Drools Documentation

Version 6.0.2-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

IV = [o 4= PP 1
I 1 1 o To U o o1 I 3
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 3

1.2. Getting INVOIVEAcooiiiiiiiiii e e 3
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 4

1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 4

1.2.3. Submitting isSUEs Via JIRAcoiiii i 5

1.2.4. FOrK GItHUD ooee e e 6

ST 1Y 11T T =) (= 6

1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 8

1.2.7. Submit PUll REQUESTEScvuiiiiciii e 9

1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 11
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 11

1.3.2. BUilding from SOUICEociiiiiieiiii et 21

1.3.3. ECIPSE i 22

2. REIEASE NOLES .oouiiii i et 29
2.1. New and Noteworthy in KIE APl 6.0.0cciviiiiieiiiei e 29
2.1.1. NeW KIE NAME ..o 29

2.1.2. Maven aligned projects and modules and Maven Deployment 29

2.1.3. Configuration and convention based projectscccceevveeeiiineeeens 30

2.1.4. KieBase INCIUSIONcoouuiiiiiiii e 30

2.1.5. KieModules, KieContainer and KIE-Clccocoiiiiiiiiiiiiiiiiccieen, 31

2.1.6. KIESCANNET ..oivtiiieeiii e e e e s 31

2.1.7. Hierarchical ClassLoadercoccuiviiiiiiiiiieiieecieeeee e 32

2.1.8. Legacy API AdApLercoouieiiiiiiiie e 32

2.1.9. KIE DOCUMENTALION ...uiiiviiiiieii e eees 32

2.2. What is New and Noteworthy in Drools 6.0.0ccooeeviieiiineiiii e 33
2.2.1. PHREAK - Lazy rule matching algorithmcccoooeviiiiiiiiiiiiinnene, 33

2.2.2. Automatically firing timed rule in passive modeccoccciveviieennnnn. 33

2.2.3. EXPreSSioN TIMEIS ..o.uuuiiiiiiieieiii ettt e et e e 34

2.2.4. RuleFowGroup and AgendaGroups are mergedccoccoevevvneeennnnnns 35

2.3. New and Noteworthy in KIE Workbench 6.0.0ccccoviiiiiiiiiiiiiieicieees 35

2.4. New and Noteworthy in Integration 6.0.0cocciiiiiiiiiiii e 38
S O I | PP 38

A S Y o 12T 39

2.4.3. ArieS BIUEPIINTS ...ooeiiiiiiii e 39

244, OSGI REAAY .. .civviiiieiiii e e 39

3. Compatibility MALIIX oo 41
R PSP 43
O | PP 45
I @ V= g T O 45
4.1.1. Anatomy Of ProOJECESiiiiiiiiiiiii e 45

4.1.2. LITECYCIES ovniii e 46

Drools Documentation

4.2. Build, Deploy, Utilize and RUNc.oiiiiiiiiiiieee e 47
0 W [1o To (1T o o E PSP 47
4.2.2. BUIING ..o 50
o T LY o] [0/ g T [P 67
A.2.4, RUNNING ottt ettt e et e et e e et eeeaan s 73
4.2.5. Installation and Deployment Cheat Sheetsccooceceiiviiiiiiineiinens 88
4.2.6. Build, Deploy and Utilize EXamplesccocooiiiiiiiiiniiiiiincci, 89

G TS = Tor 0 PPN 101
4.3.1. SECUILY MANAGETcceiiiiieiiiii ettt eees 101

[1l. Drools Runtime and LANQUAGEoeeuuiiiiieiiieieeeee e e e e e e e e e e et e e et e e eaneees 105
5. HYDrid REASONING oiiiiiiiiiii e 107

5.1. Artificial INtelligeNCecvviiiii e 107
5.1.1. A Little HISTOMY ..oovviieiiiieeee e 107
5.1.2. Knowledge Representation and Reasoningccoeeevvevevineeinnnnnn. 108
5.1.3. Rule Engines and Production Rule Systems (PRS)c.....ccevvunnee. 109
5.1.4. Hybrid Reasoning Systems (HRS)cccooviiiiiiiiiiiii e 111
5.1.5. EXPErt SYSIEMS ...ooiiiiiiiiiiiie e 114
5.1.6. Recommended Readingccooeeuiiiiiiiiiiii e 115

5.2. Rete AlGOItNM ... 118

5.3. ReteOO AIQOItNM ...ovuiii e e e 125

5.4, PHREAK AIQOrithImooeiiii e 126

B. USEI GUITE .ottt e e e et e e et e e e et e e e e aa e 135

L0 I o T TN = 7= 1 o 135
6.1.1. Stateless Knowledge SeSSIONc.cveviiiiiiiiieiiiiecii e 135
6.1.2. Stateful Knowledge SesSioNncoocoeeiiiiiiiiiiiiiiiiicce e 138
6.1.3. Methods VErsuS RUIESuiiiiiiiiiiiiiii e 143
6.1.4. CroSS ProUCESiiiiiiiiiieiii e e e 144

6.2. EXECULION CONIOI ...t e e e 145
B.2.1. AGENUA ...uuiiiiii et 145
6.2.2. Rule Matches and Conflict Sets.ccoviiiiiiiiiiiii e, 146
6.2.3. Declarative AQENTaoviiiiiiiiiiii e 153

6.3, INTEIENCE ... e 155
6.3.1. BUS Pass EXample ... 155

6.4. Truth Maintenance with Logical ObJECESccoevvviiiiiiiiiiiiciie e 158
L T @Y= V1 P 158

6.5. Decision Tables in SpPreadsheetsc.ccoovviiiiiiii i 162
6.5.1. When to Use Decision Tablesccccooviiiiiiiiiiiiie e 163
B.5.2. OVEIVIEBW ...ttt ettt e et e e et e e e e et e e e e ere s 163
6.5.3. How Decision Tables WOrKcccouiiiiiiiiiiiiiiieeeeec e 165
6.5.4. Spreadsheet SYNLAXcccceuiiiiiiieiiii e 169
6.5.5. Creating and integrating Spreadsheet based Decision Tables 179
6.5.6. Managing Business Rules in Decision Tablesccccccovviviineinnnnns 179
6.5.7. RUlE TEMPIALES ...ooviiiiiii e 180

[S 20T 0T T 11 o RN 183

7. Rule Language REfEIENCE ... 185

4 T O 1= 4T PP 185
.11 A TUIE FilE e 185
7.1.2. What Makes @ TUIEcocuuniiiiiiii e 186

7.2, KEYWOIUS ...ttt ettt e e e e e b 186

7.3, COMIMENES oottt ettt e et et e e e et e et e e e ennennes 188
7.3.1. Single [IN@ COMMENTciiiiiiiiiii e 188
7.3.2. MUlti-lin€ COMMENT ...uuiiiiiiii i 189

T4, EITOr IMESSAGESiiiitiiiii ettt e ettt et ettt en e en e 189
7.4.1. MeSSage fOrmMalccuiiiiiiii e 189
7.4.2. Error Messages DesSCriptionuveiiiiiieieiii e 190
7.4.3. Other MESSAQES . civvuiiiiiieiii et e e e e e e e aen 194

7.5, PACKAGE ...eeiiieiii e 194
48 5 T 111 o o o (N 195
7.5.2. 910DAI ..o 196

LG T ¥ [To 1o o TSP 197

7.7. Type DECIAratioNccieiiiiieiiiii e e 198
7.7.1. Declaring NEW TYPES ..uucivuiiiiiiieiiieeei e e e e e e e e et e e e eens 199
7.7.2. Declaring Metadatacc.uuvieiiiiiiiiii e 201
7.7.3. Declaring Metadata for EXisSting TYPES ...cccuveviiiiiiiieiiieeieeeeeeiis 208
7.7.4. Parametrized constructors for declared typesocceeviveiiiiinnenes 208
7.7.5. Non Typesafe ClaSSeSccuiveiiiiiiiii e 209
7.7.6. Accessing Declared Types from the Application Code 209
7.7.7. Type Declaration 'extends’ccuoveiiiiiiiiiieii e 211
A - TR I - V1 T 211

7.8 RUIE e 218
7.8.1. RUle AHINDULES ..o e 219
7.8.2. Timers and Calendarscooeuuiiiiiiiiiieiiiiineeee e 223
7.8.3. Left Hand Side (When) SYNtaXoccviviiiiiiiiiiiieiii e 227
7.8.4. The Right Hand Side (then)ccoooiiiiiiiiii e 280
7.8.5. Conditional named CONSEQUENCEScccuuuieeiirinieeiiiiiie e e e 282
7.8.6. A Note on Auto-boxing and Primitive TYPeScccceeveviiieiiiieviineennnn. 284

S T O U= PP PPTPPTIN 285

7.10. Domain Specific LANQUAGEScoueiiieiiii e e e e e e eens 288
7.10.1. When t0 USE @ DSL ..covuiiiiieiii e 288
7.010.2. DSL BASICS ..eivitiieiiiiiiieeiii e et e et e e et e e et e et e e aa e aee 288
7.10.3. Adding Constraints to FACISc..iiiiiiiiiieiiiiiec e 291
7.10.4. Developing @ DSLoivuiiiiiciie e 293
7.10.5. DSL and DSLR Referencecoooeuiiiiiiiiiiiieiiieeeeee e, 293

8. CompleX EVENT ProCESSING ..oiuviiiiiiiiiii et e e e e e e e e e e e e eanes 299

8.1. Complex EVENE PrOCESSING .. cvvuriieiiiiiieee ettt 299

7 B o To (-3 U= o T o PR 300

8.3. EVENE SEMANTICS ..oivuiiiiieiii ettt e e e e e e e e e e e en e eeen 302

8.4. Event Processing MOAESco.uieiiiiiiiiiieii e e e e e e 303

Drools Documentation

S 2 T @ o T I 1Y/ o To [P 304
8.4.2. Stream MOAEcocvuiiiiiii e 305

8.5. SESSION ClOCK ...ceviiiiiiee et e 307
8.5.1. Available Clock Implementationsccooevviiiiiiieiii e 308

8.6. SlidiNg WINUOWScovuniiiiiiie et 309
8.6.1. Sliding Time WINAOWSccovuiiiiiiiiii e 309
8.6.2. Sliding Length WINAOWSc..uiiiiiiiiiiiiiii e 310

8.7, SIrEAMS SUPPOI L .itiiiitii ittt e e e e e 311
8.7.1. Declaring and Using Entry POINtSccoooviiiiiiiiiiiiiiiii e 312

8.8. Memory Management for EVENLScc.oiviiiiiiiiii e 314
8.8.1. Explicit expiration OffSEtoceiiiiiiiiiiii e 314
8.8.2. Inferred expiration offSetccoeeviiiiiiii 314

8.9. Temporal REASONINGcouuuiiiiiiiiiei e 315
8.9.1. Temporal OPEIALOrScceuuieeiiiieiiieeiii e e e e e e e e e eanaeees 316

V. DroolS INTEGIALIONcouuiiiiiii ettt ettt e et e et e e e b 331
L I B o To] F-T @aT 1 4] 4o =T o £ PPTRSPPN 333
LS Y = PPN 333
LS 2 I B €5 1 (<1 o TSP 333
9.1.2. JSON oottt 333
9.1.3. JAXB ettt aan 333

9.2. ComMmMANAS SUPPOIEA ... ceevueniiiii ettt 334
9.2.1. BatchExecutionCommandcccuiiiiiiiiiieiiiiiieeeeene e 336
9.2.2. InsertObjectCoOMMANGooiiiieieiiii et 337
9.2.3. RetraCtCoOMMANTuiiiiiiiiieeiiii e e e e e 339
9.2.4. ModifyComMMEANTuuiiiiiiiieiiii e 340
9.2.5. GetObhjectCommandcoieiiiiiiiii i 341
9.2.6. InsertElementsCommandcooveuiiiiiiiiiiin e 342
9.2.7. FireAlIRUIESCOMMANGoovviiiiiii e 344
9.2.8. StartProcessCommandocuivviiiiiiieiiir e 345
9.2.9. SignalEventCommaNndcccuuieiiiieiiiiieiie e 347
9.2.10. CompleteWorkltemCommandoooeeviiiiiiiiiinniiiieeeei e 348
9.2.11. AbortWorklitemCommandcoeuuiiiiiiiiiieiiiiiee e 349
9.2.12. QUEIYCOMMANG ...vuuiiiiiiiiee it e et e e e et e e e e eaa s 350
9.2.13. SetGlobalCommandcoveiiiiiiiiriiiiie e 351
9.2.14. GetGlobalCommandcovviiiiiiiii e 353
9.2.15. GetObjectsCommandccocvuiiiiiiiiiii e 354

0 TR I PSP 357
020 O [1 o T [o 1T o TP 357
O B Y o aTo] = 11 o] 1T PTRPRR 357
10.2.1. @KREICASEIUceieviiiiiiii 357
10.2.2. @KCONTAINET ..ueniiiiieee e e e e e e e e 357
10.2.3. @KBASE ..ccevviieiiiiiieeee e 358
10.2.4. @KSesSion for KieSESSIONccviviiiiiieeieeeeee e, 359
10.2.5. @KSession for StatelessSKIieSEeSSIONc..cvvviiiiiiiiiiiiieieeeieenas 360

Vi

10.3. API Example COMPATISONcccuuuieiiiiiieiiiii ettt 361

11. Integration With SPriNg ..o e 363
11.1. Important Changes for Drools 6.0c.coiiiiiiiiiiiiiiii e 363
11.2. Integration with Drools EXPErtcoeeiuiiiiiiiiiiii e 363

11.2.1. KieMOAUIEouniiieiii et 363
11.2.2, KIEBASE ..uiiiiiiiiii ittt 364
11.2.3. IMPORTANT NOTE ..ottt 365
11.2.4, KIESESSIONS ..ciivtiieeiiiiiee ettt e et e e e e et e e e et s e e e et s e e eenenneaaees 365
11.2.5. EVENL LISLENEIS ...oiiiieiiiiie et e e 366
0 2 G T o To [1= TP 370
11.2.7. Defining Batch Commandsccooviiiiiiiiiiiiiieci e 372
11.2.8. PEISISIENCE ..oovviieiiiiiiici e 373
11.3. Integration with JBPM Human Taskcccoveiiiiiiiiiiiiii e 374
11.3.1. How to configure Spring with JBPM Human task 374

12. Apache Camel INTEGrationcoouuiiiiiiiiiei e e e 379
12.0, CAMEI oot 379

13. Drools CaAmeEl SEIVELiiiiiieii et e e et e e e e e aaes 383
R 200 I [11 o T [o 1T o T PP 383
13.2. DEPIOYMENT ...t et 383
RS T @do] 4o |1] =1 1 o] o RN 383

13.3.1. REST/Camel Services configurationcccceveeviviinniiiiiinneeinnnnnn. 383

14. IMX monitoring with RHQ/JONoiiiiiiiii e 389

I I [1o T [T o o PPN 389

14.1.1. Enabling JMX monitoring in a Drools applicationc.cc.ccuu..e. 389

14.1.2. Installing and running the RHQ/JON plugincccoooviiiiiiniiiiinnnnen. 389

V. Drools WOTKDENCRiiii e e e s 391

15, WOTKDENCRN e et et e e e e e aans 393

15.0. INSTAlIALION .oiieiiieee e 393
15.1.2. War installationcooveiiiiiii e 393
15.1.2. WOrkbench datac..uviiiiiiiiiii e 393
15.1.3. SYSLEM PrOPEILIES ..oeuueiiiii ettt 393

