JBPM User Guide

Version 6.0.0.CR1

by The JBPM team [http://www.jboss.org/jopm]

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

R @ T YT PP 1
T o B S 1= o 1Y P 1

@ YT 1= PSP 2

1.3, COrE ENQINE ..ottt et e 3

B o 11 Y=o 1 () (P 4

1.5. WeD-based DEeSIGNETiiiiiiiieieii et 6

1.6, FOrM BUIIET ...coeviiieei e e e e e aeeeate e eeeees 6

1.7. GUVNOT REPOSITONY ..eiiiiiiiiiii ettt ettt e e ettt e e e et e e e et e e e enba e aeees 6

1.8. Web-based Management CONSOIESccouuiiiiiiiiiiiecie e e e e 7

I TR B To To 0 41T o 2= 4o o P 7

A 1= T Lo] = (=T o 9
0 I I T 111/] [7= To £ PR 9

b C 1= 11 0o) = 1 (=0 9

2.3 COMMUIILY ettt ettt ettt et e et e ettt e et et r e et et e e e e et e e e e bt e e e erenas 9

A S Yo U of L PP 10
T I o =T o 1 10

P Yo U o R oo Lo - P 10

2.4.3. BUIldING frOM SOUICE .. .ceiiiiiiiiii e 11

G T [1S3 = 11 = PSPPSR 13
3.1. Prer@QUISITES ...ttt et e e et et e naans 13

3.2. DoOwWNIoad the INSLAIIETcocveiiii e 13

3.3, DBIMIO SEIUP ..ieiiiiiie ettt e 13

3.4. 10-Minute Tutorial: Using the Eclipse toolingccooiiiiiiiiiiii e, 15

3.5. 10-Minute Tutorial: Using the jBPM CONSOIeccocuiiiiiiiiiiiiiiiiieecei e 16

3.6. 10-Minute Tutorial: Using Guvnor repository and DeSignerc.cccovevviveeiineeiinnnns 18

3.7. 10-Minute Tutorial: Using your own database with jBPMccccoooiiiiiiiiiiinennnnn. 19

G A O 1o o o [T 1 o o R PP 19

3.7.2. DAtADASE SEIUP ..eivtiiieiiiii et 20

3.7.3. QUICKSIAIT ..ooeeciiei e 20

3.7.4. Using a different databasecooouiiiiiiiiiiiiiii e 25

3.8. What to do if | encounter problems or have questions?cc.ccceveviieiiieeiineeennn. 27

3.9. Frequently asked QUESTIONSc.couuuiiiiiiieiei e e 27

O @ LU T o 7€) - | £ 29
4.1, INVOKING 8 JAVA SEIVICEiiiiiiieiiiii ettt ettt e e e e e e eaanns 29
g O I O £ o = T o1 = =) 29

4.1.2. Using @ Java handlerccoouiiiiiiii e 31

4.1.3. Writing your own domain-specific taskcccoeeviieiiiiiiiiiiciiieie e, 31

5. C0re ENGINE: APl e 33
5.1, ThE JBPM AP ..ot e e a e 34
5.1.1. KNOWIEdge BaSEiiiiiiiiiiiii e 34

D12, SESSION etiiiiiii et 36

DL 3. BVENES e e 38

5.2. Knowledge-hased AP ... 40

jBPM User Guide

6. COre ENQINE: BASICS ..oouuuiiiiiiii it 43
LT O =T i o = T o (Lo = PPN 43
6.1.1. Using the graphical BPMN2 EditOrccuuiiiiiiiiiiiiiiiicic e 43
6.1.2. Defining processes USING XMLccouuiiiiiiiiiiieiie e 44
6.1.3. Defining Processes Using the Process APlccoovviiiiiiiiiiiniiiiineceeen, 46

6.2. Details of different process CONStructs: OVEIVIEWccceuvvvviieiiineiiiieeiiieeeieeeenn, 47
6.3. DetailS: ProCesS PrOPEITIESiiiiiiieiiii ettt 48
6.4, DELAIlS: EVENTS ...ouuiiiiiiii ittt 49
B.4. 1. STAIT VRN ..ite it e 49
L g o I YT | £ PSP 50
6.4.3. Intermediate EVENTScouiiii e 52

6.5. DetallS: ACLIVILIESuuiiiiiiiii et aaaas 54
B.5.1. SCHIPL TASK et 54
6.5.2. SEIVICE TASK ..iiviiiiiiii i 56
B.5.3. USEI tASK ovuiiiiiiiii e 57
6.5.4. Reusable SUD-PrOCESSoiiiiiiiii i 58
6.5.5. BUSINESS TUIE tASK ..oeveiiiii e 59
6.5.6. Embedded SUD-PrOCESScovviiiiiiiii e e e 60
6.5.7. MUlti-INStanCe SUD-PrOCESScoovviiiiiiii e 61

6.6. DEtailS: GAEWAYSuuiiiiiiiiiiiei e e e 63
6.6.1. DIVEIQgiNG QAIEWAYceevreiieiiiii ettt et e et e e e et eeeeba e eeees 63
6.6.2. CONVEIgING JAEBWAY ...cccvuiiiiiieiiiieiiiieeiiee e e e e e e e e s e e et e et eeaa e eanaas 65

6.7. Using a process in your appliCationuvieiiuiiiieiiii e 66
6.8. OthEr fEALUIESuuiiiiiii it e e e e e e e e s 67
LS T N 7 | - L 67

(SR I o] 0 1S] 1 7= V1| £ PP 69
6.8.3. ACLION SCHIPLS oevtiiiiiii ettt et e e e e 70
B.8.4. EVENIS Lo e 71
LS TS T T2 1T P 72
6.8.6. UPAALiNG PrOCESSES ..ucvvuiiiiiieiiiieeii et et e e e e e e e e e e et e e et e e eanaaees 73
6.8.7. MUItI-tNre@dinguniiieii e 75

7. Core ENgine: BPMN 2.0 ...uuiiiiiiiiiii e e e e e e e et e e e e e e et e e e e ea 79
7.1. Business Process Model and Notation (BPMN) 2.0 specificationccc.uen.. 79
A =5 C: 11 1] 0] [P 83
7.3. Supported elements / attribULESccoouiiiiiiii 84
8. Core Engine: Persistence and tranSactionsccooouviiiiiiiiiiii e 91
8.1, RUNIIME STALE ...iieiiiit et e e e e e e e et e e e ean s 91
8.1.1. BiNAry PerSiSIEBNCE ... ccuuiiiiiiiii et 92
8.1.2. SaAfE POINS ... 94
8.1.3. Configuring PErSiSIENCEcuuiiiiiiiii e e 94
TR S I - g ST V1 L 99
8.1.5. Persistence and CONCUIMENCYccuuiveuneeiieeeiiieeiieesaieeeeteesieesaaeeanneeaens 102

8.2. Process DefiNItiONScoeuiiiiiiii e 102
IR T 11 (o) Y/ o o 102

8.3.1. The jBPM Audit data Modelocoiiiiiiiiiii e 103

8.3.2. Storing Process Events in a Databaseccoooeviiiiiiiiiin i 105
9. Eclipse BPMN 2.0 PIUGIN ..uuiiiiiiiee e 107
9.1, INSEAIIALION ...iiieii e 107
9.2. Creating your BPMN 2.0 PrOCESSEScuuuiiieiiieiiiiii ettt ettt eeii e eeni e eeaans 107
9.2.1. Filtering elements and attributescccooviiiiiiii i 111
9.2.2. Adding custom task NOAESuiiiiiiiiiiiiiii e 112
9.3. Changing editor BENAVIONccouniiii e 113
9.4. Changing editor aPPEATANCEcoouuui it 114
O I TS o | oY= P 117
0 R 1013 =11 F= 11T PP 117
0 S Yo T [(o= I oo o = PP 118
10.3. Designer Ul EXPlainedcoouiiiiiiiiiiii e 118
10.4. Support for domain-specific SErvice NOAEScccuvveiiiiiiiiieiii e 123
10.5. ConfiguriNg DESIGNETceeuiieiiii et e s 125
10.5.1. Changing the default configuration in Designercccoeevevvviiieeinnenn. 125
10.5.2. Changing the default configuration in GUVNOTccoeuiiiiiiiiiineeiinnnnn. 126
10.6. Generation of process and task fOrmsccoooiiiiiiii i 127
10.7. View processes as PDF and PNGcooiiiiiiiiiiii e 129
10.8. Viewing process BPMN2 SOUICEc.uiiiinieiiiieiiiieeiiieeeiee e e e e e e e e eeanns 129
10.9. Embedding designer in your own applicationc.ocoeuuiiieiiiiinneiiiiineeeeiie, 130
10.10. Migrating existing jBPM 3.2 based processes to BPMN2cccoocvvvevnnnnnnn. 131
10.11. Visual Process Validationcoouiiiiiiiiiiiieiiiieeine e e e e e 132
10.12. Integration with the [BPM Service REPOSItOrYccuoveiiiiiiiiiiiiii e eeieens 132
10.13. Generating code to share the process image, PDF, and embedded process
L= 11 o P 133
10.14. Importing existing BPMN2 PrOCESSESuiiiiiiiiieiiiiiieeieiiie e 134
10.15. Viewing Process INformationccoceuiiiiiiiiiiiicii e 134
10.16. REQUITEIMENESiiiiiieiiiii ettt et ettt e et e e e b 135
5O o 1=] 1= TP 137
0 R 1S3 = 1= 11T PP 137
50 O U 1 Lo 4 1 o o I PP 137
11.1.2. User and group ManagemMENToeeeuuuereuuiereiieeeeiiaererineeeenenens 137
11.1.3. Registering your own service handlersccoocoiiiiiiiiiiiin i, 138
11.1.4. Configure management CONSOIEcoouuiieiiiiiiieiiii e 139
11.2. Running the process management CONSOIEcc.uvveiiieeiiiieiiii e e e 143
11.2.1. Managing ProCess INSTANCESieierriieiiiiiieeeeiie e et e e e 144
11.2.2. HUM@N taSK lISES ..oiiiiiieiiiiii e 147
11.2.3. REPOMING «ieeeineiiiii ettt ettt e et e e e b 148
11.3. Adding new process / task fOrmMSccoviiiiiiiii e 149
N o S I 1 1= o = T = PPN 151
12, HUMAN TASKS oittiiiiiiiie ettt et e et e et e e e et e e e et e e e e et e e eeetannas 153
12.1. Human tasks iNSide PrOCESSESiiiiiiiiieiiii et 153
12.1.1. User and group asSIigNMENTcveiuiieiiiieiii e eee e e e e e e eeens 158

jBPM User Guide

12.1.2. Task escalation and notificationccooviiiiiii i 158

2 T B = - W 4 T o) o1 Vo RN 163

2 S 1 g =T TP 165

12.1.5. EXAMPIES .oniiiiiii e 166

12.2. HUMAN tASK SEIVICE ..oouiiiiiiiii et e s 166
12.2.1. TASK life CYCIE cuuniiiie e 166

12.2.2. Linking the human task service to the jJBPM enginecccoeeveevennnnnn. 168

12.2.3. Interacting with the human task Servicecccoociiviiiiiiiiii e, 169

12.2.4. User and group aSSIgNMENTc.uuiiiiiiiieiiii e r e eain s 170

12.2.5. Starting the human task SErviCeccoocviiiiiiiiiiiii e 175

12.2.6. Starting the human task service as web applicationc....oceevvreeees 180

12.3. HUMAN taSK CIENTS ...iviiiiiiieiii et e e et e e ea e eees 182
12.3.1. Eclipse demo task ClEeNtoviiiiiiiiiiiii e 182

12.3.2. Web-based task client in jBPM Consoleccccooviiiiiiiiiiiiieiieeceeeen, 182

12.4. HUMAN tasK PEIrSISIENCEiiiiiiiieieiii ettt 182
12.4.1. Task related entitieSccccuuiiiiiiiiiiee e 184

12.4.2. Deadline, Escalation and Notification related entitiesccccocvevvnennen. 189

13. DOMAIN-SPECITIC PrOCESSES .ovvuiiiiiiiii et e e e e e e e e e et e eean e eaes 195
R 0 I [1o T [T 1o o P 195

R B @ Y= = PP 196
13.2.1. Work Item DefinitioNsScc.uviiiiiiiiiii e 196

13.2.2. WOrk Item HaNAIErSccoouiieiiiiii e 197

13.3. Example: NOHFICAIONSc.uuniiiiiiiiieiiii e 198
13.3.1. The Notification Work Item Definitioncccooeeviiiiiiiiiiinieiii e, 198

13.3.2. The NotificationWorkltemHandlercoooiiiiiiiiiiiii e 203

R T oY ot R =Y o To 1<) (o] N 205
13.4.1. Public BPM Service repoSItOrycceeuuieiiiiiiieeiiiiiiee e 207

13.4.2. Setting up your OWN SEIVICE rePOSItONYuveviinieiiiieiiiieeiieeeieeeeieeeaeens 207

14. EXCEPLioN ManNAgeMENTooiiiiii ittt 211
I I @ Y= = PP 211

I 2 [o1 o o [T o o P 211
14.3. BUSINESS EXCEPLIONS ...iviiiiiiiii e e e 211
14.3.1. Business Exceptions elements in BPMN2c.ocoiiiiiiiiiiniiiiiiinecenenn, 212

14.4. Technical EXCEPLIONSciuuiiiii e e e e e e e e e e e e eaas 214
14.4.1. Handling exceptions in WorkltemHandler instancesccccceeeveeenn. 215

14.5. Technical EXception EXamPIESc.uoiiiiiiiiiii e 217
14.5.1. Example: service task handlerscccooooiiiiiiiiii 217

14.5.2. Example: logging exceptions thrown by bad <scriptTask> nodes 224

15, FIeXiBIE PrOCESSES ..ot e e e e e e e e aes 227
16. Business ACtiVIty MONITOTING ..ocoviiiiieiii e e e e e e e e 231
T I 2 (=T o To 4 1 oo [PP PP PP PPPTTR 231
16.2. DIreCt INTEIVENTION ...uiiiiii e e e e e e e e e eaa s 233

17. Core ENgine: EXAMPIES ...ouiiiiiii e 235
17.1. JBPM EXAMPIES ..ottt e 235

Vi

17.2. EXBMPIES .ttt et et e e et e e aae 235

17.3. UNIE EESES ittt e e e r e 236

18. Testing and debUGGING ...coiiiiiiiii e e et 237
S0 I U T 1 A (Y] o 237
18.1.1. Helper methods to create Your SESSIONveveeiunieiiiiinieeeiiiieeeeiieeees 238

18.1.2. ASSEITIONS ...uuieeieiiieiiiiie e ettt e e et e e e e e e e e e e e e e e e e e s 238

18.1.3. Testing integration with external ServiCescccooevviviiinieiiiinneiiiien. 239

18.1.4. Configuring PEISISLENCEuiiiiiieiiiieiie e e 240

18.2. DEDUGGING ...eeeeitnieeeeit ettt ettt ettt e 241
18.2.1. The Process INStaNCeS VIEWuiiiieiiiiiiiiii et e e 241

18.2.2. The HUMAN TaSK VIBWccuiiiiiiiiiii e e e 242

18.2.3. The AUIt VIEW ..ooviiiiiiii et 243

19. ProCeSS REPOSITOIY .oiiiiiiiiiiiii ettt et e e e eaaans 245
S R Qg To 1T/ [=To [o [RN 1= o | P 247

20. Integration with Maven, OSGi, SPring, €1C.ciiiiiiii e 249
20,1, MAVEIN Looiiiiiiii e 249
b0 © 15] TR 250
20 IR TS o] 112 T [252
20.3.1. Spring using the JTA transaction Managercceuuurvereriinieeeniinaeeennnns 253

20.3.2. Spring using local tranSactionscovevviiieiiiieii e 255

20.3.3. Spring using a shared entity managerccoeevvveeiiiiiiiiiieee e 257

20.3.4. Using a local task SEIVICEccoiiiiiiiiiiiiciie e 257

20.4. Apache Camel INTEGrationccoouuiiiiiiiiie e 259

Vii

viii

Chapter 1.

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor
business processes throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need
to be executed to achieve those goals, and the order of those goals are depicted using a flow
chart. This process greatly improves the visibility and agility of your business logic. jBPM focuses
on executable business processes, which are business processes that contain enough detail
so they can actually be executed on a BPM engine. Executable business processes bridge the
gap between business users and developers as they are higher-level and use domain-specific
concepts that are understood by business users but can also be executed directly.

’—{ % Project Manager Evaluation J‘*
-
Q # Self Evaluation e — @

. "
\—{ # HR Manager Evaluation] d

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

» Eclipse-based and web-based editor to support the graphical creation of your business
processes (drag and drop).

» Pluggable persistence and transactions based on JPA / JTA.

* Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors.

« Management console supporting process instance management, task lists and task form
management, and reporting

« Task for builder to create, generate and/or edit task forms
« Optional process repository to deploy your process (and other related knowledge)
 History logging (for querying / monitoring / analysis)

* Integration with Maven, Spring, OSGi, etc.

Chapter 1. Overview

BPM creates the bridge between business analysts, developers and end users by offering process
management features and tools in a way that both business users and developers like. Domain-
specific nodes can be plugged into the palette, making the processes more easily understood by
business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-
life situations that cannot easily be described using a rigid process. We bring control back to the
end users by allowing them to control which parts of the process should be executed; this allows
dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a
combination of business processes with business rules and complex event processing. jBPM can
be combined with the Drools project to support one unified environment that integrates these
paradigms where you model your business logic as a combination of processes, rules and events.

Apart from the core engine itself, there are quite a few additional (optional) components that you
can use, like an Eclipse-based or web-based designer and a management console.

1.2. Overview

End User
Your Runtime Monitori Task BAM /
Application untime onitoring List Reporting
Core Services
Your | Task
Services Service
Guvnor
Repository
. [Web-Based Form
Eclipse Modeler Designer Builder
Developer h Rules Editor .
Analyst P
Figure 1.1.

Core Engine

This figure gives an overview of the different components of the jBPM project. jJBPM can integrate
with a lot of other services (and we've shown a few using grey boxes on the figure), but here we
focus on the components that are part of the jBPM project itself.

« The process engine is the core of the project and is required if you want to execute business
processes (all other components are optional, as indicated by the dashed border). Your
application services typically invoke the core engine (to start processes or to signal events)
whenever necessary.

» An optional core service is the history log; this will log all information about the current and
previous state of all your process instances.

» Another optional core service is the human task service that will take care of the human task
life cycle if human actors participate in the process.

» Two types of graphical editors are supported for defining your business processes:

e The Eclipse plugin is an extension to the Eclipse IDE, targeted towards developers, and
allows you to create business processes using drag and drop, advanced debugging, etc.

» The web-based designer allows business users to manage business processes in a web-
based environment. A web-based form builder also allows you to create, generate or edit
forms related to those processes (to start the process or to complete one of the user tasks).

» The Guvnor repository is an optional component that can be used to store all your business
processes. It supports collaboration, versioning, etc. There is integration with both the Eclipse
plugin and web-based designer, supporting round-tripping between the different tools.

« The web-based management console allows business users to manage their runtime (manage
business processes like start new processes, inspect running instances, etc.), to manage their
task list and to perform Business Activity Monitoring (BAM) and see reports.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). Its most important features are the following:

 Solid, stable core engine for executing your process instances.

» Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

» Strong focus on performance and scalability.

Chapter 1. Overview

Light-weight (can be deployed on almost any device that supports a simple Java Runtime
Environment; does not require any web container at all).

(Optional) pluggable persistence with a default JPA implementation.
Pluggable transaction support with a default JTA implementation.

Implemented as a generic process engine, so it can be extended to support new node types
or other process languages.

Listeners to be notified of various events.

Ability to migrate running process instances to a new version of their process definition

The core engine can also be integrated with a few other (independent) core services:

The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, rule-based assignments, etc.

The history log can store all information about the execution of all the processes in the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic states of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Eclipse Editor

The Eclipse editor is a plugin to the Eclipse IDE and allows you to integrate your business
processes in your development environment. It is targeted towards developers and has some
wizards to get started, a graphical editor for creating your business processes (using drag and
drop) and a lot of advanced testing and debugging capabilities.

Eclipse Editor

Bl Edt Mavigate Sogrch Project Bun Wiedow Haolp
e O G-
13 Package Explorer &

% o evaluation

= [avia

= cam Sarmphe

B] ProcesaTest java

S wTimainesounce s

Srue

b @i JRE Systarn Lisrary [jav

[+ ml BFM Library

[

£

o e

=3 =3 Evalation bpmn £

y =

| Seect
T Margques
=+ Soquenca Flow
L Camponsrts
Start Ewent
i End Event

& Gateway [dverge]

& Gateway |convergs)

v alustion/src/mesin resourcesEvaluation.bpmn - Eclipes SDK

=t 100% IE Gad [0 =2 A

I ProcessTestjava =0 B uthine 5

a =

B Saif Evaluation
F,
I—Pl ™ hvdum]—’

(=] Aausabie Sub-Frocess

B8 Script Task

2 Tiener Evint

& Error Ervent

) Mesrage Event
Eusar Tagk

(al Embedded Sub-Frocess

Ln) Multple Instances

L= Sarvice Tasks

= Eimail
Log

% Froblams | @ |awados

Property
Actorid
Comment
Conkent
L]
MataData

Hame

B, Dhclaration |

Propertias I2 |‘:||L'- - T o=
ol i
F{employee}

Flease perform a self-evaktation

2
{wadri=135, height=40, ¥=56. Unigisd=_2, x=98]}

SeF Evalabion

D Entry Actiors
| * Dn Exit Actions

Figure 1.2. Eclipse editor for creating BPMN2 processes

It includes the following features:

« Wizard for creating a new jBPM project

* A graphical editor for BPMN 2.0 processes

« The ability to plug in your own domain-specific nodes

 Validation

« Runtime support (so you can select which version of j[BPM you would like to use)

» Graphical debugging to see all running process instances of a selected session, to visualize the
current state of one specific process instance, etc.

* Audit view to get an overview of what happened at runtime
« The ability to unit test your processes

* Integration with the knowledge repository

Chapter 1. Overview

1.5. Web-based Designer

The web-based designer allows you to model your business processes in a web-based
environment. It is targeted towards business users and offers a graphical editor for viewing and
editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports
round-tripping between the Eclipse editor and the web-based designer.

<, Pracen Detigne

Shape AEpoE1E Pragectcs |BAMA- Dagran]

- [, .
Lo LR LLERee
Actiia Pro
O s = = Docursaisken
| S P - Fr Froped e
§ | Helle Goodbye?
B cozesed Supmccen o
W Cobmase Do Gobsvom
e yr——
Galemans
P
Fere
Bt Stjac

) i Gt

B2 i Mepnsge beemt
T et Fn it
[T .-

B 5iat DomdnoraiC et

Figure 1.3. Web-based designer for creating BPMN2 processes

1.6. Form Builder

A web-based form builder allows you to create, generate and/or edit your form (both for starting a
process or completing a user task) using a WYSIWYG editor. By dragging and dropping various
form elements into a panel and filling in the necessary details, task forms can be created by non-
technical experts.

1.7. Guvnor Repository

Optionally, you can use one or more knowledge repositories to store your business processes (and
other related artefacts). The web-based designer is integrated in the Guvnor repository, which is
targeted towards business users and allows you to manage your processes separately from your
application. It supports the following:

* A repository service to store your business processes and related artefacts, using a JCR
repository, which supports versioning, remote accessing (as a file system), and using REST
services.

« A web-based user interface to manage your business processes, targeted towards business
users; it also supports the visualization (and editing) of your processes (the web-based designer
is integrated here), but also categorisation, scenario testing, and deployment.

« Collaboration features to have multiple actors (for example business users and developers)
work together on the same process definition.

Web-based Management Consoles

* A knowledge agent to easily create new sessions based on the process definitions in the
repository. This also supports (optionally) dynamically updating all sessions if a new process

has been deployed.

1.8. Web-based Management Consoles

Business processes can be managed through a web-based management console. It is targeted

towards business users and its main features are the following:

« Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances.

« Human task management: being able to get a list of all your current tasks (either assigned to you
or that you might be able to claim), and completing tasks on your task list (using customizable

task forms).

» Business Activity Monitorong (BAM) and Reporting: get an overview of the state of your
application and/or system using dynamically generated (customizable) reports, that give you an

overview of your key performance indicators (KPIs).

o
[l Tasks ~¢ Process Definitions © Process Instances.
W Processes
Refash Start Tenminate Dealets
E Process Definitions
oefi List insdance ID Slake
1 RUBMING

Process Instance Activily

Instance: 1
4{ # Project Manager Evaluation W—*‘
s
o _F 1 & 7 @
[# Seif Evaluation -
O —1* J \+>) G
) &
- -L # HR. Manager Evaluation
#
4
State RLINMING
Start Date: 2008-08-11 18:2337
il Reporting Activity
" Seltings
Messages

Figure 1.4. Managing your process instances

1.9. Documentation

The documentation is structured as follows:

Start Dale

2008-08-11 162337

B krigw LDQUU'

Chagram

Instance Data

Chapter 1. Overview

» Overview: the overview chapter gives an overview of the different components.

« Getting Started: the getting started chapter teaches you where to download the binaries and
sources and contains a lot of useful links.

* Installer: the installer helps you setup a running demo, including most of the jBPM components.
It runs you through the demos using a simple example and some 10-minute tutorials including
screencasts.

» Quickstarts: these are tutorials for common tasks you might want to try out after successfully
running the installer.

» Core engine: the next 4 chapters describe the core engine: the process engine API, the process
definition language (BPMN 2.0), persistence and transactions, and examples.

 Eclipse editor: the next chapter describes the Eclipse plugin for developers.

« Designer: describes the web-based designer that allows business users to edit business
processes in a web-based context.

« Console: the jBPM console can be used for managing process instances, human task lists and
reports.

* Important features

» Human tasks: When using human actors, you need a human task service to manage the life
cycle of the tasks, the task lists, etc.

» Domain-specific processes: plug in your own higher-level, domain-specific nodes in your
processes.

e Testing and debugging: how to test and debug your processes.

» Process repository: a process repository used to manage your business processes.
» Advanced concepts

» Business activity monitoring: event processing to monitor the state of your systems.

» Flexible processes: model much more adaptive, flexible processes using advanced process
constructs and integration with business rules and event processing.

* Integration: how to integrate with other technologies like maven, OSGi, Spring, etc.

Chapter 2.

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artefact you want:

« bin: all the jBPM binaries (jars) and their dependencies

* src: the sources of the core components

« gwt-console: the jbpm console, a zip file containing both the server and client war
 docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jbpme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes
and integrate the engine with your application. These processes can be started from the installer
or be started from scratch.

2.3. Community

Here are a lot of useful links part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Chapter 2. Getting Started

* The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

e A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217] for asking
guestions and giving answers

* A JIRA bug tracking system [https://jira.jboss.org/jira/browse/IJBPM] for bugs, feature requests
and roadmap

« A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the
latest snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jopm-
distribution/target/]

Please feel free to join us in our IRC channel at irc.codehaus.org #bpm. This is where most of the
real-time discussion about the project takes place and where you can find most of the developers
most of their time as well. Don't have an IRC client installed? Simply go to http://irc.codehaus.org,
input your desired nickname, and specify #bpm. Then click login to join the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

The web-based designer is based on Oryx/Wapama and is MIT License

The BPM console is GNU Lesser General Public License (LGPL) v2.1

» The Drools project is Apache License v2.0.
2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jJBPM and Drools project can be found here [https://github.com/
droolsjbpm].

e The jBPM Eclipse plugin can be found here [http://anonsvn.jboss.org/repos/jbosstools/trunk/
bpmn/plugins/org.jboss.tools.jopm/].

10

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://irc.codehaus.org
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/

Building from source

* The new Eclipse BPMN2 plugin can be found here [https://github.com/droolsjbpm/bpmn2-
eclipse-editor].

» The web-based designer can be found here [https://github.com/tsurdilo/process-designer]

» The BPM console can be found here [https://github.com/bpmc/bpm-console]

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

11

https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/bpmc/bpm-console
https://github.com/bpmc/bpm-console
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

12

Chapter 3.

Chapter 3. Installer

This guide will assist you in installing and running a demo setup of the various components of the
jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,
or if you want to help out, do not hesitate to contact the jBPM community as described in the "What
to do if I encounter problems or have questions?" section.

3.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

3.2. Download the installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%205/] the
installer. There are two versions, a full installer (which already contains a lot of the dependencies
that are necessary during the installation) and a minimal installer (which only contains the installer
and will download all dependencies). In general, it is probably best to download the full installer:
jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.
Simply go into the install folder and run:

ant install.deno
This will:

* Download JBoss AS
« Download Eclipse

 Install Drools Guvnor into JBoss AS

13

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 3. Installer

Install JBPM Designer into JBoss AS

Install the jBPM console into JBoss AS

Install the jBPM Eclipse plugin

Install the Drools Eclipse plugin

@ Note
Guvnor (from version 5.4) requires JBoss EAP 5 to run properly, this only applies
if installation is ran in AS5 configuration mode.

This could take a while (REALLY, not kidding, we are downloading an application server and
Eclipse installation, even if you downloaded the full installer). The script however always shows
which file it is downloading (you could for example check whether it is still downloading by checking
the whether the size of the file in question in the jopm-installer/lib folder is still increasing). If
you want to avoid downloading specific components (because you will not be using them or you
already have them installed somewhere else), check below for running only specific parts of the
demo or directing the installer to an already installed component.

To limit the amount of data that needs to be downloaded, we have disabled the download of the
Eclipse BIRT plugin for reporting by default. If you want to try out reporting as well in the jBPM
console, make sure to put the jBPM.birt.download property in the build.properties file to true before
running the installer.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.deno

This will:

Start the H2 database

Start the JBoss AS

Start Eclipse

Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor repository and
jBPM console, as explained in the next three sections.

If you do not wish to use Eclipse in the demo setup, you can use the alternative commands:

14

10-Minute Tutorial: Using the Eclipse tooling

ant install.deno. noeclipse
ant start.deno. noecli pse

3.4. 10-Minute Tutorial: Using the Eclipse tooling

The following screencast [http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf] gives
an overview of how to run a simple demo process in Eclipse. It shows you:

« How to import an existing example project into your workspace, containing
« a sample BPMN2 process for requesting a performance evaluation

e asample Java class to start the process

+ How to start the process

g v i i e CenT valwation. Bpmin - Ecligne

ke B-D"G* EE* =S 4 ooaw 1w W L od | D= A o R
3 Package Explonsr | T O [H] PencenTnt: jrea . m = 0| HE cudne =B
A T N

v
el
= o e LA H .-"‘"m i-ﬂ!
B moianieey —t S mrew Pow l_-[J + E@.
= e e - —
W (] ProcemTest e o Comporerl. [) —= b estevsmion -—.-<}-> @ — s
= 1® e irmrs Stat Brerit F.
= . 5 i P [vhainn
W EE Syt Uiy £ L L] . y
& B e ey i) Sule T

. —c— L Pt Pl Exianes
il AWl T [emet]
1 Padedat ubr T b e e

[
Prexity:
Coraarn

(R S R = - ulH =0
Sagerty]

Acordd
Camereri

o =]
Gragls
-]

1
et Frasghs =4, = |35, Linguaid=_3. v=5, v=9) -

Figure 3.1.
[http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf]

Do the following:

15

http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-eclipse-5.2.swf

Chapter 3. Installer

« Once Eclipse has opened, simply import (using "File -> Import ..." and then under the General
category, select "Existing Projects into Workspace") the existing sample project (in the jbpm-
installer/sample/evaluation directory). This should add the sample project, including a simple
BPMNZ2 process and a Java file to start the process.

* You can open the BPMN2 process and the Java class by double-clicking it.

« We will now debug the process, so we can visualize its runtime state using the debug tooling.
First put a breakpoint on line "logger.close()" of the ProcessTest class. To start debugging,
right-click on ProcessTest.java in the com.sample package (under "src/main/java") and select
"Debug As - Java Application”, and switch to the debug perspective.

« Open up the various debug views: Under "Window - Show View -> Other ...", select the Process
Instances View and Process Instance View (under Drools category) and the Human Task View
(under jBPM Task) and click OK.

» The program will hit the breakpoint right after starting the process. In this case, it will simply start
the process, which will result in the creation of a new user task for the user "krisv" in the human
task service, after which the process will wait for its execution. Go to the Human Task View, fill
in "krisv" under Userld and click Refresh. A new Performance Evaluation task should show up.

* To show the state of the process instance you just started graphically, click on the Process
Instances View and then select the ksession variable in the Variables View. This will show all
active process instances in the selected session. In this case, there is only one process instance.
Double-click it to see the state of that process instance annotated on the process flow chart.

« Now go back to the Task View, select the Performance Evaluation task and first start and then
complete the selected task. Now go back to the Process Instances view and double click the
process instance again to see its new state.

You could also create a new project using the jBPM project wizard. This sample project contains
a simple Helloworld BPMN2 process and an associated Java file to start the process. Simply
select "File - New - jBPM Project" (if you cannot see that (because you're not in the jBPM
perspective) you can do "File - New ... - Project ..." and under the "jBPM" category, select "jBPM
project" and click "Next"). Give the project a name and click "Finish". You should see a new
project containing a "sample.bpmn" process and a "com.sample.ProcessMain" Java class and a
"com.sample.ProcessTest" JUnit test class. You can open the BPMN2 process by double-clicking
it. To execute the process, right-click on ProcessMain.java and select "Run As - Java Application".
You should see a "Hello World" statement in the output console. To execute the test, right-click on
ProcessTest.java and select "Run As - JUnit Test". You should also see a "Hello World" statement
in the output console, and the JUnit test completion in the JUnit view.

3.5. 10-Minute Tutorial: Using the jBPM Console

Open up the process management console:

http://localhost:8080/jbpm-console

16

http://localhost:8080/jbpm-console

10-Minute Tutorial: Using the jBPM Console

Log in, using krisv / krisv as username / password. The following screencast [http://
people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf] gives an overview of how to manage
your process instances. It shows you:

¢ How to start a new process

« How to look up the current status of a running process instance

» How to look up your tasks

* How to complete a task

* Howto generate reports to monitor your process execution
= 2 D bcahost:an80hpm-ronsolezpp amlEenal ToolSs Processss Process. Cvervise e A

& kv g I

Taska U Process Overnview

Frocesses Sk I Al W Sk I Sip I E i | Dl i I Teavinabe

4 Proceas Crerde roces | fmsane Fem St sk |

Eealuator [i HLUPMS 20111215 17082+

Execution details
Seass” Fualuatien O ey
refance |0 ——

Renorti Stata RLIKMIRG —_—

e Sl Db, 20111215 17,000
Sottings L > Arthiimy:
Figure 3.2.

[http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf]

« To manage your process instances, click on the "Processes" tab at the left an select "Process
Overview". After a slight delay (if you are using the application for the first time, due to session
initalization etc.), the "Process" list should show all the known processes. The jopm-console
in the demo setup currently loads all the processes in the "src/main/resources" folder of the
evaluation sample in "jbpm-installer/sample/evaluation”. If you click the process, it will show you
all current running instances. Since there are no running instances at this point, the "Instance"
table will remain empty.

17

http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-console.5.2.swf

Chapter 3. Installer

* You can start a new process instance by clicking on the "Start" button. After confirming that
you want to start a new execution of this process, you will see a process form where you need
to fill in the necessary information to start the process. In this case, you need to fill in your
username "krisv" and a reason for the request, after which you can complete the form and close
the window. A new instance should show up in the "Instance" table. If you click the process
instance, you can check its details below and the diagram and instance data by clicking on the
"Diagram" and "Instance Data" buttons respectively. The process instance that you just started
is first requiring a self-evaluation of the user and is waiting until the user has completed this task.

e To see the tasks that have been assigned to you, choose the "Tasks" tab on the left and
select "Personal Tasks" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation” task for you. You can complete this task
by selecting it and clicking the "View" button. This will open the task form for performance
evaluations. You can fill in the necessary data and then complete the form and close the window.
After completing the task, you could check the "Process Overview" once more to check the
progress of your process instance. You should be able to see that the process is how waiting
for your HR manager and project manager to also perform an evaluation. You could log in as
"john" / "john" and "mary" / "mary" to complete these tasks.

* After starting and/or completing a few process instances and human tasks, you can generate a
report of what has happened so far. Under "Reporting”, select "Report Templates". By default,
the console has one report template, for generating a generic overview for all processes. Click
the "Create Report" button to generate a realtime report of the current status. Notice that the
initialization of the reports might take a moment, especially the first time you use the application.

3.6. 10-Minute Tutorial: Using Guvnor repository and
Designer

The Guvnor repository can be used as a process repository to store business processes. It also
offers a web-based interface to manage your processes. This includes a web-based editor for
viewing and editing processes.

Open up Drools Guvnor:
http://localhost:8080/drools-guvnor

Log in (if necessary), using any non-empty username / password (we disabled authentication
for demo purposes). The following screencast [http://people.redhat.com/kverlaen/jbpm-installer-
guvnor.5.2.swf] gives an overview of how to manage your repository. It shows you:

» How to import an existing process (in this case the evaluation process) from eclipse into guvnor
* How to open up the evaluation process in the web editor

» How to build a package so it can be used for creating a session

18

http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf
http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf

10-Minute Tutorial: Using your own database with jBPM

. Browse Find defaullPackape Processes [defaullPackage] Evalaatlion

Fule Eait
Crecle Mew P

=l =53 PRcages

o # petpuFackags

“ Business nde aasets

& Tactnic - ! A
Technical nale assets (. _,.II B —Ealf Evalustio Q
B Funclions Exart Gabeway gna

DSL confgurations
. Moo
¥ processes
=1 Enumérations
¥ Tes Scanarcs
e Properties
™ Ddher assets, documentation
st WorkingSets

= sad Glolal Area

an
U iPackage snapshols

Figure 3.3.
[http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf]

If you want to know more, we recommend you take a look at the rest of the Drools Guvnor
documentation.

Once you're done playing:
ant stop. deno

and simply close all the rest.

3.7. 10-Minute Tutorial: Using your own database with
jBPM

Atthe moment, this quickstart does not work with JBoss AS 5. However, an update to the quickstart
(and installer) is forthcoming which will fix that (and make it work with JBoss AS 5). [01/2012]

3.7.1. Introduction
In this quickstart, we are going to:

1. modify the persistence settings for the process engine

2. modify the persistence settings for the task server

19

http://people.redhat.com/kverlaen/jbpm-installer-guvnor.5.2.swf

Chapter 3. Installer

3. test the startup with our new settings!
You will need a local instance of a database, in this case MySQL in order to complete this quickstart

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there
are three types of persistent entities used by jBPM:

« entities used for saving the the actual session, process and work item information.

« entities used for logging and generating Business Activity Monitoring (BAM) information.

* entities used by the task service.

“persistent entities” in this context, are java classes that represent information in the database.

For reasons that I'll explain later on in this quickstart, the demo uses two different persistent units:

« one for jBPM and the logging/BAM information,

« and one for the task service.
With other jBPM installations, there's no reason not to use only one persistent unit if you want to.

The first persistence unit needs to use JTA, which is why we also need to define a seperate
datasource for that persistence unit as well.

3.7.2. Database setup
In the MySQL database that | use in this quickstart, I've created two users:

 user/schema "jbpm5" with password "jbpm5" (for jBPM and the logging/BAM information)
« user/schema "task" with password "task" (for the task service)

If you end up using different names for your user/schemas, please make a note of where we insert
"jbpm5" and "task" in the configuation files.

If you want to try this quickstart with another database, I've included a section at the end of this
quickstart that describes what you may need to modify.

3.7.3. Quickstart

The following 4 files define the persistence settings for the jopm-installer demo:

db/persistence.xml

« task-service/resources/META-INF/persistence.xml

db/iBPM-ds.xml
« If you're using the JBoss AS 5 server
« standalone.xml

* If you're using the JBoss AS 7 server

20

Quickstart

Do the following:

e db/ persistence. xni :

This is the JPA persistence file that defines the persistence settings used by jBPM for both the
process engine information and the logging/BAM information. The installer ant script moves this
file to the expanded gwt console server war before the server is started.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property nanme="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/ >

In the case of a MySql database, you need to change it to:

<property nane="hi ber nat e. di al ect"
val ue="org. hi bernate. di al ect. My\SQLDi al ect"/ >

For those of you who decided to use another database, a list of the available hibernate
dialect classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/
html/session-configuration.html#configuration-optional-dialects].

e task-servicel/resources/ META- | NF/ persi stence. xnl :
The task service (that the installer starts) uses the JPA Persistence settings described in this file.

The original file contains the following lines:

<properties>
<property nanme="hi bernat e. di al ect"
val ue="org. hi bernat e. di al ect. H2Di al ect"/ >
<property name="hi bernate. connection. driver_class" val ue="org. h2. Driver"/

<property nanme="hi bernat e. connection.url" val ue="jdbc: h2:tcp://I| ocal host/
runtine/task" />
<property name="hi bernate. connecti on. user name" val ue="sa"/ >
<property nanme="hi bernate. connection. password" val ue="sasa"/>

Please change these lines so that they look like this:

<properties>
<property nane="hi ber nat e. di al ect"
val ue="org. hi bernate. di al ect. \ySQLDi al ect"/ >

21

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

Chapter 3. Installer

<property name="hi ber nat e. connecti on. dri ver_cl ass"
val ue="com nysql . jdbc. Driver"/>
<property name="hi bernate. connection.url" value="jdbc:nysql://

| ocal host: 3306/t ask" />
<property nanme="hi bernate. connection. user nane" val ue="t ask"/>
<property nanme="hi bernate. connecti on. password" val ue="t ask"/>

e db/j BPM ds. xmi :
This step is only neccessary if you're using JBoss AS 5.

This file is the configuration for the (JTA) datasource used by the jBoss AS 5 instance for the
process engine persistence. The installer ant script moves this file to the jboss server deploy
directory.

The original file contains the following lines:

<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - name>j boss/ dat asour ces/ j bpnDS</ j ndi - nane>
<connection-url >j dbc: h2:tcp://1 ocal host/runti ne/jbpm deno</ connecti on-url >
<driver-cl ass>org. h2. j dbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nane>sa</ user - nane>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

Please change these to the following:

<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - name>j boss/ dat asour ces/ j bpnDS</ j ndi - name>
<connection-url >j dbc: nmysql : // 1 ocal host : 3306/ j bpnb</ connecti on-url >
<driver-cl ass>com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce</dri ver -
cl ass>
<user - name>j bpnb</ user - nanme>
<passwor d>j bpnb</ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

e standal one. xmi :

This step is only neccessary if you're using AS 7.

