OptaPlanner@

OptaPlanner User Guide

The OptaPlanner Team

Table of Contents

1. OptaPlanner introduction

1.1. What is OptaPlanner?

1.2. What is a planning problem?
1.2.1. A planning problem is NP-complete or NP-hard
1.2.2. A planning problem has (hard and soft) constraints
1.2.3. A planning problem has a huge search space

1.3. Requirements

1.4. Governance
1.4.1. Status of OptaPlanner
1.4.2. Backwards compatibility
1.4.3. Community and support
1.4.4. Relationship with KIE

1.5. Download and run the examples
1.5.1. Get the release ZIP and run the examples
1.5.2. Run the examples in an IDE
1.5.3. Use OptaPlanner with Maven, Gradle, or ANT
1.5.4. Build OptaPlanner from source

2. Quick start

2.1. Overview

2.2. Hello world Java quick start
2.2.1. What you will build
2.2.2. Solution source code
2.2.3. Prerequisites
2.2.4. The build file and the dependencies
2.2.5. Model the domain objects
2.2.6. Define the constraints and calculate the score
2.2.7. Gather the domain objects in a planning solution
2.2.8. Create the application
2.2.9. Run the application
2.2.10. Summary

2.3. Quarkus Java quick start
2.3.1. What you will build
2.3.2. Solution source code
2.3.3. Prerequisites
2.3.4. The build file and the dependencies
2.3.5. Model the domain objects
2.3.6. Define the constraints and calculate the score
2.3.7. Gather the domain objects in a planning solution

© © 9 9 9 9 o o0 O Uk ok obkN e

BOR R W W W W W W WNNDN R R R R R R R R
© OO DN 00 0000 T NN U U WwwWw NN R

2.3.8. Create the solver service
2.3.9. Set the termination time
2.3.10. Run the application
2.3.11. Summary
2.3.12. Further improvements: Database and Ul integration
2.4. Spring Boot Java quick start
2.4.1. What you will build
2.4.2. Solution source code
2.4.3. Prerequisites
2.4.4. The build file and the dependencies
2.4.5. Model the domain objects
2.4.6. Define the constraints and calculate the score
2.4.7. Gather the domain objects in a planning solution
2.4.8. Create the solver service
2.4.9. Set the termination time
2.4.10. Make the application executable
2.4.11. Summary
2.4.12. Further improvements: Database and Ul integration
3. Use cases and examples
3.1. Examples overview
3.2. N queens
3.2.1. Problem description
3.2.2. Problem size
3.2.3. Domain model
3.3. Cloud balancing
3.3.1. Cloud balancing tutorial
3.3.2. Using the domain model
3.3.3. Run the cloud balancing Hello World
3.3.4. Solver configuration
3.3.5. Score configuration
3.3.6. Beyond this tutorial
3.4. Traveling salesman (TSP - traveling salesman problem)
3.4.1. Problem description
3.4.2. Problem size
3.4.3. Problem difficulty
3.5. Tennis club scheduling
3.5.1. Problem description
3.5.2. Problem size
3.5.3. Domain model
3.6. Meeting scheduling

3.6.1. Problem description

51
52
53
58
58
61
61
62
63
63
65
70
72
75
76
76
82
82
85
85
88
88
90
90
92
92
94
99
100
102
109
110
110
110
110
111
111
112
112
112
112

3.6.2. Problem size
3.7. Course timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)
3.7.1. Problem description
3.7.2. Problem size
3.7.3. Domain model
3.8. Machine reassignment (Google ROADEF 2012)
3.8.1. Problem description
3.8.2. Value proposition
3.8.3. Problem size
3.8.4. Domain model
3.9. Vehicle routing
3.9.1. Problem description
3.9.2. Value proposition
3.9.3. Problem size
3.9.4. Domain model
3.10. Project job scheduling
3.10.1. Problem description
3.10.2. Problem size
3.11. Hospital bed planning (PAS - Patient Admission Scheduling)
3.11.1. Problem description
3.11.2. Problem size
3.11.3. Domain model
3.12. Task assigning
3.12.1. Problem description
3.12.2. Value proposition
3.12.3. Problem size
3.12.4. Domain model
3.13. Exam timetabling (ITC 2007 track 1 - Examination)
3.13.1. Problem description
3.13.2. Problem size
3.13.3. Domain model
3.14. Nurse rostering (INRC 2010)
3.14.1. Problem description
3.14.2. Value proposition
3.14.3. Problem size
3.14.4. Domain model
3.15. Traveling tournament problem (TTP)
3.15.1. Problem description
3.15.2. Problem size
3.16. Conference scheduling

3.16.1. Problem description

113
113
113
114
114
115
115
116
117
118
119
119
120
120
124
129
129
130
131
131
133
133
134
134
135
135
135
136
136
138
138
139
139
141
141
144
144
144
145
146
146

3.16.2. Value proposition 151

3.16.3. Problem size 151
3.16.4. Architecture 151
3.16.5. Domain model 152
3.16.6. Search space 153
3.17. Flight crew scheduling 155
3.17.1. Problem description 155
3.17.2. Problem size 156

4. OptaPlanner configuration 157
4.1. Overview 157
4.2. Solver configuration 157
4.2.1. Solver configuration by XML 157
4.2.2. Solver configuration by Java API 159
4.2.3. Annotation alternatives 160
4.2.4. Domain access 160
4.2.5. Custom properties configuration 160
4.3. Model a planning problem 161
4.3.1. Is this class a problem fact or planning entity? 161
4.3.2. Problem fact 162
4.3.3. Planning entity 163
4.3.4. Planning variable (genuine) 166
4.3.5. Planning value and planning value range 168
4.3.6. Planning list variable (VRP, Task assigning, ...) 175
4.3.7. Chained planning variable (TSP, VRP, ...) 177
4.3.8. Planning problem and planning solution 179
4.4. Use the Solver 188
4.4.1. The Solver interface 188
4.4.2. Solving a problem 189
4.4.3. Environment mode: are there bugs in my code? 190
4.4.4. Logging level: what is the Solver doing? 192
4.4.5. Monitoring the solver 195
4.4.6. Random number generator 197
4.5. SolverManager 198
4.5.1. Solve batch problems 199
4.5.2. Solve and listen to show progress to the end-user 200

