support processing of Streams of events.

• Support temporal constraints in order to model the temporal relationships between events.

• Support sliding windows of interesting events.

• Support a session scoped unified clock.

• Support the required volumes of events for CEP use cases.

• Support to (re)active rules.

• Support adapters for event input into the engine (pipeline).

The above list of goals are based on the requirements not covered by Drools Expert itself, since

in a unified platform, all features of one module are leveraged by the other modules. This way,

Drools Fusion is born with enterprise grade features like Pattern Matching, that is paramount to a

CEP product, but that is already provided by Drools Expert. In the same way, all features provided

by Drools Fusion are leveraged by Drools Flow (and vice-versa) making process management

aware of event processing and vice-versa.

For the remaining of this guide, we will go through each of the features Drools Fusion adds to the

platform. All these features are available to support different use cases in the CEP world, and the

user is free to select and use the ones that will help him model his business use case.

8.3. Event Semantics

An event is a fact that present a few distinguishing characteristics:

• Usually immutables: since, by the previously discussed definition, events are a record of a

state change in the application domain, i.e., a record of something that already happened,

and the past can not be "changed", events are immutables. This constraint is an important

Event Processing Modes

303

requirement for the development of several optimizations and for the specification of the event

lifecycle. This does not mean that the Java object representing the object must be immutable.

Quite the contrary, the engine does not enforce immutability of the object model, because one

of the most common use cases for rules is event data enrichment.

Note

As a best practice, the application is allowed to populate un-populated event

attributes (to enrich the event with inferred data), but already populated attributes

should never be changed.

• Strong temporal constraints: rules involving events usually require the correlation of multiple

events, specially temporal correlations where events are said to happen at some point in time

relative to other events.

• Managed lifecycle: due to their immutable nature and the temporal constraints, events usually

will only match other events and facts during a limited window of time, making it possible for

the engine to manage the lifecycle of the events automatically. In other words, one an event is

inserted into the working memory, it is possible for the engine to find out when an event can no

longer match other facts and automatically delete it, releasing its associated resources.

• Use of sliding windows: since all events have timestamps associated to them, it is possible

to define and use sliding windows over them, allowing the creation of rules on aggregations of

values over a period of time. Example: average of an event value over 60 minutes.

Drools supports the declaration and usage of events with both semantics: point-in-time events

and interval-based events.

Note

A simplistic way to understand the unitification of the semantics is to consider a

point-in-time event as an interval-based event whose duration is zero.

8.4. Event Processing Modes

Rules engines in general have a well known way of processing data and rules and provide the

application with the results. Also, there is not many requirements on how facts should be presented

to the rules engine, specially because in general, the processing itself is time independent. That

is a good assumption for most scenarios, but not for all of them. When the requirements include

the processing of real time or near real time events, time becomes and important variable of the

reasoning process.

The following sections will explain the impact of time on rules reasoning and the two modes

provided by Drools for the reasoning process.

Chapter 8. Complex Event Proc...

304

8.4.1. Cloud Mode

The CLOUD processing mode is the default processing mode. Users of rules engine are familiar

with this mode because it behaves in exactly the same way as any pure forward chaining rules

engine, including previous versions of Drools.

When running in CLOUD mode, the engine sees all facts in the working memory, does not matter

if they are regular facts or events, as a whole. There is no notion of flow of time, although events

have a timestamp as usual. In other words, although the engine knows that a given event was

created, for instance, on January 1st 2009, at 09:35:40.767, it is not possible for the engine to

determine how "old" the event is, because there is no concept of "now".

In this mode, the engine will apply its usual many-to-many pattern matching algorithm, using the

rules constraints to find the matching tuples, activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for instance:

• There is no notion of time. No requirements clock synchronization.

• There is no requirement on event ordering. The engine looks at the events as an unordered

cloud against which the engine tries to match rules.

On the other hand, since there is no requirements, some benefits are not available either. For

instance, in CLOUD mode, it is not possible to use sliding windows, because sliding windows are

based on the concept of "now" and there is no concept of "now" in CLOUD mode.

Since there is no ordering requirement on events, it is not possible for the engine to determine

when events can no longer match and as so, there is no automatic life-cycle management for

events. I.e., the application must explicitly delete events when they are no longer necessary, in

the same way the application does with regular facts.

Cloud mode is the default execution mode for Drools, but in any case, as any other configuration

in Drools, it is possible to change this behavior either by setting a system property, using

configuration property files or using the API. The corresponding property is:

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.CLOUD);

The equivalent property is:

drools.eventProcessingMode = cloud

Stream Mode

305

8.4.2. Stream Mode

The STREAM processing mode is the mode of choice when the application needs to process

streams of events. It adds a few common requirements to the regular processing, but enables a

whole lot of features that make stream event processing a lot simpler.

The main requirements to use STREAM mode are:

• Events in each stream must be time-ordered. I.e., inside a given stream, events that happened

first must be inserted first into the engine.

• The engine will force synchronization between streams through the use of the session clock,

so, although the application does not need to enforce time ordering between streams, the use

of non-time-synchronized streams may result in some unexpected results.

Given that the above requirements are met, the application may enable the STREAM mode using

the following API:

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.STREAM);

Or, the equivalent property:

drools.eventProcessingMode = stream

When using the STREAM, the engine knows the concept of flow of time and the concept of "now",

i.e., the engine understands how old events are based on the current timestamp read from the

Session Clock. This characteristic allows the engine to provide the following additional features

to the application:

• Sliding Window support

• Automatic Event Lifecycle Management

• Automatic Rule Delaying when using Negative Patterns

All these features are explained in the following sections.

8.4.2.1. Role of Session Clock in Stream mode

When running the engine in CLOUD mode, the session clock is used only to time stamp the

arriving events that don't have a previously defined timestamp attribute. Although, in STREAM

mode, the Session Clock assumes an even more important role.

Chapter 8. Complex Event Proc...

306

In STREAM mode, the session clock is responsible for keeping the current timestamp, and based

on it, the engine does all the temporal calculations on event's aging, synchronizes streams from

multiple sources, schedules future tasks and so on.

Check the documentation on the Session Clock section to know how to configure and use different

session clock implementations.

8.4.2.2. Negative Patterns in Stream Mode

Negative patterns behave different in STREAM mode when compared to CLOUD mode. In

CLOUD mode, the engine assumes that all facts and events are known in advance (there is no

concept of flow of time) and so, negative patterns are evaluated immediately.

When running in STREAM mode, negative patterns with temporal constraints may require the

engine to wait for a time period before activating a rule. The time period is automatically calculated

by the engine in a way that the user does not need to use any tricks to achieve the desired result.

For instance:

Example 8.1. a rule that activates immediately upon matching

rule "Sound the alarm"

when

 $f : FireDetected()

 not(SprinklerActivated())

then

 // sound the alarm

end

The above rule has no temporal constraints that would require delaying the rule, and so, the rule

activates immediately. The following rule on the other hand, must wait for 10 seconds before

activating, since it may take up to 10 seconds for the sprinklers to activate:

Example 8.2. a rule that automatically delays activation due to temporal

constraints

rule "Sound the alarm"

when

 $f : FireDetected()

 not(SprinklerActivated(this after[0s,10s] $f))

then

 // sound the alarm

end

Session Clock

307

This behaviour allows the engine to keep consistency when dealing with negative patterns and

temporal constraints at the same time. The above would be the same as writing the rule as below,

but does not burden the user to calculate and explicitly write the appropriate duration parameter:

Example 8.3. same rule with explicit duration parameter

rule "Sound the alarm"

 duration(10s)

when

 $f : FireDetected()

 not(SprinklerActivated(this after[0s,10s] $f))

then

 // sound the alarm

end

The following rule expects every 10 seconds at least one “Heartbeat” event, if not the rule fires.

The special case in this rule is that we use the same type of the object in the first pattern and in

the negative pattern. The negative pattern has the temporal constraint to wait between 0 to 10

seconds before firing and it excludes the Heartbeat bound to $h. Excluding the bound Heartbeat

is important since the temporal constraint [0s, ...] does not exclude by itself the bound event $h

from being matched again, thus preventing the rule to fire.

Example 8.4. excluding bound events in negative patterns

rule "Sound the alarm"

when

 $h: Heartbeat() from entry-point "MonitoringStream"

 not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point

 "MonitoringStream")

then

 // Sound the alarm

end

8.5. Session Clock

Reasoning over time requires a reference clock. Just to mention one example, if a rule reasons

over the average price of a given stock over the last 60 minutes, how the engine knows what stock

price changes happened over the last 60 minutes in order to calculate the average? The obvious

response is: by comparing the timestamp of the events with the "current time". How the engine

knows what time is now? Again, obviously, by querying the Session Clock.

The session clock implements a strategy pattern, allowing different types of clocks to be plugged

and used by the engine. This is very important because the engine may be running in an elements

of different scenarios that may require different clock implementations. Just to mention a few:

Chapter 8. Complex Event Proc...

308

• Rules testing: testing always requires a controlled environment, and when the tests include

rules with temporal constraints, it is necessary to not only control the input rules and facts, but

also the flow of time.

• Regular execution: usually, when running rules in production, the application will require a real

time clock that allows the rules engine to react immediately to the time progression.

• Special environments: specific environments may have specific requirements on time

control. Cluster environments may require clock synchronization through heart beats, or JEE

environments may require the use of an AppServer provided clock, etc.

• Rules replay or simulation: to replay scenarios or simulate scenarios it is necessary that the

application also controls the flow of time.

8.5.1. Available Clock Implementations

Drools 5 provides 2 clock implementations out of the box. The default real time clock, based on

the system clock, and an optional pseudo clock, controlled by the application.

8.5.1.1. Real Time Clock

By default, Drools uses a real time clock implementation that internally uses the system clock to

determine the current timestamp.

To explicitly configure the engine to use the real time clock, just set the session configuration

parameter to real time:

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("realtime"));

8.5.1.2. Pseudo Clock

Drools also offers out of the box an implementation of a clock that is controlled by the application

that is called Pseudo Clock. This clock is specially useful for unit testing temporal rules since it

can be controlled by the application and so the results become deterministic.

To configure the pseudo session clock, do:

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("pseudo"));

As an example of how to control the pseudo session clock:

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(ClockTypeOption.get("pseudo"));

Sliding Windows

309

KieSession session = kbase.newKieSession(conf, null);

SessionPseudoClock clock = session.getSessionClock();

// then, while inserting facts, advance the clock as necessary:

FactHandle handle1 = session.insert(tick1);

clock.advanceTime(10, TimeUnit.SECONDS);

FactHandle handle2 = session.insert(tick2);

clock.advanceTime(30, TimeUnit.SECONDS);

FactHandle handle3 = session.insert(tick3);

8.6. Sliding Windows

Sliding Windows are a way to scope the events of interest by defining a window that is constantly

moving. The two most common types of sliding window implementations are time based windows

and length based windows.

The next sections will detail each of them.

Important

Sliding Windows are only available when running the engine in STREAM mode.

Check the Event Processing Mode section for details on how the STREAM mode

works.

Important

Sliding windows start to match immediately and defining a sliding window does

not imply that the rule has to wait for the sliding window to be "full" in order to

match. For instance, a rule that calculates the average of an event property on a

window:length(10) will start calculating the average immediately, and it will start at

0 (zero) for no-events, and will update the average as events arrive one by one.

8.6.1. Sliding Time Windows

Sliding Time Windows allow the user to write rules that will only match events occurring in the

last X time units.

For instance, if the user wants to consider only the Stock Ticks that happened in the last 2 minutes,

the pattern would look like this:

StockTick() over window:time(2m)

Chapter 8. Complex Event Proc...

310

Drools uses the "over" keyword to associate windows to patterns.

On a more elaborate example, if the user wants to sound an alarm in case the average temperature

over the last 10 minutes read from a sensor is above the threshold value, the rule would look like:

Example 8.5. aggregating values over time windows

rule "Sound the alarm in case temperature rises above threshold"

when

 TemperatureThreshold($max : max)

 Number(doubleValue > $max) from accumulate(

 SensorReading($temp : temperature) over window:time(10m),

 average($temp))

then

 // sound the alarm

end

The engine will automatically disregard any SensorReading older than 10 minutes and keep the

calculated average consistent.

Important

Please note that time based windows are considered when calculating the interval

an event remains in the working memory before being expired, but an event falling

off a sliding window does not mean by itself that the event will be discarded from

the working memory, as there might be other rules that depend on that event. The

engine will discard events only when no other rules depend on that event and the

expiration policy for that event type is fulfilled.

8.6.2. Sliding Length Windows

Sliding Length Windows work the same way as Time Windows, but consider events based on

order of their insertion into the session instead of flow of time.

For instance, if the user wants to consider only the last 10 RHT Stock Ticks, independent of how

old they are, the pattern would look like this:

StockTick(company == "RHT") over window:length(10)

As you can see, the pattern is similar to the one presented in the previous section, but instead of

using window:time to define the sliding window, it uses window:length.

Streams Support

311

Using a similar example to the one in the previous section, if the user wants to sound an alarm

in case the average temperature over the last 100 readings from a sensor is above the threshold

value, the rule would look like:

Example 8.6. aggregating values over length windows

rule "Sound the alarm in case temperature rises above threshold"

when

 TemperatureThreshold($max : max)

 Number(doubleValue > $max) from accumulate(

 SensorReading($temp : temperature) over window:length(100),

 average($temp))

then

 // sound the alarm

end

The engine will keep only consider the last 100 readings to calculate the average temperature.

Important

Please note that falling off a length based window is not criteria for event expiration

in the session. The engine disregards events that fall off a window when calculating

that window, but does not remove the event from the session based on that

condition alone as there might be other rules that depend on that event.

Important

Please note that length based windows do not define temporal constraints for event

expiration from the session, and the engine will not consider them. If events have

no other rules defining temporal constraints and no explicit expiration policy, the

engine will keep them in the session indefinitely.

8.7. Streams Support

Most CEP use cases have to deal with streams of events. The streams can be provided to the

application in various forms, from JMS queues to flat text files, from database tables to raw sockets

or even through web service calls. In any case, the streams share a common set of characteristics:

• events in the stream are ordered by a timestamp. The timestamp may have different semantics

for different streams but they are always ordered internally.

• volumes of events are usually high.

Chapter 8. Complex Event Proc...

312

• atomic events are rarely useful by themselves. Usually meaning is extracted from the correlation

between multiple events from the stream and also from other sources.

• streams may be homogeneous, i.e. contain a single type of events, or heterogeneous, i.e.

contain multiple types of events.

Drools generalized the concept of a stream as an "entry point" into the engine. An entry point is for

drools a gate from which facts come. The facts may be regular facts or special facts like events.

In Drools, facts from one entry point (stream) may join with facts from any other entry point or

event with facts from the working memory. Although, they never mix, i.e., they never lose the

reference to the entry point through which they entered the engine. This is important because one

may have the same type of facts coming into the engine through several entry points, but one

fact that is inserted into the engine through entry point A will never match a pattern from a entry

point B, for example.

8.7.1. Declaring and Using Entry Points

Entry points are declared implicitly in Drools by directly making use of them in rules. I.e. referencing

an entry point in a rule will make the engine, at compile time, to identify and create the proper

internal structures to support that entry point.

So, for instance, lets imagine a banking application, where transactions are fed into the system

coming from streams. One of the streams contains all the transactions executed in ATM machines.

So, if one of the rules says: a withdraw is authorized if and only if the account balance is over the

requested withdraw amount, the rule would look like:

Example 8.7. Example of Stream Usage

rule "authorize withdraw"

when

 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"

 CheckingAccount(accountId == $ai, balance > $am)

then

 // authorize withdraw

end

In the previous example, the engine compiler will identify that the pattern is tied to the entry point

"ATM Stream" and will both create all the necessary structures for the rulebase to support the

"ATM Stream" and will only match WithdrawRequests coming from the "ATM Stream". In the

previous example, the rule is also joining the event from the stream with a fact from the main

working memory (CheckingAccount).

Now, lets imagine a second rule that states that a fee of $2 must be applied to any account for

which a withdraw request is placed at a bank branch:

Declaring and Using Entry Points

313

Example 8.8. Using a different Stream

rule "apply fee on withdraws on branches"

when

 WithdrawRequest($ai : accountId, processed == true) from entry-point

 "Branch Stream"

 CheckingAccount(accountId == $ai)

then

 // apply a $2 fee on the account

end

The previous rule will match events of the exact same type as the first rule (WithdrawRequest),

but from two different streams, so an event inserted into "ATM Stream" will never be evaluated

against the pattern on the second rule, because the rule states that it is only interested in patterns

coming from the "Branch Stream".

So, entry points, besides being a proper abstraction for streams, are also a way to scope facts

in the working memory, and a valuable tool for reducing cross products explosions. But that is a

subject for another time.

Inserting events into an entry point is equally simple. Instead of inserting events directly into the

working memory, insert them into the entry point as shown in the example below:

Example 8.9. Inserting facts into an entry point

// create your rulebase and your session as usual

KieSession session = ...

// get a reference to the entry point

EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// and start inserting your facts into the entry point

atmStream.insert(aWithdrawRequest);

The previous example shows how to manually insert facts into a given entry point. Although,

usually, the application will use one of the many adapters to plug a stream end point, like a JMS

queue, directly into the engine entry point, without coding the inserts manually. The Drools pipeline

API has several adapters and helpers to do that as well as examples on how to do it.

Chapter 8. Complex Event Proc...

314

8.8. Memory Management for Events

Important

The automatic memory management for events is only performed when running

the engine in STREAM mode. Check the Event Processing Mode section for details

on how the STREAM mode works.

One of the benefits of running the engine in STREAM mode is that the engine can detect when

an event can no longer match any rule due to its temporal constraints. When that happens, the

engine can safely delete the event from the session without side effects and release any resources

used by that event.

There are basically 2 ways for the engine to calculate the matching window for a given event:

• explicitly, using the expiration policy

• implicitly, analyzing the temporal constraints on events

8.8.1. Explicit expiration offset

The first way of allowing the engine to calculate the window of interest for a given event type is

by explicitly setting it. To do that, just use the declare statement and define an expiration for the

fact type:

Example 8.10. explicitly defining an expiration offset of 30 minutes for

StockTick events

declare StockTick

 @expires(30m)

end

The above example declares an expiration offset of 30 minutes for StockTick events. After that

time, assuming no rule still needs the event, the engine will expire and remove the event from

the session automatically.

8.8.2. Inferred expiration offset

Another way for the engine to calculate the expiration offset for a given event is implicitly, by

analyzing the temporal constraints in the rules. For instance, given the following rule:

Temporal Reasoning

315

Example 8.11. example rule with temporal constraints

rule "correlate orders"

when

 $bo : BuyOrderEvent($id : id)

 $ae : AckEvent(id == $id, this after[0,10s] $bo)

then

 // do something

end

Analyzing the above rule, the engine automatically calculates that whenever a BuyOrderEvent

matches, it needs to store it for up to 10 seconds to wait for matching AckEvent's. So, the implicit

expiration offset for BuyOrderEvent will be 10 seconds. AckEvent, on the other hand, can only

match existing BuyOrderEvent's, and so its expiration offset will be zero seconds.

The engine will make this analysis for the whole rulebase and find the offset for every event type.

Whenever an implicit expiration offset clashes with the explicit expiration offset, then engine will

use the greater of the two.

8.9. Temporal Reasoning

Temporal reasoning is another requirement of any CEP system. As discussed previously, one of

the distinguishing characteristics of events is their strong temporal relationships.

Temporal reasoning is an extensive field of research, from its roots on Temporal Modal Logic to its

more practical applications in business systems. There are hundreds of papers and thesis written

and approaches are described for several applications. Drools once more takes a pragmatic and

simple approach based on several sources, but specially worth noting the following papers:

[ALLEN81] Allen, J.F.. An Interval-based Representation of Temporal Knowledge. 1981.

[ALLEN83] Allen, J.F.. Maintaining knowledge about temporal intervals. 1983.

[BENNE00] by Bennet, Brandon and Galton, Antony P.. A Unifying Semantics for Time and

Events. 2005.

[YONEK05] by Yoneki, Eiko and Bacon, Jean. Unified Semantics for Event Correlation Over Time

and Space in Hybrid Network Environments. 2005.

Drools implements the Interval-based Time Event Semantics described by Allen, and represents

Point-in-Time Events as Interval-based evens with duration 0 (zero).

Note

For all temporal operator intervals, the "*" (star) symbol is used to indicate positive

infinity and the "-*" (minus star) is used to indicate negative infinity.

Chapter 8. Complex Event Proc...

316

8.9.1. Temporal Operators

Drools implements all 13 operators defined by Allen and also their logical complement (negation).

This section details each of the operators and their parameters.

8.9.1.1. After

The after evaluator correlates two events and matches when the temporal distance from the

current event to the event being correlated belongs to the distance range declared for the operator.

Lets look at an example:

$eventA : EventA(this after[3m30s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventB

finished and the time when $eventA started is between (3 minutes and 30 seconds) and (4

minutes). In other words:

 3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m

The temporal distance interval for the after operator is optional:

• If two values are defined (like in the example below), the interval starts on the first value and

finishes on the second.

• If only one value is defined, the interval starts on the value and finishes on the positive infinity.

• If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive

infinity.

Note

It is possible to define negative distances for this operator. Example:

$eventA : EventA(this after[-3m30s, -2m] $eventB)

Note

If the first value is greater than the second value, the engine automatically reverses

them, as there is no reason to have the first value greater than the second value.

Example: the following two patterns are considered to have the same semantics:

Temporal Operators

317

$eventA : EventA(this after[-3m30s, -2m] $eventB)

$eventA : EventA(this after[-2m, -3m30s] $eventB)

Note

The after, before and coincides operators can be used to define constraints

between events, java.util.Date attributes, and long attributes (interpreted as

timestamps since epoch) in any combination. Example:

EventA(this after $someDate)

8.9.1.2. Before

The before evaluator correlates two events and matches when the temporal distance from the

event being correlated to the current correlated belongs to the distance range declared for the

operator.

Lets look at an example:

$eventA : EventA(this before[3m30s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventA

finished and the time when $eventB started is between (3 minutes and 30 seconds) and (4

minutes). In other words:

 3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m

The temporal distance interval for the before operator is optional:

• If two values are defined (like in the example below), the interval starts on the first value and

finishes on the second.

• If only one value is defined, then the interval starts on the value and finishes on the positive

infinity.

• If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive

infinity.

Chapter 8. Complex Event Proc...

318

Note

It is possible to define negative distances for this operator. Example:

$eventA : EventA(this before[-3m30s, -2m] $eventB)

Note

If the first value is greater than the second value, the engine automatically reverses

them, as there is no reason to have the first value greater than the second value.

Example: the following two patterns are considered to have the same semantics:

$eventA : EventA(this before[-3m30s, -2m] $eventB)

$eventA : EventA(this before[-2m, -3m30s] $eventB)

Note

The after, before and coincides operators can be used to define constraints

between events, java.util.Date attributes, and long attributes (interpreted as

timestamps since epoch) in any combination. Example:

EventA(this after $someDate)

8.9.1.3. Coincides

The coincides evaluator correlates two events and matches when both happen at the same

time. Optionally, the evaluator accept thresholds for the distance between events' start and finish

timestamps.

Lets look at an example:

$eventA : EventA(this coincides $eventB)

The previous pattern will match if and only if the start timestamps of both $eventA and $eventB

are the same AND the end timestamp of both $eventA and $eventB also are the same.

Temporal Operators

319

Optionally, this operator accepts one or two parameters. These parameters are the thresholds for

the distance between matching timestamps.

• If only one parameter is given, it is used for both start and end timestamps.

• If two parameters are given, then the first is used as a threshold for the start timestamp and the

second one is used as a threshold for the end timestamp.

In other words:

$eventA : EventA(this coincides[15s, 10s] $eventB)

Above pattern will match if and only if:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s &&

abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s

Warning

It makes no sense to use negative interval values for the parameters and the engine

will raise an error if that happens.

Note

The after, before and coincides operators can be used to define constraints

between events, java.util.Date attributes, and long attributes (interpreted as

timestamps since epoch) in any combination. Example:

EventA(this after $someDate)

8.9.1.4. During

The during evaluator correlates two events and matches when the current event happens during

the occurrence of the event being correlated.

Lets look at an example:

$eventA : EventA(this during $eventB)

Chapter 8. Complex Event Proc...

320

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes

before $eventB finishes.

In other words:

$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp <

 $eventB.endTimestamp

The during operator accepts 1, 2 or 4 optional parameters as follow:

• If one value is defined, this will be the maximum distance between the start timestamp of both

event and the maximum distance between the end timestamp of both events in order to operator

match. Example:

$eventA : EventA(this during[5s] $eventB)

Will match if and only if:

0 < $eventA.startTimestamp - $eventB.startTimestamp <= 5s &&

0 < $eventB.endTimestamp - $eventA.endTimestamp <= 5s

• If two values are defined, the first value will be the minimum distance between the timestamps

of both events, while the second value will be the maximum distance between the timestamps

of both events. Example:

$eventA : EventA(this during[5s, 10s] $eventB)

Will match if and only if:

5s <= $eventA.startTimestamp - $eventB.startTimestamp <= 10s &&

5s <= $eventB.endTimestamp - $eventA.endTimestamp <= 10s

• If four values are defined, the first two values will be the minimum and maximum distances

between the start timestamp of both events, while the last two values will be the minimum and

maximum distances between the end timestamp of both events. Example:

$eventA : EventA(this during[2s, 6s, 4s, 10s] $eventB)

Temporal Operators

321

Will match if and only if:

2s <= $eventA.startTimestamp - $eventB.startTimestamp <= 6s &&

4s <= $eventB.endTimestamp - $eventA.endTimestamp <= 10s

8.9.1.5. Finishes

The finishes evaluator correlates two events and matches when the current event's start

timestamp happens after the correlated event's start timestamp, but both end timestamps occur

at the same time.

Lets look at an example:

$eventA : EventA(this finishes $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes

at the same time $eventB finishes.

In other words:

$eventB.startTimestamp < $eventA.startTimestamp &&

$eventA.endTimestamp == $eventB.endTimestamp

The finishes evaluator accepts one optional parameter. If it is defined, it determines the maximum

distance between the end timestamp of both events in order for the operator to match. Example:

$eventA : EventA(this finishes[5s] $eventB)

Will match if and only if:

$eventB.startTimestamp < $eventA.startTimestamp &&

abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

Chapter 8. Complex Event Proc...

322

8.9.1.6. Finished By

The finishedby evaluator correlates two events and matches when the current event start

timestamp happens before the correlated event start timestamp, but both end timestamps occur

at the same time. This is the symmetrical opposite of finishes evaluator.

Lets look at an example:

$eventA : EventA(this finishedby $eventB)

The previous pattern will match if and only if the $eventA starts before $eventB starts and finishes

at the same time $eventB finishes.

In other words:

$eventA.startTimestamp < $eventB.startTimestamp &&

$eventA.endTimestamp == $eventB.endTimestamp

The finishedby evaluator accepts one optional parameter. If it is defined, it determines the

maximum distance between the end timestamp of both events in order for the operator to match.

Example:

$eventA : EventA(this finishedby[5s] $eventB)

Will match if and only if:

$eventA.startTimestamp < $eventB.startTimestamp &&

abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

8.9.1.7. Includes

The includes evaluator correlates two events and matches when the event being correlated

happens during the current event. It is the symmetrical opposite of during evaluator.

Lets look at an example:

Temporal Operators

323

$eventA : EventA(this includes $eventB)

The previous pattern will match if and only if the $eventB starts after $eventA starts and finishes

before $eventA finishes.

In other words:

$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp <

 $eventA.endTimestamp

The includes operator accepts 1, 2 or 4 optional parameters as follow:

• If one value is defined, this will be the maximum distance between the start timestamp of both

event and the maximum distance between the end timestamp of both events in order to operator

match. Example:

$eventA : EventA(this includes[5s] $eventB)

Will match if and only if:

0 < $eventB.startTimestamp - $eventA.startTimestamp <= 5s &&

0 < $eventA.endTimestamp - $eventB.endTimestamp <= 5s

• If two values are defined, the first value will be the minimum distance between the timestamps

of both events, while the second value will be the maximum distance between the timestamps

of both events. Example:

$eventA : EventA(this includes[5s, 10s] $eventB)

Will match if and only if:

5s <= $eventB.startTimestamp - $eventA.startTimestamp <= 10s &&

5s <= $eventA.endTimestamp - $eventB.endTimestamp <= 10s

• If four values are defined, the first two values will be the minimum and maximum distances

between the start timestamp of both events, while the last two values will be the minimum and

maximum distances between the end timestamp of both events. Example:

Chapter 8. Complex Event Proc...

324

$eventA : EventA(this includes[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $eventB.startTimestamp - $eventA.startTimestamp <= 6s &&

4s <= $eventA.endTimestamp - $eventB.endTimestamp <= 10s

8.9.1.8. Meets

The meets evaluator correlates two events and matches when the current event's end timestamp

happens at the same time as the correlated event's start timestamp.

Lets look at an example:

$eventA : EventA(this meets $eventB)

The previous pattern will match if and only if the $eventA finishes at the same time $eventB starts.

In other words:

abs($eventB.startTimestamp - $eventA.endTimestamp) == 0

The meets evaluator accepts one optional parameter. If it is defined, it determines the maximum

distance between the end timestamp of current event and the start timestamp of the correlated

event in order for the operator to match. Example:

$eventA : EventA(this meets[5s] $eventB)

Will match if and only if:

abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

Temporal Operators

325

8.9.1.9. Met By

The metby evaluator correlates two events and matches when the current event's start timestamp

happens at the same time as the correlated event's end timestamp.

Lets look at an example:

$eventA : EventA(this metby $eventB)

The previous pattern will match if and only if the $eventA starts at the same time $eventB finishes.

In other words:

abs($eventA.startTimestamp - $eventB.endTimestamp) == 0

The metby evaluator accepts one optional parameter. If it is defined, it determines the maximum

distance between the end timestamp of the correlated event and the start timestamp of the current

event in order for the operator to match. Example:

$eventA : EventA(this metby[5s] $eventB)

Will match if and only if:

abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

8.9.1.10. Overlaps

The overlaps evaluator correlates two events and matches when the current event starts before

the correlated event starts and finishes after the correlated event starts, but before the correlated

event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$eventA : EventA(this overlaps $eventB)

Chapter 8. Complex Event Proc...

326

The previous pattern will match if and only if:

$eventA.startTimestamp < $eventB.startTimestamp < $eventA.endTimestamp <

 $eventB.endTimestamp

The overlaps operator accepts 1 or 2 optional parameters as follow:

• If one parameter is defined, this will be the maximum distance between the start timestamp of

the correlated event and the end timestamp of the current event. Example:

$eventA : EventA(this overlaps[5s] $eventB)

Will match if and only if:

$eventA.startTimestamp < $eventB.startTimestamp < $eventA.endTimestamp <

 $eventB.endTimestamp &&

0 <= $eventA.endTimestamp - $eventB.startTimestamp <= 5s

• If two values are defined, the first value will be the minimum distance and the second value

will be the maximum distance between the start timestamp of the correlated event and the end

timestamp of the current event. Example:

$eventA : EventA(this overlaps[5s, 10s] $eventB)

Will match if and only if:

$eventA.startTimestamp < $eventB.startTimestamp < $eventA.endTimestamp <

 $eventB.endTimestamp &&

5s <= $eventA.endTimestamp - $eventB.startTimestamp <= 10s

8.9.1.11. Overlapped By

The overlappedby evaluator correlates two events and matches when the correlated event starts

before the current event starts and finishes after the current event starts, but before the current

event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$eventA : EventA(this overlappedby $eventB)

Temporal Operators

327

The previous pattern will match if and only if:

$eventB.startTimestamp < $eventA.startTimestamp < $eventB.endTimestamp <

 $eventA.endTimestamp

The overlappedby operator accepts 1 or 2 optional parameters as follow:

• If one parameter is defined, this will be the maximum distance between the start timestamp of

the current event and the end timestamp of the correlated event. Example:

$eventA : EventA(this overlappedby[5s] $eventB)

Will match if and only if:

$eventB.startTimestamp < $eventA.startTimestamp < $eventB.endTimestamp <

 $eventA.endTimestamp &&

0 <= $eventB.endTimestamp - $eventA.startTimestamp <= 5s

• If two values are defined, the first value will be the minimum distance and the second value

will be the maximum distance between the start timestamp of the current event and the end

timestamp of the correlated event. Example:

$eventA : EventA(this overlappedby[5s, 10s] $eventB)

Will match if and only if:

$eventB.startTimestamp < $eventA.startTimestamp < $eventB.endTimestamp <

 $eventA.endTimestamp &&

5s <= $eventB.endTimestamp - $eventA.startTimestamp <= 10s

8.9.1.12. Starts

The starts evaluator correlates two events and matches when the current event's end timestamp

happens before the correlated event's end timestamp, but both start timestamps occur at the

same time.

Lets look at an example:

Chapter 8. Complex Event Proc...

328

$eventA : EventA(this starts $eventB)

The previous pattern will match if and only if the $eventA finishes before $eventB finishes and

starts at the same time $eventB starts.

In other words:

$eventA.startTimestamp == $eventB.startTimestamp &&

$eventA.endTimestamp < $eventB.endTimestamp

The starts evaluator accepts one optional parameter. If it is defined, it determines the maximum

distance between the start timestamp of both events in order for the operator to match. Example:

$eventA : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s &&

$eventA.endTimestamp < $eventB.endTimestamp

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

8.9.1.13. Started By

The startedby evaluator correlates two events and matches when the correlating event's end

timestamp happens before the current event's end timestamp, but both start timestamps occur at

the same time. Lets look at an example:

$eventA : EventA(this startedby $eventB)

The previous pattern will match if and only if the $eventB finishes before $eventA finishes and

starts at the same time $eventB starts.

In other words:

Temporal Operators

329

$eventA.startTimestamp == $eventB.startTimestamp &&

$eventA.endTimestamp > $eventB.endTimestamp

The startedby evaluator accepts one optional parameter. If it is defined, it determines the maximum

distance between the start timestamp of both events in order for the operator to match. Example:

$eventA : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s &&

$eventA.endTimestamp > $eventB.endTimestamp

Warning

It makes no sense to use a negative interval value for the parameter and the engine

will raise an exception if that happens.

330

Part IV. Drools Integration
Integration Documentation

Chapter 9.

333

Chapter 9. Drools Commands
9.1. API

XML marshalling/unmarshalling of the Drools Commands requires the use of special classes,

which are going to be described in the following sections.

The following urls show sample script examples for jaxb, xstream and json marshalling using:

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/jaxb.mvt?r=HEAD

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/jaxb.mvt?r=HEAD

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/xstream.mvt?r=HEAD

9.1.1. XStream

To use the XStream commands marshaller you need to use the DroolsHelperProvider to obtain

an XStream instance. We need to use this because it has the commands converters registered.

• Marshalling

BatchExecutionHelperProviderImpl.newXStreamMarshaller().toXML(command);

• Unmarshalling

BatchExecutionHelperProviderImpl.newXStreamMarshaller().fromXML(xml)

9.1.2. JSON

JSON API to marshalling/unmarshalling is similar to XStream API:

• Marshalling

BatchExecutionHelper.newJSonMarshaller().toXML(command);

• Unmarshalling

BatchExecutionHelper.newJSonMarshaller().fromXML(xml)

9.1.3. JAXB

There are two options for using JAXB, you can define your model in an XSD file or you can have

a POJO model. In both cases you have to declare your model inside JAXBContext, and in order

to do that you need to use Drools Helper classes. Once you have the JAXBContext you need to

create the Unmarshaller/Marshaller as needed.

Chapter 9. Drools Commands

334

9.1.3.1. Using an XSD file to define the model

With your model defined in a XSD file you need to have a KnowledgeBase that has your XSD

model added as a resource.

To do this, the XSD file must be added as a XSD ResourceType into the KnowledgeBuilder. Finally

you can create the JAXBContext using the KnowledgeBase created with the KnowledgeBuilder

Options xjcOpts = new Options();

xjcOpts.setSchemaLanguage(Language.XMLSCHEMA);

JaxbConfiguration jaxbConfiguration = KnowledgeBuilderFactory.newJaxbConfiguration(xjcOpts, "xsd");

kbuilder.add(ResourceFactory.newClassPathResource("person.xsd", getClass()), ResourceType.XSD, jaxbConfiguration);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

List<String> classesName = new ArrayList<String>();

classesName.add("org.drools.compiler.test.Person");

JAXBContext jaxbContext = KnowledgeBuilderHelper.newJAXBContext(classesName.toArray(new String[classesName.size()]), kbase);

9.1.3.2. Using a POJO model

In this case you need to use DroolsJaxbHelperProviderImpl to create the JAXBContext. This class

has two parameters:

1. classNames: A List with the canonical name of the classes that you want to use in the

marshalling/unmarshalling process.

2. properties: JAXB custom properties

List<String> classNames = new ArrayList<String>();

classNames.add("org.drools.compiler.test.Person");

JAXBContext jaxbContext = DroolsJaxbHelperProviderImpl.createDroolsJaxbContext(classNames, null);

Marshaller marshaller = jaxbContext.createMarshaller();

9.2. Commands supported

Currently, the following commands are supported:

• BatchExecutionCommand

• InsertObjectCommand

• RetractCommand

Commands supported

335

• ModifyCommand

• GetObjectCommand

• InsertElementsCommand

• FireAllRulesCommand

• StartProcessCommand

• SignalEventCommand

• CompleteWorkItemCommand

• AbortWorkItemCommand

• QueryCommand

• SetGlobalCommand

• GetGlobalCommand

• GetObjectsCommand

Note

In the next snippets code we are going to use a POJO

org.drools.compiler.test.Person that has two fields

• name: String

• age: Integer

Note

In the next examples, to marshall the commands we have used the next snippet

codes:

• XStream

String xml = BatchExecutionHelper.newXStreamMarshaller().toXML(command);

• JSON

String xml = BatchExecutionHelper.newJSonMarshaller().toXML(command);

Chapter 9. Drools Commands

336

• JAXB

Marshaller marshaller = jaxbContext.createMarshaller();

StringWriter xml = new StringWriter();

marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

marshaller.marshal(command, xml);

9.2.1. BatchExecutionCommand

• Description: The command that contains a list of commands, which will be sent and executed.