15.2. QUICK STAIT ..iiiiiiiiee e e e e e e e e e 395
15.2.1. Add rEPOSITONY ..oiieiiiieeeeii ettt e 395
15.2.2. AdA PrOJECE couniiii i 397
15.2.3. Define Data MOdelooveuiiiiiiiiii e 400
15.2.4. DefiNe RUIE ..oovuiiiiii i 404
15.2.5. Build @nd DeplOycooieiiiiiiiiiiiieie e 406

15.3. ADMINISITALION ..oovvtiieiiii e et e e eeeeae e eeene 408
15.3.1. AdMINIStration OVEIVIEWviiuniiiiieiiiee e e 408
15.3.2. Organizational UNitc.coiiiiiiieiiiiici e e 408
15.3.3. REPOSIIOMNESiieiiiieiieii et 409

ST @do] 4o U] =1 (o] o KN 411
15.4.1. USEr ManagemeNtccuuiiiinieiiiiitieeee e e e e e e eees 411
15.4.2. ROIES e 412

Vii

Drools Documentation

15.4.3. Restricting access t0 repoSItOriescocuvvviviiiiiieeiiiieeee e 413
15.4.4. Command line config toolcciiiiiiiiiiii e 413
TR ST [0110 o ¥ T 1o] o PR 415
15.5.1. Log in and 10g OULiiiiiiiiiie e 415
15.5.2. HOME SCIEEM ..ouiiiiiiiiii ettt e e e 415
15.5.3. WOrkbench CONCEPLSccuiiiiiiiiiiiiciie e 415
15.5.4. INitial TAYOULcooiiiiiii e 416
15.6. Changing the [ayOutcccouiiiiiiii e 417
15.6.1. RESIZING ...cveitiieiiiii et 417
15.6.2. REPOSItIONING ..oevuiiiiiieiii e e e e e e e e e e eanees 418
15.7. AUTNOTING .ot 419
15.7.1. Artifact REPOSITOIYuiiiiiiiii i 419
15.7.2. ASSEE EQItOr ..oevniiiiiee e 421
15.7.3. Project EXPIOTErcovuniiii e 424
15.7.4. ProjeCt EQItOrccoouuiiiiiii e 432
15.7.5. Validationcooeveiiiiiiiii e 436
15.7.6. Data MOEIIEToieeiieeee e e 438
15.7.7. Categories EditOrcccouiviiiiieiiece e 466
15.8. Embedding Workbench In Your Applicationccoooiiiiiiiniiiiiinnecennnn, 468
16. AULNOTING ASSBIS iuiiiiiiiiii e e e e e e e e et e e e e e et e eeanaaes 471
16.1. Creating @ PACKAGEuuiiiiiii et e e 471
16.1.1. EMPLY PACKAGE ...cevniiiiiieiii e 472
16.1.2. Copy, Rename and Delete Packagescccocceviviiiiiiiiiiiineiinnenns 473
16.2. Business rules with the guided editorccoooiiiiiiiiin e, 475
16.2.1. Parts of the Guided Rule Editorcccoovviiiiiiiiiiiie e 475
16.2.2. The "WHEN" (left-hand side) of a Rulecccoveiiiiiiiiiiiiines 476
16.2.3. The "THEN" (right-hand side) of a Ruleoooiiiiiiiiiiiiiiinnnn, 480
16.2.4. Optional attributescoiiiiiiiiii e 483
16.2.5. Pattern/Action toolbarc..ovviiiiiiiii 483
16.2.6. User driven drop down liStSccooviiiiiiiiiiiiiiccieeee e 483
16.2.7. Augmenting with DSL SENtENCEScccvviiieiiiiiieieiiiieeee e 484
16.2.8. A more complex eXample:coiiiiiiiiiiii 485
16.3. Templates of aSSEetS/IUIESocoiiiiiiiiiii e 486
16.3.1. Creating a rule templatecooooiiiiiiiiiii e 487
16.3.2. Define the templateooveiiiiiiii 487
16.3.3. Defining the template dataccccooiviiiiiii e, 488
16.3.4. Generated DRLoovvuiiiiiii e 492
16.4. Guided decision tables (web based)cccoooviiiiiiiii 494
16.4.1. Types of decision tableoiiiiiiiiiiii e 494
16.4.2. Main componentS\CONCEPLSvvvneiiiieiiieeiie e e e e e e 495
16.4.3. Defining a web based decision tableocciiiiiiiiiinn 498
16.4.4. Rule definitionoiiiiiiiiiiii e 513
R T A U Lo 1 o o PP 514
16.5. Spreadsheet decision tablescccoooiiiiiiiiiii i 516

viii

S TS ot 0 (=To7=1 (o [T 517

16.6.1. (Q) Setup Parameterscccoieiiiiiiiiiicii e 518
16.6.2. (D) CharaCteriStiCSiiiiiiiiiieiiii e 519
T A =TS A Tod =T o =T o T PP 521
16.7.1. GIVEN SECHON ...ieeiiiiii e e e 524
16.7.2. EXPECE SECHON ..uuiiiiiii e e e e 524
16.7.3. Global SECHON ...cccvniiiiie e 525
16.7.4. NeW INPUL SECLIONccuuiiiiiiii e e e 525
16.8. FUNCHONS ..oeiiiiiee et e e e e e e et e e e eanaeees 525
G T I 1] =T [(o USSP 526
16.10. Data enumerations (drop down list configurations)ccccoocvevinneeennnn. 527
16.10.1. Advanced enumeration CONCEPLSccuuveirnieiinieiiiieeiiieeeieerieeeaenns 528
16.11. Technical ruleS (DRL) ...cc.uuiiiiiiiiiiiii e 529
17. Workbench INtegrationccoouiiiiiiiiiii i e e e e eea 531
L7, REST i 531
17.0.1. 30D CallS covvneieiiii e 531
17.1.2. RePOSItOry CallSviiiiiiiiiiiii e 532
17.1.3. Organizational unit callsccoooviiiiiiiiii e, 534
17.2.4. MAVEN CallS ...oeeiiieii e 535
17.1.5. REST SUMMAIY ..ottt ettt e e e e e e e e eas 535

18. Workbench High Availabilitycoooiiiiiiiii e 537
00 PP 537
18.1.1. VFS CIUSEEIING .eevvueiiiiiieiieiie et e e 537
18.1.2. JBPM CIUSIEINNG .euiiiiieiieci et e e 541

V1. DroolS EXBMPIESouniiiiii ettt ettt ettt e ettt e e et e e e eat e e e eaa e eees 543
S R T 121 P 545
19.1. Getting the EXamPpIES ... 545
19.2. HEllo WOTIA ...covniee e 545
19.3. State EXAMPIE ..o 551
19.3.1. Understanding the State Exampleccoccoiviiiiiiin i 551
19.4. FIbonacCi EXamMPIEiiiiiiiiii e 558
19.5. Banking TULOMIAIoiiiiiii e e e s 565
19.6. Pricing Rule Decision Table EXampleccooiiiiiiiiiiniiiiece e, 579
19.6.1. Executing the example ..o, 579
19.6.2. The decCiSion tableccooiiiiiiii e 580
19.7. Pet Store EXampPIecooviiiiiii e 582
19.8. Honest Politician EXamPpPleccoouiiiiiiiiiii e 594
19.9. SUdOKU EXAMPIEuiiiiii e 598
19.9.1. SUAOKU OVEIVIEWievniiiieiiieeeie e et e e e e e e e e e e e e eeens 599
19.9.2. Running the EXamPlecoooviiiiiiiicii e 599
19.9.3. Java Source and RUleS OVEIVIEWc.uuiveiiiiinieiiiiiiieieiineeeeneen 605
19.9.4. Sudoku Validator Rules (validate.drl)ccccoeveviiiiiiiiiiieeiee, 605
19.9.5. Sudoku Solving Rules (sudoku.drl)ccooviviiiiiiiiiiiiiiii e 606
19.20. NUMDEE GUESS .. ceeviiiiiiii ettt e e e e et e e e e 607

Drools Documentation

19.11. Conway's Game OF Lifeccuuiiiiiiiiiiiiiii e 614
19.12. PONQ itteeitiiiee ettt ettt et e e 621
19.13. Adventures With DrooISiiiiiiiiiiiiii e 622
19.14. WUMPUS WOTIA ...ooini e e e 623
19.15. Miss Manners and Benchmarkingcooiiiiiiiinniii e 626
19.15.1. INtrOAUCHION ... 627
19.15.2. In depth DISCUSSIONccovuinieiiiiiiieeeei e 630
19.15.3. OULPUL SUMMAIY .uiiiiiiieir e ans 636

(9Drools

Xii

Part I. Welcome

Welcome and Release Notes

Chapter 1.

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the
system. Building and deploying now align with Maven and the utilization is now convention and
configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for
content that has strong tooling support. There has been a refocus on simplicity away from
databases with an aim of storing everythign as as text file, even meta data is just a file. The
database is just there to provide fast indexing and search via Lucene. This will allow repositories
now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Chapter 1. Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http:/
www.jboss.org/ and click "Register".

In | Regist
Members Projects Products IR
Overview Lommunity User Groups Events Blogs Articles Books
Choosing the right technology... tay connected: 3 <) KD
JBoss Community JBoss Enterprise
EZL\n:n:u" ty driven propects m Products Stable, supported products ﬂ f_hErk out mg latest
eaturing the latest innovations h certified on multiple platforms & Asy audio podcasts
for cutting edge apps. Tor misshon critical apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills
JavaOne Tokyo 2012

Join Red Har at the JavaOne conference in

I '[0 Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

June ¥5-26 : Boston
(N] Tty TaTh B B - EAET SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Submitting issues via JIRA

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [???](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Chapter 1. Introduction

Projects ! lssues = EENIEES

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Writing Tests

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Chapter 1. Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Submit Pull Requests

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &
...19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Chapter 1. Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

10

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Installation and Setup (Core and IDE)

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your
projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the
dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime"” stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

« knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user API and what is just an engine API.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

« drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

* drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all
features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

11

Chapter 1. Introduction

 drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found
on the Maven repository.

1.3.1.2. Use with Maven, Gradle, lvy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xmi like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bomx/artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-compiler</artifactld>
<scope>runti ne</ scope>
</ dependency>

<dependenci es>

12

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Installing and using

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

If you're still using Ant (without Ivy), copy all the JARs from the download zip's bi nar i es directory
and manually verify that your classpath doesn't contain duplicate JARs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre
packaged, as well as a choice of other tools separate to rules. You can choose just to install rules
from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or
downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,
as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.
Location is:

http://downl oad. ecl i pse. org/tool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

13

Chapter 1. Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software
|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in
directory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-
in directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs
end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the
'Open Perspective' button in the top right corner of your Eclipse window, select 'Other..." and
pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

14

http://www.jboss.org/drools/downloads.html

Installing and using

perspectives, the installation probably was unsuccessful. Check whether you executed each of
the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have
Eclipse GEF installed (check whether the org.eclipse.gef 3.4.*.jar exists in the plugins directory
in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the
org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot
find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found
no our homepage here:

http://www.jboss.org/drools/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release
of the Drools project JARs. To create a runtime, you must point the IDE to the release of your
choice. If you want to create a new runtime based on the latest Drools project JARs included in
the plugin itself, you can also easily do that. You are required to specify a default Drools runtime
for your Eclipse workspace, but each individual project can override the default and select the
appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.
To open up your preferences, in the menu Window select the Preferences menu item. A new
preferences dialog should show all your preferences. On the left side of this dialog, under the
Drools category, select "Installed Drools runtimes". The panel on the right should then show the
currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something
like the figure below.

15

http://www.jboss.org/drools/

Chapter 1. Introduction

S

[opefiter texd l

[General

P Ant
=~ Drools
Drools Flow nodes
Drools Task
Guvnor
Help
Install/lUpdate
Java
Maven
Plug-in Development
Run/Debug
Team

XML

R e

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

16

Installing and using

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can
create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required
dependencies to the specified folder. After selecting this folder, the dialog should look like the
figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required JARs.

17

Chapter 1. Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

18

Installing and using

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

19

Chapter 1. Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

20

Building from source

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

@ [OK H Cancel]

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source
JAR. The same source JARs are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on GitHub [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

21

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Chapter 1. Introduction

$ git clone git@ithub.com drool sjbpnf guvnor. git

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from source and
possibly contributing to the project, follow the instructions in the README file in droolsjbpm-
build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/
README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a folder called a workspace,
Choose a workspace Folder ko use For this session,

Wiorkspace:

- j Erowse, .,

[Use this as the default and do not ask again

(] 4 Zancel

22

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Eclipse

& Java - Eclipse SDK

File Edit Source Refackor Mavigate Search Proj

I -EHE | %9 %-0-Q- |

e

Hierarchy g |

: Package Explorer X

TG
Mew »

2 Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

23

Chapter 1. Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

24

Eclipse

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling nvn i nstal | all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

25

Chapter 1. Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew \Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

26

Eclipse

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

27

Chapter 1. Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

28

Chapter 2.

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE API 6.0.0

2.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPIanner Drools UberFire iBPM
Guvnor
. v
v v
[Drools-WB jBPM-WB J
Y
KIE-WB

Figure 2.1. KIE Anatomy

2.1.2. Maven aligned projects and modules and Maven
Deployment

One of the biggest complaints during the 5.x series was the lack of defined methodology for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the
system. Building and deploying activities are now aligned with Maven and Maven repositories.

29

Chapter 2. Release Notes

The utilization for loading rules and processess is now convention and configuration oriented,
instead of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven
repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to
access.

2.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<krmodul e xm ns="http://jboss. org/kie/6.0.0/knodul e">
<kbase nane="kbasel" packages="org. mypackages>
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knmodul e>

Example 2.2. Utilize the KieSession

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

2.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase, in addition to all the rules, function and processes directly defined
into it, will also contain the ones created in the included KieBase. This inclusion can be done
declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knodul e" >
<kbase nane="kbase2" incl udes="kbasel">
<ksessi on nane="ksessi on2"/>
</ kbase>
</ knmodul e>

30

KieModules, KieContainer and KIE-CI

or programmatically using the Ki eMbdul eMbdel .

Example 2.4. Including a KieBase into another programmatically

Ki eMbdul eMbdel kmodul e = Ki eServi ces. Factory. get (). newKi eMbdul eMbdel () ;
Ki eBaseMbdel ki eBaseMdel 1 = knodul e. newKi eBaseModel (" KBase2") . addl ncl ude(" KBasel");

2.1.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a '’kmodule.xml' in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are
supported.

Example 2.5. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (
ks. newRel easel d("org. nygroup", "nyartefact", "1.0"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read me, HAL?"));
kSession.fireA |l Rul es();

KieContainers can be dynamically updated to a specific version, and resolved through Maven
if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally
updated.

Example 2.6. Dynamically Update - Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(
ks. newRel easel d("org. nygroup", "nyartefact", "1.1"));

2.1.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.
It continuously monitors your Maven repository to check if a new release of a Kie project has

31

Chapter 2. Release Notes

been installed and if so, deploys it in the Ki eCont ai ner wrapping that project. The use of the
Ki eScanner requires kie-ci.jar to be on the classpath.

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/] Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in the Maven
repository, an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

2.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance
problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is
at the KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add
and remove rules, but there can now be no referencing between namespaces in DRL files; i.e.
functions can only be used by the namespaces that declared them. The recommendation is to
use static Java methods in your project, which is visible to all namespaces; but those cannot (like
other classes on the root KieContainer ClassLoader) be dynamically updated.