22

Quickstart

This file is the configuration for the standalone JBoss AS 7 server. When the installer starts the
demo (using jBoss AS 7), it moves this file to the st andal one/ confi gur at i on directory in the
jboss server directory

We need to change the datasource configuration in st andal one. xnl so that the (JTA)
datasource for the jBPM process engine and logging/BAM points to our MySQL database

The original file contains the following lines:

<subsyst em xm ns="ur n: j boss: domai n: dat asour ces: 1. 0" >
<dat asour ces>
<dat asource jndi-nanme="j ava:jboss/ dat asources/j bpnDS"
enabl ed="true" use-java-context="true" pool - name="H2DS" >
<connection-url >jdbc: h2:tcp://|ocal host/runtine/jbpm
deno</ connection-url >
<driver>h2</driver>
<pool ></ pool >
<security>
<user - nanme>sa</ user - nane>
<passwor d></ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver name="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</
xa- dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst enp

Change the lines to the following:

<subsyst em xm ns="ur n: j boss: donai n: dat asour ces: 1. 0" >
<dat asour ces>
<dat asour ce j ndi - name="j ava: j boss/ dat asour ces/j bpnmDS" pool -
nane="H2DS" enabl ed="true" use-java-context="true">
<connecti on-url >j dbc: nysql : //1 ocal host: 3306/ j bpnb</
connecti on-url >
<driver>nysql </ driver>
<pool ></ pool >
<security>
<user - nanme>j bpnb</ user - nane>
<passwor d>j bpnb</ passwor d>
</security>
</ dat asour ce>

23

Chapter 3. Installer

<drivers>

<driver name="nysql" nodul e="com nysql ">
<xa- dat asour ce-
cl ass>com nysql . j dbc. j dbc2. opti onal . Mysqgl XADat aSour ce</ xa- dat asour ce- cl ass>

</driver>

</drivers>

</ dat asour ces>
</ subsyst enp

e Start the deno
We've modified all the neccessary files at this point, all that's left to do is run the demo.
Of course, this would be a good time to start your database up as well!

If you haven't installed the demo yet, do that first:

ant install.deno.db

If you have already installed and run the demo, it can't hurt to reinstall the demo:

ant clean.deno; ant install.denp.db

After you've done that, you can finally start the demo using the following command:

ant start.deno. db

If you're done with the demo, you can stop it using this command:

ant stop. deno. db

The st op. dermp ant task will also work, although it might throw some exceptions.
* Probl ens?
If you this isn't working for you, please try the following:

» Please double check the files you've modified: | wrote this, but still made mistakes when
changing files!

» Please make sure that you don't secretly have another instance of jposs AS running.

« If neither of those work (and you're using MySQL), please do then let us know.

24

Using a different database

3.7.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when
going through the steps above:

* Change the JDBC URLSs, usernames and passwords, and Hibernate dialect lines to match your
database information in the configuration files mentioned above.

* You will need to download the correct driver jar for your database and add it to the db/ dri vers
directory. If you're using JBoss AS 5, the installer ant script will make sure that your downloaded
driver is installed in the server. If you're using JBoss AS 7, see the next step.

e In order make sure your driver will be correctly installed in the JBoss AS 7 server, you
can do one of two things. Both ways are explained here [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7].

* Modify and install [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the
downloaded jar as a deployment. In this case you will have to copy the jar yourself to the
st andal one/ depl oynent s directory.

» Otherwise, you can install [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7#Installing_a JDBC_driver_as_a_module] the driver jar as a
module, which is what the install script does.

While the former (deployment) is possibly easier, the latter (module) is slightly more

straightforward -- and the installer can help you. If you choose to do the latter, please do the

following:

* Change the db. driver.jar.name property in bui | d. xnl to the name of the downloaded
jdbc driver jar you placed in db/ dri vers. For example:

<property nane="db. driver.jar.nane" val ue="postgresql-8.4-701.jdbc3.jar" /
>

» Change the <dri ver > information in the <dat asour ce> section of st andal one. xm so that
it refers to the name of your driver module (see next step). For example:

<driver >post gresql </ driver>

* Further on in st andal one. xm is the <dri ver s> section of the <dat asour ces> (note the
plural: drivers, datasources). We need to do the following with this file:

* Change the name of the driver to match the name in the last step,

« Give an appropriate name to the module,

25

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module

Chapter 3. Installer

« And fill in the correct name of the XA datasource class to use.
For example:

<drivers>
<driver nane="postgresqgl" nodul e="org. postgresql">
<xa- dat asour ce- cl ass>or g. post gr esql . xa. PGXADat aSour ce</ xa-
dat asour ce-cl ass>
</driver>
</drivers>

Change the db. dri ver. nodul e. prefi x property inbui | d. xnl to the same “value” you used
for the module name in st andal one. xmi . In the example above, | used “or g. post gresql ”
which means that | should then use or g/ post gresqgl for the db. dri ver. nodul e. prefi x
property. For example:

<property nane="db. driver. nodul e. prefix" val ue="org/ postgresql" />

Lastly, you'll have to modify the db/ dri ver _j ar _nmodul e. xmi file. We need to
¢ Change the name of the module to match the db. dri ver. nodul e. prefi x property above

¢ Change the name of the module resource to the name of the JDBC driver jar that you
downloaded.
The top of the original file looks like this:

<nodul e xm ns="urn: j boss: nodul e: 1. 0" name="com nysql ">
<resour ces>
<resource-root path="mysql-connector-java.jar"/>
</resources>

Change those lines to look like this, for example:

<nodul e xm ns="urn:j boss: nodul e: 1. 0" nanme="org. post gresql ">
<resour ces>
<resource-root path="postgresql-8.4-701.jdbc3.jar"/>
</resources>

26

What to do if | encounter problems or have questions?

3.8. What to do if | encounter problems or have
guestions?

You can always contact the jJBPM community for assistance.
Email: jopm-dev@lists.jboss.org
IRC: #jbpm at irc.codehaus.org

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

3.9. Frequently asked questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarly
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console, Guvnor and the Designer. What can | do?

27

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 3. Installer

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/
standalone/log/server.log (for JBoss AS7) or jbpm-installer/jboss-as-{version}/server/default/log/
server.log (for earlier versions).

For all other questions, try contacting the jBPM community as described in the Getting Started
chapter.

28

Chapter 4.

Chapter 4. Quickstarts

This chapter contains a number of simple, common task that you can follow to get started.

4.1. Invoking a Java service

It is common that you already have existing Java code that you would like to invoke from your
process. How do you do that? There are different ways of doing this, and this quickstart will show
you some of these alternatives.

4.1.1. Using a script task

One of the easiest ways to include some Java code into your process is to use a Script Task.
This task will execute some script code whenever that node is reached during the execution of the
process. This allows you to include some Java code as part of the process. For example, imagine
this simple process that contains one Script Task to invoke some existing Java code:

Figure 4.1.

The script task defines a script that needs to be executed when the task is reached. In this case,
the script invokes an existing class or g. j bpm exanpl es. qui ckstarts. Hel | oSer vi ce:

Hel | oServi ce. get I nstance() . sayHel | o(per son. get Nane()) ;

where the HelloService class looks like this:

package org.jbpm exanpl es. qui ckstarts;
public class HelloService {
private static final HelloService | NSTANCE = new Hel | oServi ce();
public static HelloService getlnstance() {
return | NSTANCE;
}
public void sayHell o(String nanme) {
Systemout.printin("Hello " + nane);

29

Chapter 4. Quickstarts

The script retrieves an instance of the HelloService and passes it the name of the person that
started this process. This is possible because per son is defined as a variable of the process, of
type or g. j bpm exanpl es. qui ckst arts. Per son, and script tasks can directly reference process
variables as if they were local variables (at least for reading, for setting the value of a variable, you
should use kcont ext . set Vari abl e(name, val ue)). This process also references HelloService
without fully qualifying the package as HelloService is defined using an import statement.

The underlying XML might look something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions id="Definition"
tar get Nanespace="htt p: //ww. j boss. or g/ dr ool s"
typelLanguage="http://ww. j ava. conl j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://wwmv. ong. or g/ spec/ BPM\/ 20100524/ MODEL
BPMN20. xsd"
xm ns: g="http://ww. jboss. org/drool s/fl ow gpd"
xm ns: bpmdi =" htt p: / / www. ong. or g/ spec/ BPM\N 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DDY 20100524/ DC"
xm ns: di ="http://ww. ong. or g/ spec/ DD 20100524/ DI "
xm ns:tns="http://ww.jboss. org/drool s">
<i tenmDefinitiadnd="_personltendtructureRef="0rg.jbpm exanpl es. qui ckstarts. Person"
>
<process processType="Private" isExecutable="true" id="org.jbpm exanples. quickstarts.script"
nane="Sanpl e Process" tns: packageNane="def aul t Package" >
<ext ensi onEl enent s>
<tns:inport name="org.jbpm exanpl es. qui ckstarts. Hel | oService" />
</ ext ensi onEl enent s>

<l-- process variables -->
<property id="person" itenBSubjectRef="_personltent/>
<l-- nodes -->

<startEvent id="_1" name="Start Process" />
<scri pt Task id="_2" nanme="Script" >
<scri pt >Hel | oServi ce. get | nst ance() . sayHel | o(per son. get Nane()); </ scri pt>
</ scri pt Task>
<endEvent id="_3" name="End" >
<t erm nat eEvent Defi niti on/ >
</ endEvent >
<l-- connections -->
<sequenceFl ow i d="_1-_2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />
</ process>
<bpmmdi : BPM\Di agr an
<bpmmdi : BPMNPI ane bpmmEl enent =" or g. j bpm exanpl es. qui ckstarts. script" >
<bpmmdi : BPMNShape bpmeEl enrent =" _1" >
<dc: Bounds x="45" y="45" w dt h="48" hei ght="48" />

30

Using a Java handler

</ bpmdi : BPMNShape>
<bpmmdi : BPMNShape bpmEl enent ="_2" >
<dc: Bounds x="131" y="46" wi dt h="80" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="252" y="47" w dth="48" hei ght="48" />
</ bpmmdi : BPM\Shape>
<bpmmdi : BPMNEdge bpmEl enent =" _1- 2" >
<di : waypoi nt x="69" y="69" />
<di : waypoi nt x="171" y="70" />
</ bpmmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl enent =" _2- 3" >
<di : waypoi nt x="171" y="70" />
<di : waypoi nt x="276" y="71" />
</ bpmmdi : BPMNEdge>
</ bpmdi : BPMN\PI ane>
</ bpmdi : BPMN\Di agr an®
</ definitions>

A simple test that executes this process could look something like this: simply create a ksession
and start the process by id, passing in a Per son object that will then be set as the per son process
variable:

public class JavaServi ceQui ckstartTest extends JbpmJUnit Test Case {
@est

public void testProcess() {
St at ef ul Knowl edgeSessi on ksessi on = creat eKnow edgeSessi on("test. bpm");
Map<String, Object> parans = new HashMap<String, Object>();
par ans. put (" person”, new Person("krisv"));
ksession. start Process("org.j bpm exanpl es. qui ckstarts. script", parans);

This example shows how easy it is to include custom Java code in your process using Script Tasks,
to invoke existing code and to pass it process variable values. Note that some node types allow
you to specify on-entry and on-exit actions (which will be executed when the node is triggered or
left respectively). This allows you to include scripts, just like you would do when using a Script
Task, but hiding these more or less from the diagram (as for example business users might not
be interested in these details).

4.1.2. Using a Java handler

4.1.3. Writing your own domain-specific task

31

32

Chapter 5.

Chapter 5. Core Engine: API

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definitions
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

ATy
~

Stateful
Knowledge Knowledge
Base Session

Process

Process
Instance

Definition

For example, imagine you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order
comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

33

Chapter 5. Core Engine: API

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and create one session that you then use to execute all your processes.

5.1. The jBPM API

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

5.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a knowledge builder to load processes from various resources (for example from the
classpath or from the file system), and then create a new knowledge base from that builder. The
following code snippet shows how to create a knowledge base consisting of only one process
definition (using in this case a resource from the classpath).

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der. add(Resour ceFact ory. newCl assPat hResour ce(" M/Process. bprm"), ResourceType. BPM\2) ;
Knowl edgeBase kbase = kbui |l der. newKnow edgeBase();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

34

Knowledge Base

If you don't want to list all resources in your Java code, you could use a configuration file, called a
changeset, to define these. These are simple XML configuration files that then list the resources.
For example:

<change-set xm ns='http://drools.org/drool s-5.0/change-set' xmns:xs="http://

www. W3. or g/ 2001/ XMLSchena- i nst ance’ xs: schemalLocati on="http://drools. org/
dr ool s- 5. 0/ change- set http://anonsvn. jboss. org/repos/| abs/| abs/j bossrul es/
trunk/ dr ool s-api / src/ mai n/ resour ces/ change-set-1. 0. 0. xsd' >

<add>

<resource source='file:/path_to_process/ MyProcess. bpmm' type=' BPM\2' />
</ add>
</ change- set >

You can also use a change set to load all processes from one or multiple folder for example:

<change-set xm ns='http://drools.org/drool s-5.0/change-set’ xmns:xs="http://

www. W3. or g/ 2001/ XM_Schena- i nst ance' xs: schemalLocation="http://drools. org/
dr ool s-5. 0/ change- set http://anonsvn. jboss. org/repos/| abs/| abs/j bossrul es/
trunk/ dr ool s-api / src/ mai n/ r esour ces/ change- set-1. 0. 0. xsd' >

<add>

<resource source='file:/path_to_process/folderl/' type='BPM\2'/>
<resource source='file:/path_to_process/folder2/' type='BPM\2'/>
</ add>
</ change- set >

You can create a process from a changeset file by using the ResourceType CHANGE_SET:

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce("changeset. xm "), ResourceType. CHANGE SET) ;
Knowl edgeBase kbase = kbuil der. newKnow edgeBase();

You can also use a knowledge agent to create a knowledge base. The main advantage of a
knowledge agent is that you can configure it to automatically update the knowledge base if the
resource(s) it is based on are updated. When initializing the knowledge agent, you need to use
a changeset to define which resources it should monitor. This could either be files, or folders,
in which case it will automatically update itself for all files added, updated or removing in that
folder. For example, you could use the following snippet to create a kbase from a folder on the
file system, and it will check every ten seconds (this is configurable of course) for updates, and
will add, update or remove processes based on updates.

Resour ceChangeScanner Conf i gurati on sconf = ResourceFactory. get Resour ceChangeScanner Servi ce() . ne
sconf . set Property("drools.resource. scanner.interval", "10"); // every 10s

35

Chapter 5. Core Engine: API

Resour ceFact ory. get Resour ceChangeScanner Servi ce() . configure(sconf);
Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();
Resour ceFact ory. get Resour ceChangeNot i fi er Service().start();

Knowl edgeAgent Confi gurati on aconf = Know edgeAgent Fact ory. newkKnowl edgeAgent Confi guration();

aconf. set Property("drool s. agent. newl nstance", "false");

Know edgeAgent kagent = Know edgeAgent Fact ory. newknowl edgeAgent (" Fol der
changeset", aconf);

kagent . appl yChangeSet (Resour ceFact ory. newCl assPat hResour ce(" changeset Fol der . xm ")) ;
Knowl edgeBase kbase = kagent. get Know edgeBase() ;

<change-set xm ns='http://drools.org/drools-5.0/change-set’ xmns:xs="http://

www. W3. or g/ 2001/ XMLSchema- i nst ance’ xs: schemalLocation="http://drools. org/
dr ool s- 5. 0/ change- set http://anonsvn. jboss. org/repos/| abs/| abs/j bossrul es/
t runk/ dr ool s-api/ src/ mai n/ resour ces/ change-set-1.0.0. xsd' >

<add>

<resource source='file:/path_to_process/folderl/' type='"BPM\2' />
</ add>
</ change- set >

A knowledge agent can also load a kbase from the Guvnor repository. An example is provided
in the process repository chapter.

5.1.2. Session

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
snippet shows how easy it is to create a session based on the previously created knowledge base,
and to start a process (by id).

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
Processl nst ance processlnstance = ksession.startProcess("com sanpl e. M/yProcess");

The ProcessRunt i ne interface defines all the session methods for interacting with processes, as
shown below.

/**

* Start a new process instance. The process (definition) that should
* be used is referenced by the given process id.

*

* processld The id of the process that should be started
* t he Processlnstance that represents the instance of the process that was
*/

Processl nstance startProcess(String processld);

36

start ec

Session

/**
*
*
*
*
*
*
*

*

*/

Start a new process instance. The process (definition) that should

be used is referenced by the given process id. Paraneters can be passed
to the process instance (as name-val ue pairs), and these will be set

as variabl es of the process instance.

@ar am processld the id of the process that should be started
@ar am paraneters the process variables that should be set when starting the process ir
@eturn the Processlnstance that represents the instance of the process that was startec

Processl nstance startProcess(String processld,

/**

Map<String, Object> paraneters);

* Signal s the engine that an event has occurred. The type paraneter defines

*

whi ch type of event and the event paraneter can contain additional information

* related to the event. All process instances that are listening to this type

*
* si
*
*
*
*
*
*
*/
VOi

/**

*

*

@)
VOi

/**
*

*

of (external) event will be notified. For performance reasons, this type of event
gnal i ng shoul d only be used i f one process i nstance shoul d be able to notify

ot her process instances. For internal event w thin one process instance, use the
si gnal Event nethod that also include the processlnstanceld of the process instance
in question.

@aram type the type of event
@aram event the data associated with this event

d signal Event (String type,
Cbj ect event);

Signal s the process instance that an event has occurred. The type paraneter defines
whi ch type of event and the event paraneter can contain additional information
related to the event. All node instances inside the given process instance that

are listening to this type of (internal) event will be notified. Note that the event
will only be processed inside the given process instance. All other process instances
waiting for this type of event will not be notified.

@aramtype the type of event
@ar am event the data associated with this event
@ar am processlnstanceld the id of the process instance that should be signal ed

d signal Event (String type,
Cbj ect event,
I ong processlnstancel d);

Returns a collection of currently active process instances. Note that only process
i nstances that are currently |oaded and active inside the engine will be returned.

37

Chapter 5. Core Engine: API

* When using persistence, it is likely not all running process instances will be | oaded
*as their state will be stored persistently. It is recomended not tousethis

* method to collect informati on about the state of your process instances but to use

* a history log for that purpose.

*

* @eturn a collection of process instances currently active in the session

*/

Col | ecti on<Processl nst ance> get Processl nstances();

/**

* Returns the process instance with the given id. Note that only active process instance:s
*will be returned. |If a process instance has been conpl eted already, this nethod will re
* null.
*
* @aramid the id of the process instance

* @eturn the process instance with the givenidor null if it cannot be found
*/

Processl nst ance get Processl nstance(l ong processl nstancel d);

/**

* Aborts the process instance with the given id. |f the process instance has been conpl et
* (or aborted), or the process instance cannot be found, this nethod will throw an

* 111 egal Argunent Excepti on.

*

* @aramid the id of the process instance
*/
voi d abort Processl nstance(l ong processlnstancel d);

/**

* Returns the WorkltenmVanager related to this session. This can be used to
* register new WrkltenmHandl ers or to conplete (or abort) Wrkltens.

*

* @eturn the Workltenmvanager related to this session
*/
Wor kI t emvlinager get Wor ki t envanager () ;

5.1.3. Events

The session provides methods for registering and removing listeners. A Pr ocessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event);

38

Events

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl et ed(ProcessConpl et edEvent event);

voi d bef oreNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d bef oreNodeLeft(ProcessNodelLeftEvent event);

voi d afterNodeLeft(ProcessNodelLeftEvent event);

voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVariabl eChanged(ProcessVari abl eChangedEvent event);

A note about before and after events: these events typically act like a stack, which means that any
events that occur as a direct result of the previous event, will occur between the before and the
after of that event. For example, if a subsequent node is triggered as result of leaving a node, the
node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodelLeftEvent
of the node that is left (as the triggering of the second node is a direct result of leaving the first
node). Doing that allows us to derive cause relationships between events more easily. Similarly,
all node triggered and node left events that are the direct result of starting a process will occur
between the beforeProcessStarted and afterProcessStarted events. In general, if you just want
to be notified when a particular event occurs, you should be looking at the before events only (as
they occur immediately before the event actually occurs). When only looking at the after events,
one might get the impression that the events are fired in the wrong order, but because the after
events are triggered as a stack (after events will only fire when all events that were triggered as
a result of this event have already fired). After events should only be used if you want to make
sure that all processing related to this has ended (for example, when you want to be notified when
starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending
on the type of node, some nodes might only generate node left events, others might only generate
node triggered events. Catching intermediate events for example are not generating triggered
events (they are only generating left events, as they are not really triggered by another node, rather
activated from outside). Similarly, throwing intermediate events are not generating left events
(they are only generating triggered events, as they are not really left, as they have no outgoing
connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

39

Chapter 5. Core Engine: API

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Knowl edgeRunt i neLogger Fact ory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created
must be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

Knowl edgeRunti neLogger | ogger =

Knowl edgeRunt i neLogger Fact ory. newri | eLogger (ksession, "test");
/1 add invocations to the process engine here
/'l e.g. ksession.startProcess(processld)

| ogger. cl ose();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

= e, RuleFlow started: ruleflow[com.sample.ruleflow]
= #) RuleFlow node triggered: Start in process ruleflow[com.sample. ruleflow]
= 4 RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
~ $] RuleFlow node triggered: End in process ruleflow[com sample ruleflow]

== RuleFlow completed: ruleflow[com sample ruleflow]

5.2. Knowledge-based API

As you might have noticed, the API as exposed by the jBPM project is a knowledge API. That
means that it doesn't just focus on processes, but potentially also allows other types of knowledge
to be loaded. The impact for users that are only interested in processes however is very small.
It just means that, instead of having a ProcessBase or a ProcessSession, you are using a
KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your
application, the knowledge-based API allows users to add different types of resources, such as
processes and rules, in almost identical ways into the same knowledge base. This enables a

40

Knowledge-based API

user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools
Fusion (for event processing) almost instantaneously (and even to integrate these different types
of Knowledge) as the API and tooling for these different types of knowledge is unified.

41

42

Chapter 6.

Chapter 6. Core Engine: Basics

=
I—b— % Project Manager Evaluation]~
W r

O 4{ # Salf Evaluation J—» @ <—*> — @
'

HR Manager Evaluation JJ
b

Figure 6.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

6.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor in the Eclipse plugin

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

6.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging and
dropping different nodes on a canvas and editing the properties of these nodes. The graphical
BPMNZ2 editor is part of the jBPM / Drools Eclipse plugin. Once you have set up a jBPM project (see
the installer for creating a working Eclipse environment where you can start), you can start adding
processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the directory
you would like to put your process in and select "New", then "File". Give the file a name and
the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can safely
ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

43

Chapter 6. Core Engine: Basics

=2 MyProcess bpmn 5 =0
' Salact

i Marguee

— SEUEncE
Flow

= Components < —
Start Event ';__ __J
 End Event
() Aule Task

o Gateway
[diverge]

= Gateway
[comverge]

=) Rawsahle
Sub-Frocess

1) Script Task
Timer Event
= Error Event

= Message
Event

(T User Task

al Emibedded
Subk-Frocess

(=) Muliple

Instarsces
= Service Ta
Log

+| Ermail

Figure 6.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
"Components" palette of the GUI. Clicking on an element in your process allows you to set the
properties of that element. You can connect the nodes (as long as it is permitted by the different
types of nodes) by using "Sequence Flow" from the "Components" palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

6.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
tar get Nanespace="htt p://ww. j boss. org/ dr ool s"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL" Rul e Task

44

Defining processes using XML

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http://ww. ong. or g/ spec/ BPMN/ 20100524/ MODEL

BPMN20. xsd"
xm ns: g="http://ww. jboss. org/drool s/fl ow gpd"

xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\N 20100524/ DI "

xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/
xm ns:tns="http://ww.]j boss. org/drool s">

e
D"

<processrocessType="Privat e"i sExecut abl e="true"i d="com sanpl e. hel | o"nane="Hel | o

Process" >

<!-- nodes -->
<startEvent id="_1" nane="Start" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello World"); </script>
</ scri pt Task>
<endEvent id="_3" nane="End" >
<t erm nat eEvent Definiti on/>
</ endEvent >

<!-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" target Ref="_2"
<sequenceFl ow i d="_2- 3" sourceRef="_2" target Ref="_3"

</ process>

<bpmmdi : BPM\Di agr an>
<bpmdi : BPMNPI ane bpmmEl enent =" com sanpl e. hel | 0" >
<bpmmdi : BPMNShape bpmEl enrent =" _1" >
<dc: Bounds x="16" y="16" w dt h="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="96" y="16" wi dth="80" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="208" y="16" wi dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNEdge bpmEl enent ="_1-_ 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bpmmdi : BPM\NEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2-_ 3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bpmmdi : BPM\NEdge>
</ bpmdi : BPM\PI ane>
</ bpmdi : BPMNDi agr an®

/>
/>

45

Chapter 6. Core Engine: Basics

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

6.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kfl ow. core and or g. | bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

6.1.3.1. Example

This is a simple example of a basic process with a script task only:

Rul eFl owPr ocessFactory factory =

Rul eFl owPr ocessFact ory. creat eProcess("org. j bpm Hel | oWor | d");
factory

/| Header

. name(" Hel | oWor | dPr ocess")

.version("1.0")

. packageName(" org. j bpn')

/| Nodes

.startNode(1).nanme("Start"). done()

.actionNode(2).name("Action")

.action("java", "Systemout.printin(\"Hello Wrld\");").done()

. endNode(3) . nane(" End") . done()

/' Connecti ons

.connection(l, 2)

.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newByt eArr ayResour ce(

Xm BPMNPr ocessDunper . | NSTANCE. dunp(process) . getBytes()), ResourceType. BPM\2);
Knowl edgeBase kbase = kbui |l der. newKnow edgeBase() ;

46

Details of different process constructs: Overview

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. startProcess("org.jbpm Hel | oWorl d");

You can see that we start by calling the static createProcess() method from the
Rul eFl owPr ocessFact or y class. This method creates a new process with the given id and returns
the Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(),
actionNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have
finished configuring that specific node, the done() method returns you to the current
Rul eFl owPr ocessFact ory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connecti on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

6.2. Details of different process constructs: Overview

The following chapters will describe the different constructs that you can use to model your
processes (and their properties) in detail. Executable processes in BPMN consist of different
types of nodes being connected to each other using sequence flows. The BPMN 2.0 specification
defines three main types of nodes:

» Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

47

Chapter 6. Core Engine: Basics

The following sections will describe the properties of the process itself and of each of these
different node types in detail, as supported by the Eclipse plugin and shown in the following figure
of the palette. Note that the Eclipse property editor might show more properties for some of the
supported node types, but only the properties as defined in this section are supported when using
the BPMN 2.0 XML format.

=+ Components £

Start Event

@ End Event

Rule Task

@ Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

(0 Timer Event

®) Error Event

@ Signal Event

User Task

(=) Embedded Sub-Process

(w) Multiple Instances

= Service Tasks £

= Log

== Email

Figure 6.3. The different types of BPMN2 nodes

6.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

« Id: The unique id of the process.

48

Details: Events

* Name: The display name of the process.
« Version: The version number of the process.
» Package: The package (namespace) the process is defined in.

« Variables: Variables can be defined to store data during the execution of your process. See
section “Data” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“Human Tasks” for details.

6.4. Details: Events

6.4.1. Start event

Figure 6.4. Start event

The start of the process. A process should have exactly one start node, which cannot have
incoming connections and should have one outgoing connection. Whenever a process is started,
execution will start at this node and automatically continue to the first node linked to this start
event, and so on. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

49

Chapter 6. Core Engine: Basics

6.4.2. End events

6.4.2.1. End event

Figure 6.5. End event

The end of the process. A process should have one or more end events. The End Event
should have one incoming connection and cannot have any outgoing connections. It contains the
following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are cancelled. Non-terminating end events
are simply ends for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance
will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating the top-level process instance, not just that sub-
process.

50

End events

6.4.2.2. Throwing error event

Figure 6.6. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e FaultName: The name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

» FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

Error handlers can be specified using boundary events. This is however currently only possible
when working with XML directly. We will be adding support for graphically specifying this in the
new BPMN2 editor.

51

Chapter 6. Core Engine: Basics

6.4.3. Intermediate events

6.4.3.1. Catching timer event

— —

Figure 6.7. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled
(e.g., by completing or aborting the enclosing process instance). Consult the section “Timers” for
more information. The Timer Event contains the following properties:

* Id: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d] [#h][#n][#s][#[ns]]. This allows you to specify the number
of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify
anything). For example, the expression "1h" will wait one hour before triggering the timer. The
expression could also use #{expr} to dynamically derive the delay based on some process
variable. Expr in this case could be a process variable, or a more complex expression based
on a process variable (e.g. myVariable.getValue()).

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]]. You

52

Intermediate events

can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if
you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer again. The expression could also use #{expr} to dynamically derive the period based
on some process variable. Expr in this case could be a process variable, or a more complex
expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes. This is however
currently only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

6.4.3.2. Catching signal event

Figure 6.8. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have no incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

* |d: The id of the node (which is unique within one node container).

53

Chapter 6. Core Engine: Basics

* Name: The display name of the node.
» EventType: The type of event that is expected.

* VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using
ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Know edgeRunti me() . si gnal Event (
event Type, data, kcontext.getProcesslnstance().getld());

A throwing signal event could also be used to model the signaling of an event. This is however
currently only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

6.5. Details: Activities

6.5.1. Script task

4 ™
script Task |[—

. vy

Figure 6.9. Script task

!

54

Script task

Represents a script that should be executed in this process. A Script Task should have one
incoming connection and one outgoing connection. The associated action specifies what should
be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext that
references the ProcessCont ext object (which can, for example, be used to access the current
Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession
using kcont ext . get Know edgeRunt i me()). When a Script Task is reached in the process, it will
execute the action and then continue with the next node. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by
business users, it is probably wise to avoid low-level implementation details inside the process,
including inside these script tasks. A Script Task could still be used to quickly manipulate
variables etc. but other concepts like a Service Task could be used to model more complex
behaviour in a higher-level manner.

» Scripts should be immediate. They are using the engine thread to execute the script. Scripts
that could take some time to execute should probably be modeled as an asynchronous Service
Task.

« You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the
knowledge of the engine, which can be problematic, especially when using persistence and
transactions. In general, it is probably wiser to model communication with an external service
using a service task.

« Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

55

Chapter 6. Core Engine: Basics

6.5.2. Service task

Service Task

Figure 6.10. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

« On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

» Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email” work item defines additional parameters such as

56

User task

From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oSt ri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

6.5.3. User task

- ™
—» & User Task |[—
LY v

Figure 6.11. User task

Processes can also involve tasks that need to be executed by human actors. A User Task
represents an atomic task to be executed by a human actor. It should have one incoming
connection and one outgoing connection. User Tasks can be used in combination with Swimlanes
to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more
details. A User Task is actually nothing more than a specific type of service node (of type "Human
Task™). A User Task contains the following properties:

« Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.

» TaskName: The name of the human task.

« Priority: An integer indicating the priority of the human task.

» Comment: A comment associated with the human task.

» Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

57

Chapter 6. Core Engine: Basics

» Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

« Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

+ Content: The data associated with this task.

e Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

< On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note that
if there is data related to this specific process instance that the end user needs when performing
the task, this data should be passed as the content of the task. The task for example does not
have access to process variables. Check out the chapter on human tasks to get more detail on
how to pass data between human tasks and the process instance.

6.5.4. Reusable sub-process

=« Reusable Sub-Process

Figure 6.12. Reusable sub-process

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process

58

Business rule task

node is reached in the process, the engine will start the process with the given id. It contains the

following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion (by default true): If this property is true, this sub-process node will only
continue if the child process that was started has terminated its execution (completed or
aborted); otherwise it will continue immediately after starting the subprocess (so it will not wait
for its completion).

Independent (by default true): If this property is true, the child process is started as an
independent process, which means that the child process will not be terminated if this parent
process is completed (or this sub-process node is cancelled for some other reason); otherwise
the active sub-process will be cancelled on termination of the parent process (or cancellation
of the sub-process node). Note that you can only set independent to "false" only when "Wait
for completion” is set to true.

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

Parameter infout mapping: A sub-process node can also define in- and out-mappings for
variables. The variables given in the "in" mapping will be used as parameters (with the
associated parameter name) when starting the process. The variables of the child process that
are defined for the "out" mappings will be copied to the variables of this process when the
child process has been completed. Note that you can use "out" mappings only when "Wait for
completion” is set to true.

6.5.5. Business rule task

Business Rules Task

Figure 6.13. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated

when the node is reached. A Rule Task should have one incoming connection and one outgoing

connection. Rules are defined in separate files using the Drools rule format. Rules can become
part of a specific ruleflow group using the r ul ef | ow gr oup attribute in the header of the rule.

59

Chapter 6. Core Engine: Basics

When a Rule Task is reached in the process, the engine will start executing rules that are part of
the corresponding ruleflow-group (if any). Execution will automatically continue to the next node
if there are no more active rules in this ruleflow group. As a result, during the execution of a
ruleflow group, new activations belonging to the currently active ruleflow group can be added
to the Agenda due to changes made to the facts by the other rules. Note that the process will
immediately continue with the next node if it encounters a ruleflow group where there are no active
rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

* |d: The id of the node (which is unigque within one node container).

* Name: The display name of the node.

e RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

6.5.6. Embedded sub-process

Sub-Process

User Task

Figure 6.14. Embedded sub-process

60

Multi-instance sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but
also the definition of additional variables that are accessible for all nodes inside this container. A
sub-process should have one incoming connection and one outgoing connection. It should also
contain one start node that defines where to start (inside the Sub-Process) when you reach the
sub-process. It should also contain one or more end events. Note that, if you use a terminating
event node inside a sub-process, you are terminating the top-level process instance, not just that
sub-process, so in general you should use non-terminating end nodes inside a sub-process. A
sub-process ends when there are no more active nodes inside the sub-process. It contains the
following properties:

« |d: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Variables: Additional variables can be defined to store data during the execution of this node.
See section “Data” for details.

6.5.7. Multi-instance sub-process

Multiple Instances

o O @

Figure 6.15. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple
instance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

 Id: The id of the node (which is unique within one node container).

61

Chapter 6. Core Engine: Basics

* Name: The display name of the node.

« CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Col | ection. If the collection expression evaluates to null or an empty collection,
the multiple instances sub-process will be completed immediately and follow its outgoing
connection.

» VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

62

Details: Gateways

6.6. Details: Gatewavs

Figure 6.16. Diverging gateway

63

Chapter 6. Core Engine: Basics

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes
currently supported:

« AND or parallel means that the control flow will continue in all outgoing connections
simultaneously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. The constraint with the lowest priority number that evaluates to true is selected.
Constraints can be specified using different dialects. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the ruleflow will
throw an exception at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the process will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

64

Converging gateway

6.6.2. Converging gateway

Figure 6.17. Converging gateway

65

Chapter 6. Core Engine: Basics

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are two types of splits currently
supported:

e AND or parallel means that is will wait until all incoming branches are completed before
continuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifit is triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

It contains the following properties:

« Id: The id of the node (which is unique within one node container).

« Name: The display name of the node.

« Type: The type of the Join node, i.e. AND or XOR.

6.7. Using a process in your application

As explained in more detail in the API chapter, there are two things you need to do to be able to
execute processes from within your application: (1) you need to create a Knowledge Base that
contains the definition of the process, and (2) you need to start the process by creating a session
to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the
Knowledge Base:

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(Resour ceFact ory. newCl assPat hResour ce(" M/Process. bpmm2"),
Resour ceType. BPM\2) ;

After adding all your process to the builder (you can add more than one process), you can
create a new knowledge base like this:

Knowl edgeBase kbase = kbui |l der. newKnow edgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could
not parse your processes correctly).

2. Starting a process: To start a particular process, you will need to call the st art Pr ocess method
on your session and pass the id of the process you want to start. For example:

66

Other features

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. start Process("com sanpl e. hel | 0");

The parameter of the st art Process method is the id of the process that needs to be started.
When defining a process, this process id needs to be specified as a property of the process (as
for example shown in the Properties View in Eclipse when you click the background canvas
of your process).

When you start the process, you may specify additional parameters that are used to pass
additional input data to the process, using the startProcess(String processlid, Map
par amet er s) method. The additional set of parameters is a set of hame-value pairs. These
parameters are copied to the newly created process instance as top-level variables of the
process, so they can be accessed in the remainder of your process directly.

6.8. Other features

6.8.1. Data

While the flow chart focuses on specifying the control flow of the process, it is usually also
necessary to look at the process from a data perspective. Throughout the execution of a process,
data can retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass. Variables can be defined inside a variable scope. The
top-level scope is the variable scope of the process itself. Subscopes can be defined using a Sub-
Process. Variables that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

» Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

67

Chapter 6. Core Engine: Basics

/1 call method on the process variabl e "person"
per son. set Age(10) ;

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

« Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. get Name()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

« Various other nodes can also access data. Event nodes for example can store the data
associated to the event in a variable, etc. Check the properties of the different node types for
more information.

» Process variables can be accessed also from the Java code of your application. It is done by
casting of Processl nst ance to Wor kf | owPr ocessl nst ance. See the following example:

variabl e = ((Workfl owProcessl nstance) processlnstance).getVariabl e("vari abl eNane");

To list all the process variables see the following code snippet:

org.j bpm process. i nstance. Processl nst ance processlnstance = ...;
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processlnstance. get Cont ext | nst e
Map<String, oject> variables = variabl eScope. get Vari abl es();

Note that when you use persistence then you have to use a command based approach to get
all process variables:

Map<String, Object> variables = ksessi on. execut e(new Generi cCommand<Map<String, oject>>() {
public Map<String, Object> execute(Context context) {
St at ef ul Know edgeSessi on ksessi on = ((Know edgeConmandCont ext) context). get St at ef ul Kr
org.j bpm process. i nstance. Processl nstance processlnstance = (org.jbpm process. i nstanc

68

Constraints

Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processlnstance. get Cont
Map<String, Object> variables = vari abl eScope. get Vari abl es();
return vari abl es;

1),

Finally, processes (and rules) all have access to globals, i.e. globally defined variables
and data in the Knowledge Session. Globals are directly accessible in actions just like
variables. Globals need to be defined as part of the process before they can be used. You
can for example define globals by clicking the globals button when specifying an action
script in the Eclipse action property editor. You can also set the value of a global from
the outside using ksessi on. set d obal (nane, val ue) or from inside process scripts using

kcont ext . get Know edgeRunti nme() . set d obal (nane, val ue) ;.

6.8.2. Constraints

Constraints can be used in various locations in your processes, for example in a diverging
gateway. [BPM supports two types of constraints:

» Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in
the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

69

Chapter 6. Core Engine: Basics

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the Working Memory and matching for the process instance in your
rule constraint. We have added special logic to make sure that a variable processl nst ance of
type Wor kf | owPr ocessl nst ance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to
insert the process instance into the session and, possibly, to update it, for example, using Java
code or an on-entry or on-exit or explicit action in your process. The following example of a rule
constraint will search for a person with the same name as the value stored in the variable "name"
of the process:

processl nstance : Workfl owPr ocessl nst ance()
Person(nane == (processlnstance. getVari abl e("nane")))
add nore constraints here ...

6.8.3. Action scripts

Action scripts can be used in different ways:

» Within a Script Task,
* As entry or exit actions, with a number of nodes.

Actions have access to (globals and the \variables that are defined for
the process and the predefined variable kcontext. This variable is of type
org. ki e. api . runti me. process. ProcessCont ext and can be used for several tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodel nst ance node = kcont ext. get Nodel nst ance() ;
String nane = node. get NodeName() ;

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processl nstance proc = kcontext.getProcesslnstance();
proc. signal Event (type, event Object);
» Getting or setting the value of variables.

« Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

70

Events

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. name instead of person. get Name()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints
out the name of the person in the "requester" variable of the process would look like this:

/1 Java di al ect
System out. println(person.getName());

/1 MVEL dial ect
System out. println(person.nane);

6.8.4. Events

'*~_::'I _4,\' Hello | h-‘\-!-/ -|1 Script | l-@

S

Figure 6.18. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are
executed according to the process plan, by requesting the execution of work items and waiting for
the results. However, it is also possible that the process should respond to events that were not
directly requested by the process engine. Explicitly representing these events in a process allows
the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own
event types and their associated data.

A process can specify how to respond to events by using a Message Event. An Event node needs
to specify the type of event the node is interested in. It can also define the name of a variable,
which will receive the data that is associated with the event. This allows subsequent nodes in the
process to access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

71

Chapter 6. Core Engine: Basics

« Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or
on-exit action of some node) can signal the occurrence of an internal event to the surrounding
process instance, using code like the following:

kcont ext . get Processl nstance() . si gnal Event (type, eventData);

» External event: A process instance can be notified of an event from outside using code such as:

processl nst ance. si gnal Event (type, eventData);

« External event using event correlation: Instead of notifying a process instance directly, it is
also possible to have the engine automatically determine which process instances might be
interested in an event using event correlation, which is based on the event type. A process
instance that contains an event node listening to external events of some type is notified
whenever such an event occurs. To signal such an event to the process engine, write code
such as:

ksessi on. si gnal Event (type, eventData);

Events could also be used to start a process. Whenever a Message Start Event defines an event
trigger of a specific type, a new process instance will be started every time that type of event is
signalled to the process engine.

6.8.5. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of 0 results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify
the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't
specify anything). For example, the expression "1h" will wait one hour before triggering the timer
(again).

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

- A Timer Event may be added to the process flow. Its activation starts the timer, and when it
triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing

72

Updating processes

connection of a timer with a positive period is triggered multiple times. Cancelling a Timer node
also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process as a boundary event. This is however currently
only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMNZ2 editor.

6.8.6. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or
due to changing requirements. Actually, you cannot really update a process, you can only deploy
a new version of the process, the old process will still exist. That is because existing process
instances might still need that process definition. So the new process should have a different id,
though the name could be the same, and you can use the version parameter to show when a
process is updated (the version parameter is just a String and is not validated by the process
framework itself, so you can select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already
running process instances. There are various strategies one could consider for each running
instance:

» Proceed: The running process instance proceeds as normal, following the process (definition) as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the
updated process.