5. Score calculation 202
5.1. Score terminology 202
5.1.1. What is a score? 202
5.1.2. Formalize the business constraints 202
5.1.3. Score constraint signum (positive or negative) 203

5.1.4. Score constraint weight 204

5.1.5. Score constraint level (hard, soft, ...)
5.1.6. Pareto scoring (AKA multi-objective optimization scoring)
5.1.7. Combining score techniques
5.1.8. Score interface
5.1.9. Avoid floating point numbers in score calculation
5.2. Choose a score type
5.2.1. SimpleScore
5.2.2. HardSoftScore (Recommended)
5.2.3. HardMediumSoftScore
5.2.4. BendableScore
5.3. Calculate the Score
5.3.1. Score calculation types
5.3.2. Easy Java score calculation
5.3.3. Incremental Java score calculation
5.3.4. InitializingScoreTrend
5.3.5. Invalid score detection
5.4. Score calculation performance tricks
5.4.1. Overview
5.4.2. Score calculation speed
5.4.3. Incremental score calculation (with deltas)
5.4.4. Avoid calling remote services during score calculation
5.4.5. Pointless constraints
5.4.6. Built-in hard constraint
5.4.7. Other score calculation performance tricks
5.4.8. Score trap
5.4.9. stepLimit benchmark
5.4.10. Fairness score constraints
5.5. Constraint configuration: adjust constraint weights dynamically
5.5.1. Create a constraint configuration
5.5.2. Add a constraint weight for each constraint
5.6. Explaining the score: which constraints are broken?
5.6.1. Using score calculation outside the Solver
5.6.2. Break down the score by constraint justification
5.6.3. Break down the score by constraint
5.6.4. Indictment heat map: visualize the hot planning entities
5.7. Testing score constraints
6. Constraint streams score calculation
6.1. Introduction
6.2. Creating a constraint stream
6.3. Constraint stream cardinality

6.3.1. Achieving higher cardinalities

205
207
209
209
210
212
212
212
212
213
213
213
214
216
221
222
223
223
223
223
225
225
226
226
226
228
228
230
231
232
234
235
236
237
237
238
239
239
242
243
244

6.4. Building blocks
6.4.1. ForEach
6.4.2. Penalties and rewards
6.4.3. Filtering
6.4.4. Joining
6.4.5. Grouping and collectors
6.4.6. Conditional propagation
6.4.7. Mapping tuples
6.4.8. Flattening
6.5. Testing a constraint stream
6.5.1. Testing constraints in isolation
6.5.2. Testing all constraints together
6.5.3. Testing in Quarkus
6.5.4. Testing in Spring Boot
6.6. Variant implementation types
7. Drools score calculation (Deprecated)
7.1. Overview
7.2. Drools score rules configuration
7.2.1. A scoreDr1 resource on the classpath
7.2.2. A scoreDrlFile element
7.3. Implementing a score rule
7.4. Weighing score rules
7.5. Testing Drools-based constraints
8. Shadow variable
8.1. Introduction
8.2. Bi-directional variable (inverse relation shadow variable)
8.3. Anchor shadow variable
8.4. List variable shadow variables
8.4.1. Inverse relation shadow variable
8.4.2. Previous and next element shadow variable
8.5. Custom VariablelListener
8.5.1. Multiple source variables
8.5.2. Piggyback shadow variable
8.5.3. Shadow variable cloning
8.6. VariableListener triggering order
9. Optimization algorithms
9.1. Search space size in the real world
9.2. Does OptaPlanner find the optimal solution?
9.3. Architecture overview
9.4. Optimization algorithms overview

9.5. Which optimization algorithms should I use?

244
245
245
247
249
251
257
258
260
260
260
262
262
263
263
264
264
264
264
265
266
266
269
271
271
272
274
274
274
275
276
277
278
279
279
281
281
282
283
284
286

9.6. Power tweaking or default parameter values 287

9.7. Solver phase 287
9.8. Scope overview 289
9.9. Termination 290
9.9.1. Time spent termination 290
9.9.2. Unimproved time spent termination 292
9.9.3. BestScoreTermination 294
9.9.4. BestScoreFeasibleTermination 294
9.9.5. StepCountTermination 295
9.9.6. UnimprovedStepCountTermination 295
9.9.7. ScoreCalculationCountTermination 295
9.9.8. Combining multiple terminations 295
9.9.9. Asynchronous termination from another thread 296
9.10. SolverEventListener 296
9.11. Custom solver phase 297
9.12. No change solver phase 299
9.13. Multithreaded solving 299
9.13.1. @P1lanningId 300
9.13.2. Custom thread factory (WildFly, Android, GAE, ...) 301
9.13.3. Multithreaded incremental solving 301
10. Move and neighborhood selection 304
10.1. Move and neighborhood introduction 304
10.1.1. What is a Move? 304
10.1.2. What is a MoveSelector? 305
10.1.3. Subselecting of entities, values, and other moves 305
10.2. Generic MoveSelectors 306
10.2.1. Generic MoveSelectors overview 307
10.2.2. ChangeMoveSelector 307
10.2.3. SwapMoveSelector 309
10.2.4. Pillar-based move selectors 310
10.2.5. Move selectors for list variables 314
10.2.6. Move selectors for chained variables 318
10.3. Combining multiple MoveSelectors 321
10.3.1. unionMoveSelector 321
10.3.2. cartesianProductMoveSelector 323
10.4. EntitySelector 324
10.5. ValueSelector 324
10.6. General Selector features 325
10.6.1. CacheType: create moves ahead of time or just in time 325
10.6.2. SelectionOrder: original, sorted, random, shuffled, or probabilistic 326