2.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through
Maven dependency "knowledge-api-legacy5-adapter”. Because the nature of deployment has
significantly changed in 6.0, it was not possible to provide an adapter bridge for the
KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll
fix for 6.1

2.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued

32

What is New and Noteworthy in Drools 6.0.0

references to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

2.2. What is New and Noteworthy in Drools 6.0.0

2.2.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm
that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now
help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now ‘'modify’ is allowed. While there is
no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated
will see the more recent data as a result of 'modify’. This is more inline with how people intuitively
think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and
then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was
considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,
the rule order in the file is preserved via the diff processing.

2.2.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire
consequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change
this default behavior by configuring the KieSession with a Ti medRul eExecti onOpt i on as shown
in the following example.

Example 2.8. Configuring a KieSession to automatically execute timed rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
ksconf.set Opti on(Ti nedRul eExecti onOpti on. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 2.9. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
conf.set Opti on(new Ti medRul eExecti onOpti on. FI LTERED(new Ti nedRul eExecutionFilter() {
publi ¢ bool ean accept(Rul e[] rules) {

33

Chapter 2. Release Notes

return rul es[0]. get Nane() . equal s("M/Rul e");

b))

2.2.3. Expression Timers

Itis now possible to define both the delay and interval of an interval timer as an expression instead
of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated
by "expr:") as in the following example:

Example 2.10. An Expression Timer Example

decl are Bean
del ay . String = "30s"
period : long = 60000
end

rule "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 2.11. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN- 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

34

RuleFowGroup and AgendaGroups are merged

Conversely the repeat-limit can be only an integer and it defines the maximum number of
repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer
will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

tinmer (int: 30s 1m start="3-JAN 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't
be scheduled immediately but will preserve the phase defined by the timer and so it will be
scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused
(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only
once to recover from missing activations (regardless of how many activations we missed) and
subsequently it will be scheduled again in phase with the timer.

2.2.4. RuleFowGroup and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroup's behave the same as
AgendaGroups. The get methods have been left, for deprecation reasons, but both return the
same underlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups
and AgendaGroups when used together was a continued source of errors. It also aligns the
codebase, towards PHREAK and the multi-core explotation that is planned in the future.

2.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued
performance problems with the various JCR implementations, which would slow down once the
number of files and number of versions become too high. There has been a big "low tech” drive,

35

Chapter 2. Release Notes

to remove complexity. Everything is now stored as a file, including meta data. The database is
only there to provide fast indexing and search. So importing and exporting is all standard Git and
external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

) KIE Drools Workbench
\;D % localhost MLARES M Q @ et x
Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer & Guided Editor [Bankruptcy history] Save || Delete || Rename || Copy | Vaidate | | x ||~
EXTENDS Mone selected o
demo ~ uf-playground ~ mortgages ~ a
WHEN s
= <default> 1. ThereisalLoanApplication [a]
The following exists
& org There is a Bankruptcy with:
= mortgages any ofthe following:
2 yearOfOccurrence| greater than j 1990
amountOwed greater than j 10000
% DRL THEN

1. delete LoanApplication [a]

(© DOMAIN SPECIFIC LANGUAGE DEFINITION i fals
Set value of LoanApplication [a] approved false j:

2 -
(® ENUMERATION DEFINITION L

Edit Source Config Metadata
/ GUIDED DECISION TABLE

@ GUIDED RULE Problems ~1=

Bankruptcy history Level Text File Column Line
No bad credit checks

[ERR 102] Line

no NINJAs 7:0 mismatched
[%] . . Dummy rule.drl o 7
Underage input ‘then"in rule

"Dmmy rule”

Figure 2.2. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

36

New and Noteworthy in KIE Workbench 6.0.0

plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

g ™
Uberfire
|org uberfire]
s githul. comidrecisbpeyutarion 3
pS vy
- N
* Maven Reposilory
Guvnor * Projact Service
[.pusnorguvnos] “ I
* WoarkNow
hiips:¥github. comddroots bpeigumon [
oy
" ™
. * Hame page
kie-wb-common * Projact Explonar
[org. lokex kig-wib-cammcn] * Data Madaller
* Weta Data
- * Search
g gtk gl v T
Sy
' R S
* DRL : . JBPFM Consale
drools-wb * Guided Edilors I jopmewb } " FBPM Desigrer
[org. droals: dreals-wh) ‘ T'HH Scenarios L forg pmijbpmwt] 1
1
M e e e e e #
g gt wady, £ |u.'||.|miu||;-|;#;gh\ - _._T‘
~ % .- .
- /o~ DN
i |
kie-drools-whb kie-wh 1 kie-jopmewb
g kha: a-groods-whi] [0y ke kie-si] : [0 ki kie-bpm-wh]| :
L 4
- wh-dmirbusors | hiips:Ngihub comidroisbmikie-wh-distrizutions:

hN

S

Figure 2.3. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

+ KIE Drools Workbench

¢ Drools Editors, for rules and supporting assets.

37

Chapter 2. Release Notes

» jBPM Designer, for Rule Flow and supporting assets.

KIE Workbench

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.
» jBPM Form Builder.

* BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

New packaging and build system following KIE API.

» Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java
classes to the authoring environment. Java classes are packaged into the project and can be
used within rules, processes etc and externally in your own applications.

Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.4. New and Noteworthy in Integration 6.0.0

2.4.1. CDI

CDlI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect
@KSessi on("kbasel")

38

Spring

@XRel easel d(groupld = "jar1", rtifactld = "art1", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect

@KBase(" kbasel")

@XRel easel d(groupld = "jarl1", rtifactld = "art1", version = "1.1")

private Ki eBase kbaselv10;

Figure 2.4. Side by side version loading for 'jar1.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "art1", version = "1.0")
private Ki eSession ksessi onv10;

@ nj ect

@XSessi on(" ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.1")

private Ki eSession ksessionvll;

Figure 2.5. Side by side version loading for 'jar1.KBasel' KieBase

2.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for
consistency with spring and kmodule.xml

2.4.4. OSGIi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

39

40

Chapter 3.

Chapter 3. Compatibility matrix

Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and
OptaPlanner follow the same version numbering.

41

42

Part Il. KIE

KIE is the shared core for Drools and jBPM.It provides a unified methodology and programming
model for building, deploying and utilizing resources.

Chapter 4.

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply
used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.
As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,
was chosen as the new group name. The KIE name is also used for the shared aspects of the
system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

)
/ <

[OptaPlanner Drools [UberFire] jBPM

[
(omows]

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is
now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while
having strong Drools integration, has long been independant of Drools.

45

Chapter 4. KIE

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder
which provides powerful reporting capabities. Dashboard Builder is currently a temporary name
and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant
of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire
provides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The
project is independant of Drools and jBPM and anyone can use it as a basis of building flexible and
powerful workbenches. UberFire will be used for console and workbench development throughout
JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the
authoring metaphors, like Decision Tables, being considered Guvnor components instead of
Drools components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor.
In 6.0 Guvnor's focus has been narrowed to encapsulate the set of UberFire plugins that provide
the basis for building a web based IDE. Such as Maven integration for building and deploying,
management of Maven repositories and activity notifications via inboxes. Drools and jBPM build
workbench distributions using Uberfire as the base and including a set of plugins, such as Guvnor,
along with their own plugins for things like decision tables, guided editors, BPMN2 designer,
human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that
combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't
actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can
typically be broken down into the following:

« Author

» Authoring of knowledge using a Ul metaphor, such as: DRL, BPMN2, decision table, class
models.

* Build

* Builds the authored knowledge into deployable units.

* For KIE this unitis a JAR.
* Test

» Test KIE knowedge before it's deployed to the application.
« Deploy

» Deploys the unit to a location where applications may utilize (consume) them.

46

Build, Deploy, Utilize and Run

» KIE uses Maven style repository.
« Utilize

» The loading of a JAR to provide a KIE session (KieSession), for which the application can
interact with.

» KIE exposes the JAR at runtime via a KIE container (KieContainer).

» KieSessions, for the runtime's to interact with, are created from the KieContainer.
* Run

» System interaction with the KieSession, via API.
* Work

» User interaction with the KieSession, via command line or UI.
* Manage

* Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead
of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as
it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply
a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The
kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those
knowledge bases and sessions. There is also alternative XML support via Spring and OSGi
BluePrints.

While standard Maven can build and package KIE resources, it will not provide validation at build
time. There is a Maven plugin which is recommended to use to get build time validation. The plugin
also generates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

47

Chapter 4. KIE

- e T
v [ldrools-examples-api
¥ [idefault-kiesession
v Clsrc
v CImain
v [Cjava
v org.drools.example.api.defaultkiesession
' & DefaultKieSessionExample
£ ' Message
¥ [Zresources
v defaultkiesession
Hall.drl
v META-INF
= kmodule.xml
= logback.xml
: test
v [java
v org.drools.example. api.defaultkiesession
& & DefaultkieSessionExampleTest
&4 DefaultKieSessionFromFSExampleTest
.gitignore
Il default-kiesession.im!
m pom.xml
¥ [ldefault-kiesession-from-file
v DOsrc
> Bl main
¥ Cltest
v Bjava

<?xml version="1.8" encoding="UTF-8"7>
J=project xmlns="http://maven.apache.org/POM/4.0.08"

xmlns:xsi="http://www.w3.0rg/2081/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven—4.0.0.xsd">
=modelVersion=4.8.8</modelVersion=
<parent>
<groupIld>org.drools</groupld>
<artifactId>drools-examples-api</artifactId-
<version=6.8.0=/version>
=/parent=>

<artifactId>default-kiesession</artifactId>
<name>Drools API examples - Default KieSession</name>

<dependencies>
=dependency=
<groupld=org.drools</groupld=
<artifactld=drools-compiler</artifactId>
</dependency>
</dependencies>

<build>
<plugins=
<plugin=>
<groupld=org.drools</groupId>
<artifactId-drools-maven-plugin</artifactld>
<version=h.@.2</version=
<extensions>true</extensions>
</plugin>
</plugins=
</build=

</project>

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the
simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for

discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other
applications on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote
Maven repository. Building the Application will pull in the KieModule and populate the local Maven

repository in the process.

48

Introduction

—_ —_
-,.,_‘_‘___-___-___._F,.,- 'H-._____________,_F-‘
Maven Maven
Repository [*| Repository
(remote) " (local)

— — " — —

X
mvn deploy mvn install
Froject Application

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR
in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the
classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the
KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to
the two loading approaches. While dynamic modules supports side by side versioning, classpath
modules do not. Further once a module is on the classpath, no other version may be loaded
dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight
to the examples section, which is fairly self-explanatory on the different use cases.

49

Chapter 4. KIE

4.2.2. Building

org.kie.api.builder

Include KieBuilder
KieFileSystem KieModule
KieRepository KieScanner
Message Releaseld
Results

Message.Level

yviworks UML Doclet

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources
folder or in any other subfolder under it.

50

Building

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ kmodul e"/ >

In this way the kmodule will contain one single default Ki eBase. All Kie assets stored under the
resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building

of these artifacts it is enough to create a Ki eCont ai ner for them.

org.kie.api.runtime

KieContainer

% getClassLoader(] . ClassLoader

“ getKieBase(] : KieBase

. getkKieBase(String) : KieBase

“ getReleaseld() : Releasald

newkieBase(String, KieBaseConfiguration) : KieBase
newKieBase(KieBaseConfiguration) : KieBase

newkieSession(] : KieSession

newkieSession({String) ; KieSession

newkieSession(5tring, Environment) : KieSession

newkieSession(String, Environment, KieSessionConfiguration) : KieSession
newKieSession(String, KieSessionConfiguration) : KieSession
newKieSession{Environment) . KieSession
newkieSession{KieSessionConfiguration) : KieSession
newStatelesskieSession() : StatelessKieSession
newStatelesskieSession(String) « StatelesskKieSession
newStatelessKieSession(String, KieSessionConfiguration) : StatelessKieSession
newStatelessKieSession(KieSessionConfiguration) : StatelessKieSession
updateToVersion(Releaseid) : void

verify() : Results

LA AR AN A A

yWorks UML Doclet

Figure 4.5. KieContainer

java.lang

ClasslLoader

String

org.kie.api
KieBase

KieBaseConfiguration

org.kie.api.builder

Releaseld

Results

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

For this simple case it is enough to create a Ki eCont ai ner that reads the files to be built from

the classpath:

51

Chapter 4. KIE

Example 4.2. Creating a KieContainer from the classpath

Ki eServi ces ki eServices
Ki eCont ai ner kCont ai ner

Ki eServi ces is the interface from where it possible to access all the Kie building and runtime

facilities:

Ki eServi ces. Factory. get ();
ki eServi ces. get Ki eCl asspat hCont ai ner () ;

52

Building

org.kie.api java.io

KieServices File

“ getCommands(] : KieCommands
. getkieClasspathContainer(] : KieContainer

“ getloggers() : KieLoggers java.lang
% getMarshallers() : KieMarshallers
. getRepasitory(] : KieRepository ClassLoader
“ getResources(] : KleResources -
. getStoreServices() : KieStoreServices String
% newErvironment() : Environment
% newkKieBaseConfiguration() : KieBaseConfiguration
“ newkKieBaseConfiguration(Properties, ClassLoader] : KieBaseConfiguration java.util
‘. newkKieBuilder{File) : KieBuilder
. newkieBuilder(kKieFileSystem) : KieBuilder Properties
% newkKieContainer(Releaseld) : KieContainer
“ hewkKieFileSystemi) : KieFileSystem
“ newkKieMaduleModel() : KieModuleMode! org.kie.api
“ newkieScanner(KieContainer) : KieScanner
“ newkieSessionConfiguration() : KieSessionConfiguration KieBaseConfiguration
% newkKieSessionConfiguration(Properties) : KieSessionConfiguration
“ newReleaseld(String, String, String) : Releaseld
org.kie.api.builder
KieBuilder
KieFileSystem
KieRepository
KieScanner
Releaseld
org.kie.api.builder.model
KieModuleModel
org.kie.api.command
KieCommands
org.kie.api.io
KieResources
org.kie.api.logger
KieLoggers
org.kie.api.marshalling
KieMarshallers
Figure 4.6. KieServices org.kie.api.persistence.jpa

KieStoreServices

org.kie.api.runtime

Environment

Chapter 4. KIE

In this way all the Java sources and the Kie resources are compiled and deployed into the
KieContainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As explained in the former section, the kmodule.xml file is the place where it is possible to
declaratively configure the Ki eBase(s) and Ki eSessi on(s) that can be created from a KIE project.

In particular a Ki eBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. Creating the Ki eBase can be heavy, whereas session creation is very
light, so it is recommended that Ki eBase be cached where possible to allow for repeated session
creation. However end-users usually shouldn't worry about it, because this caching mechanism
is already automatically provided by the Ki eCont ai ner .