» Abort (and restart): The already running instance is aborted. If necessary, the process instance
can be restarted using the new process definition.

« Transfer: The process instance is migrated to the new process definition, meaning that - once it
has been migrated successfully - it will continue executing based on the updated process logic.

By default, BPM uses the proceed approach, meaning that multiple versions of the same process
can be deployed, but existing process instances will simply continue executing based on the
process definition that was used when starting the process instance. Running process instances
could always be aborted as well of course, using the process management API. Process instance
migration is more difficult and is explained in the following paragraphs.

6.8.6.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some
later point in time. This includes all the data linked to this process instance (as variables), but also
the current state in the process diagram. For each node that is currently active, a node instance is
used to represent this. This node instance can also contain additional state linked to the execution
of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,
using id references) that represents the process logic that needs to be followed when executing

73

Chapter 6. Core Engine: Basics

this process instance (this clear separation of definition and runtime state allows reuse of the
definition across all process instances based on this process and minimizes runtime state). As a
result, updating a running process instance to a hewer version so it uses the new process logic
instead of the old one is simply a matter of changing the referenced process id from the old to
the new id.

However, this does not take into account that the state of the process instance (the variable
instances and the node instances) might need to be migrated as well. In cases where the process
is only extended and all existing wait states are kept, this is pretty straightforward, the runtime
state of the process instance does not need to change at all. However, it is also possible that a
more sophisticated mapping is necessary. For example, when an existing wait state is removed,
or split into multiple wait states, an existing process instance that is waiting in that state cannot
simply be updated. Or when a new process variable is introduced, that variable might need to be
initiated correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessinstanceUpgrader can be used to upgrade a workflow process instance to
a newer process instance. Of course, you need to provide the process instance and the new
process id. By default, jBPM will automatically map old node instances to new node instances with
the same id. But you can provide a mapping of the old (unique) node id to the new node id. The
unigue node id is the node id, preceded by the node ids of its parents (with a colon inbetween),
to uniquely identify a node when composite nodes are used (as a node id is only unique within its
node container. The new node id is simply the new node id in the node container (so no unique
node id here, simply the new node id). The following code snippet shows a simple example.

/'l create the session and start the process "com sanpl e. process"

Know edgeBui | der kbuilder = ...

St at ef ul Knowl edgeSessi on ksession = ...

Processl nst ance processl nstance = ksession.startProcess("com sanpl e. process");

/1 add a new version of the process "com sanpl e. process2"
kbui | der = Knowl edgeBui | der Fact ory. newkKnowl edgeBui | der () ;
kbui | der. add(..., ResourceType. BPM\2);

kbase. addKnow edgePackages(kbui | der. get Knowl edgePackages());

/1l mgrate process instance to new version
Map<String, Long> mappi ng = new HashMap<String, Long>();
/1 top level node 2 is nmapped to a new node with id 3
mappi ng. put ("2", 3L);
/1 node 2, which is part of conposite node 5, is mapped to a new node with id 4
mappi ng. put ("5.2", 4L);
Wor kf | owPr ocessl nst anceUpgr ader . upgr adePr ocessl nst ance(
ksessi on, processlnstance.getld(),
"com sanpl e. process2", mappi ng);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for
specific situations. Be sure to first disconnect the process instance, change the state accordingly

74

Multi-threading

and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader
does it.

6.8.7. Multi-threading

In the following text, we will refer to two types of "multi-threading™: logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement
brings with it a number of complications. While it might seem that multi-threading would bring
performance benefits with it, the extra logic needed to make sure the different threads work
together well means that this is not guaranteed. There is also the extra overhead incurred because
we need to avoid race conditions and deadlocks.

6.8.7.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread. sl eep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
conpl et eWsrkl ten(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task

75

Chapter 6. Core Engine: Basics

handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

6.8.7.2. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the
technology you're using. If you're only using Java, you could execute the actual service in a new
thread:

public class MyServi ceTaskHandl er inpl enents WirkltenHandl er {

public void executeWrkltem(Wrkltem workltem WorkltemVanager manager) {
new Thr ead(new Runnabl e() {
public void run() {
/1l Do the heavy lifting here ...

}
}).start();

public void abortWrkltem Wrkltem workltem WrkltenVanager manager) {
}

It's advisable to have your handler contact a service that executes the business operation, instead
of having it perform the actual work. If anything goes wrong with a business operation, it doesn't
affect your process. The loose coupling that this provides also gives you greater flexibility in
reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to
add a task there. To implement an asynchronous handler, you usually have to simply do an
asynchronous invocation of this service. This usually depends on the technology you use to do
the communication, but this might be as simple as asynchronously invoking a web service, or
sending a JMS message to the external service.

6.8.7.3. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session.
However, there are cases in which it's necessary to run multiple processes in different knowledge
sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple
knowledge sessions (and processes), there is a guideline that users should be aware of. The
following paragraphs explain why this guideline is important to follow.

76

Multi-threading

+ Please make sure to use a database that allows row-level locks as well as table-level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each
with its own knowledge session instance. On each thread, jBPM processes are being started using
the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally
simultaneously finished a process. At this point, because persistence is being used, both thread
A and B will be commiting changes to the databse. If row-level locks are not possible, then the
following situation can occur:

Thread A has a lock on the Processl nst ancel nf o table, having just committed a change to
that table.

e Thread A wants a lock on the Sessi onl nf o table in order to commit a change there.

e Thread B has the opposite situation: it has a lock on the Sessi onl nfo table, having just
committed a change there.

« Thread B wants a lock on the Pr ocessl nst ancel nf o table, even though Thread A already has
alock on it

This is a deadlock situation which the database and application will not be able to solve.

However, if row-level locks are posible (and enabled!!) in the database (and tables used), then
this situation will not occur.

77

78

Chapter 7.

Chapter 7. Core Engine: BPMN 2.0

7.1. Business Process Model and Notation (BPMN) 2.0
specification

The primary goal of BPMNis to provide a notation that is readily understandable
by all business users,

from the business analysts that create the initial drafts of the processes, to
the techni cal devel opers

responsi ble for inplenenting the technology that will perform those processes,
and finally, to the

busi ness people who will nanage and nonitor those processes."”

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPMS5 allows you to execute processes defined using the BPMN 2.0 XML format. That means
that you can use all the different jBPM5 tooling to model, execute, manage and monitor
your business processes using the BPMN 2.0 format for specifying your executable business
processes. Actually, the full BPMN 2.0 specification also includes details on how to represent
things like choreographies and collaboration. The jBPM project however focuses on that part of
the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

» Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

» Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPMS5 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be

79

Chapter 7. Core Engine: BPMN 2.0

used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional
elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:
* Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
« End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
« Non-interrupting Boundary Event (Escalation, Timer)
« Interrupting Boundary Event (Escalation, Error, Timer, Compensation)
* Activities
e Script Task
* Task
» Service Task
» User Task
* Business Rule Task
* Manual Task
e Send Task
* Receive Task
* Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
* Ad-Hoc Sub-Process
« Data-Object
* Gateways
« Diverging

* Exclusive

80

Business Process Model and Notation (BPMN) 2.0 specification

* Inclusive
» Parallel
+ Event-Based
e Converging
» Exclusive
+ Parallel
e Lanes
« Data
» Java type language
* Process properties
» Embedded Sub-Process properties
* Activity properties
» Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
tar get Nanespace="htt p: //ww. exanpl e. or g/ M ni mal Exanpl e"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL
BPM\20. xsd"
xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\ 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"

81

Chapter 7. Core Engine: BPMN 2.0

xm ns: di ="http://ww. ong. or g/ spec/ DDY 20100524/ DI "
xm ns:tns="http://ww.jboss. org/drool s">

<procegw ocessType="Pri vat d"'sExecut abl e="t r ua@"d="com sanpl e. Hel | oWor | dfane="Hel | o
World" >

<!-- nodes -->
<startEvent id="_1" name="StartProcess" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello Wirld"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t erm nat eEvent Defini ti on/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1-_2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmdi : BPM\Di agr an
<bpmmdi : BPMNPI ane bpmmEl enent ="M ni mal * >
<bpmdi : BPMNShape bpmmEl enent ="_1" >
<dc: Bounds x="15" y="91" wi dth="48" hei ght="48" />
</ bpmmdi : BPMNShape>
<bpmmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="95" y="88" w dt h="83" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNShape bpmeEl enrent =" _3" >
<dc: Bounds x="258" y="86" w dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNEdge bpmEl erent =" _1-_2" >
<di : waypoi nt x="39" y="115" />
<di : waypoi nt x="75" y="46" />
<di : waypoi nt x="136" y="112" />
</ bprmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2- 3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bpmmdi : BPM\NEdge>
</ bpmmdi : BPM\PI ane>
</ bpmdi : BPMNDi agr an®

</definitions>

To create your own process using BPMN 2.0 format, you can

82

Examples

» Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,
make sure you select Drools 5.1 code compatibility. This will create a new process using the
BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

« The Designer is an open-source web-based editor that supports the BPMN 2.0 format. We have
embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the
Designer (either standalone or integrated) to create / edit BPMN 2.0 processes and then export
them to BPMN 2.0 format or save them into Guvnor and import them so they can be executed.

* A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification. It
is currently still under development and only supports a limited number of constructs and
attributes, but can already be used to create simple BPMN2 processes. To create a new BPMN2
file for this editor, use the wizard (under Examples) to create a new BPMN2 file, which will
generate a .bpmn2 file and a .prd file containing the graphical information. Double-click the .prd
file to edit the file using the graphical editor. For more detail, check out the chapter on the new
BPMN2 Eclipse plugin.

* You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce("sanpl e. bprm2"), Resour ceType. BPM\2) ;
return kbuil der. newKnow edgeBase();

... and how to execute this process ...

Know edgeBase kbase = creat eKnow edgeBase();
St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. start Process("com sanpl e. Hel | oWworl d");

For more detail, check out the chapter on the API and the basics.

7.2. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and
other elements).

83

Chapter 7. Core Engine: BPMN 2.0

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These
test processes can also serve as simple examples: they don't really represent an entire real life
business processes but can definitely be used to show how specific features can be used. For
example, the following figures shows the flow chart of a few of those examples. The entire list can
be found in the src/test/resources folder for the jopm-bpmn2 module like here [http://github.com/
droolsjbpm/jbpm/tree/master/jopm-bpmn2/src/test/resources/].

7.3. Supported elements / attributes

Table 7.1. Keywords

Supported Supported Extension Extension
attributes elements attributes elements
definitions » rootElement
 BPMNDiagram
process e processType |e property » packageName < import
* isExecutable |+ laneSet » adHoc « global
* name » flowElement version
e id

sequenceFlow * sourceRef conditionExpresstopriority
« targetRef
* isimmediate

* name

interface * name » operation

¢ implementationRef

operation * name e inMessageRef
e id

* implementationRef

laneSet * lane

lane * name » flowNodeRef
e id

import* * name

84

http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Supported elements / attributes

Element Supported
attributes
global*
Events
startEvent e name
e id
« isInterrupting
endEvent * name
e id

intermediateCatch

Everame

intermediateThrowkEveame

boundaryEvent

terminateEventDe

compensateEvent

conditionalEventD

e id

 cancelActivity
 attachedToRef
* name

- id

finition

DefautioiyRef

efinition

Supported Extension
elements attributes
* identifier

e type

» dataOutput
¢ dataOutputAssociation
e outputSet

» eventDefinition

 datalnput
 datalnputAssociation
* inputSet

+ eventDefinition

¢ dataOutput
 dataOutputAssociation
* outputSet

» eventDefinition

 datalnput
¢ datalnputAssociation
¢ inputSet

» eventDefinition

» eventDefinition

» documentation

» extensionElements

e condition

Extension

elements

85

Chapter 7. Core Engine: BPMN 2.0

Element Supported Supported Extension Extension

attributes elements attributes elements

errorEventDefinition errorRef

error * errorCode
e id
escalationEventDeftniéiscalationRef

escalation escalationCode
e id
messageEventDefimitimessageRef
message e itemRef

e id
signalEventDefinitien signalRef

timerEventDefinition * timeCycle

* timeDuration

« timerDate
Activities
task * name * joSpecification < taskName
e id datalnputAssociation
« dataOutputAssociation
scriptTask scriptFormat e script
* hame
e id
script * text[mixed
content]
userTask * name * ioSpecification « onEntry-script
e id datalnputAssociation onExit-script
» dataOutputAssociation
» resourceRole
¢ loopCharacteristics
potentialOwner ¢ resourceAssignmentExpression

86

Supported elements / attributes

Element Supported Supported Extension Extension
attributes elements attributes elements

resourceAssignmentExpression e expression

businessRuleTask ¢« name ioSpecification < ruleFlowGroup | * onEntry-script
e id datalnputAssociation » onExit-script

» dataOutputAssociation

manualTask * name « onEntry-script
e id < onExit-script

sendTask « messageRef * ioSpecification e onEntry-script
* name datalnputAssociation « onExit-script
e id * loopCharacteristics

receiveTask ¢ messageRef * ioSpecification * onEntry-script
* name » dataOutputAssociation « onExit-script
e id * loopCharacteristics

serviceTask e operationRef | ¢ ioSpecification e onEntry-script
* name datalnputAssociation « onExit-script
e id » dataOutputAssociation

* implementation | « loopCharacteristics

subProcess * name » flowElement
e id e property

« triggeredByEvent loopCharacteristics

adHocSubProcess ¢ cancelRemaininginstampéetionCondition

* name » flowElement
e id * property
callActivity « calledElement | ioSpecification <« waitForCompletien onEntry-script
e name datalnputAssociatidndependent < onExit-script
e id » dataOutputAssociation
multiinstanceLoopCharacteristics * loopDatalnputRef

* inputDataltem

87

Chapter 7. Core Engine: BPMN 2.0

Element

Supported

attributes

Supported
elements

Extension
attributes

Extension
elements

onEntry-script*

onExit-script*

Gateways

parallelGateway

eventBasedGatew

exclusiveGateway

inclusiveGateway

Data

property

dataObject

itemDefinition

ay gatewayDirectio

scriptFormat

scriptFormat

gatewayDirectio
name

id

name
id
default
gatewayDirectio
name
id
default
gatewayDirectio
name

id

itemSubjectRef
id

name
itemSubjectRef
id

structureRef

¢ loopDataOutputRef

e outputDataltem

=}

=]

>

>

 script

* script

88

Supported elements / attributes

Element

ioSpecification

datalnput

datalnputAssociat

dataOutput

dataOutputAssoci

inputSet
outputSet

assignment

formalExpression

BPMNDI
BPMNDiagram
BPMNPIlane

BPMNShape
BPMNEdge

Bounds

Supported

attributes

* name

e id

ation

e language

¢ bpmnElement

* bpmnElement
¢ bpmnElement

e X

Supported
elements

Extension
attributes
datalnput

dataOutput

inputSet

outputSet

sourceRef
targetRef

assignment

sourceRef
targetRef

assignment
datalnputRefs
dataOutputRefs

from

to

text[mixed
content]

BPMNPlane
BPMNEdge

BPMNShape
Bounds

waypoint

Extension
elements

89

Chapter 7. Core Engine: BPMN 2.0

Element

Supported Supported Extension Extension

attributes elements attributes elements

waypoint

* width

* height

90

Chapter 8.

Chapter 8. Core Engine:
Persistence and transactions

jBPM allows the persistent storage of certain information. This chapter describes these different
types of persistence, and how to configure them. An example of the information stored is the
process runtime state. Storing the process runtime state is necessary in order to be able to
continue execution of a process instance at any point, if something goes wrong. Also, the process
definitions themselves, and the history information (logs of current and previous process states
already) can also be persisted.

8.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution
of the process in that specific context. For example, when executing a process that specifies
how to process a sales order, one process instance is created for each sales request. The
process instance represents the current execution state in that specific context, and contains all
the information related to that process instance. Note that it only contains the (minimal) runtime
state that is needed to continue the execution of that process instance at some later time, but it
does not include information about the history of that process instance if that information is no
longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the
database. You do not have to trigger persistence yourself, the engine will take care of this when
persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are
stored at the end of that invocation, at so-called safe points. Whenever something goes wrong
and you restore the engine from the database, you also should not reload the process instances
and trigger them manually to resume execution, as process instances will automatically resume
execution if they are triggered, like for example by a timer expiring, the completion of a task that
was requested by that process instance, or a signal being sent to the process instance. The engine
will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably
should not try to access these database tables directly and especially not try to modify these
directly (as changing the runtime state of process instances without the engine knowing might
have unexpected side-effects). In most cases where information about the current execution state
of process instances is required, the use of a history log is mostly recommended (see below). In
some cases, it might still be useful to for example query the internal database tables directly, but
you should only do this if you know what you are doing.

91

Chapter 8. Core Engine: Persi...

8.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the
state of the process instance into a binary dataset. When you use persistence with jBPM, this
mechanism is used to save or retrieve the process instance state from the database. The same
mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

» First, the process instance information is transformed into a binary blob. For performance
reasons, a custom serialization mechanism is used and not normal Java serialization.

« This blob is then stored, alongside other metadata about this process instance. This metadata
includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the
state of timer jobs, or the session data that the any business rules would be evaluated over. This
session state is stored separately as a binary blob, along with the id of the session and some
metadata. You can always restore session state by reloading the session with the given id. The
session id can be retrieved using ksessi on. get 1 d() .

Note that the process instance binary datasets are usually relatively small, as they only contain
the minimal execution state of the process instance. For a simple process instance, this usually
contains one or a few node instances, i.e., any node that is currently executing, and any existing
variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

sessicninfo processinstanceinfa OV NLEYPLS workiteminfa
il INTEGER [PK] instanceid: BIGINT [PK] M _gedineranceid: BICINT [FK] vearkitemid: BIGINT [PK]
lastmedificationdate: TIMESTAMP lastmodificationdate: TIMESTAMP element: VARCHAR(Z 55) creationdate: TIMESTAMP
rulesbytearray: BLOE lastreaddate: TIMESTAMP name: YARCHARI255)
startdate; TIMESTAMP processid: VARCHARIZS5) processinstanceid: BIGINT
optlock: INTEGER processinstancebytearray: BELOBE stata: BIGINT

srartdate: TIMESTAMP optlock: INTEGER

state: INTECER vearkitermbylearray: BLOB

optlock: INTEGER

Figure 8.1. jBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessi oni nf o entity contains the state of the (knowledge) session in which the jBPM process
instance is running.

Table 8.1. SessionInfo

Field Description Nullable
‘ id ‘ The primary key. NOT NULL ‘
| ast nodi fi cati ondate The last time that the entity

was saved to the database

92

images/Chapter-Persistence/jbpm_schema.png

Binary Persistence

Field

rul esbyt earray

Description Nullable

The binary dataset containing NOT NULL
the state of the session

startdate

The start time of the session

opt | ock

The version field that serves
as its optimistic lock value

The processi nst ancei nf o entity contains the state of the jBPM process instance.

Table 8.2. ProcessInstancelnfo

Field Description Nullable
i nstancei d The primary key NOT NULL
| ast nodi fi cati ondate The last time that the entity
was saved to the database
| ast readdat e The last time that the entity
was retrieved (read) from the
database
processid The name (id) of the process
processi nstancebyt earray | This is the binary dataset NOT NULL
containing the state of the
process instance
startdate The start time of the process
state An integer representing the NOT NULL
state of the process instance
opt | ock The version field that serves

as its optimistic lock value

The event t ypes entity contains information about events that a process instance will undergo

or has undergone.

Table 8.3. EventTypes

Field

i nst ancei d

el enent

Nullable
NOT NULL

Description

This references the
processi nstancei nfo
primary key and there is a
foreign key constraint on this
column.

A text field related to an
event that the process has
undergone.

93

Chapter 8. Core Engine: Persi...

The wor ki t eni nf o entity contains the state of a work item.

Table 8.4. WorkltemInfo

Field Description Nullable
wor ki teni d The primary key NOT NULL
nane The name of the work item

processi nstancei d The (primary key) id of the NOT NULL

process: there is no foreign
key constraint on this field.

state An integer representing the NOT NULL
state of the work item

opt | ock The version field that serves
as its optimistic lock value

wor Ki t embyt ear ay This is the binary dataset NOT NULL
containing the state of the
work item

8.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of
the process engine. Whenever a process instance is executing (for example when it started or
continuing from a previous wait state, the engine executes the process instance until no more
actions can be performed (meaning that the process instance either has completed (or was
aborted), or that it has reached a wait state in all of its parallel paths). At that point, the engine has
reached the next safe state, and the state of the process instance (and all other process instances
that might have been affected) is stored persistently.

8.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. This means you can use the engine
completely without persistence (so not even requiring an in memory database) if necessary, for
example for performance reasons, or when you would like to manage persistence yourself. It is,
however, possible to configure the engine to do use persistence by configuring it to do so. This
usually requires adding the necessary dependencies, configuring a datasource and creating the
engine with persistence configured.

8.1.3.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your
application if you want to user persistence. By default, persistence is based on the Java
Persistence API (JPA) and can thus work with several persistence mechanisms. We are using
Hibernate by default.

94

Configuring Persistence

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary
jars are added to your jBPM runtime directory. You don't really need to do anything (as the
necessary dependencies should already be there) if you are using the jBPM runtime that is
configured by default when using the jBPM installer, or if you downloaded and unzipped the jBPM
runtime artefact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you
need the jar file j bpm persi stence-jpa.jar, as that contains code for saving the runtime
state whenever necessary. Next, you also need various other dependencies, depending on the
persistence solution and database you are using. For the default combination with Hibernate as
the JPA persistence provider and using an H2 in-memory database and Bitronix for JTA-based
transaction management, the following list of additional dependencies is needed:

» jbpm-test (org.jopm)

» jbpm-persistence-jpa (org.jopm)

« drools-persistence-jpa (org.drools)
 persistence-api (javax.persistence)

« hibernate-entitymanager (org.hibernate)

« hibernate-annotations (org.hibernate)

* hibernate-commons-annotations (org.hibernate)
« hibernate-core (org.hibernate)

« commons-collections (commons-collections)

e domdj (dom4j)

* jta (javax.transaction)

e btm (org.codehaus.btm)

* javassist (javassist)

* slf4j-api (org.slf4j)

* slf4j-jdk14 (org.slf4))

* h2 (com.h2database)

8.1.3.2. Configuring the engine to use persistence using JBPMvHel per

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate
constructor when creating your session. There are various ways to create a session (as we have
tried to make this as easy as possible for you and have several utility classes for you, depending
for example if you are trying to write a process junit test).

95

Chapter 8. Core Engine: Persi...

The easiest way to do this is to use the j bpm t est module that allows you to easily create and test
your processes. The JBPMHel per class has a method to create a session, and uses a configuration
file to configure this session, like whether you want to use persistence, the datasource to use, etc.
The helper class will then do all the setup and configuration for you.

To configure persistence, create a j BPM properti es file and configure the following properties
(note that the example below are the default properties, using an H2 in-memory database with
persistence enables, if you are fine with all of these properties, you don't need to add new
properties file, as it will then use these properties by default):

for creating a datasource

per si st ence. dat asour ce. nane=j dbc/ j bpm ds

per si st ence. dat asour ce. user =sa

per si st ence. dat asour ce. passwor d=

persi st ence. dat asour ce. url =j dbc: h2: tcp:/ /1 ocal host/ ~/j bpm db
per si st ence. dat asour ce. dri ver O assNane=or g. h2. Dri ver

for configuring persistence of the session

per si st ence. enabl ed=true

persi st ence. persi st enceuni t. nane=or g. j bpm per si st ence. j pa

per si st ence. persi stenceuni t. di al ect =or g. hi bernat e. di al ect. H2Di al ect

for configuring the human task service

t askservi ce. enabl ed=t rue

t askservi ce. dat asour ce. nane=or g. j bpm t ask

t askservice.transport=m na

taskservi ce. user groupcal | back=or g. j bpm t ask. servi ce. Def aul t User G- oupCal | backl npl

If you want to use persistence, you must make sure that the datasource (that you specified in
the j BPM properti es file) is initialized correctly. This means that the database itself must be up
and running, and the datasource should be registered using the correct name. If you would like
to use an H2 in-memory database (which is usually very easy to do some testing), you can use
the JBPMHel per class to start up this database, using:

JBPMHel per. st art H2Ser ver () ;

To register the datasource (this is something you always need to do, even if you're not using H2
as your database, check below for more options on how to configure your datasource), use:

JBPMHel per . set upDat aSour ce() ;

96

Configuring Persistence

Next, you can use the JBPM-el per class to create your session (after creating your knowledge
base, which is identical to the case when you are not using persistence):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. newSt at ef ul Know edgeSessi on(kbase) ;

Once you have done that, you can just call methods on this ksession (like st ar t Pr ocess) and the
engine will persist all runtime state in the created datasource.

You can also use the JBPMHel per class to recreate your session (by restoring its state from the
database, by passing in the session id (that you can retrieve using ksessi on. get 1 d())):

St at ef ul Knowl edgeSessi on ksessi on =
JBPMHel per . | oadSt at ef ul Knowl edgeSessi on(kbase, sessionld);

8.1.3.3. Manually configuring the engine to use persistence

You can also use the JPAKnow edgeSer vi ce to create your knowledge session. This is slightly
more complex, but gives you full access to the underlying configurations. You can create a
new knowledge session using JPAKnow edgeSer vi ce based on a knowledge base, a knowledge
session configuration (if necessary) and an environment. The environment needs to contain a
reference to your Entity Manager Factory. For example:

/1 create the entity manager factory and register it in the environment
EntityManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence.jpa");
Envi ronnment env = Know edgeBaseFact ory. newEnvi r onnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER _FACTCRY, enf);

/'l create a new knowl edge session that uses JPA to store the runtinme state
St at ef ul Knowl edgeSessi on ksessi on =

JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);
int sessionld = ksession.getld();

/1 invoke nethods on your nethod here

ksession. start Process("M/Process");
ksessi on. di spose();

You can also use the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

97

Chapter 8. Core Engine: Persi...

/'l recreate the session from database using the sessionld
ksessi on = JPAKnow edgeServi ce. | oadSt at ef ul Knowl edgeSessi on(
sessionld, kbase, null, env);

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate
and the H2 database (or your own preference), called persistence. xm in the META-INF
directory, as shown below. For more details on how to change this for your own configuration, we
refer to the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si st ence
version="1.0"
xsi : schemaLocat i on=
"http://java.sun. com xm / ns/ persi stence
http://java. sun. comi xm / ns/ per si st ence/ persi stence_1_0. xsd
http://java. sun. coml xm / ns/ per si st ence/ orm
http://java. sun. com xm / ns/ persi stence/orm 1_0. xsd"
xm ns:orme"http://java. sun. com xm / ns/ per si st ence/ or ni
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://java. sun. com xm / ns/ persi st ence" >

<persi stence-unit name="org.jbpm persistence.jpa" transaction-type="JTA">
<provi der >org. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ j bpm ds</ | t a- dat a- sour ce>
<mappi ng-fil e>META- | NF/ JBPMor m xml </ mappi ng-fil e>
<cl ass>org. drool s. persi stence. i nf 0. Sessi onl nfo</cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Workl tem nf o</ cl ass>

<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2dd| . aut 0" val ue="update"/ >
<property nane="hi bernate. show sql" value="true"/>
<property nane="hi bernate.transaction. manager | ookup_cl ass"
val ue="org. hi bernat e. transacti on. BTMIr ansact i onManager Lookup"/ >
</ properties>
</ persi stence-unit>
</ per si st ence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in
an application server (like for example JBoss AS), these containers typically allow you to easily set
up data sources using some configuration (like for example dropping a datasource configuration
file in the deploy directory). Please refer to your application server documentation to know how
to do this.

98

Transactions

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource
by dropping a configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - nane>j dbc/ j bpm ds</j ndi - nane>
<connection-url >jdbc: h2:tcp://| ocal host/~/test</connection-url>
<driver-cl ass>org. h2.jdbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nanme>sa</ user - nane>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

If you are however executing in a simple Java environment, you can use the JBPMHel per class to
do this for you (see above) or the following code fragment could be used to set up a data source
(where we are using the H2 in-memory database in combination with Bitronix in this case).

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce() ;

ds. set Uni queName("j dbc/j bpm ds");

ds. set O assNane("bitroni x.tmresource.jdbc.|rc.LrcXADat aSource");
ds. set MaxPool Si ze(3);

ds. set Al |l owLocal Transacti ons(true);

ds. get DriverProperties().put("user", "sa");
ds. getDriverProperties().put("passwrd", "sasa");
ds. get DriverProperties().put("URL", "jdbc:h2:tcp://|ocal host/~/jbpm db")

ds.getDriverProperties().put("driverC assNanme", "org.h2.Driver");
ds.init();

8.1.4. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using
Spring. It does not support pure local transactions at the moment. For more information about
using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this
behavior is acceptable, you don't need to do anything else. You can, however, also specify the
transaction boundaries yourself. This allows you, for example, to combine multiple commands
into one transaction.

You need to register a transaction manager at the environment before using user-defined
transactions. The following sample code uses the Bitronix transaction manager. Next, we use the
Java Transaction API (JTA) to specify transaction boundaries, as shown below:

99

Chapter 8. Core Engine: Persi...

/]l create the entity manager factory and register it in the environnment
EntityManager Factory enf =
Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence.jpa");
Envi ronnent env = Know edgeBaseFact ory. newEnvi r onnent () ;
env. set (Envi ronnent Nanme. ENTI TY_MANAGER _FACTCRY, enf);
env. set (Envi r onnent Name. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Transacti onManager ());

/'l create a new knowl edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksession =
JPAKnow edgeSer vi ce. newst at ef ul Knowl edgeSessi on(kbase, null, env);

/1 start the transaction
User Transaction ut =

(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begi n();

/1 performnultiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession. startProcess("M/Process");

// commt the transaction
ut.comit();

Note that, if you use Bitronix as the transaction manager, you should also add a simple
j ndi . properti es file in you root classpath to register the Bitronix transaction manager in JNDI. If
you are using the jbpm-test module, this is already included by default. If not, create a file named
j ndi . properti es with the following content:

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

If you would like to use a different JTA transaction manager, you can change the
persi stence. xm file to use your own transaction manager. For example, when running inside
JBoss Application Server v5.x, you can use the JBoss transaction manager. You need to change
the transaction manager property in per si st ence. xni to:

<property nane="hi bernate.transaction. manager _| ookup_cl ass"
val ue="org. hi bernate. transacti on. JBossTransact i onManager Lookup" />

100

Transactions

8.1.4.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that exucutes
in Container Managed Tansaction (CMT) mode, for instance EJB beans. This especially applies
to application servers that does not allow accessing UserTransaction instance from JNDI when
being part of container managed transation, e.g. WebSphere Application Server. Since default
implementation of transaction manager in jBPM is based on UserTransaction to get transaction
status which is used to decide if transaction should be started or not, in environments that prevent
accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a
dedicated transaction manager implementation is provided:

org.j bpm persi stence. jta. Contai ner ManagedTr ansact i onManager

This transaction manager expects that transaction is active and thus will always return ACTIVE
when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as
transaction manager runs under managed transaction and can't affect it.

@ Note
To make sure that container is aware of any exceptions that happened during
process instance execution, user needs to ensure that exceptions thrown by the
engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

« Insert transaction manager and peristence context manager into environment prior to creating/
loading session

Envi ronnent env = Environnent Fact ory. newknvi r onnment () ;
env. set (Envi ronment Nanme. ENTI TY_MANAGER_FACTORY, enf);
env. set (Envi r onment Name. TRANSACTI ON_MANAGER, new
Cont ai ner ManagedTr ansact i onManager ());
env. set (Envi r onnment Nanme. PERSI STENCE_CONTEXT_MANAGER, new
JpaPr ocessPer si st enceCont ext Manager (env)) ;

« configure JPA provider (example hibernate and WebSphere)

<property nane="hi ber nat e. transaction. factory_cl ass"
val ue="org. hi bernate. transacti on. CMI'Tr ansact i onFactory"/ >

101

Chapter 8. Core Engine: Persi...

<property nanme="hibernate.transacti on. manager _I| ookup_cl ass"
val ue="or g. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookup"/ >

With following configuration jBPM should run properly in CMT environment.

8.1.5. Persistence and concurrency

Please see the Multi-threading section for more information.

8.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a
file system during development. However, whenever you want to make your knowledge accessible
to one or more engines in production, we recommend using a knowledge repository that (logically)
centralizes your knowledge in one or more knowledge repositories.

Guvnor is a Drools sub-project that does exactly that. It consists of a repository for storing different
kinds of knowledge, as well a web application that allows users to view and update the information
in the repository. It not only stores process definitions but also can hold rule definitions, object
models, and much more.

Easy programmatic retrieval of knowledge packages is possible either using WebDAV or by
using a knowledge agent. The knowledge agent will automatically download the information from
Guvnor, for example, during the creation of a knowledge base.

Check out the Drools Guvnor documentation for more information on how to do this.

8.3. History Log

In many cases it will be useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards. For example, sometimes we want to
verify which actions have been executed for a particular process instance, or in general, we want
to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size, not to mention the fact that monitoring and analysis queries might influence
the performance of your runtime engine. This is why process execution history information can
be stored separately.

This history log of execution information is created based on events that the the process engine
generates during execution. This is possible because the jBPM runtime engine provides a generic
mechanism to listen to events. The necessary information can easily be extracted from these
events and then persisted to a database. Filters can also be used to limit the scope of the logged
information.

102

The jBPM Audit data model

8.3.1. The |BPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information in a
database using JPA or Hibernate directly. The data model itself contains three entities, one for
process instance information, one for node instance information, and one for (process) variable
instance information.

processinstancelog nodeinstancelog variableinstancelog

id: BIGINT [PK] id: BIGINT [PK] id: BIGINT [PK]

end_date: TIMESTAMP log_date: TIMESTAMP log_date: TIMESTAMP

processid: VARCHAR(255) nodeid: VARCHAR(255) processid: VARCHAR(255)

processinstanceid: BIGINT nodeinstanceid: VARCHAR(255) processinstanceid: BICINT

start_date: TIMESTAMP nodename: VARCHAR(255) value: VARCHAR(255)
processid: VARCHAR(255) variableid: VARCHAR(255)
processinstanceid: BIGINT variableinstanceid: VARCHAR(255)
type: INTEGER

Figure 8.2. JBPM Audit data model

The Processl nst ancelLog table contains the basic log information about a process instance.

Table 8.5. ProcessinstancelLog

Field Description Nullable
id The primary key and id of the NOT NULL
log entity
end_dat e When applicable, the end
date of the process instance
processid The name (id) of the process
processi nstancei d The process instance id NOT NULL
start_date The start date of the process
instance
st at us The status of process

instance that maps to process
instance state

par ent Processl nstancel d | The process instance id of the
parent process instance if any

out come The outcome of the process
instance, for instance error
code in case of process
instance was finished with
error event

The Nodel nst anceLog table contains more information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incomming

103

Chapter 8. Core Engine: Persi...

connections or is exited through one of its outgoing connections, that information is stored in this
table.

Table 8.6. NodelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

| og_date The date of the event

nodei d The node id of the

corresponding node in the
process definition

nodei nst ancei d The node instance id
nodenane The name of the node
processid The id of the process that the

process instance is executing

processi nstancei d The process instance id NOT NULL

type The type of the event (0 = NOT NULL
enter, 1 = exit)

The Vari abl el nst anceLog table contains information about changes in variable instances. The
defaul is to only generate log entries when (after) a variable changes. It's also possible to log
entries before the variable (value) changes.

Table 8.7. VariablelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

| og_date The date of the event

processi d The id of the process that the

process instance is executing

processi nstancei d The process instance id NOT NULL

val ue The value of the variable at
the time that the log is made

vari abl ei d The variable id in the process
definition
vari abl ei nst ancei d The id of the variable instance

104

Storing Process Events in a Database

8.3.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your
session (or working memory) like this:

St at ef ul Knowl edgeSessi on ksession = ...;

JPAWOr ki ngMenor yDbLogger | ogger = new JPAWr ki ngMenor yDbLogger (ksessi on) ;

/1 invoke nethods one your session here

| ogger . di spose()

Note that this logger is like any other audit logger, which means that you can add one or more
filters by calling the method addFi | t er to ensure that only relevant information is stored in the
database. Only information accepted by all your filters will appear in the database. You should
dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstanceLog, NodelnstanceLog and
VariablelnstancelLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<per si st ence
version="1.0"

xsi : schemalLocat i on=

"http://java
http://java
http://java
http://java

.sun.
o SNk
..sun.
..sun.

com xm / ns/ per si st ence

conl xm / ns/ per si st ence/ persi stence_1_0. xsd
conl xm / ns/ per si st ence/ orm

conl xm / ns/ persi stence/orm 1 0. xsd"

xm ns: orne"http://java. sun. com xm / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://java.sun. com xm / ns/ per si st ence" >

<persi stence-u

<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>

nit nane="org.j bpm persi stence.jpa">

<provi der>org. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ pr ocessl nst anceDS</ j t a- dat a- sour ce>
<cl ass>org. drool s. persi st ence. i nf 0. Sessi onl nfo</cl ass>

<cl ass>org. drool s. persi st ence. i nfo. Wrkltemn nfo</cl ass>
<cl ass>org. j bpm process. audi t. Processl| nst anceLog</ cl ass>
<cl ass>org. j bpm process. audi t. Nodel nst ancelLog</ cl ass>

<cl ass>org. j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>

105

Chapter 8. Core Engine: Persi...

<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="update"/>
<property nane="hi bernate.show sql" val ue="true"/>
<property nane="hi bernate.transaction. manager _| ookup_cl ass"
val ue="org. hi bernate. transacti on. BTMITr ansact i onManager Lookup"/ >
</ properties>
</ persi stence-unit>
</ per si st ence>

All this information can easily be queried and used in a lot of different use cases, ranging
from creating a history log for one specific process instance to analyzing the performance of all
instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

106

Chapter 9.

Chapter 9. Eclipse BPMN 2.0 Plugin

We are working on a new BPMN 2.0 Eclipse editor that allows you to specify business processes,
choreographies, etc. using the BPMN 2.0 XML syntax (including BPMNDI for the graphical
information). The editor itself is based on the Eclipse Graphiti framework and the Eclipse BPMN
2.0 EMF meta-model.

Features:

« It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,
annotations and all the BPMN2 node types).

» Support for the few custom attributes that jBPM5 introduces.

 Allows you to configure which elements and attributes you want use when modeling processes
(so we can limit the constructs for example to the subset currently supported by jBPM5, which
is a profile we will support by default, or even more if you like).

Many thanks go out to the people at Codehoop that did a great job in creating a first version of
this editor.

9.1. Installation

Requirements

 Eclipse 3.6 (Helios) or newer

To install, startup Eclipse and install the Eclipse BPMN2 Modeler from the following update site
(from menu Help -> Install new software and then add the update site in question by clicking the
Add button, filling in a name and the correct URL as shown below). It will automatically download
all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/site-helios/
Eclipse 3.7 (Indigo): http://download.eclipse.org/bpmn2-modeler/site/

The project is hosted at eclipse.org and open for anyone to contribute. The project home page
can he found here [http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler]. Sources are
available here [http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.qgit]

9.2. Creating your BPMN 2.0 processes

You can use a simple wizard to create a new BPMN 2.0 process (under File -> New - Other ...
select BPMN - BPMN2 Diagram).

107

http://download.eclipse.org/bpmn2-modeler/site-helios/
http://download.eclipse.org/bpmn2-modeler/site/
http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler
http://eclipse.org/projects/project.php?id=soa.bpmn2-modeler
http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

Chapter 9. Eclipse BPMN 2.0 P...

A video that shows some sample BPMN 2.0 processes from the examples that are part of the
BPMN 2.0 specification:

in-Eeda - 8 H-0-Q- HE- @B A E-F-vE-s- p(EE
Pt | @ Be ok o PR R | B M [RA 0k -
Wrcapeepens 5= O e | -
BE%|l e~ 21
i Demo
- e
W IFE Spstom Libessy [5-35E-15]
> 2190603
= Comelstion
% Dhagram [nbenchange
e hdai Voking
& Hardware Reiaier Nnﬂmm“
i Incident Mansgemsnt B
ol nd 11 st g
2 Maised Prize a X s
& Mot Prize Progsss b i & S Ve
[Mot Prize Procsss VaD = Sand Collact Borean & Cesarming Ez o Suluct Final
B Oriber Fullibmerd 5 I:-EB Mormiriion Complatmd |—* Sabit i R i carsrates ==
[&] Procursment Processes with Emd = Fggm h'_-?" Fe— Exgmt /j} ""_.‘*
[Procurement Pracesses with Em E i & Expert - = R
& Pizs 3 T
2% Trawed Baoking : —
A Cormplatas e mewton Parra e [PO ——
e | im0
E .—-'12"\ }&m | Fhﬂ |) H ,-'I'EH |&H.Hfl | F | ~ =
| E ;ﬁ” :
i #« 3

Figure 9.1.
[http://vimeo.com/22021856]

Here are some screenshots of the editor in action.

108

http://vimeo.com/22021856

Creating your BPMN 2.0 processes

File Edit View MNavigate Search Project Run Window Help

s]|

CHES $ 0@ WG E® L Gvor oE
| B2 @ B s f | oE | B | @ @ 100% ~
(1 Pockage . Novigtor 5= O (5 FimeoundnBecntOycel, £, =
; 2B~ 2 Palette b
= BPMN2Test B Hello Sub Process [+ Select
= bpmn -
= settings 'L_:-_ Marquee
= Store Task (= Connectors 0
g project + - — Sequence Flow
bookaml StartSubProcess
[5] booksxsd - Tacks &
StartProcess EndProcess .
[&] choreography_1.bpmn (= Task
[&] collaboration_L.bpmn £, User Task
[S] CustomersOrders.xsd EscalationEvent | s |
[S] DataDefinitions.xsd (= Gateways <@
[&) drools.bpmn2 @Incluswe
B| email.png Gateway
email.wid | Chsbehvivess |
GenerateData.wid L b = Events @
AP Interfaces.wsdl W —~
[8] process_1.bpmn EndProcess () Start Event
[&] process_2.bpmn O End Event
[} process 3.6pmn (= Event Definitions
[&] process_4.bpmn
[2] techroadmap.bpmn &= Data lterns
testwid (= Other
[8] TimerBoundaryEventCyclel bpi [= Custom Task
= OASIS-Samples =
= Test [Problems (@ Javadoc ﬂ% Declaration (D Properties &% [8
& Tetra) Timer Boundary Event Process
= .settings
) 1
%] project Description 3 5 I P - . :
[choreography_1.bprn A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out -
&) choreograph '2 bomn ||| Diagram work. A Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
B collabogratiin);.i)ptnn Interfaces Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -
[&] collaboration_2.bpmn Data Iterns + Attributes
[8] collaboration_3.bpmn Definitions -
[& collaboration_4.bprmn Id TimerBoundaryEvent
[8 collaboration_5.bpmn Mame Timer Boundary Event Process
[collaboration_6.bpmn
B amail ann S
< n 3
H D<>
Figure 9.2.
Ej Problems i o ¥ =8

-1 Hello Sub Process

Description * Attributes

Sub Process

Loop Characteristics

@ Maone

) Multi-Instance

Add | MNarme

|Id

Figure 9.3.