• Attributes

Table 9.1. BatchExecutionCommand attributes

Name Description required

lookup Sets the knowledge session

id on which the commands

are going to be executed

true

commands List of commands to be

executed

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

InsertObjectCommand insertObjectCommand = new InsertObjectCommand(new Person("john", 25));

FireAllRulesCommand fireAllRulesCommand = new FireAllRulesCommand();

command.getCommands().add(insertObjectCommand);

command.getCommands().add(fireAllRulesCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <insert>

 <org.drools.compiler.test.Person>

 <name>john</name>

 <age>25</age>

InsertObjectCommand

337

 </org.drools.compiler.test.Person>

 </insert>

 <fire-all-rules/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":[{"insert":{"object":

{"org.drools.compiler.test.Person":{"name":"john","age":25}}}},{"fire-all-

rules":""}]}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <insert>

 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <age>25</age>

 <name>john</name>

 </object>

 </insert>

 <fire-all-rules max="-1"/>

</batch-execution>

9.2.2. InsertObjectCommand

• Description: Insert an object in the knowledge session.

• Attributes

Table 9.2. InsertObjectCommand attributes

Name Description required

object The object to be inserted true

outIdentifier Id to identify the FactHandle

created in the object insertion

and added to the execution

results

false

Chapter 9. Drools Commands

338

Name Description required

returnObject Boolean to establish if the

object must be returned in

the execution results. Default

value: true

false

entryPoint Entrypoint for the insertion false

• Command creation

List<Command> cmds = ArrayList<Command>();

Command insertObjectCommand = CommandFactory.newInsert(new Person("john", 25), "john", false, null);

cmds.add(insertObjectCommand);

BatchExecutionCommand command = CommandFactory.createBatchExecution(cmds, "ksession1");

• XML output

• XStream

<batch-execution lookup="ksession1">

 <insert out-identifier="john" entry-point="my stream" return-

object="false">

 <org.drools.compiler.test.Person>

 <name>john</name>

 <age>25</age>

 </org.drools.compiler.test.Person>

 </insert>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"insert":{"entry-

point":"my stream", "out-identifier":"john","return-object":false,"object":

{"org.drools.compiler.test.Person":{"name":"john","age":25}}}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

RetractCommand

339

 <insert out-identifier="john" entry-point="my stream" >

 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <age>25</age>

 <name>john</name>

 </object>

 </insert>

</batch-execution>

9.2.3. RetractCommand

• Description: Retract an object from the knowledge session.

• Attributes

Table 9.3. RetractCommand attributes

Name Description required

handle The FactHandle associated to

the object to be retracted

true

• Command creation: we have two options, with the same output result:

1. Create the Fact Handle from a string

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

RetractCommand retractCommand = new RetractCommand();

retractCommand.setFactHandleFromString("123:234:345:456:567");

command.getCommands().add(retractCommand);

2. Set the Fact Handle that you received when the object was inserted

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

RetractCommand retractCommand = new RetractCommand(factHandle);

command.getCommands().add(retractCommand);

• XML output

• XStream

Chapter 9. Drools Commands

340

<batch-execution lookup="ksession1">

 <retract fact-handle="0:234:345:456:567"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"retract":{"fact-

handle":"0:234:345:456:567"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <retract fact-handle="0:234:345:456:567"/>

</batch-execution>

9.2.4. ModifyCommand

• Description: Allows you to modify a previously inserted object in the knowledge session.

• Attributes

Table 9.4. ModifyCommand attributes

Name Description required

handle The FactHandle associated to

the object to be retracted

true

setters List of setters object's

modifications

true

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

ModifyCommand modifyCommand = new ModifyCommand();

modifyCommand.setFactHandleFromString("123:234:345:456:567");

List<Setter> setters = new ArrayList<Setter>();

setters.add(new SetterImpl("age", "30"));

modifyCommand.setSetters(setters);

GetObjectCommand

341

command.getCommands().add(modifyCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <modify fact-handle="0:234:345:456:567">

 <set accessor="age" value="30"/>

 </modify>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"modify":{"fact-

handle":"0:234:345:456:567","setters":{"accessor":"age","value":30}}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <modify fact-handle="0:234:345:456:567">

 <set value="30" accessor="age"/>

 </modify>

</batch-execution>

9.2.5. GetObjectCommand

• Description: Used to get an object from a knowledge session

• Attributes

Table 9.5. GetObjectCommand attributes

Name Description required

factHandle The FactHandle associated to

the object to be retracted

true

outIdentifier Id to identify the FactHandle

created in the object insertion

false

Chapter 9. Drools Commands

342

Name Description required

and added to the execution

results

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

GetObjectCommand getObjectCommand = new GetObjectCommand();

getObjectCommand.setFactHandleFromString("123:234:345:456:567");

getObjectCommand.setOutIdentifier("john");

command.getCommands().add(getObjectCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <get-object fact-handle="0:234:345:456:567" out-identifier="john"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"get-object":{"fact-

handle":"0:234:345:456:567","out-identifier":"john"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <get-object out-identifier="john" fact-handle="0:234:345:456:567"/>

</batch-execution>

9.2.6. InsertElementsCommand

• Description: Used to insert a list of objects.

• Attributes

InsertElementsCommand

343

Table 9.6. InsertElementsCommand attributes

Name Description required

objects The list of objects to be

inserted on the knowledge

session

true

outIdentifier Id to identify the FactHandle

created in the object insertion

and added to the execution

results

false

returnObject Boolean to establish if the

object must be returned in

the execution results. Default

value: true

false

entryPoint Entrypoint for the insertion false

• Command creation

List<Command> cmds = ArrayList<Command>();

List<Object> objects = new ArrayList<Object>();

objects.add(new Person("john", 25));

objects.add(new Person("sarah", 35));

Command insertElementsCommand = CommandFactory.newInsertElements(objects);

cmds.add(insertElementsCommand);

BatchExecutionCommand command = CommandFactory.createBatchExecution(cmds, "ksession1");

• XML output

• XStream

<batch-execution lookup="ksession1">

 <insert-elements>

 <org.drools.compiler.test.Person>

 <name>john</name>

 <age>25</age>

 </org.drools.compiler.test.Person>

 <org.drools.compiler.test.Person>

 <name>sarah</name>

 <age>35</age>

 </org.drools.compiler.test.Person>

Chapter 9. Drools Commands

344

 </insert-elements>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"insert-elements":

{"objects":[{"containedObject":

{"@class":"org.drools.compiler.test.Person","name":"john","age":25}},

{"containedObject":{"@class":"Person","name":"sarah","age":35}}]}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <insert-elements return-objects="true">

 <list>

 <element xsi:type="person" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

 <age>25</age>

 <name>john</name>

 </element>

 <element xsi:type="person" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

 <age>35</age>

 <name>sarah</name>

 </element>

 <list>

 </insert-elements>

</batch-execution>

9.2.7. FireAllRulesCommand

• Description: Allow execution of the rules activations created.

• Attributes

Table 9.7. FireAllRulesCommand attributes

Name Description required

max The max number of rules

activations to be executed.

default is -1 and will not put

any restriction on execution

false

StartProcessCommand

345

Name Description required

outIdentifier Add the number of rules

activations fired on the

execution results

false

agendaFilter Allow the rules execution

using an Agenda Filter

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

FireAllRulesCommand fireAllRulesCommand = new FireAllRulesCommand();

fireAllRulesCommand.setMax(10);

fireAllRulesCommand.setOutIdentifier("firedActivations");

command.getCommands().add(fireAllRulesCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <fire-all-rules max="10" out-identifier="firedActivations"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"fire-all-rules":

{"max":10,"out-identifier":"firedActivations"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <fire-all-rules out-identifier="firedActivations" max="10"/>

</batch-execution>

9.2.8. StartProcessCommand

Chapter 9. Drools Commands

346

• Description: Allows you to start a process using the ID. Also you can pass parameters and initial

data to be inserted.

• Attributes

Table 9.8. StartProcessCommand attributes

Name Description required

processId The ID of the process to be

started

true

parameters A Map<String, Object> to

pass parameters in the

process startup

false

data A list of objects to be inserted

in the knowledge session

before the process startup

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

StartProcessCommand startProcessCommand = new StartProcessCommand();

startProcessCommand.setProcessId("org.drools.task.processOne");

command.getCommands().add(startProcessCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <start-process processId="org.drools.task.processOne"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"start-process":

{"process-id":"org.drools.task.processOne"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

SignalEventCommand

347

 <start-process processId="org.drools.task.processOne">

 <parameter/>

 </start-process>

</batch-execution>

9.2.9. SignalEventCommand

• Description: Send a signal event.

• Attributes

Table 9.9. SignalEventCommand attributes

Name Description required

event-type true

processInstanceId false

event false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

SignalEventCommand signalEventCommand = new SignalEventCommand();

signalEventCommand.setProcessInstanceId(1001);

signalEventCommand.setEventType("start");

signalEventCommand.setEvent(new Person("john", 25));

command.getCommands().add(signalEventCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <signal-event process-instance-id="1001" event-type="start">

 <org.drools.pipeline.camel.Person>

 <name>john</name>

 <age>25</age>

 </org.drools.pipeline.camel.Person>

 </signal-event>

</batch-execution>

• JSON

Chapter 9. Drools Commands

348

{"batch-execution":{"lookup":"ksession1","commands":{"signal-event":

{"process-instance-id":1001,"@event-type":"start","event-

type":"start","object":{"org.drools.pipeline.camel.Person":

{"name":"john","age":25}}}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <signal-event event-type="start" process-instance-id="1001">

 <event xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <age>25</age>

 <name>john</name>

 </event>

 </signal-event>

</batch-execution>

9.2.10. CompleteWorkItemCommand

• Description: Allows you to complete a WorkItem.

• Attributes

Table 9.10. CompleteWorkItemCommand attributes

Name Description required

workItemId The ID of the WorkItem to be

completed

true

results false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

CompleteWorkItemCommand completeWorkItemCommand = new CompleteWorkItemCommand();

completeWorkItemCommand.setWorkItemId(1001);

command.getCommands().add(completeWorkItemCommand);

• XML output

AbortWorkItemCommand

349

• XStream

<batch-execution lookup="ksession1">

 <complete-work-item id="1001"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"complete-work-item":

{"id":1001}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <complete-work-item id="1001"/>

</batch-execution>

9.2.11. AbortWorkItemCommand

• Description: Allows you abort an WorkItem. The same as

session.getWorkItemManager().abortWorkItem(workItemId)

• Attributes

Table 9.11. AbortWorkItemCommand attributes

Name Description required

workItemId The ID of the WorkItem to be

completed

true

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

AbortWorkItemCommand abortWorkItemCommand = new AbortWorkItemCommand();

abortWorkItemCommand.setWorkItemId(1001);

Chapter 9. Drools Commands

350

command.getCommands().add(abortWorkItemCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <abort-work-item id="1001"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"abort-work-item":

{"id":1001}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <abort-work-item id="1001"/>

</batch-execution>

9.2.12. QueryCommand

• Description: Executes a query defined in knowledge base.

• Attributes

Table 9.12. QueryCommand attributes

Name Description required

name The query name true

outIdentifier The identifier of the query

results. The query results are

going to be added in the

execution results with this

identifier

false

SetGlobalCommand

351

Name Description required

arguments A list of objects to be passed

as a query parameter

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

QueryCommand queryCommand = new QueryCommand();

queryCommand.setName("persons");

queryCommand.setOutIdentifier("persons");

command.getCommands().add(queryCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <query out-identifier="persons" name="persons"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"query":{"out-

identifier":"persons","name":"persons"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <query name="persons" out-identifier="persons"/>

</batch-execution>

9.2.13. SetGlobalCommand

• Description: Allows you to set a global.

• Attributes

Chapter 9. Drools Commands

352

Table 9.13. SetGlobalCommand attributes

Name Description required

identifier The identifier of the global

defined in the knowledge

base

true

object The object to be set into the

global

false

out A boolean to add, or not,

the set global result into the

execution results

false

outIdentifier The identifier of the global

execution result

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

SetGlobalCommand setGlobalCommand = new SetGlobalCommand();

setGlobalCommand.setIdentifier("helper");

setGlobalCommand.setObject(new Person("kyle", 30));

setGlobalCommand.setOut(true);

setGlobalCommand.setOutIdentifier("output");

command.getCommands().add(setGlobalCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <set-global identifier="helper" out-identifier="output">

 <org.drools.compiler.test.Person>

 <name>kyle</name>

 <age>30</age>

 </org.drools.compiler.test.Person>

 </set-global>

</batch-execution>

• JSON

GetGlobalCommand

353

{"batch-execution":{"lookup":"ksession1","commands":{"set-global":

{"identifier":"helper","out-identifier":"output","object":

{"org.drools.compiler.test.Person":{"name":"kyle","age":30}}}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <set-global out="true" out-identifier="output" identifier="helper">

 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <age>30</age>

 <name>kyle</name>

 </object>

 </set-global>

</batch-execution>

9.2.14. GetGlobalCommand

• Description: Allows you to get a global previously defined.

• Attributes

Table 9.14. GetGlobalCommand attributes

Name Description required

identifier The identifier of the global

defined in the knowledge

base

true

outIdentifier The identifier to be used in the

execution results

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

command.setLookup("ksession1");

GetGlobalCommand getGlobalCommand = new GetGlobalCommand();

getGlobalCommand.setIdentifier("helper");

getGlobalCommand.setOutIdentifier("helperOutput");

command.getCommands().add(getGlobalCommand);

Chapter 9. Drools Commands

354

• XML output

• XStream

<batch-execution lookup="ksession1">

 <get-global identifier="helper" out-identifier="helperOutput"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"get-global":

{"identifier":"helper","out-identifier":"helperOutput"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <get-global out-identifier="helperOutput" identifier="helper"/>

</batch-execution>

9.2.15. GetObjectsCommand

• Description: Returns all the objects from the current session as a Collection.

• Attributes

Table 9.15. GetObjectsCommand attributes

Name Description required

objectFilter An ObjectFilter to filter the

objects returned from the

current session

false

outIdentifier The identifier to be used in the

execution results

false

• Command creation

BatchExecutionCommand command = new BatchExecutionCommand();

GetObjectsCommand

355

command.setLookup("ksession1");

GetObjectsCommand getObjectsCommand = new GetObjectsCommand();

getObjectsCommand.setOutIdentifier("objects");

command.getCommands().add(getObjectsCommand);

• XML output

• XStream

<batch-execution lookup="ksession1">

 <get-objects out-identifier="objects"/>

</batch-execution>

• JSON

{"batch-execution":{"lookup":"ksession1","commands":{"get-objects":{"out-

identifier":"objects"}}}}

• JAXB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<batch-execution lookup="ksession1">

 <get-objects out-identifier="objects"/>

</batch-execution>

356

Chapter 10.

357

Chapter 10. CDI

10.1. Introduction

CDI [http://www.cdi-spec.org], Contexts and Dependency Injection, is Java specification that

provides declarative controls and strucutres to an application. KIE can use it to automatically

instantiate and bind things, without the need to use the programmatic API.

10.2. Annotations

@KContainer, @KBase and @KSession all support an optional 'name' attribute. CDI typically

does "getOrCreate" when it injects, all injections receive the same instance for the same set of

annotations. the 'name' annotation forces a unique instance for each name, although all instance

for that name will be identity equals.

10.2.1. @KReleaseId

Used to bind an instance to a specific version of a KieModule. If kie-ci is on the classpath this will

resolve dependencies automatically, downloading from remote repositories.

10.2.2. @KContainer

@KContainer is optional as it can be detected and added by the use of @Inject and variable type

inferrence.

@Inject

private KieContainer kContainer;

Figure 10.1. Injects Classpath KieContainer

@Inject

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.1")

private KieContainer kContainer;

Figure 10.2. Injects KieContainer for Dynamic KieModule

@Inject

@KContainer(name = "kc1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.1")

http://www.cdi-spec.org
http://www.cdi-spec.org

Chapter 10. CDI

358

private KieContainer kContainer;

Figure 10.3. Injects named KieContainer for Dynamic KieModule

10.2.3. @KBase

@KBase is optional as it can be detected and added by the use of @Inject and variable type

inference.

The default argument, if given, maps to the value attribute and specifies the name of the KieBase

from the kmodule.xml file.

@Inject

private KieBase kbase;

Figure 10.4. Injects the Default KieBase from the Classpath KieContainer

@Inject

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieBase kbase;

Figure 10.5. Injects the Default KieBase from a Dynamic KieModule

@Inject

@KBase("kbase1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieBase kbase1v10;

@Inject

@KBase("kbase1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.1")

private KieBase kbase1v10;

Figure 10.6. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession(value="kbase1", name="kb1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieBase kbase1kb1;

@Inject

@KSession for KieSession

359

@KSession(value="kbase1", name="kb2")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieBase kbase1kb2;

Figure 10.7. Use 'name' attribute to force new Instance for 'jar1.KBase1'

KieBase

10.2.4. @KSession for KieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type

inference.

The default argument, if given, maps to the value attribute and specifies the name of the

KieSession from the kmodule.xml file

@Inject

private KieSession ksession;

Figure 10.8. Injects the Default KieSession from the Classpath KieContainer

@Inject

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieSession ksession;

Figure 10.9. Injects the Default KieSession from a Dynamic KieModule

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieSession ksessionv10;

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.1")

private KieSession ksessionv11;

Figure 10.10. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession(value="ksession1", name="ks1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

Chapter 10. CDI

360

private KieSession ksession1ks1

@Inject

@KSession(value="ksession1", name="ks2")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private KieSession ksession1ks2

Figure 10.11. Use 'name' attribute to force new Instance for 'jar1.KBase1'

KieSession

10.2.5. @KSession for StatelessKieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type

inference.

The default argument, if given, maps to the value attribute and specifies the name of the

KieSession from the kmodule.xml file.

@Inject

private StatelessKieSession ksession;

Figure 10.12. Injects the Default StatelessKieSession from the Classpath

KieContainer

@Inject

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private StatelessKieSession ksession;

Figure 10.13. Injects the Default StatelessKieSession from a Dynamic

KieModule

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.0")

private StatelessKieSession ksessionv10;

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.1")

API Example Comparison

361

private StatelessKieSession ksessionv11;

Figure 10.14. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession(value="ksession1", name="ks1")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private StatelessKieSession ksession1ks1

@Inject

@KSession(value="ksession1", name="ks2")

@KReleaseId(groupId = "jar1", artifactId = "art1", version = "1.0")

private StatelessKieSession ksession1ks2

Figure 10.15. Use 'name' attribute to force new Instance for 'jar1.KBase1'

StatelessKieSession

10.3. API Example Comparison

CDI can inject instances into fields, or even pass them as arguments. In this example field injection

is used.

@Inject

@KSession("ksession1")

KieSession kSession;

public void go(PrintStream out) {

 kSession.setGlobal("out", out);

 kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

 kSession.fireAllRules();

}

Figure 10.16. CDI example for a named KieSession

This is less code and more declarative than the API approach.

public void go(PrintStream out) {

 KieServices ks = KieServices.Factory.get();

 KieContainer kContainer = ks.getKieClasspathContainer();

 KieSession kSession = kContainer.newKieSession("ksession1");

 kSession.setGlobal("out", out);

 kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

Chapter 10. CDI

362

 kSession.fireAllRules();

}

Figure 10.17. API equivalent example for a named KieSession

Chapter 11.

363

Chapter 11. Integration with Spring
11.1. Important Changes for Drools 6.0

Drools Spring integration has undergone a complete makeover inline with the changes for Drools

6.0. The following are some of the major changes

• The recommended prefix for the Drools Spring has changed from 'drools:' to 'kie:'

• New Top Level Tags in 6.0

• kie:kmodule

• The following tags are no longer valid as top level tags.

• kie:kbase - A child of the kie:kmodule tag.

• kie:ksession - A child of the kie:kbase tag.

• Removed Tags from previous versions Drools 5.x

• drools:resources

• drools:resource

• drools:grid

• drools:grid-node

11.2. Integration with Drools Expert

In this section we will explain the kie namespace.

11.2.1. KieModule

The <kie:kmodule> defines a collection of KieBase and associated KieSession's. The kmodule

tag has one MANDATORY parameter 'id'.

Table 11.1. Sample

Attribute Description Required

id Bean's id is the name to be

referenced from other beans.

Standard Spring ID semantics

apply.

Yes

A kmodule tag can contain only the following tags as children.

• kie:kbase

Chapter 11. Integration with ...

364

Refer to the documentation of kmodule.xml in the Drools Expert documentation for detailed

explanation of the need for kmodule.

11.2.2. KieBase

11.2.2.1. <kie:kbase>'s parameters as attributes:

Table 11.2. Sample

Attribute Description Required

name Name of the KieBase Yes

packages Comma separated list of

resource packages to be

included in this kbase

No

includes kbase names to be included.

All resources from the

corresponding kbase are

included in this kbase.

No

default Default kbase No

default Boolean (TRUE/FALSE).

Default kbase, if not provided,

it is assumed to be FALSE

No

scope . No

eventProcessingMode Event Processing Mode.

Valid options are STREAM,

CLOUD

No

equalsBehavior Valid options are IDENTITY,

EQUALITY

No

declarativeAgenda Valid options are enabled,

disabled, true, false

No

11.2.2.2. A kbase tag can contain only the following tags as children.

• kie:ksession

11.2.2.3. <kie:kbase>'s definition example

A kmodule can contain multiple (1..n) kbase elements.

Example 11.1. kbase definition example

<kie:kmodule id="sample_module">

 <kie:kbase name="kbase1" packages="org.drools.spring.sample">

IMPORTANT NOTE

365

 ...

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.3. IMPORTANT NOTE

For proper initialization of the kmodule objects (kbase/ksession), it is mandatory for a bean of type

org.kie.spring.KModuleBeanFactoryPostProcessor be defined.

Example 11.2. kie-spring post processorbean definition

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

Note

Without the org.kie.spring.KModuleBeanFactoryPostProcessor bean definition,

the kie-spring integration will not work.

11.2.4. KieSessions

<kie:ksession> element defines KieSessions. The same tag is used to define both

Stateful (org.kie.api.runtime.KieSession) and Stateless (org.kie.api.runtime.StatelessKieSession)

sessions.

11.2.4.1. <kie:ksession>'s parameters as attributes:

Table 11.3. Sample

Attribute Description Required

name ksession's name. Yes

type is the session stateful or

stateless?. If this attribute is

empty or missing, the session

is assumed to be of type

Stateful.

No

default Is this the default session? no

scope . no

clockType REALTIME or PSEUDO no

Chapter 11. Integration with ...

366

Attribute Description Required

listeners-ref Specifies the reference to the

event listeners group (see

'Defining a Group of listeners'

section below).

no

Example 11.3. ksession definition example

<kie:kmodule id="sample-kmodule">

 <kie:kbase name="drl_kiesample3" packages="drl_kiesample3">

 <kie:ksession name="ksession1" type="stateless"/>

 <kie:ksession name="ksession2"/>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5. Event Listeners

Drools supports adding 3 types of listeners to KieSessions - AgendaListener,

WorkingMemoryListener, ProcessEventListener

The kie-spring module allows you to configure these listeners to KieSessions

using XML tags. These tags have identical names as the actual listener

interfaces i.e., <kie:agendaEventListener....>, <kie:ruleRuntimeEventListener....> and

<kie:processEventListener....>.

kie-spring provides features to define the listeners as standalone (individual) listeners and also

to define them as a group.

11.2.5.1. Defining Stand alone Listeners:

11.2.5.1.1. Attributes:

Table 11.4. Sample

Attribute Required Description

ref No A reference to another

declared bean.

Example 11.4. Listener configuration example - using a bean:ref.

<bean id="mock-agenda-listener" class="mocks.MockAgendaEventListener"/>

Event Listeners

367

<bean id="mock-rr-listener" class="mocks.MockRuleRuntimeEventListener"/>

<bean id="mock-process-listener" class="mocks.MockProcessEventListener"/>

<kie:kmodule id="listeners_kmodule">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksession2">

 <kie:agendaEventListener ref="mock-agenda-listener"/>

 <kie:processEventListener ref="mock-process-listener"/>

 <kie:ruleRuntimeEventListener ref="mock-rr-listener"/>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5.1.2. Nested Elements:

• bean

• class = String

• name = String (optional)

Example 11.5. Listener configuration example - using nested bean.

<kie:kmodule id="listeners_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksession1">

 <kie:agendaEventListener>

 <bean class="mocks.MockAgendaEventListener"/>

 </kie:agendaEventListener>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean

When a listener is defined without a reference to a implementing bean and does not contain a

nested bean, <drools:ruleRuntimeEventListener/> the underlying implementation adds the Debug

version of the listener defined in the API.

The debug listeners print the corresponding Event toString message to System.err.

Chapter 11. Integration with ...

368

Example 11.6. Listener configuration example - defaulting to the debug

versions provided by the Knowledge-API .

<bean id="mock-agenda-listener" class="mocks.MockAgendaEventListener"/>

<bean id="mock-rr-listener" class="mocks.MockRuleRuntimeEventListener"/>

<bean id="mock-process-listener" class="mocks.MockProcessEventListener"/>

<kie:kmodule id="listeners_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksession2">

 <kie:agendaEventListener />

 <kie:processEventListener />

 <kie:ruleRuntimeEventListener />

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5.1.4. Mix and Match of different declaration styles

The drools-spring module allows you to mix and match the different declarative styles within the

same KieSession. The below sample provides more clarity.

Example 11.7. Listener configuration example - mix and match of 'ref'/

nested-bean/empty styles.

<bean id="mock-agenda-listener" class="mocks.MockAgendaEventListener"/>

<bean id="mock-rr-listener" class="mocks.MockRuleRuntimeEventListener"/>

<bean id="mock-process-listener" class="mocks.MockProcessEventListener"/>

<kie:kmodule id="listeners_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksession1">

 <kie:agendaEventListener>

 <bean class="org.kie.spring.mocks.MockAgendaEventListener"/>

 </kie:agendaEventListener>

 </kie:ksession>

 <kie:ksession name="ksession2">

 <kie:agendaEventListener ref="mock-agenda-listener"/>

 <kie:processEventListener ref="mock-process-listener"/>

 <kie:ruleRuntimeEventListener ref="mock-rr-listener"/>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

Event Listeners

369

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5.1.5. Defining multiple listeners of the same type

It is also valid to define multiple beans of the same event listener types for a KieSession.

Example 11.8. Listener configuration example - multiple listeners of the

same type.

<bean id="mock-agenda-listener" class="mocks.MockAgendaEventListener"/>

<kie:kmodule id="listeners_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksession1">

 <kie:agendaEventListener ref="mock-agenda-listener"/>

 <kie:agendaEventListener>

 <bean class="org.kie.spring.mocks.MockAgendaEventListener"/>

 </kie:agendaEventListener>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.5.2. Defining a Group of listeners:

drools-spring allows for grouping of listeners. This is particularly useful when you define a set of

listeners and want to attach them to multiple sessions. The grouping feature is also very useful,

when we define a set of listeners for 'testing' and then want to switch them for 'production' use.

11.2.5.2.1. Attributes:

Table 11.5. Sample

Attribute Required Description

ID yes Unique identifier

11.2.5.2.2. Nested Elements:

• drools:agendaEventListener...

Chapter 11. Integration with ...

370

• drools:ruleRuntimeEventListener...

• drools:processEventListener...

Note

The above mentioned child elements can be declared in any order. Only one

declaration of each type is allowed in a group.

11.2.5.2.3. Example:

Example 11.9. Group of listeners - example

<bean id="mock-agenda-listener" class="mocks.MockAgendaEventListener"/>

<bean id="mock-rr-listener" class="mocks.MockRuleRuntimeEventListener"/>

<bean id="mock-process-listener" class="mocks.MockProcessEventListener"/>

<kie:kmodule id="listeners_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="statelessWithGroupedListeners" type="stateless"

 listeners-ref="debugListeners"/>

 </kie:kbase>

</kie:kmodule>

 <kie:eventListeners id="debugListeners">

 <kie:agendaEventListener ref="mock-agenda-listener"/>

 <kie:processEventListener ref="mock-process-listener"/>

 <kie:ruleRuntimeEventListener ref="mock-rr-listener"/>

</kie:eventListeners>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.6. Loggers

Drools supports adding 2 types of loggers to KieSessions - ConsoleLogger, FileLogger.

The kie-spring module allows you to configure these loggers to KieSessions using XML tags.

These tags have identical names as the actual logger interfaces i.e., <kie:consoleLogger....> and

<kie:fileLogger....>.

11.2.6.1. Defining a console logger:

A console logger can be attached to a KieSession by using the <kie:consoleLogger/> tag. This

tag has no attributes and must be present directly under a <kie:ksession....> element.

Loggers

371

Example 11.10. Defining a console logger - example

<kie:kmodule id="loggers_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ConsoleLogger-statefulSession" type="stateful">

 <kie:consoleLogger/>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.6.2. Defining a file logger:

A file logger can be attached to a KieSession by using the <kie:fileLogger/> tag. This tag has the

following attributes and must be present directly under a <kie:ksession....> element.

Table 11.6. Sample

Attribute Required Description

ID yes Unique identifier

file yes Path to the actual file on the

disk

threaded no Defaults to false. Valid values

are 'true'or 'false'

interval no Integer. Specifies the interval

for flushing the contents from

memory to the disk.

Example 11.11. Defining a file logger - example

<kie:kmodule id="loggers_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ConsoleLogger-statefulSession" type="stateful">

 <kie:fileLogger id="fl_logger" file="#{

 systemProperties['java.io.tmpdir'] }/log1"/>

 <kie:fileLogger id="tfl_logger" file="#{

 systemProperties['java.io.tmpdir'] }/log2"

 threaded="true" interval="5"/>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

Chapter 11. Integration with ...

372

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.6.2.1. Closing a FileLogger

To prevent leaks, it is advised to close the <kie:fileLogger ...> programmatically.

LoggerAdaptor adaptor = (LoggerAdaptor) context.getBean("fl_logger");

adaptor.close();

11.2.7. Defining Batch Commands

A <kie:batch> element can be used to define a set of batch commands for a given ksession.This

tag has no attributes and must be present directly under a <kie:ksession....> element. The

commands supported are

• insert-object

• ref = String (optional)

• Anonymous bean

• set-global

• identifier = String (required)

• reg = String (optional)

• Anonymous bean

• fire-all-rules

• max : n

• fire-until-halt

• start-process

• parameter

• identifier = String (required)

• ref = String (optional)

• Anonymous bean

• signal-event

Persistence

373

• ref = String (optional)

• event-type = String (required)

• process-instance-id =n (optional)

Figure 11.1. Initialization Batch Commands

Example 11.12. Batch commands - example

<kie:kmodule id="batch_commands_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="ksessionForCommands" type="stateful">

 <kie:batch>

 <kie:insert-object ref="person2"/>

 <kie:set-global identifier="persons" ref="personsList"/>

 <kie:fire-all-rules max="10"/>

 </kie:batch>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.2.8. Persistence

• jpa-persistence

• transaction-manager

• ref = String

• entity-manager-factory

• ref = String

Figure 11.2. Persistence Configuration Options

Example 11.13. ksession JPA configuration example

<kie:kstore id="kstore" /> <!-- provides KnowledgeStoreService implementation -->

<bean id="myEmf"

Chapter 11. Integration with ...

374

 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="dataSource" ref="ds" />

 <property name="persistenceUnitName"

 value="org.drools.persistence.jpa.local" />

</bean>

<bean id="txManager" class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="myEmf" />

</bean>

<kie:kmodule id="persistence_module">

 <kie:kbase name="drl_kiesample" packages="drl_kiesample">

 <kie:ksession name="jpaSingleSessionCommandService">

 <kie:configuration>

 <kie:jpa-persistence>

 <kie:transaction-manager ref="txManager"/>

 <kie:entity-manager-factory ref="myEmf"/>

 </kie:jpa-persistence>

 </kie:configuration>

 </kie:ksession>

 </kie:kbase>

</kie:kmodule>

<bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

11.3. Integration with jBPM Human Task

This chapter describes the infrastructure used when configuring a human task server with Spring

as well as a little bit about the infrastructure used when doing this.

11.3.1. How to configure Spring with jBPM Human task

The jBPM human task server can be configured to use Spring persistence. Example 11.14,

“Configuring Human Task with Spring” is an example of this which uses local transactions and

Spring's thread-safe EntityManager proxy.

The following diagram shows the dependency graph used in Example 11.14, “Configuring Human

Task with Spring”.

How to configure Spring with jBPM Human task

375

Figure 11.3. Spring Human Task integration injection dependencies

A TaskService instance is dependent on two other bean types: a drools

SystemEventListener bean as well as a TaskSessionSpringFactoryImpl bean. The

TaskSessionSpringFactoryImpl bean is howerver not injected into the TaskService bean

because this would cause a circular dependency. To solve this problem, when the TaskService

bean is injected into the TaskSessionSpringFactoryImpl bean, the setter method used secretly

injects the TaskSessionSpringFactoryImpl instance back into the TaskService bean and

initializes the TaskService bean as well.

The TaskSessionSpringFactoryImpl bean is responsible for creating all the internal instances

in human task that deal with transactions and persistence context management. Besides a

TaskService instance, this bean also requires a transaction manager and a persistence context

to be injected. Specifically, it requires an instance of a HumanTaskSpringTransactionManager

bean (as a transaction manager) and an instance of a SharedEntityManagerBean bean (as a

persistence context instance).

We also use some of the standard Spring beans in order to configure persistence: there's a

bean to hold the EntityManagerFactory instance as well as the SharedEntityManagerBean

instance. The SharedEntityManagerBean provides a shared, thread-safe proxy for the actual

EntityManager.

The HumanTaskSpringTransactionManager bean serves as a wrapper around the Spring

transaction manager, in this case the JpaTransactionManager. An instance of a

JpaTransactionManager bean is also instantiated because of this.

Example 11.14. Configuring Human Task with Spring

<?xml version="1.0" encoding="UTF-8"?>

Chapter 11. Integration with ...

376

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jbpm="http://drools.org/schema/drools-spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://drools.org/schema/drools-spring org/drools/container/spring/drools-

spring-1.2.0.xsd">

 <!-- persistence & transactions-->

 <bean id="htEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitName" value="org.jbpm.task" />

 </bean>

 <bean id="htEm" class="org.springframework.orm.jpa.support.SharedEntityManagerBean">

 <property name="entityManagerFactory" ref="htEmf"/>

 </bean>

 <bean id="jpaTxMgr" class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="htEmf" />

 <!-- this must be true if using the SharedEntityManagerBean, and false

 otherwise -->

 <property name="nestedTransactionAllowed" value="true"/>

 </bean>

 <bean id="htTxMgr" class="org.drools.container.spring.beans.persistence.HumanTaskSpringTransactionManager">

 <constructor-arg ref="jpaTxMgr" />

 </bean>

 <!-- human-task beans -->

 <bean id="systemEventListener" class="org.drools.SystemEventListenerFactory" factory-

method="getSystemEventListener" />

 <bean id="taskService" class="org.jbpm.task.service.TaskService" >

 <property name="systemEventListener" ref="systemEventListener" />

 </bean>

 <bean id="springTaskSessionFactory" class="org.jbpm.task.service.persistence.TaskSessionSpringFactoryImpl"

 init-method="initialize" depends-on="taskService" >

 <!-- if using the SharedEntityManagerBean, make sure to enable nested

 transactions -->

 <property name="entityManager" ref="htEm" />

 <property name="transactionManager" ref="htTxMgr" />

 <property name="useJTA" value="false" />

 <property name="taskService" ref="taskService" />

 </bean>

</beans>

How to configure Spring with jBPM Human task

377

When using the SharedEntityManagerBean instance, it's important to configure the Spring

transaction manager to use nested transactions. This is because the SharedEntityManagerBean

is a transactional persistence context and will close the persistence context after every operation.

However, the human task server needs to be able to access (persisted) entities after operations.

Nested transactions allow us to still have access to entities that otherwise would have been

detached and are no longer accessible, especially when using an ORM framework that uses lazy-

initialization of entities.

Also, while the TaskSessionSpringFactoryImpl bean takes an “useJTA” parameter, at the

moment, JTA transactions with Spring have not yet been fully tested.

378

Chapter 12.

379

Chapter 12. Apache Camel

Integration

12.1. Camel

Camel provides a light weight bus framework for getting information into and out of Drools.

Drools introduces two elements to make easy integration.

• Drools Policy

Augments any JAXB or XStream data loaders. For JAXB it adds drools related paths ot the

contextpath, for XStream it adds custom converters and aliases for Drools classes. It also

handles setting the ClassLoader to the targeted ksession.

• Drools Endpoint

Executes the payload against the specified drools session

Drools can be configured like any normal camel component, but notice the policy that wraps the

drools related segments. This will route all payloads to ksession1

Example 12.1. Drools EndPoint configured with the CXFRS producer

<bean id="kiePolicy" class="org.kie.camel.component.KiePolicy" />

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="cxfrs://bean://rsServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

</camelContext>

It is possible to not specify the session in the drools endpoint uri, and instead "multiplex" based on

an attribute or header. In this example the policy will check either the header field "DroolsLookup"

for the named session to execute and if that isn't specified it'll check the "lookup" attribute on the

incoming payload.

Chapter 12. Apache Camel Inte...

380

Example 12.2. Drools EndPoint configured with the CXFRS producer

<bean id="kiePolicy" class="org.kie.camel.component.KiePolicy" />

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="cxfrs://bean://rsServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:dynamic" />

 <marshal ref="xstream" />

 </policy>

 </route>

</camelContext>

Example 12.3. Java Code to execute against Route from a Spring and Camel

Context

public class MyTest extends CamelSpringTestSupport {

 @Override

 protected AbstractXmlApplicationContext createApplicationContext() {

 return new ClassPathXmlApplicationContext("org/drools/camel/component/

CxfRsSpring.xml");

 }

 public void test1() throws Exception {

 String cmd = "";

 cmd += "<batch-execution lookup=\"ksession1\">\n";

 cmd += " <insert out-identifier=\"salaboy\">\n";

 cmd += " <org.drools.pipeline.camel.Person>\n";

 cmd += " <name>salaboy</name>\n";

 cmd += " </org.drools.pipeline.camel.Person>\n";

 cmd += " </insert>\n";

 cmd += " <fire-all-rules/>\n";

 cmd += "</batch-execution>\n";

 Object object =

 this.context.createProducerTemplate().requestBody("direct://client", cmd);

 System.out.println(object);

 }

}

The following urls show sample script examples for jaxb, xstream and json marshalling using:

Camel

381

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/jaxb.mvt?r=HEAD

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/jaxb.mvt?r=HEAD

• http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/

camel/component/xstream.mvt?r=HEAD

382

Chapter 13.