54

Building

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.7. KieBase

Conversely the Ki eSessi on stores and executes on the runtime data. It is created from the
Ki eBase or more easily can be created directly from the Ki eCont ai ner if it has been defined in
the kmodule.xml file

55

Chapter 4. KIE

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

' CommandExecutor | | KieRuntime | | statefulProcessSession | | statefulRuleSession |

T I T T

org.kie/api.runtime

KieSession
. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more Ki eBases and for each Ki eBase all
the different Ki eSessi ons that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<knodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Scherna- i nst ance"
xm ns="http://jboss.org/kiel/6.0.0/ knmodul e" >
<kbase nane="KBasel" defaul t="true" eventProcessi ngMbde="cl oud" equal sBehavi or="equal ity" dec
<ksessi on nane="KSession2_1" type="stateful" default="true/">
<ksessi on name="KSessi on2_1" type="st at el ess" defaul t ="fal se/
" beliefSystem="jtns">
</ kbase>
kKBats e2thaPsetessi ngvbdeeysat eBehavi or =" dquahbr ty 1 veAgenda=panabged=" or g. domai n. pkg2
or g. domai n. pkg3" i ncl udes="KBasel" >

<ksessi on nane="KSessi on2_1" type="stateful" default="fal se" clockType="realtine">
<filelLogger file="drools.log" threaded="true" interval ="10"/>
<wor kI t emHandl er s>
<wor kIl t enHandl er nane="nanme" type="org. donui n. Wr Kkl tenHandl er"/ >
</ wor kl t emHand| er s>
<l isteners>
<rul eRunti neEvent Li st ener type="org. domai n. Rul eRunti neLi stener"/>
<agendaEvent Li st ener type="org. donui n. Fi r st Agendali st ener"/ >
<agendaEvent Li st ener type="org. donai n. SecondAgendali st ener"/ >
<processEvent Li st ener type="org. donmai n. ProcessLi stener"/>
</listeners>
</ ksessi on>
</ kbase>
</ knmodul e>

56

Building

Here 2 Ki eBases have been defined and it is possible to instance 2 different types of Ki eSessi ons
from the first one, while only one from the second. A list of the attributes that can be defined on
the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with
which retrieve this
KieBase from the
KieContainer. This is
the only mandatory

attribute.
includes none any comma separated A comma separated
list list of other KieBases

contained in this
kmodule. The artifacts
of all these KieBases
will be also included in

this one.
packages all any comma separated By default all
list the Drools artifacts

under the resources
folder, at any level,
are included into
the KieBase. This
attribute allows to limit
the artifacts that will
be compiled in this
KieBase to only the
ones belonging to the
list of packages.

default false true, false Defines if this KieBase
is the default one
for this module, so
it can be created
from the KieContainer
without passing any
name to it. There
can be at most one
default KieBase in
each module.

equalsBehavior identity identity, equality Defines the behavior
of Drools when a

57

Chapter 4. KIE

Attribute name Default value Admitted values
eventProcessingMode cloud cloud, stream
declarativeAgenda disabled disabled, enabled

Meaning

new fact is inserted
into the Working
Memory. With identity
it always create a new
FactHandle unless the
same object isn't
already present in
the Working Memory,
while with equality
only if the newly
inserted object is not
equal (according to its
equal method) to an
already existing fact.

When compiled in
cloud mode the
KieBase treats events
as normal facts, while
in stream mode allow
temporal reasoning on
them.

Defines if the
Declarative Agenda is
enabled or not.

Similarly all attributes of the ksession tag (except of course the name) have meaningful default.

They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values
name none any
type stateful stateful, stateless

Meaning

Unique name of
this KieSession. Used
to fetch the
KieSession from the
KieContainer. This is
the only mandatory
attribute.

A stateful session
allows to iteratively
work with the Working
Memory, while a
stateless one is a

58

Building

Attribute name Default value Admitted values Meaning
one-off execution of a
Working Memory with
a provided data set.

default false true, false Defines if this
KieSession is the
default one for this
module, so it can
be created from the
KieContainer without
passing any name to
it. In each module
there can be at
most one default
KieSession for each

type.
clockType realtime realtime, pseudo Defines if events
timestamps are

determined by the
system clock or
by a psuedo clock
controlled by the
application. This clock
is specially useful for
unit testing temporal

rules.
beliefSystem simple simple, jtms, Defines the type of
defeasible belief system used by

the KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on
each Ki eSession a file (or a console) logger, one or more WrkltenHandl ers and some
listeners that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and
processEventListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply
retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

Ki eBase kBasel = kCont ai ner. get Ki eBase(" KBasel");

59

Chapter 4. KIE

Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSessi on(" KSessi on2_1");
St at el essKi eSessi on ki eSessi on2 = kCont ai ner. newSt at el essKi eSessi on(" KSessi on2_2");

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first
is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the
Ki eCont ai ner according to their declared type. If the type of the Ki eSessi on requested to the
Ki eCont ai ner doesn't correspond with the one declared in the kmodule.xml file the Ki eCont ai ner
will throw a Runt i meExcept i on. Also since a Ki eBase and a Ki eSessi on have been flagged as
default is it possible to get them from the Ki eCont ai ner without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the
KieContainer

Ki eCont ai ner kContai ner = ...

Ki eBase kBasel = kCont ai ner. getKi eBase(); // returns KBasel
Ki eSessi on ki eSessionl = kCont ai ner. newKi eSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupld, artifactld and version declared in the
pom.xml file are used to generate a Rel easel d that uniquely identifies this project inside your
application. This allows creation of a new KieContainer from the project by simply passing its
Rel easel d to the Ki eSer vi ces.

Example 4.6. Creating a KieContainer of an existing project by Releaseld

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Rel easel d rel easeld = ki eServi ces. newRrel easel d("org.acne", "nyartifact”, "1.0");
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is
recommended that this is used at all times. To use the plugin simply add it to the build section
of the Maven pom.xml

Example 4.7. Adding the KIE plugin to a Maven pom.xml

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. ki e</ gr oupl d>

60

Building

<artifact!|d>ki e-maven-pl ugin</artifactld>
<versi on>${proj ect.version}</version>
<ext ensi ons>tr ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting
JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there
are compilation issues it will return a null KieContainer. It also pushes the compilation overhead
to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the Ki eBases and Ki eSessions belonging to a KieModule
programmatically instead of the declarative definition in the kmodule.xml file. The same
programmatic API also allows in explicitly adding the file containing the Kie artifacts instead of
automatically read them from the resources folder of your project. To do that it is necessary to
create a Ki eFi | eSyst em a sort of virtual file system, and add all the resources contained in your
project to it.

org.kie.api.builder java.lang

KieFileSystem string

% delete(String...) : void

generateAndWritePomXML(Releaseld) : KieFileSystem

read(String) : byte[] org.kie.api.builder
write(String, bytel]) : KieFileSystem

write(String. String) : KieFileSystem Releaseld
write(String, Resource) : KieFileSystem

write(Resource] : KieFlleSystem

writeKModuleXMLibytel]) : KieFileSystem org.kie.api.io
writeKModule XML{String) : KieFileSystem

writePomXML(bytel]) : KieFileSystem Resource
writePomXML(String) : KieFileSystem

A AR AR A AR

ywWaorks UML Doclet

Figure 4.9. KieFileSystem

Like all other Kie core components you can obtain an instance of the Ki eFi | eSyst emfrom the
Ki eServi ces. The kmodule.xml configuration file must be added to the filesystem. This is a
mandatory step. Kie also provides a convenient fluent API, implemented by the Ki eMbdul eModel ,
to programmatically create this file.

61

Chapter 4. KIE

org.kie.api.builder.model java.lang

KieModuleModel String

“ getkieBaseModels() : Map=5String, KieBaseModel=
“ newkieBaseModel(String) : KieBaseMaode!
. removekieBaseModel{String) : void java.util

% feXML() : String
Map<K, V>

org.kie.api.builder.model

KieBaseModel

yWorks LML Doclet

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a Ki eModul eMbdel from the Ki eSer vi ces, configure
it with the desired Ki eBases and Ki eSessi ons, convert it in XML and add the XML to the
Ki eFi | eSyst em This process is shown by the following example:

Example 4.8. Creating a kmodule.xm| programmatically and adding it to a
KieFileSystem

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eMbdul eMbdel ki eModul eMbdel = ki eServi ces. newKi eMbdul eMbdel () ;

Ki eBaseMbdel ki eBaseMbdel 1 = ki eModul eModel . newKi eBaseModel (" KBasel ")
.setDefault(true)
. set Equal sBehavi or (Equal i t yBehavi or Opti on. EQUALI TY)
. set Event Processi ngMbde(Event Processi ngOpti on. STREAM) ;

Ki eSessi onvbdel ksessi onModel 1 = ki eBaseMbdel 1. newKi eSessi onModel (" KSessi onl")
.setDefault(true)
.set Type(Ki eSessi onModel . Ki eSessi onType. STATEFUL)
.set d ockType(C ockTypeOption.get("realtine"));

Ki eFi | eSystem kfs = ki eServi ces. newKi eFi | eSystem();
At this point it is also necessary to add to the Ki eFi | eSyst em through its fluent API, all others

Kie artifacts composing your project. These artifacts have to be added in the same position of a
corresponding usual Maven project.

62

Building

Example 4.9. Adding Kie artifacts to a KieFileSystem

Ki eFi | eSystem kfs = ...
kfs.wite("src/ mai n/ resour ces/ KBasel/
ruleSetl.drl", stringContainingAVali dDRL)
.write("src/main/resources/dtable.xls",
ki eServi ces. get Resour ces(). new nput St r eanResource(dtableFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as
Resour ces. In the latter case the Resour ces can be created by the Ki eResour ces factory, also
provided by the Ki eSer vi ces. The Ki eResour ces provides many convenient factory methods to
convert an I nput Stream a URL, a Fi |l e, or a Stri ng representing a path of your file system to a
Resour ce that can be managed by the Ki eFi | eSyst em

63

Chapter 4. KIE

org.kie.api

Service

org.kie.api.io

B AR AR AR A A O A A O

KieResources

newBytedrrayResource(byte(]) : Resource
newClassPathResource(String) ; Resource
newClassPathResource(String, Class=?7=) : Resource
newClassPathResource(5String, Classloader) : Resource
newClassPathResource(String, String) : Resource
newClassPathResource(String, Stning, Class=7=) : Resource
newClassPathResource(String, String, Classloader) : Resource
newDescrResource{KieDescr) ; Resource
newFileSystemResource(File) : Resource
newFileSystemResource(String) : Resource
newlnputStreamResource(inputStream) . Resource
newinputStreamResource(lnputStream, String) : Resource
newReaderResource(Reader) : Resource
newReaderResource(Reader, String) : Resource
newlriResource(String) ; Resource

newlriResource(URL) : Resource

yWorks UML Doclet

Figure 4.11. KieResources

java.io
File
InputStream

Reader

java.lang

Class<T>
Classl oader

String

java.net

URL

org.kie.api.definition

KieDescr

org.kie,api.io

Resource

Normally the type of a Resource can be inferred from the extension of the name used to add
it to the Ki eFi | eSyst em However it also possible to not follow the Kie conventions about file
extensions and explicitly assign a specific Resour ceType to a Resour ce as shown below:

64

Building

Example 4.10. Creating and adding a Resource with an explicit type

Ki eFi | eSystem kfs = ..
kfs.wite("src/main/resources/myDrl.txt",
ki eServi ces. get Resources() . new nput St reanResource(drl Stream)
. set Resour ceType(ResourceType. DRL));

Add all the resources to the Ki eFi | eSyst emand build it by passing the Ki eFi | eSystemto a
Ki eBui | der

org.kie.api.builder org.kie.api.builder

KieBuilder KieModule

W buildAll() : KieBuilder

W getkieMaodule() : KieModule Results

“w getResults() : Results

. setDependencies(KieModule...) : KieBuilder

«. setDependencies(Resource...) : KieBuilder org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.12. KieBuilder

When the contents of a Ki eFi | eSyst em are successfully built, the resulting Ki eMbdul e is
automatically added to the Ki eRepository. The Ki eRepository is a singleton acting as a
repository for all the available Ki eMbdul es.

65

Chapter 4. KIE

org.kie.api.builder org.kie.api.builder

KieRepository KieModule

. addKieModule(KieModule) : void

. addkieModule(Resource, Resource...) : KieModule
. getDefaultReleaseld(] : Releasald

. getkieModule(Releaseld) : KieModule

Releaseld

org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.13. KieRepository

After this it is possible to create through the Ki eServices a new Ki eContainer for that
Ki eMbdul e using its Rel easel d. However, since in this case the Ki eFi | eSyst emdon't contain
any pom.xml file (it is possible to add one using the Ki eFi | eSyst em wr i t ePonXM. method), Kie
cannot determine the Rel easel d of the Ki eMbdul e and assign to it a default one. This default
Rel easel d can be obtained from the Ki eReposi t ory and used to identify the Ki eMbdul e inside
the Ki eReposi t ory itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a
KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Ki eFi | eSystem kfs = ...

ki eServi ces. newKi eBui | der (kfs).buildAII ();

Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (ki eServi ces. get Repository().getDefaul t]

At this point it is possible to get Ki eBases and create new Ki eSessi ons from this Ki eCont ai ner
exactly in the same way as in the case of a Ki eCont ai ner created directly from the classpath.

It is a best practice to check the compilation results. The Ki eBui | der reports compilation results
of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the compilation
of the project failed and in the case no Ki eMbdul e is produced and nothing is added to the
Ki eReposi t ory. WARNING and INFO results can be ignored, but are available for inspection.

Example 4.12. Checking that a compilation didn't produce any error

Ki eBui | der ki eBuil der = ki eServices. newKi eBui |l der(kfs). buil dAII ();

66

Deploying

assert Equal s(0, kieBuilder.getResults().getMessages(Message. Level . ERROR). size());

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type, configured like any other option in Drools, can be
done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

/]l sets the severity of rule updates

drool s. kbui | der. severity. duplicateRul e = <I NFQ WARNI N§ ERROR>

/] sets the severity of function updates

drool s. kbui | der. severity. duplicateFuncti on = <l NFQ WARNI NG ERROR>

4.2.3. Deploying

4.2.3.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

67

Chapter 4. KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the Ki eBase needs to resolve types that are not
in the default class loader. In this case it will be necessary to create a Ki eBaseConfi gurati on
with an additional class loader and pass it to Ki eCont ai ner when creating a new Ki eBase from it.

68

Deploying

Example 4.14. Creating a new KieBase with a custom ClassLoader

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eBaseConfi gurati on kbaseConf = ki eServi ces. newKi eBaseConfiguration(null, MType.class.getd :
Ki eBase kbase = ki eCont ai ner. newKi eBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running". The Ki eBase creates and
returns Ki eSessi on objects, and it may optionally keep references to those. When Ki eBase
modifications occur those modifications are applied against the data in the sessions. This
reference is a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The Ki eScanner allows continuous monitoring of your Maven repository to check whether a new
release of a Kie project has been installed. A new release is deployed in the Ki eCont ai ner
wrapping that project. The use of the Ki eScanner requires kie-ci.jar to be on the classpath.

org.kie.api.builder

KieScanner

% scanNowl() : void
% start(long) : void
% stop() : void

yWorks UML Doclet

Figure 4.15. KieScanner

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact”, "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(releaseld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds

69

Chapter 4. KIE

kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
Maven repository an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

4.2.3.4. Maven Versions and Dependencies

Maven supports a number of mechanisms to manage versioning and dependencies within
applications. Modules can be published with specific version numbers, or they can use the
SNAPSHOT suffix. Dependencies can specify version ranges to consume, or take avantage of
SNAPSHOT mechanism.

StackOverflow provides a very good description for this, which is reproduced below.

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-
dependency [http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-
version-of-a-dependency]

If you always want to use the newest version, Maven has two keywords you can use as an
alternative to version ranges. You should use these options with care as you are no longer in
control of the plugins/dependencies you are using.