10.6.3. Recommended combinations of CacheType and SelectionOrder 327

10.6.4. Filtered selection
10.6.5. Sorted selection
10.6.6. Probabilistic selection
10.6.7. Limited selection
10.6.8. Mimic selection (record/replay)
10.6.9. Nearby selection

10.7. Custom moves
10.7.1. Which move types might be missing in my implementation?
10.7.2. Custom moves introduction
10.7.3. The Move interface
10.7.4. Generating custom moves

11. Exhaustive search

11.1. Overview

11.2. Brute force
11.2.1. Algorithm description
11.2.2. Configuration

11.3. Branch and bound
11.3.1. Algorithm description
11.3.2. Configuration

11.4. Scalability of exhaustive search

12. Construction heuristics

12.1. Overview

12.2. First fit
12.2.1. Algorithm description
12.2.2. Configuration

12.3. First fit decreasing
12.3.1. Algorithm description
12.3.2. Configuration

12.4. Weakest fit
12.4.1. Algorithm description
12.4.2. Configuration

12.5. Weakest fit decreasing
12.5.1. Algorithm description
12.5.2. Configuration

12.6. Strongest fit
12.6.1. Algorithm description
12.6.2. Configuration

12.7. Strongest fit decreasing
12.7.1. Algorithm description
12.7.2. Configuration

12.8. Allocate entity from queue

330
333
336
338
338
338
344
344
344
344
348
352
352
352
352
353
353
353
354
356
359
359
359
359
360
360
360
361
362
362
362
362
362
363
363
363
363
364
364
364
365

12.8.1. Algorithm description
12.8.2. Configuration
12.8.3. Multiple entity classes
12.8.4. Pick early type

12.9. Allocate to value from queue
12.9.1. Algorithm description
12.9.2. Configuration

12.10. Cheapest insertion
12.10.1. Algorithm description
12.10.2. Configuration

12.11. Regret insertion
12.11.1. Algorithm description
12.11.2. Configuration

12.12. Allocate from pool
12.12.1. Algorithm description
12.12.2. Configuration

12.13. Scaling construction heuristics
12.13.1. InitializingScoreTrend shortcuts
12.13.2. Scaling multiple planning variables in construction heuristics
12.13.3. Other scaling techniques in construction heuristics

13. Local search

13.1. Overview

13.2. Local search concepts
13.2.1. Step by step
13.2.2. Decide the next step
13.2.3. Acceptor
13.2.4. Forager

13.3. Hill climbing (simple local search)
13.3.1. Algorithm description
13.3.2. Stuck in local optima
13.3.3. Configuration

13.4. Tabu search
13.4.1. Algorithm description
13.4.2. Configuration

13.5. Simulated annealing
13.5.1. Algorithm description
13.5.2. Configuration

13.6. Late acceptance
13.6.1. Algorithm description
13.6.2. Configuration

13.7. Great Deluge

365
365
366
367
368
368
368
369
369
370
371
371
371
371
371
371
372
372
372
375
376
376
376
376
378
380
380
382
382
382
383
384
384
384
386
386
387
388
388
389
389

13.7.1. Algorithm description
13.7.2. Configuration
13.8. Step counting hill climbing
13.8.1. Algorithm description
13.8.2. Configuration
13.9. Strategic oscillation
13.9.1. Algorithm description
13.9.2. Configuration
13.10. Variable neighborhood descent
13.10.1. Algorithm description
13.10.2. Configuration
14. Evolutionary algorithms
14.1. Overview
14.2. Evolutionary strategies
14.3. Genetic algorithms
15. Hyperheuristics
15.1. Overview
16. Partitioned search
16.1. Algorithm description
16.2. Configuration
16.3. Partitioning a solution
16.3.1. Custom SolutionPartitioner
16.4. Runnable part thread limit
17. Benchmarking and tweaking
17.1. Find the best solver configuration
17.2. Benchmark configuration
17.2.1. Add a dependency on optaplanner-benchmark
17.2.2. Run a simple benchmark
17.2.3. Configure and run an advanced benchmark
17.2.4. SolutionFileIO: input and output of solution files
17.2.5. Warming up the HotSpot compiler
17.2.6. Benchmark blueprint: a predefined configuration
17.2.7. Write the output solution of benchmark runs
17.2.8. Benchmark logging
17.3. Benchmark report
17.3.1. HTML report
17.3.2. Ranking the solvers
17.4. Summary statistics
17.4.1. Best score summary (graph and table)
17.4.2. Best score scalability summary (graph)

17.4.3. Best score distribution summary (graph)

389
390
391
391
391
391
391
391
392
392
392
394
394
394
394
395
395
396
396
397
398
398
400
402
402
402
402
403
403
405
408
408
410
410
410
410
411
412
412
413
413

17.4.4. Winning score difference summary (graph And table) 414

17.4.5. Worst score difference percentage (ROI) summary (graph And table) 414
17.4.6. Score calculation speed summary (graph And table) 414
17.4.7. Time spent summary (graph And table) 415
17.4.8. Time spent scalability summary (graph) 415
17.4.9. Best score per time spent summary (graph) 415
17.5. Statistic per dataset (graph and CSV) 415
17.5.1. Enable a problem statistic 415
17.5.2. Best score over time statistic (graph and CSV) 416
17.5.3. Step score over time statistic (graph and CSV) 418
17.5.4. Score calculation speed over time statistic (graph and CSV) 419
17.5.5. Best solution mutation over time statistic (graph and CSV) 420
17.5.6. Move count per step statistic (graph and CSV) 421
17.5.7. Memory use statistic (graph and CSV) 422
17.6. Statistic per single benchmark (graph and CSV) 423
17.6.1. Enable a single statistic 423
17.6.2. Constraint match total best score over time statistic (graph and CSV) 424
17.6.3. Constraint match total step score over time statistic (graph and CSV) 425
17.6.4. Picked move type best score diff over time statistic (graph and CSV) 426
17.6.5. Picked move type step score diff over time statistic (graph and CSV) 427
17.7. Advanced benchmarking 428
17.7.1. Benchmarking performance tricks 428
17.7.2. Statistical benchmarking 429
17.7.3. Template-based benchmarking and matrix benchmarking 430
17.7.4. Benchmark report aggregation 432
18. Repeated planning 435
18.1. Introduction to repeated planning 435
18.2. Backup planning 435
18.3. Overconstrained planning 436
18.3.1. Overconstrained planning with nullable variables 436
18.3.2. Overconstrained planning with virtual values 437
18.4. Continuous planning (windowed planning) 438
18.4.1. Pinned planning entities 441
18.4.2. Nonvolatile replanning to minimize disruption (semi-movable planning entities) 442
18.5. Real-time planning 444
18.5.1. ProblemChange 445
18.5.2. Daemon: solve() does not return 449
18.6. Multi-stage planning 450
19. Integration 452
19.1. Overview 452