383

Chapter 13. Drools Camel Server
13.1. Introduction

The drools camel server (drools-camel-server) module is a war which you can deploy to execute

KnowledgeBases remotely for any sort of client application. This is not limited to JVM application

clients, but any technology that can use HTTP, through a REST interface. This version of the

execution server supports stateless and stateful sessions in a native way.

13.2. Deployment

Drools Camel Server is a war file, which can be deployed in a application server (such as JBoss

AS). As the service is stateless, it is possible to have have as many of these services deployed

as you need to serve the client load. Deploy on JBoss AS 4.x / Tomcat 6.x works out-of-the-box,

instead some external dependencies must be added and the configuration must be changed to

be deployed in JBoss AS 5

13.3. Configuration

Inside the war file you will find a few XML configuration files.

• beans.xml

• Skeleton XML that imports knowledge-services.xml and camel-server.xml

• camel-server.xml

• Configures CXF endpoints with Camel Routes

• Came Routes pipeline messages to various configured knowledge services

• knowledge-services.xml

• Various Knowledge Bases and Sessions

• camel-client.xml

• Sample camel client showing how to send and receive a message

• Used by "out of the box" test.jsp

13.3.1. REST/Camel Services configuration

The next step is configure the services that are going to be exposed through drools-server. You

can modify this configuration in camel-server.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

Chapter 13. Drools Camel Server

384

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cxf="http://camel.apache.org/schema/cxf"

 xmlns:jaxrs="http://cxf.apache.org/jaxrs"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.5.xsd

 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-

cxf.xsd

 http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd

 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml" />

<import resource="classpath:META-INF/cxf/cxf-extension-jaxrs-binding.xml"/>

<import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <!--

 ! If you are running on JBoss you will need to copy a camel-jboss.jar into

 the lib and set this ClassLoader configuration

 ! http://camel.apache.org/camel-jboss.html

 ! <bean id="jbossResolver"

 class="org.apache.camel.jboss.JBossPackageScanClassResolver"/>

 -->

 <!--

 ! Define the server end point.

 ! Copy and paste this element, changing id and the address, to expose

 services on different urls.

 ! Different Camel routes can handle different end point paths.

 -->

 <cxf:rsServer id="rsServer"

 address="/rest"

 serviceClass="org.kie.jax.rs.CommandExecutorImpl">

 <cxf:providers>

 <bean class="org.kie.jax.rs.CommandMessageBodyReader"/>

 </cxf:providers>

 </cxf:rsServer>

 <cxf:cxfEndpoint id="soapServer"

 address="/soap"

 serviceName="ns:CommandExecutor"

 endpointName="ns:CommandExecutorPort"

 wsdlURL="soap.wsdl"

 xmlns:ns="http://soap.jax.drools.org/" >

 <cxf:properties>

 <entry key="dataFormat" value="MESSAGE"/>

 <entry key="defaultOperationName" value="execute"/>

 </cxf:properties>

 </cxf:cxfEndpoint>

REST/Camel Services configuration

385

 <!-- Leave this, as it's needed to make Camel "drools" aware -->

 <bean id="kiePolicy" class="org.kie.camel.component.KiePolicy" />

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <!--

 ! Routes incoming messages from end point id="rsServer".

 ! Example route unmarshals the messages with xstream and executes against

 ksession1.

 ! Copy and paste this element, changing marshallers and the 'to' uri, to

 target different sessions, as needed.

 !-->

 <route>

 <from uri="cxfrs://bean://rsServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

 <route>

 <from uri="cxf://bean://soapServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

 </camelContext>

</beans>

13.3.1.1. RESTful service endpoint creation

In the next XML snippet code we are creating a RESTful (JAX-RS) endpoint bound to /kservice/

rest address and using org.drools.jax.rs.CommandExecutorImpl as the service implementer. This

class is only used to instantiate the service endpoint because all the internal implementation is

managed by Camel, and you can see in the source file that the exposed execute service must

be never called.

Also a JAX-RS Provider is provided to determine if the message transported can be processed

in this service endpoint.

<cxf:rsServer id="rsServer"

Chapter 13. Drools Camel Server

386

 address="/rest"

 serviceClass="org.kie.jax.rs.CommandExecutorImpl">

 <cxf:providers>

 <bean class="org.kie.jax.rs.CommandMessageBodyReader"/>

 </cxf:providers>

</cxf:rsServer>

Ideally this configuration doesn't need to be modified, at least the Service Class and the JAX-

RS Provider, but you can add more endpoints associated to different addresses to use them in

other Camel Routes.

After all this initial configuration, you can start config your own Knowledge Services.

13.3.1.2. Camel Kie Policy & Context creation

KiePolicy is used to add Drools support in Camel, basically what it does is to add interceptors into

the camel route to create Camel Processors on the fly and modify the internal navigation route.

If you want to have SOAP support you need to create your custom Drools Policy, but it's going

to be added in the next release.

But you don’t need to know more internal details, only instantiate this bean:

<bean id="kiePolicy" class="org.kie.camel.component.KiePolicy" />

The next is create the camel route that will have the responsibility to execute the commands

sent through JAX-RS. Basically we create a route definition associated with the JAX-RS

definition as the data input, the camel policy to be used and inside the “execution route” or

ProcessorDefinitions. As you can see, we set XStream as the marshaller/unmarshaller and the

drools execution route definition

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="cxfrs://bean://rsServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:ksession1" />

 <marshal ref="xstream" />

 </policy>

 </route>

 <route>

 <from uri="cxf://bean://soapServer"/>

 <policy ref="kiePolicy">

 <unmarshal ref="xstream" />

 <to uri="kie:ksession1" />

 <marshal ref="xstream" />

 </policy>

REST/Camel Services configuration

387

 </route>

</camelContext>

The drools endpoint creation has the next arguments

<to uri="kie:{1}/{2}" />

1. Execution Node identifier that is registered in the CamelContext

2. Knowledge Session identifier that was registered in the Execution Node with identifier {1}

Both parameters are configured in knowledge-services.xml file.

13.3.1.3. Knowledge Services configuration

The next step is create the Knowledge Sessions that you are going to use.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:kie="http://drools.org/schema/kie-spring"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://drools.org/schema/kie-spring http://drools.org/

schema/kie-spring.xsd">

 <kie:kmodule id="drools-camel-server">

 <kie:kbase name="kbase1" packages="org.drools.server">

 <kie:ksession name="ksession1" type="stateless"/>

 </kie:kbase>

 </kie:kmodule>

 <bean id="kiePostProcessor"

 class="org.kie.spring.KModuleBeanFactoryPostProcessor"/>

</beans>

The execution-node is a context or registered kbases and ksessions, here kbase1 and ksession1

are planed in the node1 context. The kbase itself consists of two knowledge definitions, a DRL

and an XSD. The Spring documentation contains a lot more information on configuring these

knowledge services.

13.3.1.4. Test

With drools-server war unzipped you should be able to see a test.jsp and run it. This example just

executes a simple "echo" type application. It sends a message to the rule server that pre-appends

Chapter 13. Drools Camel Server

388

the word "echo" to the front and sends it back. By default the message is "Hello World", different

messages can be passed using the url parameter msg - test.jsp?msg="My Custom Message".

Under the hood the jsp invokes the Test.java class, this then calls out to Camel which is where

the meet happens. The camel-client.xml defines the client with just a few lines of XML:

<!-- Leave this, as it's needed to make Camel "drools" aware -->

<bean id="kiePolicy" class="org.kie.camel.component.KiePolicy" />

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="direct://kservice/rest"/>

 <policy ref="kiePolicy">

 <to uri="cxfrs://http://localhost:8080/drools-server/kservice/rest"/>

 </policy>

 </route>

 <route>

 <from uri="direct://kservice/soap"/>

 <policy ref="kiePolicy">

 <to uri="cxfrs://http://localhost:8080/drools-server/kservice/soap"/>

 </policy>

 </route>

</camelContext>

"direct://kservice" is just a named hook, allowing Java to grab a reference and push data into it.

In this example the data is already in XML, so we don't need to add any DataFormats to do the

marshalling. The KiePolicy adds some smarts to the route and you'll see it used on the server side

too. If JAXB or XStream were used, it would inject custom paths and converters, it can also set

the ClassLoader too on the server side, on the client side it automatically unwraps the Response

object.

The rule itself can be found here: test.drl. Notice the type Message is declared part of the DRL

and is thus not present on the Classpath.

declare Message

 text : String

end

rule "echo" dialect "mvel"

when

 $m : Message();

then

 $m.text = "echo:" + $m.text;

end

Chapter 14.

389

Chapter 14. JMX monitoring with

RHQ/JON

14.1. Introduction

The Drools engine supports runtime monitoring through JMX standard MBeans. These MBeans

expose configuration and metrics data, from live knowledge bases and sessions, to internal details

like rule execution times. Any JMX compatible console can be used to access that data. This

chapter details how to use RHQ/JON to do it, but similar steps can be used for any other console.

14.1.1. Enabling JMX monitoring in a Drools application

To enable JMX monitoring in a Drools application, it is necessary to enable remote monitoring in

the JVM. There are several tutorials on how to do that in the internet, but we recommend that you

check the documentation of your specific JVM. Using the Oracle/Sun JVM, it can be as simple as

running the engine with a few command line system properties.

For instance, to enable remote monitoring on port 19988 with disabled authentication (should

be only used for tests/demos, as in production authentication should be enabled), just run the

application with the following command line parameters:

 -Dcom.sun.management.jmxremote.port=19988 -

Dcom.sun.management.jmxremote.ssl=false -

Dcom.sun.management.jmxremote.authenticate=false

The second step is to enable the Drools MBeans. As any Drools configuration, that can be done

by setting a system property, or adding the property to a configuration file, or using the API.

To enable it in the command line, use:

 -Ddrools.mbeans=enabled

To enable id using the API, use:

 KieBaseConfiguration conf = ...

 conf.setOption(MBeansOption.ENABLED);

14.1.2. Installing and running the RHQ/JON plugin

The following sequence of steps can be used to configure JON to monitor a Drools application:

Chapter 14. JMX monitoring wi...

390

1. Download the JON server and agent.

2. Download Drools plugin included in the "Drools and jBPM tools" bundle (http://www.jboss.org/

drools/downloads.html).

3. Install server, agent, and the plugin.

4. Check that the server is running, agent is running and plugin is installed.

5. Execute the drools application [see details in the previous section].

6. On the agent console, type "discovery" command for the agent to find the drools application,

which it will find on port 19988.

7. On JON console, click on auto-discovery queue.

8. Select the JMX Server process that is showing there, running on port 19988.

9. Click import.

10.Click on Resources->servers.

11.Click on the JMX Server.

12.Under JMXServer on the left hand side, you have Drools Service.

Part V. Drools Workbench
The Drools workbench is built with the UberFire framework and uses the Guvnor plugin. Drools

provides an additional rich set of plugins for rule authoring metaphors.

Chapter 15.

393

Chapter 15. Workbench

15.1. Installation

15.1.1. War installation

From the workbench distribution zip, take the kie-wb-*.war that corresponds to your application

server:

• jboss-as7: tailored for JBoss AS 7 (which is being renamed to WildFly in version 8)

• eap-6: tailored to JBoss EAP 6

• tomcat7: the generic war, works on Tomcat and Jetty

Note

The differences between these war files are superficial only, to allow out-of-the-

box deployment. For example, some JARs might be excluded if the application

server already supplies them.

To use the workbench on a different application server (WebSphere, WebLogic, ...), use the

tomcat7 war and tailor it to your application server's version.

15.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKING_DIRECTORY/.niogit, for

example wildfly-8.0.0.Final/bin/.gitnio, but it can be overridden with the system property

-Dorg.uberfire.nio.git.dir.

Note

In production, make sure to back up the workbench data directory.

15.1.3. System properties

Here's a list of all system properties:

• org.uberfire.nio.git.dir: Location of the directory .niogit. Default: working directory

• org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true

Chapter 15. Workbench

394

• org.uberfire.nio.git.daemon.host: If git daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.daemon.port: If git daemon enabled, uses this property as port

number. Default: 9418

• org.uberfire.nio.git.ssh.enabled: Enables/disables ssh daemon. Default: true

• org.uberfire.nio.git.ssh.host: If ssh daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.ssh.port: If ssh daemon enabled, uses this property as port number.

Default: 8001

• org.uberfire.nio.git.ssh.cert.dir: Location of the directory .security where local

certtificates will be stored. Default: working directory

• org.uberfire.metadata.index.dir: Place where Lucene .index folder will be stored.

Default: working directory

• org.uberfire.cluster.id: Name of the helix cluster, for example: kie-cluster

• org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form

host1:port1,host2:port2,host3:port3, for example: localhost:2188

• org.uberfire.cluster.local.id: Unique id of the helix cluster node, note that ':' is replaced

with '_', for example: node1_12345

• org.uberfire.cluster.vfs.lock: Name of the resource defined on helix cluster, for example:

kie-vfs

• org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully

initialized to avoid conflicts when all cluster members create local clones. Default: false

• org.uberfire.sys.repo.monitor.disabled: Disable configuration monitor (do not disable

unless you know what you're doing). Default: false

• org.uberfire.secure.key: Secret password used by password encryption. Default:

org.uberfire.admin

• org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:

PBEWithMD5AndDES

• org.guvnor.m2repo.dir: Place where Maven repository folder will be stored. Default: working-

directory/repositories/kie

• org.kie.example.repositories: Folder from where demo repositories will be cloned. The

demo repositories need to have been obtained and placed in this folder. Demo repositories can

Quick Start

395

be obtained from the kie-wb-6.0.2-SNAPSHOT-example-repositories.zip artifact. This System

Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

• org.kie.demo: Enables external clone of a demo application from GitHub. This System

Property takes precedence over org.kie.example. Default: true

• org.kie.example: Enables example structure composed by Repository, Organization Unit and

Project. Default: false

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

2. Locate the XML elements server that belong to the main-server-group and add a system

property, for example:

<system-properties>

 <property name="org.uberfire.nio.git.dir" value="..." boot-time="false"/>

 ...

</system-properties>

15.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

15.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Figure 15.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Chapter 15. Workbench

396

Figure 15.2. Creating new repository

Enter the required information.

Figure 15.3. Entering repository information

Add project

397

15.2.2. Add project

Select the Authoring Perspective to create a new project.

Figure 15.4. Selecting Authoring perspective

Select "Project" from the "New Item" menu.

Chapter 15. Workbench

398

Figure 15.5. Creating new project

Enter a project name first.

Add project

399

Figure 15.6. Entering project name

Enter the project details next.

• Group ID follows Maven conventions.

• Artifact ID is pre-populated from the project name.

• Version follows Maven conventions.

Chapter 15. Workbench

400

Figure 15.7. Entering project details

15.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Modeller" from the "Tools" menu.

Note

You can also use types contained in existing JARs.

Please consult the full documentation for details.

Define Data Model

401

Figure 15.8. Selecting "Data Modeller"

Click on "Create" to create a new type.

Figure 15.9. Selecting "Create" (type)

Enter the required details for the type.

Chapter 15. Workbench

402

Figure 15.10. Entering required details

Click on "Create" to create a field for the type.

Define Data Model

403

Figure 15.11. Selecting "Create" (field)

Click "Save" to create the model.

Figure 15.12. Clicking "Save"

Chapter 15. Workbench

404

15.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Figure 15.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

Define Rule

405

Figure 15.14. Entering file name for rule

Enter a definition for the rule.

The definition process differs from asset type to asset type.

The full documentation has details about the different editors.

Chapter 15. Workbench

406

Figure 15.15. Defining a rule

Once the rule has been defined it will need to be saved.

Figure 15.16. Saving the rule

15.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the

Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Tools" menu.

Build and Deploy

407

Figure 15.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact

Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the

Dependency Management section of the pom in your workbench project. You can edit the pom.xml

file associated with your workbench project under the Repository View of the project explorer.

Details on dependency management in maven can be found here : http://maven.apache.org/

guides/introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Figure 15.18. Building and deploying a project

Now the project has been built and deployed; it can be referenced from your own projects as any

other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.

Chapter 15. Workbench

408

15.3. Administration

15.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

15.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

Repositories

409

15.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects

and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.

Such setup allows workbench to work with multiple backends and, in the same time, take full

advantage of backend specifics features like in GIT case versioning, branching and even external

access.

Chapter 15. Workbench

410

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantage of using GIT as backend is the ability to clone a repository from

external and use your preferred tools to edit and build your assets.

Note

It's important to follow Workbench structure: each project defined in a directory in

repository root.

Warning

Workbench doesn't support multi projects

Warning

Never clone your repositories directly from .niogit directory. Use always the

available protocol(s) displayed in repositories editor.

Configuration

411

15.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a

previous state. You can do it directly from the repository editor by browsing its commit history and

clicking the Revert button.

15.4. Configuration

15.4.1. User management

The workbench authenticates its users against the application server's authentication and

authorization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOME/bin/add-user.sh (or .bat):

$./add-user.sh

// Type: Application User

// Realm: empty (defaults to ApplicationRealm)

// Role: admin

There is no need to restart the application server.

Chapter 15. Workbench

412

15.4.2. Roles

The Workbench uses the following roles:

• admin

• analyst

• developer

• manager

• user

15.4.2.1. Admin

Administrates the BPMS system.

• Manages users

• Manages VFS Repositories

• Has full access to make any changes necessary

15.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

• Manages rules, models, process flows, forms and dashboards

• Manages the asset repository

• Can create, build and deploy projects

• Can use the JBDS connection to view processes

15.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the

ability to deploy projects.

15.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to

continue forward. Works primarily with the task lists.

• Does process management

Restricting access to repositories

413

• Handles tasks and dashboards

15.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their

performance, business indicators, and other reporting of the system and people who interact with

the system.

• Only has access to dashboards

15.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an

user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs

into an orgazinational group that has access to the repository. These restrictions can be managed

with the command line config tool.

15.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository

contains the data about general workbench settings: how editors behave, organizational groups,

security and other settings that are not editable by the user. System repository exists in the .niogit

folder, next to all the repositories that have been created or cloned into the workbench.

15.4.4.1. Config Tool Modes

• Online (default and recommended) - Connects to the Git repository on startup, using Git server

provided by the KIE Workbench. All changes are made locally and published to upstream when:

• "push-changes" command is explicitly executed

• "exit" is used to close the tool

• Offline - Creates and manipulates system repository directly on the server (no discard option)

15.4.4.2. Available Commands

Table 15.1. Available Commands

exit Publishes local changes, cleans up temporary

directories and quits the command line tool

discard Discards local changes without publishing

them, cleans up temporary directories and

quits the command line tool

Chapter 15. Workbench

414

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment List available deployments

create-org-unit Creates new organizational unit

remove-org-unit Removes existing organizational unit

add-deployment Adds new deployment unit

remove-deployment Removes existing deployment

create-repo Creates new git repository

remove-repo Removes existing repository (only from

config)

add-repo-org-unit Adds repository to the organizational unit

remove-repo-org-unit Removes repository from the organizational

unit

add-role-repo Adds role(s) to repository

remove-role-repo Removes role(s) from repository

add-role-org-unit Adds role(s) to organizational unit

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only

in online mode)

15.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script

and by default it will start in online mode asking for a Git url to connect to (the default value is

ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate

values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This

will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit

does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

Introduction

415

15.5. Introduction

15.5.1. Log in and log out

Create a user with the role admin and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to

review the roles of the current account.

15.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the

workbench variant (Drools, jBPM, ...).

15.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

• Part

A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer", "Project Editor", "Guided Rule Editor" etc. Parts can be

repositioned.

• Panel

A Panel is a container for one or more Parts.

Panels can be resized.

• Perspective

Chapter 15. Workbench

416

A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such

as "Home", "Authoring", "Deploy" etc.

15.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be

changed.

Figure 15.19. The Workbench

The initial Workbench shows the following components:-

• Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in

the above "example" is the Organizational Unit), Repositories (in the above "uf-playground" is

the Repository) and Project (in the above "mortgages" is the Project).

• Problems

This provides the user will real-time feedback about errors in the active Project.

Changing the layout

417

• Empty space

This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

15.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or

repositioned.

This, for example, could be useful when running tests; as the test defintion and rule can be

repositioned side-by-side.

15.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the

left mouse button and drag the splitter to the required position; then release the left mouse button.

Figure 15.20. Resizing

Chapter 15. Workbench

418

15.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this

example).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the

left mouse button. Drag the mouse to the required location. The target position is indicated with

a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

Figure 15.21. Repositioning - dragging

Authoring

419

Figure 15.22. Repositioning - complete

15.7. Authoring

15.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain

model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote

repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKING_DIRECTORY/repositories/kie, but it

can be overridden with the system property -Dorg.guvnor.m2repo.dir. There is only 1 Maven

repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

Chapter 15. Workbench

420

To add a new artifact to that Maven repository, either:

• Use the upload button and select a JAR. If the JAR contains a POM file under META-INF/maven

(which every JAR build by Maven has), no further information is needed. Otherwise, a groupId,

artifactId and version need be given too.

• Using Maven, mvn deploy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

Asset Editor

421

15.7.2. Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two main

views Edit and Metadata.

• The views

• A : The editing area - exactly what form the editor takes depends on the Asset type.

• B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy

etc.

• C : Different views for asset content or asset information.

• Edit shows the main editor for the asset

• Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can

be generated into DRL.

• Config contains the model imports used by the asset.

• Metadata contains the metadata view for this editor. Explained in more detail below.

Chapter 15. Workbench

422

Figure 15.23. The Asset Editor - Edit tab

• Metadata

• A : Meta data (from the "Dublin Core" standard):-

"Title:" Name of the asset

"Categories:" A deprecated feature for grouping the assets.

"Last modified:" The last modified date.

"By:" Who made the last change.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"Created on:" The date and time the Asset was created.

Asset Editor

423

"Created by:" Who initially authored the Asset.

"Format:" The short format name of the type of Asset.

"URI:" URI to the asset inside the Git repository.

• B : Other miscellaneous meta data for the Asset.

• C : Version history of the Asset.

• D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,

to record a description of the Asset before editing.

• E : Discussions regarding development of the Asset can be recorded here.

Figure 15.24. The Asset Editor - Attributes tab

Chapter 15. Workbench

424

Figure 15.25. The Asset Editor - Other meta data

Figure 15.26. The Asset Editor - Version history

Figure 15.27. The Asset Editor - Description

Figure 15.28. The Asset Editor - Discussion

15.7.3. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,

Projects and their files.

Project Explorer

425

15.7.3.1. Initial view

The initial view could be empty when first opened.

Figure 15.29. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.

Figure 15.30. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

Chapter 15. Workbench

426

Figure 15.31. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been

selected the Project Explorer will show the contents. The exact combination of selections depends

wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.

Project Explorer

427

Figure 15.32. Expanded asset group

15.7.3.2. Different views

Project Explorer supports multiple views.

• Project View

Chapter 15. Workbench

428

A simplified view of the underlying project structure. Certain system files are hidden from view.

• Repository View

A complete view of the underlying project structure including all files; either user-defined or

system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"

or "Show as Links".

Figure 15.33. Switching view

15.7.3.2.1. Project View examples

Figure 15.34. Project View - Folders

Project Explorer

429

Figure 15.35. Project View - Links

15.7.3.2.2. Repository View examples

Figure 15.36. Repository View - Folders

Chapter 15. Workbench

430

Figure 15.37. Repository View - Links

15.7.3.3. Copy, Rename and Delete Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)

and for files and directories as well (in Repository View).

• A : Copy

• B : Rename

• C : Delete

Project Explorer

431

Figure 15.38. Project View - Package actions

Chapter 15. Workbench

432

Figure 15.39. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but

currenctly doesn't have it. Until both tools are provided make sure that your

changes (copy/rename/delete) on packages, files or directories doesn't have a

major impact on your project.

In cases that your change had an unexcepcted impact, Workbench allows you to

restore your repository using the Repository editor.

15.7.4. Project Editor

The Project Editor screen can be accessed from the Project menu. Project menu shows the

settings for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything

that is needed for configuring the KIE project in one place.

Project Editor

433

Figure 15.40. Project Screen and the different views

15.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

15.7.4.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

15.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV

values are used as identifiers to differentiate projects and versions of the same project.

Figure 15.41. Project Settings

Chapter 15. Workbench

434

15.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a

project that has been built and deployed to a Maven repository. Internal dependencies are projects

build and deployed in the same workbench as the project. External dependencies are retrieved

from repositories outside of the current workbench. Each dependency uses the GAV-values to

specify the project name and version that is used by the project.

Figure 15.42. Dependencies

15.7.4.2.3. Metadata

Metadata for the pom.xml file.

15.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Figure 15.43. Knowledge Base Settings

Project Editor

435

Note

For more information about the Knowledge Base properties, check the Drools

Expert documentation for kmodule.xml.

15.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified

for the project.

15.7.4.3.1.1. Knowledge base list

Lists all the knowledge bases by name. Only one knowledge base can be set as default.

15.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in

the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are

included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.

Event processing mode is explained in the Drools Fusion part of the documentation.

15.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one

default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup

that shows more properties for the knowledge session.

15.7.4.3.2. Metadata

Metadata for the kmodule.xml

15.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Figure 15.44. Imports

Chapter 15. Workbench

436

15.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the

workbench has. Making it easier to work with the workbench, as there is no need to type each

import in each file that uses the import.

Note

Unlike in the previous version of Guvnor. The imports listed in the import

suggestions are not automatically added into the knowledge base or into the

packages of the workbench. Each import needs to be explicitly added into each file.

15.7.4.4.2. Metadata

Metadata for the project.imports file.

15.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files

authored within the environment are valid.

15.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation

results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either

new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

Validation

437

Figure 15.45. The Problems Panel

15.7.5.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

Chapter 15. Workbench

438

15.7.6. Data Modeller

15.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this

tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

Figure 15.46. Go to authoring perspective

2. If not open already, start the Project Explorer panel

Data Modeller

439

Figure 15.47. Open project explorer panel

3. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and

the project the data model has to be created for. For this tutorial's example, the values "Tutorial",

"Examples", and "Purchases" were respectively chosen

Figure 15.48. Choose project

4. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the

"Data Modeller" option from the drop-down menu

Chapter 15. Workbench

440

Figure 15.49. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Figure 15.50. Data modeller overview

The Data Modeller panel is divided into the following sections:

• The leftmost "model browser" section, which shows a list of already existing data entities (if any

are present, as in this example's case). Above the list the project's name and a button for new

object creation are shown. Note that as soon as any changes are applied to the project, an '*' will

be appended to the project's name to notify the user of the existence of non-persisted changes.

Data Modeller

441

Figure 15.51. The data model browser

• The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and

forth through the data model, when accessing properties that themselves are model entities. The

bread crumb trail shown in the image indicates that the object browser is currently visualizing

the properties of an entity called "Purchase Order Line", which we accessed through another

entity ("Purchase Order"), where it is defined as a field.

Figure 15.52. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Figure 15.53. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently

selected data object's (in the model browser) fields.

Chapter 15. Workbench

442

Figure 15.54. The entity field browser

• The "entity / field property editor". This is the rightmost section of the Data Modeller screen

which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of

the currently selected entity in the model browser, whilst the Field tab enables edition of the

properties of any of the currently selected object's fields.

Figure 15.55. The entity/field property editor

15.7.6.2. Entities

A data model consists of data entities which are a logical representation of some real-world data.

Such data entities have a fixed set of modeller (or application-owned) properties, such as its

Data Modeller

443

internal identifier, a label, description, package etc. Besides those, an entity also has a variable

set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser

section (see fig. "The data model browser" above), or by clicking the one in the top data modeller

menu:

Figure 15.56. Starting creation of an entity from the top menu

This will pop up the new object screen:

Figure 15.57. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

• The object's internal identifier (mandatory). The value of this field must be unique per package,

i.e. if the object's proposed identifier already exists in the selected package, an error message

will be displayed.

Chapter 15. Workbench

444

• A label (optional): this field allows the user to define a user-friendly label for the data entity about

to be created. This is purely conceptual info that has no further influence on how objects of this

entity will be treated. If a label is defined, then this is how the entity will be displayed throughout

the data modeller tool.

• A package (mandatory): a data entity must always be created within a package (or name space,

in which this entity will be unique at a platform level). By default, the option for selecting an

already existing package will be activated, in which case the corresponding drop-down shows

all the packages that are currently defined. If a new package needs to be defined for this entity,

then the "New package" option should be selected. In this case the new to be created package

should be input into the corresponding text-field. The format for defining new packages is the

same as the one for standard Java packages.

• A superclass (optional): this will indicate that this entity extends from another already existing

one. Since the data modeller entities are translated into standard Java classes, indicating a

superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the

bottom of the screen the new data entity will be created. It will be added to the model browser's

entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition

of the newly created entity, by completing the entity's properties in the Data Object Properties

browser, or by adding new fields.

Figure 15.58. New entity has been created

Note

As can be seen in the above figure, after performing changes to the data model, the

model name will appear with an '*' to alert the user of the existence of un-persisted

changes to the model.

Data Modeller

445

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'

icon to the right of each entity. If an entity is being referenced from within another entity (as a

field type), then the modeller tool will not allow it to be deleted, and an error message will appear

on the screen.

15.7.6.3. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined

properties to its definition. This can be achieved by providing the required information in the

"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when

finished. The following fields can (or must) be filled out:

• The field's internal identifier (mandatory). The value of this field must be unique per data entity,

i.e. if the proposed identifier already exists within current entity, an error message will be

displayed.

• A label (optional): as with the entity definition, the user can define a user-friendly label for the

data entity field which is about to be created. This has no further implications on how fields

from objects of this entity will be treated. If a label is defined, then this is how the field will be

displayed throughout the data modeller tool.

• A field type (mandatory): each entity field needs to be assigned with a type.

This type can be either of the following:

1. A 'primitive' type: these include most of the object equivalents of the standard Java primitive

types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and BigInteger.

Figure 15.59. Primitive field types

2. An 'entity' type: any user defined entity automatically becomes a candidate to be defined as

a field type of another entity, thus enabling the creation of relationships between entities. As

Chapter 15. Workbench

446

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already

appears in the types list and can be used as a field type, even for a field of itself. An entity

type field can be created either in 'single' or in 'multiple' form, the latter implying that the field

will be defined as a collection of this type, which will be indicated by the extension '[0..N]'

in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the

'Purchase Order' entity, for example).

Figure 15.60. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the entity's fields table below:

Figure 15.61. New field has been created

The new field will also automatically be selected in the entity's field list, and its properties will be

shown in the Field tab of the Property editor. The latter facilitates completion of some additional

properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on

the corresponding 'x' icon in the entity's fields table.

Data Modeller

447

15.7.6.4. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be

set upon creation. These are by no means the only properties entities and fields have. Below we

will give a detailed description of the additional entity and field properties.

15.7.6.4.1. Additional entity properties ("Data object tab")

Figure 15.62. The entity's properties

• Description: this field allows the user to introduce some kind of description for the current entity,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited

from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity

that is designated with this value will be treated by the rules engine as an event type Fact (See

Drools Fusion for more information on this matter).

Chapter 15. Workbench

448

15.7.6.4.2. Additional field properties ("Field tab")

Figure 15.63. The entity's field properties

• Description: this field allows the user to introduce some kind of description for the current field,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Equals: checking this property for an entity field implies that it will be taken into account, at

the code generation level, for the creation of both the equals() and hashCode() methods in the

generated Java class. We will explain this in more detail in the following section.

• Position: this field requires a zero or positive integer. When set, this field will be interpreted

by the Drools engine as a positional argument (see the section below and also the Drools

documentation for more information on this subject).

15.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data

structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform

on the other. In order for this to become possible, these high-level visual structures have to be

transformed into low-level artifacts that can effectively be consumed by these platforms. These

artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data

model is saved, by pressing the "Save" button in the top Data Modeller Menu.

Data Modeller

449

Figure 15.64. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,

according to the following transformation rules:

• The entity's identifier property will become the Java class's name. It therefore needs to be a

valid Java identifier.

• The entity's package property becomes the Java class's package declaration.

• The entity's superclass property (if present) becomes the Java class's extension declaration.

• The entity's label and description properties will translate into the Java

annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and

"@org.kie.workbench.common.services.datamodeller.annotations.Description", respectively.

These annotations are merely a way of preserving the associated information, and as yet are

not processed any further.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter

constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-

defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own

getter and setter method, according to the following transformation rules:

• The entity field's identifier will become the Java field identifier. It therefore needs to be a valid

Java identifier.

• The entity field's type is directly translated into the Java class's field type. In case the entity field

was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

• The equals property: when it is set for a specific field, then this class property will be

annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the

Drools Engine, and it will 'participate' in the generated equals() method, which overwrites the

equals() method of the Object class. The latter implies that if the field is a 'primitive' type, the

equals method will simply compares its value with the value of the corresponding field in another

Chapter 15. Workbench

450

instance of the class. If the field is a sub-entity or a collection type, then the equals method will

make a method-call to the equals method of the corresponding entity's Java class, or of the

java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies

that in addition to the default generated constructors another constructor is generated, accepting

as parameters all of the fields that were marked with Equals. Furthermore, generation of the

equals() method also implies that also the Object class's hashCode() method is overwritten, in

such a manner that it will call the hashCode() methods of the corresponding Java class types

(be it 'primitive' or user-defined types) for all the fields that were marked with Equals in the Data

Model.

• The position property: this field property is automatically set for all user-defined fields, starting

from 0, and incrementing by 1 for each subsequent new field. However the user can freely

changes the position among the fields. At code generation time this property is translated into

the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools

Engine. Also, the established property order determines the order of the constructor parameters

in the generated Java class.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to

its definition as shown in the following figure purchase_example.jpg is visualized in the figure at

the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines' were

marked with Equals, and have been assigned with the positions 2 and 1, respectively).

Figure 15.65. Purchase Order configuration

Data Modeller

451

 package org.jbpm.examples.purchases;

 /**

 * This class was automatically generated by the data modeler tool.

 */

 @org.kie.api.definition.type.Role(value =

 org.kie.api.definition.type.Role.Type.EVENT)

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Purchase Order")

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "This entity models the client purchase orders.")

 public class PurchaseOrder extends org.jbpm.examples.purchases.parent

 implements java.io.Serializable {

 static final long serialVersionUID = 1L;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Description")

 @org.kie.api.definition.type.Position(value = 0)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "A description for this purchase order.")

 private java.lang.String description;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Lines")

 @org.kie.api.definition.type.Position(value = 1)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "The purchase order items (collection of Purchase Order Line sub-entities).")

 @org.kie.api.definition.type.Key

 private java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Header")

 @org.kie.api.definition.type.Position(value = 2)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "The purchase order header (Purchase Order Header sub-entity).")

 @org.kie.api.definition.type.Key

 private org.jbpm.examples.purchases.PurchaseOrderHeader header;

 public PurchaseOrder() {}

 public PurchaseOrder(

 java.lang.String description,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.description = description;

 this.lines = lines;

 this.header = header;

Chapter 15. Workbench

452

 }

 public PurchaseOrder(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.lines = lines;

 this.header = header;

 }

 public java.lang.String getDescription() {

 return this.description;

 }

 public void setDescription(java.lang.String description) {

 this.description = description;

 }

 public java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine>

 getLines()

 {

 return this.lines;

 }

 public void setLines(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines)

 {

 this.lines = lines;

 }

 public org.jbpm.examples.purchases.PurchaseOrderHeader getHeader() {

 return this.header;

 }

 public void setHeader(org.jbpm.examples.purchases.PurchaseOrderHeader

 header)

 {

 this.header = header;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 org.jbpm.examples.purchases.PurchaseOrder that =

 (org.jbpm.examples.purchases.PurchaseOrder)o;

 if (lines != null ? !lines.equals(that.lines) : that.lines != null)

 return false;

 if (header != null ? !header.equals(that.header) : that.header != null)

Data Modeller

453

 return false;

 return true;

 }

 @Override

 public int hashCode() {

 int result = 17;

 result = 13 * result + (lines != null ? lines.hashCode() : 0);

 result = 13 * result + (header != null ? header.hashCode() : 0);

 return result;

 }

 }

15.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current

project context. In order to make those POJOs available a dependency to the given JAR should

be added. Once the dependency has been added the external POJOs can be referenced from

current project data model.

There are two ways to add a dependency to an external JAR file:

• Dependency to a JAR file already installed in current local M2 repository (typically associated

the the user home).

• Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2

repository". (internal to the application)

15.7.6.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

Chapter 15. Workbench

454

15.7.6.6.1.1. Open the Project Editor for current project and select the

Dependencies view.

Figure 15.66. Project editor.

15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.

Figure 15.67. New dependency line.

Data Modeller

455

15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2

repository.

Figure 15.68. Dependency line edition.

15.7.6.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

Figure 15.69. Save project.

15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

Chapter 15. Workbench

456

15.7.6.6.2.1. Open the Maven Artifact Repository editor.

Figure 15.70. Guvnor M2 Repository editor.

15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Figure 15.71. File browser.

Data Modeller

457

15.7.6.6.2.3. Upload the file using the Upload button.

Figure 15.72. File upload success.

15.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

Figure 15.73. Files list.

15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt

the user in order to provide a GAV for the file to be installed.

Chapter 15. Workbench

458

Figure 15.74. Not valid POM.

Figure 15.75. Enter GAV manually.

15.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR

selector to see all the installed JAR files in current "Guvnor M2 repository". When the desired file

is selected the project should be saved in order to make the new dependency available.

Data Modeller

459

Figure 15.76. Select JAR from "Maven Artifact Repository".

15.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the

context of current project data model in the following ways:

• External POJOs can be extended by current model data objects.

• External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order

to be quickly identified.

Chapter 15. Workbench

460

Figure 15.77. Identifying external objects.

15.7.6.7. External changes to models

It is possible to modify a project's assets externally, i.e. accessing them directly through the

project's repository. While NOT a recommended practice, it is important to be aware of the

implications this entails.

Caution

Performing changes to the data model outside of the context of the application is

NOT recommended, and could lead to loss of information!