When you depend on a plugin or a dependency, you can use the a version value of LATEST
or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact,
the most recently deployed artifact in a particular repository. RELEASE refers to the last non-
snapshot release in the repository. In general, it is not a best practice to design software which
depends on a non-specific version of an artifact. If you are developing software, you might want
to use RELEASE or LATEST as a convenience so that you don't have to update version numbers
when a new release of a third-party library is released. When you release software, you should
always make sure that your project depends on specific versions to reduce the chances of your
build or your project being affected by a software release not under your control. Use LATEST
and RELEASE with caution, if at all.

See the POM Syntax section of the Maven book for more details.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
[http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html]

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-
dependencies.html

Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has
the following metadata:

70

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html

Deploying

<nmet adat a>
<gr oupl d>com f oo</ gr oupl d>
<artifactld>ny-foo</artifactld>
<versi on>2. 0. 0</ ver si on>
<ver si oni ng>
<rel ease>1. 1. 1</ rel ease>
<versi ons>
<ver si on>1. 0</ ver si on>
<versi on>1. 0. 1</ ver si on>
<versi on>1. 1</ ver si on>
<version>1.1. 1</ version>
<versi on>2. 0. 0</ ver si on>
</ versi ons>
<l ast Updat ed>20090722140000</ | ast Updat ed>
</ versi oni ng>
</ met adat a>

If a dependency on that artifact is required, you have the following options (other version ranges
can be specified of course, just showing the relevant ones here): Declare an exact version (will
always resolve to 1.0.1):

<version>[1.0. 1] </ versi on>

Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven
will select a matching version):

<versi on>1. 0. 1</ versi on>

Declare a version range for all 1.x (will currently resolve to 1.1.1):

<version>[1.0.0,2.0.0)</version>

Declare an open-ended version range (will resolve to 2.0.0):

<version>[1.0.0,)</version>

Declare the version as LATEST (will resolve to 2.0.0):

71

Chapter 4. KIE

<ver si on>LATEST</ ver si on>

Declare the version as RELEASE (will resolve to 1.1.1):
<ver si on>RELEASE</ ver si on>

Note that by default your own deployments will update the "latest”" entry in the Maven metadata,
but to update the "release” entry, you need to activate the "release-profile” from the Maven super
POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"

4.2.3.5. Settings.xml and Remote Repository Ssetup

The maven settings.xml is used to configure Maven execution. Detailed instructions can be found
at the Maven website:

http://maven.apache.org/settings.html

The settings.xml file can be located in 3 locations, the actual settings used is a merge of those
3 locations.

* The Maven install: $M2_HOME/conf/settings.xml

« Auser's install: ${user.home}/.m2/settings.xml

« Folder location specified by the system propert kie.maven.settings.custom

The settings.xml is used to specify the location of remote repositories. It is important that
you activate the profile that specifies the remote repository, typically this can be done using
"activeByDefault":

<profil es>
<profil e>
<id>profile-1</id>
<activation>
<act i veByDef aul t >t rue</ acti veByDef aul t >
</ activation>

</profile>
</profiles>

Maven provides detailed documentation on using multiple remote repositories:

http://maven.apache.org/guides/mini/guide-multiple-repositories.html

72

http://maven.apache.org/settings.html
http://maven.apache.org/guides/mini/guide-multiple-repositories.html

Running

4.2.4. Running

4.2.4.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

Ki eBase kBase = kCont ai ner. get Ki eBase() ;

4.2.4.2. KieSession
The Ki eSessi on stores and executes on the runtime data. It is created from the Ki eBase.

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

CommandExecutor | | KieRuntime StatefulProcessSession StatefulRuleSession

org.kie/api.runtime

KieSession

< destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.16. KieSession

Example 4.17. Create a KieSession from a KieBase

Ki eSessi on ksessi on = kbase. newKi eSessi on();

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The Ki eRunt i me provides methods that are applicable to both rules and processes, such as setting
globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

73

Chapter 4. KIE

org.kie.api.event org.kie.api.runtime.process org.kie.api.runtime.rule

KieRuntimeEventManager ProcessRuntime RuleRuntime

org.kie.api.runtime

KieRuntime

. getCalendars() : Calendars

. getChannels() : Map=5String, Channel=

‘% getErvironment() : Environment

“ getGlobal(String) : Object

. getGlobals() : Globals

“ getkieBase() : KieBase

% getSessionClock() . =T extends SessionClock= T
“ getSessionConfiguration() : KieSessionConfiguration
“ registerChannel(String, Channel) : void

«. setGlobal(String, Object] : void

“ unregisterChannel{String) : void

yWorks UML Doclet

Figure 4.17. KieRuntime

4.2.4.3.1.1. Globals

java.lang
Object

String

java.util

Map<K, V=

org.kie.api

KieBase

org.kie.api.runtime

Calendars
Channel
Environment
Globals

KieSessionConfiguration

Globals are named objects that are made visible to the rule engine, but in a way that is
fundamentally different from the one for facts: changes in the object backing a global do not trigger
reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect

changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

global java.util.List |ist

74

Running

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set d obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksessi on.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Except i on.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows separation of logging and auditing activities from the main
part of your application (and the rules).

The Ki eRunti meEvent Manager interface is implemented by the Ki eRunti ne which provides
two interfaces, Rul eRunt i neEvent Manager and Pr ocessEvent Manager . We will only cover the
Rul eRunt i meEvent Manager here.

org.kie.api.event.process org.kie.api.event.rule
ProcessEventManager RuleRuntimeEventManager
org.kie.api.event org.kie.api.logger
KieRuntimeEventManager KieRuntimeLogger

w getlogger() : KieRuntimelLogger

yWorks UML Doclet

Figure 4.18. KieRuntimeEventManager

The Rul eRunt i meEvent Manager allows for listeners to be added and removed, so that events for
the working memory and the agenda can be listened to.

75

Chapter 4. KIE

org.kie.api.event.rule java. util

RuleRuntimeEventManager Collection<E>

. addEventListener(AgendaEventListener) : void
“ addEventListener(RuleRuntimeEventListener) : void

“ getdgendaEventlisteners() : Collection=AgendaEventlistener= org.kie.api.event.rule
“ getRuleRuntimeEventLlistenersi) : Collection=RuleRuntimeEventListener=
. removeEventListener(AgendaEventListener) : void AgendaEventListener

. removeEventlistener(RuleRuntimeEventlistaner) : void - :
RuleRuntimeEventListener

yWorks UML Doclet

Figure 4.19. RuleRuntimeEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a
session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li st ener () {
public void afterMatchFired(AfterMtchFiredEvent event) ({
super. after Mat chFi red(event);
Systemout.println(event);

1),

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener

ksessi on. addEvent Li st ener (new DebugRul eRunt i neEvent Li stener ());

All emitted events implement the Ki eRunt i meEvent interface which can be used to retrieve the
actual Know egeRunt i me the event originated from.

76

Running

org.kie.api.event

KieRuntimeEvent

“ getkKieRuntime(] : KieRuntime

yWorks UML Doclet

Figure 4.20. KieRuntimeEvent

The events currently supported are:

* MatchCreatedEvent

» MatchCancelledEvent

» BeforeMatchFiredEvent

+ AfterMatchFiredEvent

» AgendaGroupPushedEvent
» AgendaGroupPoppedEvent
* ObjectinsertEvent

« ObjectDeletedEvent

* ObjectUpdatedEvent

» ProcessCompletedEvent

* ProcessNodeLeftEvent

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

4.2.4.5. KieRuntimeLogger

org.kie.api.runtime

KieRuntime

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log
that can be used to log the execution of an application for later inspection, using tools such as

the Eclipse audit viewer.

77

Chapter 4. KIE

org.kie.api.logger java.lang

KieLoggers String

. newConsoleLogger(KieRuntimeEventManager) : KieRuntimeLogger
“ newFileLogger(KieRuntimeEventManager, String) . KieRuntimelLogger
< newThreadedFileLogger(KieRuntimeEventManager, String, int) : KieRuntimelLogger org.kie.api.event

KieRuntimeEventManager

org.kie,api.logger

KieRuntimeLogger

yWorks UML Doclet

Figure 4.21. KieLoggers

Example 4.20. FileLogger
Ki eRunti neLogger | ogger =
Ki eServi ces. Factory. get (). newFi | eLogger (ksession, "logdir/nylogfile");

| ogger. cl ose();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been
covered, which use the standard KieRuntime, and can be worked with iteratively over time.
Stateless is a one-off execution of a KieRuntime with a provided data set. It may return some
results, with the session being disposed at the end, prohibiting further iterative interactions. You
can think of stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecut or interface, which both the stateful and stateless
interfaces extend. This returns an Execut i onResul t s:

org.kie.api.runtime org.kie.api.command

CommandExecutor Command<T>

W execute(Command=T=>) : <T>T

yWorks UML Doclet

Figure 4.22. CommandExecutor

78

Running

org.kie.api.runtime java.lang

ExecutionResults Object
% getFactHandle(5tring) : Object

% getldentifiers() : Collection<Stning= String
“ getValue(String) : Object
java.util
Collection<E=>

yWorks UML Doclet

Figure 4.23. ExecutionResults

The CommandExecut or allows for commands to be executed on those sessions, the only difference
being that the StatelessKieSession executes fireAl | Rul es() at the end before disposing the
session. The commands can be created using the CormandExecut or .The Javadocs provide the
full list of the allowed comands using the ConmandExecut or .

setGlobal and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates whether the command
should return the global's value as part of the Execut i onResul t s. If true it uses the same name
as the global name. A String can be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
ExecutionResults bresults =

ksessi on. execut e(CommandFact ory. newSet d obal ("stilton", new Cheese("stilton"
Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an
alternative return name.

Example 4.22. Get Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

79

).

true);

Chapter 4. KIE

ExecutionResults bresults =
ksessi on. execut e(CommandFactory. getd obal ("stilton");
Cheese stilton = bresults.getValue("stilton");

All the above examples execute single commands. The Bat chExecut i on represents a composite
command, created from a list of commands. It will iterate over the list and execute each command
in turn. This means you can insert some objects, start a process, call fireAllRules and execute a
query, all in a single execut e(. . .) call, which is quite powerful.

The StatelessKieSession will execute fireAl | Rul es() automatically at the end. However the
keen-eyed reader probably has already noticed the Fi r eAl | Rul es command and wondered how
that works with a StatelessKieSession. The Fi r eAl | Rul es command is allowed, and using it will
disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned
Execut i onResul t s instance. Let's look at a simple example to see how this works. The example
presented includes command from the Drools and jBPM, for the sake of illustration. They are
covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

Li st cnds = new ArraylList();

cnds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton")
cmds. add(CommandFact ory. newSt art Process("process cheeses"));

cmds. add(CommandFact ory. newQuery("cheeses"));

ExecutionResults bresults = ksession. execute(ComandFact ory. newBat chExecuti on(
Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the
Execut i onResul t s. The query command defaults to use the same identifier as the query name,
but it can also be mapped to a different identifier.

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.
This is covered in section XXX.

4.2.4.7. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on the
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call f i r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, call fi r eAl | Rul es(), and then call di spose() . While the main

80

cmds));

Running

way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the CommandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

org.kie.api.event org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule
KieRuntimeEventManager CommandExecutor StatelessProcessSession StatelessRuleSession
org.kie,api.runtime java.lang
StatelessKieSession Object
. getChannels() : Map=String. Channel= .
. getGlobals() : Globals String

. getkieBase() : KieBase
“ registerChannel(String, Channel] : void
 setGlobal(String, Object) : void java.util

. unregisterChannel(String) : void
Map<K, V>

org.kie,api

KieBase

org.kie,api.runtime

Channel

Globals

yWorks UML Doclet

Figure 4.24. StatelessKieSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;
ksessi on. execute(collection);

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements
Command

ksessi on. execut e(ConmandFact ory. newl nsert El ements(coll ection));

81

Chapter 4. KIE

If you wanted to insert the collection itself, and the collection's individual elements, then
CommandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the
XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. We cover the non-
command way first, as commands are scoped to a specific execution call. Globals can be resolved
in three ways.

e The StatelessKieSession method get d obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution
regarding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 4.26. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

/'l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set d obal ("hbnSessi on", hibernateSession);

/| Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

* Using a delegate is another way of global resolution. Assigning a value to a global (with
set d obal (String, Object)) results in the value being stored in an internal collection
mapping identifiers to values. Identifiers in this internal collection will have priority over any
supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate
global (if any) will be used.

« The third way of resolving globals is to have execution scoped globals. Here, a Command to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

Example 4.27. Out identifiers

/[l Set up a list of commands

Li st cnds = new ArraylList();

cnds. add(ConmandFact ory. newSet G obal ("list1", new ArrayList(), true));
cnds. add(CommandFact ory. newi nsert(new Person("jon", 102), "person"));
cnmds. add(CommandFact ory. newQuery("Get People" "get People");

82

Running

/'l Execute the |ist
ExecutionResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

/1l Retrieve the ArraylLi st

results.getValue("listl");

/'l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/]l Retrieve the query as a QueryResults instance.
results. getVal ue("Get People");

4.2.4.8. Marshalling

The Ki eMar shal | er s are used to marshal and unmarshal KieSessions.

org.kie.api
Service
org.kie.api.marshalling java.lang
KieMarshallers String

“ newClassFilterAcceptor(Stringl]) : ObjectMarshallingStrategyAcceptor
< newldentityMarshallingStrategy() : ObjectMarshallingStrategy

< newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy org.kie.api
. newMarshaller(KieBase) : Marshaller -
 newMarshaller{KieBase, ObjectMarshallingStrategyll) : Marshaller KieBase

. newSenalizeMarshallingStrategy() : ObjectMarshallingStrategy
% newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy

org.kie.api.marshalling
Marshaller
ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 4.25. KieMarshallers

An instance of the Ki eMar shal | er s can be retrieved from the Ki eSer vi ces. A simple example
is shown below:

Example 4.28. Simple Marshaller Example

/'l ksession is the KieSession

/'l kbase is the KieBase

Byt eArrayCut put St ream baos = new Byt eArrayQut put Strean() ;

Marshal | er marshall er = Ki eServices. Factory. get().getMrshallers().newarshaller(kbase);
mar shal | er. marshal | (baos, ksession);

83

Chapter 4. KIE

baos. cl ose();

However, with marshalling, you will need more flexibility when dealing with
referenced user data. To achieve this use the bjectMarshallingStrategy interface.
Two implementations are provided, but users can implement their own. The two
supplied strategies are | dent i t yMar shal | i ngStrat egy and Seri al i zeMar shal | i ngSt r at egy.
SerializeMarshal lingStrategy is the default, as shown in the example above, and
it just calls the Serializable or Externalizable methods on a user instance.
I dentityMarshal lingStrategy creates an integer id for each user object and stores them
in a Map, while the id is written to the stream. When unmarshalling it accesses the
I dentityMarshal | i ngStrategy map to retrieve the instance. This means that if you use the
I dentityMarshal | i ngStrat egy, itis stateful for the life of the Marshaller instance and will create
ids and keep references to all objects that it attempts to marshal. Below is the code to use an
Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

Byt eArrayQut put St ream baos = new Byt eArrayQut put Stream() ;
Ki eMarshal | ers kMarshal |l ers = Ki eServi ces. Factory. get().get Marshal |l ers()
Ooj ect Marshal | i ngStrategy ons = kMarshal | ers. new denti tyMarshal | i ngStrategy()
Marshal | er marshal l er =

kMar shal | ers. newvar shal | er (kbase, new Obj ect Marshal lingStrategy[]{ onms });
mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Im most cases, a single strategy is insufficient. For added flexibility, the
Obj ect Mar shal | i ngSt r at egyAccept or interface can be used. This Marshaller has a chain of
strategies, and while reading or writing a user object it iterates the strategies asking if they
accept responsibility for marshalling the user object. One of the provided implementations is
Cl assFi | t er Accept or . This allows strings and wild cards to be used to match class names. The
default is "*.*", so in the above example the Identity Marshalling Strategy is used which has a
default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