19.2. Persistent storage 452

19.2.1. Database: JPA and Hibernate
19.2.2. XML or JSON: JAXB
19.2.3. JSON: Jackson
19.2.4. JSON: JSON-B
19.3. Quarkus
19.4. Spring Boot
19.5. SOA and ESB
19.5.1. Camel and Karaf
19.6. Other environments
19.6.1. Java platform module system (Jigsaw)
19.6.2. OSGi
19.6.3. Android
19.7. Integration with human planners (politics)
19.8. Sizing hardware and software
20. Design patterns
20.1. Design patterns introduction
20.2. Domain modeling guidelines
20.3. Assigning time to planning entities
20.3.1. Timeslot pattern: assign to a fixed-length timeslot
20.3.2. TimeGrain pattern: assign to a starting TimeGrain
20.3.3. Chained through time pattern: assign in a chain that determines starting time
20.3.4. Time bucket pattern: assign to a capacitated bucket per time period
20.4. Cloud architecture patterns
21. Development
21.1. Methodology overview
21.2. Development guidelines
21.2.1. Fail fast
21.2.2. Exception messages
21.2.3. Generics
21.2.4. Lifecycle
22. Release Notes
22.1. OptaPlanner 8.x Release Notes
22.1.1. OptaPlanner 8.37.0.Final
22.1.2. OptaPlanner 8.36.0.Final
22.1.3. OptaPlanner 8.35.0.Final
22.1.4. OptaPlanner 8.34.0.Final
22.1.5. OptaPlanner 8.33.0.Final
22.1.6. OptaPlanner 8.32.0.Final
22.1.7. OptaPlanner 8.31.0.Final
22.1.8. OptaPlanner 8.30.0.Final
22.1.9. OptaPlanner 8.29.0.Final

452
454
455
457
458
459
461
461
461
461
461
461
462
463
467
467
467
470
473
473
474
478
478
481
481
482
482
482
483
483
484
484
484
484
484
485
486
486
486
487
487

22.1.10.
22.1.11.
22.1.12.
22.1.13.
22.1.14.
22.1.15.
22.1.16.
22.1.17.
22.1.18.
22.1.19.
22.1.20.

OptaPlanner 8.27.0.Final
OptaPlanner 8.24.0.Final
OptaPlanner 8.23.0.Final
OptaPlanner 8.20.0.Final
OptaPlanner 8.17.0.Final
OptaPlanner 8.12.0.Final
OptaPlanner 8.10.0.Final
OptaPlanner 8.7.0.Final
OptaPlanner 8.5.0.Final
OptaPlanner 8.3.0.Final
OptaPlanner 8.0.0.Final

488
488
488
489
489
489
489
489
490
491
491

Chapter 1. OptaPlanner introduction

1.1. What is OptaPlanner?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning
to do more business with less resources. This is known as Constraint Satisfaction Programming
(which is part of the Operations Research discipline).

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning
problems. It solves use cases such as:

* Employee shift rostering: timetabling nurses, repairmen, ...

» Agenda scheduling: scheduling meetings, appointments, maintenance jobs, advertisements, ...

* Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...

* Vehicle routing: planning vehicle routes (trucks, trains, boats, airplanes, ...) for moving freight
and/or passengers through multiple destinations using known mapping tools ...

* Bin packing: filling containers, trucks, ships, and storage warehouses with items, but also
packing information across computer resources, as in cloud computing ...

* Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...

* Sport scheduling: planning games and training schedules for football leagues, baseball leagues,

» Financial optimization: investment portfolio optimization, risk spreading, ...

https://www.optaplanner.org

Job shop scheduling

1 2 3 4 5 g
| | | | |
Equipment scheduling Job 1
November Job 2
1 2 3 4 15
| | | | Job 3
Thing 1 Job 4
Thing 2 Less makespan
»* OptaPlanner &
piighe’ a a NN e r
Optimize planning
%ﬂ@ with Artificial Intelligence
Employee rostering @430 ,
(#]
Sun Mon Tue “os,,
6 14 22| & 14 22| & 14 ZZ
1 | 1 | 1 | 1 | 1 me
?’: - - | Free Le55 {29
_;: =] Free _
% Free Free >
| —
ce Free g
@

Free F F

1.2. What is a planning problem?

Vehicle routing

Bin packing

CPU RAK
o ,

What is a planning problem?

Optimize goals with limited resources under constraints

Optimize goals @ Maximize profit
(» Minimize ecological footprint
» Maximize happiness of employees / customers

With limited resources # Employees
mp Assets (machines, buildings, vehicles, ...)

(&) Time
(&) Budget

Under constraints @ vs (7) Working hours
W vs mp Skills / affinity
@ Vs (>) Logistic conflicts

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:
» Maximized profits - the optimal goal results in the highest possible profit.
* Minimized ecological footprint - the optimal goal has the least amount of environmental impact.
* Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available, such as:

* The number of people.
* Amount of time.
* Budget.
 Physical assets, for example, machinery, vehicles, computers, buildings, etc.
Specific constraints related to these resources must also be taken into account, such as the number

of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

OptaPlanner helps Java'™ programmers solve constraint satisfaction problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

1.2.1. A planning problem is NP-complete or NP-hard
All the use cases above are probably NP-complete/NP-hard, which means in layman’s terms:

* It’s easy to verify a given solution to a problem in reasonable time.