From an application context's perspective, we can basically identify two different scenarios:

15.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,

without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user

tries to make any kind of change, such as add or remove data objects or properties, or change

any of the existing ones, the following pop-up will be shown:

Data Modeller

461

Figure 15.78. External changes warning

The user can choose to either:

• Re-open the data model, thus loading any external changes, and then perform the modification

he was about to undertake, or

• Ignore any external changes, and go ahead with the modification to the model. In this case,

when trying to persist these changes, another pop-up warning will be shown:

Chapter 15. Workbench

462

Figure 15.79. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

Warning

"Force Save" overwrites any external changes!

15.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user

simultaneously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset

repository, a warning is issued to the application user:

Data Modeller

463

Figure 15.80. External changes warning

As with the previous scenario, the user can choose to either:

• Re-open the data model, thus losing any modifications that where made through the application,

or

• Ignore any external changes, and continue working on the model.

One of the following possibilities can now occur:

• The user tries to persist the changes he made to the model by clicking the "Save" button in

the data modeller top level menu. This leads to the following warning message:

Chapter 15. Workbench

464

Figure 15.81. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

• The user switches to another project. In this case he will be warned of the existence of non-

persisted local changes through the following warning message:

Data Modeller

465

Figure 15.82. Project switch warning

If the user chooses to persist the local changes, then another pop-up message will point out

the existence of the changes that were made externally:

Chapter 15. Workbench

466

Figure 15.83. Project switch external changes warning

The "Yes, Force Save" option will effectively overwrite any external changes, while "No,

Discard my Changes" will switch to the other project, discarding any local changes.

15.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.

Assets can belong to any number of categories. In the below diagram, you can see this can in

effect create a folder/explorer like view of categories. The names can be anything you want, and

are defined by the Workbench administrator (you can also remove/add new categories).

Note

Categories do not have the same role in the current release of the Workbench

as they had in prior versions (up to and including 5.5). Projects can no longer be

built using a selector to include assets that are labelled with certain Categories.

Categories are therefore considered a deprecated feature.

Categories Editor

467

15.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Figure 15.84. Launching Categories Editor

15.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories

in the system by default. As the categories can be hierarchical you chose the "parent" category

that you want to create a sub-category for. From here categories can also be removed (but only

if they are not in use by any current versions of assets).

Figure 15.85. Managing categories

Chapter 15. Workbench

468

Generally categories are created with meaningful name that match the area of the business the

rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

15.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to

If you make a change (remove or add a category) you will need to save the asset - this will create

a new item in the version history. Changing the categories of a rule has no effect on its execution.

Figure 15.86. Adding Categories to an asset

15.8. Embedding Workbench In Your Application

As we already know, Workbench provides a set of editors to author assets in different formats.

According to asset’s format a specialized editor is used.

One additional feature provided by Workbench is the ability to embed it in your own (Web)

Applications thru it's standalone mode. So, if you want to edit rules, processes, decision tables,

etc... in your own applications without switch to Workbench, you can.

In order to embed Workbench in your application all you'll need is the Workbench application

deployed and running in a web/application server and, from within your own web applications, an

iframe with proper HTTP query parameters as described in the following table.

Embedding Workbench In Your Application

469

Table 15.2. HTTP query parameters for standalone mode

Parameter Name Explanation Allow multiple

values

Example

standalone With just the presence

of this parameter

workbench will switch

to standalone mode.

no (none)

path Path to the asset to be

edited. Note that asset

should already exists.

no git://master@uf-

playground/todo.md

perspective Reference to an

existing perspective

name.

no org.guvnor.m2repo.client.perspectives.GuvnorM2RepoPerspective

header Defines the name

of the header that

should be displayed

(useful for context

menu headers).

yes ComplementNavArea

Note

Path and Perspective parameters are mutual exclusive, so can't be used together.

470

Chapter 16.

471

Chapter 16. Authoring Assets

16.1. Creating a package

Configuring packages is generally something that is done once, and by someone with some

experience with rules/models. Generally speaking, very few people will need to configure

packages, and once they are setup, they can be copied over and over if needed. Package

configuration is most definitely a technical task that requires the appropriate expertise.

All assets live in "packages" in Drools Workbench - a package is like a folder (it also serves as

a "namespace"). A home folder for rule assets to live in. Rules in particular need to know what

the fact model is, what the namespace is etc.

So while rules (and assets in general) can appear in any number of categories, they only live in

one package. If you think of Drools Workbench as a file system, then each package is a folder,

and the assets live in that folder - as one big happy list of files.

To create an empty package select "Package" from the "New item" menu.

Chapter 16. Authoring Assets

472

Figure 16.1. New Package

16.1.1. Empty package

An empty package can be created by simply specifying a name.

Copy, Rename and Delete Packages

473

Figure 16.2. New empty Package

Once the Package has been created it will appear in the Project Explorer.

Figure 16.3. Project Explorer showing new Package

16.1.2. Copy, Rename and Delete Packages

As already mentioned on Project Explorer section, users can copy, rename or delete a package

directly from Project Explorer.

Chapter 16. Authoring Assets

474

As you can see in the following screenshots, those operations behaves very similar to counter

part actions in most workbench editors.

Figure 16.4. Copying a Package

Figure 16.5. Renaming a Package

Business rules with the guided editor

475

Figure 16.6. Excluding a Package

16.2. Business rules with the guided editor

Guided Rules are authored with a UI to control and prompt user input based on knowledge of

the object model.

This can also be augmented with DSL sentences.

16.2.1. Parts of the Guided Rule Editor

The Guided Rule Editor is composed of three main sections.

The following diagram shows the editor in action. The following descriptions apply to the lettered

boxes in the diagram:-

Chapter 16. Authoring Assets

476

Figure 16.7. The guided BRL editor

A : The different parts of a rule:-

• The "WHEN" part, or conditions, of the rule.

• The "THEN" action part of the rule.

• Optional attributes that may effect the operation of the rule.

16.2.2. The "WHEN" (left-hand side) of a Rule

B : This shows a pattern which is declaring that the rule is looking for a "LoanApplication"

fact (the fields are listed below, in this case none). Another pattern, "Applicant", is listed below

"LoanApplication". Fields "creditRating" and "applicationDate" are listed. Clicking on the fact name

("LoanApplication") will pop-up a list of options to add to the fact declaration:-

• Add more fields (e.g. their "location").

• Assign a variable name to the fact (which you can use later on if needs be)

• Add "multiple field" constraints - i.e. constraints that span across fields (e.g. age > 42 or risk > 2).

C : The "minus" icon ("[-]") indicates you can remove something. In this case it would remove

the whole "LoanApplication" fact declaration. Depending upon the placement of the icon different

components of the rule declaration can be removed, for example a Fact Pattern, Field Constraint,

other Conditional Element ("exists", "not exists", "from" etc) or an Action.

D : The "plus" icon ("+") allows you to add more patterns to the condition or the action part of the

rule, or more attributes. In all cases, a popup option box is provided. For the "WHEN" part of the

rule, you can choose from a list of Conditional Elements to add:

The "WHEN" (left-hand side) of a Rule

477

• A Constraint on a Fact: it will give you a list of facts.

• "The following does not exist": the fact plus constraints must not exist.

• "The following exists": at least one match should exist (but there only needs to be one - it will

not trigger for each match).

• "Any of the following are true": any of the patterns can match (you then add patterns to these

higher level patterns).

• "From": this will insert a new From Conditional Element to the rule.

• "From Accumulate": this will insert a new Accumulate Conditional Element to the rule.

• "From Collect": this will insert a new Collect Conditional Element to the rule.

• "From Entry-point": this allows you to define an Entry Point for the pattern.

• "Free Form DRL": this will let you insert a free chunk of DRL.

If you just put a fact (like is shown above) then all the patterns are combined together so they

are all true ("and").

E : This shows the constraint for the "creditRating" field. Looking from left to right you find:-

• The field name: "creditRating". Clicking on it you can assign a variable name to it, or access

nested properties of it.

• A list of constraint operations ("equal to" being selected): The content of this list changes

depending on the field's data type.

• The value field: It could be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:

• String -> Textbox

• Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type

(e.g. a byte can hold values from -128 to 127). BigDecimal and BigInteger data-types are

also supported. Please ensure the appropriate Class has been imported in the Package

configuration. The import will be added automatically if a POJO model has been uploaded

that exposes an accessor or mutator for a BigDecimal or BigInteger field. BigDecimal

values are automatically suffixed with "B" indicating to the underlying Engine that the literal

value should be interpreted as a BigDecimal. BigIntegers are suffixed with "I". The user

does not need to enter the suffix.

• Date -> Calendar

• Enumeration -> Listbox

• Boolean -> Checkbox

Chapter 16. Authoring Assets

478

2. A "formula": this is an expression which is calculated (this is for advanced users only)

3. An Expression - this will let you use an Expression Builder to build up a full mvel expression.

(At the moment only basic expressions are supported)

F : This shows the constraint for the "applicationDate" field. Looking from left to right you find:

• The field name: "applicationDate".

• A list of constraint operations: "after" being selected.

• A "clock" icon. Since the "applicationDate" is a Date data-type the list of available operators

includes those relating to Complex Event Processing (CEP). When a CEP operator is used this

additional icon is displayed to allow you to enter additional CEP operator parameters. Clicking

the "clock" will cycle the available combinations of CEP operator parameters.

Note

Complex Event Processing operators are also available when the Fact has been

declared as an event. Refer to the "Fact Model" chapter of this user-guide for details

on how to add annotations to your Fact model. Events have access to the full range

of CEP operators; Date field-types are restricted to "after", "before" and "coincides".

Note

Facts annotated as Events can also have CEP sliding windows defined.

16.2.2.1. Adding Patterns

When clicking on the + button of the WHEN section, a new popup will appear letting you to add

a new Pattern to the Rule. The popup will looks similar to the image below. In this popup you

could select the type of Pattern to add by selecting one of the list items. In the list you will have an

entry for each defined Fact Type, in addition to the already mentioned Conditional Elements like

"exists", "doesn't exist", "from", "collect", "accumulate", "from entry-point" and "free form DRL".

Once you have selected one of this elements, you can add a new Pattern by clicking on the "Ok"

button. The new pattern will be added at the bottom of the rule's left hand side. If you want to

choose a different position, you can use the combobox placed at the top of the popup.

You can also open this popup by clicking in the [+] button from a Pattern's action toolbar. If that

is the case, the pop-up that appears wouldn't constraint the position combobox, because the new

Pattern will be added just after the Pattern where you clicked.

The "WHEN" (left-hand side) of a Rule

479

Figure 16.8. Adding Patterns

16.2.2.2. Adding constraints

The below dialog is what you will get when you want to add constraints to a fact. In the top

half are the simple options: you can either add a field constraint straight away (a list of fields of

the applicable fact will be shown), or you can add a "Multiple field constraint" using AND or OR

operands. In the bottom half of the window you have the Advanced options: you can add a formula

(which resolves to True or False - this is like in the example above: "... salary > (2500 * 4.1)". You

can also assign a Variable name to the fact (which means you can then access that variable on

the action part of the rule, to set a value etc).

Chapter 16. Authoring Assets

480

Figure 16.9. Adding constraints

16.2.3. The "THEN" (right-hand side) of a Rule

H : This shows an "action" of the rule, the Right Hand Side of a rule consists in a list of actions.

In this case, we are updating the "explanation" field of the "LoanApplication" fact. There are quite

a few other types of actions you can use:-

• Insert a completely new Fact and optionally set a field on the Fact.

The value field can be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:

• String -> Textbox

• Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type

(e.g. a byte can hold values from -128 to 127). BigDecimal and BigInteger data-types are

also supported. Please ensure the appropriate Class has been imported in the Package

configuration. The import will be added automatically if a POJO model has been uploaded

that exposes an accessor or mutator for a BigDecimal or BigInteger field. BigDecimal

values are automatically suffixed with "B" indicating to the underlying Engine that the literal

value should be interpreted as a BigDecimal. BigIntegers are suffixed with "I". The user

does not need to enter the suffix.

• Date -> Calendar

• Enumeration -> Listbox

• Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set

must match the data-type of the variable.

The "THEN" (right-hand side) of a Rule

481

3. A "formula": this is an expression which is calculated (this is for advanced users only)

• Logically insert a completely new Fact (see "Truth Maintenance" in the Expert documentation)

and optionally set a field on the Fact.

1. A literal value: depending on the field's data type different components will be displayed:

The value field can be one of the following:-

a. A literal value: depending on the field's data type different components will be displayed:

• String -> Textbox

• Any numerical value -> Textbox restricting entry to values valid for the numerical sub-

type (e.g. a byte can hold values from -128 to 127). BigDecimal and BigInteger data-

types are also supported. Please ensure the appropriate Class has been imported in

the Package configuration. The import will be added automatically if a POJO model

has been uploaded that exposes an accessor or mutator for a BigDecimal or BigInteger

field. BigDecimal values are automatically suffixed with "B" indicating to the underlying

Engine that the literal value should be interpreted as a BigDecimal. BigIntegers are

suffixed with "I". The user does not need to enter the suffix.

• Date -> Calendar

• Enumeration -> Listbox

• Boolean -> Checkbox

b. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being

set must match the data-type of the variable.

c. A "formula": this is an expression which is calculated (this is for advanced users only)

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set

must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

• Modify a field of an existing fact (which tells the engine the fact has changed).

The value field can be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:

• String -> Textbox

• Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type

(e.g. a byte can hold values from -128 to 127). BigDecimal and BigInteger data-types are

also supported. Please ensure the appropriate Class has been imported in the Package

configuration. The import will be added automatically if a POJO model has been uploaded

Chapter 16. Authoring Assets

482

that exposes an accessor or mutator for a BigDecimal or BigInteger field. BigDecimal

values are automatically suffixed with "B" indicating to the underlying Engine that the literal

value should be interpreted as a BigDecimal. BigIntegers are suffixed with "I". The user

does not need to enter the suffix.

• Date -> Calendar

• Enumeration -> Listbox

• Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set

must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

• Set a field on a fact (in which case the engine doesn't know about the change - normally because

you are setting a result).

The value field can be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:

• String -> Textbox

• Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type

(e.g. a byte can hold values from -128 to 127). BigDecimal and BigInteger data-types are

also supported. Please ensure the appropriate Class has been imported in the Package

configuration. The import will be added automatically if a POJO model has been uploaded

that exposes an accessor or mutator for a BigDecimal or BigInteger field. BigDecimal

values are automatically suffixed with "B" indicating to the underlying Engine that the literal

value should be interpreted as a BigDecimal. BigIntegers are suffixed with "I". The user

does not need to enter the suffix.

• Date -> Calendar

• Enumeration -> Listbox

• Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set

must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

• Delete a fact from the Engine's Working Memory.

• Add Facts to existing global lists.

• Call a method on a variable.

Optional attributes

483

• Write a chunk of free form code.

16.2.4. Optional attributes

The attributes section of a rule provides the means to define metadata and attributes (such as

"salience", "no-loop" etc).

Click on the "+" icon to add a new metadata or attribute definition. Each defined will appear listed

in this section.

Click on the "-" icon beside each metadata or attribute to remove it.

16.2.4.1. Salience

Each rule has a salience value which is an integer value that defaults to zero. The salience value

represents the priority of the rule with higher salience values representing higher priority. Salience

values can be positive or negative.

16.2.5. Pattern/Action toolbar

G : Next to each Pattern or Action you will find a toolbar containing 3 buttons.

The first "+" icon lets you insert a new Pattern/Action at an arbitrary location. The other "+" icons

allow you to insert a new Pattern/Action below that you have selected.

The remaining arrow icons allow you to move the current Pattern/Action up or down.

16.2.6. User driven drop down lists

Figure 16.10. Data enumeration showing as a drop down list

Note that is it possible to limit field values to items in a pre-configured list. This list is either defined

by a Java enumeration or configured as part of the package (using a data enumeration to provide

values for the drop down list). These values can be a fixed list, or (for example) loaded from a

database. This is useful for codes, and other fields where there are set values. It is also possible

Chapter 16. Authoring Assets

484

to have what is displayed on screen, in a drop down, be different to the value (or code) used in a

rule. See the section on data enumerations for how these are configured.

It is possible to define a list of values for one field that are dependent upon the value of one or

more other fields, on the same Fact (e.g. a list of "Cities" depending on the selected "Country

region"). Please refer to the section on "Enumerations" for more information.

16.2.7. Augmenting with DSL sentences

If the package the rule is part of has a DSL configuration, when when you add conditions or actions,

then it will provide a list of "DSL Sentences" which you can choose from - when you choose one,

it will add a row to the rule - where the DSL specifies values come from a user, then a edit box

(text) will be shown (so it ends up looking a bit like a form). This is optional, and there is another

DSL editor. Please note that the DSL capabilities in this editor are slightly less then the full set

of DSL features (basically you can do [when] and [then] sections of the DSL only - which is no

different to drools 3 in effect).

The following diagram shows the DSL sentences in action in the guided editor:

Figure 16.11. DSL in guided editor

A more complex example:

485

16.2.8. A more complex example:

Figure 16.12. A more complex BRL example

In the above example, you can see how to use a mixture of Conditional Elements, literal values,

and formulas. The rule has 4 "top level" Patterns and 1 Action. The "top level" Patterns are:

1. A Fact Pattern on Person. This Pattern contains two field constraints: one for birthDate field

and the other one is a formula. Note that the value of the birthDate restriction is selected from

a calendar. Another thing to note is that you can make calculations and use nested fields in the

formula restriction (i.e. car.brand). Finally, we are setting a variable name ($p) to the Person

Fact Type. You can then use this variable in other Patterns.

Note

The generated DRL from this Pattern will be:

Chapter 16. Authoring Assets

486

$p : Person(birthDate < "19-Dec-1982" , eval(car.brand == "Ford"

 && salary > (2500 * 4.1)))

2. A From Pattern. This condition will create a match for every Address whose street name is "Elm

St." from the Person's list of addresses. The left side of the from is a regular Fact Pattern and

the right side is an Expression Builder that let us inspect variable's fields.

Note

The generated DRL from this Pattern will be: Address(street == "Elm St.")

from $p.addresses

3. A "Not Exist" Conditional Element. This condition will match when its content doesn't create a

match. In this case, its content is a regular Fact Pattern (on Person). In this Fact Pattern you

can see how variables ($p) could be used inside a formula value.

Note

The generated DRL from this Pattern will be: not Person(salary ==

($p.salary * 2))

4. A "From Accumulate" Conditional Element. This is maybe one of the most complex Patterns

you can use. It consist in a Left Pattern (It must be a Fact Pattern. In this case is a Number

Pattern. The Number is named $totalAddresses), a Source Pattern (Which could be a Fact

Pattern, From, Collect or Accumulate conditional elements. In this case is an Address Pattern

Restriction with a field restriction in its zip field) and a Formula Section where you can use any

built-in or custom Accumulate Function (in this example a count() function is used). Basically,

this Conditional Element will count the addresses having a zip code of 43240 from the Person's

list of addresses.

Note

The generated DRL from this Pattern will be: $totalAddresses : Number()

from accumulate ($a : Address(zipCode == " 43240") from

$p.addresses, count($a))

16.3. Templates of assets/rules

The guided rule editor is great when you need to define a single rule, however if you need to

define multiple rules following the same structure but with different values in field constraints or

action sections a "Rule Template" is a valuable asset. Rule templates allow the user to define a

Creating a rule template

487

rule structure with place-holders for values that are to be interpolated from a table of data. Literal

values, formulae and expressions can also continue to be used.

Rule Templates can often be used as an alternative for Decision Tables in Drools Workbench.

16.3.1. Creating a rule template

To create a template for a rule simply select the "Guided Rule Template" from the "New Item"

menu.

16.3.2. Define the template

Once a rule template has been created the editor is displayed. The editor takes the form of the

standard guided editor explained in more detail under the "Rule Authoring" section. As the rule is

constructed you are given the ability to insert "Template Keys" as place-holders within your field

constraints and action sections. Literal values, formulae and expressions can continue to be used

as in the standard guided editor.

Figure 16.13. Template Key popup

The following screenshot illustrates a simple rule that has been defined with a "Template Key"

for the applicants' maximum age, minimum age and credit rating. The template keys have been

defined as "$max_age", "$min_age" and "$cr" respectively.

Chapter 16. Authoring Assets

488

Figure 16.14. Rule template in the guided editor

16.3.3. Defining the template data

When you have completed the definition of your rule template you need to enter the data that will

be used to interpolate the "Template Key" place-holders. Drools Workbench provides the facility

to enter data in a flexible grid within the guided editor screen. The data entry section is located

on the Data tab within the editor.

The rule template data grid is very flexible; with different pop-up editors for the underlying fields'

data-types. Columns can be resized and sorted; and cells can be merged and grouped to facilitate

rapid data entry.

One row of data interpolates the "Template Key" place-holders for a single rule; thus one row

becomes one rule.

Defining the template data

489

Note

If any cells for a row are left blank a rule for the applicable row is not generated.

Chapter 16. Authoring Assets

490

Figure 16.15. Template data grid

Defining the template data

491

16.3.3.1. Cell merging

The icon in the top left of the grid toggles cell merging on and off. When cells are merged those in

the same column with identical values are merged into a single cell. This simplifies changing the

value of multiple cells that shared the same original value. When cells are merged they also gain

an icon in the top-left of the cell that allows rows spanning the merged cell to be grouped.

Figure 16.16. Cell merging

16.3.3.2. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in

the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other

columns spanning the collapsed rows that have identical values are shown unchanged. Cells in

other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

Chapter 16. Authoring Assets

492

Figure 16.17. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their

values updated.

16.3.4. Generated DRL

Whilst not necessary, rule authors can view the DRL that will be generated for a "Rule Template"

and associated data. This feature and its operation is no different to that for other assets. Select

the "Source" tab from the bottom of the editor screen. The DRL for all rules will be displayed.

Generated DRL

493

Figure 16.18. Generated DRL

Chapter 16. Authoring Assets

494

16.4. Guided decision tables (web based)

The guided decision table feature allows decision tables to be edited in place on the web. This

works similar to the guided editor by introspecting what facts and fields are available to guide the

creation of a decision table. Rule attributes, meta-data, conditions and actions can be defined in a

tabular format thus facilitating rapid entry of large sets of related rules. Web-based decision table

rules are compiled into DRL like all other rule assets.

16.4.1. Types of decision table

There are broadly two different types of decision table, both of which are supported in Drools

Workbench:-

• Extended Entry

• Limited Entry

16.4.1.1. Extended Entry

An Extended Entry decision table is one for which the column definitions, or stubs, specify Pattern,

Field and operator but not value. The values, or states, are themselves held in the body of the

decision table. It is normal, but not essential, for the range of possible values to be restricted by

limiting entry to values from a list. Drools Workbench supports use of Java enumerations, Drools

Workbench enumerations or decision table "optional value lists" to restrict value entry.

Figure 16.19. Extended Entry Decision table

16.4.1.2. Limited Entry

A Limited Entry decision table is one for which the column definitions specify value in addition to

Pattern, Field and operator. The decision table states, held in the body of the table, are boolean

where a positive value (a checked tick-box) has the effect of meaning the column should apply,

or be matched. A negative value (a cleared tick-box) means the column does not apply.

Main components\concepts

495

Figure 16.20. Limited Entry Decision table

16.4.2. Main components\concepts

The guided decision table is split into two main sections:-

• The upper section allows table columns to be defined representing rule attributes, meta-data,

conditions and actions.

• The lower section contains the actual table itself; where individual rows define separate rules.

Figure 16.21. Main components

Chapter 16. Authoring Assets

496

16.4.2.1. Navigation

Cells can be selected in a variety of ways:-

• Firstly individual cells can be double-clicked and a pop-up editor corresponding to the underlying

data-type will appear. Groups of cells in the same column can be selected by either clicking

in the first and dragging the mouse pointer or clicking in the first and clicking the extent of the

required range with the shift key pressed.

• Secondly the keyboard cursor keys can be used to navigate around the table. Pressing the

enter key will pop-up the corresponding editor. Ranges can be selected by pressing the shift

key whilst extending the range with the cursor keys.

Columns can be resized by hovering over the corresponding divider in the table header. The

mouse cursor will change and then the column width dragged either narrower or wider.

16.4.2.2. Cell merging

The icon in the top left of the decision table toggles cell merging on and off. When cells are

merged those in the same column with identical values are merged into a single cell. This simplifies

changing the value of multiple cells that shared the same original value. When cells are merged

they also gain an icon in the top-left of the cell that allows rows spanning the merged cell to be

grouped.

Figure 16.22. Cell merging

16.4.2.3. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in

the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other

Main components\concepts

497

columns spanning the collapsed rows that have identical values are shown unchanged. Cells in

other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

Figure 16.23. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their

values updated.

16.4.2.4. Operation of "otherwise"

Condition columns defined with literal values that use either the equality (==) or inequality (!=)

operators can take advantage of a special decision table cell value of "otherwise". This special

value allows a rule to be defined that matches on all values not explicitly defined in all other rules

defined in the table. This is best illustrated with an example:-

when

 Cheese(name not in ("Cheddar", "Edam", "Brie"))

 ...

then

 ...

end

when

 Cheese(name in ("Cheddar", "Edam", "Brie"))

 ...

then

 ...

end

16.4.2.5. Re-arranging columns

Whole patterns and individual conditions can be re-arranged by dragging and dropping them

in the configuration section of the screen. This allows constraints to be re-ordered to maximise

Chapter 16. Authoring Assets

498

performance of the resulting rules, by placing generalised constraints before more specific. Action

columns can also be re-arranged by dragging and dropping them.

Figure 16.24. Re-arranging Condition patterns

Figure 16.25. Re-arranging columns

16.4.3. Defining a web based decision table

16.4.3.1. Manual creation

When a new empty decision table has been created you need to define columns for Facts, their

constraints and corresponding actions.

16.4.3.1.1. Column configuration

Expand the "Decision table" element and you will see three further sections for "Conditions",

"Actions" and "Options". Expanding either the "Conditions" or "Actions" sections reveals the "New

column" icon. This can be used to add new column definitions to the corresponding section.

Existing columns can be removed by clicking the "-" icon beside each column name, or edited by

clicking the "pencil" icon also beside each column name. The "Options" section functions slightly

differently however the principle is the same: clicking the "Add Attribute/Metadata" icon allows

columns for table attributes to be defined (such as "salience", "no-loop" etc) or metadata added.

Defining a web based decision table

499

Figure 16.26. Column configuration

16.4.3.1.1.1. Utility columns

All decision table contain two utility columns containing rule number and rule description.

16.4.3.1.1.2. Adding columns

To add a column click on the "New column" icon.

You are presented with the following column type selection popup.

Chapter 16. Authoring Assets

500

Figure 16.27. Column type popup

By default the column type popup only shows the following simple types:-

• Add a new Metadata\Attribute column

• Add a simple Condition

• Set the value of a field

• Set the value of a field on a new fact

• Delete an existing fact

Clicking on "Include advanced options" adds the following additional "advanced" column types for

more advanced use cases:-

• Add a Condition BRL fragment

• Execute a Work Item

• Set the value of a field with a Work Item parameter

• Set the value of a field on a new Fact with a Work Item parameter

• Add an Action BRL fragment

16.4.3.1.1.3. Simple column types

16.4.3.1.1.3.1. Metadata

Zero or more meta-data columns can be defined, each represents the normal meta-data

annotation on DRL rules.

Defining a web based decision table

501

16.4.3.1.1.3.2. Attributes

Zero or more attribute columns representing any of the DRL rule attributes (e.g. salience, timer,

enabled etc) can be added. An additional pseudo attribute is provide in the guided decision table

editor to "negate" a rule. Use of this attribute allows complete rules to be negated. For example

the following simple rule can be negated as also shown.

when

 $c : Cheese(name == "Cheddar")

then

 ...

end

when

 not Cheese(name == "Cheddar")

then

 ...

end

16.4.3.1.1.3.3. Simple Condition

Conditions represent constraints on Fact Patterns defined in the left-hand side, or "when" portion,

of a rule. To define a condition column you must first select or define a Fact Pattern bound to

a model class. You can choose to negate the pattern. Once this has been completed you can

define field constraints. If two or more columns are defined using the same fact pattern binding the

field constraints become composite field constraints on the same pattern. If you define multiple

bindings for a single model class each binding becomes a separate model class in the left-hand

side of the rule.

When you edit or create a new column, you will be given a choice of the type of constraint:-

• Literal : The value in the cell will be compared with the field using the operator.

• Formula: The expression in the cell will be evaluated and then compared with the field.

• Predicate : No field is needed, the expression will be evaluated to true or false.

Chapter 16. Authoring Assets

502

Figure 16.28. Simple Condition popup

16.4.3.1.1.3.4. Set the value of a field

An Action to set the value of a field on previously bound fact. You have the option to notify the

Rule Engine of the modified values which could lead to other rules being re-activated.

Figure 16.29. Set the value of a field popup

Defining a web based decision table

503

16.4.3.1.1.3.5. Set the value of a field on a new fact

An Action to insert a new Fact into the Rule Engine Working Memory and set the a value of one of

the new Facts' fields. You can choose to have the new Fact "logically inserted" meaning it will be

automatically deleted should the conditions leading to the action being invoked cease to be true.

Please refer to the Drools Expert documentation for details on Truth Maintenance and Logical

insertions.

Figure 16.30. Set the value of a field on a new fact popup

16.4.3.1.1.3.6. Delete an existing fact

An Action to delete a bound Fact.

Figure 16.31. Delete an existing fact popup

16.4.3.1.1.4. Advanced column types

16.4.3.1.1.4.1. Condition BRL fragments

A construct that allows a BRL fragment to be used in the left-hand side of a rule. A BRL fragment

is authored using the Guided Rule Editor and hence all features available in that editor can be

used to define a decision table column; such as "from", "collect" and "accumulate" etc. When using

Chapter 16. Authoring Assets

504

the embedded Guided Rule Editor field values defined as "Template Keys" will form columns in

the decision table. Facts and Fact's fields bound in the BRL fragment can be referenced by the

simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear

in the decision table.

Figure 16.32. Defining a Condition with BRL

Figure 16.33. The resulting decision table

16.4.3.1.1.4.2. Execute a Work Item

An Action invoking a jBPM Work Item Handler setting its input parameters to bound Facts\Facts

fields values.

Defining a web based decision table

505

16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter

An Action setting the value of a Fact's field to that of a jBPM Work Item Handler's result parameter.

16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter

An Action setting the value of a new Fact's field to that of a jBPM Work Item Handler's result

parameter.

16.4.3.1.1.4.5. Action BRL fragment

A construct that allows a BRL fragment to be used in the right-hand side of a rule. A BRL fragment

is authored using the Guided Rule Editor and hence all features available in that editor can be

used to define a decision table column. When using the embedded Guided Rule Editor field values

defined as "Template Keys" will form columns in the decision table. Facts bound in the BRL

fragment can be referenced by the simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear

in the decision table.

Figure 16.34. Defining an Action with BRL

Figure 16.35. The resulting decision table

Chapter 16. Authoring Assets

506

16.4.3.2. Using a Wizard

A Wizard can also be used to assist with defining the decision table columns.

The wizard can be chosen when first electing to create a new rule. The wizard provides a number

of pages to define the table:-

• Summary

• Add Fact Patterns

• Add Constraints

• Add Actions to update facts

• Add Actions to insert facts

• Columns to expand

16.4.3.2.1. Selecting the wizard

The "New Wizard" dialog shows a "Use wizard" checkbox.

Figure 16.36. Selecting the wizard

Defining a web based decision table

507

16.4.3.2.2. Summary page

The summary page shows a few basic details about the decision table and allows the asset name

to be changed.

Figure 16.37. Summary page

16.4.3.2.3. Add Fact Patterns page

This page allows Fact types to be defined that will form the "When" columns of the rules. Fact

types that are available in your model will be shown in the left-hand listbox. Select a Fact type

and use the ">>" button to add it to your list of chosen facts on the right-hand listbox. Removal

is a similar process: the Fact that is no longer required can be selected in the right-hand listbox

and the "<<" button used to remove it. All Fact types need to be bound to a variable. Incomplete

Fact types will be highlighted and a warning message displayed. You will be unable to finish your

definition until all warnings have been resolved.

Chapter 16. Authoring Assets

508

Figure 16.38. Add Fact Patterns page

Figure 16.39. Example of an incomplete Fact definition

Defining a web based decision table

509

16.4.3.2.4. Add Constraints page

This page allows field constraints on the Fact types you have chosen to use in the decision table

to be defined. Fact types chosen on the previous Wizard page are listed in the right-hand listbox.

Selecting a Fact type by clicking on it will result in a list of available fields being shown in the middle

listbox together with an option to create a predicate that do not require a specific field. Fields can

be added to the pattern's constraints by clicking on the field and then the ">>" button. Fields can

be removed from the pattern definition by clicking on the Condition in the right-hand listbox and

then the "<<" button. All fields need to have a column header and operator. Incomplete fields will

be highlighted and a warning message displayed. You will be unable to finish your definition until

all warnings have been resolved.

Figure 16.40. Add Constraints page

16.4.3.2.5. Add Actions to update facts page

Fact types that have been defined can be updated in the consequence, or action, part of a rule.

This page allows such actions to be defined. Fact types added to the decision table definition are

listed in the left-hand listbox. Selecting a Fact type by clicking on it will result in a list of available

fields being shown in the middle listbox. Fields that need to be updated by the rule can be added

by selecting an available field and pressing the ">>" button. Fields can be removed similarly by

clicking on a chosen field and then the "<<" button. All actions require a column header. Any

incomplete actions will be highlighted and a warning message displayed. You will be unable to

finish your definition until all warnings have been resolved.

Chapter 16. Authoring Assets

510

Figure 16.41. Add Actions to update facts page

16.4.3.2.6. Add Actions to insert facts page

Actions can also be defined to insert new Facts into the Rule Engine. A list of Fact types available

in your model are listed in the left-hand listbox. Select those you wish to include in your decision

table definition by clicking on them and pressing the ">>" button between the left most listbox

and that titled "Chosen patterns". Removal is a similar process whereby a chosen pattern can be

selected and removed by pressing the "<<" button. Selection of a chosen pattern presents the

user with a list of available fields. Fields that need to have values set by the action can be added

by selecting them and pressing the ">>" button between the "Available fields" and "Chosen fields"

listbox. Removal is a similar process as already described. New Facts need to be bound to a

variable and have a column heading specified. Incomplete Facts and\or fields will be highlighted

and a warning message displayed. You will be unable to finish your definition until all warnings

have been resolved.

Defining a web based decision table

511

Figure 16.42. Add Actions to insert facts page

16.4.3.2.7. Columns to expand page

This page controls how the decision table, based upon Conditions defined on the prior pages,

will be created. Condition columns defined with an optional list of permitted values can be used

to create rows in the decision table. Where a number of Condition columns have been defined

with lists of permitted values the resulting table will contain a row for every combination of values;

i.e. the decision table will be in expanded form. By default all Condition columns defined with

value lists will be included in the expansion however you are able to select a sub-set of columns

if so required. This can be accomplished by unticking the "Fully expand" checkbox and adding

columns to the right-hand listbox. If no expansion is required untick the "Fully expand" checkbox

and ensure zero columns are added to the right-hand listbox.

Chapter 16. Authoring Assets

512

Figure 16.43. Columns to expand page

Figure 16.44. Example of a Condition column with optional values defined

Rule definition

513

Figure 16.45. Example of a decision table generated with expanded columns

16.4.4. Rule definition

This section allows individual rules to be defined using the columns defined earlier.

Rows can be appended to the end of the table by selecting the "Add Row" button. Rows can also

be inserted by clicking the "+" icon beside an existing row. The "-" icon can be used to delete rows.

Chapter 16. Authoring Assets

514

Figure 16.46. Rule definition

16.4.5. Audit Log

An audit log has been added to the web-guided Decision Table editor to track additions, deletions

and modifications.

By default the audit log is not configured to record any events, however, users can easily select

the events in which they are interested.

The audit log is persisted whenever the asset is checked in.

Audit Log

515

Figure 16.47. An empty audit log

Once the capture of events has been enabled all susbsequent operations are recorded. Users

are able to perform the following:-

• Record an explanatory note beside each event.

• Delete an event from the log. Event details remain in the underlying repository.

Chapter 16. Authoring Assets

516

Figure 16.48. Example of audit events

16.5. Spreadsheet decision tables

Multiple rules can be stored in a spreadsheet. Each row in the spreadsheet is a rule, and each

column is either a condition, an action, or an option. The Drools Expert section of this document

discusses spreadsheet decision tables in more detail.

Scorecards

517

Figure 16.49. Spreadsheet decision table

To use a spreadsheet, you upload an XLS file. To create a new decision table: launch the new

"Decision Table (Spreadsheet)" wizard, you will get an option to upload one.

16.6. Scorecards

A scorecard is a graphical representation of a formula used to calculate an overall score. A

scorecard can be used to predict the likelihood or probability of a certain outcome. Drools now

supports additive scorecards. An additive scorecard calculates an overall score by adding all

partial scores assigned to individual rule conditions.

Additionally, Drools Scorecards will allows for reason codes to be set, which help in identifying

the specific rules (buckets) that have contributed to the overall score. Drools Scorecards will be

based on the PMML 4.1 Standard.

The New Item menu now allows for creation of scorecard assets.

Chapter 16. Authoring Assets

518

Figure 16.50. Scorecard Asset - Guided Editor

The above image shows a scorecard with one characteristic. Each scorecard consists of two

sections (a) Setup Parameters (b) Characteristic Section

16.6.1. (a) Setup Parameters

The setup section consits of parameters that define the overall behaviour of this scorecard.

1. Facts: This dropdown shows a list of facts that are visible for this asset.

2. Resultant Score Field: Shows a list of fields from the selected fact. Only fields of type 'double'

are shown. If this dropdown is empty double check your fact model. The final calculated score

will be stored in this field.

3. Initial Score: Numeric Text Field to capture the initial score. The generated rules will initialize

the 'Resultant Score Field' with this score and then is added to the overall score whenever

partial scores are summed up.

4. Use Reason Codes: Boolean indicator to compute reason codes along with the final score.

Selecting Yes/No in this field will enable/disable the 'Resultant Reason Codes Field', 'Reason

Code Algorithm' and the 'Baseline Score' field.

5. Resultant Reason Codes Field: Shows a list of fields from the selected fact. Only fields of type

'java.util.List' are shown. This collection will hold the reason codes selected by this scorecard.