109

Chapter 9. Eclipse BPMN 2.0 P...

EasLl.

File Edit View MNavigate Search Project Run Window Help

CO-HE& F-O0-QUr HFE- EEF S e
G| BE|aded|Be R B0 Q& 0% -
(1 Pactagee [Nodgaror 5=) (O ipriounsnRenOIeiiin, =
r & ‘ g v ¥ Palette
=5 BPMM2Test 1= Hello Sub Process [}) o
= .bpmn -
(= settings (= Connectors @
= Store Task —
[project - (= Tasks m
¥ bookaml StartSubProcess + -
[S] books.xsd] =1
StartProcess EndProcess
% choreography_1.bpmn (= Gateways @
collaboration_1.bpmn ~
<
[S] CustomersOrders.xsd EscalationEvent - @ @
[5| DataDefinitionsxsd (= Events @
El droo.lls.bpmnz QO DD e
email.png B
emailwid (= Event Definitions <
GenerateData.wid Goodbye Lt L o2 AN @
AP Interfaces.wsdl = Data It P
[£] process_1.bpmn EndPracess & Data tems
[process_ 2.bpmn
[E] process 3.bpmn)
[process 4.bpmn = = [
[2 techroadmap.bpmn
testwid
[] TimerBoundaryEventCyclel bpi
1= OASIS-Samples
=% Test
& Tetro (= Custom Task
= .settings
[.project E_(Problems | = Properties &2 =7 =0

[E] choreography_L.bpmn
[choreography_2.bpmn
[E] collaboration_1.bpmn
[£] collaboration_2.bpmn
[collaboration_2.bpmn
[E] collaboration_4.bpmn
[£) collaboration_5.bpmn
[E] collaboration_6.bpmn
|Bs| email.png

< n

Timer Boundary Event Process

I
Description A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out =+
Diagram work. & Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Interfaces Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -
Data Items ~ Attributes
Definitions Id TimerBoundaryEvent
Name Timer Boundarv Event Process

né

Figure 9.4.

110

Filtering elements and attributes

File Edit View MNavigate Search Project Run Window Help

milhd S B0 HE- B®S PG D | Bkl |%iol |5 | Q @ 50% ~ 15 [E7Tava)
[& Pa[%s Na 22 = B[[&) TimerBoundaryEventCyclel |21 PurchaseGoods &2 =g
@ Bg "~ i Palette >
= BPMN2Test 5 O
[
1= DASE-Samples = = Comect
= Test | { | l = Connect... @
2 Tetra : . ~ -
= bpmn |
(= Tasks @
(= settings i = = | [[= -
¥ project ‘ | = e S AR A R | 2 &
choreography_1.bpt Buy Request - et Crea - 1 =
=
[E) choreography 2.bpt = omk Comboene o | <x> -® -
[2 collaboration_L.bpn s— e | P - i i =
[& collaboration_2.bpn (= Gateways <
collaboration_3.bpn ——— | & @
|
[collaboration 4.bpn | SRSEREWERES)\ : | S
[8] collaboration_5.bpn ———= omamo | -@ ® =
[E collaboration 6.bpn St frece s 1 Ebvents @
@] emailpng [e | IIT | e
[emailwid 5. L J o0
[process 1.bpmn e i — o
B process_2bpmn -
[process 3.bpmn
B process &.bpmn Cogsnit ettt it Sl i
) process_5.bpmn (= Event Defintt...
[E) PurchaseGoods.bpn =
(= Other
(2= Custom Task
[£ Problems | =1 Properties 2 ® Y=

BPMNDiagram_1

|
Description A Choreography Diagram formalizes the way business Participants coordinate their interactions. The focus is not on orchestrations of the work performed within these
Diagram Participants, but rather on the exchange of information (Messages) between these Participants,
Data Items s
Definitions. w Attributes

Id BPMMNDiagram_1

MName

m r

Figure 9.5.

9.2.1. Filtering elements and attributes

You can define which of the BPMN 2.0 elements and attributes you want to use when describing
your BPMN 2.0 diagrams. Since the BPMN 2.0 specification is rather complex and includes a very
large set of different node types and attributes for each of those nodes, you may not want to use
all of these elements and attributes in your project. Elements and attributes can be enablement /
disabled at the project level using the BPMN2 preferences category (right-click your project folder
and select Properties ... which will open up a new dialog). The BPMN2 preferences contain an
entry for all supported elements and attributes (per node type) and you can enable or disable each
of those by (un)checking the box for each of those elements and attributes.

111

Chapter 9. Eclipse BPMN 2.0 P...

Project References
Refactoring History

Assignment
[] Association

Run/Diebug Settings [] Auditing
Server BaseElernent
Task Tags BoundaryEvent
Validation

BusinessRuleTask

[] CallableElement
CallActivity

[] CallChoreography

[7] CallConversation

[] CancelEventDefinition
[] CatchEvent

[T Cateaorv

I | type filter text Tool Enablement R
Resource
BPMMNZ Override default tool enablements with these settings:
Teol Enablement [Activity i
Builders [[] AdHecSubProcess E|
Project Facets [] Artifact

-

Copy | all enablements from Target Runtime: | JBoss jBPMS Business Process Engine - Process v]

[Impurs Profile ... ” Export Profile ..]

’ Restore Qefaul.tsl [Apply]

[ok || Cancel |

Figure 9.6.

9.2.2. Adding custom task nodes

When creating and adding <t ask> or other <t ask> type nodes to a process, you might want to
add input and output parameters to the node. Furthermore, you can configure jBPM to use custom
Wor kil t enHandl er implementations in conjunction with these nodes. These Wor ki t enHandl er

instances will then be used when your service node is reached.

The concept of customizing <task> and other <task>-type nodes and using custom
Wor kI t emHandl er implementations with these nodes is referred to as creating custom work items
within jBPM. More information about this can be found in the Domain-specific processes chapter.

The following sections cover the following node types:

* Task
¢ Service Task

* Send Task

112

Changing editor behavior

* Receive Task

* Manual Task*

Tip

A Manual Task should be used to represent a human activity that is not managed
by the process engine or the human-task component. In this case, you would
probably create a custom Wor ki t enHandl er implementation that would interface
with a technical component that the actor would use to indicate completion of the
task.

However, if you were using a human task server, such as the jBPM human-task
component, then you would use a User Task node instead.

9.2.2.1. Configuring the input and output parameters

WRITE MORE: what they are, example for notification?

9.2.2.2. Configuring the node to be handled by a verki t entandi er
WRITE MORE: add tns:taskname as an attribute to the element

When your process is actually run by the engine, you'll have to first register your Wor ki t enHand! er
with jBPM. See the Work Item Handlers section for an overview and the ??? sections for an
example.

9.3. Changing editor behavior

The "General settings" tab in the User Preferences lets you specify a "Target Runtime" which
customizes the editor's behavior for a specific BPMN execution environment. Currently only jBPM5
and a generic runtime are defined for the editor, but others are in the works.

This preference page (shown below) also lets you configure default values for BPMN Diagram
Interchange (or "DI") attributes.

113

Chapter 9. Eclipse BPMN 2.0 P...

[type filter text | BPMN2 v
€] | -
AE:EG — General settings for the BPMN2 Modeler

n
BPMMNZ Target Runtime |JBoss JEPMS Business Process Engine i
Editor Show the Advanced Properties Tab for BPMMN2 Elements

c[};ﬁll— Browser Expand compound property details instead of showing a selection list
Copyright Tool - Default values for BPMM Diagram Interchange (DI) optional attributes
Data Management Horizontal layout of Pools, Lanes and diagram elements [isHorizontal] _Faise if notset -
Dynamic Languages Expand activity containers (SubProcess, CallActivity, etc.) [isExpanded]
Ecore Tools Diagram
Graphiti Test Preferencel Show Participant Band Messages [isMessageVisible]
Help Decorate Exclusive Gateway with "X" marker [isMarkerVisible] False if not set -
Install/Update False if not set
lava True if not set
Java EE Always true
Javascript Always false
Mawven
Model Validation - [Rm Def hs] [A]

T . i ore Defaul Apply

@ [ok][cance |

Figure 9.7.

9.4. Changing editor appearance

The preference page shown below lets you customize the appearance (colors and fonts) for all of
the different elements that can be placed on the diagram canvas.

114

Changing editor appearance

-
=T
1
|t}rpefilterte:¢ | Editor oor oo ow |
| |
G [.
EneEr o EPMNZ Modeler Appearance
Ant
EPMMZ ParallelGateway - _
Editor Participant Eill Color: E
= ReceiveTask
WEIL Browser £ .
coo scriptTask Foreground Celor: E
SendTaszk
Copyright Tool Sequenceflow
Data Management | o ServiceTask e E
Dynamic Languages startEvent _
Ecore Tools Diagram zu E:’:h oreography e E
" ubProcess
Graphiti Test Preference Label Color: —
Help TextAnnotation
Install/Update Transacticn kel e sl requraD
lava UzerTask A
Java EE
JavaScript i
| T 3 ’ iestomnelolic] ’ Apphi]

) [ok || Cancel |

Figure 9.8.

115

116

Chapter 10.

Chapter 10. Designer

Web-based process editing is possible using the jBPM Designer. The designer is fully integrated
into Drools Guvnor, the knowledge repository where you can store all your BPM assets such as
of course your BPMNZ2 processes as well as rules, process images, workitem configurations, and
process forms. The Designer can be used to create, view or update BPMN2 based processes
which are executable in the jBPM runtime environment.

=]

Shape Repoaitory

! Rctivition

| I

Artifacts
Cafthing Inbermadinle Dvenis
Comneting Ghjeuls

Ered Dewnls

Galemayy E
| Sarvicn Tatka [
: B
i St Events =
| fmirelarees |
i Treceing Lazermsdiats Eventy
Process Information =
— &
Pprmat: e E
Fadhige: R =
Crosimd 3395-11-04TOOCTN-00 H14-04
Crested
I
Lest - -
Hoed fled —
L oot
warpan
ERDF EON POF PG BRRAD PG

| jNPM BPHNI g ¢
B

HR

-
i
Review

b

(8

-

:—-’K':l-/—ﬁ'—-ﬂa—--rllrlxk JL—DO

Designer targets the following scenarios:

N X

WA Approval [

Hanager Aprovel

Propertin | B#MN-Diagram)
M Vam

3 Dften used

« View and/or edit existing BPMN2 processes: The designer allows you to open existing BPMN2
processes (for example created using the BPMNZ2 Eclipse editor or any other tooling that exports
BPMN2 XML) in a web context.

» Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the
Designer and use the editing capabilities (drag and drop and filling in properties in the properties
panel) to fill in the details. This for example allows business users to create complete business
processes all inside a a browser. The integration with Drools Guvnor allows for your business
processes as wells as other business assets such as business rules, process forms/images,

etc. to be stored and versioned inside a content repository.

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-
specific BPMN2 extension elements and attributes.

10.1. Installation

If you are using the jBPM installer, this should automatically download and install the latest
version of the designer for you. To manually install the designer, simply drop the designer war

117

Chapter 10. Designer

into your application server deploy folder. Currently out-of-the-box designer deployments exist for
JBoss 5.1.0 and JBoss AS7. Note: If you want to deploy on other (versions of an) application
server, you might have to adjust the dependencies inside the war based on the default libraries
provided by your application server. The latest version of the designer can be found here [http://
sourceforge.net/projects/jbpm/files/designer/].

To start working with the designer, open Guvnor (e.g. http://localhost:8080/drools-guvnor [http://
localhost:8080/drools-guvnor]) and either open an existing BPMN2 process or create a new one
(under the "Knowledge Bases category on the left, select create new BPMN2 process"). This will
open up the designer for the selected process in the center panel. You can use the palette on the
left to drag and drop node types and the properties tab on the right to fill in the details (if either of
these panels is not visible, click the arrow on the side of the editor to make them move forward).

The designer may also be opened stand-alone by using the following link: http://localhost:8080/
designer/editor?profile=jbpm&uuid=123456 (where 123456 should be replaced by the uuid of a
process stored in Guvnor). Note that running designer in this way allows you to only view existing
processes, and not save any edits nor create new ones. Information on how to integrate designer
into your own applications can be found here [http://blog.athico.com/2011/04/using-oryx-designer-
and-guvnor-in-your.html].

10.2. Source code

The designer source code is available for each release. You can find it here [http://sourceforge.net/
projects/jbpm/files/designer/].

You can also browse and clone the project on github [https://github.com/tsurdilo/process-
designer].

10.3. Designer Ul Explained

The Designer Ul is composed of a number of sections as shown in the screenshot below:

118

http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer

Designer Ul Explained

Fratar o [CRg 51 |
s

4 ;

2 - | -
T 2 AgmrTes /!’+

§ 5 - i

E I |

3

Salers Rep
¥

4+
|

b

L

T

O
®

Figure 10.2.

* (1) Shape Repository Panel - the expandable section on the left shows the BPM BPMN2
(default) shape repository. It includes all shapes of the jBPM BPMN2 stencil set which can
be used to assemble your processes. If you expand each section sub-group you can see the
BPMNZ2 elements that can be placed onto the Designer Canvas (2) by dragging and dropping
the shape onto it.

» (2) Canvas - this is your process drawing board. After dropping different shapes onto the canvas,
you can move them around, connect them, etc. Clicking on a shape on the canvas allows you
to set its properties in the expandable Properties Window (3)

« (3) Properties Panel - this expandable section on the right allows you to set both process and
shape properties. It is divided in two sections, namely "Often used", and "More Properties"
section which is expandable. When clicking on a shape in the Canvas, this panel is reloaded
to show properties specific to the shape type. If you click on the canvas itself (not on a shape)
the section shows your general process properties.

* (4) Toolbar - the toolbar contains operations which can be performed on shapes present on
the Canvas. Individual operations are disabled or enabled depending on what is selected. For
example, if no shapes are selected, the Cut/Paste/Delete operations are disabled, and become
enabled once you select a shape. Hovering over the icons in the Toolbar displays the description
text of the operation.

» (5) Footer - the footer contains operations that allow users to view the source of the process
being editor in the Canvas section in various formats such as BPMN2, PNG, JSON, etc.

 (6) Process Information - this section contains information about your process, such as its name,
creation date, version, etc

119

Chapter 10. Designer

Connecting shapes together in the canvas is realized with the Shape-Menu. The Shape-Menu is
displayed by clicking on a shape:

MyTask

Log
Emai
Collapsed Subprocess
Embedded Subprocess

ACHOC SUbprocess

Figure 10.3.

The Shape-Menu is composed of two sections:

* (1) Connection section: allows you to easily connect your shape with a new one. The shapes
displayed in this section are based on connection rules of the BPMNZ2 specification.

* (2) Morphing section: allows you to easily morphe a base shape into any other that extend this
base shape.

120

Designer Ul Explained

Following sequence of picture shows how easy it is to quickly create and connect multiple shapes
in the canvas:

121

Chapter 10. Designer

'y

Pl

L

"‘TESS-EI;-L" Emd Evert
Eoralation Emnd Evant
Error End Event

Cancel End Evert
Compensation End Event
Signal End Event

ultiple End Event

@eEDOBE®

Terrninate Emnd Event

Figure 10.4.

122

Support for domain-specific service nodes

You can also hame your shapes by double-clicking on the shape in the canvas. This sets the
name attribute of the particular shape:

Figure 10.5.

10.4. Support for domain-specific service nodes

Designer has full support for jBPM domain-specific service nodes. To include your service nodes in
the Designer jBPM BPMN2 stencil set, you can either upload your existing service node definitions
into Guvnor, or use the the new service node configuration editor which we added to Guvnor to
create new configurations.

Browin Find WorkltemDelinition |Semol] demodelintions
Fila Edil Slatus: Tvalt"

Altribetes Edit

st Paciengn ainlin

Delinition
Displayiams
Functiorn Resul § A, - ..
Parametes

Click on chass 1o import

@ XML, Propeties

@ O mssets, documantation
s WerkingSats

21 SpdngCorbaat

2] Wk | Dfiniticn

= Caotal Araa

Figure 10.6.

Once you have some service node configurations present, you can see them being included in
Designer stencil set by re-opening an existing or creating a new process. Your service nodes will
be now available under the "Service Task" section of the jBPM BPMNZ2 stencil set.

123

Chapter 10. Designer

Shape Repository £

=l jBPM BPMN2
= Activities

[Task

[E] Collapsed Subprocess
E] Embedded Subprocess

E] AdHoc Subprocess

H Artifacts

tl Catching Intermediate Events
tl Connecting Objects

t pata Objects

+l End Events

t Gateways

=l Service Tasks

0 Update Facebook Status
& Send Tweet

Send Email

*l Start Events
* swimlanes

4 Throwing Intermediate Events

Figure 10.7.

Service nodes are fully usable within your processes. Please note that the service node
configurations are package-specific in Guvnor. If you want to re-use your service nodes across
multiple Guvnor packages, you have to copy their configurations to each indidual package you
would like to use them in.

124

Configuring Designer

File Edit Source

Allribules Edit

Shape Repository &

4 {BPM BPMNZ
J Activithes

L: Task

Update
Facebook
Status

E Colapsed Subprocess
E Emibadded Subprocess
[Agrioc subprocess

&

Enter Info

4 Artifacts (
1 Catching Intarmediate Events o
4 Connecting Objects
4 Data Objects

4 End Events

4 Gateways

= Service Tasks

D updaie Facotook Status

Send Email
B send Twent

Send Emaid

4 Start Events
4 Swimlanes
4 Throwing Intermediate Events

Figure 10.8.

For more information on this feature please view this [http://vimeo.com/26126678], and this [http://
vimeo.com/24288229] video.

10.5. Configuring Designer

Designer is tightly integrated with Guvnor. By default Designer expects to find a Guvnor instance
on http://localhost:8080/drools-guvnor/. Guvnor, by default, expects to find the Designer on http://
localhost:8080/designer. Here we show how to configure both Designer and Guvnor to be able to
change these default settings when needed.

10.5.1. Changing the default configuration in Designer

In cases where Guvnor is configured to use https, or is running on a different host/port/domain/
subdomain you have to configure Designer to reflect these settings. in order to change Designer
configurations you have to deploy it as an exploded war. In $designer.war/profiles/jbpm.xml notice
the section on the bottom:

<external | oadur| protocol ="http" host="1ocal host: 8080" subdonmai n="dr ool s-
guvnor/org. drool s. guvnor. Guvnor/oryxedi tor" usr="adm n" pwd="adni n"/>

125

http://vimeo.com/26126678
http://vimeo.com/26126678
http://vimeo.com/24288229
http://vimeo.com/24288229
http://vimeo.com/24288229

Chapter 10. Designer

The configuration attributes include:

protocol: the protocol to use (http/https)
* host: includes both the host and the port that Guvnor is running on

* subdomain: in some situations Guvnor subdomain is not drools-guvnor. You should leave the
path to the servlet as-is.

« usr: if you have set up JAAS authentication in Guvnor, provide a Guvnor user name here. Note
that this user should have admin privileges in Guvnor

« pwd: password for the Guvnor user

Alernative you can specify these configrations via system properties:

* oryx.external.protocol
* oryx.external.host

* oryx.external.usr

* oryx.external.pwd

If you choose to use system properties you do not have to deploy the designer war as exploded.

10.5.2. Changing the default configuration in Guvnor

To configure Guvnor to reflect the host/port/domain/subdomain and the default profile settings of
the Designer, we need to edit $drools-guvnor.war/WEB-INF/preferences.properties:

#Desi gner configuration

desi gner.url =http://local host: 8080

#Do not change this unless you know what are you doi ng
desi gner. cont ext =desi gner

desi gner. profil e=j bpm

The configuration attributes include:

« designer.url: set the protocol, host, and port where Designer is located at

« designer.context: this sets the configured subdomain of Designer. Should not change unless
you deploy it under some other subdomain

« designer.profile: Designer can have multiple profiles defined. Profiles determine the used stencil
set, the saving/loading strategy of processes, etc. The default profile name used is "jbpm" and
this should not be changed unless you create a custom profile to be used

126

Generation of process and task forms

Note that in order to be able to edit $drools-guvnor.war/WEB-INF/preferences.properties, you
have to deploy Guvnor as an exploded archive.

10.6. Generation of process and task forms

Designer allows users to generate process and task ftl forms. These forms are fully usable in the
jBPM console. To start using this feature, locate the "Generate Task Form Templates" button in
the designer toolbar:

Figure 10.9.

Designer will iterate through your process BPMN2 and create forms for your process, and each
of the human tasks in your process. It uses the defined process variables and human task data
input/output parameters and associations to create form fields. The generated forms are stored
in Guvnor, and the user is presented with a page which shows each of the forms created as well
as a link to their sources in Guvnor:

Form Generation Results for Process demo1.demoprocess

demoprocess-taskform View Source
Enterinfo-taskform View Source

CLOSE

Figure 10.10.

As mentioned, all forms are fully usable inside jBPM console. In addition each form includes basic
JavaScript form validation which is determined based on the type of the process variables, and/

127

Chapter 10. Designer

or human task data input/output association definitions. Here is an example generated human
task form.

User Task Form: DemoProcess.Enterinfo

OWNers tsurdilo
Actor ID

Group
Skippable

Priority
Comment

input ${message}

I

¥

output

SUBMIT

Figure 10.11.

In order for process and task forms to be generated you have to make sure that your process has
its id parameter set, as well that each of your human tasks have the TaskName parameter set.
Task forms contain pure HTML, CSS, and JavaScript, so they are easily editable in any HTML

View processes as PDF and PNG

editor. Please note that there is no edit feature available currently in Designer, so each time you
generate forms, existing ones will be overwritten.

For more information on this feature please view this [http://vimeo.com/26126678] video.

10.7. View processes as PDF and PNG

Any process created in Designer can be easily viewed in PDF and PNG formats. In the Designer
footer section locate the "Convert to PDF" and "Convert to PNG" buttons. Both PDF and PNG
formats are also stored in Guvnor, making it easily accessible.

Update

Send Email

Figure 10.12.

The footer section also includes buttons to view the process sources in ERDF, JSON, SVG, and
BPMN2 formats.

ERDF JSON PDF | PMNG BPMNZ @ 5WG

Figure 10.13.

10.8. Viewing process BPMN2 source

At any time you can view your process's BPMN2 source by selecting the Source->View Source
link in the Guvnor toolbar above the designer frame. The source generated by designer is fully
BPMN2 compliant and can be used in any BPMN2 compliant editor.

129

http://vimeo.com/26126678
http://vimeo.com/26126678

Chapter 10. Designer

Viewing source for: demoprocess

1. |<Puml version="1.0" encoding="UTF-8"7>
<bpmn2:definitions xminsoxsi="httpcihwaww. wi.ong 200 1MMLSchema-instance™
amins="httpiwaw.omg.orgbpmn2d® xminscbpmn="hittpcfwwe.omgong'spacBPMN
120100524 MODEL" xrning: bpmndi="http.www, omg org/apecBPMN20 100524017
airilrgdes hitp wasw. omg ony/apecDO201 00524/DC" xrins:dis"hitp: s, omg. o
lhpmﬂn'ﬂmmw xmins-drooks="hitp/fww. boss. org/drools” id="bZSdBedb-61id-4idc-
B4M6-c6862a0e 314" xsischomal.ocation="hitp:fwww.omg orgspecBPMNZ0 100524
MODEL BPMN20 o™ name="DemoProcsss” argetNames pace="hitp.wwsw.omg.ong
Topmin]>
| <bprmn2-temDefirstion ids"_messagabiem”>
| <bprmn2 process id="demoprocess” name="DemoProcess” isExecutable="true™
| <bpmn2 startEvent id="_BTEZ9F 13-DFCA-4 ABS-384 B-E06F BAE2AIICT name="">
| <bpmnoutgoing>_2TEACSFE-CEH5S-40FC-6485-0DDTED4 80854 </bpmn outgoing=
| <ibpmind:stanEvent
<bpmn2userTask id="_2E430363-54F C-4064.88C9-DF BFDECS4EQR"
Idmdn:lmﬂ\hm:‘Emerin‘ name="Enter Info">

. | <bpma2inceming>_2TEACEFE-CEI5-40F C-94B6-00DTE D480E54</bpmninconmang>
. | <bpmn2-outgoing>_BIS03D32-92AA-46E2-814C-D0DBAL 584 DBS</bpmn outgoing>
. | <bpmn2ioSpecification kd="_AmKLILkZEaCXILFIWcHLAA™>

Figure 10.14.

Same can be done by clicking on the BPMN2 button in the footer section of the designer:

BPMHAT Saurce [»]

Figure 10.15.

10.9. Embedding designer in your own application

It is possible to embed the designer in your own application and still be able to utilize Guvnor as
the asset repository for all of your process assets. For more information on this feature please
view this video [http://vimeo.com/22033817].

130

http://vimeo.com/22033817
http://vimeo.com/22033817

Migrating existing jBPM 3.2 based processes to BPMN2

10.10. Migrating existing jBPM 3.2 based processes to
BPMN2

To migrate your existing jBPM 3.2 based processes to BPMN2 locate the migration button in the
toolbar section of the designer:

a
Figure 10.16.

The feature allows users to select the location of their processdefinition file, and the location
of its gpd.xml file. Designer then uses the jbpmmigration tool [https://github.com/droolsjbpm/
jbpmmigration] to convert the jBPM 3.2 based processes to BPMN2 and displays it onto the
designer canvas:

Migrate to BPMN2Z 4

1. Select a jPDL processdefinition.xml file (or type it in)

Definition | Browse... |
file:

2. Select a jPDL gpd.xml file (or type it in)

GPD file: | Browse...)
Migrate Close
Figure 10.17.

131

https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration

Chapter 10. Designer

For more information on this feature please view this [http://vimeo.com/30857949] video.

10.11. Visual Process Validation

To run process validation against the process you are developing in the designer, locate the
validation button in the designer toolbar section:

Figure 10.18.

In case of validation errors, designer presents a red "X" mark next to process nodes that contain
them. Mouse-over this red "X" presents a tooltip with the descriptions of validation errors. Note
that since the process node is not visually displayed, designer will merge all process-node-specific
validation errors with those of the very first node of the BPMN2 process. Following is a screenshot
of the visual process validation feature in use:

X =
Time ERE‘HEW +
. Gateway
Start

Figure 10.19.

X

“ HR Approval

Motification

End

_.{ & Manager Approval

X

F "
* |ser Task has no task name.
Timer

For more information on this feature please view this [http://vimeo.com/30857949] video.

10.12. Integration with the |BPM Service Repository

Designer integrates with the BPM Service Repository and allows users to install and use assets
from the repository. [http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html].
To connect to the Service Repository from designer, click on the service repository button in the

designer toolbar:

132

http://vimeo.com/30857949
http://vimeo.com/30857949
http://vimeo.com/30857949
http://vimeo.com/30857949
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html

Generating code to share the process image, PDF, and embedded process editor

Figure 10.20.

Designer will present you with all assets located in the jBPM service repository in table format.
Colums of this table show information about the specific asset in the repo. To install the item to
your local Guvnor package, simply double-click on the item row. You will have to save and re-
open your process in order to be able to start using the installed items.

JBPM Service Repository Data

Service Nodes

Service Nodes. Double-click on a row to install.

ICON MAME EXPLAMATION DOCUMENTATION INPUT PARAMETERS RESULTS CATEGORY
Email link Baody, Subject, Te From Communication
Twitter link Message Communication
e ——

Figure 10.21.

For more information on this feature please view this [http://vimeo.com/30857949] video.

10.13. Generating code to share the process image,
PDF, and embedded process editor

It is important to be able to share your process with users who do not have access to your running
designer instance. For these cases designer allows code generation of "sharable" image, PDF
and embedded editor code of your processes. To use this feature locate the following dropdown
in the designer toolbar section:

133

http://vimeo.com/30857949
http://vimeo.com/30857949

Chapter 10. Designer

leilml @ 5 0 #£ % =

Share Process Image
Share Process FDF

Share Embeddable Process

Figure 10.22.

10.14. Importing existing BPMN2 processes

You can easily import your existing BPMN2 processes into the designer by locating and clicking
on the following dropdown selection list in the toolbar section:

bimé B 0 = 2
Import from BPMN2

Import from JSON

Figure 10.23.

You will be able to either select an existing file on your filesystem or paste existing BPMN2 XML.
The designer canvas will automatically import and display your process without a page refresh.

10.15. Viewing Process Information

Process Information

Mame: EmployeeBEvaluation

Format: Bpmn

Package: jbpmExamples.evaluation
Created: 2011-11-04TDD:23:10.196-04:
Creabed

By

Last
Madified: 2011-11-16T12:47:35.857-05]

Comment: added new process variable
Version: 12

admin

Figure 10.24.

The Process Information section displays important information about your process. These include
the process:

* name

134

Requirements

» format

» Guvnor package name the process belongs to
* creation date

< name of user that created the process

« last modification date

* last check-in comment

* version number

10.16. Requirements

Java:

e Java 6

Browsers:

* Mozilla Firefox (including 6)
» Google Chrome

JBoss AS:

» Designer war is currently compatible with JBoss AS 4.x, 5.1, and 7

135

136

Chapter 11.

Chapter 11. Console

Business processes can be managed through a web console. This includes features like managing
your process instances (starting/stopping/inspecting), inspecting your (human) task list and
executing those tasks, and generating reports.

The jBPM console consists of two wars that must be deployed in your application server
and contains the necessary libraries, the actual application, etc. One jar contains the server
application, the other one the client.

11.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,
install and configure all the necessary components to get the console running, including an in-
memory database, a human task service, etc. Check out the chapter on the installer for more
information.

The console is a separate sub-project that is shared across different projects, like for example
jBPM and RiftSaw. The source code of the version that jBPMS5 is currently using can be found on
SVN here [http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/]. The latest
version of the console has been moved to Git and can be found here [https://github.com/bpmc].

11.1.1. Authorization

The console requires users to log in before being to use the application. The console uses normal
username / password authentication. When using JBossAS for example, this can be specified in
the users.properties file in the server/{profile}/conf folder. There you can specify the combination
of users that can log into the console and their password.

When using the jBPM installer, a predefined users.properties file (located in the auth folder) is
copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains
a few predefined users: admin, krisv, john, mary, and sales-rep (as these are commonly used in
examples). The password associated with these users is the same as their username.

11.1.2. User and group management

The human task service requires you to define which groups a user is part of, so that he can
then claim the tasks that are assigned to one of the groups he is part of. The console uses
username / group association for that. When using JBossAS for example, this can be specified in
the roles.properties file in the server/{profile}/conf folder. There you can specify the combination
of users and the groups they are part of.

When using the jBPM installer, a predefined roles.properties file (located in the auth folder) is
copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains
the groups the predefined users are part of (as these are commonly used in examples): all

137

http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
https://github.com/bpmc
https://github.com/bpmc

Chapter 11. Console

users are part of the admin, manager and user group but john is also part of the PM (project
management) group, mary is part of HR (human resources) and sales-rep is part of sales.

11.1.3. Registering your own service handlers

As explained in the chapter on domain-specific services, BPM allows you to register your
own domain-specific services as custom service tasks. The process only contains a high-level
description of the service that needs to be executed, and a handler is responsible for the actual
implementation, i.e. invoking the service.

You must register your handlers to be able to execute domain-specific services. You can register
your handlers by dropping a configuration file in the classpath that specifies the implementation
class for each of the handlers. You can specify which configuration files must be loaded in the
drools.session.conf file, using the drools.workltemHandlers property (as a list of space-separated
file names). These file names should contain a Map of entries, the name and the corresponding
WorkltemHandler instance that should be used to execute the service. The configuration file is
using the MVEL script language to specify a map of type Map<String,WorkltemHandler>.

You should also make sure that the implementation classes (and dependencies) are also available
on the classpath of the server war, for example by dropping the necessary wars in the server/
{profile}/lib directory of your JBossAS installation.

For example, suggest you want to use the "Email" service task (that is provided out-of-the-box as
an example in the jppm-workitems module). You should put the jopm-workitems, javax.mail and
javax.activation jars in the lib folder of the AS and the include the following two configuration files
in the META-INF folder in the WEB-INF/classes folder of the server war. The drools.session.conf
simply refers to the CustomWorkltemHandlers.conf file that contains the actual handlers:

dr ool s. wor kl t enHandl ers = Cust om\r kl t emrHandl ers. conf

This configuration file then specifies which handler to register for each of the domain-specific
services that are being used, using MVEL to specify a Map<String,WorkltemHandler> (with host,
port, username and password replaced by a meaningful value of course):

"Emai | ": new org.jbpm process. workitem email.Email Wrkl t emrHandl er (
"host", "port", "usernane", "password"),

The installer simplifies registering your own work item handlers significantly by offering these
configuration files in the jopm-installer/conf folder already and automatically copying them to the
right location when installing the demo. Simply update these files with your own entries before
running ant install.demo.

138

Configure management console

11.1.4. Configure management console

Management console can be configured to suit deployment needs of the environment. lIts
main configuration is done via property file - default.jopm.console.properties, which can be
found in jbpm-gwt-console-server.war/WEB-INF/classes. This configuration is sample setup for
default installation if there is a need to configure it differently a custom file should be provided:
jbpm.console.properties that can be placed on any directory of the file system where console will
have access to. Console by default will look for it inside JBoss AS configuration directory that
is given as jboss.server.config.dir system property. If jBPM console is deployed to other servers
or default location is not acceptable custom location can be provided as jbpm.conf.dir system
property. It allows administrators to configure following aspects of management console:

* task server connectivity

« Guvnor connectivity

« console host and port numer

» console resource directory (for local process, rules, etc repository)

Each of mentioned aspects can have one or more attributes that drive their behavior, following is
a complete list of supported properties for every aspect.

Management console configuration

e jbpm.console.server.host : host/ip address used to bind management console (default
localhost)

* jbpm.console.server.port : port used to bind management console (default 8080)

« jbpm.console.server.context : context root that is used to bind console server web application
(default gwt-console-server)

« jbpm.console.directory : local directory used as process/rules repository
Task server connectivity

« jbpm.console.task.service.strategy : transport used to connect to task server (default HornetQ
and accepts Mina|HornetQ|IMS)

» jbpm.console.task.service.host : host where Task Server is deployed (default localhost) applies
to all transports

« jbpm.console.task.service.port : port where Task Server is deployed (default 5153) applies to
all transports

139

Chapter 11. Console

JMSTaskClient.connectionFactory : JINDI name of connection factory only for IMS (no default)

JMSTaskClient.acknowledgeMode : acknowledgment mode only for IMS (no default)

JMSTaskClient.transactedQueue : transacted queue name only for IMS (no default)

JMSTaskClient.queueName : queue name only for JMS (no default)

« JMSTaskClient.responseQueueName : response queue name only for IMS (no default)
Guvnor connectivity

« guvnor.protocol : protocol to access Guvnor (default http)

« guvnor.host : host and port number where Guvnor is deployed (default localhost:8080)
» guvnor.subdomain : subdomain/context root of Guvnor (default drools-guvnor)

e guvnor.usr : user id to authenticate in Guvnor (default admin)

« guvnor.pwd : password to authenticate in Guvnor (default admin)

« guvnor.packages : comma separated list of packages to load from Guvnor

e guvnor.connect.timeout : connect timeout (default 10000)

e guvnor.read.timeout : read timeout (default 120000)

» guvnor.shapshot.name : configure package snapshot name (default LATEST)

Once the overall configuration is done, next step is to be able to control runtime behavior of
management console that consists of:

« knowledge base setup

- stateful session setup

These runtime components are configured via dedicated managers that are extensible and can
be configured with system properties, note that configuration of managers is optional and required
only if default managers are not suitable for particular environment

» knowledge base manager: -
Djbpm.knowledgebase.manager=com.company.CustomKnowledgeBaseManager

- stateful session manager: -Djbpm.session.manager=com.company.CustomSessionManager

Be default knowledge base manager will build knowledge base according to configuration given in
jbpm.console.properties (or default.jopm.console.properties) file and stateful session will be build
based on session template, that is MVEL file named session.template (default.session.template

140

Configure management console

that is bundled in jBPM console). session.teplate file, same as jbpm.console.properties is an
extension point to configure jBPM console without changing its internal files and can be placed on
any directory on the file system. Session template is intended to provide following configuration
for stateful session:

» businessKey - a unique key that will be used to get session from JNDI

 persistenceUnit - name of the persistence unit to be used

» properties - list of key value pairs of session configuration

» workltemHandlers - list of key value pairs (work item name: class hame of work item handler)

« eventListeners - list of event listener classes to be registered on the session

« environmentEntries - list of key value pairs of environment entires to be put before session is
created

 imported - truelfalse if set to true session will be looked up from JNDI using business key instead
of creating new one - it means that session should be build by another application and console
will use it as well

session template is dedicated to default session manager implementation and can be substituted

with anyother mechanism together with custom implementation of SessionManager interface. See

next section about custom managers.

new Sessi onTenpl ate(). {

busi nessKey = "jbpntConsol e",
i mported = fal se,
persi stenceUnit = "org.jbpm persistence.jpa"”,

properties = ["drool s. processl nst anceManager Factory": "org.j bpm persi st ence. processi nst ance.
"drool s. processSi gnal Manager Factory" : "org.j bpm persi stence. processi nst ance.

1,
wor kI t erHandl er s = [" Human Task" : "new

\", taskdient, ksession, org.jbpmtask.utils.OnErrorAction.LOG",
"Service Task" : "new
org.j bpm process. wor ki t em bpm2. Ser vi ceTaskHandl er (ksessi on)"],

event Li steners = ["new
org.j bpm process. audi t . JPAWr ki ngMenor yDbLogger (ksessi on) ",
"new
org.jbpmintegration.console.listeners. TriggerRul esEvent Li st ener (ksession)"]

b

141

Chapter 11. Console

Default session template is present above and configures most important elements of the
environment. As you can see there are option to refer to some already existing object when
registering work item handlers and event listeners:

 ksession - session instance that is being built

« taskClient - talk client that is configured based on settings given in jopm.console.properties
(default.joppm.console.properties)

To sum up, jopm console comes with two files inside its server component (gwt-console-
server.war), these are default.jopm.console.properties and default.session.template. These two
files should not be modified but in case a change to configuration is required they should be
copied and renamed to jopm.console.properties and session.template respectively. Location of
these custom files can be decided by administrator but recommended for JBoss AS is to put
them into jboss configuration directory (jboss_home/standalone/configuration for AS 7). If custom
location is used it must be provided as system property -Djbpm.conf.dir. Any changes applied to
custom configuration will be preserved between jbpm upgrades as they do not reside inside jopm
applications.

11.1.4.1. Implementing custom managers
To implement custom managers that are responsible for building knowledge base and session
certain requirements must be met: Knolwedge Base Manager

« Custom class must implement org.jbpm.integration.console.kbase.KnowledgeBaseManager

* it must be configured with -Djbpm.knowledgebase.manager=[classhame]
Session Manager

» Custom class must implement org.jopm.integration.console.session.SessionManager

142

Running the process management console

» Custom class must provide constructor that accepts KnowledgeBase argument

* it must be configured with -Djbpm.session.manager=[classname]

11.2. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application
server is configured): http://localhost:8080/jbpm-console

A login screen should pop up, asking for your user name and password. By default, the following
username/password configurations are supported: krisv/krisv, admin/admin, john/john and mary/
mary.

jBPM Console >

Lsername: |kriswv

Password: |sees»

Submit

Wersion: 2.1

After filling these in, the process management workbench should be opened, as shown in the
screenshot below. On the right you will see several tabs, related to process instance management,
human task lists and reporting, as explained in the following sections.

‘.. BPM Console | L]

& kricv Logout
n
Tasks L") Personal Tasks
7'!‘\, Fersonal Tasks
EjGrDupTaskS Refresh] View Release]
]
Task details
ID:
Process:
Processes hame:
" o Assignee:
eportin it
porting Description:
Seftings

143

http://localhost:8080/jbpm-console

Chapter 11. Console

11.2.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the
installed knowledge base, start new process instances and manage running process instances
(which includes inspecting their state and data).

11.2.1.1. Inspecting process definitions

When you open the process definition list, all known process definitions are shown. You can then
either inspect process instances for one specific process or start a new process instance.

<" BPM Console | dh -
& Krisv Logout

fasks 42 Process Overview

Processes

@ Refresh all = Start Signal I Delete J Terminate]

Execution History
950 Process Overview -. .
Ewvaluation 0

Execution details

Process: Diagram
Instance 1D st Dat
nstance Uata

Key:
State
Start Date:

Reporting a. e

- & » Activity:
Settings

11.2.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in
the process definition list. Click on the "Start" button in the instances table to start a new instance of
that specific process. When a form is associated with this particular process (to ask for additional
information before starting the process), this form will be shown. After completing this form, the
process will be started with the provided information.

144

Managing process instances

<. BPM Console]

Tasks

& Krisv Logout

2 Process Overview

Processes
@ Refresh All = Start Signal I Delete J Terminate I
Execution History
e Evawaton
New Process Instance: com.sample.evaluation
.
Start Performance Evaluation
Please fill in your username: [krisv |
Complete
Reporting

&« »
Settings —J —_—

11.2.1.3. Managing process instances

The process instances table shows all running instances of that specific process definition. Select
a process instance to show the details of that specific process instance.
| <. BPM Console | d

& krisv Logout
Tasks

2 Process Overview
Processes

Refresh all = Start Signal Delete Terminate
=] Execution History —J e ‘ J ‘ ‘

‘22? Process Overview

Execution details

Process: Evaluation

Diagram
Instance ID: 1
Instance Data
Key:

State RUNNING
. Start Date: 2010-11-22 16:46:59
Reporting

Settings LJ i] Activity:

145

Chapter 11. Console

11.2.1.4. Inspecting process instance state

You can inspect the state of a specific process instance by clicking on the "Diagram” button. This
will show you the process flow chart, where a red triangle is shown at each node that is currently
active (like for example a human task node waiting for the task to be completed or a join node
waiting for more incoming connections before continuing). [Note that multiple instances of one
node could be executing simultaneously. They will still be shown using only one red triangle.]