Example 4.30. IdentityMarshallingStrategy with Acceptor

Byt eArrayCQut put St ream baos = new Byt eArrayQut put Stream() ;
Ki eMarshal | ers kMarshal | ers = Ki eServi ces. Factory. get().getMarshal |l ers()
hj ect Marshal | i ngStrat egyAcceptor identityAcceptor =
kMar shal | ers. newCl assFi | ter Acceptor(new String[] { "org.donain.pkgl.*" });
Ohj ect Marshal | i ngStrategy identityStrategy =
kMarshal | ers. newl dentityMarshal | i ngStrategy(identityAcceptor);

84

Running

hj ect Marshal | i ngStrategy snms = kMarshal | ers. newSeri al i zeMarshal | i ngStrat egy();
Mar shal | er marshal ler =
kMar shal | ers. newvar shal | er (kbase,
new Obj ect Marshal | i ngStrategy[]{ identityStrategy, sns });
mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)
they are marshallable only if, before you use it, you configure your KieSession to use a trackable
timer job factory manager as follows:

Example 4.31. Configuring a trackable timer job factory manager

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get().newKi eSessi onConfi guration();
ksconf . set Opti on(Ti mer JobFact oryOpti on. get ("trackabl e"));
KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
It is necessary to have some implementation of the Java Transaction APl (JTA) installed. For
development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

Ki eServi ces ki eServices = Ki eServices. Factory.get();
Envi ronnment env = ki eServi ces. newEnvi ronnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER FACTCRY,
Per si st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi r onnent Narme. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/1 Ki eSessi onConfiguration may be null, and a default will be used
Ki eSessi on ksession =
ki eServi ces. get StoreServi ces().newKi eSessi on(kbase, null, env);

int sessionld = ksession.getld();

User Transaction ut =
(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begi n();
ksession.insert(datal);
ksession.insert(data2);

85

Chapter 4. KIE

ksession. start Process("processl")
ut.commt();

To use a JPA, the Environment must be set with both the EntityManager Factory and the
Transact i onManager . If rollback occurs the ksession state is also rolled back, hence it is possible
to continue to use it after a rollback. To load a previously persisted KieSession you'll need the
id, as shown below:

Example 4.33. Loading a KieSession

Ki eSessi on ksession =
ki eServi ces. get StoreServi ces() .| oadKi eSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 4.34. Configuring JPA

<persi stence-unit nane="org.drool s. persi stence.jpa" transaction-type="JTA">
<provi der >org. hi ber nat e. ej b. H ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ | t a- dat a- sour ce>
<cl ass>or g. drool s. persi stence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<properties>

<property nane="hi bernate. dial ect" val ue="org. hi bernate.di al ect. H2Di al ect"/ >
<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2ddl . aut 0" val ue="update" />
<property name="hi bernate. show _sql" val ue="true" />
<property name="hi bernate.transaction. nanager _| ookup_cl ass"

val ue="org. hi bernate. transacti on. BTMItr ansact i onManager Lookup" />
</ properties>
</ persi stence-unit>

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be consulted for details. For a quick start, here is the
programmatic approach:

Example 4.35. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce()
ds. set Uni queNanme("] dbc/ Bi troni xJTADat aSour ce");
ds. set G assNane("org. h2.j dbcx. JdbcDat aSour ce");

86

Running

ds. set MaxPool Si ze(3);
ds. set Al |l owLocal Transactions(true);

ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");

ds. getDriverProperties().put("URL", "jdbc:h2: mem nydb");
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a
jndi.properties file to your META-INF folder and add the following line to it:

Example 4.36. INDI properties

java. nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

87

Chapter 4. KIE

4.2.5. Installation and Deployment Cheat Sheets

Content Structuring

There are 3 layers to structure your content.

-~

.

Organization Unit
LS

Projects
GIT GIT GIT
Reposiary Repository Haposiary

Useful GIT System Properties

Organizational Unit
This Is the top level. An installation may have
one ar more organisational units.

Repository

Each Unit can have one or more repositories.

A repository is a physical git repository, stored on disk.
Project

Each project can have one or more projects.

A project forms the deployable unit and compiles
down to a jar. A project can depend on one or more
other project.

org.uberfire.nio.git.dir: Location of the directory .niogit. Defaull: working directory
org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true
org.uberfire.nio.git.daemon.host: If daemon enabled, uses this property as local host identifier.

Default: localhost

org.uberfire.nio.git.daemon.port: Il daemon enabled, uses this property as port number. Default

9418

org.uberfire.nio.git.daemon.upload: If daemon enabled, uses this information to define if it's

possible to push (upload) data to git. Default: true
org.uberfire.metadata.index.dir: Place where lucene .index folder will be stored. Default: working

directory
ra it
"
Projecls Proge hm S m
—
3) .
Projects Frojecls Projects
GIT L "
Repository Regl ¢ =
Crgani2
* 9 GIT GIT Prajacts Projects
Repository Reposilary
\ Organization Unj
GIT GIT
Repositary Rapository
Organization Unit
. y,

KIE Installation

Figure 4.26. Installation Overview

88

Build, Deploy and Utilize Examples

s " s Ty
S
Maven Maven T Maven
Repository Repository H Repaository
(rermote) {local) {local)
& \ ;
mvn install R _ rriv install
1 w Y
v |deploy (i o
L Project Application
', Application Installation /
. KIE Installation J

Maven Repository - Server Side
Built projects are installed into the local maven repository.

Default location: <working-directory=/repositories/kie
Systemn property: org.guvnorm2repo.dir

The repository is exposed via httpd for applications to access.

URL: http:/Vlocalhost:B080/<app context=/maven?/

Example: httpi/flocalhost:B080/kie-drools-wb-6.0.0-5MNAPSHOT-boss-as7.0/
maven2/org/mydomain/prej1/1.0.0/proj1-1.0.0.jar

Maven Repository Location Configuration - Application Side
Applications may specify the remote repositories either in the applications porm.xmil
or via Maven settings.xml.

There are three locations where a settings.xml file may live:
The Maven install: $M2_HOME/conf/settings.xml

A user's install: ${userhome}/. m2/settings.xml
Systern Property for file location: kie.maven.settings.custom

Figure 4.27. Deployment Overview

4.2.6. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-examples-
api" contains a number of examples, and can be found at GitHub:

89

Chapter 4. KIE

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest (most of the options are
defaulted) and working its way up to more complex use cases.

The Deploy use cases shown below all involve nvn i nstal | . Remote deployment of JARs in
Maven is well covered in Maven literature. Utilize refers to the initial act of loading the resources
and providing access to the KIE runtimes. Where as Run refers to the act of interacting with those
runtimes.

4.2.6.1. Default KieSession

 Project: default-kesession.

e Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a
single default KieBase. The example shows the retrieval of the default KieSession from the
classpath.

An empty kmodule.xml will produce a single KieBase that includes all files found under resources
path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single
default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<knmodul e xm ns="http://jboss. org/kiel/6.0.0/knmodul e"> </ knodul e>

Example 4.38. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. kContainer.newKieSession() creates the default KieSession.
Notice that you no longer need to look up the KieBase, in order to create the KieSession. The
KieSession knows which KieBase it's associated with, and use that, which in this case is the
default KieBase.

Example 4.39. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

90

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Build, Deploy and Utilize Examples

Ki eSessi on kSession = kCont ai ner. newKi eSessi on();

kSessi on. set d obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

4.2.6.2. Named KieSession

» Project: named-kiesession.

e Summary: kmodule.xml that has one named KieBase and one named KieSession. The
examples shows the retrieval of the named KieSession from the classpath.

kmodule.xml will produce a single named KieBase, 'kbasel' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. KieSession 'ksessionl' is associated with that
KieBase and can be created by name.

Example 4.40. Author - kmodule.xml

<knmodul e xm ns="http://jboss. org/kie/6.0.0/ knmodul e">
<kbase nane="kbasel">
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knmodul e>

Example 4.41. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession1'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.

Example 4.42. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set @ obal ("out", out);
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));

91

Chapter 4. KIE

kSession.fireAl |l Rul es();

4.2.6.3. KieBase Inheritence

» Project: kiebase-inclusion.

e Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from
another KieBase, from another KieModule. In this case it inherits the named KieBase from the
'name-kiesession' example. The included KieBase can be from the current KieModule or any
other KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the
KieBase 'kbasel', due to the use of the 'includes' attribute. KieSession 'ksession2' is associated
with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase nane="kbase2" i ncl udes="kbasel">
<ksessi on nane="ksessi on2"/ >
</ kbase>

This example requires that the previous example, 'named-kiesession’, is built and installed to the
local Maven repository first. Once installed it can be included as a dependency, using the standard
Maven <dependencies> element.

Example 4.44. Author - pom.xml

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!| d>drool s-exanpl es-api </artifactld>
<versi on>6.0. 0/ ver si on>
</ parent >

<artifactld>ki ebase-inclusion</artifact!d>
<nanme>Drool s APl exanples - KieBase | ncl usion</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>

92

Build, Deploy and Utilize Examples

<artifactl|d>drool s-conpiler</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact| d>named- ki esessi on</artifactld>
<versi on>6. 0. 0</ ver si on>
</ dependency>
</ dependenci es>

</ proj ect >

Once 'named-kiesession' is built and installed this example can be built and installed as normal.
Again the act of installing, will force the unit tests to run, demonstrating the use case.

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession2'. You do
not need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.
Notice two rules fire this time, showing that KieBase 'kbase?2' has included the resources from the
dependency KieBase 'kbasel'.

Example 4.46. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set @ obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

kSessi on. i nsert (new Message("Dave", "Open the pod bay doors, HAL."));
kSessi on. fireAl |l Rul es();

4.2.6.4. Multiple KieBases

* Project: 'multiple-kbases.

e Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or
KieSession declarations. Introduces the 'packages' attribute to select the folders for the
resources to be included in the KieBase.

93

Chapter 4. KIE

kmodule.xml produces 6 different named KieBases. 'kbasel' includes all resources from the
KieModule. The other KieBases include resources from other selected folders, via the '‘packages’
attribute. Note the use of wildcard ', to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<krmodul e xm ns="http://jboss. org/kiel/6.0.0/knodul e">

<kbase nane="kbasel">
<ksessi on nanme="ksessi onl"/>
</ kbase>

<kbase nanme="kbase2" packages="org.sone. pkg">
<ksessi on nane="ksessi on2"/>
</ kbase>

<kbase nane="kbase3" includes="kbase2" packages="org.sone. pkg2">
<ksessi on nane="ksessi on3"/>
</ kbase>

<kbase nanme="kbase4" packages="org.somne. pkg, org.other.pkg">
<ksessi on nane="ksessi on4"/>
</ kbase>

<kbase nane="kbase5" packages="org.*">
<ksessi on nane="ksessi on5"/>

</ kbase>

<kbase nane="kbase6" packages="org.sone.*">
<ksessi on nane="ksessi on6"/>

</ kbase>
</ knmodul e>

Example 4.48. Build and Install - Maven

mvn instal

Only part of the example is included below, as there is a test method per KieSession, but each
one is a repetition of the other, with different list expectations.

Example 4.49. Utilize and Run - Java

@est
public void testSinpl eKi eBase() ({

94

Build, Deploy and Utilize Examples

Li st<Integer> list = useKi eSession("ksessionl");

/'l no packages inported neans inport everything
assertEqual s(4, list.size());

assertTrue(list.containsAll(asList(0, 1, 2, 3)));

/l.. other tests for ksession2 to ksession6 here

private List<Integer> useKi eSession(String nane) {
Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;
Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on(nane) ;

Li st<Integer> list = new ArraylLi st<Integer>();
kSession.setd obal ("list", list);
kSession.insert(1);

kSession.fireA |l Rul es();

return list;

4.2.6.5. KieContainer from KieRepository

» Project: kcontainer-from-repository

e Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any
dependencies for other KieModules. Instead the Java code demonstrates the loading of a
dynamic KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this
uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-exanpl es-api </artifactld>
<versi on>6. 0. 0</ ver si on>
</ parent >

<artifact|d>ki econtainer-fromKkierepo</artifact|d>
<nanme>Dr ool s APl exanples - Ki eContainer from Ki eRepo</nane>

95

Chapter 4. KIE

<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-ci</artifactld>
</ dependency>
</ dependenci es>

</ pr oj ect >

Example 4.51. Build and Install - Maven

mvn install

In the previous examples the classpath KieContainer used. This example creates a dynamic
KieContainer as specified by the Releaseld. The Releaseld uses Maven conventions for group id,
artifact id and version. It also obeys LATEST and SNAPSHOT for versions.

Example 4.52. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

/1l Install exanplel in the |ocal Maven repo before to do this
Ki eCont ai ner kCont ai ner =ks. newKi eCont ai ner (ks. newRel easel d(" or g. dr ool s", "naned-
ki esession", "6.0.0- SNAPSHOT"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (msgl);
kSession.fireA |l Rul es();

4.2.6.6. Default KieSession from File

» Project: default-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

96

Build, Deploy and Utilize Examples

Example 4.53. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once
deployed in the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci
are needed here. It will not set up a transitive dependency parent classloader.

Example 4.54. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eModidvbeddKi eMbdul e(ks. get Resour ces() . newFi | eSyst enResource(get Fil e("defaul t -
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (nmsgl);

kSession.fireA |l Rul es();

4.2.6.7. Named KieSession from File

» Project: named-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

97

Chapter 4. KIE

Example 4.56. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eMbdkMedoa@dKi eModul e(ks. get Resour ces() . newFi | eSyst enResour ce(get Fi | e(" naned-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set d obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne
HAL?") ;

kSessi on.insert(msgl);

kSession.fireA |l Rul es();

4.2.6.8. KieModule with Dependent KieModule

» Project: kie-module-form-multiple-files

« Summary: Programmatically provide the list of dependant KieModules, without using Maven to
resolve anything.

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built
first, so that the resulting JARS, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn instal

Creates two resources. One is for the main KieModule 'exRes1' the other is for the dependency
'exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the
dependencies, this shows how you can manually specify the dependent KieModules, for the
vararg.

Example 4.58. Utilize and Run - Java
Ki eServi ces ks = KieServices. Factory. get();
Ki eRepository kr = ks. get Repository();

Resource ex1Res = Kks.getResources().newril eSystenResource(getFile("kiebase-
i nclusion"));

98

Build, Deploy and Utilize Examples

Resource ex2Res = ks.getResources().newFi | eSyst enResour ce(get Fi | e(" named-
ki esession"));

Ki eMbdul e kModul e = kr. addKi eModul e(ex1Res, ex2Res);
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (msgl);

kSession.fireA |l Rul es();

Ohj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");

kSession.insert(msg2);
kSession.fireA |l Rul es();

4.2.6.9. Programmaticaly build a Simple KieModule with Defaults

» Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are
all defaulted. This is the quickest out of the box approach, but should not be added to a Maven
repository.

Example 4.59. Build and Install - Maven
nmvn install
This programmatically builds a KieModule. It populates the model that represents the Releaseld

and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the Releaseld.

Example 4.60. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eRepository kr = ks.getRepository();

Ki eFi | eSystem kfs = ks. newKi eFi | eSystem();

kfs.write("src/ main/resources/org/kiel/ exanpl e5/ HAL5. drl ", getRule());

Ki eBui | der kb = ks. newkKi eBui | der (kfs);

kb. bui IdAI'l (); // kieMddule is automatically deployed to KieRepository if
successfully built.