6. Reason Code Algorithm: May be "none", "pointsAbove" or "pointsBelow", describing how

reason codes shall be ranked, relative to the baseline score of each Characteristic, or as set

at the top-level scorecard.

(b) Characteristics

519

7. Baseline Score: A single value to use as the baseline comparison score for all characteristics,

when determining reason code ranking. Alternatively, unique baseline scores may be

set for each individual Characteristic as shown below. This value is required only when

UseReasonCodes is "true" and baselineScore is not given for each Characteristic.

Note

If UseReasonCodes is "true", then BaselineScore must be defined at the Scorecard

level or for each Characteristic, and ReasonCode must be provided for each

Characteristic or for each of its input Attributes. If UseReasonCodes is "false", then

baselineScore and reasonCode are not required.

16.6.2. (b) Characteristics

On Clicking the 'New Characteristic' button, a new empty characteristic editor is added to the

scorecard. Defines the point allocation strategy for each scorecard characteristic (numeric or

categorical). Each scorecard characteristic is assigned a single partial score which is used to

compute the overall score. The overall score is simply the sum of all partial scores. Partial scores

are assumed to be continuous values of type "double".

16.6.2.1. Creating Characterstics

Every scorecard must have at least one characteristic

Figure 16.51. New Characteristic

1. Name: Descriptive name for this characteristic. For informational reasons only.

2. Remove Charteristic: Will remove this characteristic from the scorecard after a confirmation

dialog is shown.

3. Add Attribute: Will add a line entry for an attribute (bin).

4. Fact: Select the class which will be evaluated for calculating the partial score.

5. Characteristic: Shows the list of fields from the selected Fact. Only fields of type "String", "int",

"double", "boolean" are shown.

Chapter 16. Authoring Assets

520

6. Baseline Score: Sets the characteristic's baseline score against which to compare the actual

partial score when determining the ranking of reason codes. This value is required when

useReasonCodes attribute is "true" and baselineScore is not defined in element Scorecard.

Whenever baselineScore is defined for a Characteristic, it takes precedence over the

baselineScore value defined in element Scorecard.

7. Reason Code: Contains the characteristic's reason code, usually associated with an adverse

decision.

16.6.2.2. Creating Attributes

On Clicking the 'New Attribute' button, a new empty attribute editor. In scorecard models, all the

elements defining the Attributes for a particular Characteristic must all reference a single field.

Figure 16.52. New Attribute

1. Operator: The condition upon which the mapping between input attribute and partial score

takes place. The operator dropdown will show different values depending on the datatype of

the selected Field.

a. DataType Strings: "=", "in".

b. DataType Integers: "=", ">", "<", ">=", "<=", ">..<", ">=..<", ">=..<=", ">..<=".

c. DataType Boolean: "true", "false".

Refer to the next sub-section (values) for more details.

2. Value: Basis the operator selected the value specified can either be a single value or a set of

values separated by comma (","). The value field is disabled for operator type boolean.

Table 16.1. Operators / Values

Data Type Operator Value Remarks

String = Single Value will look for an exact

match

String in Comma Separated

Values (a,b,c,...)

The operator 'in'

indicates an

evaluation to TRUE

if the field value

is contained in the

comma separated list

of values

Boolean is true N/A Value Field is

uneditable (readonly)

Test Scenario

521

Data Type Operator Value Remarks

Boolean is false N/A Value Field is

uneditable (readonly)

Numeric = Single Value Equals Operator

Numeric > Single Value Greator Than

Operator

Numeric < Single Value Less Than Operator

Numeric >= Single Value Greater than or equal

To

Numeric <= Single Value Less than or equal To

Numeric >..< Comma Separated

Values (a,b)

(Greater than Value

'a') and (less than

value 'b')

Numeric >=..< Comma Separated

Values (a,b)

(Greater than or

equal to Value 'a') and

(less than value 'b')

Numeric >=..<= Comma Separated

Values (a,b)

(Greater than or

equal to Value 'a') and

(less than or equal to

value 'b')

Numeric >..<= Comma Separated

Values (a,b)

(Greater than Value

'a') and (less than or

equal to value 'b')

3. Partial Score: Defines the score points awarded to the Attribute.

4. Reason Code: Defines the attribute's reason code. If the reasonCode attribute is used in this

level, it takes precedence over the ReasonCode associated with the Characteristic element.

5. Actions: Delete this attribute. Prompts the user for confirmation.

Note

If Use Reason Codes is "true", then Baseline Score must be defined at the

Scorecard level or for each Characteristic, and Reason Code must be provided

for each Characteristic or for each of its input Attributes. If Use Reason Codes is

"false", then BaselineScore and ReasonCode are not required.

16.7. Test Scenario

Test Scenarios are used to validate that rules and knowledge base work as expected. When the

knowledge base evolves, Test Scenarios guard against regression.

Chapter 16. Authoring Assets

522

Figure 16.53. Example Test Scenario

Given section lists the facts needed for the behaviour. Expect section lists the expected changes

and actions done by the behaviour. Given facts are passed for the Test Scenario before execution.

During the rule execution, changes in the knowledge base are recorded. After the execution

ends the recorded actions, existing facts in the knowledge base and knowledge base output is

compared against the expectations.

Test Scenario

523

Figure 16.54. Example Test Scenario after execution

Chapter 16. Authoring Assets

524

16.7.1. Given Section

Figure 16.55. Given popup

• Insert a new fact - Adds a new fact that will be inserted into the knowledge base before

execution.

• Modify an existing fact - Allows editing a fact between knowledge base executions.

• Delete an existing fact - Allows removing facts between executions.

• Activate rule flow group - Allows rules from a rule flow group to be tested, by activating the

group in advance.

16.7.2. Expect Section

Figure 16.56. Expect popup

• Rule - Validate that a certain rule fired.

• Fact value - Validate fact values for a fact created in the Given section.

• Any fact that matches - Validate that there is at least one fact in the knowledge base with the

specified field values.

Global Section

525

16.7.3. Global Section

Figure 16.57. Global popup

• Global - Validate that the global field values.

16.7.4. New Input Section

Figure 16.58. New Input popup

• Call method on an existing fact - Call a method from a fact in the beginning of the rule execution.

16.8. Functions

Functions are another asset type. They are NOT rules, and should only be used when necessary.

The function editor is a textual editor. Functions

Figure 16.59. Function

Chapter 16. Authoring Assets

526

16.9. DSL editor

The DSL editor allows DSL Sentences to be authored. The reader should take time to explore

DSL features in the Drools Expert documentation; as the syntax in Drools Workbench's DSL Editor

is identical. The normal syntax is extended to provide "hints" to control how the DSL variable is

rendered and validated within the user-interface.

The following "hints" are supported:-

• {<varName>:<regular expression>}

This will render a text field in place of the DSL variable when the DSL Sentence is used in the

guided editor. The content of the text field will be validated against the regular expression.

• {<varName>:ENUM:<factType.fieldName>}

This will render an enumeration in place of the DSL variable when the DSL Sentence is used

in the guided editor. <factType.fieldName> binds the enumeration to the model Fact and Field

enumeration definition. This could be either a "Drools Workbench enumeration" (i.e. defined

within the Workbench) or a Java enumeration (i.e. defined in a model POJO JAR file).

• {<varName>:DATE:<dateFormat>}

This will render a Date selector in place of the DSL variable when the DSL Sentence is used

in the guided editor.

• {<varName>:BOOLEAN:<[checked | unchecked]>}

This will render a dropdown selector in place of the DSL variable, providing boolean choices,

when the DSL Sentence is used in the guided editor.

• {<varName>:CF:<factType.fieldName>}

This will render a button that will allow you to set the value of this variable using a Custom

Form. In order to use this feature, a Working-Set containing a Custom Form Configuration for

factType.fieldName must be active. If there is no such Working-Set, a simple text box is used

(just like a regular variable).

For more information, please read more about Working-Sets and Custom Form Configurations.

Data enumerations (drop down list configurations)

527

Figure 16.60. DSL rule

16.10. Data enumerations (drop down list

configurations)

Data enumerations are an optional asset type that technical folk can configure to provide drop

down lists for the guided editor. These are stored and edited just like any other asset, and apply

to the package that they belong to.

The contents of an enum config are a mapping of Fact.field to a list of values to be used in a

drop down. That list can either be literal, or use a utility class (which you put on the classpath) to

load a list of strings. The strings are either a value to be shown on a drop down, or a mapping

from the code value (what ends up used in the rule) and a display value (see the example below,

using the '=').

Figure 16.61. Data enumeration

In the above diagram - the "MM" indicates a value that will be used in the rule, yet "Mini Mal" will

be displayed in the GUI.

Getting data lists from external data sources: It is possible to have Drools Workbench call a piece

of code which will load a list of Strings. To do this, you will need a bit of code that returns a

Chapter 16. Authoring Assets

528

java.util.List (of String's) to be on the classpath of Drools Workbench. Instead of specifying

a list of values in Drools Workbench itself - the code can return the list of Strings (you can use the

"=" inside the strings if you want to use a different display value to the rule value, as normal). For

example, in the 'Person.age' line above, you could change it to:

Figure 16.62.

This assumes you have a class called "DataHelper" which has a method "getListOfAges()" which

returns a List of strings (and is on the classpath). You can of course mix these "dynamic"

enumerations with fixed lists. You could for example load from a database using JDBC. The data

enumerations are loaded the first time you use the guided editor in a session. If you have any

guided editor sessions open - you will need to close and then open the rule to see the change.

16.10.1. Advanced enumeration concepts

There are a few other advanced things you can do with data enumerations.

Drop down lists that depend on field values: Lets imagine a simple fact model, we have a class

called Vehicle, which has 2 fields: "engineType" and "fuelType". We want to have a choice for the

"engineType" of "Petrol" or "Diesel". Now, obviously the choice type for fuel must be dependent on

the engine type (so for Petrol we have ULP and PULP, and for Diesel we have BIO and NORMAL).

We can express this dependency in an enumeration as:

Figure 16.63.

This shows how it is possible to make the choices dependent on other field values. Note that once

you pick the engineType, the choice list for the fuelType will be determined.

Loading enums programmatically: In some cases, people may want to load their enumeration data

entirely from external data source (such as a relational database). To do this, you can implement

a class that returns a Map. The key of the map is a string (which is the Fact.field name as shown

above), and the value is a java.util.List of Strings.

public class SampleDataSource2 {

 public Map<String>, List<String> loadData() {

 Map data = new HashMap();

Technical rules (DRL)

529

 List d = new ArrayList();

 d.add("value1");

 d.add("value2");

 data.put("Fact.field", d);

 return data;

 }

}

And in the enumeration in the BRMS, you put:

=(new SampleDataSource2()).loadData()

The "=" tells it to load the data by executing your code.

Mode advanced enumerations: In the above cases, the values in the lists are calculated up front.

This is fine for relatively static data, or small amounts of data. Imagine a scenario where you have

lists of countries, each country has a list of states, each state has a list of localities, each locality

has a list of streets and so on... You can see how this is a lot of data, and it can not be loaded up.

The lists should be loaded dependent on what country was selected etc...

Well the above can be addressed in the following fashion:

Figure 16.64.

Similar to above, but note that we have just specified what fields are needed, and also on the

right of the ":" there are quotes around the expression. This expression will then be evaluated,

only when needed, substituting the values from the fields specified. This means you can use the

field values from the GUI to drive a database query, and drill down into data etc. When the drop

down is loaded, or the rule loaded, it will refresh the list based on the fields. 'dependentField1'

and 'dependentField2' are names of fields on the 'Fact' type - these are used to calculate the list

of values which will be shown in a drop down if values for the "field".

16.11. Technical rules (DRL)

Technical (DRL) rules are stored as text - they can be managed in Drools Workbench. A DRL

can either be a whole chunk of rules, or an individual rule. if its an individual rule, no package

statement or imports are required (in fact, you can skip the "rule" statement altogether, just use

"when" and "then" to mark the condition and action sections respectively). Normally you would

use the IDE to edit raw DRL files, since it has all the advanced tooling and content assistance and

debugging. However, there are times when a rule may have to deal with something fairly technical

Chapter 16. Authoring Assets

530

in a package in Drools Workbench. In any typical package of rules, you generally have a need for

some "technical rules" - you can mix and match all the rule types together of course.

Figure 16.65. DRL technical rule

Chapter 17.

531

Chapter 17. Workbench Integration

17.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and

manipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,

that is, they continue their execution after the call was performed as a job. The job ID is returned

by every calls to allow after the REST API call was performed to request the job status and verify

whether the job finished successfully. Parameters of these calls are provided in the form of JSON

entities.

When using Java code to interface with the REST API, the classes used in

POST operations or otherwise returned by various operations can be found in the

(org.kie.workbench.services:)kie-wb-common-services JAR. All of the classes mentioned

below can be found in the org.kie.workbench.common.services.shared.rest package in that

JAR.

17.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the

calls are asynchronous and you need to be able to reference the job to check its status as it goes

through its lifecycle. During its lifecycle, a job can have the following statuses:

• ACCEPTED: the job was accepted and is being processed

• BAD_REQUEST: the request was not accepted as it contained incorrect content

• RESOURCE_NOT_EXIST: the requested resource (path) does not exist

• DUPLICATE_RESOURCE: the resource already exists

• SERVER_ERROR: an error on the server occurred

• SUCCESS: the job finished successfully

• FAIL: the job failed

• DENIED: the job was denied

• GONE: the job ID could not be found

A job can be GONE in the following cases:

• The job was explicitly removed

• The job finished and has been deleted from the status cache (the job is removed from status

cache after the cache has reached its maximum capacity)

Chapter 17. Workbench Integration

532

• The job never existed

The following job calls are provided:

[GET] /jobs/{jobID}

Returns the job status

Returns a JobResult instance

Example 17.1. An example (formatted) response body to the get job call

on a repository clone request

"{

 "status":"SUCCESS",

 "jodId":"1377770574783-27",

 "result":"Alias: testInstallAndDeployProject, Scheme: git, Uri: git://

testInstallAndDeployProject",

 "lastModified":1377770578194,"detailedResult":null

}"

[DELETE] /jobs/{jobID}

Removes the job: If the job is not yet being processed, this will remove the job from the job

queue. However, this will not cancel or stop an ongoing job

Returns a JobResult instance

17.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and their projects.

The following repositories calls are provided:

[GET] /repositories

Gets information about the repositories in the Knowledge Store

Returns a Collection<Map<String, String>> or Collection<RepositoryRequest>

instance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the RepositoryRequest class

Example 17.2. An example (formatted) response body to the get

repositories call

[

Repository calls

533

 {

 "name":"wb-assets",

 "description":"generic assets",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://bpms-assets"

 },

 {

 "name":"loanProject",

 "description":"Loan processes and rules",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://loansProject"

 }

]

[POST] /repositories

Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a RepositoryRequest instance

Returns a CreateOrCloneRepositoryRequest instance

Example 17.3. An example (formatted) response body to the create

repositories call

{

 "name":"new-project-repo",

 "description":"repo for my new project",

 "userName":null,"password":null,

 "requestType":"new",

 "gitURL":null

}

[DELETE] /repositories/{repositoryName}

Removes the repository from the Knowledge Store

Returns a RemoveRepositoryRequest instance

[POST] /repositories/{repositoryName}/projects/

Creates a project in the repository

Consumes an Entity instance

Returns a CreateProjectRequest instance

Chapter 17. Workbench Integration

534

Example 17.4. An example (formatted) request body that defines the

project to be created

{

 "name":"myProject",

 "description": "my project"

}

17.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its

organizational units, so as to organize the connected Git repositories.

The following organizationalUnits calls are provided:

[POST] /organizationalunits

Creates an organizational unit in the Knowledge Store

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 17.5. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[POST] /organizationalunits/{organizationalUnitName}/repositories/

{repositoryName}

Adds the repository to the organizational unit

Returns a AddRepositoryToOrganizationalUnitRequest instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/

{repositoryName}

Removes the repository from the organizational unit

Returns a RemoveRepositoryFromOrganizationalUnitRequest instance

Maven calls

535

17.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the

Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile

Compiles the project (equivalent to mvn compile)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a CompileProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install

Installs the project (equivalent to mvn install)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a InstallProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test

Compiles the project runs a test as part of compilation

Consumes a BuildConfig instance

Returns a TestProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy

Deploys the project (equivalent to mvn deploy)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a DeployProjectRequest instance

17.1.5. REST summary

The URL templates in the table below are relative the following URL:

• http://server:port/business-central/rest

Table 17.1. Knowledge Store REST calls

URL Template Type Description

/jobs/{jobID} GET return the job status

Chapter 17. Workbench Integration

536

URL Template Type Description

/jobs/{jobID} DELETEremove the job

/organizationalunits GET return a list of

organizational units

/organizationalunits POST create an organizational

unit in the Knowledge

Store described

by the JSON

OrganizationalUnit

entity

/organizationalunits/{organizationalUnitName}/

repositories/{repositoryName}

POST add a repository to an

organizational unit

/organizationalunits/{organizationalUnitName}/

repositories/{repositoryName}

DELETEremove a repository from

an organizational unit

/repositories/ POST add the repository to

the organizational unit

described by the JSON

RepositoryReqest entity

/repositories GET return the repositories in

the Knowledge Store

/repositories/{repositoryName} DELETEremove the repository

from the Knowledge Store

/repositories/ POST create or clone

the repository

defined by the JSON

RepositoryRequest entity

/repositories/{repositoryName}/projects/ POST create the project defined

by the JSON entity in the

repository

/repositories/{repositoryName}/projects/{projectName}/

maven/compile/

POST compile the project

/repositories/{repositoryName}/projects/{projectName}/

maven/install

POST install the project

/repositories/{repositoryName}/projects/{projectName}/

maven/test/

POST compile the project

and run tests as part of

compilation

/repositories/{repositoryName}/projects/{projectName}/

maven/deploy/

POST deploy the project

Chapter 18.

537

Chapter 18. Workbench High

Availability

18.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,

process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in

sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is

the cluster management component that registers all cluster details (nodes, resources and the

cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide

VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/].

2. Install both:

a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).

b. In $ZOOKEEPER_HOME, copy zoo_sample.conf to zoo.conf

c. Edit zoo.conf. Adjust the settings if needed. Usually only these 2 properties are relevant:

the directory where the snapshot is stored.

dataDir=/tmp/zookeeper

the port at which the clients will connect

clientPort=2181

d. Unzip Helix into a directory ($HELIX_HOME).

3. Configure the cluster in Zookeeper:

a. Go to its bin directory:

$ cd $ZOOKEEPER_HOME/bin

b. Start the Zookeeper server:

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Chapter 18. Workbench High Av...

538

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dataDir (as specified in zoo.conf) is accessible.

c. To review Zookeeper's activities, open zookeeper.out:

$ cat $ZOOKEEPER_HOME/bin/zookeeper.out

4. Configure the cluster in Helix:

a. Go to its bin directory:

$ cd $HELIX_HOME/bin

b. Create the cluster:

$./helix-admin.sh --zkSvr localhost:2181 --addCluster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (kie-cluster)

can be changed as needed.

c. Add nodes to the cluster:

Node 1

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster

 nodeOne:12345

Node 2

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster

 nodeTwo:12346

...

Usually the number of nodes a in cluster equal the number of application servers in the

cluster. The node names (nodeOne:12345 , ...) can be changed as needed.

VFS clustering

539

Note

nodeOne:12345 is the unique identifier of the node, which will be referenced

later on when configuring application servers. It is not a host and port number,

but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

$./helix-admin.sh --zkSvr localhost:2181 --addResource kie-cluster vfs-

repo 1 LeaderStandby AUTO_REBALANCE

The resource name (vfs-repo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-admin.sh --zkSvr localhost:2181 --rebalance kie-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr localhost:2181 --cluster kie-cluster

 2>&1 > /tmp/controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and

JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/domain.xml.

For simplicity sake, presume we use the default domain configuration which uses the profile

full that defines two server nodes as part of main-server-group.

b. Locate the profile full and add a new security domain by copying the other security domain

already defined there by default:

<security-domain name="kie-ide" cache-type="default">

 <authentication>

 <login-module code="Remoting" flag="optional">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

 <login-module code="RealmDirect" flag="required">

 <module-option name="password-stacking" value="useFirstPass"/>

 </login-module>

Chapter 18. Workbench High Av...

540

 </authentication>

</security-domain>

Important

The security-domain name is a magic value.

6. Configure the system properties for the cluster on the application server. For example on

WildFly and JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

b. Locate the XML elements server that belong to the main-server-group and add the

necessary system property.

For example for nodeOne:

<system-properties>

 <property name="jboss.node.name" value="nodeOne" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodeone" boot-

time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/

nodeone" boot-time="false"/>

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-

time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-

time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeOne_12345" boot-

time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-

time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9418" boot-

time="false"/>

</system-properties>

And for nodeTwo:

<system-properties>

 <property name="jboss.node.name" value="nodeTwo" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodetwo" boot-

time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/

nodetwo" boot-time="false"/>

jBPM clustering

541

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-

time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-

time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeTwo_12346" boot-

time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-

time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9419" boot-

time="false"/>

</system-properties>

Make sure the cluster, node and resource names match those configured in Helix.

18.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this

blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the

database etc correctly.

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

542

Part VI. Drools Examples
Examples to help you learn Drools

Chapter 19.

545

Chapter 19. Examples
19.1. Getting the Examples

Make sure the Drools Eclipse plugin is installed, which needs the Graphical Editing Framework

(GEF) dependency installed first. Then download and extract the drools-examples zip file, which

includes an already created Eclipse project. Import that project into a new Eclipse workspace. The

rules all have example classes that execute the rules. If you want to try the examples in another

project (or another IDE) then you will need to set up the dependencies by hand, of course. Many,

but not all of the examples are documented below, enjoy!

Some examples require Java 1.6 to run.

19.2. Hello World

Name: Hello World

Main class: org.drools.examples.helloworld.HelloWorldExample

Module: drools-examples

Type: Java application

Rules file: HelloWorld.drl

Objective: demonstrate basic rules in use

The "Hello World" example shows a simple application using rules, written both using the MVEL

and the Java dialects.

This example demonstrates how to create and use a KieSession. Also, audit logging and debug

outputs are shown, which is omitted from other examples as it's all very similar.

The following code snippet shows how the session is created with only 3 lines of code.

Example 19.1. HelloWorld: Creating the KieSession

 KieServices ks = KieServices.Factory.get();

 KieContainer kc = ks.getKieClasspathContainer();

 KieSession ksession = kc.newKieSession("HelloWorldKS");

Obtains the KieServices factory. This is the main interface applications use to interact with

the engine.

Creates a KieContainer from the project classpath. This will look for a /META-INF/

kmodule.xml file to configure and instantiate the KieModule into the KieContainer.

Creates a session based on the named "HelloWorldKS" session configuration.

Drools has an event model that exposes much of what's happening internally. Two default debug

listeners are supplied, DebugAgendaEventListener and DebugWorkingMemoryEventListener

Chapter 19. Examples

546

which print out debug event information to the System.err stream displayed in the Console

window. Adding listeners to a Session is trivial, as shown in the next snippet. The

KieRuntimeLogger provides execution auditing, the result of which can be viewed in a graphical

viewer. The logger is actually a specialised implementation built on the Agenda and RuleRuntime

listeners. When the engine has finished executing, logger.close() must be called.

Most of the examples use the Audit logging features of Drools to record execution flow for later

inspection.

Example 19.2. HelloWorld: Event logging and Auditing

 // The application can also setup listeners

 ksession.addEventListener(new DebugAgendaEventListener());

 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // To setup a file based audit logger, uncomment the next line

 // KieRuntimeLogger logger = ks.getLoggers().newFileLogger(ksession,

 "./helloworld");

 // To setup a ThreadedFileLogger, so that the audit view reflects

 events whilst debugging,

 // uncomment the next line

 /

/ KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./

helloworld", 1000);

The single class used in this example is very simple. It has two fields: the message, which is a

String and the status which can be one of the two integers HELLO or GOODBYE.

Example 19.3. HelloWorld example: Message Class

public static class Message {

 public static final int HELLO = 0;

 public static final int GOODBYE = 1;

 private String message;

 private int status;

 ...

}

A single Message object is created with the message text "Hello World" and the status HELLO and

then inserted into the engine, at which point fireAllRules() is executed.

Hello World

547

Example 19.4. HelloWorld: Execution

 // The application can insert facts into the session

 final Message message = new Message();

 message.setMessage("Hello World");

 message.setStatus(Message.HELLO);

 ksession.insert(message);

 // and fire the rules

 ksession.fireAllRules();

To execute the example as a Java application:

1. Open the class org.drools.examples.helloworld.HelloWorldExample in your Eclipse IDE

2. Right-click the class and select "Run as..." and then "Java application"

If we put a breakpoint on the fireAllRules() method and select the ksession variable, we can

see that the "Hello World" rule is already activate on the Agenda.

Figure 19.1. Hello World: fireAllRules Agenda View

Chapter 19. Examples

548

The application print outs go to to System.out while the debug listener print outs go to

System.err.

Example 19.5. HelloWorld: System.out in the Console window

Hello World

Goodbye cruel world

Example 19.6. HelloWorld: System.err in the Console window

==>[ActivationCreated(0): rule=Hello World;

 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]]

[ObjectInserted:

 handle=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96];

 object=org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]

[BeforeActivationFired: rule=Hello World;

 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]]

==>[ActivationCreated(4): rule=Good Bye;

 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]]

[ObjectUpdated:

 handle=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96];

 old_object=org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96;

 new_object=org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]

[AfterActivationFired(0): rule=Hello World]

[BeforeActivationFired: rule=Good Bye;

 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample

$Message@17cec96]]

[AfterActivationFired(4): rule=Good Bye]

The actual rules are inside the file src/main/resources/org/drools/examples/helloworld/

HelloWorld.drl:

Example 19.7. HelloWorld: rule "Hello World"

rule "Hello World"

 dialect "mvel"

Hello World

549

 when

 m : Message(status == Message.HELLO, message : message)

 then

 System.out.println(message);

 modify (m) { message = "Goodbye cruel world",

 status = Message.GOODBYE };

end

The LHS (after when) section of the rule states that it will be activated for each Message object

inserted into the Rule Runtime whose status is Message.HELLO. Besides that, two variable

bindings are created: the variable message is bound to the message attribute and the variable m

is bound to the matched Message object itself.

The RHS (after then) or consequence part of the rule is written using the MVEL expression

language, as declared by the rule's attribute dialect. After printing the content of the bound

variable message to System.out, the rule changes the values of the message and status

attributes of the Message object bound to m. This is done using MVEL's modify statement, which

allows you to apply a block of assignments in one statement, with the engine being automatically

notified of the changes at the end of the block.

It is possible to set a breakpoint into the DRL, on the modify call, and inspect the Agenda view

again during the execution of the rule's consequence. This time we start the execution via "Debug

As" and "Drools application" and not by running a "Java application":

1. Open the class org.drools.examples.HelloWorld in your Eclipse IDE.

2. Right-click the class and select "Debug as..." and then "Drools application".

Now we can see that the other rule "Good Bye", which uses the Java dialect, is activated and

placed on the Agenda.

Chapter 19. Examples

550

Figure 19.2. Hello World: rule "Hello World" Agenda View

The "Good Bye" rule, which specifies the "java" dialect, is similar to the "Hello World" rule except

that it matches Message objects whose status is Message.GOODBYE.

Example 19.8. HelloWorld: rule "Good Bye"

rule "Good Bye"

 dialect "java"

 when

 Message(status == Message.GOODBYE, message : message)

 then

 System.out.println(message);

end

State Example

551

The Java code that instantiates the KieRuntimeLogger creates an audit log file that can be loaded

into the Audit view. The Audit view is used in many of the examples to demonstrate the example

execution flow. In the view screen shot below we can see that the object is inserted, which creates

an activation for the "Hello World" rule; the activation is then executed which updates the Message

object causing the "Good Bye" rule to activate; finally the "Good Bye" rule also executes. Selecting

an event in the Audit view highlights the origin event in green; therefore the "Activation created"

event is highlighted in green as the origin of the "Activation executed" event.

Figure 19.3. Hello World: Audit View

19.3. State Example

This example is implemented in two different versions to demonstrate different ways of

implementing the same basic behavior: forward chaining, i.e., the ability the engine has to

evaluate, activate and fire rules in sequence, based on changes on the facts in the Working

Memory.

19.3.1. Understanding the State Example

Name: State Example

Main class: org.drools.examples.state.StateExampleUsingSalience

Module: drools-examples

Type: Java application

Rules file: StateExampleUsingSalience.drl

Objective: Demonstrates basic rule use and Conflict Resolution for rule

 firing priority.

Each State class has fields for its name and its current state (see the class

org.drools.examples.state.State). The two possible states for each objects are:

• NOTRUN

• FINISHED

Example 19.9. State Class

public class State {

 public static final int NOTRUN = 0;

Chapter 19. Examples

552

 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =

 new PropertyChangeSupport(this);

 private String name;

 private int state;

 ... setters and getters go here...

}

Ignoring the PropertyChangeSupport, which will be explained later, we see the creation of four

State objects named A, B, C and D. Initially their states are set to NOTRUN, which is default for the

used constructor. Each instance is asserted in turn into the Session and then fireAllRules()

is called.

Example 19.10. Salience State: Execution

 final State a = new State("A");

 final State b = new State("B");

 final State c = new State("C");

 final State d = new State("D");

 ksession.insert(a);

 ksession.insert(b);

 ksession.insert(c);

 ksession.insert(d);

 ksession.fireAllRules();

 ksession.dispose(); /

/ Stateful rule session must always be disposed when finished

To execute the application:

1. Open the class org.drools.examples.state.StateExampleUsingSalience in your Eclipse

IDE.

2. Right-click the class and select "Run as..." and then "Java application"

You will see the following output in the Eclipse console window:

Example 19.11. Salience State: Console Output

A finished

Understanding the State Example

553

B finished

C finished

D finished

There are four rules in total. First, the Bootstrap rule fires, setting A to state FINISHED, which

then causes B to change its state to FINISHED. C and D are both dependent on B, causing a

conflict which is resolved by the salience values. Let's look at the way this was executed.

The best way to understand what is happening is to use the Audit Logging feature to graphically

see the results of each operation. To view the Audit log generated by a run of this example:

1. If the Audit View is not visible, click on "Window" and then select "Show View", then "Other..."

and "Drools" and finally "Audit View".

2. In the "Audit View" click the "Open Log" button and select the file "<drools-examples-dir>/log/

state.log".

After that, the "Audit view" will look like the following screenshot:

Figure 19.4. Salience State Example Audit View

Reading the log in the "Audit View", top to bottom, we see every action and the corresponding

changes in the Working Memory. This way we observe that the assertion of the State object A

in the state NOTRUN activates the Bootstrap rule, while the assertions of the other State objects

have no immediate effect.

Chapter 19. Examples

554

Example 19.12. Salience State: Rule "Bootstrap"

rule Bootstrap

 when

 a : State(name == "A", state == State.NOTRUN)

 then

 System.out.println(a.getName() + " finished");

 a.setState(State.FINISHED);

end

The execution of rule Bootstrap changes the state of A to FINISHED, which, in turn, activates rule

"A to B".

Example 19.13. Salience State: Rule "A to B"

rule "A to B"

 when

 State(name == "A", state == State.FINISHED)

 b : State(name == "B", state == State.NOTRUN)

 then

 System.out.println(b.getName() + " finished");

 b.setState(State.FINISHED);

end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both, rules "B

to C" and "B to D", placing their Activations onto the Agenda. From this moment on, both rules

may fire and, therefore, they are said to be "in conflict". The conflict resolution strategy allows the

engine's Agenda to decide which rule to fire. As rule "B to C" has the higher salience value (10

versus the default salience value of 0), it fires first, modifying object C to state FINISHED. The

Audit view shown above reflects the modification of the State object in the rule "A to B", which

results in two activations being in conflict. The Agenda view can also be used to investigate the

state of the Agenda, with debug points being placed in the rules themselves and the Agenda view

opened. The screen shot below shows the breakpoint in the rule "A to B" and the state of the

Agenda with the two conflicting rules.

Understanding the State Example

555

Figure 19.5. State Example Agenda View

Chapter 19. Examples

556

Example 19.14. Salience State: Rule "B to C"

rule "B to C"

 salience 10

 when

 State(name == "B", state == State.FINISHED)

 c : State(name == "C", state == State.NOTRUN)

 then

 System.out.println(c.getName() + " finished");

 c.setState(State.FINISHED);

end

Rule "B to D" fires last, modifying object D to state FINISHED.

Example 19.15. Salience State: Rule "B to D"

rule "B to D"

 when

 State(name == "B", state == State.FINISHED)

 d : State(name == "D", state == State.NOTRUN)

 then

 System.out.println(d.getName() + " finished");

 d.setState(State.FINISHED);

end

There are no more rules to execute and so the engine stops.

Another notable concept in this example is the use of dynamic facts, based on

PropertyChangeListener objects. As described in the documentation, in order for the engine

to see and react to changes of fact properties, the application must tell the engine that changes

occurred. This can be done explicitly in the rules by using the modify statement, or implicitly

by letting the engine know that the facts implement PropertyChangeSupport as defined by

the JavaBeans specification. This example demonstrates how to use PropertyChangeSupport

to avoid the need for explicit modify statements in the rules. To make use of this

feature, ensure that your facts implement PropertyChangeSupport, the same way the class

org.drools.example.State does, and use the following code in the rules file to configure the

engine to listen for property changes on those facts:

Example 19.16. Declaring a Dynamic Fact

declare type State

 @propertyChangeSupport

end

Understanding the State Example

557

When using PropertyChangeListener objects, each setter must implement a little extra code for

the notification. Here is the setter for state in the class org.drools.examples:

Example 19.17. Setter Example with PropertyChangeSupport

public void setState(final int newState) {

 int oldState = this.state;

 this.state = newState;

 this.changes.firePropertyChange("state",

 oldState,

 newState);

}

There are another class in this example: StateExampleUsingAgendaGroup. It executes from A to

B to C to D, as just shown, but StateExampleUsingAgendaGroup uses agenda-groups to control

the rule conflict and which one fires first.

Agenda groups are a way to partition the Agenda into groups and to control which groups can

execute. By default, all rules are in the agenda group "MAIN". The "agenda-group" attribute lets

you specify a different agenda group for the rule. Initially, a Working Memory has its focus on the

Agenda group "MAIN". A group's rules will only fire when the group receives the focus. This can be

achieved either ny using the method by setFocus() or the rule attribute auto-focus. "auto-focus"

means that the rule automatically sets the focus to its agenda group when the rule is matched and

activated. It is this "auto-focus" that enables rule "B to C" to fire before "B to D".

Example 19.18. Agenda Group State Example: Rule "B to C"

rule "B to C"

 agenda-group "B to C"

 auto-focus true

 when

 State(name == "B", state == State.FINISHED)

 c : State(name == "C", state == State.NOTRUN)

 then

 System.out.println(c.getName() + " finished");

 c.setState(State.FINISHED);

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to

 D").setFocus();

end

The rule "B to C" calls setFocus() on the agenda group "B to D", allowing its active rules to fire,

which allows the rule "B to D" to fire.

Chapter 19. Examples

558

Example 19.19. Agenda Group State Example: Rule "B to D"

rule "B to D"

 agenda-group "B to D"

 when

 State(name == "B", state == State.FINISHED)

 d : State(name == "D", state == State.NOTRUN)

 then

 System.out.println(d.getName() + " finished");

 d.setState(State.FINISHED);

end

19.4. Fibonacci Example

Name: Fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample

Module: drools-examples

Type: Java application

Rules file: Fibonacci.drl

Objective: Demonstrates Recursion,

 the CE not and cross product matching

The Fibonacci Numbers (see http://en.wikipedia.org/wiki/Fibonacci_number) discovered by

Leonardo of Pisa (see http://en.wikipedia.org/wiki/Fibonacci) is a sequence that starts with 0 and

1. The next Fibonacci number is obtained by adding the two preceding Fibonacci numbers. The

Fibonacci sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765, 10946,... The Fibonacci Example demonstrates recursion and conflict

resolution with salience values.

The single fact class Fibonacci is used in this example. It has two fields, sequence and value.

The sequence field is used to indicate the position of the object in the Fibonacci number sequence.

The value field shows the value of that Fibonacci object for that sequence position, using -1 to

indicate a value that still needs to be computed.

Example 19.20. Fibonacci Class

public static class Fibonacci {

 private int sequence;

 private long value;

 public Fibonacci(final int sequence) {

 this.sequence = sequence;

 this.value = -1;

 }

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

Fibonacci Example

559

 ... setters and getters go here...

}

Execute the example:

1. Open the class org.drools.examples.fibonacci.FibonacciExample in your Eclipse IDE.

2. Right-click the class and select "Run as..." and then "Java application"

Eclipse shows the following output in its console window (with "...snip..." indicating lines that were

removed to save space):

Example 19.21. Fibonacci Example: Console Output

recurse for 50

recurse for 49

recurse for 48

recurse for 47

...snip...

recurse for 5

recurse for 4

recurse for 3

recurse for 2

1 == 1

2 == 1

3 == 2

4 == 3

5 == 5

6 == 8

...snip...

47 == 2971215073

48 == 4807526976

49 == 7778742049

50 == 12586269025

To kick this off from Java we only insert a single Fibonacci object, with a sequence field of 50.

A recursive rule is then used to insert the other 49 Fibonacci objects. This example doesn't

use PropertyChangeSupport. It uses the MVEL dialect, which means we can use the modify

keyword, which allows a block setter action which also notifies the engine of changes.

Example 19.22. Fibonacci Example: Execution

ksession.insert(new Fibonacci(50));

ksession.fireAllRules();

Chapter 19. Examples

560

The rule Recurse is very simple. It matches each asserted Fibonacci object with a value of -1,

creating and asserting a new Fibonacci object with a sequence of one less than the currently

matched object. Each time a Fibonacci object is added while the one with a sequence field equal

to 1 does not exist, the rule re-matches and fires again. The not conditional element is used to

stop the rule's matching once we have all 50 Fibonacci objects in memory. The rule also has a

salience value, because we need to have all 50 Fibonacci objects asserted before we execute

the Bootstrap rule.