* There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for

o every NP-complete problem.

In fact, there’s a $ 1,000,000 reward for anyone that proves if such a silver bullet
actually exists or not.

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the two common techniques won’t suffice:

* A Brute Force algorithm (even a smarter variant) will take too long.

* A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a near-optimal solution in
reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints
Usually, a planning problem has at least two levels of constraints:

* A (negative) hard constraint must not be broken. For example: 1 teacher cannot teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

* A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some basic problems (such as N queens) only have hard constraints. Some problems have three or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as Java'" code. Such code is easy, flexible and
scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_%3D_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem

* A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

* A feasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

* An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there are
no feasible solutions and the optimal solution isn’t feasible.

* The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time, it’s
an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10280). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it’s impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm, by changing the solver configuration in a few lines of XML or
code.

1.3. Requirements

OptaPlanner is open source software, released under the Apache License 2.0. This license is very
liberal and allows reuse for commercial purposes. Read the layman’s explanation.

OptaPlanner is 100% pure Java"" and runs on Java 11 or higher. It integrates very easily with other
Java™ technologies. OptaPlanner is available in the Maven Central Repository.

OptaPlanner works on any Java Virtual Machine and is compatible with the major JVM languages
and all major platforms.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN

Compatibility

OptaPlanner and OptaPy work on all major platforms.

OptaPlanner@ OptaPy &

[—

(f;. Java K. Kotlin @ Python

e
-

@ Plain Java @ Quarkus € Spring

¥ Maven A Gradle ‘@ PyPI
A Linux & Mac A% Windows
‘ O OpenShift Kubernetes
Il | ocal
{ IBM Cloud AWS Azure Google Cloud

1.4. Governance

1.4.1. Status of OptaPlanner

OptaPlanner is stable, reliable and scalable. It has been heavily tested with unit, integration, and
stress tests, and is used in production throughout the world. One example handles over 50 000
variables with 5000 values each, multiple constraint types and billions of possible constraint
matches.

See Release notes for an overview of recent activity in the project.

1.4.2. Backwards compatibility
OptaPlanner separates its API and implementation:

* Public API: All classes in the package namespace org.optaplanner.core.api,
org.optaplanner.benchmark.api, org.optaplanner.test.api and
org.optaplanner.persistence...api are 100% backwards compatible in future releases
(especially minor and hotfix releases). In rare circumstances, if the major version number
changes, a few specific classes might have a few backwards incompatible changes, but those
will be clearly documented in the upgrade recipe.

* XML configuration: The XML solver configuration is backwards compatible for all elements,
except for elements that require the use of non-public API classes. The XML solver configuration

https://www.optaplanner.org/download/upgradeRecipe/

is defined by the classes in the package namespace org.optaplanner.core.config and
org.optaplanner.benchmark.config.

* Implementation classes: All other classes are not backwards compatible. They will change in
future major or minor releases (but probably not in hotfix releases). The upgrade recipe
describes every such relevant change and on how to quickly deal with it when upgrading to a
newer version.

This documentation covers some impl classes too. Those documented impl classes

o are reliable and safe to use (unless explicitly marked as experimental in this
documentation), but we’re just not entirely comfortable yet to write their
signatures in stone.

1.4.3. Community and support

For news and articles, check our blog, twitter (including Geoffrey’s twitter) and facebook.
If you’re happy with OptaPlanner, make us happy by posting a tweet or blog article about it.

Public questions are welcome on here. Bugs and feature requests are welcome in our issue tracker.
Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your
improvements, you’ll benefit from our peer review and from our improvements made on top of
your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at these services.

1.4.4. Relationship with KIE

OptaPlanner is part of the KIE group of projects. It releases regularly (typically every 3 weeks)
together.

See the architecture overview to learn more about the optional integration with Drools.

1.5. Download and run the examples

1.5.1. Get the release ZIP and run the examples
To try it now:

1. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

2. Open the directory examples and run the script.

Linux or Mac:

$ cd examples
$./runExamples.sh

Windows:

https://www.optaplanner.org/download/upgradeRecipe/
https://www.optaplanner.org/blog/
https://twitter.com/OptaPlanner
https://twitter.com/GeoffreyDeSmet
https://www.facebook.com/OptaPlanner
https://www.optaplanner.org/community/getHelp.html
https://issues.redhat.com/browse/PLANNER
https://www.optaplanner.org/product/services.html
http://www.kiegroup.org
http://www.drools.org/
https://www.optaplanner.org

$ cd examples
$ runExamples.bat

Distribution zip

Running the examples locally

@ Surf to www.optaplanner.org

Open the directory examples
and double click on runExamples

v optaplanner-distribution-*
(ERSPIY 42 Download OptaPlanner » [l binaries

v examples
3 binaries
@ Unzip ﬁ optaplanner-distribution-*.zip g date
> sources
=/ runExamples.bat
L:—Ll runExamples.sh]
» |l javadocs
3 reference_manual
> sources
3 webexamples

=| ReadMeOptaPlanner.txt

=| UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Pick an example to try it out:

OptaPlanner examples x

Which example do you want to see?

* O_:Q =—
Nurse rostering m Traveling salesman o Task assigning
| | @
B B

i + VB
Conference scheduling Vehicle routing h Hospital bed planning i {@-3 Machine reassignment
| 900 | B I | %o |
-

N 6& Cloud balancing

=
Course timetabling Rock tour == Project job scheduling w N gueens
| | = | |
—

— L]
|_ [——]] B
| y Exam timetabling W Coach shuttle gathering "\ Cheap time scheduling R=he ID | Scrabble compacter
= | ¥ || 5@ |

: : Dinner party ‘

«]
@

‘ @8 Meeting scheduling ‘ ‘ \ Traveling tournament ‘ | ,“Z/,/%L\ Investment allocation ‘ ‘

)

Tennis club scheduling

Description
'y
-
| Show web examples |
www.optaplanner.org
h", | Documentation |
o OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.5.2. Run the examples in an IDE

To run the examples in Intelli] IDEA, VSCode or Eclipse:

1. Open the file examples/sources/pom.xml as a new project, the maven integration will take care
of the rest.

2. Run the examples from the project.

1.5.3. Use OptaPlanner with Maven, Gradle, or ANT

The OptaPlanner jars are available in the central maven repository (and the snapshots in the JBoss
maven repository).