99

Chapter 4. KIE

i f (kb.getResults().hasMessages(Level.ERROR)) ({
throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kr. get Def aul t Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set @ obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

4.2.6.10. Programmaticaly build a KieModule using Meta Models

» Project: kiemoduelmodel-example

e Summary: Programmaticaly build a KieModule, by creating its kmodule.xml meta model
resources.

Example 4.61. Build and Install - Maven

mvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the
Releaseld.

Example 4.62. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();

Resource exlRes = ks. getResources().newFi |l eSyst enResour ce(get Fi | e(" named-
ki esession"));
Resource ex2Res = Kks. getResources().newFil eSystenResource(getFil e("ki ebase-

i nclusion"));

Rel easeld rid = ks. newRel easel d("org. drool s, "ki enpdul enodel - exanpl e", "6.0.0-
SNAPSHOT") ;
kfs. generat eAndWit ePomXM.(ri d);

Ki eMbdul eMbdel kMbdul eModel = ks. newKi eModul eMvbdel () ;
kModul eModel . newKi eBaseModel (" ki enodul enpdel ")
. addl ncl ude(" ki ebasel")

100

Security

. addl ncl ude(" ki ebase2")
. newKi eSessi onMbdel (" ksessi on6");

kfs.writeKvbdul eXM_(kModul eMbdel .t oXM_()) ;
kfs.write("src/ main/resources/ki enodul enodel / HAL6. drl ", getRule());

Ki eBui | der kb = ks. newKi eBui | der (kfs);
kb. set Dependenci es(ex1Res, ex2Res);
kb. bui I dAI'l (); // kieMddule is automatically deployed to KieRepository if
successfully built.
if (kb.getResults().hasMessages(Level.ERROR)) ({
throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (rid);

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on6");
kSessi on. set d obal ("out", out);

hj ect nmegl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert(nmsgl);

kSession.fireA | Rul es();

hj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");
kSession.insert(nmsg2);
kSession.fireA | Rul es();

hj ect nmeg3 = creat eMessage(kCont ai ner, "Dave", "Wat's the problenP");
kSession.insert(nmsg3);
kSession.fireA | Rul es();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a
multitude of declarative abstractions and metaphores, like rules, processes, decision tables and
etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group
inside the same company, a group from a partner company, or even anonymous third parties on
the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such
cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should
be allowed to create a classloader (what could open the system to an attack) and certainly it
should not be allowed to make a call to System exit ().

101

Chapter 4. KIE

The Java Platform provides a very comprehensive and well defined security framework that allows
users to define policies for what a system can do. The KIE platform leverages that framework
and allow application developers to define a specific policy to be applied to any execution of user
provided code, be it in rules, processes, work item handlers and etc.

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform
many complex operations in order to work. Examples are: it needs to create classloaders, read
system properties, access the file system, etc.

Once a security manager is installed, though, it will apply restrictions to all the code executing
in the JVM according to the defined policy. For that reason, KIE allows the user to define two
different policy files: one for the engine itself and one for the assets deployed into and executed
by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while
providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more
details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#File Syntax

A permissive policy file for the engine can look like the following:
Example 4.63. A sample engine.policy file

grant {
perm ssion java.security. Al | Perm ssion;

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {
perm ssion java.util.PropertyPerm ssion "*", "read";
perm ssion java. |l ang. Runti nePer m ssion "accessDecl ar edMenber s";

Please note that depending on what the rules and processes are supposed to do, many more
permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files
as parameters to the JVM. Three parameters are required:

102

Security Manager

Table 4.3. Parameters

-Djava.security.manager Enables the security manager
-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to

the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and
processes

For instance:

java -Dj ava. security. manager -Dj ava. security. pol i cy=gl obal . policy -
Dki e. security. policy=rules.policy foo.bar. MApp

103

104

Part Ill. Drools
Runtime and Language

Drools is a powerful Hybrid Reasoning System.

Chapter 5.

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with
the well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts
from scientists and engineers looking for funding, which never lived up to expectations,
resulting in many failed projects. Thinking Machines Corporation [http://en.wikipedia.org/wiki/
Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wiki/
Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy
relationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-
heated the market, to the point of collapse. It explains how and why commerce moved away from
Al and towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog
and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/
whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems,
machine learning, intelligent systems, knowledge representation and reasoning. Offshoots of
these then made their way into commercial systems, such as expert systems in the Business
Rules Management System (BRMS) market.

107

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Chapter 5. Hybrid Reasoning

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have
dominated the last 20 years, enabled by the practicality of the languages and ability to run
with good performance on commodity hardware. However many believe there is a renaissance
underway in the field of Al, spurred by advances in hardware capabilities and Al research. In
2005 Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/s/
article/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence. Norvig and
Russel dedicate several pages to what factors allowed the industry to overcome it's problems and
the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology of
work in artificial intelligence. It is now more common to build on existing theories
than to propose brand-new ones, to base claims on rigorous theorems or hard
experimental evidence rather than on intuition, and to show relevance to real-
world applications rather than toy examples.

—Atrtificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reasoning
(KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with
strong recognition skills. As a result we now have self-driving cars about to enter the commercial
market. Ontological research, based around description logic, has provided very rich semantics
to represent our world. Algorithms such as the tableaux algorithm have made it possible to use
those rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in
5GP, were dogged by the limited semantic capabilities and memory restrictions on the size of
those ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for
describing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology
Language). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,
algorithmic advances continue to narrow that gap and improve the expressiveness available to
reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with

108

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Rule Engines and Production Rule Systems (PRS)

backward chaining, which is passive and query driven. Many other types of reasoning techniques
exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Artificial Intelligence. Even when using biological
approaches like neural networks, which model the brain and are more about pattern recognition
than thinking, they still build on KRR theory. My first endeavours with Drools were engineering
oriented, as | had no formal training or understanding of KRR. Learning KRR has allowed me to
get a much wider theoretical background. Allowing me to better understand both what I've done
and where I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really
is a vast and fascinating subject that will pay dividends for those who take the time to learn. |
know it did and still does for me. Bracham and Levesque have written a seminal piece of work,
called "Knowledge Representation and Reasoning" that is a must read for anyone wanting to build
strong foundations. | would also recommend the Russel and Norvig book "Artificial Intelligence,
a modern approach” which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

* Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter
a database schema to hold validation rules. The book then shows how to generate Visual Basic
code from those validation rules to validate data entry. While perfectly valid, this is very different
to what we are talking about.

109

Chapter 5. Hybrid Reasoning

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi ti ons>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete
algorithm for object oriented systems. Other Rete based engines also have marketing terms
for their proprietary enhancements to Rete, like RetePlus and Rete Ill. The most common
enhancements are covered in "Production Matching for Large Learning Systems™ (1995) by Robert
B. Doorenbos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named
PHREAK; which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

110

Hybrid Reasoning Systems (HRS)

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining (passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

111

Chapter 5. Hybrid Reasoning

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
Y
Conflict
. Rule Selact ,
| Fire Rule |-'l Found @ Eg;gli::[gr?rn
Mo Fule
Found

¥
—Exit If specified by rule ';I et l

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

112

Hybrid Reasoning Systems (HRS)

retums trua?

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
@
=]
£la
2l Retum Do goals
i o True ™ yes match?
R
Al
|2 |
g |= |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
w |
|
| Detarmine next possible
For each rule | rules to fire by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit

All rec$

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 5.3. Backward Chaining

113

Chapter 5. Hybrid Reasoning

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

114

Recommended Reading

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

115

Chapter 5. Hybrid Reasoning

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector . Levesque -

itilacel Tl |||.:-r|' o

- I JETRTS % Alisdere Npgrrua
—— st H"" = = vl Lia

Figure 5.5. Recommended Reading

116

Recommended Reading

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Browne

» Drools JBoss Rules 5.0 Developers Guide
* Michal Bali

» Drools Developer's Cookbook

* Lucas Amador

117

Chapter 5. Hybrid Reasoning

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador PACKY ot

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/
context/505087/0). The latin word "rete” means "net" or "network". The Rete algorithm can be
broken into 2 parts: rule compilation and runtime execution.

118

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Rete Algorithm

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

ObjectTypeNode ReteMNode

AlphaNode JoinNode

LeftinputAdapterNode

{ \ MotMode
EvalNode

 NON N

TerminalNode

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the
ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do
more work than it needs to. For example, say we have 2 objects: Account and Order. If the rule
engine tried to evaluate every single node against every object, it would waste a lot of cycles. To
make things efficient, the engine should only pass the object to the nodes that match the object
type. The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input
nodes descend from it. This way, if an application asserts a new Account, it won't propagate to
the nodes for the Order object. In Drools when an object is asserted it retrieves a list of valid
ObjectTypesNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist
it scans all the ObjectTypeNodes finding valid matches which it caches in the list. This enables
Drools to match against any Class type that matches with an i nst anceof check.

119

Chapter 5. Hybrid Reasoning

ReteNode

Cheese T~ Person

-.f..

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes.
AlphaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong

Figure 5.9. AlphaNodes

120

Rete Algorithm

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes.
BetaNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

121

Chapter 5. Hybrid Reasoning

Cheese Person

name == "cheddar’

Person. favouriteCheese ==
Cheese.name

Figure 5.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a

LeftinputNodeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule
generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule

when
Cheese($cheddar : nanme == "cheddar")
$person : Person(favouriteCheese == $cheddar)

122

Rete Algorithm

t hen
Systemout.println($person.getNane() + " |ikes cheddar");
end
rul e
when
Cheese($cheddar : name == "cheddar")
$person : Person(favouriteCheese != $cheddar)
t hen

Systemout. println($person.getNanme() + " does not |ike cheddar")
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

123

Chapter 5. Hybrid Reasoning

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 5.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

ReteOO Algorithm

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm
and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing
« Sharing is applied to both the alpha and beta network. The beta network sharing is always from
the root pattern.

Alpha indexing

» Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

« Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts
for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

« Join matches did not contain any references to their parent or children matches. Deletions would
have to recalculate all join matches again, which involves recreating all those join match objects,
to be able to find the parts of the network where the tuples should be deleted. This is called
symmetrical propagation. A tree graph provides parent and children references, so a deletion
is just a matter of following those references. This is asymmetrical propagation. The result is
faster and less impact on the GC, and more robust because changes in values will not cause
memory leaks if they happen without the engine being notified.

Modify-in-place
« Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as
a single pass, every node is inspected

Property reactive
« Also called "new trigger condition”. Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion
and also helps with performance.

Sub-networks

* Not, Exists and Accumulate can each have nested conditional elements, which forms sub
networks.

125

Chapter 5. Hybrid Reasoning

Backward Chaining

» Prolog style derivation trees for backward chaining are supported. The implementation is stack
based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

« Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS
only turns it on, on first use. Further it's only turned on for that object type, so other object types
do not incur the runtime cost.

Heap based agenda

« The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear
search or maintenance approach.

Dynamic Rules

* Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.
The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,
and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer
classified as a RETE implementation. In the same way that once an animal evolves beyond a
certain point and key characteristics are changed, the animal becomes classified as new species.
There are two key RETE characteristics that strongly identify any derivative strains, regardless of
optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,
update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is
characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.
Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,
RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO
section. In addition it adds the following set of enhancements, which are explained in more detail
in the following paragraphs.

» Three layers of contextual memory; Node, Segment and Rule memories.

¢ Rule, segment and node based linking.

* Lazy (delayed) rule evaluation.

126

PHREAK Algorithm

« Isolated rule evaluation.
« Set oriented propagations.
» Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can
happen while rules are unlinked. The insert, update and deletes actions are queued before
entering the beta network. A simple heuristic, based on the rule most likely to result in firings, is
used to select the next rule for evaluation; this delays the evaluation and firing of the other rules.
Only once a rule has all right inputs populated will the rule be considered linked in, although no
work is yet done. Instead a goal is created, that represents the rule, and placed into a priority
gueue; which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only
the active AgendaGroup will inspect its queue, popping the goal for the rule with the highest
salience and submitting it for evaluation. So the work done shifts from the insert, update, delete
phase to the fireAllIRules phase. Only the rule for which the goal was created is evaluated, other
potential rule evaluations from those facts are delayed. While individual rules are evaluated, node
sharing is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be
propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.
For each child node that it reaches it will attempt to join with the other side of the node, again each
successful join attempt will be propagated straight away. This creates a descent recursion effect.
Thrashing the network of nodes as it ripples up and down, left and right from the point of entry
into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule
being evaluated it will visit the first node and process all queued insert, update and deletes. The
results are added to a set and the set is propagated to the child node. In the child node all queued
inset, update and deletes are processed, adding the results to the same set. Once finished that set
is propagated to the next child node, and so on until the terminal node is reached. This creates a
single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a
batch process effect which can provide performance advantages for certain rule constructs; such
as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-
core machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.
When the rule network is built segments are created for nodes that are shared by the same set
of rules. A rule itself is made up from a path of segments, although if there is no sharing that will
be a single segment. A bit-mask offset is assigned to each node in the segment. Also another
bit mask (the layering) is assigned to each segment in the rule's path. When there is at least
one input (data propagation) the node's bit is set to on. When each node has its bit set to on the
segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also
set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal
is created to schedule the rule for evaluation. The same bit-mask technique is used to also track
dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation
if it's considered dirty since it was last evaluated.

127

Chapter 5. Hybrid Reasoning

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule
instances because one of the joins has no data. This is possible in RETE and it will merrily churn
away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are
used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future
work would attempt to delay the linking even further; using techniques such as arc consistency to
determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of
memory. This allows for much more contextual understanding during evaluation of a Rule.

rHul»e Memory

r.'E‘.-.E-q:_;ment Memory

Node Node Node
Memory Memaory Memory

% "

F.E‘.-.egment Memory

Node Node Node
Memory Memaory Memory
: :
segment Memory
Node Node Node
Memory Memaory Memory

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with
bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

128

PHREAK Algorithm

R1=ABC

1

1

[
el

Y N [T —

1

1

1

I
N S |

Figure 5.13. Examplel: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.
A is placed in its own segment, resulting in two segments per rule. Those two segments form a
path, for their respective rules. The first segment is shared by both paths. When A is linked the
segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to
on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bhit 2 to
be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created
to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each
segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was
to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a
segmentation split and will create peered tuples for each insert, update and delete in the set and
add them to R2's staging memory. Those tuples will be merged with any existing staged tuples
and wait for R2 to eventually be evaluated.

129

Chapter 5. Hybrid Reasoning

R1=ABC
R2=ADE

1
[l
[

1 P

e m\] mmm————————————————

N —)

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only
the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has
3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared
by R3 and R4.

130

PHREAK Algorithm

R1=ABC
R3=ABDE
R4=ABDFG

e Y Y, T Y

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.
In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does
not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network
forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

131

Chapter 5. Hybrid Reasoning

Ri=Anot(Bnot(C))D
®
—

S I

T

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-
network. This results in the sub-network segment being split into two.

132

PHREAK Algorithm

(]
.

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

4

H

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink
a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has
already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused
and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment
and the sub-network segment. The sub-network segment is evaluated first, when the set reaches
the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The
previous StackEntry is then resumed where it can process the results of the sub network. This
has the added benefit that all work is processed in a batch, before propagating to the child node;
which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation
reaches a query node it again pauses the current evaluation, by placing it on the stack. The query
is then evaluated which produces a result set, which is saved in a memory location for the resumed
StackEntry to pick up and propagate to the child node. If the query itself called other queries the

133

Chapter 5. Hybrid Reasoning

process would repeat, with the current query being paused and a new evaluation setup for the
current query node.