Example 19.23. Fibonacci Example: Rule "Recurse"

rule Recurse

 salience 10

 when

 f : Fibonacci (value == -1)

 not (Fibonacci (sequence == 1))

 then

 insert(new Fibonacci(f.sequence - 1));

 System.out.println("recurse for " + f.sequence);

end

The Audit view shows the original assertion of the Fibonacci object with a sequence field of 50,

done from Java code. From there on, the Audit view shows the continual recursion of the rule,

where each asserted Fibonacci object causes the Recurse rule to become activated and to fire

again.

Fibonacci Example

561

Figure 19.6. Fibonacci Example: "Recurse" Audit View 1

When a Fibonacci object with a sequence field of 2 is asserted the "Bootstrap" rule is matched

and activated along with the "Recurse" rule. Note the multi-restriction on field sequence, testing

for equality with 1 or 2.

Example 19.24. Fibonacci Example: Rule "Bootstrap"

rule Bootstrap

 when

 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction

 then

 modify (f){ value = 1 };

 System.out.println(f.sequence + " == " + f.value);

end

At this point the Agenda looks as shown below. However, the "Bootstrap" rule does not fire

because the "Recurse" rule has a higher salience.

Chapter 19. Examples

562

Figure 19.7. Fibonacci Example: "Recurse" Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted the Bootstrap rule is matched again,

causing two activations for this rule. Note that the "Recurse" rule does not match and activate

because the not conditional element stops the rule's matching as soon as a Fibonacci object

with a sequence of 1 exists.

Fibonacci Example

563

Figure 19.8. Fibonacci Example: "Recurse" Agenda View 2

Once we have two Fibonacci objects with values not equal to -1 the "Calculate" rule is able

to match. It was the "Bootstrap" rule that set the objects with sequence 1 and 2 to values of

1. At this point we have 50 Fibonacci objects in the Working Memory. Now we need to select

a suitable triple to calculate each of their values in turn. Using three Fibonacci patterns in a

rule without field constraints to confine the possible cross products would result in 50x49x48

possible combinations, leading to about 125,000 possible rule firings, most of them incorrect. The

"Calculate" rule uses field constraints to correctly constraint the thee Fibonacci patterns in the

correct order; this technique is called cross product matching. The first pattern finds any Fibonacci

with a value != -1 and binds both the pattern and the field. The second Fibonacci does this, too,

but it adds an additional field constraint to ensure that its sequence is greater by one than the

Fibonacci bound to f1. When this rule fires for the first time, we know that only sequences 1

and 2 have values of 1, and the two constraints ensure that f1 references sequence 1 and f2

references sequence 2. The final pattern finds the Fibonacci with a value equal to -1 and with a

sequence one greater than f2. At this point, we have three Fibonacci objects correctly selected

from the available cross products, and we can calculate the value for the third Fibonacci object

that's bound to f3.

Chapter 19. Examples

564

Example 19.25. Fibonacci Example: Rule "Calculate"

rule Calculate

 when

 // Bind f1 and s1

 f1 : Fibonacci(s1 : sequence, value != -1)

 // Bind f2 and v2; refer to bound variable s1

 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)

 // Bind f3 and s3; alternative reference of f2.sequence

 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)

 then

 // Note the various referencing techniques.

 modify (f3) { value = f1.value + v2 };

 System.out.println(s3 + " == " + f3.value);

end

The modify statement updated the value of the Fibonacci object bound to f3. This means we

now have another new Fibonacci object with a value not equal to -1, which allows the "Calculate"

rule to rematch and calculate the next Fibonacci number. The Audit view below shows how the

firing of the last "Bootstrap" modifies the Fibonacci object, enabling the "Calculate" rule to match,

which then modifies another Fibonacci object allowing the "Calculate" rule to match again. This

continues till the value is set for all Fibonacci objects.

Banking Tutorial

565

Figure 19.9. Fibonacci Example: "Bootstrap" Audit View

19.5. Banking Tutorial

Name: BankingTutorial

Main class: org.drools.tutorials.banking.BankingExamplesApp.java

Module: drools-examples

Type: Java application

Rules file: org.drools.tutorials.banking.*.drl

Objective: Demonstrate pattern matching, basic sorting and calculation

 rules.

This tutorial demonstrates the process of developing a complete personal banking application to

handle credits and debits on multiple accounts. It uses a set of design patterns that have been

created for the process.

The class RuleRunner is a simple harness to execute one or more DRL files against a set of data.

It compiles the Packages and creates the Knowledge Base for each execution, allowing us to

easily execute each scenario and inspect the outputs. In reality this is not a good solution for a

Chapter 19. Examples

566

production system, where the Knowledge Base should be built just once and cached, but for the

purposes of this tutorial it shall suffice.

Example 19.26. Banking Tutorial: RuleRunner

public class RuleRunner {

 public RuleRunner() {

 }

 public void runRules(String[] rules,

 Object[] facts) throws Exception {

 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 for (int i = 0; i < rules.length; i++) {

 String ruleFile = rules[i];

 System.out.println("Loading file: " + ruleFile);

 kbuilder.add(ResourceFactory.newClassPathResource(ruleFile,

 RuleRunner.class),

 ResourceType.DRL);

 }

 Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();

 kbase.addKnowledgePackages(pkgs);

 StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

 for (int i = 0; i < facts.length; i++) {

 Object fact = facts[i];

 System.out.println("Inserting fact: " + fact);

 ksession.insert(fact);

 }

 ksession.fireAllRules();

 }

}

The first of our sample Java classes loads and executes a single DRL file, Example.drl, but

without inserting any data.

Example 19.27. Banking Tutorial : Java Example1

public class Example1 {

 public static void main(String[] args) throws Exception {

 new RuleRunner().runRules(new String[] { "Example1.drl" },

Banking Tutorial

567

 new Object[0]);

 }

}

The first simple rule to execute has a single eval condition that will always be true, so that this

rule will match and fire, once, after the start.

Example 19.28. Banking Tutorial: Rule in Example1.drl

rule "Rule 01"

 when

 eval(1==1)

 then

 System.out.println("Rule 01 Works");

end

The output for the rule is below, showing that the rule matches and executes the single print

statement.

Example 19.29. Banking Tutorial: Output of Example1.java

Loading file: Example1.drl

Rule 01 Works

The next step is to assert some simple facts and print them out.

Example 19.30. Banking Tutorial: Java Example2

public class Example2 {

 public static void main(String[] args) throws Exception {

 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4), wrap(1), wrap(5)};

 new RuleRunner().runRules(new String[] { "Example2.drl" },

 numbers);

 }

 private static Integer wrap(int i) {

 return new Integer(i);

 }

}

Chapter 19. Examples

568

This doesn't use any specific facts but instead asserts a set of java.lang.Integer objects. This

is not considered "best practice" as a number is not a useful fact, but we use it here to demonstrate

basic techniques before more complexity is added.

Now we will create a simple rule to print out these numbers.

Example 19.31. Banking Tutorial: Rule in Example2.drl

rule "Rule 02"

 when

 Number($intValue : intValue)

 then

 System.out.println("Number found with value: " + $intValue);

end

Once again, this rule does nothing special. It identifies any facts that are Number objects and prints

out the values. Notice the use of the abstract class Number: we inserted Integer objects but we

now look for any kind of number. The pattern matching engine is able to match interfaces and

superclasses of asserted objects.

The output shows the DRL being loaded, the facts inserted and then the matched and fired rules.

We can see that each inserted number is matched and fired and thus printed.

Example 19.32. Banking Tutorial: Output of Example2.java

Loading file: Example2.drl

Inserting fact: 3

Inserting fact: 1

Inserting fact: 4

Inserting fact: 1

Inserting fact: 5

Number found with value: 5

Number found with value: 1

Number found with value: 4

Number found with value: 1

Number found with value: 3

There are certainly many better ways to sort numbers than using rules, but since we will need to

apply some cashflows in date order when we start looking at banking rules we'll develop simple

rule based sorting technique.

Example 19.33. Banking Tutorial: Example3.java

public class Example3 {

Banking Tutorial

569

 public static void main(String[] args) throws Exception {

 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4), wrap(1), wrap(5)};

 new RuleRunner().runRules(new String[] { "Example3.drl" },

 numbers);

 }

 private static Integer wrap(int i) {

 return new Integer(i);

 }

}

Again we insert our Integer objects, but this time the rule is slightly different:

Example 19.34. Banking Tutorial: Rule in Example3.drl

rule "Rule 03"

 when

 $number : Number()

 not Number(intValue < $number.intValue)

 then

 System.out.println("Number found with value: " + $number.intValue());

 retract($number);

end

The first line of the rule identifies a Number and extracts the value. The second line ensures that

there does not exist a smaller number than the one found by the first pattern. We might expect

to match only one number - the smallest in the set. However, the retraction of the number after it

has been printed means that the smallest number has been removed, revealing the next smallest

number, and so on.

The resulting output shows that the numbers are now sorted numerically.

Example 19.35. Banking Tutorial: Output of Example3.java

Loading file: Example3.drl

Inserting fact: 3

Inserting fact: 1

Inserting fact: 4

Inserting fact: 1

Inserting fact: 5

Number found with value: 1

Number found with value: 1

Number found with value: 3

Number found with value: 4

Chapter 19. Examples

570

Number found with value: 5

We are ready to start moving towards our personal accounting rules. The first step is to create

a Cashflow object.

Example 19.36. Banking Tutorial: Class Cashflow

public class Cashflow {

 private Date date;

 private double amount;

 public Cashflow() {

 }

 public Cashflow(Date date, double amount) {

 this.date = date;

 this.amount = amount;

 }

 public Date getDate() {

 return date;

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public double getAmount() {

 return amount;

 }

 public void setAmount(double amount) {

 this.amount = amount;

 }

 public String toString() {

 return "Cashflow[date=" + date + ",amount=" + amount + "]";

 }

}

Class Cashflow has two simple attributes, a date and an amount. (Note that using the type double

for monetary units is generally not a good idea because floating point numbers cannot represent

most numbers accurately.) There is also an overloaded constructor to set the values, and a method

toString to print a cashflow. The Java code of Example4.java inserts five Cashflow objects,

with varying dates and amounts.

Banking Tutorial

571

Example 19.37. Banking Tutorial: Example4.java

public class Example4 {

 public static void main(String[] args) throws Exception {

 Object[] cashflows = {

 new Cashflow(new SimpleDate("01/01/2007"), 300.00),

 new Cashflow(new SimpleDate("05/01/2007"), 100.00),

 new Cashflow(new SimpleDate("11/01/2007"), 500.00),

 new Cashflow(new SimpleDate("07/01/2007"), 800.00),

 new Cashflow(new SimpleDate("02/01/2007"), 400.00),

 };

 new RuleRunner().runRules(new String[] { "Example4.drl" },

 cashflows);

 }

}

The convenience class SimpleDate extends java.util.Date, providing a constructor taking a

String as input and defining a date format. The code is listed below

Example 19.38. Banking Tutorial: Class SimpleDate

public class SimpleDate extends Date {

 private static final SimpleDateFormat format = new SimpleDateFormat("dd/

MM/yyyy");

 public SimpleDate(String datestr) throws Exception {

 setTime(format.parse(datestr).getTime());

 }

}

Now, let’s look at Example4.drl to see how we print the sorted Cashflow objects:

Example 19.39. Banking Tutorial: Rule in Example4.drl

rule "Rule 04"

 when

 $cashflow : Cashflow($date : date, $amount : amount)

 not Cashflow(date < $date)

 then

 System.out.println("Cashflow: "+$date+" :: "+$amount);

 retract($cashflow);

end

Chapter 19. Examples

572

Here, we identify a Cashflow and extract the date and the amount. In the second line of the rule

we ensure that there is no Cashflow with an earlier date than the one found. In the consequence,

we print the Cashflow that satisfies the rule and then retract it, making way for the next earliest

Cashflow. So, the output we generate is:

Example 19.40. Banking Tutorial: Output of Example4.java

Loading file: Example4.drl

Inserting fact: Cashflow[date=Mon Jan 01 00:00:00 GMT 2007,amount=300.0]

Inserting fact: Cashflow[date=Fri Jan 05 00:00:00 GMT 2007,amount=100.0]

Inserting fact: Cashflow[date=Thu Jan 11 00:00:00 GMT 2007,amount=500.0]

Inserting fact: Cashflow[date=Sun Jan 07 00:00:00 GMT 2007,amount=800.0]

Inserting fact: Cashflow[date=Tue Jan 02 00:00:00 GMT 2007,amount=400.0]

Cashflow: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Cashflow: Tue Jan 02 00:00:00 GMT 2007 :: 400.0

Cashflow: Fri Jan 05 00:00:00 GMT 2007 :: 100.0

Cashflow: Sun Jan 07 00:00:00 GMT 2007 :: 800.0

Cashflow: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Next, we extend our Cashflow, resulting in a TypedCashflow which can be a credit or a debit

operation. (Normally, we would just add this to the Cashflow type, but we use extension to keep

the previous version of the class intact.)

Example 19.41. Banking Tutorial: Class TypedCashflow

public class TypedCashflow extends Cashflow {

 public static final int CREDIT = 0;

 public static final int DEBIT = 1;

 private int type;

 public TypedCashflow() {

 }

 public TypedCashflow(Date date, int type, double amount) {

 super(date, amount);

 this.type = type;

 }

 public int getType() {

 return type;

 }

 public void setType(int type) {

 this.type = type;

 }

Banking Tutorial

573

 public String toString() {

 return "TypedCashflow[date=" + getDate() +

 ",type=" + (type == CREDIT ? "Credit" : "Debit") +

 ",amount=" + getAmount() + "]";

 }

}

There are lots of ways to improve this code, but for the sake of the example this will do.

Now let's create Example5, a class for running our code.

Example 19.42. Banking Tutorial: Example5.java

public class Example5 {

 public static void main(String[] args) throws Exception {

 Object[] cashflows = {

 new TypedCashflow(new SimpleDate("01/01/2007"),

 TypedCashflow.CREDIT, 300.00),

 new TypedCashflow(new SimpleDate("05/01/2007"),

 TypedCashflow.CREDIT, 100.00),

 new TypedCashflow(new SimpleDate("11/01/2007"),

 TypedCashflow.CREDIT, 500.00),

 new TypedCashflow(new SimpleDate("07/01/2007"),

 TypedCashflow.DEBIT, 800.00),

 new TypedCashflow(new SimpleDate("02/01/2007"),

 TypedCashflow.DEBIT, 400.00),

 };

 new RuleRunner().runRules(new String[] { "Example5.drl" },

 cashflows);

 }

}

Here, we simply create a set of Cashflow objects which are either credit or debit operations. We

supply them and Example5.drl to the RuleEngine.

Now, let’s look at a rule printing the sorted Cashflow objects.

Example 19.43. Banking Tutorial: Rule in Example5.drl

rule "Rule 05"

 when

 $cashflow : TypedCashflow($date : date,

 $amount : amount,

 type == TypedCashflow.CREDIT)

Chapter 19. Examples

574

 not TypedCashflow(date < $date,

 type == TypedCashflow.CREDIT)

 then

 System.out.println("Credit: "+$date+" :: "+$amount);

 retract($cashflow);

end

Here, we identify a Cashflow fact with a type of CREDIT and extract the date and the amount. In

the second line of the rule we ensure that there is no Cashflow of the same type with an earlier

date than the one found. In the consequence, we print the cashflow satisfying the patterns and

then retract it, making way for the next earliest cashflow of type CREDIT.

So, the output we generate is

Example 19.44. Banking Tutorial: Output of Example5.java

Loading file: Example5.drl

Inserting fact: TypedCashflow[date=Mon Jan 01 00:00:00 GMT

 2007,type=Credit,amount=300.0]

Inserting fact: TypedCashflow[date=Fri Jan 05 00:00:00 GMT

 2007,type=Credit,amount=100.0]

Inserting fact: TypedCashflow[date=Thu Jan 11 00:00:00 GMT

 2007,type=Credit,amount=500.0]

Inserting fact: TypedCashflow[date=Sun Jan 07 00:00:00 GMT

 2007,type=Debit,amount=800.0]

Inserting fact: TypedCashflow[date=Tue Jan 02 00:00:00 GMT

 2007,type=Debit,amount=400.0]

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Credit: Fri Jan 05 00:00:00 GMT 2007 :: 100.0

Credit: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Continuing our banking exercise, we are now going to process both credits and debits on two bank

accounts, calculating the account balance. In order to do this, we create two separate Account

objects and inject them into the Cashflows objects before passing them to the Rule Engine. The

reason for this is to provide easy access to the correct account without having to resort to helper

classes. Let’s take a look at the Account class first. This is a simple Java object with an account

number and balance:

Example 19.45. Banking Tutorial: Class Account

public class Account {

 private long accountNo;

 private double balance = 0;

 public Account() {

 }

Banking Tutorial

575

 public Account(long accountNo) {

 this.accountNo = accountNo;

 }

 public long getAccountNo() {

 return accountNo;

 }

 public void setAccountNo(long accountNo) {

 this.accountNo = accountNo;

 }

 public double getBalance() {

 return balance;

 }

 public void setBalance(double balance) {

 this.balance = balance;

 }

 public String toString() {

 return "Account[" + "accountNo=" + accountNo + ",balance=" + balance + "]";

 }

}

Now let’s extend our TypedCashflow, resulting in AllocatedCashflow, to include an Account

reference.

Example 19.46. Banking Tutorial: Class AllocatedCashflow

public class AllocatedCashflow extends TypedCashflow {

 private Account account;

 public AllocatedCashflow() {

 }

 public AllocatedCashflow(Account account, Date date, int type, double amount) {

 super(date, type, amount);

 this.account = account;

 }

 public Account getAccount() {

 return account;

 }

 public void setAccount(Account account) {

Chapter 19. Examples

576

 this.account = account;

 }

 public String toString() {

 return "AllocatedCashflow[" +

 "account=" + account +

 ",date=" + getDate() +

 ",type=" + (getType() == CREDIT ? "Credit" : "Debit") +

 ",amount=" + getAmount() + "]";

 }

}

The Java code of Example5.java creates two Account objects and passes one of them into each

cashflow, in the constructor call.

Example 19.47. Banking Tutorial: Example5.java

public class Example6 {

 public static void main(String[] args) throws Exception {

 Account acc1 = new Account(1);

 Account acc2 = new Account(2);

 Object[] cashflows = {

 new AllocatedCashflow(acc1,new SimpleDate("01/01/2007"),

 TypedCashflow.CREDIT, 300.00),

 new AllocatedCashflow(acc1,new SimpleDate("05/02/2007"),

 TypedCashflow.CREDIT, 100.00),

 new AllocatedCashflow(acc2,new SimpleDate("11/03/2007"),

 TypedCashflow.CREDIT, 500.00),

 new AllocatedCashflow(acc1,new SimpleDate("07/02/2007"),

 TypedCashflow.DEBIT, 800.00),

 new AllocatedCashflow(acc2,new SimpleDate("02/03/2007"),

 TypedCashflow.DEBIT, 400.00),

 new AllocatedCashflow(acc1,new SimpleDate("01/04/2007"),

 TypedCashflow.CREDIT, 200.00),

 new AllocatedCashflow(acc1,new SimpleDate("05/04/2007"),

 TypedCashflow.CREDIT, 300.00),

 new AllocatedCashflow(acc2,new SimpleDate("11/05/2007"),

 TypedCashflow.CREDIT, 700.00),

 new AllocatedCashflow(acc1,new SimpleDate("07/05/2007"),

 TypedCashflow.DEBIT, 900.00),

 new AllocatedCashflow(acc2,new SimpleDate("02/05/2007"),

 TypedCashflow.DEBIT, 100.00)

 };

 new RuleRunner().runRules(new String[] { "Example6.drl" },

 cashflows);

Banking Tutorial

577

 }

}

Now, let’s look at the rule in Example6.drl to see how we apply each cashflow in date order and

calculate and print the balance.

Example 19.48. Banking Tutorial: Rule in Example6.drl

rule "Rule 06 - Credit"

 when

 $cashflow : AllocatedCashflow($account : account,

 $date : date,

 $amount : amount,

 type == TypedCashflow.CREDIT)

 not AllocatedCashflow(account == $account, date < $date)

 then

 System.out.println("Credit: " + $date + " :: " + $amount);

 $account.setBalance($account.getBalance()+$amount);

 System.out.println("Account: " + $account.getAccountNo() +

 " - new balance: " + $account.getBalance());

 retract($cashflow);

end

rule "Rule 06 - Debit"

 when

 $cashflow : AllocatedCashflow($account : account,

 $date : date,

 $amount : amount,

 type == TypedCashflow.DEBIT)

 not AllocatedCashflow(account == $account, date < $date)

 then

 System.out.println("Debit: " + $date + " :: " + $amount);

 $account.setBalance($account.getBalance() - $amount);

 System.out.println("Account: " + $account.getAccountNo() +

 " - new balance: " + $account.getBalance());

 retract($cashflow);

end

Although we have separate rules for credits and debits, but we do not specify a type when checking

for earlier cashflows. This is so that all cashflows are applied in date order, regardless of the

cashflow type. In the conditions we identify the account to work with, and in the consequences

we update it with the cashflow amount.

Chapter 19. Examples

578

Example 19.49. Banking Tutorial: Output of Example6.java

Loading file: Example6.drl

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Jan 01

 00:00:00 GMT 2007,type=Credit,amount=300.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Feb 05

 00:00:00 GMT 2007,type=Credit,amount=100.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Sun Mar 11

 00:00:00 GMT 2007,type=Credit,amount=500.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Wed Feb 07

 00:00:00 GMT 2007,type=Debit,amount=800.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri Mar 02

 00:00:00 GMT 2007,type=Debit,amount=400.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Sun Apr 01

 00:00:00 BST 2007,type=Credit,amount=200.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Thu Apr 05

 00:00:00 BST 2007,type=Credit,amount=300.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri May 11

 00:00:00 BST 2007,type=Credit,amount=700.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon May 07

 00:00:00 BST 2007,type=Debit,amount=900.0]

Inserting fact:

 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Wed May 02

 00:00:00 BST 2007,type=Debit,amount=100.0]

Debit: Fri Mar 02 00:00:00 GMT 2007 :: 400.0

Account: 2 - new balance: -400.0

Credit: Sun Mar 11 00:00:00 GMT 2007 :: 500.0

Account: 2 - new balance: 100.0

Debit: Wed May 02 00:00:00 BST 2007 :: 100.0

Account: 2 - new balance: 0.0

Credit: Fri May 11 00:00:00 BST 2007 :: 700.0

Account: 2 - new balance: 700.0

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Account: 1 - new balance: 300.0

Credit: Mon Feb 05 00:00:00 GMT 2007 :: 100.0

Account: 1 - new balance: 400.0

Debit: Wed Feb 07 00:00:00 GMT 2007 :: 800.0

Account: 1 - new balance: -400.0

Credit: Sun Apr 01 00:00:00 BST 2007 :: 200.0

Pricing Rule Decision Table Example

579

Account: 1 - new balance: -200.0

Credit: Thu Apr 05 00:00:00 BST 2007 :: 300.0

Account: 1 - new balance: 100.0

Debit: Mon May 07 00:00:00 BST 2007 :: 900.0

Account: 1 - new balance: -800.0

19.6. Pricing Rule Decision Table Example

The Pricing Rule decision table demonstrates the use of a decision table in a spreadsheet, in

Excel's XLS format, in calculating the retail cost of an insurance policy. The purpose of the provide

set of rules is to calculate a base price and a discount for a car driver applying for a specific policy.

The driver's age, history and the policy type all contribute to what the basic premium is, and an

additional chunk of rules deals with refining this with a discount percentage.

Name: Example Policy Pricing

Main class: org.drools.examples.decisiontable.PricingRuleDTExample

Module: drools-examples

Type: Java application

Rules file: ExamplePolicyPricing.xls

Objective: demonstrate spreadsheet-based decision tables.

19.6.1. Executing the example

Open the file PricingRuleDTExample.java and execute it as a Java application. It should

produce the following output in the Console window:

Cheapest possible

BASE PRICE IS: 120

DISCOUNT IS: 20

The code to execute the example follows the usual pattern. The rules are loaded, the facts inserted

and a Stateless Session is created. What is different is how the rules are added.

DecisionTableConfiguration dtableconfiguration =

 KnowledgeBuilderFactory.newDecisionTableConfiguration();

 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",

 getClass());

 kbuilder.add(xlsRes,

 ResourceType.DTABLE,

Chapter 19. Examples

580

 dtableconfiguration);

Note the use of the DecisionTableConfiguration object. Its input type is set to

DecisionTableInputType.XLS. If you use the BRMS, all this is of course taken care of for you.

There are two fact types used in this example, Driver and Policy. Both are used with their default

values. The Driver is 30 years old, has had no prior claims and currently has a risk profile of LOW.

The Policy being applied for is COMPREHENSIVE, and it has not yet been approved.

19.6.2. The decision table

In this decision table, each row is a rule, and each column is a condition or an action.

Figure 19.10. Decision table configuration

Referring to the spreadsheet show above, we have the RuleSet declaration, which provides the

package name. There are also other optional items you can have here, such as Variables for

global variables, and Imports for importing classes. In this case, the namespace of the rules is

the same as the fact classes we are using, so we can omit it.

Moving further down, we can see the RuleTable declaration. The name after this (Pricing bracket)

is used as the prefix for all the generated rules. Below that, we have "CONDITION or ACTION",

indicating the purpose of the column, i.e., whether it forms part of the condition or the consequence

of the rule that will be generated.

You can see that there is a driver, his data spanned across three cells, which means that the

template expressions below it apply to that fact. We observe the driver's age range (which

uses $1 and $2 with comma-separated values), locationRiskProfile, and priorClaims in the

respective columns. In the action columns, we are set the policy base price and log a message.

The decision table

581

Figure 19.11. Base price calculation

In the preceding spreadsheet section, there are broad category brackets, indicated by the

comment in the leftmost column. As we know the details of our drivers and their policies, we can

tell (with a bit of thought) that they should match row number 18, as they have no prior accidents,

and are 30 years old. This gives us a base price of 120.

Figure 19.12. Discount calculation

The above section contains the conditions for the discount we might grant our driver. The discount

results from the Age bracket, the number of prior claims, and the policy type. In our case, the driver

is 30, with no prior claims, and is applying for a COMPREHENSIVE policy, which means we can give

a discount of 20%. Note that this is actually a separate table, but in the same worksheet, so that

different templates apply.

It is important to note that decision tables generate rules. This means they aren't simply top-down

logic, but more a means to capture data resulting in rules. This is a subtle difference that confuses

Chapter 19. Examples

582

some people. The evaluation of the rules is not necessarily in the given order, since all the normal

mechanics of the rule engine still apply.

19.7. Pet Store Example

Name: Pet Store

Main class: org.drools.examples.petstore.PetStoreExample

Module: drools-examples

Type: Java application

Rules file: PetStore.drl

Objective: Demonstrate use of Agenda Groups, Global Variables and integration

 with a GUI,

including callbacks from within the rules

The Pet Store example shows how to integrate Rules with a GUI, in this case a Swing based

desktop application. Within the rules file, it demonstrates how to use Agenda groups and auto-

focus to control which of a set of rules is allowed to fire at any given time. It also illustrates the

mixing of the Java and MVEL dialects within the rules, the use of accumulate functions and the

way of calling Java functions from within the ruleset.

All of the Java code is contained in one file, PetStore.java, defining the following principal

classes (in addition to several classes to handle Swing Events):

• Petstore contains the main() method that we will look at shortly.

• PetStoreUI is responsible for creating and displaying the Swing based GUI. It contains several

smaller classes, mainly for responding to various GUI events such as mouse button clicks.

• TableModel holds the table data. Think of it as a JavaBean that extends the Swing class

AbstractTableModel.

• CheckoutCallback allows the GUI to interact with the Rules.

• Ordershow keeps the items that we wish to buy.

• Purchase stores details of the order and the products we are buying.

• Product is a JavaBean holding details of the product available for purchase, and its price.

Much of the Java code is either plain JavaBeans or Swing-based. Only a few Swing-related points

will be discussed in this section, but a good tutorial about Swing components can be found at

Sun's Swing website, in http://java.sun.com/docs/books/tutorial/uiswing/.

The pieces of Java code in Petstore.java that relate to rules and facts are shown below.

Example 19.50. Creating the PetStore KieContainer in PetStore.main

// KieServices is the factory for all KIE services

http://java.sun.com/docs/books/tutorial/uiswing/

Pet Store Example

583

KieServices ks = KieServices.Factory.get();

// From the kie services, a container is created from the classpath

KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.

Vector<Product> stock = new Vector<Product>();

stock.add(new Product("Gold Fish", 5));

stock.add(new Product("Fish Tank", 25));

stock.add(new Product("Fish Food", 2));

// A callback is responsible for populating the

// Working Memory and for firing all rules.

PetStoreUI ui = new PetStoreUI(stock,

 new CheckoutCallback(kc));

ui.createAndShowGUI();

The code shown above create a KieContainer from the classpath and based on the definitions

in the kmodule.xml file. Unlike other examples where the facts are asserted and fired straight

away, this example defers this step to later. The way it does this is via the second last line where

a PetStoreUI object is created using a constructor accepting the Vector object stock collecting

our products, and an instance of the CheckoutCallback class containing the Rule Base that we

have just loaded.

The Java code that fires the rules is within the CheckoutCallBack.checkout() method. This is

triggered (eventually) when the Checkout button is pressed by the user.

Example 19.51. Firing the Rules - extract from CheckoutCallBack.checkout()

public String checkout(JFrame frame, List<Product> items) {

 Order order = new Order();

 // Iterate through list and add to cart

 for (Product p: items) {

 order.addItem(new Purchase(order, p));

 }

 // Add the JFrame to the ApplicationData to allow for user interaction

 // From the container, a session is created based on

 // its definition and configuration in the META-INF/kmodule.xml file

 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);

 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));

Chapter 19. Examples

584

 ksession.insert(new Product("Fish Tank", 25));

 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 ksession.fireAllRules();

 // Return the state of the cart

 return order.toString();

}

Two items get passed into this method. One is the handle to the JFrame Swing component

surrounding the output text frame, at the bottom of the GUI. The second is a list of order items;

this comes from the TableModel storing the information from the "Table" area at the top right

section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also

contained in the file PetStore.java. Note that it would be possible to refer to the Swing dataset

directly within the rules, but it is better coding practice to do it this way, using simple Java objects.

It means that we are not tied to Swing if we wanted to transform the sample into a Web application.

It is important to note that all state in this example is stored in the Swing components, and that

the rules are effectively stateless. Each time the "Checkout" button is pressed, this code copies

the contents of the Swing TableModel into the Session's Working Memory.

Within this code, there are nine calls to the KieSession. The first of these creates a new

KieSession from the KieContainer. Remember that we passed in this KieContainer when we

created the CheckoutCallBack class in the main() method. The next two calls pass in two objects

that we will hold as global variables in the rules: the Swing text area and the Swing frame used

for writing messages.

More inserts put information on products into the KieSession, as well as the order list. The final

call is the standard fireAllRules(). Next, we look at what this method causes to happen within

the rules file.

Example 19.52. Package, Imports, Globals and Dialect: extract from

PetStore.drl

package org.drools.examples

import org.kie.api.runtime.KieRuntime

import org.drools.examples.petstore.PetStoreExample.Order

import org.drools.examples.petstore.PetStoreExample.Purchase

import org.drools.examples.petstore.PetStoreExample.Product

import java.util.ArrayList

Pet Store Example

585

import javax.swing.JOptionPane;

import javax.swing.JFrame

global JFrame frame

global javax.swing.JTextArea textArea

The first part of file PetStore.drl contains the standard package and import statements to make

various Java classes available to the rules. New to us are the two globals frame and textArea.

They hold references to the Swing components JFrame and JTextArea components that were

previously passed on by the Java code calling the setGlobal() method. Unlike variables in rules,

which expire as soon as the rule has fired, global variables retain their value for the lifetime of

the Session.

The next extract from the file PetStore.drl contains two functions that are referenced by the

rules that we will look at shortly.

Example 19.53. Java Functions in the Rules: extract from PetStore.drl

function void doCheckout(JFrame frame, KieRuntime krt) {

 Object[] options = {"Yes",

 "No"};

 int n = JOptionPane.showOptionDialog(frame,

 "Would you like to checkout?",

 "",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

 null,

 options,

 options[0]);

 if (n == 0) {

 krt.getAgenda().getAgendaGroup("checkout").setFocus();

 }

}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total) {

 Object[] options = {"Yes",

 "No"};

 int n = JOptionPane.showOptionDialog(frame,

 "Would you like to buy a

 tank for your " + total + " fish?",

 "Purchase Suggestion",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

Chapter 19. Examples

586

 null,

 options,

 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "

 + total + " fish? - ");

 if (n == 0) {

 Purchase purchase = new Purchase(order, fishTank);

 krt.insert(purchase);

 order.addItem(purchase);

 System.out.println("Yes");

 } else {

 System.out.println("No");

 }

 return true;

}

Having these functions in the rules file just makes the Pet Store example more compact. In

real life you probably have the functions in a file of their own, within the same rules package,

or as a static method on a standard Java class, and import them, using import function

my.package.Foo.hello.

The purpose of these two functions is:

• doCheckout() displays a dialog asking users whether they wish to checkout. If they do, focus

is set to the checkout agenda-group, allowing rules in that group to (potentially) fire.

• requireTank() displays a dialog asking users whether they wish to buy a tank. If so, a new

fish tank Product is added to the order list in Working Memory.

We'll see the rules that call these functions later on. The next set of examples are from the Pet

Store rules themselves. The first extract is the one that happens to fire first, partly because it has

the auto-focus attribute set to true.

Example 19.54. Putting items into working memory: extract from

PetStore.drl

// Insert each item in the shopping cart into the Working Memory

// Insert each item in the shopping cart into the Working Memory

rule "Explode Cart"

 agenda-group "init"

 auto-focus true

 salience 10

 dialect "java"

when

Pet Store Example

587

 $order : Order(grossTotal == -1)

 $item : Purchase() from $order.items

then

 insert($item);

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show

 items").setFocus();

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();

end

This rule matches against all orders that do not yet have their grossTotal calculated . It loops

for each purchase item in that order. Some parts of the "Explode Cart" rule should be familiar:

the rule name, the salience (suggesting the order for the rules being fired) and the dialect set to

"java". There are three new features:

• agenda-group "init" defines the name of the agenda group. In this case, there is only one

rule in the group. However, neither the Java code nor a rule consequence sets the focus to this

group, and therefore it relies on the next attribute for its chance to fire.

• auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a

chance to fire when fireAllRules() is called from the Java code.

• kcontext....setFocus() sets the focus to the "show items" and "evaluate" agenda groups

in turn, permitting their rules to fire. In practice, we loop through all items on the order, inserting

them into memory, then firing the other rules after each insert.

The next two listings show the rules within the "show items" and evaluate agenda groups. We

look at them in the order that they are called.

Example 19.55. Show Items in the GUI - extract from PetStore.drl

rule "Show Items"

 agenda-group "show items"

 dialect "mvel"

when

 $order : Order()

 $p : Purchase(order == $order)

then

 textArea.append($p.product + "\n");

end

The "show items" agenda-group has only one rule, called "Show Items" (note the difference

in case). For each purchase on the order currently in the Working Memory (or Session), it logs

details to the text area at the bottom of the GUI. The textArea variable used to do this is one of

the global variables we looked at earlier.

Chapter 19. Examples

588

The evaluate Agenda group also gains focus from the "Explode Cart" rule listed previously.

This Agenda group has two rules, "Free Fish Food Sample" and "Suggest Tank", shown below.

Example 19.56. Evaluate Agenda Group: extract from PetStore.drl

// Free Fish Food sample when we buy a Gold Fish if we haven't already bought

// Fish Food and don't already have a Fish Food Sample

rule "Free Fish Food Sample"

 agenda-group "evaluate"

 dialect "mvel"

when

 $order : Order()

 not ($p : Product(name == "Fish Food") && Purchase(product == $p))

 not ($p : Product(name == "Fish Food Sample") && Purchase(product

 == $p))

 exists ($p : Product(name == "Gold Fish") && Purchase(product

 == $p))

 $fishFoodSample : Product(name == "Fish Food Sample");

then

 System.out.println("Adding free Fish Food Sample to cart");

 purchase = new Purchase($order, $fishFoodSample);

 insert(purchase);

 $order.addItem(purchase);

end

// Suggest a tank if we have bought more than 5 gold fish and don't already

 have one

rule "Suggest Tank"

 agenda-group "evaluate"

 dialect "java"

when

 $order : Order()

 not ($p : Product(name == "Fish Tank") && Purchase(product == $p))

 ArrayList($total : size > 5) from collect(Purchase(product.name ==

 "Gold Fish"))

 $fishTank : Product(name == "Fish Tank")

then

 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);

end

The rule "Free Fish Food Sample" will only fire if

• we don't already have any fish food, and

• we don't already have a free fish food sample, and

• we do have a Gold Fish in our order.

Pet Store Example

589

If the rule does fire, it creates a new product (Fish Food Sample), and adds it to the order in

Working Memory.

The rule "Suggest Tank" will only fire if

• we don't already have a Fish Tank in our order, and

• we do have more than 5 Gold Fish Products in our order.

If the rule does fire, it calls the requireTank() function that we looked at earlier (showing a Dialog

to the user, and adding a Tank to the order / working memory if confirmed). When calling the

requireTank() function the rule passes the global frame variable so that the function has a handle

to the Swing GUI.

The next rule we look at is "do checkout".

Example 19.57. Doing the Checkout - extract (6) from PetStore.drl

rule "do checkout"

 dialect "java"

 when

 then

 doCheckout(frame, kcontext.getKieRuntime());

end

The rule "do checkout" has no agenda group set and no auto-focus attribute. As such, is is

deemed part of the default (MAIN) agenda group. This group gets focus by default when all the

rules in agenda-groups that explicitly had focus set to them have run their course.

There is no LHS to the rule, so the RHS will always call the doCheckout() function. When calling

the doCheckout() function, the rule passes the global frame variable to give the function a handle

to the Swing GUI. As we saw earlier, the doCheckout() function shows a confirmation dialog to

the user. If confirmed, the function sets the focus to the checkout agenda-group, allowing the next

lot of rules to fire.