<" BPM Console ‘ o
B krisv Logout
Tasks z:’}g Process Overview
Processes
Refresh All H Start Signal I Delete J Terminate J
|=) Execution History .
et ==. + RN olonzziedsss
Process Instance Activity -0OXx
Insfance: 1
% HR Evaluation
O (& Self Evaluation <|-> <|-> — @
% PM Evaluation
Reporting
" « » [
Seitings -

11.2.1.5. Inspecting process instance variables

You can inspect the (top-level) variables of a specific process instance by clicking on the
"Instance Data" button. This will show you how each variable defined in the process maps to its
corresponding value for that specific process instance.

146

Human task lists

<. BPM Console o
B kiisy Logout
asks i Process Overview
Processes
Refresh All | %] Stat | Signal | Delete | Terminate
B st sy eren | s) suua) peiee | '
0% Process Overview

Process Instance Data: 1

employee

Java Type

xs:string java lang.Sting krisv

u
Reportin
Se:ingsg L]ﬂ
11.2.2. Human task lists
The task management section allows a user to see his/her current task list. The group task list
shows all the tasks that are not yet assigned to one specific user but that the currently logged in
user could claim. The personal task list shows all tasks that are assigned to the currently logged in
user. To execute a task, select it in your personal task list and select "View". If a form is associated
with the selected task (for example to ask for additional information), this form will be shown. After
completing the form, the task will also be completed.
*.. BPM Console | # -
B krisv Logout
S | .
—.
-0Ox

Task Form: Performance Evaluation

Employee evaluation

Please perform a self-evalutation.

Please fill in the following evaluation form:

Rate the overall performance: | outstanding 3

Check any that apply:
[Displaying initiative
Thriving on change
O Good communication skills

RAES

Task details

1D
Process
Processes Name:
. Assignee
Reporting Description
Settings

147

Chapter 11. Console

11.2.3. Reporting

The reporting section allows you to view reports about the execution of processes.

an overall report showing an overview of all processes, as shown below.

<. BPM Console

Tasks
Processes
Reporting

lslll Report Templates

Settings

| *

lull Report Templates

Report configuration

[overail Actviy Repon B

This report doesn't require any paramters.
Gives an overview of all process

activity

SProcls

Business Activity Monitoring

Process Instances / Hour

[comsample evaluation

1

1600

Currently Active
Process Instances

A report regarding one specific process instance can also be generated.

<. BPM Console

Tasks
Processes
Reporting

lufll Report Templates

Settings

| #

lull Report Templates

Report configuration

[Pmcess Summary

This includes

£ kisy Logout

iCreate Report

November 22, 2010

[

B kisy Logout

Please enter a process definition id

A summary for one specific process com sample evaluation

definition.

YProcls

Business Activity Monitoring
Process com.sample.evaluation
Process Definition Id: com.sample.evaluation
Total number of instances: 1

Number of instances last 24h: 1
Number of active instances: 1

Start Process Instances

I comsample evaluation

1600

November 22, 2010

148

Adding new process / task forms

jBPM provides some sample reports that could be used to visualize some generic execution
characteristics like the number of active process instances per process etc. But custom reports
could be generated to show the information your company thinks is important, by replacing the
report templates in the report directory.

The jBPM installer by default does not install the reporting engine (to limit the size of the
download). If you want to try out reporting, make sure to put the jBPM.birt.download property in
the build.properties file to true before running the installer. If you get an exception that the report
engine was not initialized correctly, please run the installer again after making sure that reporting
is enabled.

11.3. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker
templates to dynamically create forms. To create a form for a specific process definition, create
a freemarker template with the name {processld}.ftl. The template itself should use HTML code
to model the form. For example, the form to start the evaluation process shown above is defined
in the com.sample.evaluation.ftl file:

<htm >

<body>

<h2>Start Perfornmance Eval uati on</h2>

<hr >

<form acti on="conpl ete" nethod="POST" enctype="nultipart/formdata">

Pl ease fill in your username: <input type="text" nane="enpl oyee" /></BR>
<i nput type="submt" val ue="Conpl ete">

</fornp

</ body>

</htm >

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can
be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The
form has access to a "task" parameter that represents the current human task, so it allows you
to dynamically adjust the task form based on the task input. The task parameter is a Task model
object as defined in the jopm-human-task module. This for example allows you to customize the
task form based on the description or input data related to that task. For example, the evaluation
form shown earlier uses the task parameter to access the description of the task and show that
in the task form:

<htm >

<body>

<h2>Enpl oyee eval uati on</ h2>

<hr >

${t ask. descri pti ons[0].text}

149

Chapter 11. Console

Please fill in the follow ng evaluation form

<form acti on="conpl ete" net hod="POST" enctype="nultipart/formdata">
Rate the overall performance: <sel ect nane="perfornmance">

<option val ue="out st andi ng" >Qut st andi ng</ opti on>

<option val ue="exceedi ng" >Exceedi ng expectati ons</opti on>

<option val ue="accept abl e">Accept abl e</ opti on>

<option val ue="bel ow'>Bel ow aver age</ opti on>

</ sel ect >

Check any that apply:

<i nput t ype="checkbox" nane="initiative" val ue="initiative">D spl ayi ng

initiative

<i nput type="checkbox" nane="change" val ue="change">Thrivi ng on change

<i nput t ype="checkbox" nane="comuni cati on” val ue="communi cati on" >Good
conmuni cati on skills

<i nput type="submt" val ue="Conpl ete">
</forne
</ body>
</htm >

Task forms also have access to the additional task parameters that might be mapped in the user
task node from process variable using parameter mapping. Check out the chapter on human tasks
for more details. These task parameters are also directly accessible inside the task form. For
example, imagine that you want to make a task form for review customer requests. The user task
node copies the userld (of the customer that performed the request), the comment (the description
of the request) and the date (the actual date and time of the request) from the process into the
task as task parameters. In that case, these parameters will then be accessible directly in the task
form, as shown below:

<htm >

<body>

<h2>Request Revi ew</ h2>

<hr >

Userld: ${userld}

Description: ${description}

Dat e: ${date?date} ${date?tine}

<form action="conpl ete" nethod="POST" enctype="nultipart/formdata">
Comment : <BR/ >

<textarea col s="50" rows="5" name="comment"></t ext area></ BR>
<i nput type="submt" nane="outconme" val ue="Accept">

<i nput type="subnmit" nanme="outcone" val ue="Reject">

</fornp

</ body>

</htm >

150

REST interface

Data that is provided by the user when filling in the task form will be added as result parameters
when completing the task. The name of the data element will be used as the name of the result
parameter. For example, when completing the first task above, the Map of outcome parameters
will include result variables called "performance”, "initiative", "change" and "communication". The
result parameters can be accessed in the related process by mapping these result parameters to

process variables using result mapping.

Forms should either be available on the classpath (for example inside a jar in the jpossas/server/
default/lib folder or added to the set of sample forms in the jbpm-gwt-form.jar in the jbpm console
server war), or you could use the Guvnor process repository to store your forms as well. Check
out the chapter on the process repository to get more information on how to do that.

11.4. REST interface

The console also offers a REST interface for the functionality it exposes. This for example allows
easy integration with the process engine for features like starting process instances, retrieving
task lists, etc.

The list URLS that the REST interface exposes can be inspected if you navigate to the following
URL (after installing and starting the console):

http://localhost:8080/gwt-console-server/rs/server/resources/jbpm
For example, this allows you to close a task using
/gwt-console-server/rs/task/{taskld}/close

or starting a new process instance using

/gwt-console-server/rs/process/definition/{id}/new_instance

151

http://localhost:8080/gwt-console-server/rs/server/resources/jbpm

152

Chapter 12.

Chapter 12. Human Tasks

An important aspect of business processes is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed by human
actors.

jBPM supports a special human task node inside processes for modeling this interaction with
human users. This human task node allows process designers to define the properties related to
the task that the human actor needs to execute, like for example the type of task, the actor(s),
or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle
of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.
Note however that this implementation is fully pluggable, meaning that users can integrate their
own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human
task nodes inside your process to model the interaction with human actors, (2) integrate a task
management component (like for example the WS-HumanTask based implementation provided
by jBPM) and (3) have end users interact with a human task client to request their task list and
claim and complete the tasks assigned to them. Each of these three elements will be discussed
in more detail in the next sections.

12.1. Human tasks inside processes

O —-[{? uS:ir Tash:}—- @

jBPM supports the use of human tasks inside processes using a special user task node (as shown
in the figure above). A user task node represents an atomic task that needs to be executed by
a human actor.

[Although jBPM has a special user task node for including human tasks inside a process, human
tasks are considered the same as any other kind of external service that needs to be invoked
and are therefore simply implemented as a domain-specific service. See the chapter on domain-
specific processes to learn more about this.]

A user task node contains the following properties:

« Id: The id of the node (which is unique within one node container).

* Name: The display name of the node.

153

Chapter 12. Human Tasks

+ TaskName: The name of the human task.
« Priority: An integer indicating the priority of the human task.
« Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

« Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

« Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

+ Content: The data associated with this task.

* Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

« On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

You can edit these variables in the properties view (see below) when selecting the user task node,
or the most important properties can also be edited by double-clicking the user task node, after
which a custom user task node editor is opened, as shown below as well.

154

Human tasks inside processes

L Properties 3

Property
Actorld

Comment

Content

Id

Mame

On Entry Actions
On Exit Actions
Parameter Mapping
Priority

Result Mapping
Skippable
Swimlane
TaskName
Timers

Wait for completion

Value
Sales Representative

You should call #{customer.name} to
confirm the order.

4

Hurman Task

1}

1}

true

Call customer

true

155

Chapter 12. Human Tasks

|EEHEFE|~” Reassignment Motifications

MName:
Request Review

Actor(s):
Group(s):

sales

Comment:

Priority:

[] Skippable

Content:

Human tasks inside processes

In many cases, the parameters of a user task (like for example the task name, actorld, or priority)
can be defined when creating the process. You simply fill in the value of these properties in the
property editor. It is however likely that some of the properties of the human task are dependent
on some data related to the process instance this task is being requested in. For example, if a
business process is used to model how to handle incoming sales requests, tasks that are assigned
to a sales representative could include information related to that specific sales request, like
its unique id, the name of the customer that requested it, etc. You can make your human task
properties dynamic in two ways:

« #{expression}. Task parameters of type String can use #{expression} to embed the value of the
given expression in the String. For example, the comment related to a task might be "Please
review this request from user #{user}", where user is a variable in the process. At runtime,
#user} will be replaced by the actual user name for that specific process instance. The value
of #{expression} will be resolved when creating human task and the #{...} will be replaced by
the toString() value of the value it resolves to. The expression could simply be the name of
a variable (in which case it will be resolved to the value of the variable), but more advanced
MVEL expressions are possible as well, like for example #{person.name.firstname}. Note that
this approach can only be used for String parameters. Other parameters should use parameter
mapping to map a value to that parameter.

« Parameter mapping: You can map the value of a process variable (or a value derived from a
variable) to a task parameter. For example, if you need to assign a task to a user whose id is
a variable in your process, you can do so by mapping that variable to the parameter Actorld,
as shown in the following screenshot. [Note that, for parameters of type String, this would be
identical to specifying the Actorld using #{userVariable}, so it would probably be easier to use
#{expression} in this case, but parameter mapping also allow you to assign a value to properties
that are not of type String.]

e Parameter Mapping x

Parameter Variable Add

Actorld uservariable -

L D

Cancel | |]

157

Chapter 12. Human Tasks

12.1.1. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of
that specific user only. If a task is assigned to more than one user, any of those users can claim
and execute this task.

Tasks can also be assigned to one or more groups. This means that any user that is part of the
group can claim and execute the task. For more information on how user and group management
is handled in the default human task service, check out the user and group assignment.

12.1.2. Task escalation and notification

There are number of situations that can raise a need for escalation of a task, for instance - user
assigned to a task can be on vacation or too busy with other work. In such cases task should be
automatically reassigned to another actor or group. Escalation can be defined for tasks that are
in following statuses:

* not started (READY or RESERVED)

e not completed (IN_PROGRESS)

Whenever an escalation is reached users/groups defined in it will be assigned to the task as
potential owners, replacing those that were previously set. If actual owner was already assigned
it will be reset and task will be put in READY state.

158

Task escalation and notification

General | Reassignment | Notifications ‘

Users | Groups | Expires At | Type

john sales 4d
‘Add ‘ ‘ Remove ‘

Chapter 12. Human Tasks

Following is a list of attributes that can be specified:

» Users: comma spearated list of user ids that should be assigned to the task on escalation.
Acceptable are String values and expressions #{user-id}

« Groups: comma spearated list of group ids that should be assigned to the task on escalation.
Acceptable are String values and expressions #{group-id}

« Expires At: time definition about when escalation should take place. It should be defined as
time defintion (2m, 4h, 6d, etc.), in same way as for timers. Acceptable are String values and
expressions #{expiresAt}

» Type: identifies type of task state on which escalation should take place (not-started | not-
completed)

In addition to escalation, email notifications can be sent out as well. It is very similar to escalation
in terms of definition, allows natification to be sent for tasks that are in following statuses:

* not started (READY or RESERVED)

e not completed (IN_PROGRESS)

160

Task escalation and notification

General Reassignment | Motifications

Motifications

Please take care of this task!

Type

not-started hd

ExpiresAt
4d

From

To Users
johin

To Groups
sales

Reply To

Subject

Please take care of this task!
Body

Hello,

k-

Please take care of this task instead of John.

Reqgards

|A::|::| | | Remove | | Update | | Clear |

Chapter 12. Human Tasks

Email notification has following properties:

Type: identifies type of task state on which escalation should take place (not-started | not-
completed)

Expires At: time definition about when escalation should take place. It should be defined as
time defintion (2m, 4h, 6d, etc.), in same way as for timers. Acceptable are String values and
expressions #{expiresAt}

From: (Optional) user or group id that will be used as From field for email message - accepts
String and expression

To Users: comman separated list of user ids that will become reciepients of the notification
To Groups: comman separated list of group ids that will become reciepients of the notification
Reply To: (Optional) user or group id that should receive replies to the notification

Subject: Subject of the natification - accepts String and expression

Body: Body of the notification - accepts String and expression

Notification can reference process variables by #{processVariable} and task variables
${taskVariable}. Main difference between those two is that process variables will be resolved at
task creation time and task variables will be resolved at notification time. There are several task
variables (besides regular ones) that can be used while working with notifications:

taskld: internal id of a task instance

processinstanceld: internal id of a process instance that the task belongs to
workltemld: internal id of a work item that created this task
processSessionld: session internal id of a runtime engine

owners: list of users/groups that are potential owners of the task

doc: map that contains regular task variables

An example that illustrates a simple notification message (its body) that shows how different
variables can be accessed:

<htm >

<body>
${owners[0].i d} you have been assigned to a task (task-id ${taskld}) </ b>

162

Data mapping

You can access it in your task
<a href="http://| ocal host: 8080/ bpm consol e/
app. ht m #errai _Tool Set _Tasks; G oup_Tasks. 3" >i nbox</ a><br/ >
I mportant technical information that can be of use when working on it

- process instance id - ${processlnstancel d}

- work itemid - ${workltemn d}

<hr/>

Here are sone task variabl es avail abl e

Actorld = ${doc[' Actorld']}</Ii>
<l'i>Groupld = ${doc[' Goupld]}</Ii>

<l'i >Comment = ${doc[' Comment']}</Ili>

</ ul >

<hr/ >

Here are all potential owners for this task

$f oreach{orgEntity : owners}
Potential owner = ${orgEntity.id}</Ili>
$end{}

</ ul >

<i >Regards from j BPM teanx/i >
</ body>
</htm >

12.1.3. Data mapping

Human tasks typically present some data related to the task that needs to be performed to the
actor that is executing the task and usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor
and request results.

12.1.3.1. Task parameters

Data that needs to be displayed in a task form should be passed to the task, using parameter
mapping. Parameter mapping allows you to copy the value of a process variable to a task
parameter (as described above). This could for example be the customer name that needs to
be displayed in the task form, the actual request, etc. To copy data to the task, simply map the
variable to a task parameter. This parameter will then be accessible in the task form (as shown
later, when describing how to create task forms).

For example, the following human task (as part of the humantask example in jopm-examples) is
assigned to a sales representative that needs to decide whether to accept or reject a request from
a customer. Therefore, it copies the following process variables to the task as task parameters:

163

Chapter 12. Human Tasks

the userld (of the customer doing the request), the description (of the request), and the date (of
the request).

| = Parameter Mapping X
Parameter Variable Add
description description

: :
userld userld
date date
(4] L | [
Cancel | |]

12.1.3.2. Task results

Data that needs to be returned to the process should be mapped from the task back into process
variables, using result mapping. Result mapping allows you to copy the value of a task result to a
process variable (as described above). This could for example be some data that the actor filled
in. To copy a task result to a process variable, simply map the task result parameter to the variable
in the result mapping. The value of the task result will then be copied after completion of the task
so it can be used in the remainder of the process.

For example, the following human task (as part of the humantask example in jopm-examples) is
assigned to a sales representative that needs to decide whether to accept or reject a request from
a customer. Therefore, it copies the following task results back to the process: the outcome (the
decision that the sales representative has made regarding this request, in this case "Accept" or
"Reject") and the comment (the justification why).

164

Swimlanes

= Parameter Mapping x|
FParameter Variable Add
Remowve
outcome result
(4] I D
Cancel | | Ok

12.1.4. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same
actor. Whenever the first task in a swimlane is created, and that task has an actorld specified,
that actorld will be assigned to (all other tasks of) that swimlane as well. Note that this would
override the actorld of subsequent tasks in that swimlane (if specified), so only the actorld of the
first human task in a swimlane will be taken into account, all others will then take the actorld as
assigned in the first one.

Whenever a human task that is part of a swimlane is completed, the actorld of that swimlane is
set to the actorld that executed that human task. This allows for example to assign a human task
to a group of users, and to assign future tasks of that swimlame to the user that claimed the first
task. This will also automatically change the assignment of tasks if at some point one of the tasks
is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the
"Swimlane" parameter of the user task node. A process must also define all the swimlanes that
it contains. To do so, open the process properties by clicking on the background of the process
and click on the "Swimlanes" property. You can add new swimlanes there.

The new BPMN2 Eclipse editor will support a visual representation of swimlanes (as horizontal
lanes), so that it will be possible to define a human task as part of a swimlane simply by dropping
the task in that lane on the process model.

165

Chapter 12. Human Tasks

12.1.5. Examples

The jbpm-examples module has some examples that show human tasks in action, like the
evaluation example and the humantask example. These examples show some of the more
advanced features in action, like for example group assignment, data passing in and out of human
tasks, swimlanes, etc. Be sure to take a look at them for more details and a working example.

12.2. Human task service

As far as the jBPM engine is concerned, human tasks are similar to any other external service that
needs to be invoked and are implemented as a domain-specific service. (For more on domain-
specific services, see the chapter on them here.) Because a human task is an example of such
a domain-specific service, the process itself only contains a high-level, abstract description of the
human task to be executed and a work item handler that is responsible for binding this (abstract)
task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by
jBPM, or they may register their own implementation. In the next paragraphs, we will describe the
human task servcie implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the
WS-HumanTask specification. If you do not need to integrate jBPM with another existing
implementation of a human task service, you can use this service. The jBPM implementation
manages the life cycle of the tasks (creation, claiming, completion, etc.) and stores the state
of all the tasks, task lists, and other associated information. It also supports features like
internationalization, calendar integration, different types of assignments, delegation, escalation
and deadlines. The code for the implementation itself can be found in the jobpm-human-task
module.

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.
This specification defines (in detail) the model of the tasks, the life cycle, and many other features.
Itis very comprehensive and the first version can be found here [http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-bpeldpeople/WS-HumanTask_vi.pdf].

12.2.1. Task life cycle

From the perspective of a process, when a user task node is encountered during the execution, a
human task is created. The process will then only leave the user task node when the associated
human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is
described below, please check out the WS-HumanTask specification. The following diagram is
from the WS-HumanTask specification and describes the human task life cycle.

166

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Task life cycle

Created

Suspended [

Ready

Reserved

InPrograss InPrograss

[Completion with faull response
Send applicabion fault

4

; ™ e N e N
Completed Failed Error Exitad 1 L Obsolete
)) J

[|

A newly created task starts in the "Created" stage. Usually, it will then automatically become
"Ready", after which the task will show up on the task list of all the actors that are allowed to
execute the task. The task will stay "Ready" until one of these actors claims the task, indicating
that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a
task that only has one potential (specific) actor will automatically be assigned to that actor upon
creation of the task. When the user who has claimed the task starts executing it, the task status
will change from "Reserved" to "InProgress".

Lastly, once the user has performed and completed the task, the task status will change to
"Completed". In this step, the user can optionally specify the result data related to the task. If the
task could not be completed, the user could also indicate this by using a fault response, possibly
including fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a
number of other life cycle methods, including:

» Delegating or forwarding a task, so that the task is assigned to another actor

« Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all
actors allowed to take it

» Temporarly suspending and resuming a task

167

Chapter 12. Human Tasks

» Stopping a task in progress

» Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

12.2.2. Linking the human task service to the |JBPM engine

Just like any other external service, the human task service can be integrated with the jBPM engine
by registering a work item handler that translates the abstract work item (in this case a human
task) to a specific invocation of a service (in this case, the jJBPM implementation of the human task
service). There are several implementations of a work item handler available that can be selected
depending on following factors:

« transport used (HornetQ, Mina, JMS)
« local interaction - same transaction boundary as the engine

* mode of interaction - synchronous or asynchronous
Here is a list of all available work item handlers for human tasks:

Table 12.1. Work item handlers for human task

Class name Module Mode

org. j bpm process. worjbpneduman-taskal HTWArddal entHand| er
core

or g. j bpm pr ocess. worjbpreduman-tasinc Hor esyQETWOT ki t enHandl er
hornetq

or g. j bpm pr ocess. worjbpredhuman-tisknet QHBAMK I t enHandl er
hornetq

org. j bpm process. worjbpneduman:taskncM naSye ki t emHand| er
mina

org. j bpm pr ocess. worjbpredhuman-telskaHT VW rSynenHand| er
mina

Once you select the one that meets your needs you can register this work item handler like this:

St at ef ul Knowl edgeSessi on ksession = ...;
ksessi on. get Wor kl t emvanager () . regi st er Wr kI t emHandl er (" Hunan
Task", new AsyncHor net QHTWOr ki t enHandl er (ksessi on));

By default, this handler will connect to the human task service on the local machine on port 5153
via hornetq. You can easily change connection details of the human task service by either building

168

Interacting with the human task service

TaskClient yourself and pass it as handler constructor argument or by setting ip address and port
number after handler is created.

Note

@ Important to note is that when there is requirement to use multiple knowledge
sessions (meaning every session will have a dedicated work item handler for
human tasks) you must configure handler to react only to tasks that were initiated
by that session that is attached to the handler to avoid duplicated activations.

new AsyncHor net QHTWor ki t enHandl er (ksessi on, true))

The communication between the human task service and the process engine, or any task
client, is message based. While the client/server transport mechanism is pluggable (allowing
different implementations), the default is HornetQ. An alternative implementation using Mina
(http://mina.apache.org/) is also available.

12.2.3. Interacting with the human task service

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients
to integrate (at a low level) with the human task service. Note that end users should probably
not interact with this low-level API directly, but use one of the more user-friendly task clients
(see below) instead. These clients offer a graphical user interface to request task lists, claim and
complete tasks, and manage tasks in general. The task clients listed below use the Java API to
internally interact with the human task service. Of course, the low-level APl is also available so
that developers can use it in their code to interact with the human task service directly.

Atask client (class org.jbpm.task.service.TaskClient) offers the following methods (among others)
for managing the life cycle of human tasks:

public void start(long taskld, String userld, TaskQperationResponseHandl er responseHandl er)
public void stop(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void release(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void suspend(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void resume(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void skip(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void delegate(|ong taskld, String userld, String targetUserld,

TaskOper at i onResponseHandl er responseHandl er)
public void conplete(|ong taskld, String userld, ContentData outputData,
TaskOper at i onResponseHandl er responseHandl er)

If you take a look at the method signatures you will notice that almost all of these methods take
the following arguments:

169

http://mina.apache.org/

Chapter 12. Human Tasks

* taskld: The id of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

« userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

« responseHandler: Communication with the task service is asynchronous, so you should use
a response handler that will be notified when the results are available.

When you invoke a message on the TaskClient, a message is created that will be sent to the
server. The server then executes the operation requested in the message.

The following code sample shows how to create a task client and interact with the task service
to create, start and complete a task.

TaskClient client = new TaskC i ent(new M naTaskd i ent Connector("client 1",
new M naTaskd i ent Handl er (Syst enEvent Li st ener Fact ory. get Syst enEvent Li stener())))
client.connect("127.0.0.1", 9123);

/] adding a task

Bl ocki ngAddTaskResponseHandl er addTaskResponseHandl er = new Bl ocki ngAddTaskResponseHandl er () ;
Task task = ...

client.addTask(task, null, addTaskResponseHandler);

| ong taskld = addTaskResponseHandl er. get Taskl d() ;

/1 getting tasks for user "bobba"
Bl ocki ngTaskSunmar yResponseHandl er t askSummar yResponseHandl er =
new Bl ocki ngTaskSunmar yResponseHandl er () ;
client. get TasksAssi gnedAsPot ent i al Omer (" bobba", "en-
UK", taskSumraryResponseHandl er);
Li st <TaskSummary> t asks = taskSunmar yResponseHandl| er. get Resul ts();

/] starting a task

Bl ocki ngTaskQOper at i onResponseHandl er responseHandl er =
new Bl ocki ngTaskQper at i onResponseHandl er () ;

client.start(taskld, "bobba", responseHandler);

responseHand! er. wai t Ti | | Done(1000) ;

/1 conpleting a task

responseHandl er = new Bl ocki ngTaskQper at i onResponseHandl er () ;
client.conplete(taskld, "bobba".getld(), null, responseHandl er);
responseHand! er. wai t Ti | | Done(1000) ;

12.2.4. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of
that specific user only. If a task is assigned to more than one user, any of those users can claim

170

User and group assignment

and execute this task. Tasks can also be assigned to one or more groups. This means that any
user that is part of the group can claim and execute the task.

The human task service needs to know about valid user and group ids (to make sure tasks are
assigned to existing users and/or groups to avoid errors and tasks that end up assigned to non-
existing users). User and group registration has to be done before tasks can be assigned to them.
One possible registration method is to dynamically adding users and groups to the task service
session:

Enti t yManager Factory enf = Persi stence. createEntityManager Factory("org.jbpmtask");

TaskServi ce taskService = new TaskService(enf, SystenEventListenerFactory. get SystenEventLi stene
TaskServi ceSessi on taskSessi on = taskServi ce. creat eSession();

/'l now register new users and groups

t askSessi on. addUser (new User ("krisv"));

t askSessi on. addG oup(new G oup("devel opers"));

The human task service itself does not maintain the relationship between users and groups. This
is considered outside the scope of the human task service: in general, businesses already have
existing services that manage this information (i.e. an LDAP service). The human task service
does allow you to specify the list of groups that a user is part of, so that this information can also
be taken into account when managing tasks.

For example, if a task is assigned to the group "sales" and the user "sales-rep-1", who is a member
of "sales", wants to claim that task, then that user needs to pass the fact that he is a member of
"sales" when requesting the list of tasks that he is assigned to as potential owner:

Li st<String> groups = new ArrayList<String>();

groups. add("sal es");

taskd i ent. get TasksAssi gnedAsPot ent i al Omner ("sal es-rep"”, groups, "en-
UK", taskSumaryHandl er);

The WS-HumanTask specification also introduces the role of an administrator. An administrator
can manipulate the life cycle of the task, even though he might not be assigned as a potential
owner of that task. By default, jBPM registers a special user with userld "Administrator" as the
administrator of each task. You should therefor make sure that you always define at least a user
"Adminstrator" when registering the list of valid users at the task service.

It is often necessary to hook into existing systems and/or services (such as LDAP) where users
and groups are maintained in order to perform validation without having to manually register all
users and group with the task service. BPM provides the UserGroupCallback interface which
allows you to create your own implementation for user and group management:

public interface User G oupCall back {

171

Chapter 12. Human Tasks

/**

* Resol ves exi stence of user id.

* @aram userld the user id assigned to the task
* @eturn true if userld exists, fal se ot herw se.
*/

bool ean exi stsUser(String userld);

/**

* Resol ves exi stence of group id.

* @aramgroupld the group id assigned to the task
* @eturn true if groupld exists, false otherw se.
*/

bool ean exi stsG oup(String groupld);

/**

* Returns list of group ids for specified user id.

* @aramuserld the user id assigned to the task

* @param grouplds list of group ids assigned to the task

* @aram al | Exi stingG oupl ds list of all currently known group ids

* @eturn List of group ids.

*/

Li st<String> get G oupsForUser (String userld, List<String> grouplds, List<String> allExistir

If you register your own implementation of the UserGroupCallback interface, the human task
service will call it whenever it needs to perform user and group validation. Here is a very simple
example implementation which treats all users and groups as being valid:

public class Defaul tUser G oupCal | backl npl inpl enments User GroupCal | back {

publi ¢ bool ean existsUser(String userld) {
/1 accept all by default
return true;

public bool ean exi stsG oup(String groupld) {
/| accept all by default
return true;

public List<String> get G oupsForUser(String userld, List<String> grouplds,
Li st<String> al | Exi stingG ouplds) {
if(grouplds !'= null) {
Li st<String> retList = new ArrayLi st<String>(grouplds);
/1 merge all groups
if(allExistingGouplds !'= null) {

172

User and group assignment

for(String grp : all ExistingG ouplds) {
if(!'retList.contains(grp)) {
retList.add(grp);

}
}
}
return retlList;
} else {

[l return enpty |list by default
return new ArraylList<String>();

You can register your own implementation of the UserGroupCallback interface in a properties
file called jobpm.usergroup.callback.properties which should be available on the classpath, for
example:

j bpm user group. cal | back=or g. j bpm t ask. servi ce. Def aul t User Gr oupCal | backl npl

or via a system property, for example -
Dj bpm user gr oup. cal | back=or g. j bpm t ask. servi ce. Def aul t User G oupCal | backl nmpl . If
you are using the jBPM installer, you can also modify $j bpm i nstal | er - di r $/ t ask- ser vi ce/
resour ces/ org/j bpm j bpm user group. cal | back. properties directly to register your own
callback implementation.

12.2.4.1. Connecting Human Task server to LDAP

jBPM comes with a dedicated UserGroupCallback implementation for LDAP servers that allows
task server to retrieve user and group/role information directly from LDAP. To be able to use this
callback it must be configured according to specifics of LDAP server and its structure to collect
proper information.

LDAP UserGroupCallback properties

« |dap.bind.user : username used to connect to the LDAP server (optional if LDAP server accepts
anonymous access)

* |dap.bind.pwd : password used to connect to the LDAP server(optional if LDAP server accepts
anonymous access)

e |dap.user.ctx : context in LDAP that will be used when searching for user information
(mandatory)

 |dap.role.ctx : context in LDAP that will be used when searching for group/role information
(mandatory)

173

Chapter 12. Human Tasks

 Idap.user.roles.ctx : context in LDAP that will be used when searching for user group/role
membership information (optional, if not given Idap.role.ctx will be used)

* |dap.user filter : filter that will be used to search for user information, usually will contain
substitution keys {0} to be replaced with parameters (mandatory)

« Idap.role.filter : filter that will be used to search for group/role information, usually will contain
substitution keys {0} to be replaced with parameters (mandatory)

« Idap.user.roles.filter : filter that will be used to search for user group/role membership
information, usually will contain substitution keys {0} to be replaced with parameters (mandatory)

* |dap.user.attr.id : attribute name of the user id in LDAP (optional, if not given 'uid’ will be used)

* |dap.roles.attr.id : attribute name of the group/role id in LDAP (optional, if not given 'cn’ will be
used)

 |dap.user.id.dn : is user id a DN, instructs the callback to query for user DN before searching
for roles (optional, default false)

 java.naming.factory.initial : initial conntext factory class name (default
com.sun.jndi.ldap.LdapCtxFactory)

 java.naming.security.authentication : authentication type (none, simple, strong where simple is
default one)

* java.naming.security.protocol : specifies security protocol to be used, for instance ssl

« java.naming.provider.url : LDAP url to be used default is Idap://localhost:389, or if protocol is
set to ssl Idap://localhost:636
Depending on how human task server is started LDAP callback can be configured in two ways:

« programatically - build property object with all required attributes and register new callback

Properties properties = new Properties();

properties. set Property(LDAPUser G oupCal | backl npl . USER_CTX, "ou=Peopl e, dc=ny-

domai n, dc=cont') ;

properties. set Property(LDAPUser G oupCal | backl npl . ROLE_CTX, "ou=Rol es, dc=ny-

donmai n, dc=cont') ;

properties. set Property(LDAPUser G oupCal | backl npl . USER_ROLES_CT&u=Rol es, dc=ny-

domai n, dc=cont') ;

properties. set Property(LDAPUser G oupCal | backl npl . USER _FI LTER, " (uid={0})");
properties. set Property(LDAPUser G oupCal | backl npl . ROLE_FI LTER, "(cn={0})");
properties. set Property(LDAPUser Gr oupCal | backl npl . USER_ROLES _FI LTER, " (nenber={0})");

User Gr oupCal | back | dapUser GroupCal | back = new LDAPUser Gr oupCal | backl npl (properti es);

User GroupCal | backManager . get I nst ance() . set Cal | back(| dapUser GroupCal | back) ;

174

Starting the human task service

 declaratively - create property file (jbpm.usergroup.callback.properties) with all required
attributes, place it on the root of the classpath and declare LDAP callback to
be registered (see section Starting the human task server for deatils). Alternatively,
location of jbpm.usergroup.callback.properties can be specified via system property -
Djbpm.usergroup.callback.properties=FILE_LOCATION_ON_CLASSPATH

#| dap. bi nd. user =

#| dap. bi nd. pwd=

| dap. user. ct x=ou\ =Peopl e, dc\ =ny- domai n, dc\ =com

| dap. rol e. ct x=ou\ =Rol es, dc\ =ny- domai n, dc\ =com

| dap. user. rol es. ct x=ou\ =Rol es, dc\ =ny- domai n, dc\ =com
| dap. user.filter=(uid\ ={0})

Il dap.role.filter=(cn\={0})

| dap. user.roles.filter=(nenber\={0})

#l dap. user. attr.id=

#l dap.roles. attr.id=

12.2.5. Starting the human task service

The human task service is a completely independent service that the process engine
communicates with. We therefore recommend that you start it as a separate service as well. The
jBPM installer contains a command to start the task server (in this case using Mina as transport
protocol), or you can use the following code fragment:

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpmtask");

TaskServi ce taskService = new TaskServi ce(enf, SystenEventListenerFactory. get SystenEventLi stene
M naTaskServer server = new M naTaskServer(taskService);

Thread thread = new Thread(server)

thread. start();

The task management component uses the Java Persistence API (JPA) to store all task
information in a persistent manner. To configure the persistence, you need to modify the
persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do
that. The following fragment shows for example how to use the task management component with
hibernate and an in-memory H2 database:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si st ence
version="1.0"

175

Chapter 12. Human Tasks

Xsi : schemalLocati on=
"http://java. sun.com xm / ns/ persi st ence
http://java. sun. coml xm / ns/ per si st ence/ persi stence_1_0. xsd
http://java. sun. com xm / ns/ per si st ence/ orm
http://java. sun. comf xm / ns/ persi stence/orm 1_0. xsd"
xm ns:ornm="http://java. sun. com xm / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://java. sun. com xm / ns/ per si st ence" >

<persi stence-unit nane="org.j bpmtask">
<provi der >org. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<cl ass>org.j bpm task. Att achnent </ cl ass>
<cl ass>org. j bpm t ask. Cont ent </ cl ass>
<cl ass>org. j bpm t ask. Bool eanExpr essi on</ cl ass>
<cl ass>org. j bpm t ask. Conment </ cl ass>
<cl ass>org. j bpm t ask. Deadl i ne</ cl ass>
<cl ass>org. j bpm t ask. Conment </ cl ass>
<cl ass>org. j bpm t ask. Deadl i ne</ cl ass>
<cl ass>org. j bpm t ask. Del egati on</cl ass>
<cl ass>org. j bpm t ask. Escal ati on</cl ass>
<cl ass>org. j bpm t ask. G oup</ cl ass>
<cl ass>org. j bpm t ask. | 18NText </ cl ass>
<cl ass>org. j bpm task. Noti ficati on</cl ass>
<cl ass>org. j bpm task. Emai | Noti fi cation</class>
<cl ass>org. j bpm task. Emai | Noti fi cati onHeader </ cl ass>
<cl ass>org. j bpm t ask. Peopl eAssi gnnent s</ cl ass>
<cl ass>org. j bpm t ask. Reassi gnnment </ cl ass>
<cl ass>org. j bpm task. St at us</ cl ass>
<cl ass>org.j bpm t ask. Task</cl ass>
<cl ass>org. j bpm t ask. TaskDat a</ cl ass>
<cl ass>org. j bpm t ask. SubTasksSt r at egy</ cl ass>
<cl ass>org. j bpm t ask. OnPar ent Abor t Al | SubTasksEndSt r at egy</ cl ass>
<cl ass>org. j bpm t ask. OnAl | SubTasksEndPar ent EndSt r at egy</ cl ass>
<cl ass>org.j bpm t ask. User </ cl ass>

<properties>
<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nanme="hi bernate. connection.driver_class" val ue="org. h2.Driver"/>
<property nane="hi bernate. connection.url" val ue="jdbc: h2: mem nydb" />
<property nane="hi bernate. connection. usernanme" val ue="sa"/>
<property nane="hi bernate. connecti on. password" val ue="sasa"/>
<property nanme="hi bernate. connection.autoconmt" val ue="fal se" />
<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2dd| . aut 0" val ue="create" />
<property nane="hi bernate. show sql" val ue="true" />
</ properties>
</ persi stence-unit>

176

Starting the human task service

</ persi st ence>

The first time you start the task management component, you need to make sure that all the
necessary users and groups are added to the database. Our implementation requires all users and
groups to be predefined before trying to assign a task to that user or group. So you need to make
sure you add the necessary users and group to the database using the taskSession.addUser(user)
and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user
as all tasks are automatically assigned to this user as the administrator role.

The jbpm-human-task module contains a org.jopm.task.RunTaskService class in the src/test/java
source folder that can be used to start a task server. It automatically adds users and groups as
defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

The jBPM installer automatically starts a human task service (using an in-memory H2 database)
as a separate Java application. This task service is defined in the task-service directory in the
jbpm-installer folder. You can register new users and task by modifying the LoadUsers.mvel and
LoadGroups.mvel scripts in the resources directory.

12.2.5.1. Configure escalation and notifications

To allow Task Server to perform escalations and notification a bit of configuration is required. Most
of the configuration is for notification support as it relies on external system (mail server) but as
they are handled by EscalatedDeadlineHandler implementation so configuration apply to both.

/1 configure email service
Properties enmil Properties = new Properties();

emui | Properties.setProperty("front, "jbpm@onain.cont');
emai | Properties.setProperty("replyTo", "jbpm@onain.cont);
emai | Properties.setProperty("mail.sntp.host", "local host");
enmui | Properties.setProperty("mail.sntp.port", "2345");

/1 configure default Userlnfo
Properties userlnfoProperties = new Properties();

/'l : separated values for each org entity enmil:|local e:displ ay-nane

user | nfoProperties. set Property("john", "john@omain.com en-UK: John");

user | nfoProperties. setProperty("m ke", "m ke@omain.com en-UK: M ke");

user | nf oProperties. set Property("Admi ni strator", "adm n@lonmai n. com en-
UK: Admi n") ;

/1 build escal ati on handl er

Def aul t Escal at edDeadl i neHandl er handl er = new Def aul t Escal at edDeadl i neHand| er (emmi | Properties);
/1 set user info on the escal ati on handl er

handl er. set User | nf o(new Def aul t User | nf o(user | nfoProperties));

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpmtask");
/1 when buil ding TaskServi ce provide escal ati on handl er as argunent

177

Chapter 12. Human Tasks

TaskServi ce taskService = new TaskService(enf, SystenEventLi stenerFactory. get SystenEventLi stene
M naTaskServer server = new M naTaskServer(taskService);

Thread thread = new Thread(server);

thread. start();

Note that default implementation of UserInfo is just for demo purposes to have a fully operational
task server. Custom user info classes can be provided that implement following interface:

public interface Userlnfo {
String get Di spl ayNane(Organi zational Entity entity);

I terator<Organizational Entity> get Menber sFor G- oup(G oup group);
bool ean hasEmai | (G oup group);
String getEnmil ForEntity(Organi zational Entity entity);

String get LanguageFor Entity(Organi zational Entity entity);

If you are using the jBPM installer, just drop your property files into $j bpm i nstal | er-dir$/
task-servi ce/ resources/org/jbpm , make sure that they are named email.properties and
userinfo.properties.