One final point on performance. One single rule in general will not evaluate any faster with
PHREAK than it does with RETE. For a given rule and same data set, which using a root context
object to enable and disable matching, both attempt the same amount of matches and produce
the same number of rule instances, and take roughly the same time. Except for the use case with
subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and
with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the
joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system
grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times,
regardless of the group. The same is true for salience. Which is why root context objects are often
used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and
within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule
instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root
context objects are no longer needed and potentially counter productive to performance, as they
force the flushing and recreation of matches for rules.

134

Chapter 6.

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a
rule engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the
complexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

* Validation
« Is this person eligible for a mortgage?
 Calculation
« Compute a mortgage premium.
* Routing and Filtering
* Filter incoming messages, such as emails, into folders.
» Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {
private String nane;
private int age;
private bool ean vali d;
/1 getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany. | icense

rule "Is of valid age"
when

135

Chapter 6. User Guide

$a : Applicant(age < 18)
t hen

$a.setValid(false);
end

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short
for "Drools Rule Language". Let's call this file licenseApplication.drl, and store it in a Kie Project.
A Kie Project has the structure of a normal Maven project with an additional file (kmodule.xml)
defining the Ki eBases and Ki eSessi ons that can be created. This file has to be placed in the
resources/META-INF folder of the Maven project while all the other Drools artifacts, such as the
licenseApplication.drl containing the former rule, must be stored in the resources folder or in any
other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knmodul e"/ >

At this point it is possible to create a Ki eCont ai ner that reads the files to be built, from the
classpath.

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki ed asspat hCont ai ner () ;

The above code snippet compiles all the DRL files found on the classpath and put the result of
this compilation, a Ki eMbdul e, in the Ki eCont ai ner . If there are no errors, we are now ready to
create our session from the Ki eCont ai ner and execute against some data:

St at el essKi eSessi on kSessi on = kCont ai ner. newSt at el essKi eSessi on() ;
Appl i cant applicant = new Applicant("M John Smith", 16);

136

Stateless Knowledge Session

assertTrue(applicant.isValid());
ksessi on. execute(applicant);
assertFal se(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String nane;
private int age;
/'l getter and setter nethods here

public class Application {
private Date dateApplied;
private bool ean vali d;
/1 getter and setter nethods here

We will also add another rule to validate that the application was made within a period of time.

package com conpany. | icense

rule "Is of valid age"
when
Applicant(age < 18)
$a : Application()
t hen
$a.setValid(false);
end

rule "Application was made this year"
when
$a : Application(dateApplied > "01-jan-2009")
t hen
$a.setValid(false);
end

137

Chapter 6. User Guide

Unfortunately a Java element does not implement the |t er abl e interface, so we have to use
the JDK converter method Arrays. asLi st (...). The code shown below executes against an
iterable list, where all collection elements are inserted before any matched rules are fired.

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();

Appl i cant applicant = new Applicant("M John Smith", 16);

Application application = new Application();

assert True(application.isValid());

ksessi on. execute(Arrays. asList(new Cbject[] { application, applicant }));
assertFal se(application.isValid());

The two execute methods execut e(Chj ect object) and execute(lterable objects) are
actually convenience methods for the interface Bat chExecut or's method execut e(Conmand
comand) .

The Ki eConmmands commands factory, obtainable from the Ki eSer vi ces like all other factories of
the KIE API, is used to create commands, so that the following is equivalent to execut e(I t er abl e
it):

ksessi on. execut e(ki eServi ces. get Commands(). newl nsert El enents(Arrays. asList(new Object[] { aj

Batch Executor and Command Factory are particularly useful when working with multiple
Commands and with output identifiers for obtaining results.

Ki eCommands ki eCommands = ki eServi ces. get Conmands() ;
Li st <Conmand> cnds = new Arrayli st <Command>();

cnds. add(ki eCommands. newl nsert (new Per son("M John
Smth"), "mrSmth", true, null));
cnds. add(ki eCommands. newl nsert (new Per son("M John

Doe"), "nrDoe", true, null));
Bat chExecuti onResults results = ksessi on. execut e(ki eCommands. newBat chExecuti on(cnds));
assert Equal s(new Person("M John Smth"), results.getValue("nrSmth"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

6.1.2. Stateful Knowledge Session

Stateful Sessions are long lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:

* Monitoring

138

Stateful Knowledge Session

» Stock market monitoring and analysis for semi-automatic buying.
» Diagnostics

 Fault finding, medical diagnostics
« Logistics

 Parcel tracking and delivery provisioning
e Compliance

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions
when they are created. Since Stateful Knowledge Session is the most commonly used session
type it is just named Ki eSessi on in the KIE API. Ki eSessi on also supports the Bat chExecut or
interface, like St at el essKi eSessi on, the only difference being that the Fi r eAl | Rul es command
is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {

private String nane

/1 getter and setter nethods here
}
public class Sprinkler {

private Room room

private bool ean on;

/'l getter and setter methods here
}
public class Fire {

private Room room

/'l getter and setter methods here
}

public class Alarm{

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

139

Chapter 6. User Guide

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler”
when
Fire($room: room
$sprinkler : Sprinkler(room== $room on == false)
t hen
nodi fy($sprinkler) { setOn(true) };
Systemout.println("Turn on the sprinkler for room" + $room getNane());
end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "Wien the fire is gone turn off the sprinkler”

when
$room : Roon()
$sprinkler : Sprinkler(room== $room on == true)
not Fire(room == $room)

t hen

nmodi fy($sprinkler) { setOn(false) };
Systemout.println("Turn off the sprinkler for room" + $room get Name());
end

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how

140

Stateful Knowledge Session

many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rule "Rai se the al arm when we have one or nore fires”
when
exists Fire()
t hen
insert(new Alarm());
Systemout.println("Raise the alarni);
end

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"
when
not Fire()
$alarm: Alarm()
t hen
delete($alarm);
Systemout. println("Cancel the alarn);
end

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"
when
not Al arm()
not Sprinkler(on == true)
t hen
Systemout.println("Everything is ok");
end

As we did in the Stateless Session example, the above rules should be placed in a single DRL
file and saved into the resouces folder of your Maven project or any of its subfolder. As before,
we can then obtain a Ki eSessi on from the Ki eCont ai ner. The only difference is that this time
we create a Stateful Session, whereas before we created a Stateless Session.

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

141

Chapter 6. User Guide

Ki eSessi on ksession = kCont ai ner. newKi eSessi on();

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fi reAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

String[] nanmes = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Roon® name2r oom = new HashMap<Stri ng, Roone();
for(String nanme: names){

Room room = new Roon(nane);

nanme2r oom put (nane, room);

ksession.insert(room);

Sprinkl er sprinkler = new Sprinkler(room);

ksession.insert(sprinkler);

ksession.fireAl |l Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(nane2roomget("kitchen"));
Fire officeFire = new Fire(name2roomget("office"));

Fact Handl e ki tchenFireHandl e = ksession.insert(kitchenFire);
Fact Handl e of fi ceFi reHandl e = ksession.insert(officeFire);

ksession.fireAl |l Rul es();

> Rai se the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

142

Methods versus Rules

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksessi on. del et e(kitchenFireHandl e);
ksession. del ete(officeFireHandl e);

ksession.fireAl |l Rul es();

Cancel the alarm
Turn off the sprinkler for roomoffice
Turn off the sprinkler for roomkitchen
Everything is ok

V V V V

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getName().equal s("Chuck")) {
Systemout.printin("Hello Chuck");

Methods are called directly.
» Specific instances are passed.

* One call results in a single execution.

rule "Hello Worl d" when

Per son(nane == " Chuck")
t hen

Systemout.println("Hello Chuck");
end

* Rules execute by matching against any data as long it is inserted into the engine.

143

Chapter 6. User Guide

* Rules can never be called directly.
 Specific instances cannot be passed to a rule.

» Depending on the matches, a rule may fire once or several times, or not at all.
6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there are no field constraints:

rul e "Show Sprinkl ers" when
$room : Room()
$sprinkler : Sprinkler()
t hen
Systemout.println("room" + $room get Nane() +
" sprinkler:" + $sprinkler.getRoon().getName());
end

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

room of fi ce sprinkler:office

room of fi ce sprinkler:kitchen
room of fice sprinkler:livingroom
room of fice sprinkl er: bedroom
room kit chen sprinkl er:office
room kit chen sprinkl er:kitchen
room kit chen sprinkl er:livingroom
room ki t chen sprinkl er: bedroom
room | i vi ngroom sprinkler:office
room | i vi ngroom spri nkl er: ki tchen
room | i vi ngroom sprinkl er:livingroom
room | i vi ngroom spri nkl er: bedroom
room bedroom spri nkl er: of fice
room bedr oom spri nkl er: kit chen
room bedr oom spri nkl er:1ivi ngroom
room bedr oom spri nkl er: bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

144

Execution Control

rul e
when

$room : Room()

$sprinkler : Sprinkler(room== $room)
t hen

Systemout.printlin("room" + $room get Name() +

" sprinkler:" + $sprinkler.getRoom().getNanme());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==
Spri nkl er.room

room of fi ce sprinkler:office

room ki t chen sprinkl er:kitchen

room | i vingroom sprinkler:livingroom
room bedr oom spri nkl er: bedr oom

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule
that execution in a deterministic order.

During actions on the Rul eRunt i me, rules may become fully matched and eligible for execution;
a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a
Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.
The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fi reAl | Rul es() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Rule Runtime Actions.

145

Chapter 6. User Guide

Determine
possible rules to
fire

" Agenda Evaluation

. Working Memory Action

k.
- Rule
Found AEE‘J
Fire Rule | %ﬂa Fire

Mo Rule
Found

axit

Figure 6.1. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling
application. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a
new example will be explored that handles cashflow calculations over date periods. The state of
the engine will be illustratively shown at key stages to help get a better understanding of what
is actually going on under the hood. Three classes will be used, as shown below. This will help
us grow our understanding of pattern matching and joins further. We will then use this to illustate
different techniques for execution control.

public class CashFl ow {
private Date dat e;
private doubl e anmount;
private int type;
| ong account No;
/1 getter and setter methods here

146

Rule Matches and Conflict Sets.

public class Account {
private |ong account No
private doubl e bal ance
/1 getter and setter nethods here

publ i ¢ Account Period {
private Date start;
private Date end
[l getter and setter nethods here

By now you already know how to create KieBases and how to instantiate facts to populate the
Ki eSessi on, so tables will be used to show the state of the inserted data, as it makes things
clearer for illustration purposes. The tables below show that a single fact was inserted for the
Account . Also inserted are a series of debits and credits as CashFl ow objects for that account,

extending over two quarters.

Figure 6.2. CashFlows and Account

Two rules can be used to determine the debit and credit for that quarter and update the Account
balance. The two rules below constrain the cashflows for an account for a given time period. Notice
the "&&" which use short cut syntax to avoid repeating the field name twice.

rul e "increase bal ance for credits”
when
ap : Account Period()
acc : Account($account No
account No)
CashFl om(type == CREDIT,
account No == $account No,
date >= ap. start && <= ap. end
$anount : anount)
t hen
acc. bal ance += $anount;

when

ap :

rul e "decrease bal ance for debits"
Account Peri od()
acc : Account($account No

account No)
CashFl om(type == DEBIT,
No == $account No,

account

date >= ap.start

ap. end,

t hen

$anount

anount)

&& <=

147

CashFlow Account
date amount type accountMo accountMo balance
12-Jan-07 100|CREDIT 1 1 0
2-Feb-07 200DEBIT 1
18-May-07 50|{CREDIT 1
9-Mar-07 75|(CREDIT 1

Chapter 6. User Guide

end acc. bal ance -= $anount;
end

Earlier we showed how rules would equate to SQL, which can often help people with an SQL
background to understand rules. The two rules above can be represented with two views and a
trigger for each view, as below:

Table 6.1.
select * from Account acc, sel ect * from Account acc,
Cashf | ow cf, Cashfl ow cf,
Account Peri od ap Account Peri od ap
where acc.accountNo == cf.accountN where acc.accountNo == cf.accountNo
and and
cf.type == CREDIT and cf.type == DEBI T and
cf.date >= ap.start and cf.date >= ap.start and
cf.date <= ap.end cf.date <= ap. end
trigger : acc.bal ance += cf.anount trigger : acc.bal ance -= cf. anount

If the Account Peri od is set to the first quarter we constrain the rule "increase balance for credits
to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched
during the insertion stage and, as you discovered in the previous chapter, does not fire straight
away, butonly afterfi reAl | Rul es() is called. Meanwhile, the rule plus its matched data is placed
on the Agenda and referred to as an Rule Match or Rule Instance. The Agenda is a table of Rule
Matches that are able to fire and have their consequences executed, as soon as fireAllRules()
is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is
determine by a conflict resolution strategy. Notice that the order of execution so far is considered
arbitrary.

148

AccountingP eriod
start end
01-Jan-07 31-Mar-07
CashFlow CashFlow
date amaount type date amount type
12-Jan-07 TO0[CREDIT 2-Feb-07 200|DEBIT
O-Mar-07 THICREDIT

Rule Matches and Conflict Sets.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Account
accountMo balance
1 -25

Figure 6.5. CashFlows and Account

If the Account Peri od is updated to the second quarter, we have just a single matched row of
data, and thus just a single Rule Match on the Agenda.

The firing of that Activation results in a balance of 25.

AccountingPeriod
stan end
01-Apr-07 30-Jun07
CashFlow
date amount type
18-May-07 L0|CREDIT

Figure 6.6. CashFlows and Account

accountMo balance
1 25

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule
Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to

149

Chapter 6. User Guide

determine the order of execution. The Drools strategy is very simple and based around a salience
value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value
the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a "flow". However when a flow is needed a number of possibilities
exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore
facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be
executed after all the debits and credits have been applied for all accounts. We achieve this by
assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.

rule "Print bal ance for AccountPeriod"
sal i ence -50
when
ap : Account Period()
acc : Account ()
t hen
Systemout.println(acc.accountNo + " : " + acc. bal ance);
end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Agenda
1 Increase balance
2 decrease balance arbitrary
J Increase balance
4 print balance

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The
stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

150

Rule Matches and Conflict Sets.

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is
poped from the stack and the next group is evaluated.

Table 6.3.
rule "increase bal ance for credits" rule "Print bal ance for AccountPeriod"
agenda- group “"cal cul ati on" agenda- group "report"
when when
ap : Account Peri od() ap : Account Peri od()
acc : Account($account No acc : Account ()
account No) t hen
CashFl om(type == CREDIT, Systemout. println(acc.accountNo +
account No == $account No, "t o+
date >= ap. start && <= ap. end acc. bal ance);
$anount : anount) end
t hen
acc. bal ance += $anount;
end

First set the focus to the "report" group and then by placing the focus on "calculation" we ensure
that group is evaluated first.

Agenda agenda = ksessi on. get Agenda();

agenda. get AgendaG oup("report").setFocus();
agenda. get AgendaGroup("cal cul ati on").setFocus();
ksession.fireA |l Rul es();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively
specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools
plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed
before the reporting rules.

151

Chapter 6. User Guide

a2 *banking.rf 7

[;g Select

r

L

L Marquee

—t i_onneckion Creation

2 start

[~ Components *

. Start

[& End

[RuleFlowG