Example 19.58. Checkout Rules: extract from PetStore.drl

rule "Gross Total"

 agenda-group "checkout"

 dialect "mvel"

when

 $order : Order(grossTotal == -1)

 Number(total : doubleValue)

 from accumulate(Purchase($price : product.price), sum($price))

Chapter 19. Examples

590

then

 modify($order) { grossTotal = total };

 textArea.append("\ngross total=" + total + "\n");

end

rule "Apply 5% Discount"

 agenda-group "checkout"

dialect "mvel"

when

 $order : Order(grossTotal >= 10 && < 20)

then

 $order.discountedTotal = $order.grossTotal * 0.95;

 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");

end

rule "Apply 10% Discount"

 agenda-group "checkout"

 dialect "mvel"

when

 $order : Order(grossTotal >= 20)

then

 $order.discountedTotal = $order.grossTotal * 0.90;

 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");

end

There are three rules in the checkout agenda-group:

• If we haven't already calculated the gross total, Gross Total accumulates the product prices

into a total, puts this total into the session, and displays it via the Swing JTextArea, using the

textArea global variable yet again.

• If our gross total is between 10 and 20, "Apply 5% Discount" calculates the discounted total

and adds it to the session and displays it in the text area.

• If our gross total is not less than 20, "Apply 10% Discount" calculates the discounted total

and adds it to the session and displays it in the text area.

Now that we've run through what happens in the code, let's have a look at what happens when

we actually run the code. The file PetStore.java contains a main() method, so that it can be run

as a standard Java application, either from the command line or via the IDE. This assumes you

have your classpath set correctly. (See the start of the examples section for more information.)

The first screen that we see is the Pet Store Demo. It has a list of available products (top left),

an empty list of selected products (top right), checkout and reset buttons (middle) and an empty

system messages area (bottom).

Pet Store Example

591

Figure 19.13. PetStore Demo just after Launch

To get to this point, the following things have happened:

1. The main() method has run and loaded the Rule Base but not yet fired the rules. So far, this

is the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle to the Rule Base, for later use.

3. Various Swing components do their stuff, and the above screen is shown and waits for user

input.

Clicking on various products from the list might give you a screen similar to the one below.

Chapter 19. Examples

592

Figure 19.14. PetStore Demo with Products Selected

Note that no rules code has been fired here. This is only Swing code, listening for mouse click

events, and adding some selected product to the TableModel object for display in the top right

hand section. (As an aside, note that this is a classic use of the Model View Controller design

pattern).

It is only when we press the "Checkout" button that we fire our business rules, in roughly the same

order that we walked through the code earlier.

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for

the click on the "Checkout" button. This inserts the data from the TableModel object (top right

hand side of the GUI), and inserts it into the Session's Working Memory. It then fires the rules.

2. The "Explode Cart" rule is the first to fire, given that it has auto-focus set to true. It loops

through all the products in the cart, ensures that the products are in the Working Memory, and

then gives the "Show Items" and Evaluation agenda groups a chance to fire. The rules in

these groups add the contents of the cart to the text area (at the bottom of the window), decide

whether or not to give us free fish food, and to ask us whether we want to buy a fish tank. This

is shown in the figure below.

Pet Store Example

593

Figure 19.15. Do we want to buy a fish tank?

1. The Do Checkout rule is the next to fire as it (a) No other agenda group currently has focus

and (b) it is part of the default (MAIN) agenda group. It always calls the doCheckout() function

which displays a 'Would you like to Checkout?' Dialog Box.

2. The doCheckout() function sets the focus to the checkout agenda-group, giving the rules in

that group the option to fire.

3. The rules in the the checkout agenda-group display the contents of the cart and apply the

appropriate discount.

4. Swing then waits for user input to either checkout more products (and to cause the rules to fire

again), or to close the GUI - see the figure below.

Chapter 19. Examples

594

Figure 19.16. Petstore Demo after all rules have fired.

We could add more System.out calls to demonstrate this flow of events. The output, as it currently

appears in the Console window, is given in the listing below.

Example 19.59. Console (System.out) from running the PetStore GUI

Adding free Fish Food Sample to cart

SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

19.8. Honest Politician Example

Name: Honest Politician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample

Module: drools-examples

Type: Java application

Rules file: HonestPoliticianExample.drl

Honest Politician Example

595

Objective: Illustrate the concept of "truth maintenance" based on the logical

 insertion of facts

The Honest Politician example demonstrates truth maintenance with logical assertions. The basic

premise is that an object can only exist while a statement is true. A rule's consequence can logically

insert an object with the insertLogical() method. This means the object will only remain in the

Working Memory as long as the rule that logically inserted it remains true. When the rule is no

longer true the object is automatically retracted.

In this example there is the class Politician, with a name and a boolean value for being honest.

Four politicians with honest state set to true are inserted.

Example 19.60. Class Politician

public class Politician {

 private String name;

 private boolean honest;

 ...

}

Example 19.61. Honest Politician: Execution

Politician blair = new Politician("blair", true);

Politician bush = new Politician("bush", true);

Politician chirac = new Politician("chirac", true);

Politician schroder = new Politician("schroder", true);

ksession.insert(blair);

ksession.insert(bush);

ksession.insert(chirac);

ksession.insert(schroder);

ksession.fireAllRules();

The Console window output shows that, while there is at least one honest politician, democracy

lives. However, as each politician is in turn corrupted by an evil corporation, so that all politicians

become dishonest, democracy is dead.

Example 19.62. Honest Politician: Console Output

Hurrah!!! Democracy Lives

I'm an evil corporation and I have corrupted schroder

I'm an evil corporation and I have corrupted chirac

Chapter 19. Examples

596

I'm an evil corporation and I have corrupted bush

I'm an evil corporation and I have corrupted blair

We are all Doomed!!! Democracy is Dead

As soon as there is at least one honest politician in the Working Memory a new Hope object is

logically asserted. This object will only exist while there is at least one honest politician. As soon

as all politicians are dishonest, the Hope object will be automatically retracted. This rule is given

a salience of 10 to ensure that it fires before any other rule, as at this stage the "Hope is Dead"

rule is actually true.

Example 19.63. Honest Politician: Rule "We have an honest politician"

rule "We have an honest Politician"

 salience 10

 when

 exists(Politician(honest == true))

 then

 insertLogical(new Hope());

end

As soon as a Hope object exists the "Hope Lives" rule matches and fires. It has a salience of 10

so that it takes priority over "Corrupt the Honest".

Example 19.64. Honest Politician: Rule "Hope Lives"

rule "Hope Lives"

 salience 10

 when

 exists(Hope())

 then

 System.out.println("Hurrah!!! Democracy Lives");

end

Now that there is hope and we have, at the start, four honest politicians, we have four activations

for this rule, all in conflict. They will fire in turn, corrupting each politician so that they are no longer

honest. When all four politicians have been corrupted we have no politicians with the property

honest == true. Thus, the rule "We have an honest Politician" is no longer true and the object

it logical inserted (due to the last execution of new Hope()) is automatically retracted.

Example 19.65. Honest Politician: Rule "Corrupt the Honest"

rule "Corrupt the Honest"

 when

Honest Politician Example

597

 politician : Politician(honest == true)

 exists(Hope())

 then

 System.out.println("I'm an evil corporation and I have corrupted "

 + politician.getName());

 modify (politician) { honest = false };

end

With the Hope object being automatically retracted, via the truth maintenance system, the

conditional element not applied to Hope is no longer true so that the following rule will match and

fire.

Example 19.66. Honest Politician: Rule "Hope is Dead"

rule "Hope is Dead"

 when

 not(Hope())

 then

 System.out.println("We are all Doomed!!! Democracy is Dead");

end

Let's take a look at the Audit trail for this application:

Chapter 19. Examples

598

Figure 19.17. Honest Politician Example Audit View

The moment we insert the first politician we have two activations. The rule "We have an honest

Politician" is activated only once for the first inserted politician because it uses an exists

conditional element, which matches once for any number. The rule "Hope is Dead" is also activated

at this stage, because we have not yet inserted the Hope object. Rule "We have an honest

Politician" fires first, as it has a higher salience than "Hope is Dead", which inserts the Hope object.

(That action is highlighted green.) The insertion of the Hope object activates "Hope Lives" and de-

activates "Hope is Dead"; it also activates "Corrupt the Honest" for each inserted honest politician.

Rule "Hope Lives" executes, printing "Hurrah!!! Democracy Lives". Then, for each politician, rule

"Corrupt the Honest" fires, printing "I'm an evil corporation and I have corrupted X", where X is the

name of the politician, and modifies the politician's honest value to false. When the last honest

politician is corrupted, Hope is automatically retracted, by the truth maintenance system, as shown

by the blue highlighted area. The green highlighted area shows the origin of the currently selected

blue highlighted area. Once the Hope fact is retracted, "Hope is dead" activates and fires printing

"We are all Doomed!!! Democracy is Dead".

19.9. Sudoku Example

Name: Sudoku

Main class: org.drools.examples.sudoku.SudokuExample

Type: Java application

Rules file: sudoku.drl, validate.drl

Sudoku Overview

599

Objective: Demonstrates the solving of logic problems, and complex pattern

 matching.

This example demonstrates how Drools can be used to find a solution in a large potential solution

space based on a number of constraints. We use the popular puzzle of Sudoku. This example

also shows how Drools can be integrated into a graphical interface and how callbacks can be used

to interact with a running Drools rules engine in order to update the graphical interface based on

changes in the Working Memory at runtime.

19.9.1. Sudoku Overview

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each

column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9, once, and only

once.

The puzzle setter provides a partially completed grid and the puzzle solver's task is to complete

the grid with these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number it should

be unique in its particular 3x3 zone, row and column.

See Wikipedia [http://en.wikipedia.org/wiki/Sudoku] for a more detailed description.

19.9.2. Running the Example

Download and install drools-examples as described above and then execute java

org.drools.examples.DroolsExamplesApp and click on "SudokuExample".

The window contains an empty grid, but the program comes with a number of grids stored internally

which can be loaded and solved. Click on "File", then "Samples" and select "Simple" to load one

of the examples. Note that all buttons are disabled until a grid is loaded.

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku

Chapter 19. Examples

600

Figure 19.18. Initial screen

Loading the "Simple" example fills the grid according to the puzzle's initial state.

Running the Example

601

Figure 19.19. After loading "Simple"

Click on the "Solve" button and the Drools-based engine will fill out the remaining values, and the

buttons are inactive once more.

Chapter 19. Examples

602

Figure 19.20. "Simple" Solved

Alternatively, you may click on the "Step" button to see the next digit found by the rule set. The

Console window will display detailed information about the rules which are executing to solve the

step in a human readable form. Some examples of these messages are presented below.

single 8 at [0,1]

column elimination due to [1,2]: remove 9 from [4,2]

hidden single 9 at [1,2]

row elimination due to [2,8]: remove 7 from [2,4]

remove 6 from [3,8] due to naked pair at [3,2] and [3,7]

hidden pair in row at [4,6] and [4,4]

Click on the "Dump" button to see the state of the grid, with cells showing either the established

value or the remaining possibilitiescandidates.

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5

 Col: 6 Col: 7 Col: 8

Row 0: 2 4 7 9 2 456 4567 9 23 56 9 --- 5 --- --- 1 ---

 3 67 9 --- 8 --- 4 67

Row 1: 12 7 9 --- 8 --- 1 67 9 23 6 9 --- 4 --- 23 67 1

 3 67 9 3 67 9 --- 5 ---

Running the Example

603

Row 2: 1 4 7 9 1 456 --- 3 --- 56 89 5 78 5678

 --- 2 --- 4 67 9 1 4 67

Row 3: 1234 12345 1 45 12 5 8 --- 6 --- 2 5 78

 5 78 45 7 --- 9 ---

Row 4: --- 6 --- --- 7 --- 5 --- 4 --- 2 5 8 --- 9 ---

 5 8 --- 1 --- --- 3 ---

Row 5: --- 8 --- 12 45 1 45 9 12 5 --- 3 --- 2 5 7

 567 4567 2 4 67

Row 6: 1 3 7 1 3 6 --- 2 --- 3 56 8 5 8 3 56 8

 --- 4 --- 3 567 9 1 678

Row 7: --- 5 --- 1 34 6 1 4 678 3 6 8 --- 9 --- 34 6 8 1

 3 678 --- 2 --- 1 678

Row 8: 34 --- 9 --- 4 6 8 --- 7 --- --- 1 --- 23456 8

 3 56 8 3 56 6 8

Now, let us load a Sudoku grid that is deliberately invalid. Click on "File", "Samples" and "!

DELIBERATELY BROKEN!". Note that this grid starts with some issues, for example the value

5 appears twice in the first row.

Figure 19.21. Broken initial state

A few simple rules perform a sanity check, right after loading a grid. In this case, the following

messages are printed on standard output:

Chapter 19. Examples

604

cell [0,8]: 5 has a duplicate in row 0

cell [0,0]: 5 has a duplicate in row 0

cell [6,0]: 8 has a duplicate in col 0

cell [4,0]: 8 has a duplicate in col 0

Validation complete.

Nevertheless, click on the "Solve" button to apply the solving rules to this invalid grid. This will not

complete; some cells remain empty.

Figure 19.22. Broken "solved" state

The solving functionality has been achieved by the use of rules that implement standard solving

techniques. They are based on the sets of values that are still candidates for a cell. If, for instance,

such a set contains a single value, then this is the value for the cell. A little less obvious is the single

occurrence of a value in one of the groups of nine cells. The rules detecting these situations insert

a fact of type Setting with the solution value for some specific cell. This fact causes the elimination

of this value from all other cells in any of the groups the cell belongs to. Finally, it is retracted.

Other rules merely reduce the permissible values for some cells. Rules "naked pair", "hidden pair

in row", "hidden pair in column" and "hidden pair in square" merely eliminate possibilities but do

not establish solutions. More sophisticated eliminations are done by "X-wings in rows", "X-wings

in columns", "intersection removal row" and "intersection removal column".

Java Source and Rules Overview

605

19.9.3. Java Source and Rules Overview

The Java source code can be found in the /src/main/java/org/drools/examples/sudoku directory,

with the two DRL files defining the rules located in the /src/main/rules/org/drools/examples/sudoku

directory.

The package org.drools.examples.sudoku.swing contains a set of classes which implement

a framework for Sudoku puzzles. Note that this package does not have any dependencies on

the Drools libraries. SudokuGridModel defines an interface which can be implemented to store a

Sudoku puzzle as a 9x9 grid of Cell objects. SudokuGridView is a Swing component which can

visualize any implementation of SudokuGridModel. SudokuGridEvent and SudokuGridListener

are used to communicate state changes between the model and the view: events are fired when

a cell's value is resolved or changed. If you are familiar with the model-view-controller patterns in

other Swing components such as JTable then this pattern should be familiar. SudokuGridSamples

provides a number of partially filled Sudoku puzzles for demonstration purposes.

Package org.drools.examples.sudoku.rules contains a utility class with a method for

compiling DRL files.

The package org.drools.examples.sudoku contains a set of classes implementing the

elementary Cell object and its various aggregations: the CellFile subtypes CellRow and

CellCol as well as CellSqr, all of which are subtypes of CellGroup. It's interesting to note that

Cell and CellGroup are subclasses of SetOfNine, which provides a property free with the type

Set<Integer>. For a Cell it represents the individual candidate set; for a CellGroup the set is

the union of all candidate sets of its cells, or, simply, the set of digits that still need to be allocated.

With 81 Cell and 27 CellGroup objects and the linkage provided by the Cell properties cellRow,

cellCol and cellSqr and the CellGroup property cells, a list of Cell objects, it is possible to

write rules that detect the specific situations that permit the allocation of a value to a cell or the

elimination of a value from some candidate set.

An object of class Setting is used for triggering the operations that accompany the allocation of

a value: its removal from the candidate sets of sibling cells and associated cell groups. Moreover,

the presence of a Setting fact is used in all rules that should detect a new situation; this is to

avoid reactions to inconsistent intermediary states.

An object of class Stepping is used in a low priority rule to execute an emergency halt when

a "Step" does not terminate regularly. This indicates that the puzzle cannot be solved by the

program.

The class org.drools.examples.sudoku.SudokuExample implements a Java application

combining the components described.

19.9.4. Sudoku Validator Rules (validate.drl)

Validation rules detect duplicate numbers in cell groups. They are combined in an agenda group

which enables us to activate them, explicitly, after loading a puzzle.

Chapter 19. Examples

606

The three rules "duplicate in cell..." are very similar. The first pattern locates a cell with an allocated

value. The second pattern pulls in any of the three cell groups the cell belongs to. The final pattern

would find a cell (other than the first one) with the same value as the first cell and in the same

row, column or square, respectively.

Rule "terminate group" fires last. It prints a message and calls halt.

19.9.5. Sudoku Solving Rules (sudoku.drl)

There are three types of rules in this file: one group handles the allocation of a number to a cell,

another group detects feasible allocations, and the third group eliminates values from candidate

sets.

Rules "set a value", "eliminate a value from Cell" and "retract setting" depend on the presence of a

Setting object. The first rule handles the assignment to the cell and the operations for removing

the value from the "free" sets of the cell's three groups. Also, it decrements a counter that, when

zero, returns control to the Java application that has called fireUntilHalt(). The purpose of

rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are related to the

newly assigned cell. Finally, when all eliminations have been made, rule "retract setting" retracts

the triggering Setting fact.

There are just two rules that detect a situation where an allocation of a number to a cell is possible.

Rule "single" fires for a Cell with a candidate set containing a single number. Rule "hidden single"

fires when there is no cell with a single candidate but when there is a cell containing a candidate

but this candidate is absent from all other cells in one of the three groups the cell belongs to. Both

rules create and insert a Setting fact.

Rules from the largest group of rules implement, singly or in groups of two or three, various solving

techniques, as they are employed when solving Sudoku puzzles manually.

Rule "naked pair" detects identical candidate sets of size 2 in two cells of a group; these two

values may be removed from all other candidate sets of that group.

A similar idea motivates the three rules "hidden pair in..."; here, the rules look for a subset of two

numbers in exactly two cells of a group, with neither value occurring in any of the other cells of this

group. This, then, means that all other candidates can be eliminated from the two cells harbouring

the hidden pair.

A pair of rules deals with "X-wings" in rows and columns. When there are only two possible

cells for a value in each of two different rows (or columns) and these candidates lie also in the

same columns (or rows), then all other candidates for this value in the columns (or rows) can be

eliminated. If you follow the pattern sequence in one of these rules, you will see how the conditions

that are conveniently expressed by words such as "same" or "only" result in patterns with suitable

constraints or prefixed with "not".

The rule pair "intersection removal..." is based on the restricted occurrence of some number within

one square, either in a single row or in a single column. This means that this number must be in

Number Guess

607

one of those two or three cells of the row or column; hence it can be removed from the candidate

sets of all other cells of the group. The pattern establishes the restricted occurrence and then fires

for each cell outside the square and within the same cell file.

These rules are sufficient for many but certainly not for all Sudoku puzzles. To solve very difficult

grids, the rule set would need to be extended with more complex rules. (Ultimately, there are

puzzles that cannot be solved except by trial and error.)

19.10. Number Guess

Name: Number Guess

Main class: org.drools.examples.numberguess.NumberGuessExample

Module: droolsjbpm-integration-examples (Note: this is in a different download,

 the droolsjbpm-integration download.)

Type: Java application

Rules file: NumberGuess.drl

Objective: Demonstrate use of Rule Flow to organise Rules

The "Number Guess" example shows the use of Rule Flow, a way of controlling the order in which

rules are fired. It uses widely understood workflow diagrams for defining the order in which groups

of rules will be executed.

Example 19.67. Creating the Number Guess RuleBase:

NumberGuessExample.main() - part 1

final KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.drl",

 ShoppingExample.class),

 ResourceType.DRL);

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.rf",

 ShoppingExample.class),

 ResourceType.DRF);

final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

The creation of the package and the loading of the rules (using the add() method) is the same as

the previous examples. There is an additional line to add the Rule Flow (NumberGuess.rf), which

provides the option of specifying different rule flows for the same Knowledge Base. Otherwise,

the Knowledge Base is created in the same manner as before.

Chapter 19. Examples

608

Example 19.68. Starting the RuleFlow: NumberGuessExample.main() - part

2

final StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "log/numberguess");

ksession.insert(new GameRules(100, 5));

ksession.insert(new RandomNumber());

ksession.insert(new Game());

ksession.startProcess("Number Guess");

ksession.fireAllRules();

logger.close();

ksession.dispose();

Once we have a Knowledge Base, we can use it to obtain a Stateful Session. Into our session

we insert our facts, i.e., standard Java objects. (For simplicity, in this sample, these classes are

all contained within our NumberGuessExample.java file. Class GameRules provides the maximum

range and the number of guesses allowed. Class RandomNumber automatically generates a

number between 0 and 100 and makes it available to our rules, by insertion via the getValue()

method. Class Game keeps track of the guesses we have made before, and their number.

Note that before we call the standard fireAllRules() method, we also start the process that

we loaded earlier, via the startProcess() method. We'll learn where to obtain the parameter we

pass ("Number Guess", i.e., the identifier of the rule flow) when we talk about the rule flow file and

the graphical Rule Flow Editor below.

Before we finish the discussion of our Java code, we note that in some real-life application we

would examine the final state of the objects. (Here, we could retrieve the number of guesses, to

add it to a high score table.) For this example we are content to ensure that the Working Memory

session is cleared by calling the dispose() method.

Number Guess

609

Figure 19.23. RuleFlow for the NumberGuess Example

If you open the NumberGuess.rf file in the Drools IDE (provided you have the JBoss Rules

extensions installed correctly in Eclipse) you should see the above diagram, similar to a standard

flowchart. Its icons are similar (but not exactly the same) as in the JBoss jBPM workflow product.

Should you wish to edit the diagram, a menu of available components should be available to the

left of the diagram in the IDE, which is called the palette. This diagram is saved in XML, an (almost)

human readable format, using XStream.

If it is not already open, ensure that the Properties View is visible in the IDE. It can be opened by

clicking "Window", then "Show View" and "Other", where you can select the "Properties" view. If

you do this before you select any item on the rule flow (or click on the blank space in the rule flow)

you should be presented with the following set of properties.

Figure 19.24. Properties for the Number Guess Rule Flow

Keep an eye on the Properties View as we progress through the example's rule flow, as it presents

valuable information. In this case, it provides us with the identification of the Rule Flow Process

that we used in our earlier code snippet, when we called session.startProcess().

In the "Number Guess" Rule Flow we encounter several node types, many of them identified by

an icon.

Chapter 19. Examples

610

• The Start node (white arrow in a green circle) and the End node (red box) mark beginning and

end of the rule flow.

• A Rule Flow Group box (yellow, without an icon) represents a Rule Flow Groups defined in our

rules (DRL) file that we will look at later. For example, when the flow reaches the Rule Flow

Group "Too High", only those rules marked with an attribute of ruleflow-group "Too High"

can potentially fire.

• Action nodes (yellow, cog-shaped icon) perform standard Java method calls. Most action nodes

in this example call System.out.println(), indicating the program's progress to the user.

• Split and Join Nodes (blue ovals, no icon) such as "Guess Correct?" and "More guesses Join"

mark places where the flow of control can split, according to various conditions, and rejoin,

respectively

• Arrows indicate the flow between the various nodes.

The various nodes in combination with the rules make the Number Guess game work. For

example, the "Guess" Rule Flow Group allows only the rule "Get user Guess" to fire, because only

that rule has a matching attribute of ruleflow-group "Guess".

Example 19.69. A Rule firing only at a specific point in the Rule Flow:

NumberGuess.drl

rule "Get user Guess"

 ruleflow-group "Guess"

 no-loop

 when

 $r : RandomNumber()

 rules : GameRules(allowed : allowedGuesses)

 game : Game(guessCount < allowed)

 not (Guess())

 then

 System.out.println("You have " + (rules.allowedGuesses - game.guessCount)

 + " out of " + rules.allowedGuesses

 + " guesses left.\nPlease enter your guess from 0 to "

 + rules.maxRange);

 br = new BufferedReader(new InputStreamReader(System.in));

 i = br.readLine();

 modify (game) { guessCount = game.guessCount + 1 }

 insert(new Guess(i));

end

The rest of this rule is fairly standard. The LHS section (after when) of the rule states that it will

be activated for each RandomNumber object inserted into the Working Memory where guessCount

is less than allowedGuesses from the GameRules object and where the user has not guessed

the correct number.

Number Guess

611

The RHS section (or consequence, after then) prints a message to the user and then awaits

user input from System.in. After obtaining this input (the readLine() method call blocks until

the return key is pressed) it modifies the guess count and inserts the new guess, making both

available to the Working Memory.

The rest of the rules file is fairly standard: the package declares the dialect as MVEL, and various

Java classes are imported. In total, there are five rules in this file:

1. Get User Guess, the Rule we examined above.

2. A Rule to record the highest guess.

3. A Rule to record the lowest guess.

4. A Rule to inspect the guess and retract it from memory if incorrect.

5. A Rule that notifies the user that all guesses have been used up.

One point of integration between the standard Rules and the RuleFlow is via the ruleflow-group

attribute on the rules, as discussed above. A second point of integration between the rules (.drl) file

and the Rules Flow .rf files is that the Split Nodes (the blue ovals) can use values in the Working

Memory (as updated by the rules) to decide which flow of action to take. To see how this works,

click on the "Guess Correct Node"; then within the Properties View, open the Constraints Editor

by clicking the button at the right that appears once you click on the "Constraints" property line.

You should see something similar to the diagram below.

Figure 19.25. Edit Constraints for the "Guess Correct" Node

Click on the "Edit" button beside "To node Too High" and you'll see a dialog like the one below.

The values in the "Textual Editor" window follow the standard rule format for the LHS and can

Chapter 19. Examples

612

refer to objects in Working Memory. The consequence (RHS) is that the flow of control follows

this node (i.e., "To node Too High") if the LHS expression evaluates to true.

Figure 19.26. Constraint Editor for the "Guess Correct" Node: value too high

Since the file NumberGuess.java contains a main() method, it can be run as a standard Java

application, either from the command line or via the IDE. A typical game might result in the

interaction below. The numbers in bold are typed in by the user.

Example 19.70. Example Console output where the Number Guess Example

beat the human!

You have 5 out of 5 guesses left.

Please enter your guess from 0 to 100

50

Your guess was too high

You have 4 out of 5 guesses left.

Please enter your guess from 0 to 100

25

Number Guess

613

Your guess was too low

You have 3 out of 5 guesses left.

Please enter your guess from 0 to 100

37

Your guess was too low

You have 2 out of 5 guesses left.

Please enter your guess from 0 to 100

44

Your guess was too low

You have 1 out of 5 guesses left.

Please enter your guess from 0 to 100

47

Your guess was too low

You have no more guesses

The correct guess was 48

A summary of what is happening in this sample is:

1. The main() method of NumberGuessExample.java loads a Rule Base, creates a Stateful

Session and inserts Game, GameRules and RandomNumber (containing the target number)

objects into it. The method also sets the process flow we are going to use, and fires all rules.

Control passes to the Rule Flow.

2. File NumberGuess.rf, the Rule Flow, begins at the "Start" node.

3. Control passes (via the "More guesses" join node) to the Guess node.

4. At the Guess node, the appropriate Rule Flow Group ("Get user Guess") is enabled. In this

case the Rule "Guess" (in the NumberGuess.drl file) is triggered. This rule displays a message

to the user, takes the response, and puts it into Working Memory. Flow passes to the next Rule

Flow Node.

5. At the next node, "Guess Correct", constraints inspect the current session and decide which

path to take.

If the guess in step 4 was too high or too low, flow proceeds along a path which has an action

node with normal Java code printing a suitable message and a Rule Flow Group causing a

highest guess or lowest guess rule to be triggered. Flow passes from these nodes to step 6.

If the guess in step 4 was right, we proceed along the path towards the end of the Rule Flow.

Before we get there, an action node with normal Java code prints a statement "you guessed

correctly". There is a join node here (just before the Rule Flow end) so that our no-more-guesses

path (step 7) can also terminate the Rule Flow.

6. Control passes as per the Rule Flow via a join node, a guess incorrect Rule Flow Group

(triggering a rule to retract a guess from Working Memory) onto the "More guesses" decision

node.

Chapter 19. Examples

614

7. The "More guesses" decision node (on the right hand side of the rule flow) uses constraints,

again looking at values that the rules have put into the working memory, to decide if we have

more guesses and if so, goto step 3. If not, we proceed to the end of the rule flow, via a Rule

Flow Group that triggers a rule stating "you have no more guesses".

8. The loop over steps 3 to 7 continues until the number is guessed correctly, or we run out of

guesses.

19.11. Conway's Game Of Life

Name: Conway's Game Of Life

Main class: org.drools.examples.conway.ConwayAgendaGroupRun

 org.drools.examples.conway.ConwayRuleFlowGroupRun

Module: droolsjbpm-integration-examples (Note: this is in a different download,

 the droolsjbpm-integration download.)

Type: Java application

Rules file: conway-ruleflow.drl conway-agendagroup.drl

Objective: Demonstrates 'accumulate', 'collect' and 'from'

Conway's Game Of Life, described in http://en.wikipedia.org/wiki/Conway's_Game_of_Life and in

http://www.math.com/students/wonders/life/life.html, is a famous cellular automaton conceived in

the early 1970's by the mathematician John Conway. While the system is well known as "Conway's

Game Of Life", it really isn't a game at all. Conway's system is more like a simulation of a form of

life. Don't be intimidated. The system is terribly simple and terribly interesting. Math and Computer

Science students alike have marvelled over Conway's system for more than 30 years now. The

application presented here is a Swing-based implementation of Conway's Game of Life. The

rules that govern the system are implemented as business rules using Drools. This document will

explain the rules that drive the simulation and discuss the Drools parts of the implementation.

We'll first introduce the grid view, shown below, designed for the visualisation of the game, showing

the "arena" where the life simulation takes place. Initially the grid is empty, meaning that there are

no live cells in the system. Each cell is either alive or dead, with live cells showing a green ball.

Preselected patterns of live cells can be chosen from the "Pattern" drop-down list. Alternatively,

individual cells can be doubled-clicked to toggle them between live and dead. It's important to

understand that each cell is related to its neighboring cells, which is fundamental for the game's

rules. Neighbors include not only cells to the left, right, top and bottom but also cells that are

connected diagonally, so that each cell has a total of 8 neighbors. Exceptions are the four corner

cells which have only three neighbors, and the cells along the four border, with five neighbors each.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://www.math.com/students/wonders/life/life.html

Conway's Game Of Life

615

Figure 19.27. Conway's Game of Life: Starting a new game

So what are the basic rules that govern this game? Its goal is to show the development of a

population, generation by generation. Each generation results from the preceding one, based on

the simultaneous evaluation of all cells. This is the simple set of rules that govern what the next

generation will look like:

• If a live cell has fewer than 2 live neighbors, it dies of loneliness.

• If a live cell has more than 3 live neighbors, it dies from overcrowding.

• If a dead cell has exactly 3 live neighbors, it comes to life.

That is all there is to it. Any cell that doesn't meet any of those criteria is left as is for the next

generation. With those simple rules in mind, go back and play with the system a little bit more and

step through some generations, one at a time, and notice these rules taking their effect.

The screenshot below shows an example generation, with a number of live cells. Don't worry about

matching the exact patterns represented in the screen shot. Just get some groups of cells added

to the grid. Once you have groups of live cells in the grid, or select a pre-designed pattern, click

the "Next Generation" button and notice what happens. Some of the live cells are killed (the green

ball disappears) and some dead cells come to life (a green ball appears). Step through several

generations and see if you notice any patterns. If you click on the "Start" button, the system will

evolve itself so you don't need to click the "Next Generation" button over and over. Play with the

system a little and then come back here for more details of how the application works.

Chapter 19. Examples

616

Figure 19.28. Conway's Game of Life: A running game

Now lets delve into the code. As this is an advanced example we'll assume that by now you

know your way around the Drools framework and are able to connect the presented highlight,

so that we'll just focus at a high level overview. The example has two ways to execute, one way

uses Agenda Groups to manage execution flow, and the other one uses Rule Flow Groups to

manage execution flow. These two versions are implemented in ConwayAgendaGroupRun and

ConwayRuleFlowGroupRun, respectively. Here, we'll discuss the Rule Flow version, as it's what

most people will use.

All the Cell objects are inserted into the Session and the rules in the ruleflow-group "register

neighbor" are allowed to execute by the Rule Flow process. This group of four rules creates

Neighbor relations between some cell and its northeastern, northern, northwestern and western

neighbors. This relation is bidirectional, which takes care of the other four directions. Border cells

don't need any special treatment - they simply won't be paired with neighboring cells where there

isn't any. By the time all activations have fired for these rules, all cells are related to all their

neighboring cells.

Example 19.71. Conway's Game of Life: Register Cell Neighbour relations

rule "register north east"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $northEast : Cell(row == ($row - 1), col == ($col + 1))

then

 insert(new Neighbor($cell, $northEast));

 insert(new Neighbor($northEast, $cell));

end

Conway's Game Of Life

617

rule "register north"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $north : Cell(row == ($row - 1), col == $col)

then

 insert(new Neighbor($cell, $north));

 insert(new Neighbor($north, $cell));

end

rule "register north west"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $northWest : Cell(row == ($row - 1), col == ($col - 1))

then

 insert(new Neighbor($cell, $northWest));

 insert(new Neighbor($northWest, $cell));

end

rule "register west"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $west : Cell(row == $row, col == ($col - 1))

then

 insert(new Neighbor($cell, $west));

 insert(new Neighbor($west, $cell));

end

Once all the cells are inserted, some Java code applies the pattern to the grid, setting certain

cells to Live. Then, when the user clicks "Start" or "Next Generation", it executes the "Generation"

ruleflow. This ruleflow is responsible for the management of all changes of cells in each generation

cycle.

Chapter 19. Examples

618

Figure 19.29. Conway's Game of Life: rule flow "Generation"

Conway's Game Of Life

619

The rule flow process first enters the "evaluate" group, which means that any active rule in the

group can fire. The rules in this group apply the Game-of-Life rules discussed in the beginning of

the example, determining the cells to be killed and the ones to be given life. We use the "phase"

attribute to drive the reasoning of the Cell by specific groups of rules; typically the phase is tied

to a Rule Flow Group in the Rule Flow process definition. Notice that it doesn't actually change

the state of any Cell objectss at this point; this is because it's evaluating the grid in turn and it

must complete the full evaluation until those changes can be applied. To achieve this, it sets the

cell to a "phase" which is either Phase.KILL or Phase.BIRTH, used later to control actions applied

to the Cell object.

Example 19.72. Conway's Game of Life: Evaluate Cells with state changes

rule "Kill The Lonely"

 ruleflow-group "evaluate"

 no-loop

when

// A live cell has fewer than 2 live neighbors

 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,

 phase == Phase.EVALUATE)

then

 modify(theCell){

 setPhase(Phase.KILL);

 }

end

rule "Kill The Overcrowded"

 ruleflow-group "evaluate"

 no-loop

when

// A live cell has more than 3 live neighbors

 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,

 phase == Phase.EVALUATE)

then

 modify(theCell){

 setPhase(Phase.KILL);

 }

end

rule "Give Birth"

 ruleflow-group "evaluate"

 no-loop

when

// A dead cell has 3 live neighbors

 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,

 phase == Phase.EVALUATE)

then

 modify(theCell){

Chapter 19. Examples

620

 theCell.setPhase(Phase.BIRTH);

 }

end

Once all Cell objects in the grid have been evaluated, we first clear any calculation activations that

occurred from any previous data changes. This is done via the "reset calculate" rule, which clears

any activations in the "calculate" group. We then enter a split in the rule flow which allows any

activations in both the "kill" and the "birth" group to fire. These rules are responsible for applying

the state change.

Example 19.73. Conway's Game of Life: Apply the state changes

rule "reset calculate"

 ruleflow-group "reset calculate"

when

then

 WorkingMemory wm = drools.getWorkingMemory();

 wm.clearRuleFlowGroup("calculate");

end

rule "kill"

 ruleflow-group "kill"

 no-loop

when

 theCell: Cell(phase == Phase.KILL)

then

 modify(theCell){

 setCellState(CellState.DEAD),

 setPhase(Phase.DONE);

 }

end

rule "birth"

 ruleflow-group "birth"

 no-loop

when

 theCell: Cell(phase == Phase.BIRTH)

then

 modify(theCell){

 setCellState(CellState.LIVE),

 setPhase(Phase.DONE);

 }

end

At this stage, a number of Cell objects have been modified with the state changed to either LIVE

or DEAD. Now we get to see the power of the Neighbor facts defining the cell relations. When

Pong

621

a cell becomes live or dead, we use the Neighbor relation to iterate over all surrounding cells,

increasing or decreasing the liveNeighbor count. Any cell that has its count changed is also

set to to the EVALUATE phase, to make sure it is included in the reasoning during the evaluation

stage of the Rule Flow Process. Notice that we don't have to do any iteration ourselves; simply

by applying the relations in the rules we make the rule engine do all the hard work for us, with a

minimal amount of code. Once the live count has been determined and set for all cells, the Rule

Flow Process comes to and end. If the user has initially clicked the "Start" button, the engine will

restart the rule flow; otherwise the user may request another generation.

Example 19.74. Conway's Game of Life: Evaluate cells with state changes

rule "Calculate Live"

 ruleflow-group "calculate"

 lock-on-active

when

 theCell: Cell(cellState == CellState.LIVE)

 Neighbor(cell == theCell, $neighbor : neighbor)

then

 modify($neighbor){

 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),

 setPhase(Phase.EVALUATE);

 }

end

rule "Calculate Dead"

 ruleflow-group "calculate"

 lock-on-active

when

 theCell: Cell(cellState == CellState.DEAD)

 Neighbor(cell == theCell, $neighbor : neighbor)

then

 modify($neighbor){

 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),

 setPhase(Phase.EVALUATE);

 }

end

19.12. Pong

A Conversion for the classic game Pong. Use the keys A, Z and K, M. The ball should get faster

after each bounce.

Name: Example Pong

Main class: org.drools.games.pong.PongMain

Chapter 19. Examples

622

Figure 19.30. Pong Screenshot

19.13. Adventures with Drools

Based on the Adventure in Prolog, over at the Amzi website, http://www.amzi.com/

AdventureInProlog/, we started to work on a text adventure game for Drools. They are ideal as

they can start off simple and build in complexity and size over time, they also demonstrate key

aspects of declarative relational programming.