12.2.5.1.1. User information retrieved from LDAP server

More production alike configuration would be to use LDAP server as user information
repository and to achieve that a dedicated Userlnfo implementation is shipped with jBPM -
LDAPUserInfolmpl. This is especially useful when configuring task server to use LDAP based
user group callback, with this complete user/group information are externalized to LDAP server.
LDAP UserGroupCallback properties

« |dap.bind.user : username used to connect to the LDAP server (optional if LDAP server accepts
anonymous access)

* |dap.bind.pwd : password used to connect to the LDAP server(optional if LDAP server accepts
anonymous access)

 |dap.user.ctx : context in LDAP that will be used when searching for user information
(mandatory)

* |dap.role.ctx : context in LDAP that will be used when searching for group/role information
(mandatory)

178

Starting the human task service

* |dap.user filter : filter that will be used to search for user information, usually will contain
substitution keys {0} to be replaced with parameters (mandatory)

« |dap.role.filter : filter that will be used to search for group/role information, usually will contain
substitution keys {0} to be replaced with parameters (mandatory)

 |dap.role.members. filter : filter that will be used to search for user group/role membership
information, usually will contain substitution keys {0} to be replaced with parameters (optional
default same as Idap.role.filter)

« |dap.email.attr.id : attribute id that contains email address in LDAP (default mail)
 |dap.name.attr.id : attribute id that contians display name in LDAP (default displayName)
« Idap.lang.attr.id : attribute id that contians language information (default locale)

 |dap.member.attr.id : attribute id on group/role object in LDAP that contains members (default
member)

« |dap.user.attr.id : attribute id that contains user id in LDAP server (default uid)
* Idap.role.attr.id : attribute id that contains group/role id in LDAP server (default cn)

* |dap.entity.id.dn : instructs if the organizational entity is (or can be) DN, especially important
when members of a group will be returned as DN instead of user ids (default false)

* java.naming.factory.initial : initial conntext factory class name (default
com.sun.jndi.ldap.LdapCtxFactory)

 java.naming.security.authentication : authentication type (none, simple, strong where simple is
default one)

* java.naming.security.protocol : specifies security protocol to be used, for instance ssl

 java.naming.provider.url : LDAP url to be used default is Idap://localhost:389, or if protocol is
set to ssl Idap://localhost:636
Depending on how human task server is started LDAP user info can be configured in two ways:

» programatically - build property object with all required attributes and register new user info on
escalation handler

Properties properties = new Properties();

properties. set Property(LDAPUser | nf ol npl . USER_CTX, "ou=Peopl e, dc=j bpm dc=org");
properties. set Property(LDAPUser | nf ol npl . ROLE_CTX, "ou=Rol es, dc=j bpm dc=org");
properties. set Property(LDAPUser | nfol nmpl . USER FI LTER, "(uid={0})");

properties. set Property(LDAPUser | nfol mpl . ROLE_FILTER, "(cn={0})");

properties. set Property(LDAPUser|nfolnpl.IS_ENTITY_ID DN, "true");

179

Chapter 12. Human Tasks

User I nfo | dapUserlinfo = new LDAPUser I nf ol npl (properties);

Def aul t Escal at edDeadl i neHandl er handl er = new Def aul t Escal at edDeadl i neHandl er (emai | Properti es
handl er. set User | nf o(| dapUser | nf 0) ;

« declaratively - create property file (jopm.user.info.properties) with all required attributes,
place it on the root of the classpath and declare LDAP user info implementation
to be registered (see section Starting the human task server for deatils).
Alternatively, location of jbpm.user.info.properties can be specified via system property -
Djbpm.user.info.properties=FILE_LOCATION_ON_CLASSPATH

#| dap. bi nd. user =
#| dap. bi nd. pwd=

| dap. user. ct x=ou\ =Peopl e, dc\ =ny- donai n, dc\ =com
| dap. rol e. ct x=ou\ =Rol es, dc\ =ny- donmi n, dc\ =com

| dap. user.filter=(uid\ ={0})
I dap.role.filter=(cn\={0})
#l dap. rol e. nenbers.filter=

#l dap. emni |l . attr.id
#|l dap. nane. attr.id
#l dap.lang. attr.id
#| dap. menber. attr.id
#l dap. user. attr.id
#l dap.role.attr.id

| dap.entity.id.dn=true

12.2.6. Starting the human task service as web application

Human task service can be started as web application to simplify deployment. As part of
application configuration user can select number of settings to be applied on startup. Configuration
is done via web.xml of jbpm-human-task-war application by setting init parameters of the
HumanTaskServiceServlet.Following is a complete list of supported parameters and their
meaning:

General settings

« task.persistence.unit : name of persistence unit that will be used to build EntityManagerFactory
(default org.jopm.task)

180

Starting the human task service as web application

« user.group.callback.class : implementation of UserGroupCallback interface to be used to
resolve users and groups (default DefaultUserGroupCallbackimpl)

 escalated.deadline.handler.class : implementation of EscalatedDeadlineHandler interface to be
used to hadnle escalations and notifications (default DefaultEscalatedDeadlineHandler)

« user.info.class : implementation of Userinfo interface to be used to resolve user/group
information such as email address, prefered language

 load.users : allows to specify location of a file that will be used to initially populate task server
db with users. Accepts two types of files: MVEL and properties; must be suffixed with .mvel
or .properties. Location of the file can be either on classpath (with prefix classpath:) or valid
URL. NOTE: that with custom users files Administrator user must always be present

* load.groups : allows to specify location of a file that will be used to initially populate task server
db with groups. Accepts two types of files: MVEL and properties;file must be suffixed with .mvel
or .properties. Location of the file can be either on classpath (with prefix classpath:) or valid URL.

Transport settings

« active.config : main parameter that controls what transport is configured for Task Server, by
default set to HornetQ and accepts Mina, HornetQ, JMS
Apache Mina

< mina.host : host/ip address used to bind Apache Mina server (localhost)

e mina.port : port used to bind Apache Mina server (default 9123)
HornetQ

* hornetg.host : host/ip address used to bind HornetQ server (default localhost)

 hornetq.port : port used to bind HornetQ server (default 5153)
JMS

» JMSTaskServer.connectionFactory : JNDI name of QueueConnectionFactory to look up (no
default)

« JMSTaskServer.transacted : boolean flag that indicates if jms session will be transacted or not
(no default)

« JMSTaskServer.acknowledgeMode : acknowledgment mode (default
DUPS_OK_ACKNOWLEDGE)

* JMSTaskServer.queueName : name of JMS queue (no default)

181

Chapter 12. Human Tasks

» JMSTaskServer.responseQueueName : name of JMS response queue (no default)
12.3. Human task clients

12.3.1. Eclipse demo task client

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug
processes using human tasks. In contains a Human Task View that can connect to a running task
management component, request the relevant tasks for a particular user (i.e. the tasks where the
user is either a potential owner or the tasks that the user already claimed and is executing). The
life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping
the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown
below. You can configure which task management component to connect to in the Drools Task
preference page (select Window -> Preferences and select Drools Task). Here you can specify
the url and port (default = 127.0.0.1:9123).

Human Task View 2 i ¥ =0
Userld sales-rep Refresh | | Create
Narme Status Owner Created On Comment
Some Task InFrogress sales-rep r31, 2009 4:44:32
Some other task Reserved sales-rep r 31, 2009 4:45:02
Stop | | Release | | Suspend Skip | Complete | | Fail

Notice that this task client only supports a (small) sub-set of the features provided the human task
service. But in general this is sufficient to do some initial testing and debugging or demoing inside
the Eclipse IDE.

12.3.2. Web-based task client in jJBPM Console
The jBPM console also contains a task view for looking up task lists and managing the life cycle

of tasks, task forms to complete the tasks, etc. See the chapter on the jBPM console for more
information.

12.4. Human task persistence

The folowing entity relationship diagram (ERD) shows the persitent entities used by the Human
Task service. (Clicking on the image below will take you to an enlarged view of the image.)

182

Human task persistence

escalation banleanexpression

K BGINT | P% | L <fid; BIGINT [PX) |

i VARCHABIZSS) expranicn: CLOG

deadline_escalation id BIGIWT [fR] PP Iyt VARCHARIZS)
exstakiton_constrainiz.id: BEINT [FE |

dradline
nilfication i BIGINT [P |
- BT —_— deadline_ date: TIMESTAMP

escalated: BODLEAN
dearlins_stamiaadhos |0 BIGIHT [FK]
Lieadlines_erddeadline_id BGINT [FK1

diype VARCHARG D)
prisrity: INTECER

sucalanon_satifcations_id: BGINT [Fe] | B —— —
‘ceavsignment
mrplbaader 0 BICNT [P]]
i BICINT [P] {
e — Fescalation_reassigements i BIONT [FK] |

body: CLOE |
fromatliress. VARCHARIZSS)
language: WARCHARIZSS)

reptyinatdress: WARCHARLSS) LEmee

[l mcmt [P

ssbjecs. VARCHARIZSS1

linguage: VARCHARZSS)

T retification. email beader it CLOR

pref nonificatai: powT [FFK | sk _subsgects ik BIGINT | FK] b=
task_names, bz BIGCINT | P& | e
femailbeaders_id: BGINT | FAX | NT [P] | s

ian_id: BIGINT [FK |
apdnatifar el bl BIGINT [P |
“Fnetification_numes_id BIGINT | 1K)
#{notificatom_documentation_id: BICHT [FK)
“hednonificarion_descrionons. i BICINT [FE]

|
|
|
|
|
|
| |manker waRCHaRizsS) [7) |
|
|
f
|
|
| — st dpaiting dosumerms BICINT 17K]

FATAGRAAL 016 A b érs
content

i BICANT [] H{raniid MGINT [7]

—_ entity.ic: YARCHARIZSS) [PR] [
conten; BLOA

modification. bas

<edvash,_id. BIGINT [FK]
i VARCHARIZSS) || P

“eak_ich BGINT [7|
enbity_id VARCHARGSS) | P] b

sk

— e b BGINT | P |

allcrmg i ite gatis: VARCHARLES 51
ity NTEGER

actwationtime: TIMESTAMP
createdon: TIMESTAME
documenaceesstyee: INTEGER
documemesereseid: BGINT

{auknsews: VARCHAR|ZS5)

faukty e VARCHARIZES)
amAputaciesstype: NTECER
eputcontentid: BICHT

cputtype: VARCHARIZS S

aarennid: BIGINT

aravioussTaus: INTECER

nrecassid; WARCHARGFES)
processinstanceid: MCINT
arocarcsessionic: INTEGER

skipabie: BOOLEAN

status: VARCHARIZSE]

weskitamid: BICINT

ts kit lator_ich VARCHARLY55) [P
actuslowmar_id; VARCHARIZSS) | FK |

createdby_ic VARCMAREZSS) | Fi |

3
subnavhsstialegy

id: BIGINT [7%
tpe; VARCHARE1E)
name: VARCHARIZSS)

sk i QIGINT [FE]

coganiatienalintiy

fhtyme: VARCHARISL

Figure 12.1. Human Task service data model
[images/Chapter-HumanTasks/human_task schema.png]

The data model above is organized around 2 groups of entities:

the ERD above.)

= e e e il UARCHARIZSS) | PE

| -
| o]
Bt

|

amathment
kil BGINT | P |

acoeiitype: INTEGER

anachedatr TINESTAMP
attachmentcomtenaid: BICINT

concen ype: WARCHAR{ZSS)

ame: VARCHARIZSS)

At _size: INTEGER:

hecibry_id WARCHARLISS) | FK]
Hlaskdutesttachmentz_id WGINT [1]

task. comment
i: BGINT [P
addedar TIMESTAMP
1est: CLOB
chclatdariby_inl: VARCHARIZSS) [Fi |
- - — —jtaskdetacomments_i BGINT | F% |

dvlgation_dubegates

Wiask id: HICNT [7K)
<ieenshy. o VARCHARIZSE) | FK |

peepleassignmens. stakehalders

4 — < iask. I BICINT [#K)
seleatity_ i VARCHARLZS 51 TFK |

preplassignments. poiesners

ot — sk BICINT [FK)
Felentity_id: VARCHARLZSS) | FK |

penpless QNMES_exiowners

S aek_id: BICINT [FE
*eatiny. i VARCHARITSE) [FR1 |

progeanignments_bas

— +——-task_id: BICINT [FK)
pcfentity. i VARCHARCZSS) | FX |

PEGRiELs IgnMEns. rEcipents

#task_id: BICINT [7K)
sty VARCHARLZS S [FK |

The t ask entity which represents the main information for a task. (See the righthand side of

The deadline, escalation and notification entities which represent deadlines and

escalations for a task as well as any notifications associated with those deadlines. (See the

lefthand side of the ERD above.)

Two other main entities in the data model are the i 18nt ext and or gani zati onal entity.

e The i 18nt ext entity is used to store text which may be language related, such as names or

descriptions entered by users.

e The organi zati onal enti ty entity represents a user in some way.

The following paragraphs and tables describe the group of entities including and associated with
the t ask entity. These entities are shown on the right hand side of the ERD. (See below for
information about the dead! i ne, escal ati on and noti fi cati on group of entities).

The column “FK” in the tables below, indicates whether or not a column in a database table has a
foreign key constraint on it. If the “Nullable” column is empty, then the described database table

column is nullable.

While a number of foreign key columns of different tables are specified as non-nullable, many of
these columns will simply contain the value - 1 or 0 if there is no associated entity.

183

images/Chapter-HumanTasks/human_task_schema.png

Chapter 12. Human Tasks

12.4.1. Task related entities
The task entity contains much of the essential information for describing a task. Although a

number of columns are not nullable, many of them are simply set to "-1" if the value used in the
column hasn't been set by the task service.

Table 12.2. Task

Field Description Nullable FK
id The primary key of NOT

the task identity
priority The priority of the NOT

task

al | onedt odel egate The group to whom
this task may be

delegated
status The status of the task
previ ousst at us The previous status
of the task
act ual owner _i d The id of the NOT FK

organizational entity
who owns the task

createdby_id The id of the NOT FK
organizational entity
who created the task

creat edon The timestamp
describing when this
task was created

activationtine The timestamp
describing when this
task was activated

expirationtine The timestamp
describing when this
task will expire

ski pabl e Whether or not this NOT
task may be skipped

wor ki temi d The id of the work NOT
item associated with
this task (see jBPM

core schema)

184

Task related entities

Field

processi nst ancei d

Description Nullable

The id of the process NOT
instance associated

with this task (see

jBPM core schema)

FK

document accesst ype How a document

associated with the
task can be accessed

docunent t ype

The type of data in
the document

docunent contenti d

The id of the content NOT
entity containing the
document data

out put accesst ype

How the output
document associated
with the task can be
accessed

out put t ype

out put contentid

The type of data in
the output document

The id of the content NOT
entity containing the
output document data

faul t name

The name of the fault
generated, if a fault
occurs

faul taccesstype

How the document
associated with the
fault can be accessed

faul ttype

The type of data in
the fault document

faultcontentid

The id of the content NOT
entity containing the
fault document data

parentid This is the id of the NOT
parent task
processid The name (id) of the

processsessi oni d

associated process

The id of the NOT
associated
(knowledge) session

185

Chapter 12. Human Tasks

Field Description Nullable FK

The id of the NOT FK
organizational entity
who created the task

taskinitiator_id

The subt asksst rat egy entity is used to save the strategy that describes how parent and sub-
tasks should react when either parent or sub-tasks are ended.

Table 12.3. SubTasksStrategy

Field Description Nullable FK
id The primary key NOT
dt ype A discriminator NOT
column
nane The name of the
strategy
task_id The primary key of NOT FK
the associated t ask

The or gani zat i onal ent i ty entity is extended to represent the different people assignments that
are part of the task.

Table 12.4. OrganizationalEntity

Field Description Nullable
‘ id ‘ The primary key NOT ‘
‘ dt ype ‘ The discriminator column NOT ‘

The at t achnent entity describes attachments that have been added to the task.

Table 12.5. Attachment

Field Description Nullable FK

id

The primary key

NOT

name

accesstype

The (file) name of the
attachment

How the attachment
can be accessed

at t achedat

attachnent _si ze

When the attachment
was attached to the
task

The size (in bytes) of
the attachment

186

Task related entities

Field Description Nullable

attachnment contentid The id of the content NOT
entity storing the
raw data of the
attachment

FK

contenttype The MIME type of the
attachment data

attachedby_id The id of the NOT
organi zati onal entity
entity that attached
the attachment

t askdat a_at t achment sThe id of the t ask NOT
entity to which this
attachment belongs

FK

FK

The t ask_comment entity describes comments added to tasks.

Table 12.6. task_comment

Field Description Nullable

id The primary key NOT

FK

addedat The timestamp of
when the comment
was added to the task

t ext The text of the
comment

addedby_i d The primary key NOT
of the associated
organi zationalentity
entity

t askdat a_comment s_i dThe primary key of NOT
the associated t ask
entity

FK

FK

The del egat i on_del egat es table is a join table for relationships between the t ask entity and

the or gani zati onal enti ty.

Table 12.7. delegation_delegates

Field Description Nullable

task_id The primary key of NOT
the associated t ask

FK
FK

187

Chapter 12. Human Tasks

Field Description Nullable FK

entity_id The primary key NOT FK
of the associated

organi zati onal entity

The peopl eassi gnnents_st akehol ders table is a join table that describes which
or gani zat i onal enti ty entities are task stakeholders of a particular task.

Table 12.8. peopleassignments_stakeholders

Field Description Nullable FK
task_id The primary key of NOT FK
the associated t ask
entity
entity_id The primary key NOT FK

of the associated
organi zati onalentity
entity

The peopl eassi gnnents_potowners table is a join table that describes which
organi zati onal enti ty entities are potential owners of a particular task.

Table 12.9. peopleassignments_potowners

Field Description Nullable FK
task_id The primary key of NOT FK
the associated t ask
entity
entity_id The primary key NOT FK

of the associated
organi zati onal entity
entity

The peopl eassignnents_excl owners table is a join table that describes which
or gani zati onal enti ty entities are the excluded owners of a particular task.

Table 12.10. peopleassignments_exclowners

Field Description Nullable FK

task_id The primary key of NOT FK
the associated t ask
entity

entity_id The primary key NOT FK
of the associated

188

Deadline, Escalation and Notification related entities

Field Description Nullable FK

organi zati onal entity
entity

The peopl eassi gnment s_bas table is a join table that describes which or gani zati onal entity
entities are business administrators of a particular task.

Table 12.11. peopleassignments_bas

Field Description Nullable FK
task_id The primary key of NOT FK
the associated t ask
entity
entity_id The primary key NOT FK

of the associated
organi zati onalentity
entity

The peopl eassignnents_recipients table is a join table that describes which
or gani zat i onal ent i t y entities are notification recipients for a particular task.

Table 12.12. peopleassignments_recipients

Field Description Nullable FK
task_id The primary key of NOT FK
the associated t ask
entity
entity_id The primary key NOT FK

of the associated
organi zational entity
entity

12.4.2. Deadline, Escalation and Notification related entities

The following paragraphs and tables describe the group of entities having to do with deadline,
escalation, and notification information. These entities are shown on the left hand side of the ERD
diagram above.

The deadl i ne entity represents a deadline for a task.

Table 12.13. deadline

Description Nullable

id The primary key NOT

189

Chapter 12. Human Tasks

Field Description Nullable FK
deadl i ne_dat e The deadline date
escal ated Whether or not the NOT
deadline has been
escalated
deadl i nes_st ar t deadl The id ®f the NOT FK

associated t ask
entity which uses this
deadline as its start
deadline.

deadl i nes_enddeadl i nEhédd of the NOT FK
associated t ask
entity which uses this
deadline as its end
deadline.

The escal at i on entity descibes an escalation action that should be taken for a particular deadline.

Table 12.14. escalation

Field Description Nullable FK
id The primary key NOT
nanme The name of the

escalation event

deadl i ne_escal ati on_Thke id of the NOT FK
associated deadl i ne
entity

The bool eanexpr essi on entity represents an expression that evaluates to a boolean. These
expressions are used in order to determine whether or not a constraint should be applied.

Table 12.15. booleanexpression

Field Description Nullable FK
id The primary key NOT
expr essi on The expression text
type The type of
expression
escal ati on_constr ai ntkeiid of the NOT FK

escal ati on entity
for which this
expression is used as
a constraint

Deadline, Escalation and Notification related entities

The noti fi cati on entity describes a notification generated by an escalation action.

Table 12.16. notification

Field Description Nullable FK
id The primary key NOT
dt ype The discriminator NOT
column
priority The priority of the NOT
notification
escal ation_noti fi catTheddiaf the NOT FK
associated
escal ati on entity

The emai | _header entity describes an e-mail that will be sent as part of a notification.

Table 12.17. email_header

Field Description Nullable
id The primary key NOT
fromaddr ess The e-mail address

from which the e-mail

is sent
repl yt oaddr ess The reply-to address

used in the e-mail

| anguage The language in
which the e-mail is
written

subj ect The subject of the e-
mail

body The body of the e-
malil

The notification_enmil _header table is a join table that describes and qualifies which
emai | _header entities are part of a notification.

Table 12.18. notification_email_header

Description Nullable

notification_id Together with the NOT FK
mapkey, this field is
part of the primary
key. This field refers

191

Chapter 12. Human Tasks

Field Description Nullable FK

tothe notification
entity that the

emai | _header is
associated with.

mapkey Together with NOT

the mapkey, this

field is part of the

primary key. This

field describes

what the type is

of the associated

ermai | _header.

emai | headers_id The id of the NOT FK
associated

emai | _header entity

The r eassi gnment entity describes reassignments associated with escalations.

Table 12.19. reassignment

Description Nullable

id The primary key NOT

escal ati on_r eassi gnnEhesddiaf the NOT FK
associated

escal ati on entity

The reassignments_potential owners table is a join table that describes which
organi zati onal enti ty entities are potential owners if a reassignment happens as part of an
escalation.

Table 12.20. reassignment_potentialowners

Field Description Nullable FK

task_id The primary key NOT FK
of the associated
reassi gnment entity

entity_id The primary key NOT FK
of the associated
organi zationalentity
entity

The noti fi cati on_bas table is a join table that describes which business administrators will be
notified by a noti fi cati on.

192

Deadline, Escalation and Notification related entities

Table 12.21. notification_bas

Field Description Nullable FK

task_id The primary key NOT FK
of the associated
noti fi cati on entity

entity_ id The primary key NOT FK
of the associated
organi zati onal entity
entity

Thenotification_recipi ents table is a join table that describes which r eci pi ent s entities will
be received a noti fi cati on.

Table 12.22. notification_recipients

Field Description Nullable FK

task_id The primary key NOT FK
of the associated
noti fi cati on entity

entity_id The primary key NOT FK
of the associated
organi zati onal entity
entity

The cont ent entity represents the content of a document, output document, fault or other object.

Table 12.23. content

Field Description Nullable
id The primary key NOT
cont ent The content data NOT

The i 18nt ext entity is used by a number of different other entities to store text fields. The
deadl i ne, notification, reassi gnnent and t ask entities use this entity to store descriptions,
subjects, names and other documentation.

Although all foreign keys are not nullable, they will be set to O if they are not being used.

Table 12.24. i18ntext

Description Nullable
id The primary key NOT
| anguage The language that the

text is in.

193

Chapter 12. Human Tasks

Field
t ext

task_subjects

task_nanes_id

Description
The text

_id The id of the t ask
entity for which this is
a subject

The id of the t ask
entity for which this is
a name

Nullable

NOT

NOT

FK

FK

FK

task_descri pt

i ons_i dThe id of the t ask
entity for which this is
a description

NOT

FK

reassi gnment _|

docunentheiidofitde
reassi gnment entity
for which this is
documentation

NOT

FK

notification_

notification_

subj ect Ehédd of the
noti fi cati on entity
for which this is a
subject

names_iBhe id of the
noti fi cati on entity
for which this is a
name

NOT

NOT

FK

FK

notification_

docunentheiidmofitie
noti fi cati on entity
for which this is
documentation

NOT

FK

notification_

deadl i ne_docu

descri pthend dfdhe
noti fi cati on entity
for which this is a
description

ment at i Bheiid of the
deadl i ne entity
for which this is
documentation

NOT

NOT

FK

FK

194

Chapter 13.

Chapter 13. Domain-specific
processes

13.1. Introduction

jBPM provides the ability to create and use domain-specific task nodes in your business
processes. This simplifies development when you're creating business processes that contain
tasks dealing with other technical systems.

When using jBPM, we call these domain-specific task nodes "custom work items" or (custom)
"service nodes". There are two separate aspects to creating and using custom work items:

« Adding a node with a custom work item to a process definition using the eclipse editor or jBPM
designer.

 Creating a custom work item handler that the jBPM engine will use when executing the custom
work item in a running process.

With regards to a BPMN2 process, custom work items are certain types of <t ask> nodes. In
most cases, custom work items are <t ask> nodes in a BPMN2 process definition, although they
can also be used with certain other task type nodes such as, among others, <ser vi ceTask> or
<sendTask> nodes.

Tip

When creating custom work items, it's important to separate the data associated
with the work item, from how the work item should be handled. In other words,
separate the what from the how. That means that custom work items should be:

* declarative (what, not how)

« high-level (no code)
On the other hand, custom work item handlers, which are java classes, should be:

» procedural (how, not what)

* low-level (because it's code!)
Work item handlers should almost never contain any data.

Users can thus easily define their own set of domain-specific service nodes and integrate them
with the process language. For example, the next figure shows an example of a healtchare-

195

Chapter 13. Domain-specific p...

related BPMN2 process. The process includes domain-specific service nodes for measuring blood
pressure, prescribing medication, notifying care providers and following-up on the patient.

& BP Medication

Vs
O o= Blood Pressure @
=) N

g @{ g Notry G]—‘<">_"©
=

13.2. Overview

Before moving on to an example, this section explains what custom work items and custom work
item handlers are.

13.2.1. Work Item Definitions

In short, we use the term custom work item when we're describing a node in your process that
represents a domain-specific task and as such, contains extra properties and is handled by a
Wor ki t enHandl er implementation.

Because it's a domain-specific task, that means that a custom work item is equivalent to a <t ask>
or <t ask>-type node in BPMN2. However, a Wr kl t emis also Java class instance that's used
when a Wor ki t enHandl er instance is called to complete the task or work item.

Depending on the BPMN2 editor you're using, you can create a custom work item definition in
one of two ways:

« If you're using Designer, then this means creating a MVEL based definition and adding the
definition in Designer itself. A description of this can be found in the Support for domain-specific
service nodes section in the Designer chapter. Once this is done, a new service node will appear
on the BPMN 2.0 palette.

« Ifyou're using the eclipse BPMN 2.0 modeler plugin (which can be found here [http://eclipse.org/
bpmn2-modeler/]), then you'll can modify the BPMN2 <t ask> or <t ask>-type element to work
with Wor ki t emHandl er implementations. See the Adding custom task nodes section in the
Eclipse BPMN 2.0 Plugin chapter.

196

http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/

Work Item Handlers

13.2.2. Work Item Handlers

A work item handler is a Java class used to execute (or abort) work items. That also means
that the class implements the or g. ki e. runti me. i nst ance. Wr kI t enHandl er interface. While
jBPM provides some custom Wor ki t enHandl er instances (listed below), a Java developer with a
minimal knowledge of jBPM can easily create a new work item handler class with it's own custom
business logic.

Among others, jBPM offers the following Wor ki t enHandl er implementations:

 Inthe j bpm bpm2 module, or g. j bpm bpm?2. handl er package:
» ReceiveTaskHandler (for use with BPMN element <r ecei veTask>)
» SendTaskHandler (for use with BPMN element <sendTask>)
» ServiceTaskHandler (for use with BPMN element <ser vi ceTask>)

e Inthe j bpm wor ki t ens module, in various packages under the or g. j bpm process. worki t em
package:

* ArchiveWorkltemHandler
There are a many more Wr ki t enHandl er implementations present in the j bpm wor ki t ens
module. If you're looking for specific integration logic with Twitter, for example, we recommend
you take a look at the classes made available there.

In general, aWor kl t enHandl er's . execut eWorklten(...) and. abortWirklten(...) methods
will do the following:

1. Extract information about the task being executed (or aborted) from the Wor kI t eminstance

2. Execute the necessary business logic. This might be mean interacting with a web service,
database, or other technical component.

3. Inform the process engine that the work item has been completed (or aborted) by calling one
of the following two mtehods on the Wor kI t emvanager instance passed to the method:

Wor kI t emvanager . conpl et eWorkl tenm(| ong workltem d, Map<String, Object> results)
Wor kI t emvanager . abort Wor kI t en(| ong wor ki t end d)

In order to make sure that your custom work item handler is used for a particular process instance,
it's necessary to register the work item handler before starting the process. This makes the engine
aware of your Wr kil t enHandl er so that the engine can use it for the proper node. For example:

ksessi on. get Wr ki t emvanager () . regi st er Wrkl t enHandl er (" Noti fication", new NotificationWrkltem

197

Chapter 13. Domain-specific p...

The ksession variable above is a Statef ul Know edgeSessi on (and also a Ki eSessi on)
instance. The example code above comes from the example that we will go through in the next
session.

Tip

You can use different work item handlers for the same process depending on the
system on which it runs: by registering different work item handlers on different
systems, you can customize how a custom work item is processed on a particular
system. You can also substitute mock Wor kI t enHandl er instances when testing.

13.3. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work item
is defined by a unique name and includes additional parameters that describe the work in more
detail. Work items can also return information after they have been executed, specified as results.

Our notification work item could be defined using a work definition with four parameters and no
results. For example:
* Name: "Notification"

e Parameters:

From [String type]

To [String type]

* Message [String type]

Priority [String type]
13.3.1. The Notification Work Item Definition

13.3.1.1. Creating the work item definition

In our example we will create a MVEL work item definition that defines a "Notification" work item.
Using MVEL is the default way to This file will be placed in the project classpath in a directory
called META- | NF. The work item configuration file for this example, MyWor kDef i ni ti ons. wi d, will
look like this:

i mport org.drools.core. process. core.datatype.inpl.type. StringDat aType;
[

// the Notification work item

198

The Notification Work Item Definition

[

"name" : "Notification",
"paraneters” : |

"Message" : new StringDataType(),
"From' : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),

1.
"di spl ayName" : "Notification",
"icon" : "icons/notification.gif"

]

The project directory structure could then look something like this:

proj ect/src/ mai n/ resour ces/ META- | NF/ MyWor kDef i ni tions. w d

We also want to add a specific icon to be used in the process editor with the work item. To add
this, you will need . gi f or . png images with a pixel size of 16x16. We put them in a directory
outside of the META- I NF directory, for example, here:

proj ect/src/ mai n/resources/icons/notification.gif

13.3.1.2. Registering the work definition

The jBPM eclipse editor uses the configuration mechanisms supplied by Drools to register
work item definition files. That means adding a drool s. wor kDefi ni ti ons property to the
drool s. rul ebase. conf file in the META- | NF.

The dr ool s. wor kDef i ni ti ons property represents a list of files containing work item definitions,
separated usings spaces. If you want to exclude all other work item definitions and only use your
definition, you could use the following:

drool s. workDefinitions = M/WrkDefinitions.wd

However, if you only want to add the newly created node definition to the existing palette nodes,
you can define the dr ool s. wor kDef i ni ti ons property as follows:

drool s. workDefinitions = M/WirkDefinitions.w d WrkDefinitions.conf

199

Chapter 13. Domain-specific p...

We recommended that you use the extension . wi d for your own definitions of domain specific
nodes. The . conf extension used with the default definition file, Wor kDef i ni ti ons. conf, for
backward compatibility reasons.

13.3.1.3. Using your new work item in your processes

We've created our work item definition and configured it, so nhow we can start using it in our
processes. The process editor contains a separate section in the palette where the different
service nodes that have been defined for the project appear.

L\g Select

| Marquee

— Sequence Flow

.= Components £

Start Event

® End Event

Rule Task

& Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

() Timer Event

®) Error Event

) Message Event

User Task

(&) Embedded Sub-Process

(w) Multiple Instances

= Service Tasks £

® Notification h

Using drag and drop, a notification node can be created inside your process. The properties can
be filled in using the properties view.

Besides any custom properties, the following three properties are available for all work items:

200

The Notification Work Item Definition

. Paramet er Mappi ng: Allows you to map the value of a variable in the process to a parameter

of the work item. This allows you to customize the work item based on the current state of
the actual process instance (for example, the priority of the notification could be dependent of
some process-specific information).

. Resul t Mappi ng: Allows you to map a result (returned once a work item has been executed)

to a variable of the process. This allows you to use results in the remainder of the process.

.\Wait for conpletion: By default, the process waits until the requested work item has

been completed before continuing with the process. It is also possible to continue immediately
after the work item has been requested (and not waiting for the results) by setting wai t f or
conpl eti on to false.

Here is an example that creates a domain specific node to execute Java, asking for the class and
method parameters. It includes a custom j ava. gi f icon and consists of the following files and
resulting screenshot:

/1
11

/1
11

i mport org.drool s.core. process. core.datatype.inpl.type. StringDataType;
[

/1 the Java Node work item |l ocated in:

/'l project/src/min/resources/ META-| NF/ JavaNodeDefi ni tion. wi d
[

"nane" : "JavaNode",

"paraneters" : [

"class" : new StringDataType(),

"met hod" : new StringDataType(),

|

"di spl ayNanme" : "Java Node",

"icon" : "icons/java.gif"

]

| ocated in: project/src/ min/resources/ META-1NF/ drool s. rul ebase. conf

dr ool s. wor kDefinitions = JavaNodeDefinition.w d WrkDefinitions.conf

icon for java.gif located in:
proj ect/src/ main/ resources/icons/java. gif

201

Chapter 13. Domain-specific p...

[+ Select

' Marquee O

— Sequence

Flow l

= Components < r - N

N . ava Node =
() Start Event L@J J
@® End Event)

Rule Task

l
& Gateway O

[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task
) Timer Event
@ Error Event

Message
Event

User Task

(=) Embedded
Sub-Process

(w) Multiple

(= Service Ta... <«
= Log
= Email
% Java Node

202

The NotificationWorkltemHandler

13.3.2. The notificationverki t emHandl er

13.3.2.1. Creating a new work item handler

Once we've created our Noti fi cati on work item definition (see the sections above), we can
then create a custom implementation of a work item handler that will contain the logic to send
the notification.

In order to execute our Notification work items, we first create a Not i fi cati onWor ki t enHand! er
that implements the Wor ki t enHandl er interface:

package com sanpl €;

i mport org.kie.api.runtine.process. Wrkltem
i mport org.kie.api.runtine.process. WrKkltenHandl er;
i mport org. kie.api.runtine.process. WrKkltenVanager;

public class NotificationWrkltenHandl er inplenents WrkltenHandl er {

public void executeWrkltem(Wrkltem workltem WorkltemVanager manager) {
[l extract paraneters
String from= (String) workltem getParameter("Froni);
String to = (String) workltem getParaneter("To");
String nessage = (String) workltem getParaneter (" Mssage");
String priority = (String) workltem get Paraneter("Priority");

/1l send enail

Enai | Servi ce service = Servi ceRegi stry. getlnstance().get Enail Service(); L]
service.sendEmai |l (from to, "Notification", nessage);

/1 notify manager that work item has been conpl et ed

manager . conpl et eWorkl t em{workltem get 1 d(), null); 2

public void abortWorkltem Wrkltem workltem WorkltemnVanager manager) {
/1 Do nothing, notifications cannot be aborted

}

The ServiceRegi stry class is simply a made-up class that we're using for this example.
In your own Wor ki t enHandl er implementations, the code containing your domain-specific
logic would go here.

» Notifying the Workltemvanager instance when your a work item has been
completed is crucial. For many synchronous actions, like sending an email in this

203

Chapter 13. Domain-specific p...

case, the workltenHandl er implementation will notify the Workltenmvanager in the
executeWorklten(...) method.

This Wor kil t enHandl er sends a notification as an email and then notifies the WorkltemManager
that the work item has been completed.

Note that not all work items can be completed directly. In cases where executing a work item takes
some time, execution can continue asynchronously and the work item manager can be notified
later.

In these situations, it might also be possible that a work item is aborted before it has been
completed. The Wor ki t enHandl er . abort Wor ki tent(...) method can be used to specify how to
abort such work items.

Tip

Remember, if the Wor ki t emvanager is not notified about the completion, the
process engine will never be notified that your service node has completed.

13.3.2.2. Registering the work item handler

Wor kil t enHandl er instances need to be registered with the Wor ki t emvanager in order to be used.
In this case, we need to register an instance of our Noti fi cati onWor kI t enHandl er in order to
use it with our process containing a Not i fi cat i on work item. We can do that like this:

St at ef ul Know edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksessi on. get Wr ki t emvanager () . r egi st er Wor kI t enHandl er (

"Notification", L1

new Noti fi cati onWr ki t enHandl er () 2
)i

This is the drools name of the <t ask> (or other task type) node. See below for an example.

™ This is the instance of our custom work item handler instance!

If we were to look at the BPMN2 syntax for our process with the Noti fi cati on process, we
would see something like the following example. Note the use of the tns: taskNane attribute
in the <task> node. This is necessary for the Workltemvanager to be able to see which
Wor ki t entHand! er instance should be used with which task or work item.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"

204

Service repository

xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL

BPIMN20. xsd"
xm ns:tns="http://ww.]jboss. org/drool s">
<process isExecutable="true" id="nyCustonProcess" nanme="Donai n-Specific
Process" >

<task id="_5" nane="Notification Task" tns:taskNane="Notification" >

Tip

Different work item handlers could be used depending on the context. For example,
during testing or simulation, it might not be necessary to actually execute the work
items. In this case specialized dummy work item handlers could be used during
testing.

13.4. Service repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.
Think for example about integration with Twitter, doing file system operations or sending email.
Once such a domain-specific service has been created, you might want to make it available to
other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services
you might need and importing these services into your workspace. These will then automatically
be added to your palette and you can start using them in your processes. You can also import
additional artefacts like for example an icon, any dependencies you might need, a default handler
that will be used to execute the service (although you're always free to override the default, for
example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could
be to a directory in your file system but also a public or private URL) and select the services you
would like to import. For example, in Eclipse, right-click your project that contains your processes
and select "Configure ... -> Import jBPM services ...". This will open up a repository browser. In the
URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository
that hosts some common service implementations out-of-the-box), or use the "..." button to browse
to a folder on your file system. Click the Get button to retrieve the contents of that repository.

205

Chapter 13. Domain-specific p...

& Import services [‘$_<|

LRL: F:Yjbpm-service-repository E]

[=- Comrmunication
Jabber
Email
Twitter

Data

File System

Google

Java
% Java !':

Cther
Service

Automatically add to service configuration file
Automatically add libraries to project
Automatically register handlers

Select the service you would like to import and then click the Import button. Note that the Eclipse
wizard allows you to define whether you would like to automatically configure the service (so
it shows up in the palette of your processes), whether you would also like to download any
dependencies that might be needed for executing the service and/or whether you would like to
automatically register the default handler, so make sure to mark the right checkboxes before
importing your service (if you are unsure what to do, leaving all check boxes marked is probably
best).

After importing your service, (re)open your process diagram and the new service should show up
in your palette and you can start using it in your process. Note that most services also include
documentation on how to use them (e.g. what the different input and output parameters are) when
you select them browsing the service repository.

Click on the image below to see a screencast where we import the twitter service in a new
jBPM project and create a simple process with it that sends an actual tweet. Note that you need
the necessary twitter keys and secrets to be able to programatically send tweets to your twitter
account. How to create these is explained here [http:/people.redhat.com/kverlaen/repository/
Twitter/], but once you have these, you can just drop them in your project using a simple
configuration file.

206

http://people.redhat.com/kverlaen/repository/Twitter/
http://people.redhat.com/kverlaen/repository/Twitter/
http://people.redhat.com/kverlaen/repository/Twitter/

Public jBPM service repository

- TR, LRL: Fi'thorr-se-ceseoasibory [_][GE':_] - 1;3 3 Ii'all-'ll
= Commurcebon - c
ol S G mgen |] ik 3% Gutine £ =
= E Cral -
2| — a
E 2 swither & Dot fn pufme &b A able,
B moinsn fava # FeSysien
= oomcampe # Gnoayie
F] FrocessTest = Caea
B M sroinai frasounces Xavea
&0 camcde born # Othar
£ B L System Lbrary Goslno] @ Sorvice
£ B 0P Liorsry
B
[Pl futenaizaly sdd o service configuraton fie
[+ Atomatdzaly add Branes b praject
[#lasmnsazaly eogpter hardem
s
Twitter 1
A servize for tRiRer ENCSSATES, NEHT twittes g, nE v =
|
Eummcim o
Message Stmng | The message that needs o bl:#zt as the taitier status
Resulis
Figure 13.1.

[http://people.redhat.com/kverlaen/twitter-repository.swf]

13.4.1. Public jJBPM service repository

We are building a public service repository that contains predefined services that people can use
out-of-the-box if they want to:

http://people.redhat.com/kverlaen/repository

This repository contains some integrations for common services like Twitter integration or file
system operations that you can import. Simply point the import wizard to this URL to start browsing
the repository.

If you have an implementation of a common service that you would like to contribute to the
community, do not hesitate to contact someone from the development team. We are always
looking for contributions to extend our repository.

13.4.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration
file that contains the necessary information (this is an extended version of the normal work

207

http://people.redhat.com/kverlaen/twitter-repository.swf
http://people.redhat.com/kverlaen/repository

Chapter 13. Domain-specific p...

definition configuration file as described earlier in this chapter) and putting the necessary files (like
an icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and
icon), with some additional ones. For example, the following extended configuration file describes
the Twitter integration service (as shown in the screencast above):

i nport org.drools.core. process. core. datatype.inpl.type. StringDat aType;

[
[

"nanme" : "Twitter",
"description" : "Send a twitter nmessage",
"paraneters” : |

"Message" : new StringDataType()
1,
"di spl ayName" : "Twitter",
"eclipse: custonEditor”
"org.drool s. eclipse.flow conmon. editor.editpart.work. Sanpl eCust onEdi t or ",
"icon" : "twitter.gif",
"category" : "Communication",
"defaul tHandl er” : "org.jbpm process.workitemtwitter. TwitterHandl er",
"docunentation" : "index.htm",
"dependenci es" : [
"file:./lib/jbpmtwitter.jar",
"file:./lib/twitter4j-core-2.2.2.jar"

]
]
]

» The icon property should refer to a file with the given file name in the same folder as the
extended configuration file (so it can be downloaded by the import wizard and used in the
process diagrams). lcons should be 16x16 GIF files.

« The category property defines the category this service should be placed under when browsing
the repository.

» The defaultHandler property defines the default handler implementation (i.e. the Java class that
implements the Wor ki t enHandl er interface and can be used to execute the service). This can
automatically be registered as the handler for that service when importing the service from the
repository.

» The documentation property defines a documentation file that describes what the service does
and how it works. This property should refer to a HTML file with the given name in the same
folder as the extended configuration file (so it can be shown by the import wizard when browsing
the repository).