If you use Maven, add a dependency to optaplanner-core in your pom.xml:

<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-core</artifactId>
<version>...</version>

</dependency>

http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~

Or better yet, import the optaplanner-bom in dependencyManagement to avoid duplicating version
numbers when adding other optaplanner dependencies later on:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-bom</artifactId>
<type>pom</type>
<version>...</version>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupld>org.optaplanner</groupId>
<artifactId>optaplanner-core</artifactId>
</dependency>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-persistence-jpa</artifactId>
</dependency>

</dependencies>
</project>

If you use Gradle, add a dependency to optaplanner-core in your build.gradle:

dependencies {
implementation 'org.optaplanner:optaplanner-core:..."

}

If you’re still using ANT, copy all the jars from the download zip’s binaries directory in your
classpath.

The download zip’s binaries directory contains far more jars then optaplanner-
core actually uses. It also contains the jars used by other modules, such as

o optaplanner-benchmark.

Check the maven repository pom.xml files to determine the minimal dependency set
of optaplanner-core etc.

10

1.5.4. Build OptaPlanner from source
Prerequisites

» Set up Git.
* Authenticate on GitHub using either HTTPS or SSH.
o See GitHub for more information about setting up and authenticating Git.

* Set up Maven.
Build and run the examples from source.

1. Clone optaplanner from GitHub (or alternatively, download the zipball):

$ git clone https://github.com/kiegroup/optaplanner.git

2. Build it with Maven:

$ cd optaplanner
$ mvn clean install -DskipTests

o The first time, Maven might take a long time, because it needs to download
jars.

3. Run the examples:

$ cd optaplanner-examples
$ mvn exec:java

4. Edit the sources in your favorite IDE.

11

https://git-scm.com/
https://help.github.com/articles/set-up-git/
http://maven.apache.org/
https://github.com/kiegroup/optaplanner/zipball/main

Chapter 2. Quick start

2.1. Overview

Each quick start gets you up and running with OptaPlanner quickly. Pick the quick start that best
aligns with your requirements:
* Hello World Java

o Build a simple Java application that uses OptaPlanner to optimize a school timetable for
students and teachers.

* Quarkus Java (recommended)

- Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

o Quarkus is an extremely fast platform in the Java ecosystem. It is ideal for rapid incremental
development, as well as deployment into the cloud. It also supports native compilation. It
also offers increased performance for OptaPlanner, due to build time optimizations.

* Spring Boot Java

o Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

o Spring Boot is another platform in the Java ecosystem.

All three quick starts use OptaPlanner to optimize a school timetable for student and teachers:

12

https://quarkus.io

School timetabling input/output

Assign each lesson to a time slot and a room.

Lessons Room A Room B
08:30
- 2 2
09:30
same
N students
Chemistry 09:30
by M. Curie - ? ?
Oth grade 10:30
same
teacher
same Room A Room B
students
08:30
09:30

09:30 | Chemistry
- by M. Curie
10:30 ath grﬁde

For other use cases, take a look at the optaplanner-quickstarts repository and the use cases chapter.

2.2. Hello world Java quick start

This guide walks you through the process of creating a simple Java application with OptaPlanner's
constraint solving Artificial Intelligence (AD).

2.2.1. What you will build

You will build a command-line application that optimizes a school timetable for students and
teachers:

INFO Solving ended: time spent (5000), best score (@hard/9soft), ...

INFO

INFO | | Room A | Room B | Room C

INFO |------------ |---mmmmmme-- |---mmmmmme- |---mmmmmee- |
INFO | MON ©08:30 | English | Math | |
INFO | | I. Jones | A. Turing | |
INFO | | 9th grade | 10th grade | |
INFO [------------ |---- e |----mmmeee |- |
INFO | MON 09:30 | History | Physics | |
INFO | | I. Jones | M. Curie | |

13

https://github.com/kiegroup/optaplanner-quickstarts
https://www.optaplanner.org/

INFO | | 9th grade | 10th grade

|
INFO [------------ |---mmmoee- |---mmmmeee |---mmmmeee |
INFO | MON 10:30 | History | Physics | |
INFO | | I. Jones | M. Curie | |
INFO | | 10th grade | 9th grade | |
INFO [------------ |---mmme e |----mmeee |---mmmeee |
e oo [mmmneeees [ommneees |

Your application will assign Lesson instances to Timeslot and Room instances automatically by using
Al to adhere to hard and soft scheduling constraints, for example:

* Aroom can have at most one lesson at the same time.

* Ateacher can teach at most one lesson at the same time.

* A student can attend at most one lesson at the same time.

» Ateacher prefers to teach all lessons in the same room.

» A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

* A student dislikes sequential lessons on the same subject.

Mathematically speaking, school timetabling is an NP-hard problem. This means it is difficult to
scale. Simply brute force iterating through all possible combinations takes millions of years for a
non-trivial dataset, even on a supercomputer. Fortunately, AI constraint solvers such as
OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable
amount of time.

2.2.2. Solution source code
Follow the instructions in the next sections to create the application step by step (recommended).
Alternatively, review the completed example:

1. Complete one of the following tasks:

a. Clone the Git repository:
$ git clone https://github.com/kiegroup/optaplanner-quickstarts

b. Download an archive.
2. Find the solution in the hello-world directory.

3. Follow the instructions in the README file to run the application.

2.2.3. Prerequisites
To complete this guide, you need:

* JDK 11+ with JAVA_HOME configured appropriately

14

https://www.optaplanner.org/download/download.html
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/hello-world
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/hello-world
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/hello-world
https://adoptopenjdk.net/

* Apache Maven 3.8.1+ or Gradle 4+
* An IDE, such as Intelli] IDEA, VSCode or Eclipse

2.2.4. The build file and the dependencies

Create a Maven or Gradle build file and add these dependencies:

» optaplanner-core (compile scope) to solve the school timetable problem.
» optaplanner-test (test scope) to JUnit test the school timetabling constraints.