Name: Example Text Adventure

Main class: org.drools.games.adventure.TextAdventure

You can view the 8 minute demonstration and introduction for the example at http://

downloads.jboss.org/drools/videos/text-adventures.swf

http://www.amzi.com/AdventureInProlog/
http://www.amzi.com/AdventureInProlog/
http://downloads.jboss.org/drools/videos/text-adventures.swf
http://downloads.jboss.org/drools/videos/text-adventures.swf

Wumpus World

623

Figure 19.31. Pong Screenshot

19.14. Wumpus World

Name: Example Wumpus World

Main class: org.drools.games.wumpus.WumpusWorldMain

Wumpus World is an AI example covered in the book "Artificial Intelligence : A Modern Approach".

When the game first starts all the cells are greyed out. As you walk around they become visible.

The cave has pits, a wumpus and gold. When you are next to a pit you will feel a breeze, when

you are next to the wumpus you will smell a stench and see glitter when next to gold. The sensor

icons are shown above the move buttons. If you walk into a pit or the wumpus, you die. A more

detailed overview of Wumpus World can be found at http://www.cis.temple.edu/~giorgio/cis587/

readings/wumpus.shtml. A 20 minute video showing how the game is created and works is at http://

www.youtube.com/watch?v=4CvjKqUOEzM. [http://www.youtube.com/watch?v=4CvjKqUOEzM]

http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM

Chapter 19. Examples

624

Figure 19.32. Wumpus World

Wumpus World

625

Figure 19.33. Cave Screenshot

Figure 19.34. Signals Screenshot

Chapter 19. Examples

626

Figure 19.35. Smell Stench

Figure 19.36. Move Up, Wumpus Collision

19.15. Miss Manners and Benchmarking

Name: Miss Manners

Main class: org.drools.benchmark.manners.MannersBenchmark

Module: drools-examples

Type: Java application

Introduction

627

Rules file: manners.drl

Objective: Advanced walkthrough on the Manners benchmark, covers Depth conflict

 resolution in depth.

19.15.1. Introduction

Miss Manners is throwing a party and, being a good host, she wants to arrange good seating. Her

initial design arranges everyone in male-female pairs, but then she worries about people have

things to talk about. What is a good host to do? She decides to note the hobby of each guest so

she can then arrange guests not only pairing them according to alternating sex but also ensuring

that a guest has someone with a common hobby, at least on one side.

Figure 19.37. Miss Manners' Guests

19.15.1.1. BenchMarking

Five benchmarks were established in the 1991 paper "Effects of Database Size on Rule System

Performance: Five Case Studies" by David Brant, Timothy Grose, Bernie Lofaso and Daniel P.

Miranker:

Chapter 19. Examples

628

• Manners uses a depth-first search approach to determine the seating arrangements alternating

women and men and ensuring one common hobby for neighbors.

• Waltz establishes a three-dimensional interpretation of a line drawing by line labeling by

constraint propagation.

• WaltzDB is a more general version of Waltz, supporting junctions of more than three lines and

using a database.

• ARP is a route planner for a robotic air vehicle using the A* search algorithm to achieve minimal

cost.

• Weaver VLSI router for channels and boxes using a black-board technique.

Manners has become the de facto rule engine benchmark. Its behavior, however, is now well

known and many engines optimize for this, thus negating its usefulness as a benchmark which

is why Waltz is becoming more favorable. These five benchmarks are also published at the

University of Texas http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/.

19.15.1.2. Miss Manners Execution Flow

After the first seating arrangement has been assigned, a depth-first recursion occurs which

repeatedly assigns correct seating arrangements until the last seat is assigned. Manners uses a

Context instance to control execution flow. The activity diagram is partitioned to show the relation

of the rule execution to the current Context state.

http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/

Introduction

629

Figure 19.38. Manners Activity Diagram

19.15.1.3. The Data and Results

Before going deeper into the rules, let's first take a look at the asserted data and the resulting

seating arrangement. The data is a simple set of five guests who should be arranged so that sexes

alternate and neighbors have a common hobby.

The Data

The data is given in OPS5 syntax, with a parenthesized list of name and value pairs for each

attribute. Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1))

(guest (name n2) (sex f) (hobby h1))

(guest (name n2) (sex f) (hobby h3))

(guest (name n3) (sex m) (hobby h3))

(guest (name n4) (sex m) (hobby h1))

(guest (name n4) (sex f) (hobby h2))

Chapter 19. Examples

630

(guest (name n4) (sex f) (hobby h3))

(guest (name n5) (sex f) (hobby h2))

(guest (name n5) (sex f) (hobby h1))

(last_seat (seat 5))

The Results

Each line of the results list is printed per execution of the "Assign Seat" rule. They key bit to

notice is that each line has a "pid" value one greater than the last. (The significance of this will be

explained in the discussion of the rule "Assign Seating".) The "ls", "rs", "ln" and "rn" refer to the left

and right seat and neighbor's name, respectively. The actual implementation uses longer attribute

names (e.g., leftGuestName, but here we'll stick to the notation from the original implementation.

[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]

[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[Seating id=4, pid=3, done=false, ls=3, rn=n3, rs=4, rn=n2]

[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]

19.15.2. In depth Discussion

19.15.2.1. Cheating

Manners has been designed to exercise cross product joins and Agenda activities. Many people

not understanding this tweak the example to achieve better performance, making their port of the

Manners benchmark pointless. Known cheats or porting errors for Miss Manners are:

• Using arrays for a guests hobbies, instead of asserting each one as a single fact massively

reduces the cross products.

• Altering the sequence of data can also reduce the amount of matching, increasing execution

speed.

• It's possible to change the not Conditional Element so that the test algorithm only uses the

"first-best-match", which is, basically, transforming the test algorithm to backward chaining. The

results are only comparable to other backward chaining rule engines or ports of Manners.

• Removing the context so the rule engine matches the guests and seats prematurely. A proper

port will prevent facts from matching using the context start.

• It's possible to prevent the rule engine from performing combinatorial pattern matching.

• If no facts are retracted in the reasoning cycle, as a result of the not CE, the port is incorrect.

19.15.2.2. Conflict Resolution

The Manners benchmark was written for OPS5 which has two conflict resolution strategies, LEX

and MEA. LEX is a chain of several strategies including salience, recency and complexity. The

In depth Discussion

631

recency part of the strategy drives the depth first (LIFO) firing order. The CLIPS manual documents

the Recency strategy as follows:

Every fact and instance is marked internally with a "time tag" to indicate its relative

recency with respect to every other fact and instance in the system. The pattern

entities associated with each rule activation are sorted in descending order for

determining placement. An activation with a more recent pattern entity is placed

before activations with less recent pattern entities. To determine the placement

order of two activations, compare the sorted time tags of the two activations one

by one starting with the largest time tags. The comparison should continue until

one activation’s time tag is greater than the other activation’s corresponding time

tag. The activation with the greater time tag is placed before the other activation

on the agenda. If one activation has more pattern entities than the other activation

and the compared time tags are all identical, then the activation with more time

tags is placed before the other activation on the agenda.

—CLIPS Reference Manual

However Jess and CLIPS both use the Depth strategy, which is simpler and lighter, which Drools

also adopted. The CLIPS manual documents the Depth strategy as:

Newly activated rules are placed above all rules of the same salience. For

example, given that fact-a activates rule-1 and rule-2 and fact-b activates rule-3

and rule-4, then if fact-a is asserted before fact-b, rule-3 and rule-4 will be above

rule-1 and rule-2 on the agenda. However, the position of rule-1 relative to rule-2

and rule-3 relative to rule-4 will be arbitrary.

—CLIPS Reference Manual

The initial Drools implementation for the Depth strategy would not work for Manners without the

use of salience on the "make_path" rule. The CLIPS support team had this to say:

The default conflict resolution strategy for CLIPS, Depth, is different than the

default conflict resolution strategy used by OPS5. Therefore if you directly

translate an OPS5 program to CLIPS, but use the default depth conflict resolution

strategy, you're only likely to get the correct behavior by coincidence. The LEX

and MEA conflict resolution strategies are provided in CLIPS to allow you to

quickly convert and correctly run an OPS5 program in CLIPS.

—Clips Support Forum

Investigation into the CLIPS code reveals there is undocumented functionality in the Depth

strategy. There is an accumulated time tag used in this strategy; it's not an extensively fact by

fact comparison as in the recency strategy, it simply adds the total of all the time tags for each

activation and compares.

19.15.2.3. Rule "assignFirstSeat"

Once the context is changed to START_UP, activations are created for all asserted guest. Because

all activations are created as the result of a single Working Memory action, they all have the same

Chapter 19. Examples

632

Activation time tag. The last asserted Guest object would have a higher fact time tag, and its

Activation would fire because it has the highest accumulated fact time tag. The execution order in

this rule has little importance, but has a big impact in the rule "Assign Seat". The activation fires

and asserts the first Seating arrangement and a Path, and then sets the Context attribute state

to create an activation for rule findSeating.

rule assignFirstSeat

 when

 context : Context(state == Context.START_UP)

 guest : Guest()

 count : Count()

 then

 String guestName = guest.getName();

 Seating seating =

 new Seating(count.getValue(), 1, true, 1, guestName, 1, guestName);

 insert(seating);

 Path path = new Path(count.getValue(), 1, guestName);

 insert(path);

 modify(count) { setValue (count.getValue() + 1) }

 System.out.println("assign first seat : " + seating + " : " + path);

 modify(context) {

 setState(Context.ASSIGN_SEATS)

 }

end

19.15.2.4. Rule "findSeating"

This rule determines each of the Seating arrangements. The rule creates cross product solutions

for all asserted Seating arrangements against all the asserted guests except against itself or any

already assigned chosen solutions.

rule findSeating

 when

 context : Context(state == Context.ASSIGN_SEATS)

 $s : Seating(pathDone == true)

 $g1 : Guest(name == $s.rightGuestName)

 $g2 : Guest(sex != $g1.sex, hobby == $g1.hobby)

 count : Count()

 not (Path(id == $s.id, guestName == $g2.name))

In depth Discussion

633

 not (Chosen(id == $s.id, guestName == $g2.name, hobby == $g1.hobby))

 then

 int rightSeat = $s.getRightSeat();

 int seatId = $s.getId();

 int countValue = count.getValue();

 Seating seating =

 new Seating(countValue, seatId, false, rightSeat,

 $s.getRightGuestName(), rightSeat + 1, $g2.getName());

 insert(seating);

 Path path = new Path(countValue, rightSeat + 1, $g2.getName());

 insert(path);

 Chosen chosen = new Chosen(seatId, $g2.getName(), $g1.getHobby());

 insert(chosen);

 System.err.println("find seating : " + seating + " : " + path +

 " : " + chosen);

 modify(count) {setValue(countValue + 1)}

 modify(context) {setState(Context.MAKE_PATH)}

end

However, as can be seen from the printed results shown earlier, it is essential that only the Seating

with the highest pid cross product be chosen. How can this be possible if we have activations, of

the same time tag, for nearly all existing Seating and Guest objects? For example, on the third

iteration of findSeating the produced activations will be as shown below. Remember, this is from

a very small data set, and with larger data sets there would be many more possible activated

Seating solutions, with multiple solutions per pid:

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]

[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Chapter 19. Examples

634

The creation of all these redundant activations might seem pointless, but it must be remembered

that Manners is not about good rule design; it's purposefully designed as a bad ruleset to fully

stress-test the cross product matching process and the Agenda, which this clearly does. Notice

that each activation has the same time tag of 35, as they were all activated by the change in the

Context object to ASSIGN_SEATS. With OPS5 and LEX it would correctly fire the activation with

the Seating asserted last. With Depth, the accumulated fact time tag ensures that the activation

with the last asserted Seating fires.

19.15.2.5. Rules "makePath" and "pathDone"

Rule makePath must always fire before pathDone. A Path object is asserted for each Seating

arrangement, up to the last asserted Seating. Notice that the conditions in pathDone are a subset

of those in makePath - so how do we ensure that makePath fires first?

rule makePath

 when

 Context(state == Context.MAKE_PATH)

 Seating(seatingId:id, seatingPid:pid, pathDone == false)

 Path(id == seatingPid, pathGuestName:guestName, pathSeat:seat)

 not Path(id == seatingId, guestName == pathGuestName)

 then

 insert(new Path(seatingId, pathSeat, pathGuestName));

end

rule pathDone

 when

 context : Context(state == Context.MAKE_PATH)

 seating : Seating(pathDone == false)

 then

 modify(seating) {setPathDone(true)}

 modify(context) {setState(Context.CHECK_DONE)}

end

In depth Discussion

635

Figure 19.39. Rete Diagram

Chapter 19. Examples

636

Both rules end up on the Agenda in conflict and with identical activation time tags. However, the

accumulate fact time tag is greater for "Make Path" so it gets priority.

19.15.2.6. Rules "continue" and "areWeDone"

Rule areWeDone only activates when the last seat is assigned, at which point both rules will be

activated. For the same reason that makePath always wins over path Done, areWeDone will take

priority over rule continue.

rule areWeDone

 when

 context : Context(state == Context.CHECK_DONE)

 LastSeat(lastSeat: seat)

 Seating(rightSeat == lastSeat)

 then

 modify(context) {setState(Context.PRINT_RESULTS)}

end

rule continue

 when

 context : Context(state == Context.CHECK_DONE)

 then

 modify(context) {setState(Context.ASSIGN_SEATS)}

end

19.15.3. Output Summary

Assign First seat

=>[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1 , pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating

=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, ls=1, lg=n5, rs=2, rn=n4]

Output Summary

637

=>[fid:16:18]:[Path id=2, seat=2, guest=n4]

=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]

=>[ActivationCreated(21): rule=makePath

[fid:15:17] : [Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]

[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone

[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]*

Make Path

=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

Continue Process

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]

[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:20] : [Count value=3]

=>[ActivationCreated(25): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, lnn4, rs=3, rn=n3]]

=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]

=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[fid:16:18]:[Path id=2, seat=2, guest=n4]*

Chapter 19. Examples

638

=>[ActivationCreated(30): rule=done

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]*

Make Path

=>[fid:22:31]:[Path id=3, seat=1, guest=n5]

Make Path

=>[fid:23:32] [Path id=3, seat=2, guest=n4]

Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]

[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:29]*

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1] : [Guest name=n1, sex=m,

 hobbies=h1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]]

=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]

=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:22:31]:[Path id=3, seat=1, guest=n5]*

Output Summary

639

=>[ActivationCreated(40): rule=done

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]*

Make Path

=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path

=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path

=>fid:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]

[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating

[fid:24:44]:[Seating id=4, pid=3, done=true, ls=3, ln=n3, rs=4, rn=n2]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]*

=>[ActivationCreated(46): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:30:47]:[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]

=>[fid:31:48]:[Path id=5, seat=5, guest=n1]

=>[fid:32:49]:[Chosen id=4, name=n1, hobbies=h1]

640

	Drools Documentation
	Table of Contents
	
	Part I. Welcome
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Getting Involved
	1.2.1. Sign up to jboss.org
	1.2.2. Sign the Contributor Agreement
	1.2.3. Submitting issues via JIRA
	1.2.4. Fork GitHub
	1.2.5. Writing Tests
	1.2.6. Commit with Correct Conventions
	1.2.7. Submit Pull Requests

	1.3. Installation and Setup (Core and IDE)
	1.3.1. Installing and using
	1.3.1.1. Dependencies and JARs
	1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant
	1.3.1.3. Runtime
	1.3.1.4. Installing IDE (Rule Workbench)
	1.3.1.4.1. Installing GEF (a required dependency)
	1.3.1.4.2. Installing GEF from zip file
	1.3.1.4.3. Installing Drools plug-in from zip file
	1.3.1.4.4. Drools Runtimes
	1.3.1.4.4.1. Defining a Drools runtime
	1.3.1.4.4.2. Selecting a runtime for your Drools project

	1.3.2. Building from source
	1.3.2.1. Getting the sources
	1.3.2.2. Building the sources

	1.3.3. Eclipse
	1.3.3.1. Importing Eclipse Projects

	Chapter 2. Release Notes
	2.1. New and Noteworthy in KIE API 6.0.0
	2.1.1. New KIE name
	2.1.2. Maven aligned projects and modules and Maven Deployment
	2.1.3. Configuration and convention based projects
	2.1.4. KieBase Inclusion
	2.1.5. KieModules, KieContainer and KIE-CI
	2.1.6. KieScanner
	2.1.7. Hierarchical ClassLoader
	2.1.8. Legacy API Adapter
	2.1.9. KIE Documentation

	2.2. What is New and Noteworthy in Drools 6.0.0
	2.2.1. PHREAK - Lazy rule matching algorithm
	2.2.2. Automatically firing timed rule in passive mode
	2.2.3. Expression Timers
	2.2.4. RuleFowGroup and AgendaGroups are merged

	2.3. New and Noteworthy in KIE Workbench 6.0.0
	2.4. New and Noteworthy in Integration 6.0.0
	2.4.1. CDI
	2.4.2. Spring
	2.4.3. Aries Blueprints
	2.4.4. OSGi Ready

	Chapter 3. Compatibility matrix

	Part II. KIE
	Chapter 4. KIE
	4.1. Overview
	4.1.1. Anatomy of Projects
	4.1.2. Lifecycles

	4.2. Build, Deploy, Utilize and Run
	4.2.1. Introduction
	4.2.2. Building
	4.2.2.1. Creating and building a Kie Project
	4.2.2.2. The kmodule.xml file
	4.2.2.3. Building with Maven
	4.2.2.4. Defining a KieModule programmatically
	4.2.2.5. Changing the Default Build Result Severity

	4.2.3. Deploying
	4.2.3.1. KieBase
	4.2.3.2. KieSessions and KieBase Modifications
	4.2.3.3. KieScanner
	4.2.3.4. Maven Versions and Dependencies
	4.2.3.5. Settings.xml and Remote Repository Ssetup

	4.2.4. Running
	4.2.4.1. KieBase
	4.2.4.2. KieSession
	4.2.4.3. KieRuntime
	4.2.4.3.1. KieRuntime
	4.2.4.3.1.1. Globals

	4.2.4.4. Event Model
	4.2.4.5. KieRuntimeLogger
	4.2.4.6. Commands and the CommandExecutor
	4.2.4.7. StatelessKieSession
	4.2.4.8. Marshalling
	4.2.4.9. Persistence and Transactions

	4.2.5. Installation and Deployment Cheat Sheets
	4.2.6. Build, Deploy and Utilize Examples
	4.2.6.1. Default KieSession
	4.2.6.2. Named KieSession
	4.2.6.3. KieBase Inheritence
	4.2.6.4. Multiple KieBases
	4.2.6.5. KieContainer from KieRepository
	4.2.6.6. Default KieSession from File
	4.2.6.7. Named KieSession from File
	4.2.6.8. KieModule with Dependent KieModule
	4.2.6.9. Programmaticaly build a Simple KieModule with Defaults
	4.2.6.10. Programmaticaly build a KieModule using Meta Models

	4.3. Security
	4.3.1. Security Manager
	4.3.1.1. How to define a KIE Policy

	Part III. Drools Runtime and Language
	Chapter 5. Hybrid Reasoning
	5.1. Artificial Intelligence
	5.1.1. A Little History
	5.1.2. Knowledge Representation and Reasoning
	5.1.3. Rule Engines and Production Rule Systems (PRS)
	5.1.4. Hybrid Reasoning Systems (HRS)
	5.1.5. Expert Systems
	5.1.6. Recommended Reading

	5.2. Rete Algorithm
	5.3. ReteOO Algorithm
	5.4. PHREAK Algorithm

	Chapter 6. User Guide
	6.1. The Basics
	6.1.1. Stateless Knowledge Session
	6.1.2. Stateful Knowledge Session
	6.1.3. Methods versus Rules
	6.1.4. Cross Products

	6.2. Execution Control
	6.2.1. Agenda
	6.2.2. Rule Matches and Conflict Sets.
	6.2.2.1. Cashflow Example
	6.2.2.2. Conflict Resolution
	6.2.2.3. Salience
	6.2.2.4. Agenda Groups
	6.2.2.5. Rule Flow

	6.2.3. Declarative Agenda

	6.3. Inference
	6.3.1. Bus Pass Example

	6.4. Truth Maintenance with Logical Objects
	6.4.1. Overview
	6.4.1.1. Bus Pass Example With Inference and TMS
	6.4.1.2. Important note: Equality for Java objects

	6.5. Decision Tables in Spreadsheets
	6.5.1. When to Use Decision Tables
	6.5.2. Overview
	6.5.3. How Decision Tables Work
	6.5.4. Spreadsheet Syntax
	6.5.4.1. Spreadsheet Structure
	6.5.4.2. Rule Set Entries
	6.5.4.3. Rule Tables
	6.5.4.4. Examples

	6.5.5. Creating and integrating Spreadsheet based Decision Tables
	6.5.6. Managing Business Rules in Decision Tables
	6.5.6.1. Workflow and Collaboration
	6.5.6.2. Using spreadsheet features

	6.5.7. Rule Templates

	6.6. Logging

	Chapter 7. Rule Language Reference
	7.1. Overview
	7.1.1. A rule file
	7.1.2. What makes a rule

	7.2. Keywords
	7.3. Comments
	7.3.1. Single line comment
	7.3.2. Multi-line comment

	7.4. Error Messages
	7.4.1. Message format
	7.4.2. Error Messages Description
	7.4.2.1. 101: No viable alternative
	7.4.2.2. 102: Mismatched input
	7.4.2.3. 103: Failed predicate
	7.4.2.4. 104: Trailing semi-colon not allowed
	7.4.2.5. 105: Early Exit

	7.4.3. Other Messages

	7.5. Package
	7.5.1. import
	7.5.2. global

	7.6. Function
	7.7. Type Declaration
	7.7.1. Declaring New Types
	7.7.2. Declaring Metadata
	7.7.2.1. Predefined class level annotations
	7.7.2.1.1. @role(<fact | event>)
	7.7.2.1.2. @typesafe(<boolean>)
	7.7.2.1.3. @timestamp(<attribute name>)
	7.7.2.1.4. @duration(<attribute name>)
	7.7.2.1.5. @expires(<time interval>)
	7.7.2.1.6. @propertyChangeSupport
	7.7.2.1.7. @propertyReactive

	7.7.2.2. Predefined attribute level annotations
	7.7.2.2.1. @key
	7.7.2.2.2. @position

	7.7.3. Declaring Metadata for Existing Types
	7.7.4. Parametrized constructors for declared types
	7.7.5. Non Typesafe Classes
	7.7.6. Accessing Declared Types from the Application Code
	7.7.7. Type Declaration 'extends'
	7.7.8. Traits
	7.7.8.1. Cascading traits

	7.8. Rule
	7.8.1. Rule Attributes
	7.8.2. Timers and Calendars
	7.8.3. Left Hand Side (when) syntax
	7.8.3.1. What is the Left Hand Side?
	7.8.3.2. Pattern (conditional element)
	7.8.3.2.1. What is a pattern?
	7.8.3.2.2. Pattern binding

	7.8.3.3. Constraint (part of a pattern)
	7.8.3.3.1. What is a constraint?
	7.8.3.3.2. Property access on Java Beans (POJO's)
	7.8.3.3.3. Java expression
	7.8.3.3.4. Comma separated AND
	7.8.3.3.5. Binding variables
	7.8.3.3.6. Unification
	7.8.3.3.7. Grouped accessors for nested objects
	7.8.3.3.8. Inline casts and coercion
	7.8.3.3.9. Special literal support
	7.8.3.3.9.1. Date literal

	7.8.3.3.10. List and Map access
	7.8.3.3.11. Abbreviated combined relation condition
	7.8.3.3.12. Special DRL operators
	7.8.3.3.12.1. The operators < <= > >=
	7.8.3.3.12.2. Null-safe dereferencing operator
	7.8.3.3.12.3. The operator matches
	7.8.3.3.12.4. The operator not matches
	7.8.3.3.12.5. The operator contains
	7.8.3.3.12.6. The operator not contains
	7.8.3.3.12.7. The operator memberOf
	7.8.3.3.12.8. The operator not memberOf
	7.8.3.3.12.9. The operator soundslike
	7.8.3.3.12.10. The operator str
	7.8.3.3.12.11. The operators in and not in (compound value restriction)

	7.8.3.3.13. Inline eval operator (deprecated)
	7.8.3.3.14. Operator precedence

	7.8.3.4. Positional Arguments
	7.8.3.5. Fine grained property change listeners
	7.8.3.6. Basic conditional elements
	7.8.3.6.1. Conditional Element and
	7.8.3.6.2. Conditional Element or
	7.8.3.6.3. Conditional Element not
	7.8.3.6.4. Conditional Element exists

	7.8.3.7. Advanced conditional elements
	7.8.3.7.1. Conditional Element forall
	7.8.3.7.2. Conditional Element from
	7.8.3.7.3. Conditional Element collect
	7.8.3.7.4. Conditional Element accumulate
	7.8.3.7.4.1. Accumulate CE (preferred syntax)
	7.8.3.7.4.2. Alternate Syntax: single function with return type
	7.8.3.7.4.3. Accumulate with inline custom code

	7.8.3.8. Conditional Element eval
	7.8.3.9. Railroad diagrams

	7.8.4. The Right Hand Side (then)
	7.8.4.1. Usage
	7.8.4.2. The modify Statement

	7.8.5. Conditional named consequences
	7.8.6. A Note on Auto-boxing and Primitive Types

	7.9. Query
	7.10. Domain Specific Languages
	7.10.1. When to Use a DSL
	7.10.2. DSL Basics
	7.10.3. Adding Constraints to Facts
	7.10.4. Developing a DSL
	7.10.5. DSL and DSLR Reference

	Chapter 8. Complex Event Processing
	8.1. Complex Event Processing
	8.2. Drools Fusion
	8.3. Event Semantics
	8.4. Event Processing Modes
	8.4.1. Cloud Mode
	8.4.2. Stream Mode
	8.4.2.1. Role of Session Clock in Stream mode
	8.4.2.2. Negative Patterns in Stream Mode

	8.5. Session Clock
	8.5.1. Available Clock Implementations
	8.5.1.1. Real Time Clock
	8.5.1.2. Pseudo Clock

	8.6. Sliding Windows
	8.6.1. Sliding Time Windows
	8.6.2. Sliding Length Windows

	8.7. Streams Support
	8.7.1. Declaring and Using Entry Points

	8.8. Memory Management for Events
	8.8.1. Explicit expiration offset
	8.8.2. Inferred expiration offset

	8.9. Temporal Reasoning
	8.9.1. Temporal Operators
	8.9.1.1. After
	8.9.1.2. Before
	8.9.1.3. Coincides
	8.9.1.4. During
	8.9.1.5. Finishes
	8.9.1.6. Finished By
	8.9.1.7. Includes
	8.9.1.8. Meets
	8.9.1.9. Met By
	8.9.1.10. Overlaps
	8.9.1.11. Overlapped By
	8.9.1.12. Starts
	8.9.1.13. Started By

	Part IV. Drools Integration
	Chapter 9. Drools Commands
	9.1. API
	9.1.1. XStream
	9.1.2. JSON
	9.1.3. JAXB
	9.1.3.1. Using an XSD file to define the model
	9.1.3.2. Using a POJO model

	9.2. Commands supported
	9.2.1. BatchExecutionCommand
	9.2.2. InsertObjectCommand
	9.2.3. RetractCommand
	9.2.4. ModifyCommand
	9.2.5. GetObjectCommand
	9.2.6. InsertElementsCommand
	9.2.7. FireAllRulesCommand
	9.2.8. StartProcessCommand
	9.2.9. SignalEventCommand
	9.2.10. CompleteWorkItemCommand
	9.2.11. AbortWorkItemCommand
	9.2.12. QueryCommand
	9.2.13. SetGlobalCommand
	9.2.14. GetGlobalCommand
	9.2.15. GetObjectsCommand

	Chapter 10. CDI
	10.1. Introduction
	10.2. Annotations
	10.2.1. @KReleaseId
	10.2.2. @KContainer
	10.2.3. @KBase
	10.2.4. @KSession for KieSession
	10.2.5. @KSession for StatelessKieSession

	10.3. API Example Comparison

	Chapter 11. Integration with Spring
	11.1. Important Changes for Drools 6.0
	11.2. Integration with Drools Expert
	11.2.1. KieModule
	11.2.2. KieBase
	11.2.2.1. <kie:kbase>'s parameters as attributes:
	11.2.2.2. A kbase tag can contain only the following tags as children.
	11.2.2.3. <kie:kbase>'s definition example

	11.2.3. IMPORTANT NOTE
	11.2.4. KieSessions
	11.2.4.1. <kie:ksession>'s parameters as attributes:

	11.2.5. Event Listeners
	11.2.5.1. Defining Stand alone Listeners:
	11.2.5.1.1. Attributes:
	11.2.5.1.2. Nested Elements:
	11.2.5.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean
	11.2.5.1.4. Mix and Match of different declaration styles
	11.2.5.1.5. Defining multiple listeners of the same type

	11.2.5.2. Defining a Group of listeners:
	11.2.5.2.1. Attributes:
	11.2.5.2.2. Nested Elements:
	11.2.5.2.3. Example:

	11.2.6. Loggers
	11.2.6.1. Defining a console logger:
	11.2.6.2. Defining a file logger:
	11.2.6.2.1. Closing a FileLogger

	11.2.7. Defining Batch Commands
	11.2.8. Persistence

	11.3. Integration with jBPM Human Task
	11.3.1. How to configure Spring with jBPM Human task

	Chapter 12. Apache Camel Integration
	12.1. Camel

	Chapter 13. Drools Camel Server
	13.1. Introduction
	13.2. Deployment
	13.3. Configuration
	13.3.1. REST/Camel Services configuration
	13.3.1.1. RESTful service endpoint creation
	13.3.1.2. Camel Kie Policy & Context creation
	13.3.1.3. Knowledge Services configuration
	13.3.1.4. Test

	Chapter 14. JMX monitoring with RHQ/JON
	14.1. Introduction
	14.1.1. Enabling JMX monitoring in a Drools application
	14.1.2. Installing and running the RHQ/JON plugin

	Part V. Drools Workbench
	Chapter 15. Workbench
	15.1. Installation
	15.1.1. War installation
	15.1.2. Workbench data
	15.1.3. System properties

	15.2. Quick Start
	15.2.1. Add repository
	15.2.2. Add project
	15.2.3. Define Data Model
	15.2.4. Define Rule
	15.2.5. Build and Deploy

	15.3. Administration
	15.3.1. Administration overview
	15.3.2. Organizational unit
	15.3.3. Repositories
	15.3.3.1. Repository Editor

	15.4. Configuration
	15.4.1. User management
	15.4.2. Roles
	15.4.2.1. Admin
	15.4.2.2. Developer
	15.4.2.3. Analyst
	15.4.2.4. Business user
	15.4.2.5. Manager/Viewer-only User

	15.4.3. Restricting access to repositories
	15.4.4. Command line config tool
	15.4.4.1. Config Tool Modes
	15.4.4.2. Available Commands
	15.4.4.3. How to use

	15.5. Introduction
	15.5.1. Log in and log out
	15.5.2. Home screen
	15.5.3. Workbench concepts
	15.5.4. Initial layout

	15.6. Changing the layout
	15.6.1. Resizing
	15.6.2. Repositioning

	15.7. Authoring
	15.7.1. Artifact Repository
	15.7.2. Asset Editor
	15.7.3. Project Explorer
	15.7.3.1. Initial view
	15.7.3.2. Different views
	15.7.3.2.1. Project View examples
	15.7.3.2.2. Repository View examples

	15.7.3.3. Copy, Rename and Delete Actions

	15.7.4. Project Editor
	15.7.4.1. Build & Deploy
	15.7.4.2. Project Settings
	15.7.4.2.1. Project General Settings
	15.7.4.2.2. Dependencies
	15.7.4.2.3. Metadata

	15.7.4.3. Knowledge Base Settings
	15.7.4.3.1. Knowledge bases and sessions
	15.7.4.3.1.1. Knowledge base list
	15.7.4.3.1.2. Knowledge base properties
	15.7.4.3.1.3. Knowledge sessions

	15.7.4.3.2. Metadata

	15.7.4.4. Imports
	15.7.4.4.1. Import Suggestions
	15.7.4.4.2. Metadata

	15.7.5. Validation
	15.7.5.1. Problem Panel
	15.7.5.2. On demand validation

	15.7.6. Data Modeller
	15.7.6.1. First steps to create a data model
	15.7.6.2. Entities
	15.7.6.3. Properties & relationships
	15.7.6.4. Additional options
	15.7.6.4.1. Additional entity properties ("Data object tab")
	15.7.6.4.2. Additional field properties ("Field tab")

	15.7.6.5. Generate data model code.
	15.7.6.6. Using external models
	15.7.6.6.1. Dependency to a JAR file in local M2 repository
	15.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	15.7.6.6.1.4. Save the project to update its dependencies.

	15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	15.7.6.6.2.1. Open the Maven Artifact Repository editor.
	15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	15.7.6.6.2.3. Upload the file using the Upload button.
	15.7.6.6.2.4. Guvnor M2 repository files.
	15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	15.7.6.6.2.6. Add dependency from repository.

	15.7.6.6.3. Using the external objects

	15.7.6.7. External changes to models
	15.7.6.7.1. No changes have been undertaken through the application
	15.7.6.7.2. Changes have been undertaken through the application

	15.7.7. Categories Editor
	15.7.7.1. Launching the Categories Editor
	15.7.7.2. Managing Categories
	15.7.7.3. Adding Categories to assets

	15.8. Embedding Workbench In Your Application

	Chapter 16. Authoring Assets
	16.1. Creating a package
	16.1.1. Empty package
	16.1.2. Copy, Rename and Delete Packages

	16.2. Business rules with the guided editor
	16.2.1. Parts of the Guided Rule Editor
	16.2.2. The "WHEN" (left-hand side) of a Rule
	16.2.2.1. Adding Patterns
	16.2.2.2. Adding constraints

	16.2.3. The "THEN" (right-hand side) of a Rule
	16.2.4. Optional attributes
	16.2.4.1. Salience

	16.2.5. Pattern/Action toolbar
	16.2.6. User driven drop down lists
	16.2.7. Augmenting with DSL sentences
	16.2.8. A more complex example:

	16.3. Templates of assets/rules
	16.3.1. Creating a rule template
	16.3.2. Define the template
	16.3.3. Defining the template data
	16.3.3.1. Cell merging
	16.3.3.2. Cell grouping

	16.3.4. Generated DRL

	16.4. Guided decision tables (web based)
	16.4.1. Types of decision table
	16.4.1.1. Extended Entry
	16.4.1.2. Limited Entry

	16.4.2. Main components\concepts
	16.4.2.1. Navigation
	16.4.2.2. Cell merging
	16.4.2.3. Cell grouping
	16.4.2.4. Operation of "otherwise"
	16.4.2.5. Re-arranging columns

	16.4.3. Defining a web based decision table
	16.4.3.1. Manual creation
	16.4.3.1.1. Column configuration
	16.4.3.1.1.1. Utility columns
	16.4.3.1.1.2. Adding columns
	16.4.3.1.1.3. Simple column types
	16.4.3.1.1.3.1. Metadata
	16.4.3.1.1.3.2. Attributes
	16.4.3.1.1.3.3. Simple Condition
	16.4.3.1.1.3.4. Set the value of a field
	16.4.3.1.1.3.5. Set the value of a field on a new fact
	16.4.3.1.1.3.6. Delete an existing fact

	16.4.3.1.1.4. Advanced column types
	16.4.3.1.1.4.1. Condition BRL fragments
	16.4.3.1.1.4.2. Execute a Work Item
	16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter
	16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter
	16.4.3.1.1.4.5. Action BRL fragment

	16.4.3.2. Using a Wizard
	16.4.3.2.1. Selecting the wizard
	16.4.3.2.2. Summary page
	16.4.3.2.3. Add Fact Patterns page
	16.4.3.2.4. Add Constraints page
	16.4.3.2.5. Add Actions to update facts page
	16.4.3.2.6. Add Actions to insert facts page
	16.4.3.2.7. Columns to expand page

	16.4.4. Rule definition
	16.4.5. Audit Log

	16.5. Spreadsheet decision tables
	16.6. Scorecards
	16.6.1. (a) Setup Parameters
	16.6.2. (b) Characteristics
	16.6.2.1. Creating Characterstics
	16.6.2.2. Creating Attributes

	16.7. Test Scenario
	16.7.1. Given Section
	16.7.2. Expect Section
	16.7.3. Global Section
	16.7.4. New Input Section

	16.8. Functions
	16.9. DSL editor
	16.10. Data enumerations (drop down list configurations)
	16.10.1. Advanced enumeration concepts

	16.11. Technical rules (DRL)

	Chapter 17. Workbench Integration
	17.1. REST
	17.1.1. Job calls
	17.1.2. Repository calls
	17.1.3. Organizational unit calls
	17.1.4. Maven calls
	17.1.5. REST summary

	Chapter 18. Workbench High Availability
	18.1.
	18.1.1. VFS clustering
	18.1.2. jBPM clustering

	Part VI. Drools Examples
	Chapter 19. Examples
	19.1. Getting the Examples
	19.2. Hello World
	19.3. State Example
	19.3.1. Understanding the State Example

	19.4. Fibonacci Example
	19.5. Banking Tutorial
	19.6. Pricing Rule Decision Table Example
	19.6.1. Executing the example
	19.6.2. The decision table

	19.7. Pet Store Example
	19.8. Honest Politician Example
	19.9. Sudoku Example
	19.9.1. Sudoku Overview
	19.9.2. Running the Example
	19.9.3. Java Source and Rules Overview
	19.9.4. Sudoku Validator Rules (validate.drl)
	19.9.5. Sudoku Solving Rules (sudoku.drl)

	19.10. Number Guess
	19.11. Conway's Game Of Life
	19.12. Pong
	19.13. Adventures with Drools
	19.14. Wumpus World
	19.15. Miss Manners and Benchmarking
	19.15.1. Introduction
	19.15.1.1. BenchMarking
	19.15.1.2. Miss Manners Execution Flow
	19.15.1.3. The Data and Results

	19.15.2. In depth Discussion
	19.15.2.1. Cheating
	19.15.2.2. Conflict Resolution
	19.15.2.3. Rule "assignFirstSeat"
	19.15.2.4. Rule "findSeating"
	19.15.2.5. Rules "makePath" and "pathDone"
	19.15.2.6. Rules "continue" and "areWeDone"

	19.15.3. Output Summary