208

Setting up your own service repository

» The dependencies property defines additional dependencies that are necessary to execute this
service. This usually includes the handler implementation jar, but could also include additional
external dependencies. These dependencies should also be located on the repository on the
given location (relative to the folder where the extended configuration file is located), so they
can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an i ndex. conf file that references all the folders
that should be processed when searching for services on the repository. Each of those folders
should then contain:

« An extended configuration file with the same name as the folder (e.g. Twi tt er. conf)

« The icon as references in the configuration file

« The documentation as references in the configuration file

» The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains
an i ndex. conf file, that will be used to scan additional sub-folders. Note that the hierarchical
structure of the repository is not shown when browsing the repository using the import wizard, as
the category property in the configuration file is used for that.

209

210

Chapter 14.

Chapter 14. Exception Management

14.1. Overview

This chapter will describe how to deal with unexpected behavior in your business processes using
both BPMN2 and technical mechanisms.

The first section (Introduction) will define and explain the types of exceptions that can happen or
be used in a business process (Business Exceptions and Technical Exceptions).

The next section will explain Technical Exceptions: we'll go through an example that uses both
BPMN2 and Wor kI t enHandl er implementations in order to isolate and handle exceptions caused
by a technical component. We will also explain how to modify the example to suit other use cases.

14.2. Introduction

What happens to a business process when something unexpected happens during the process?
Most of the time, when you create and design a new process definition, you'll begin by describing
the normative or desirable behaviour. However, a process definition that only describes all of the
normal tasks and their execution order is incomplete.

The next step is to think about what might go wrong when the business process is run. What would
happen if any of the human or technical actors in the process do not respond in unexpexected
ways? Will any of the technical systems that the process interacts with return unexpected results
-- or not return any results at all?

Deviations from the normative or "happy" flow of a business process are called exceptions. In
some cases, exceptions might not be that unusual, such as trying to debit an empty bank account.
However, some processes might contain many complex situations involving exceptions, all of
which must be handled correctly.

@ Note
The rest of chapter assumes that you know how to create custom <t ask> nodes
and how to implement and register Wor ki t enHandl er implementations. More
information about these topics can be found in the
chapter.

14.3. Business Exceptions

Business Exceptions are exceptions that are designed and managed in the BPMN2 specification
of a business process. In other words, Business Exceptions are exceptions which happen at the
process or workflow level, and are not related to the technical components.

211

Chapter 14. Exception Management

Many of the elements in BPMN2 related to Business Exceptions are related to Compensation and
Business Transactions. Compensation, in particular, is complexer than many other parts of the
BPMN2 specfication.

Full support for compensation and business transactions is expected with the release of jBPM 6.1
or 6.2. Once that has been implemented, this section will contain more information about using
those BPMN2 features with jBPM.

14.3.1. Business Exceptions elements in BPMN2

The following attempts to briefly describe Compensation and Business Transaction related
elements in BPMN2. For more complete information about these elements and their uses, see the
BPMNZ2 specification, Bruce Silver's book BPMN Met hod and Styl e or any of the other available
books about the use of BPMNZ2.

Table 14.1. BPMN2 Exception Handling Elements

BPMN2 Element types Description

Errors and Error Events Error Events can be used to signal when a
process has encountered an unexpected
situation: signalling an error is often called
throwing an error.

Boundary Error Events in a different part of
the process can then be used to catch the
error and initiate a sequence of activities to
handle the exception.

Errors themselves can be extended with extra
information that is passed from the throwing
to catching event. This is done with the use of
an Item Definition.

Business Transactions A Business Transaction in BPMN2 is
a subprocess which can be used with
compensation. Grouping activities in a
Business Transaction lets the process
designer easily add exception handling to
specific activities in the subprocess.

Using a Business Transaction guarantees
that all activities in the transaction will have
completed successfully if the Business
Transaction completes successfully.

When a Business Transaction is interrupted
or otherwise not completed successfully,
there is a guarantee that all activities in

212

Business Exceptions elements in BPMN2

BPMN2 Element types Description

the Business Transaction that have been
initiated will be compensated if compensating
activities are defined for those activities.

Compensation

Exception handling activities associated with
the normal activies in a Business Transaction
are triggered by Compensation Events.

Compensation Events may only be used
within Business Transactions.

There are 3 types of compensation events:
Intermediate (a.k.a. Boundary) (catch) events,
Start (catch) events, and Intermediate or End
(throw) events.

Compensation Boundary (catch) events

are attached to activites (e.g. tasks) that
could cause an exception. They may only
be attached to activites inside a Business
Transaction. If a Business Transaction fails,
possibly because of the failure of one of

the activities inside it, then the activities
associated with Boundary (catch) events will
be triggered. Only one activity or node may
be associated with a Compensation Boundary
Event!

Start (catch) events are used when defining
an Compensation Event SubProcess inside
a Business Transaction. Compensation
Event SubProcesses are often used when
a subprocess is needed to compensate for
the Business Transaction as a whole (as
opposed to defining compensating activities
per node in the Business Transaction. This
subprocess is triggered when a Business
Transaction fails, just like activities attached
to Compensation Boundary (catch) events.

Compensation Intermediate and End events
are used within Business Transactions

in order to throw Compensation Events.
Often, logic in the Business Transaction
subprocesses will determine whether or not

213

Chapter 14. Exception Management

BPMN2 Element types Description

the Business Transaction has succeeded or
failed. If the subprocess has failed, then the
process will proceed to an Intermediate or
End Compensation Event in order to trigger
compensation for the Business Transaction
subprocess.

Cancel Events Cancel Events trigger cancellation of a
Business Transaction and can thus only be
used with a Business Transaction.

When a Cancel Event is thrown, this indicates
that the Business Transaction should be
cancelled. Entities involved in the Business
Transaction are then informed (via a
TransactionProtocol Cancel Message) that
the Business Transaction has been cancelled.

Cancellation of a Business Transaction
implicitly triggers compensation of the
Business Transaction.

See the sources mentioned above for the
differences between Error Events (abortion of
a process), Cancel Events (cancellation) and
Compensate Events (compensation).

14.4. Technical Exceptions

Technical exceptions happen when a technical component of a business process acts in an
unexpected way. When using Java based systems, this often results in a literal Java Exception
being thrown by the system.

Technical components used in a process can fail in a way that can not be described using BPMN2.
In this case, it's important to handle these exceptions in expected ways.

The following types of code might throw exceptions:

* Any code that is present in the process definition itself
< Any code that is executed during a process and is not part of jBPM

« Any code that interacts with a technical component outside of the process engine
However, those are somewhat abstract defintions. We can narrow down the places at which an
exception might be thrown. Technical exceptions can occur at the following points:

214

Handling exceptions in WorkltemHandler instances

1. Code present in <script Task> nodes or in the jbpm-specific <onEntry> and <onExit>
elements

2. Code executed in Wor kI t enHandl| er s associated with <t ask> and task-type nodes
It is much easier to ensure correct exception handling for <t ask> and other task-type nodes that
use Wor ki t enHandl er implementations, than for code executed directly in a <scri pt Task>.

Exceptions thrown by <scri pt Task> can cause the process to fail in an unrecoverable fashion.
While there are certain things that you can do to contain the damage, a process that has failed in
this way can not be restarted or otherwise recovered. This also applies for other nodes in a process
definition that contain script code in the node definition, such as the <onEnt ry> and <onEkxi t >
elements.

When jBPM engine does throw an exception generated by the code in a <scri pt Task> the
exception thrown is a special Java exception called the Wor kf | owRunt i meExcept i on that contains
information about the process.

Warning

Again, exceptions generated by a <scr i pt Task> node (and other nodes containing
script code) will leave the process unrecoverable. In fact, often, the code that starts
the process itself will end up throwing the exception generated by the business
process, without returning a reference to the process instance.

For this reason, it's important to limit the scope of the code in these nodes to
operations dealing with process variables. Using a <scri pt Task> to interact with
a different technical component, such as a database or web service has significant
risks because any exceptions thrown will corrupt or abort the process.

<t ask> nodes, <servi ceTask> nodes and the rest of the t ask-type nodes are
explictly meant for interacting with other systems -- not <scri pt Task> nodes! Use
<t ask>-type nodes to interact with other technical components.

14.4.1. Handling exceptions in werkitentand er iNStances

Wor kil t enHandl er classes are used when your process interacts with other technical systems.
For an introduction to them and how to use them in processes, please see the Domain-specific
processes chapter.

215

Chapter 14. Exception Management

While you can build exception handling into your own Wr kil t emhandl er implementations,
there are also two “handler decorator” classes that you can use to wrap a Wor kil t emhandl er
implementation.

These two wrapper classes include logic that is executed when an exception is thrown during the
execution (or abortion) of a work item.

Table 14.2. Exception Handling ver ki t enHandl er wWrapper classes

Decorator classes in the Description

org. j bpm bpm2. handl er package

Si gnal | i ngTaskHandl er Decor at or This class wraps an existing
Wor kI t enHandl er implementation.
When the . executeWorklten(...)
or.abortWrklten(...) methods
of the original Wor k1 t enHandl er
instance throw an exception, the
Si gnal | i ngTaskHandl er Decor at or will
catch the exception and signal the process
instance using a configurable event type. The
exception thrown will be passed as part of the
event. This functionality can be used to signal
an Event SubProcess defined in the process
definition.

Loggi ngTaskHand! er Decor at or This class reacts to all exceptions thrown
by the . execut eWorklten(...) or
.abortWorklten(...) WorkltenHandl er
methods by logging the errors. It also saves
any exceptions thrown so to an internal list so
that they can be retrieved later for inspection
or further logging. Lastly, the content and
format of the message logged upon an
exception are configurable.

While the two classes described above should cover most cases involving exception handling, a
Java developer with some experience with jBPM should be able to create a Wor ki t entHandl er
that executes custom code upon an exception.

If you do decide to write a custom Wor ki t enHandl er that includes exception handling logic, keep
the following checklist in mind:

1. Are you catching all possible exceptions that you want to (and no more, or less)?

2. Are you making sure to either complete or abort the work item after an exception has been
caught? If not, are there mechanisms to retry the process later? Or are incomplete process
instances acceptable?

216

Technical Exception Examples

3. What other actions should be taken when an exception is caught? Do you want to simply log
the exception, or is it also important to interact with other technical systems? Do you want to
trigger a (BPMN2) subprocess that will handle the exception?

Important

When you use the Workltemvanager to signal that the work item
has been completed or aborted, make sure to do that after you've
sent any signals to the process instance. Depending on how you've
defined your process, calling Wor kit emvanager . conpl eteWorklten(...) or
Wor ki t emvanager . abor t Wor ki t en(. . .) will trigger the completion of the process
instance. This is because the these methods trigger the jBPM process engine to
continue the process flow.

In the next section, we'll describe an example that uses the Si gnal | i ngTaskHandl er Decor at or
to signal an event subprocess when a work item handler throws an exception.

14.5. Technical Exception Examples

14.5.1. Example: service task handlers

We'll go through one example in this section, and then look quickly at how you can change it to
get the behavior you want. The example involves an <err or > event that's caught by an (Error)
Event SubProcess.

When an Error Event is thrown, the containing process will be interrupted. This means that after
the process flow attached to the error event has executed, the following will happen:

1. process execution will stop, and no other parts of the process will execute

2. the process instance will end up in an aborted state (instead of completed)

The example we'll go through contains an <err or >, but at the end of the secion, we'll show how
you can change the process to use a <si gnal > instead.

Tip

The code and BPMN2 process definition shown in the next
section are available in the jbpmexanples module. See the
org. j bpm exanpl es. except i ons. Except i onHandl i ngEr r or Exanpl e class for
the java code. The BPMN2 process definition is available in the excepti ons/
Except i onHandl i ngW t hErr or . bpmm2 file in the src/ nai n/ r esour ces directory
of the j bpm exanpl es module.

217

Chapter 14. Exception Management

14.5.1.1. BPMN2 configuration

Let's look at the BPMNZ2 process definition first. Besides the definition of the process, the BPMN2
elements defined before the actual process definition are also important. Here's an image of the
BPMNZ2 process that we'll be using in the example:

Excenotion Handler

Throw
Exception

Handle
Exception

Start

End subStart subEnd

Figure 14.1.

The BPMN2 process fragment below is part of the process shown above, and contains some
notes on the different BPMN2 elements.

Note

If you're viewing this on a web browser, you may need to widen your browser
window in order to see the "callout" or note numbers on the righthand side of the
code.

<itenDefinition id="_stringltenm structureRef="java.lang. String"/> o
<nessage i d="_nessage" itenRef="_stringltent/> 2
<interface i d="_servicelnterface"
nane="or g. j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_serviceOperation" name="throwException">
<i nMessageRef >_nessage</i nMessageRef > 2]
</ operati on>
</interface>
<error id="_exception" errorCode="code" structureRef="_exceptionlteni/> 3
<itenDefinition i d="_exceptionltenf
structureRef="org. ki e.api.runtine. process'-‘". Wor kil tent'/ >
<nessage i d="_excepti onMessage" itenRef="_exceptionltent/> 0
<interface i d="_handl i ngServi cel nterface"
nane="or g. j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_handl i ngServi ceOperation" name="handl eException">
<i nMessageRef >_excepti onMessage</ i nMessageRef > o

218

Example: service task handlers

</ operati on>
</interface>

<process id="ProcessWthExceptionHandlingError" name="Service Process"
i sExecut abl e="true" processType="Private">

<l-- properties -->
<property id="servicel nputltent itenBubjectRef="_stringltent/> L1
<property id="exceptionlnputltent itenSubjectRef="_exceptionlteni/> 2
<!-- main process -->

<startEvent id="_1" nane="Start" />

<serviceTask id="_2" name="Throw Exception” inplenmentation="C her"

oper ati onRef =" _servi ceCperati on">

<I-- rest of the serviceTask el enent and process definition... -->

<subProcess id="_X" name="Excepti on Handl er" triggeredByEvent="true" >
<startEvent id="_X-1" nane="subStart">
<dataQutput id="_X-1 Qutput" nane="event"/>
<dat aCut put Associ ati on>
<sour ceRef > X-1_Qut put </ sour ceRef >

<t ar get Ref >excepti onl nput | t enx/ t ar get Ref > 4]
</ dat aQut put Associ ati on>

<errorEventDefinition id="_X-1 ED 1" errorRef="_exception" /> 3
</ start Event >

<I-- rest of the subprocess definition... -->
</ subPr ocess>

</ process>

£ This <itenDefinition> element defines a data structure that we then use in the
servi cel nput I t emproperty in the process.

» This <message> element (1rst reference) defines a message that has a String as its content
(as defined by the <i t enDef i nti on> element on line above). The <i nterface> element
below it refers to it (2nd reference) in order to define what type of content the service (defined
by the <i nt er f ace>) expects.

© This <error > element (1rst reference) defines an error for use later in the process: an Event
SubProcess is defined that is triggered by this error (2nd reference). The content of the error
is defined by the <i t enDef i nti on> element defined below the <er r or > element.

M This <i tenDefi nti on> element (1rst reference) defines an item that contains a Wr kil t em
instance. The <message> element (2nd reference) then defines a message that uses this item
definition to define its content. The <i nt er f ace> element below that refers to the <nessage>
definition (3rd reference) in order to define the type of content that the service expects.

219

Chapter 14. Exception Management

In the process itself, a <pr oper t y> element (4th reference) is defined as having the content
defined by the initial <i t enDefi nti on>. This is helpful because it means that the Event
SubProcess can then store the error it receives in that property (5th reference).

O

14.5.1.2. signal | i ngTaskHandl er Decor at or and wrki t emHandl er configuration

Now that BPMNZ2 process definition is (hopefully) a little clearer, we can look at how to set up
jBPM to take advantage of the above BPMNZ2.

In the (BPMNZ2) process definition above, we define two different <servi ceTask> activities.
The org. j bpm bpm2. handl er. Servi ceTaskHandl er class is the default task handler class
used for <servi ceTask> tasks. If you don't specify a Wor kl t enHandl er implementation for a
<servi ceTask>, the Servi ceTaskHandl er class will be used.

In the code below, you'll see that we actually wrap or decorate the Ser vi ceTaskHandl er class with
a Si gnal | i ngTaskHandl er Decor at or instance. We do this in order to define the what happens
when the Ser vi ceTaskHandl er throws an exception.

In this case, the ServiceTaskHandl er will throw an exception because it's configured to
call the ExceptionService.throwExcepti on method, which throws an exception. (See the
_handl i ngServi cel nterf ace <i nt er f ace> element in the BPMN2.)

In the code below, we also configure which (error) event is sent to the process instance
by the Si gnal | i ngTaskHandl er Decor at or instance. The Si gnal | i ngTaskHandl er Decor at or
does this when an exception is thrown in a task. In this case, since we've defined an <er r or > with
the error code “code” in the BPMN2, we set the signal to Err or - code.

Important

When signalling the |BPM process engine with an event of some sort, you should
keep in mind the rules for signalling process events.

« Error events can be signalled by sending an "Error-" + <the er r or Code attribute
value> value to the session.

« Signal events can be signalled by sending the name of the signal to the session.

220

Example: service task handlers

i mport java.util.HashMap;
i mport java.util.Mp;

i mport org.jbpm bpm2. handl er. Servi ceTaskHandl er;

i mport org.jbpm bpm2. handl er. Si gnal | i ngTaskHandl er Decor at or ;
i mport org.jbpm exanpl es. exceptions. servi ce. Excepti onServi ce;
i nport org. ki e. api . Ki eBase;

i mport org.kie.api.io.ResourceType;

i mport org.kie.api.runtinme.Ki eSessi on;

i mport org.kie.api.runtime.process. Processl nstance;

i nport org.kie.internal.buil der.Know edgeBui | der;

i mport org.kie.internal.buil der. Know edgeBui | der Fact ory;
i mport org.kie.internal.io. ResourceFactory;

public class ExceptionHandl i ngError Exanpl e {

public static final void main(String[] args) {
runExanpl e();

public static Processlnstance runExanpl e() {
Ki eSessi on ksession = createKi eSession();

String event Type = "Error-code”; o

Si gnal | i ngTaskHandl er Decor at or si gnal | i ngTaskW apper 2
= new Si gnal | i ngTaskHandl er Decor at or (Ser vi ceTaskHandl| er. cl ass, event Type);

signal | i ngTaskW apper . set Wr kl t emExcept i onPar anet er Name(Except i onSer vi c®e. excepti onPar
ksessi on. get Wr kil t emvlnager () . r egi st er Wor kl t enHandl er (" Servi ce
Task", signallingTaskW apper);

Map<String, Object> parans = new HashMap<String, Object>();
par amns. put ("servi cel nputlten, "lInput to Original Service");
Processl nstance processlnstance = ksession. startProcess("ProcessWthExcepti onHandl i ngEr

return processlnstance;

private static Ki eSession createKieSession() {
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce(" excepti ons/
Excepti onHandl i ngW t hError. bprm2"), ResourceType. BPM\2) ;
Ki eBase kbase = kbui | der. newknow edgeBase() ;
return kbase. newKi eSessi on();

221

Chapter 14. Exception Management

f Here we define the name of the event that will be sent to the process instance if the wrapped
Wor kI t emHandl er implementation throws an exception. The event Type string is used when
instantiating the Si gnal | i ngTaskHandl er Decor at or class.

» Thenwe construct aninstance of the Si gnal | i ngTaskHand! er Decor at or class. In this case,
we simply give it the class name of the Wor kI t enHandl er implementation class to instantiate,
but another constructor is available that we can pass an instance of a Wor kil t enHandl er
implementation to (necessary if the Wor ki t emHandl er implementation does not have a no-
argument constructor).

A When an exception is thrown by the wrapped WrkltenHandler, the
Si gnal | i ngTaskHandl er Decor at or saves it as a parameter in the Wor kil t eminstance with
a parameter name that we configure the Si gnal | i ngTaskHandl er Decor at or to give it (see
the code below for the Except i onSer vi ce).

14.5.1.3. Excepti onservi ce Setup and configuration

In the BPMN2 process definition above, a service interface is defined that references the
Excepti onServi ce class:

<interface id="_handlingServicelnterface" nane="org.jbpm exanpl es. excepti ons. servi ce. Excepti on¢
<operation id="_handlingServiceQperation" nanme="handl eExcepti on">

In order to fill in the blanks a little bit, the code for the Except i onSer vi ce class has been included
below. In general, you can specify any Java class with the default or an other no-argument
constructor and have it executed during a <ser vi ceTask>

public class ExceptionService {
public static String exceptionParamneter Name = "ny. exception. paranet er. nane";

public void handl eExcepti on(Wrkltem workltem {
Systemout.printin("Handling exception caused by work item
+ workltem get Name() + "' (id: " + workltemagetld() + ")");

Map<String, Object> parans = workltem get Paraneters();
Throwabl e t hrowabl e = (Throwabl €) parans. get (excepti onPar anet er Nane) ;
t hrowabl e. pri nt St ackTrace();

public String throwException(String nessage) {
throw new Runti neException("Service failed with input: " + nmessage);

public static void set Excepti onParaneterNane(String exceptionParan) {
excepti onPar anet er Nane = excepti onParam

222

Example: service task handlers

14.5.1.4. Changing the example to use a <si gnal >

In the example above, the thrown Error Event interrupts the process: no other flows or activities
are executed once the Error Event has been thrown.

However, when a Signal Event is processed, the process will continue after the Signal Event
SubProcess (or whatever other activities that the Signal Event triggers) has been executed.
Furthermore, this implies that the the process will not end up in an aborted state, unlike a process
that throws an Error Event.

In the process above, we use the <err or > element in order to be able to use an Error Event:
<error id="_exception" errorCode="code" structureRef="_exceptionlteni/>

When we want to use a Signal Event instead, we remove that line and use a <si gnal > element;
<si gnal id="exception-signal" structureRef="_exceptionlten/>

However, we must also change all references to the "_excepti on" <er r or > so that they now refer

to the "excepti on- si gnal " <si gnal >.

That means that the <er r or Event Def i nti on> element in the <st art Event >,
<errorEventDefinition id="_X-1_ED 1" errorRef="_exception" />

must be changed to a <si gnal Event Def i nti on> which would like like this:

<signal EventDefinition id="_X-1_ED 1" si gnal Ref ="excepti on-signal"/>

In short, we have to make the following changes to the <st ar t Event > in the Event SubProcess:

1. It will now contain a <si gnal Event Def i nti on> instead of a <er r or Event Def i nti on>

2. The errorRef attribute in the <erroEvent Defi nti on> is now a si gnal Ref attribute in the
<si gnal Event Defi nti on>.

3. The i d attribute in the si gnal Ref is of course now the id of the <si gnal > element. Before it
was id of <err or > element.

223

Chapter 14. Exception Management

4. Lastly, when we signal the process in the Java code, we do not signal "Er r or - code" but simply
"excepti on-si gnal ", the i d of the <si gnal > element.

14.5.2. Example: logging exceptions thrown by bad <scri pt Task>
nodes

In this section, we'll briefly describe what's possible when dealing with <scri pt Task> nodes that
throw exceptions, and then quickly go through an example (also available in the j bpm exanpl es
module) that illustrates this.

14.5.2.1. Introduction

If you're reading this, then you probably already have problem: you're either expecting to run into
this problem because there are scripts in your process definition that might throw an exception,
or you're already running a process instance with scripts that are causing a problem.

Unfortunately, if you're running into this problem, then there is not much you can do. The only thing
that you can do is retrieve more information about exactly what's causing the problem. Luckily,
when a <scri pt Task> node causes an exception, it's wrapped in a Wor kf | owRunt i meExcept i on.

What type of information is available? The Wor kf | owRunt i neExcept i on instance will contain the
information outlined in the following table. All of the fields listed are available via the normal get *
methods.

Table 14.3. Information contained in vwer kf | owRunt i neExcept i on instances.

Field name Type Description

processl nst ancel d | ong The id of the

Processl nst ance instance in
which the exception occurred.
This Pr ocessl nst ance may
not exist anymore or be
available in the database if
using persistence!

processld String The id of the process
definition that was used

to start the process (i.e.
"ExceptionScri pt Task" in

ksession. start Process("Excepti onScri pt Tasl

)

nodel d | ong The value of the (BPMN2)
id attribute of the node that
threw the exception.

224

Example: logging exceptions thrown by bad <scriptTask> nodes

Field name Type Description

nodeNane String The value of the (BPMN2)
name attribute of the node
that threw the exception.

vari abl es Map<String, Object> The map containing the
variables in the process
instance (experimental).

nmessage String The short message indicating
what went wrong.

cause Thr owabl e The original exception that
was thrown.

14.5.2.2. Example: Exceptions thrown by a <scri pt Task>.

The following code illustrates how to extract extra information from a process instance that throws
a Wor kf | owRunt i meExcept i on exception instance.

i nport org.jbpm workfl ow. instance. Wr kf | owRunt i meExcepti on;
i mport org. ki e. api . Ki eBase;

i mport org.Kkie.api.io.ResourceType;

i mport org. kie.api.runtine.Ki eSessi on;

i nport org. kie.api.runtine.process. Processl nstance;

i mport org.kie.internal.buil der.Know edgeBui | der;

i mport org.kie.internal.buil der.Know edgeBui | der Fact ory;

i mport org.kie.internal.io.ResourceFactory;

public class Script TaskExcepti onExanpl e {
public static final void main(String[] args) {

r unExanpl e() ;

public static void runExanpl e() {
Ki eSessi on ksessi on = creat eKi eSession();
Map<String, Object> parans = new HashMap<String, Object>();

String varNane = "var1l";
parans. put (varNane , "val ueOne");
try {

Processl nst ance processlnstance = ksession. startProcess("ExceptionScri pt Task",

} catch(Workfl owRunti neException wre) {
String nmeg = "An exception happened in
+ "process instance [" + wfre.getProcesslnstancel d()
+ "] of process [" + wire.getProcessld()
+ "] in node [id: " + wfre.getNodeld()
+ ", name: " + wfre.get NodeNane()

225

par

Chapter 14. Exception Management

" "

+ "] and variable + var Name + had the val ue
[" + wfre. getVari abl es(). get (var Nane)
+

)

System out . println(nsg);

private static Ki eSession createKieSession() {
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce("excepti ons/
Scri pt TaskExcepti on. bprm2"), Resour ceType. BPM\2) ;
Ki eBase kbase = kbui |l der. newkKnow edgeBase() ;
return kbase. newKi eSessi on();

226

Chapter 15.

Chapter 15. Flexible Processes

Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be
a growing need amongst end users for more flexible and adaptive business processes, without
ending up with overly complex solutions. Everyone seems to agree that using a process-centric
approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge
workers" no longer want to be locked into rigid processes but wants to have the power and flexibility
to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition
of what it might or might not mean, as this has been a hot topic for discussion, it refers to the
basic idea that many applications in the real world cannot really be described completely from
start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes
a different approach: instead of trying to model what should happen from start to finish, let's give
the end user the flexibility to decide what should happen at runtime. In its most extreme form for
example, case management doesn't even require any process definition at all. Whenever a new
case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where
care plans can be used to describe how patients should be treated in specific circumstances,
but people like general practitioners still need to have the flexibility to add additional steps and
deviate from the proposed plan, as each case is unique. And there are similar examples in claim
management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we
don't model any process up front), you still need a lot of the other features a BPM system (usually)
provides: there still is a clear need for audit logs, monitoring, coordinating various services,
human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are
somewhere in between, or might even evolve from case management to more structured business
process over time (when we for example try to extract common approaches from many cases).
If we can offer flexibility as part of our processes, can't we let the users decide how and where
they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your
processes. The first example shows a care plan that shows the tasks that should be performed
when a patient has high blood pressure. While a large part of the process is still well-structured,
the general practitioner can decide himself which tasks should be performed as part of the sub-
process. And he also has the ability to add new tasks during that period, tasks that were not
defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc
sub-process to model this kind of flexibility, possibly augmented with rules or event processing to
help in deciding which fragments to execute.

227

Chapter 15. Flexible Processes

AR Sl PV

| B Moaors SP | |

- |:fhaan'.umrm]
0= -0
-6

mO _{

'

®

Figure 15.1.

The second example actually goes a lot further than that. In this example, an internet provider
could define how cases about internet connectivity problems will be handled by the internet
provider. There are a number of actions the case worker can select from, but those are simply
small process fragments. The case worker is responsible for selecting what to do next and can
even add new tasks dynamically. As you can see, there is not process from start to finish anymore,
but the user is responsible for selecting which process fragments to execute.

O —{ Crieabe Probdem Eme]

I Update Probilem Dtscrp‘ﬂun]

[B Perfarrn Systern Diagnostics]—{Aﬂ.ﬂy‘!ﬂ- CHagnastics H.:l ieepnet DIE-QI'IGS-{H'.S]

B Comtact Cursman

——@®
sodvid
[U Reguiost Techaician H I Technician Hsn}—~®
\—{_ | Lipdate c;seJ—-[i Folow LIpJ
®

@] @

Figure 15.2.

228

And in its most extreme form, we even allow you to create case instances without a process
definition, where what needs to be performed is selected purely at runtime. This however doesn't
mean you can't figure out anymore what 's actually happening. For example, meetings can be
very adhoc and dynamic, but we usually want a log of what was actually discussed. The following
screenshot shows how our regular audit view can still be used in this case, and the end user
could then for example get a lot more info about what actually happened by looking at the data
associated with each of those steps. And maybe, over time, we can even automate part of that
by using a semi-structured process.

— = started: Company Meeting
= 4] List Attendees
#1 Agenda Overview

#] Agenda Topic: New Hires

+#] Agenda Topic: Customer Feedback
] Agenda Topic Moved to Next Meeting: Company Party

] Questions?

=] Question: Fix Problems with Coffee Machine?

=«_ completed: Company Meeting

Figure 15.3.

229

230

Chapter 16.

Chapter 16. Business Activity
Monitoring

You need to actively monitor your processes to make sure you can detect any anomalies and
react to unexpected events as soon as possible. Business Activity Monitoring (BAM) is concerned
with real-time monitoring of your processes and the option of intervening directly, possibly even
automatically, based on the analysis of these events.

jBPM allows users to define reports based on the events generated by the process engine, and
possibly direct intervention in specific situations using complex event processing rules (Drools
Fusion), as described in the next two sections. Future releases of the jBPM platform will include
support for all requirements of Business Activity Monitoring, including a web-based application
that can be used to more easily interact with a running process engine, inspect its state, generate
reports, etc.

16.1. Reporting

By adding a history logger to the process engine, all relevant events are stored in the database.
This history log can be used to monitor and analyze the execution of your processes. We are
using the Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key
performance indicators. Its easy to define your own reports yourself, using the predefined data
sets containing all process history information, and any other data sources you might want to add
yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview
your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to
define your own reports.) The following screen shot shows a sample on how to create such a chart.

231

Chapter 16. Business Activity...

i Edit Chart 3

Edit Chart

Select the data to display in the chart and bind it to the series. ols

lii¥ Select Chart Type | B Select Data [lgf Format Chart

Chart Preview

Average Completion Time (seconds)
100
m B0 ‘
Value (Y) Series U
[Ser\es 0 =] 0 ‘ Optional Y Series Grouping:
F|| B
% = |DateTimeSpan.seconds(ro| 40 Sl] .
‘ J
(.
20 ‘ 0.5
o
2/12/08 12:00 PM 2/12/08 400 PM
L Category (X) Series: [row["STARTiDATE"]] J
Select Data
) Inherit Data from Container
@ Use Data from |m E]|
Data Preview
Use the right-click menu or drag the column into series fields
PROCESSINSTANCE\D][PROCESSID HSTARTiDATE HENDiDATE l
1 org drools exanFeb 12, 2009 5: Feb 12, 2009 5:
2 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4:
3 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4: [FIES]
4 org.drools.exanFeb 12, 2009 2: Feb 12, 2009 2: []
Parameters
5 org.drools.exanFeb 12, 2009 1ZFeb 12, 2009 1z
" - — """|) [Data Binding]
@ [< Back l [Mext > l [Finish l [Cancel

Figure 16.1. Creating areport using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of
requests per hour and the average completion time of the request during that hour. These charts
could be used to check for an unexpected drop or rise of requests, an increase in the average
processing time, etc. These charts could signal possible problems before the situation really gets
out of hand.

232

Direct Intervention

9Procls

Eventing Report

Number of Requests

1 1

February 12, 2009 February 12, 2009 February 12, 2009 February 12, 2009
1200 14:00 15:00 17:00

Average Completion Time (seconds)

505

30.5
o 1 1
2012000 12:00 PM 2/12/06 2:00 PM 2112405 4:00 PM 2/12/05 500 PM

Feb 13, 2009 12:56 AM

Figure 16.2. The eventing report

16.2. Direct Intervention

Reports can be used to visualize an overview of the current state of your processes, but they
rely on a human actor to take action based on the information in these charts. However, we allow
users to define automatic responses to specific circumstances.

Drools Fusion provides numerous features that make it easy to process large sets of events. This
can be used to monitor the process engine itself. This can be achieved by adding a listener to
the engine that forwards all related process events, such as the start and completion of a process
instance, or the triggering of a specific node, to a session responsible for processing these events.
This could be the same session as the one executing the processes, or an independent session
as well. Complex Event Processing (CEP) rules could then be used to specify how to process
these events. For example, these rules could generate higher-level business events based on a
specific occurrence of low-level process events. The rules could also specify how to respond to
specific situations.

The next section shows a sample rule that accumulates all start process events for one specific
order process over the last hour, using the "sliding window" support. This rule prints out an error

233

Chapter 16. Business Activity...

message if more than 1000 process instances were started in the last hour (e.g., to detect a
possible overload of the server). Note that, in a realistic setting, this would probably be replaced
by sending an email or other form of notification to the responsible instead of the simple logging.

decl are ProcessStartedEvent
@ol e(event)
end

di al ect "nvel "

rul e "Nunber of process instances above threshol d"
when
Nunmber (nbProcesses : intValue > 1000)
from accumul at e(
e: ProcessSt art edEvent (processl nst ance. processl d ==
"com sanpl e. order. Order Process")
over w ndow: si ze(1h),
count(e))
t hen
Systemerr.println("WARNING Nunber of order processes in the | ast hour above
1000: " +
nbProcesses);
end

These rules could even be used to alter the behavior of a process automatically at runtime,
based on the events generated by the engine. For example, whenever a specific situation is
detected, additional rules could be added to the Knowledge Base to modify process behavior. For
instance, whenever a large amount of user requests within a specific time frame are detected, an
additional validation could be added to the process, enforcing some sort of flow control to reduce
the frequency of incoming requests. There is also the possibility of deploying additional logging
rules as the consequence of detecting problems. As soon as the situation reverts back to normal,
such rules would be removed again.

234

Chapter 17.

Chapter 17. Core Engine: Examples

17.1. iBPM Examples

There is a separate jBPM examples module that contains a set of example processes that show
how to use the jBPM engine and the behavior or the different process constructs as defined by
the BPMN 2.0 specification.

To start using these, simply unzip the file somewhere and open up your Eclipse development
environment with all required plugins installed. If you don't know how to do this yet, take a look
at the installer chapter, where you can learn how to create a demo environment, including a fully
configured Eclipse IDE, using the jBPM installer. You can also take a look at the Eclipse plugin
chapter if you want to learn how to manually install and configure this.

To take a look at the examples, simply import the downloaded examples project into Eclipse (File
-> Import ... -> Under General: Existing Projects into Workspace), browse to the folder where you
unzipped the jBPM examples artefact and click finish. This should import the examples project in
your workspace, so you can start looking at the processes and executing the classes.

17.2. Examples

The examples module contains a number of examples, from basic to advanced:

« Looping: An example that shows how you can use exclusive gateways to loop a part your
process until the loop condition is no longer valid. The process takes the 'count’ (the number of
times the loop needs to be repeated) as input and simply prints out a statement during every
loop until the process is completed.

* Multiinstance: This example shows how to execute a sub-process for each element in a
collection. The process takes a collection of names as input and creates a review task for a
sales representative for each person in that list. The process completes if the task has been
executed for every person on that list.

« Evaluation: A performance evaluation process that shows how to integrate human actors in the
process. While the basic example simply shows tasks assigned to predefined users, the more
advanced version shows data passing from the process to the task and back, group assignment,
task delegation, etc.

« HumanTask: An advanced example when using human tasks. It shows how to do data passing
between tasks, task forms, swimlanes, etc. This example can also be deployed to the Guvnor
repository (including all the forms etc.) and executed on the jBPM console out-of-the-box.

* Request: An advanced example that shows various ways in which processes and rules can
work together, like a rule task for invoking validation rules, rules as expression language for

235

Chapter 17. Core Engine: Examples

constraints inside the process, rules for exception handling, event processing for monitoring,
ad hoc rules for more flexible processes, etc.

17.3. Unit tests

The examples project contains a large number of simple BPMN2 processes for each of the
different node types that are supported by jBPM5. In the junit folder under src/main/resources
you can for example find process examples for constructs like a conditional start event, exclusive
diverging gateways using default connections, etc. So if you're looking for a simple working
example that shows the behavior of one specific element, you can probably find one here. The
folder already contains well over 50 sample processes. Simply double-click them to open them
in the graphical editor.

Each of those processes is also accompanied by a small junit test that tests the implementation
of that construct. The org.joppm.examples.junit. BPMN2JUnitTests class contains one test for each
of the processes in the junit resources folder. You can execute these tests yourself by selecting
the method you want to execute (or the entire class) and right-click and then Run as -> JUnit test.

Check out the chapter on testing and debugging if you want to learn more how to debug these
example processes.

236

Chapter 18.

Chapter 18. Testing and debugging

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

18.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific
use cases, for example test the output based on the existing input. To simplify unit testing, jBPM
includes a helper class called JbpmJUnitTestCase (in the jopm-bpmn2 test module) that you can
use to greatly simplify your junit testing, by offering:

 helper methods to create a new knowledge base and session for a given (set of) process(es)
» you can select whether you want to use persistence or not

« assert statements to check

the state of a process instance (active, completed, aborted)

which node instances are currently active

» which nodes have been triggered (to check the path that has been followed)

get the value of variables
. etc.

For example, conside the following hello world process containing a start event, a script task and
an end event. The following junit test will create a new session, start the process and then verify
whether the process instance completed successfully and whether these three nodes have been

executed.

public class MyProcessTest extends JbpmlUnit Test Case {

public void testProcess() {
/'l create your session and | oad the given process(es)
St at ef ul Knowl edgeSessi on ksessi on = cr eat eKnow edgeSessi on("sanpl e. bprm") ;

237

Chapter 18. Testing and debugging

/| start the process
Processl nstance processl nstance = ksession.startProcess("com sanpl e. bprm. hel | 0");
/'l check whet her the process instance has conpl eted successfully
assert Processl nst anceConpl et ed(processl nstance. getld(), ksession);
/'l check whet her the gi ven nodes were executed during the process execution
assert NodeTri gger ed(processl nstance. getld(), "StartProcess", "Hello", "EndProcess");

18.1.1. Helper methods to create your session

Several methods are provided to simplify the creation of a knowledge base and a session to
interact with the engine.

» createKnowledgeBase(String... process): Returns a new knowledge base containing all the
processes in the given filenames (loaded from classpath)

« createKnowledgeBase(Map<String, ResourceType> resources) :Returns a new knowledge
base containing all the resources (not limited to processes but possibly also including other
resource types like rules, decision tables, etc.) from the given filenames (loaded from classpath)

» createKnowledgeBaseGuvnor(String... packages): Returns a new knowledge base containing
all the processes loaded from Guvnor (the process repository) from the given packages

« createKnowledgeSession(KnowledgeBase kbase): Creates a new statefull knowledge session
from the given knowledge base

« restoreSession(StatefulKnowledgeSession ksession, boolean noCache) : completely restores
this session from database, can be used to recreate a session to simulate a critical failure and
to test recovery, if noCache is true, the existing persistence cache will not be used to restore
the data

18.1.2. Assertions

The following assertions are added to simplify testing the current state of a process instance:

» assertProcessinstanceActive(long processinstanceld, StatefulKnowledgeSession ksession):
check whether the process instance with the given id is still active

 assertProcessinstanceCompleted(long processlinstanceld, StatefulKnowledgeSession
ksession): check whether the process instance with the given id has completed successfully

 assertProcessinstanceAborted(long processinstanceld, StatefulkKnowledgeSession ksession):
check whether the process instance with the given id was aborted

238

Testing integration with external services

» assertNodeActive(long processinstanceld, StatefulKnowledgeSession ksession, String...
name): check whether the process instance with the given id contains at least one active node
with the given node name (for each of the given names)

« assertNodeTriggered(long processinstanceld, String... nodeNames) : check for each given
node name whether a node instance was triggered (but not necessarily active anymore) during
the execution of the process instance with the given

» getVariableValue(String name, long processinstanceld, StatefulkKnowledgeSession ksession):
retrieves the value of the variable with the given name from the given process instance, can
then be used to check the value of process variables

18.1.3. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the
advantages of our domain-specific process approach is that you can specify yourself how to
actually execute your own domain-specific nodes, by registering a handler. And this handler can
be different depending on your context, allowing you to use testing handlers for unit testing your
process. When you are unit testing your business process, you can register test handlers that
then verify whether specific services are requested correctly, and provide test responses for those
services. For example, imagine you have an email node or a human task as part of your process.
When unit testing, you don't want to send out an actual email but rather test whether the email
that is requested contains the correct information (for example the right to email, a personalized
body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

239

Chapter 18. Testing and debugging

Q;{ e]_>®sent

failed

5| Failed

public void testProcess2() {
/'l create your session and | oad the given process(es)
St at ef ul Knowl edgeSessi on ksession = creat eKnow edgeSessi on("sanpl e2. bprm") ;
/'l register a test handler for "Enmil"
Test Wr kl t enHandl er testHandl er = new Test Wor kl t enHandl er () ;
ksessi on. get Wor kl t emvanager (). regi st er Wrkl t enHandl er ("Enmi | ", testHandl er);
[/ start the process
Processl nst ance processlnstance = ksession. startProcess("com sanpl e. bpmrm. hel | 02");
assert Processl nst anceActi ve(processl nstance. getld(), ksession);
assert NodeTri gger ed(processl nstance.getld(), "StartProcess", "Email");
/'l check whether the enmil has been requested
Wor kltem workl tem = t est Handl er. get Wor kl t en() ;
assert Not Nul | (workl ten;
assert Equal s("Emai | ", workltem get Name());
assert Equal s(" nme@rai | . cont', workltem get Paranet er (" Fron'));
assert Equal s("you@ai | . cont', workltem get Paraneter ("To"));
/1 notify the engine the email has been sent
ksessi on. get Wr kI t emvanager () . abort Workl t en{wor kl tem get1d());
assert Processl nst anceAbort ed(processl nstance. getl1d(), ksession);
assert NodeTri gger ed(processlnstance.getld(), "Gateway", "Failed", "Error");

18.1.4. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,
the junit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the junit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

By default, persistence is turned on. To turn off persistence, simply pass a boolean to the super
constructor when creating your test case, as shown below:

240

Debugging

public class MyProcessTest extends JbpmlUnit Test Case {

public MyProcessTest() {
/1 configure this tests to not use persistence in this case
super (fal se);

18.2. Debugging

This section describes how to debug processes using the Eclipse plugin. This means that the
current state of your running processes can be inspected and visualized during the execution.
Note that we currently don't allow you to put breakpoints on the nodes within a process directly.
You can however put breakpoints inside any Java code you might have (i.e. your application code
that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be
evaluated in the context of a process). At these breakpoints, you can then inspect the internal
state of all your process instances.