* A logging implementation, such as logback-classic (runtime scope), to see what OptaPlanner is
doing.

If you choose Maven, your pom.xml file has the following content:

<?xml version="1.0" encoding="UTF-8"7>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.acme</groupld>
<artifactId>optaplanner-hello-world-school-timetabling-quickstart</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<maven.compiler.release>11</maven.compiler.release>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-bom</artifactId>
<version>9.38.1-SNAPSHOT</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>

15

https://maven.apache.org/download.html
https://gradle.org/install/
https://www.jetbrains.com/idea

<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-core</artifactId>

</dependency>

<dependency>
<groupIld>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<scope>runtime</scope>

</dependency>

<!-- Testing -->
<dependency>
<groupld>org.optaplanner</groupId>
<artifactId>optaplanner-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<mainClass>org.acme.schooltimetabling.TimeTableApp</main(Class>
</configuration>
</plugin>
</plugins>
</build>
</project>

On the other hand, in Gradle, your build.gradle file has this content:

plugins {
id "java"
id "application”

}

def optaplannerVersion = "9.38.1-SNAPSHOT"
def logbackVersion = "1.2.9"

group = "org.acme"
version = "1.0-SNAPSHOT"

repositories {
mavenCentral()

}

dependencies {
implementation platform("org.optaplanner:optaplanner-bom:${optaplannerVersion}")

16

implementation "org.optaplanner:optaplanner-core"
testImplementation "org.optaplanner:optaplanner-test"

runtimeOnly "ch.qos.logback:logback-classic:${logbackVersion}"

}
java {
sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11
}

compilelava {
options.encoding = "UTF-8"
options.compilerArgs << "-parameters"”

}

compileTestJava {
options.encoding = "UTF-8"

}

application {
mainClass = "org.acme.schooltimetabling.TimeTableApp"

}
test {
// Log the test execution results.
testlogging {
events "passed", "skipped", "failed"
}
}

2.2.5. Model the domain objects

Your goal is to assign each lesson to a time slot and a room. You will create these classes:

17

Time table class diagram

Timeslot Lesson
dayOfWeek : DayOfWeek subject : String
startTime : LocalTime , teacher : String
endTime : LocalTime - timeslot _ studentGroup : String

| Room
name : String room
0.1 *

2.2.5.1. Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. For simplicity’s sake, all time slots have the same duration and
there are no time slots during lunch or other breaks.

A time slot has no date, because a high school schedule just repeats every week. So there is no need
for continuous planning

Create the src/main/java/org/acme/schooltimetabling/domain/Timeslot.java class:

package org.acme.schooltimetabling.domain;

import java.time.DayOfWeek;
import java.time.lLocalTime;

public class Timeslot {

private DayOfWeek dayOfWeek;
private LocalTime startTime;
private LocalTime endTime;

public Timeslot() {
}

public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
this.dayOfWeek = dayOfWeek;
this.startTime = startTime;
this.endTime = endTime;

18

public DayOfWeek getDayOfWeek() {
return dayOfWeek;
}

public LocalTime getStartTime() {
return startTime;

}

public LocalTime getEndTime() {
return endTime;

}

public String toString() {

return dayOfWeek + " " + startTime;

}

Because no Timeslot instances change during solving, a Timeslot is called a problem fact. Such
classes do not require any OptaPlanner specific annotations.

Notice the toString() method keeps the output short, so it is easier to read OptaPlanner’s DEBUG or
TRACE log, as shown later.

2.2.5.2. Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. For
simplicity’s sake, all rooms are without capacity limits and they can accommodate all lessons.

Create the src/main/java/org/acme/schooltimetabling/domain/Room. java class:

package org.acme.schooltimetabling.domain;
public class Room {
private String name;

public Room() {
}

public Room(String name) {
this.name = name;

}

public String getName() {
return name;

}

19

public String toString() {
return name;

}

Room instances do not change during solving, so Room is also a problem fact.

2.2.5.3. Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students,
for example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times per week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons
a week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class, to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning
entity:

Time table class diagram

The timeslot and room fields are
normally null before solving
and non-null after solving

Timeslot Lesson
dayOfWweek : DayOfWeek subject : String
startTime : LocalTime teacher : String
endTime : LocalTime studentGroup : String

@PlanningEntity

@~PlanningVariable
timeslot
0.1 *

@PlanningVariable
room
0.1 *

| Room
name : String

Most of the fields in the previous diagram contain input data, except for the orange fields: A
lesson’s timeslot and room fields are unassigned (null) in the input data and assigned (not null) in
the output data. OptaPlanner changes these fields during solving. Such fields are called planning
variables. In order for OptaPlanner to recognize them, both the timeslot and room fields require an
@PlanningVariable annotation. Their containing class, Lesson, requires an @PlanningEntity
annotation.

Create the src/main/java/org/acme/schooltimetabling/domain/Lesson.java class:

package org.acme.schooltimetabling.domain;

20

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.lookup.Planningld;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

public class Lesson {

private Long 1id;

private String subject;
private String teacher;
private String studentGroup;

private Timeslot timeslot;
private Room room;

public Lesson() {
}

public Lesson(Long id, String subject, String teacher, String studentGroup) {
this.id = id;
this.subject = subject;
this.teacher = teacher;
this.studentGroup = studentGroup;
}

public Long getId() {
return id;

}

public String getSubject() {
return subject;

}

public String getTeacher() {
return teacher;

}

public String getStudentGroup() {
return studentGroup;

}

public Timeslot getTimeslot() {
return timeslot;

}

public void setTimeslot(Timeslot timeslot) {

21

this.timeslot = timeslot;

public Room getRoom() {
return room;

public void setRoom(Room room) {
this.room = room;

public String toString() {
return subject + "(" + id + ")";

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class changes
during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can change its
value. In order to find potential Timeslot instances to assign to this field, OptaPlanner uses the
variable type to connect to a value range provider that provides a List<Timeslot> to pick from.