When debugging the application, you can use the following debug views to track the execution
of the process:

1. The process instances view, showing all running process instances (and their state). When
double-clicking a process instance, the process instance view visually shows the current state
of that process instance at that point in time.

2. The human task view, showing the task list of the given user (fill in the user id of the actor and
click refresh to view all the tasks for the given actor), where you can then control the life cycle
of the task, for example start and complete it.

3. The audit view, showing the audit log (note that you should probably use a threaded file logger
if you want to session to save the audit event to the file system on regular intervals, so the audit
view can be update to show the latest state).

4. The global data view, showing the globals.

5. Other views related to rule execution like the working memory view (showing the contents (data)
in the working memory related to rule execution), the agenda view (showing all activated rules),
etc.

18.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows
that there is currently one running process (instance), currently executing one node instance, i.e.
business rule task. When double-clicking a process instance, the process instance viewer will

241

Chapter 18. Testing and debugging

graphically show the progress of the process instance. An example where the process instance
is waiting for a human actor to perform a self-evaluation task is shown below.

El console | ¥ Tasks "'1:] Agenda View "'1:] Global Data View "'1:] Process Instances View &3 'ri:] Working Memory View

=| & [1]=RuleFlowProcessInstance {d=2087)
& id=1
processMame= Tuleflow”
processId= "com.sample.ruleflow™
nodelnstances= Object]] {id=2092)
+- & [1]= RuleSetModelnstance (jd=2093)

.,.
[

When you double-click a process instance in the process instances view and the process instance
view complains that it cannot find the process, this means that the plugin wasn't able to find the
process definition of the selected process instance in the cache of parsed process definitions. To
solve this, simply change the process definition in question and save again (so it will be parsed)
or rebuild the project that contains the process definition in question.

) Process Instance 3 1) Audt §= Outline = O

1 = Evaluation[com.sample. evaluation] 23

o HR Evaluation

;@ PM Evaluation

18.2.2. The Human Task View

The Human Task View can connect to a running human task service and request the relevant
tasks for a particular user (i.e. the tasks where the user is either a potential owner or the tasks that
the user already claimed and is executing). The life cycle of these tasks can then be executed, i.e.
claiming or releasing a task, starting or stopping the execution of a task, completing a task, etc.
A screenshot of this Human Task View is shown below. You can configure which task service to
connect to in the Drools Task preference page (select Window -> Preferences and select Drools
Task). Here you can specify the url and port (default = 127.0.0.1:9123).

EJ console |] Tasks | §)) Agenda | () Global Data | () Working Memory | §) Process Instances | 5% Human Task View 23 i =8
Userld krisv Create

Owner Created On Comment

8-aug-2009 1:28:09 Self evaluation

242

The Audit View

18.2.3. The Audit View

The audit view, showing the audit log, which is a log of all events that were logged from the session.
To create a logger, use the KnowledgeRuntimeLoggerFactory to create a new logger and attach
it to a session. Note that you should probably use a threaded file logger if you want to session
to save the audit event to the file system on regular intervals, so the audit view can be update to
show the latest state. When creating a threaded file logger, you can specify the name of the file
where the audit log should be created and the interval after which event should be saved to the
file (in milliseconds). Be sure to close the logger after usage.

Know edgeRunti neLogger | ogger = Know edgeRunti neLogger Factory
. newThr eadedFi | eLogger (ksession, "logdir/nylogfile", 1000);

/1 do sonething with the session here

| ogger. cl ose();

To open up an audit tree in the audit view, open the selected log file in the audit view or simply
drag the file into the audit view. A tree-based view is generated based on the audit log. An event
is shown as a subnode of another event if the child event is caused by (a direct consequence of)
the parent event. An example is shown below.

= =, RuleFlow started: ruleflow[com.sample . ruleflow]
= #] RuleFlow node triggered: Start in process ruleflow[com sample ruleflow]
=) RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
= 4 RuleFlow node triggered: End in process ruleflow[com.sample.ruleflow]

= RuleFlow completed: ruleflow[com sample ruleflow]

243

244

Chapter 19.

Chapter 19. Process Repository

A process repository is an important part of your BPM architecture if you start using more and
more business processes in your applications and especially if you want to have the ability to
dynamically update them. The process repository is the location where you store and manage
your business processes. Because they are not deployed as part of your application, they have
their own life cycle, meaning you can update your business processes dynamically, without having
to change the application code.

Note that a process repository is a lot more than simply a database to store your process
definitions. It almost acts as a combination of a source code management system, content
management system, collaboration suite and development and testing environment. These are
the kind of features you can expect from a process repository:

 Persistent storage of your processes so the latest version can always easily be accessed from
anywhere, including versioning

 Build and deploy selected processes

» User-friendly (web-based) interface to manage, update and deploy your processes (targeted to
business users, not just developers)

« Authentication / authorization to make sure only people that have the right role can see and/
or edit your processes

» Categorization and searching

« Scenario testing to make sure you don't break anything when you change your process
» Collaboration and other social features like comments, notifications on change, etc.

« Synchronization with your development environment

Actually, it would be better to talk about a knowledge repository, as the repository will not only store
your process definitions, but possibly also other related artefacts like task forms, your domain
model, associated business rules, etc. Luckily, we don't have to reinvent the wheel for this, as the
Guvnor project acts as a generic knowledge repository to store any type of artefacts and already
supports most of these features.

The following screencast shows how you can upload your process definition to Guvnor, along
with the process form (that is used when you try to start a new instance of that process to collect
the necessary data), task forms (for the human tasks inside the process), and the process image
(that can be annotated to show runtime progress). The jBPM-console is configured to get all this
information from Guvnor whenever necessary and show them in the console.

245

Chapter 19. Process Repository

[http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf]

Figure 19.1.

If you use the installer, that should automatically download and install the latest version of Guvnor
as well. So simply deploy your assets (for example using the Guvnor Eclipse integration as shown
in the screencast, also automatically installed) to Guvnor (taking some naming conventions into
account, as explained below), build the package and start up the console.

The current integration of jBPM-console with Guvnor uses the following conventions to find the
artefacts it needs:

« jBPM-console looks up artefacts from all available Guvnor packages (it does not look for
assets in the Global Area). You can alternatively modify the guvnor.packages property in
jBPM.console.properties to limit the lookup to only the packages you need, for example:
guvnor.packages=defaultPackage, myPackageA, myPackageB

« A process should define the correct package name attribute, which needs to match the Guvnor
package name it belongs to (otherwise you won't be able to build your package in Guvnor)

» Don't forget to build all of your packages in Guvnor before trying to view available processes in
the console. Otherwise jBPM-console will not be able to retrieve the pkg from Guvnor.

« Currently, the console will load the process definitions the first time the list of processes is
requested in the console. At this point, automatic updating from Guvnor when the package is
rebuilt is turned off by default, so you will have to either configure this or restart the application
server to get the latest versions.

246

http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf

Knowledge Agent

» Task forms that should be associated with a specific process definition should have the name
"{processDefinitionld}.ftI" or "{processDefinitionld}-taskform.ftl"

« Task forms for a specific human task should have the name "{taskName}.ftl" or "{taskName}-
taskform.ftl"

« The process diagram for a specific process should have the name "“{processDefinitionld}-
image.png"

» By default jBPM-console looks up your Guvnor instance under http://localhost:8080/drools-
guvnor. To change this, locate jbpm.console.properties and modify the guvnor.protocol,
guvnor.host, and guvnor.subdomain property values as needed

» jBPM-console communicates with Guvnor via its REST api. The default connect and read
timeouts for this communication are set to 10 seconds via the guvnor.connect.timeout,
and guvnor.read.timeout properties in joppm.console.properties. You can edit values of these
properties to set your specific timeout values (in milliseconds)

* Ifyou are using Guvnor with JAAS authentication enabled, jBPM-console uses by default admin/
admin credentials. To change this information again locate jbpm.console.properties and change
the guvnor.usr, and guvnor.pwd property values.

If you follow these rules, your processes, forms and images should show up without any issues
in the jBPM-console.

19.1. Knowledge Agent

When you use the jBPM console, it will be using a knowledge agent to automatically update the
knowledge base inside the console based on the resources available on the Guvnor repository.
But you could also create a knowledge base from packages built on Guvnor yourself:

Resour ceChangeScanner Confi gurati on sconf = ResourceFactory. get Resour ceChangeScanner Ser vi ce() . ne
sconf. set Property("drool s.resource. scanner.interval", "10"); // every 10s
Resour ceFact ory. get Resour ceChangeScanner Servi ce() . configure(sconf);
Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();
Resour ceFact ory. get Resour ceChangeNot i fierService().start();
Knowl edgeAgent Confi gurati on aconf = Know edgeAgent Fact ory. newkKnowl edgeAgent Confi guration();
aconf . set Property("drool s. agent.newl nstance", "false");
Know edgeAgent kagent = Know edgeAgent Fact ory. newknowl edgeAgent (" Guvnor
changeset”, aconf);
kagent . appl yChangeSet (Resour ceFact ory. newCl assPat hResour ce(" changeset Guvnor. xm ")) ;
Knowl edgeBase kbase = kagent. get Know edgeBase() ;

<change-set xm ns='http://drools.org/drools-5.0/change-set’ xmns:xs="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance’ xs: schemalLocati on="http://drools. org/
dr ool s- 5. 0/ change- set http://anonsvn. jboss. org/repos/| abs/| abs/j bossrul es/
trunk/ dr ool s-api / src/ mai n/ resour ces/ change-set-1. 0. 0. xsd' >

247

Chapter 19. Process Repository

<add>
<resource source="http://| ocal host: 8080/ dr ool s- guvnor/
org. drool s. guvnor . Guvnor/ package/ def aul t Package/
LATEST' t ype=' PKG basi cAut henti cati on=' enabl ed' user nane="' admni n' passwor d=' adm n"' /
>
</ add>
</ change- set >

248

Chapter 20.

Chapter 20. Integration with Maven,
OSGi, Spring, etc.

jBPM can be integrated with a lot of other technologies. This chapter gives an overview of a few
of those that are supported out-of-the-box. Most of these modules are developed as part of the
droolsjbpme-integration module, so they work not only for your business processes but also for
business rules and complex event processing.

20.1. Maven

By using a Maven pom.xml to define your project dependencies, you can let maven get your
dependencies for you. The following pom.xml is an example that could for example be used to
create a new Maven project that is capable of executing a BPMN2 process:

<?xm version="1.0" encodi ng="utf-8"?>
<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>or g. j bpn/ gr oupl d>
<artifact!|d>j bpm maven- exanpl e</artifact|d>
<nanme>j BPM Maven Proj ect </ nane>

<ver si on>1. 0- SNAPSHOT</ ver si on>

<repositories>
<l-- use this repository for stable rel eases -->
<r eposi tory>
<i d>j boss- publ i c-repository-group</id>
<name>JBoss Public Maven Repository G oup</nanme>
<url >https://repository.jboss. org/ nexus/ content/groups/ public/</url>
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
<l-- use this repository for snapshot rel eases -->
<reposi tory>
<i d>j boss-snapshot - reposi t ory- group</i d>

249

Chapter 20. Integration with ...

<nanme>JBoss SNAPSHOT Maven Repository G oup</nane>
<url >https://repository.|boss. org/ nexus/content/repositories/snapshots/</
url >
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>f al se</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>t rue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</repository>

</repositories>

<dependenci es>
<dependency>
<groupl d>or g. j bpnx/ gr oupl d>
<artifactld> bpm bpm2</artifactld>
<ver si on>5. 4. 0. Fi nal </ ver si on>
</ dependency>
</ dependenci es>

</ pr oj ect >

To use this as the basis for your project in Eclipse, either use M2Eclipse or use "mvn
eclipse:eclipse" to generate eclipse .project and .classpath files based on this pom.

20.2. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These
manifest files are automatically generated by the build. You can plug these jars directly into an
OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar
in OSGi is called a bundle and has its own Classloader. Each bundle specifies the packages it
exports (makes publicly available) and which packages it imports (external dependencies). OSGi
will use this information to wire the classloaders of different bundles together; the key distinction is
you don't specify what bundle you depend on, or have a single monolithic classpath, instead you
specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed
and it'll wire up the correct one. Further to this Bundles can register services for other bundles to
use. These services need initialisation, which can cause ordering problems - how do you make
sure you don't consume a service before its registered? OSGi has a number of features to help
with service composition and ordering. The two main ones are the programmatic ServiceTracker

250

OSGi

and the xml based Declarative Services. There are also other projects that help with this; Spring

DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

e jbpm-flow
¢ jbpm-flow-builder

e jbpm-bpmn2

For example, the following code example shows how you can look up the necessary services in
an OSGi environment using the service registry and create a session that can then be used to

start processes, signal events, etc.

Ser vi ceRef er ence servi ceRef =

bundl eCont ext . get Ser vi ceRef erence(Servi ceRegi stry. cl ass. get Name());
Servi ceRegi stry registry = (Servi ceRegi stry)
bundl eCont ext . get Servi ce(serviceRef);

Know edgeBui | der Fact oryServi ce know edgeBui | der Fact oryServi ce =

regi stry. get(Know edgeBui | der Fact oryServi ce. cl ass);

Know edgeBaseFact oryServi ce know edgeBaseFact or yServi ce =

regi stry. get(Know edgeBaseFact oryServi ce. cl ass);

Resour ceFact or ySer vi ce resour ceFact orySer vi ce =

regi stry. get(ResourceFactoryService.class);

Knowl edgeBaseConfi gurati on kbaseConf =

know edgeBaseFact or ySer vi ce. newkKnow edgeBaseConfi gurati on(
get Cl ass(). get d assLoader ());

Knowl edgeBui | der Confi gurati on kbConf =

know edgeBui | der Fact or ySer vi ce. newkKnow edgeBui | der Confi gur ati on(
get Cl ass() . get d assLoader ());

Knowl edgeBui | der kbui | der =

know edgeBui | der Fact or ySer vi ce. newkKnow edgeBui | der (kbConf);
kbui | der. add(resourceFactoryService. newd assPat hResource("MProcess. bpmm",
Dumy. cl ass), ResourceType. BPM\2);

kbaseConf = know edgeBaseFact oryServi ce. newknow edgeBaseConfi guration(null,
get C ass().get d assLoader ());

Knowl edgeBase kbase = know edgeBaseFact or ySer vi ce. newkKnowl edgeBase(kbaseConf);

kbase. addKnow edgePackages(kbuil der. get Know edgePackages());

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;

251

nul |,

nul |,

Chapter 20. Integration with ...

20.3. Spring

A Spring XML configuration file can be used to easily define and configure knowledge bases
and sessions in a Spring environment. This allows you to simply access a session and invoke
processes from within your Spring application.

For example, the following configuration file sets up a new session based on a knowledge base
with one process definition (loaded from the classpath).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns:j bpme"http://drools. org/schema/ drool s-spring”

xsi : schemalLocati on="http://ww. spri ngfranework. org/ schena/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd

http://drool s. org/ schema/ dr ool s-spring org/drool s/

cont ai ner/spring/ drool s-spring-1.2.0.xsd">

<j bpm kbase i d="kbase" >
<j bpm r esour ces>
<j bpm resource type="BPM\2" source="cl asspath: Hel | oWor| d. bprm2"/ >
</j bpm r esour ces>
</j bpm kbase>

<j bpm ksessi on i d="ksessi on" type="stateful" kbase="kbase" />

</ beans>

The following piece of code can be used to load the above Spring configuration, retrieve the
session and start the process.

Cl assPat hXm Appl i cati onCont ext context =

new Cl assPat hXm Appl i cati onCont ext ("spring-conf.xm");
St at ef ul Knowl edgeSessi on ksessi on = (Stateful Know edgeSessi on) cont ext. get Bean("ksessi on");
ksessi on. start Process("com sanpl e. Hel | oWor | d");

Note that you can also inject the session in one of your domain objects, for example by adding
the following fragment in the configuration file.

<bean id="nmyCbject" class="org.jbpm sanpl e. MyObj ect ">
<property nane="session" ref="ksession" />
</ bean>

252

Spring using the JTA transaction manager

As a result, the session will be injected in your domain object can then be accessed directly. For
example:

public class Mybject {
private Stateful Know edgeSessi on ksessi on;
public void set Sessi on(St at ef ul Know edgeSessi on ksession) {
this. ksession = ksessi on;
}
public void doSoret hi ng() {
ksessi on. start Process("com sanpl e. Hel | oWor | d");

The following example shows a slightly more complex example, where the session is configured to
use persistence (JPA using an in-memory database in this case) and transaction (using the Spring
transaction manager). When using the Spring transaction manager, you have three options:

 using the JTA transaction manager with a shared entity manager factory (emf)

« using local transactions with a shared entity manager factory (emf)

20.3.1. Spring using the JTA transaction manager

The following code sample shows the Spring configuration file, configured for JTA transactions
(using Bitronix in this case) with a shared entity manager factory (emf).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns:j bpm="http://drool s. org/ schema/ drool s-spring"”

xsi : schemalLocati on="http://wwmv. spri ngfranework. org/ schena/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd

http://drool s. org/schema/drool s-spring http://

dr ool s. org/ schenma/ dr ool s-spring-1. 3. 0. xsd">

<bean id="j bpnEMF" cl ass="org. spri ngfranmework. orm jpa. Local Cont ai ner Enti t yManager Fact or yBean"
<property nanme="persistenceUnit Name" val ue="org.jbpm persi stence.jta"/>
</ bean>

<bean i d="bt nConfi g" factory-
nmet hod="get Confi guration” cl ass="bitronix.tm Transacti onManager Servi ces" >
</ bean>

<bean i d="Bitroni xTransacti onManager" factory-net hod="get Transacti onManager"
cl ass="bi troni x. tm Transact i onManager Ser vi ces" depends-
on="bt nConfi g" destroy-nethod="shutdown" />

253

Chapter 20. Integration with ...

<bean i d="j bpnirxManager" cl ass="org.spri ngfranework.transaction.jta.JtaTransacti onManager" >
<property nane="transacti onManager" ref="Bitroni xTransacti onManager" />
<property nane="user Transaction" ref="Bitroni xTransacti onManager" />

</ bean>

<j bpm kbase i d="kbasel">
<j bpm r esour ces>
<] bpm resource type="BPM\2" source="cl asspat h: M/Process. bpm"/ >
</j bpm r esources>
</j bpm kbase>

<] bpm ksessi on id="ksessi onl" type="stateful" kbase="kbasel">
<j bpm confi gurati on>
<j bpm j pa- per si st ence>
<j bpm transacti on- manager ref="txManager"/>
<j bpmentity-nmanager-factory ref="enf"/>
</jbpm j pa- persi st ence>
</jbpm configurati on>
</j bpm ksessi on>
</ beans>

And the matching persistence.xml file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<persi stence version="1.0" xm ns="http://java. sun. conl xnl / ns/ persi stence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://java. sun. conl xm / ns/ per si st ence
http://java. sun. conl xm / ns/ per si st ence/
persi stence_1_ 0. xsd">

<persi stence-unit nane="org.j bpm persi stence.jta" transaction-type="JTA">
<provi der >or g. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</j t a- dat a- sour ce>

<I-- Use this if you are using JPAlL / Hi bernate3d -->

<mappi ng- fi | e>SMETA- | NF/ JBPMor m xm </ mappi ng-fil e>

<mappi ng- fi | e>META- | NF/ Pr ocessl nst ancel nf o. hbm xm </ mappi ng-fil e>
<l-- Use this if you are using JPA2 / Hi bernated4 -->

<l --mappi ng-fil e>VETA- | NF/ JBPMor m JPA2. xm </ mappi ng-fil e-->

<cl ass>org. drool s. persi stence. i nf 0. Sessi onl nfo</cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>or g. drool s. persi stence. i nfo. Wrkl tem nf o</ cl ass>

<cl ass>org. j bpm process. audi t. Processl| nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t. Nodel nst anceLog</ cl ass>
<cl ass>org. j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

254

Spring using local transactions

<properties>
<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="update"/>
<property nane="hi bernate. show sql" val ue="fal se"/>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

irder nat e. t ransacti on. nanager _| ookalpe"agg' hi bernat e. transacti on. BTMIr ansact i onMandger Lookup"

>
</ properties>
</ persi stence-unit>
</ persi st ence>

20.3.2. Spring using local transactions

To use local transactions (instead of JTA) with a shared entity manager (emf), use:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"

xm ns:j bpm"http://drool s. org/ schenma/ drool s-spring"

xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd

http://drool s.org/schema/drool s-spring http://

dr ool s. org/ scherma/ dr ool s-spring-1. 3. 0. xsd">

<bean id="j bpnEMF" cl ass="org. spri ngframework. orm jpa. Local Cont ai ner Enti t yManager Fact or yBean"
<property nane="persistenceUni t Nane" val ue="org.jbpm persi stence.|ocal "/>
</ bean>

<bean id="j bpniTxManager" cl ass="org. spri ngfranework. orm j pa. JpaTransacti onManager" >
<property nane="entityManager Factory" ref="jbpmEM"/>
<property nane="nestedTransacti onAl | owed" val ue="fal se"/>

</ bean>

<j bpm kbase i d="kbasel" >
<j bpm r esour ces>
<j bpm resource type="BPM\2" source="cl asspat h: M/Process. bpm"/ >
</j bpm r esour ces>
</j bpm kbase>

<j bpm ksessi on i d="ksessi onl" type="stateful" kbase="kbasel">
<j bpm confi gurati on>
<j bpm j pa- per si st ence>
<j bpmtransacti on- ranager ref="txManager"/>
<j bpmentity-nmanager-factory ref="enf"/>

255

Chapter 20. Integration with ...

</jbpm j pa- persi st ence>
</j bpm configuration>
</j bpm ksessi on>
</ beans>

And the matching persistence.xml file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<persi stence version="1.0" xm ns="http://java. sun. con xnl / ns/ persi stence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. conl xm / ns/ per si st ence
http://java. sun. conl xm / ns/ per si st ence/
persi stence_1 0. xsd">

<persi stence-unit nane="org. j bpm persi stence. | ocal " transacti on-
type="RESOURCE_LOCAL" >
<provi der >org. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<non-j t a- dat a- sour ce>j dbc/ j bpm ds</ non-j t a- dat a- sour ce>

<I-- Use this if you are using JPAlL / Hi bernate3 -->

<mappi ng- fi | e>META- 1 NF/ JBPMor m xm </ mappi ng-fil e>

<mappi ng-fi | e>META- | NF/ Processl nst ancel nf 0. hbm xml </ mappi ng-fil e>
<I-- Use this if you are using JPA2 / Hibernated4 -->

<!I'--mappi ng-fil e>META- | NF/ JBPMor m JPA2. xm </ mappi ng-fil e-->

<cl ass>org. drool s. persi stence. i nfo. Sessi onl nf o</ cl ass>
<cl ass>or g. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi st ence. i nfo. Wrkl tem nfo</cl ass>

<cl ass>org.j bpm process. audi t. Processl nst anceLog</ cl ass>
<cl ass>org. j bpm process. audi t. Nodel nst ancelLog</ cl ass>
<cl ass>org.j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nane="hi bernate. max_fetch _depth" val ue="3"/>
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="update"/>
<property nane="hi bernate.show sql" val ue="fal se"/>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

</ properties>
</ persi stence-unit>
</ persi st ence>

256

Spring using a shared entity manager

20.3.3. Spring using a shared entity manager

Instead of using a shared entity manager factory (emf), you can also use a shared entity manager
instead (both using JTA or local transactions). To do so, create the entity manager in your Spring
configuration file:

<bean id="j bpnEM' cl ass="org. spri ngfranework. orm j pa. support. SharedEntityManager Bean" >
<property nane="entityManager Factory" ref="jbpnEM"/>
</ bean>

You can then create a ksession using the following code:

EntityManager em = (EntityManager) context.getBean("jbpnEM);
Envi ronnent env = Envi r onnment Fact ory. newenvi ronnment () ;

env. set (Envi ronment Name. APP_SCOPED ENTI TY_MANAGER, emn);

env. set (Envi ronment Nanme. CVMD_SCOPED_ENTI TY_MANAGER, enj;

env. set ("I S_JTA TRANSACTI ON', fal se);

env. set ("I S_SHARED_ENTI TY_MANAGER', true);

Abstract Pl at f or nfTr ansact i onManager aptm = (Abstract Pl at f or nlTr ansact i onManager) cont ext. get Bean(
Transacti onManager transacti onManager = new Drool sSpri ngTransacti onManager(aptm);
env. set (Envi r onment Name. TRANSACTI ON_MANAGER, transacti onManager);

Per si st enceCont ext Manager persi st enceCont ext Manager = new Dr ool sSpri ngJpaManager (env) ;
env. set (Envi ronment Name. PERSI STENCE_CONTEXT_MANAGER, per si st enceCont ext Manager) ;

St at ef ul Knowl edgeSessi on ksessi on = JPAKnowl edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, nul

20.3.4. Using a local task service

If you also want to use a local task server, linked to the engine, first of all add the following lines
to your persistence.xml:

<mappi ng-fi | e>META- | NF/ Taskor m xm </ mappi ng-fi | e>
<cl ass>org.j bpmtask. Att achnent </ cl ass>

<cl ass>org.j bpm t ask. Cont ent </ cl ass>

<cl ass>org. j bpm t ask. Bool eanExpr essi on</ cl ass>
<cl ass>org.j bpm t ask. Comment </ cl ass>

<cl ass>org.j bpm t ask. Deadl i ne</ cl ass>

<cl ass>org. j bpm t ask. Comment </ cl ass>

<cl ass>org. j bpm t ask. Deadl i ne</ cl ass>

<cl ass>org.j bpm t ask. Del egati on</cl ass>

<cl ass>org.j bpmtask. Escal ati on</ cl ass>

<cl ass>org.j bpmtask. G oup</cl ass>

257

Chapter 20.

Integration

with ...

<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.
<cl ass>org.

j bpm t ask

j bpm t ask.
j bpm t ask.
j bpm t ask
j bpm t ask
j bpm t ask.
j bpm t ask.
j bpm t ask
j bpm t ask
j bpm t ask.
j bpm t ask.
j bpm t ask
j bpm t ask

. 1 18NText </ cl ass>

Noti fication</class>

Emai | Noti fi cation</cl ass>

Emai | Noti fi cati onHeader </ cl ass>

Peopl eAssi gnnment s</ cl ass>

Reassi gnment </ cl ass>

St at us</ cl ass>

Task</cl ass>

TaskDat a</ cl ass>

SubTasksStrat egy</ cl ass>

OnPar ent Abor t Al | SubTasksEndSt r at egy</ cl ass>
OnAl | SubTasksEndPar ent EndSt r at egy</ cl ass>
User </ cl ass>

Next, add the task service configuration to your Spring configuration file, after which you can get
your local task service from your Spring context.

<bedn"syst enEvent Li st enelrdss="org. ki e. i nternal . Syst enEvent Li st ener Fact of gtt ory-
net hod="get Syst enEvent Li st ener" />

<bean id="internal TaskServi ce" class="org.jbpmtask.service. TaskServi ce" >
<property nane="systenEventListener" ref="systenEventListener" />

</ bean>

<bean i d="ht TxManager" cl ass="org. drool s. contai ner.spring. beans. persi stence. HunanTaskSpri ngTr ar
<constructor-arg ref="jbpnmrxManager" />

</ bean>

<bean i d="springTaskSessi onFactory" class="org.jbpmtask.service. persi stence. TaskSessi onSpri ngf
init-nmethod="initialize" depends-on="internal TaskService" >

<property nane="entityManager Factory" ref="jbpnEMF" />

<property nane="transacti onManager" ref="ht TxManager" />

<property nane="useJTA" val ue="true" />

<property nane="taskService" ref="internal TaskService" />
</ bean>

<beamd="t askServi ce'tl ass="org. j bpm task. service.local . Local TaskSer vi ce'lepends-
on="i nt er nal TaskServi ce" >

<constructor-arg ref="internal TaskServi ce" />
</ bean>

Note that, if you want your session linked to your local task service, you still need to create a
synchronous human task handler and register it to the session using:

SyncWsHumanTaskHandl er hunmanTaskHandl er new SyncWSHunmanTaskHandl er (t askServi ce, ksession);

258

Apache Camel Integration

humanTaskHandl er . set Local (true);

humanTaskHandl er. connect () ;

ksessi on. get Wor kI t emvanager () . r egi st er Wr kl t emHandl er (" Hunan
Task", humanTaskHandl er);

20.4. Apache Camel Integration

Camel provides a lightweight bus framework for geting information into and out of jBPM.
Additionally Camel provides a way to expose your KnowledgeBases remotely for any sort of client
application that can use HTTP, through a SOAP or REST interface.

The following example shows how to setup a remote accessible session:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww.springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: cxf="http://canel . apache. or g/ schema/ cxf"
xm ns:jaxrs="http://cxf.apache. org/jaxrs"
xm ns: kb="http://drools. org/ schena/ dr ool s-spri ng"
xsi : schemaLocati on="
http://ww. springfranmewor k. or g/ schena/ beans http://
www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://drool s. org/schema/ drool s-spring http://drools. org/ schema/ dr ool s-
spring. xsd
http://camel . apache. org/ schena/ cxf http://canel.apache. org/ schenma/ cxf/
camnel - cxf. xsd
http://cxf.apache.org/jaxrs http://cxf.apache. org/ schemas/jaxrs. xsd
http://canel . apache. org/ schema/ spring http://canel.apache. org/ schena/
spring/ canel - spring. xsd" >

<l-- jBPM Know edge Rel ated Config -->
<kb: gri d-node i d="nodel"/>
<kb: kbase i d="kbasel" node="nodel">

<kb: resources>

<kb:resource type="BPM\2" source="cl asspat h: M/Process. bpmm"/ >

</ kb: resources>
</ kb: kbase>
<kb: ksessi on id="ksessi onl" type="statel ess" kbase="kbasel" node="nodel"/>

<l-- Canel Config -->

<inmport resource="cl asspat h: META- | NF/ cxf/cxf.xm " />
<inmport resource="cl asspath: META- | NF/ cxf/cxf-servliet.xm" />

259

Chapter 20. Integration with ...

<cxf:rsServer id="rsServer"
address="/rest"
servi ceCl ass="org. drool s. jax.rs. ConmandExecut or | npl ">
<cxf: provi ders>
<bean cl ass="org. drool s.jax.rs. CormandMessageBodyReader "/ >
</ cxf: provi der s>
</ cxf:rsServer>

<cxf: cxf Endpoi nt id="soapServer"
addr ess="/soap"
servi ceNane="ns: CommandExecut or "
endpoi nt Name="ns: ConmandExecut or Port "
wsdl URL="soap. wsdl "
xm ns: ns="http://soap.jax.drools.org/" >
<cxf: properties>
<entry key="dataFormat" val ue="MESSAGE"/ >
<entry key="defaul t Operati onNane" val ue="execute"/>
</ cxf:properties>
</ cxf: cxf Endpoi nt >

<bean id="kbPolicy" class="org.drools.canel.conponent. Drool sPolicy" />

<camnel Cont ext id="canel" xm ns="http://canel.apache. org/schema/spring">
<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kbPolicy">
<unmar shal ref="xstream' />
<to uri="drool s: nodel/ ksessi onl1" />
<marshal ref="xstrean />
</ policy>
</route>

<rout e>
<fromuri="cxf://bean://soapServer"/>
<policy ref="kbPolicy">
<unmar shal ref="xstream' />
<to uri="drool s: nodel/ ksessi onl" />
<mar shal ref="xstrean />
</ policy>
</rout e>

</ canel Cont ext >
</ beans>

To execute the above example you must be sure that you have the following content in your
web.xml file:

260

Apache Camel Integration

<web- app>
(...)
<cont ext - par an»
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>cl asspat h: beans. xm </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-cl ass>
or g. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-cl ass>
</listener>

<servl| et >
<di spl ay- nane>CXF Ser vl et </ di spl ay- nane>
<ser vl et - nane>CXFSer vl et </ ser vl et - nane>
<servl et-class>
org. apache. cxf.transport. servl et. CXFSer vl et
</servlet-class>
<l oad-on-startup>1</| oad- on- st art up>
</servlet>

<servl et - mappi ng>
<ser vl et - nane>CXFSer vl et </ ser vl et - nane>
<url - pattern>/kservice/*</url -pattern>
</ servl et - mappi ng>

<sessi on-confi g>
<sessi on-ti meout >10</ sessi on-ti neout >
</ sessi on-confi g>
</ web- app>

After deploying the above example, you can test it using any http compatible tool like curl, directly
from you command line

$ curl -v\
-H ' Content-Type: text/plain" \
-d ' <batch-execution | ookup="ksessionl"> \
<start-process processld="org.jbpm sanple. ny-process" out-identifier =
"processld"/> \
</ bat ch- executi on>" \
http://1ocal host: 8080/ bpm canel / kservi ce/ rest/execute

The above execution will result in something similar to the following code snippet:

261

Chapter 20. Integration with ...

HTTP/ 1.1 200 K

Content - Lengt h: 131

Server: Apache-Coyote/1.1

Date: Mon, 13 Apr 2012 17:02:42 GMI
Cont ent - Type: text/plain
Connection: close

<?xm version="1.0' encodi ng=" UTF- 8' ?><executi on-resul t s><resul t
identifier="processld"><long>1</1ong></resul t></execution-results>

262

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Eclipse Editor
	1.5. Web-based Designer
	1.6. Form Builder
	1.7. Guvnor Repository
	1.8. Web-based Management Consoles
	1.9. Documentation

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	Chapter 3. Installer
	3.1. Prerequisites
	3.2. Download the installer
	3.3. Demo setup
	3.4. 10-Minute Tutorial: Using the Eclipse tooling
	3.5. 10-Minute Tutorial: Using the jBPM Console
	3.6. 10-Minute Tutorial: Using Guvnor repository and Designer
	3.7. 10-Minute Tutorial: Using your own database with jBPM
	3.7.1. Introduction
	3.7.2. Database setup
	3.7.3. Quickstart
	3.7.4. Using a different database

	3.8. What to do if I encounter problems or have questions?
	3.9. Frequently asked questions

	Chapter 4. Quickstarts
	4.1. Invoking a Java service
	4.1.1. Using a script task
	4.1.2. Using a Java handler
	4.1.3. Writing your own domain-specific task

	Chapter 5. Core Engine: API
	5.1. The jBPM API
	5.1.1. Knowledge Base
	5.1.2. Session
	5.1.3. Events

	5.2. Knowledge-based API

	Chapter 6. Core Engine: Basics
	6.1. Creating a process
	6.1.1. Using the graphical BPMN2 Editor
	6.1.2. Defining processes using XML
	6.1.3. Defining Processes Using the Process API
	6.1.3.1. Example

	6.2. Details of different process constructs: Overview
	6.3. Details: Process properties
	6.4. Details: Events
	6.4.1. Start event
	6.4.2. End events
	6.4.2.1. End event
	6.4.2.2. Throwing error event

	6.4.3. Intermediate events
	6.4.3.1. Catching timer event
	6.4.3.2. Catching signal event

	6.5. Details: Activities
	6.5.1. Script task
	6.5.2. Service task
	6.5.3. User task
	6.5.4. Reusable sub-process
	6.5.5. Business rule task
	6.5.6. Embedded sub-process
	6.5.7. Multi-instance sub-process

	6.6. Details: Gateways
	6.6.1. Diverging gateway
	6.6.2. Converging gateway

	6.7. Using a process in your application
	6.8. Other features
	6.8.1. Data
	6.8.2. Constraints
	6.8.3. Action scripts
	6.8.4. Events
	6.8.5. Timers
	6.8.6. Updating processes
	6.8.6.1. Process instance migration

	6.8.7. Multi-threading
	6.8.7.1. Engine execution
	6.8.7.2. Asynchronous handlers
	6.8.7.3. Multiple knowledge sessions and persistence

	Chapter 7. Core Engine: BPMN 2.0
	7.1. Business Process Model and Notation (BPMN) 2.0 specification
	7.2. Examples
	7.3. Supported elements / attributes

	Chapter 8. Core Engine: Persistence and transactions
	8.1. Runtime State
	8.1.1. Binary Persistence
	8.1.2. Safe Points
	8.1.3. Configuring Persistence
	8.1.3.1. Adding dependencies
	8.1.3.2. Configuring the engine to use persistence using JBPMHelper
	8.1.3.3. Manually configuring the engine to use persistence

	8.1.4. Transactions
	8.1.4.1. Container managed transaction

	8.1.5. Persistence and concurrency

	8.2. Process Definitions
	8.3. History Log
	8.3.1. The jBPM Audit data model
	8.3.2. Storing Process Events in a Database

	Chapter 9. Eclipse BPMN 2.0 Plugin
	9.1. Installation
	9.2. Creating your BPMN 2.0 processes
	9.2.1. Filtering elements and attributes
	9.2.2. Adding custom task nodes
	9.2.2.1. Configuring the input and output parameters
	9.2.2.2. Configuring the node to be handled by a WorkItemHandler

	9.3. Changing editor behavior
	9.4. Changing editor appearance

	Chapter 10. Designer
	10.1. Installation
	10.2. Source code
	10.3. Designer UI Explained
	10.4. Support for domain-specific service nodes
	10.5. Configuring Designer
	10.5.1. Changing the default configuration in Designer
	10.5.2. Changing the default configuration in Guvnor

	10.6. Generation of process and task forms
	10.7. View processes as PDF and PNG
	10.8. Viewing process BPMN2 source
	10.9. Embedding designer in your own application
	10.10. Migrating existing jBPM 3.2 based processes to BPMN2
	10.11. Visual Process Validation
	10.12. Integration with the jBPM Service Repository
	10.13. Generating code to share the process image, PDF, and embedded process editor
	10.14. Importing existing BPMN2 processes
	10.15. Viewing Process Information
	10.16. Requirements

	Chapter 11. Console
	11.1. Installation
	11.1.1. Authorization
	11.1.2. User and group management
	11.1.3. Registering your own service handlers
	11.1.4. Configure management console
	11.1.4.1. Implementing custom managers

	11.2. Running the process management console
	11.2.1. Managing process instances
	11.2.1.1. Inspecting process definitions
	11.2.1.2. Starting new process instances
	11.2.1.3. Managing process instances
	11.2.1.4. Inspecting process instance state
	11.2.1.5. Inspecting process instance variables

	11.2.2. Human task lists
	11.2.3. Reporting

	11.3. Adding new process / task forms
	11.4. REST interface

	Chapter 12. Human Tasks
	12.1. Human tasks inside processes
	12.1.1. User and group assignment
	12.1.2. Task escalation and notification
	12.1.3. Data mapping
	12.1.3.1. Task parameters
	12.1.3.2. Task results

	12.1.4. Swimlanes
	12.1.5. Examples

	12.2. Human task service
	12.2.1. Task life cycle
	12.2.2. Linking the human task service to the jBPM engine
	12.2.3. Interacting with the human task service
	12.2.4. User and group assignment
	12.2.4.1. Connecting Human Task server to LDAP

	12.2.5. Starting the human task service
	12.2.5.1. Configure escalation and notifications
	12.2.5.1.1. User information retrieved from LDAP server

	12.2.6. Starting the human task service as web application

	12.3. Human task clients
	12.3.1. Eclipse demo task client
	12.3.2. Web-based task client in jBPM Console

	12.4. Human task persistence
	12.4.1. Task related entities
	12.4.2. Deadline, Escalation and Notification related entities

	Chapter 13. Domain-specific processes
	13.1. Introduction
	13.2. Overview
	13.2.1. Work Item Definitions
	13.2.2. Work Item Handlers

	13.3. Example: Notifications
	13.3.1. The Notification Work Item Definition
	13.3.1.1. Creating the work item definition
	13.3.1.2. Registering the work definition
	13.3.1.3. Using your new work item in your processes

	13.3.2. The NotificationWorkItemHandler
	13.3.2.1. Creating a new work item handler
	13.3.2.2. Registering the work item handler

	13.4. Service repository
	13.4.1. Public jBPM service repository
	13.4.2. Setting up your own service repository

	Chapter 14. Exception Management
	14.1. Overview
	14.2. Introduction
	14.3. Business Exceptions
	14.3.1. Business Exceptions elements in BPMN2

	14.4. Technical Exceptions
	14.4.1. Handling exceptions in WorkItemHandler instances

	14.5. Technical Exception Examples
	14.5.1. Example: service task handlers
	14.5.1.1. BPMN2 configuration
	14.5.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration
	14.5.1.3. ExceptionService setup and configuration
	14.5.1.4. Changing the example to use a <signal>

	14.5.2. Example: logging exceptions thrown by bad <scriptTask> nodes
	14.5.2.1. Introduction
	14.5.2.2. Example: Exceptions thrown by a <scriptTask>.

	Chapter 15. Flexible Processes
	Chapter 16. Business Activity Monitoring
	16.1. Reporting
	16.2. Direct Intervention

	Chapter 17. Core Engine: Examples
	17.1. jBPM Examples
	17.2. Examples
	17.3. Unit tests

	Chapter 18. Testing and debugging
	18.1. Unit testing
	18.1.1. Helper methods to create your session
	18.1.2. Assertions
	18.1.3. Testing integration with external services
	18.1.4. Configuring persistence

	18.2. Debugging
	18.2.1. The Process Instances View
	18.2.2. The Human Task View
	18.2.3. The Audit View

	Chapter 19. Process Repository
	19.1. Knowledge Agent

	Chapter 20. Integration with Maven, OSGi, Spring, etc.
	20.1. Maven
	20.2. OSGi
	20.3. Spring
	20.3.1. Spring using the JTA transaction manager
	20.3.2. Spring using local transactions
	20.3.3. Spring using a shared entity manager
	20.3.4. Using a local task service

	20.4. Apache Camel Integration