The room field also has an @PlanningVariable annotation, for the same reasons.

Determining the @PlanningVariable fields for an arbitrary constraint solving use
o case is often challenging the first time. Read the domain modeling guidelines to
avoid common pitfalls.

2.2.6. Define the constraints and calculate the score

A score represents the quality of a specific solution. The higher the better. OptaPlanner looks for the
best solution, which is the solution with the highest score found in the available time. It might be
the optimal solution.

Because this use case has hard and soft constraints, use the HardSoftScore class to represent the
score:

* Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.

 Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted too,
against other soft constraints. Hard constraints always outweigh soft constraints, regardless of
their respective weights.

To calculate the score, you could implement an EasyScoreCalculator class:

22

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable,
HardSoftScore> {

@0verride
public HardSoftScore calculateScore(TimeTable timeTable) {
List<Lesson> lessonlList = timeTable.getlLessonList();
int hardScore = 0;
for (Lesson a : lessonlist) {
for (Lesson b : lessonlist) {
if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
&& a.getId() < b.getId()) {
// A room can accommodate at most one lesson at the same time.
if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
hardScore--;
}
// A teacher can teach at most one lesson at the same time.
if (a.getTeacher().equals(b.getTeacher())) {
hardScore--;
}
// A student can attend at most one lesson at the same time.
if (a.getStudentGroup().equals(b.getStudentGroup())) {
hardScore--;

}

}
}

int softScore = 0;
// Soft constraints are only implemented in the optaplanner-quickstarts code
return HardSoftScore.of(hardScore, softScore);

Unfortunately that does not scale well, because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

Instead, create a
src/main/java/org/acme/schooltimetabling/solver/TimeTableConstraintProvider.java class to
perform incremental score calculation. It uses OptaPlanner’s ConstraintStream API which is
inspired by Java Streams and SQL:

package org.acme.schooltimetabling.solver;

import org.acme.schooltimetabling.domain.Lesson;

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.score.stream.Constraint;

import org.optaplanner.core.api.score.stream.ConstraintFactory;
import org.optaplanner.core.api.score.stream.ConstraintProvider;
import org.optaplanner.core.api.score.stream.Joiners;

23

24

public class TimeTableConstraintProvider implements ConstraintProvider {

@0verride
public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
return new Constraint[] {
// Hard constraints
roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),
// Soft constraints are only implemented in the optaplanner-
quickstarts code
I
}

private Constraint roomConflict(ConstraintFactory constraintFactory) {
// A room can accommodate at most one lesson at the same time.

// Select a lesson ...
return constraintFactory
.forEach(Lesson.class)

// ... and pair it with another lesson ...
.join(Lesson.class,
// ... in the same timeslot ...
Joiners.equal(Lesson::getTimeslot),
// ... in the same room ...

Joiners.equal(Lesson::getRoom),

// ... and the pair is unique (different id, no reverse pairs)

Joiners.lessThan(Lesson::getId))
// ... then penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Room conflict");

}

private Constraint teacherConflict(ConstraintFactory constraintFactory) {
// A teacher can teach at most one lesson at the same time.
return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getTeacher),
Joiners.lessThan(Lesson::getId))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Teacher conflict");

}

private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
// A student can attend at most one lesson at the same time.
return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),

Joiners.equal(Lesson::getStudentGroup),

Joiners.lessThan(Lesson::getId))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Student group conflict");

The ConstraintProvider scales an order of magnitude better than the EasyScoreCalculator: O(n)
instead of O(n?).

2.2.7. Gather the domain objects in a planning solution

A TimeTable wraps all Timeslot, Room, and Lesson instances of a single dataset. Furthermore, because
it contains all lessons, each with a specific planning variable state, it is a planning solution and it
has a score:

* If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with
the score -4init/@hard/0soft.

o If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

« If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score Ohard/-7soft.

Create the src/main/java/org/acme/schooltimetabling/domain/TimeTable.java class:

package org.acme.schooltimetabling.domain;

import java.util.List;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;

import org.optaplanner.core.api.domain.solution.PlanningSolution;

import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;

import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;
import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

public class TimeTable {

private List<Timeslot> timeslotList;

private List<Room> roomList;

private List<Lesson> lessonList;

25

private HardSoftScore score;

public TimeTable() {
}

public TimeTable(List<Timeslot> timeslotlList, List<Room> roomList, List<lLesson>
lessonlist) {
this.timeslotlList = timeslotlList;
this.roomList = roomList;
this.lessonlList = lessonlList;

}

public List<Timeslot> getTimeslotList() {
return timeslotlist;

}

public List<Room> getRoomList() {
return roomList;

}

public List<Lesson> getlLessonList() {
return lessonlList;

}

public HardSoftScore getScore() {
return score;

}

The TimeTable class has an @PlanningSolution annotation, so OptaPlanner knows that this class
contains all of the input and output data.

Specifically, this class is the input of the problem:

* A timeslotlList field with all time slots

o This is a list of problem facts, because they do not change during solving.
* AroomlList field with all rooms

o This is a list of problem facts, because they do not change during solving.
* A lessonList field with all lessons

o This is a list of planning entities, because they change during solving.

o Of each Lesson:

= The values of the timeslot and room fields are typically still null, so unassigned. They are
planning variables.

= The other fields, such as subject, teacher and studentGroup, are filled in. These fields are
problem properties.

26

However, this class is also the output of the solution:
e A lessonlist field for which each Lesson instance has non-null timeslot and room fields after
solving

* A score field that represents the quality of the output solution, for example, @hard/-5soft

2.2.7.1. The value range providers

The timeslotList field is a value range provider. It holds the Timeslot instances which OptaPlanner
can pick from to assign to the timeslot field of Lesson instances. The timeslotlList field has an
@ValueRangeProvider annotation to connect the @PlanningVariable with the @ValueRangeProvider, by
matching the type of the planning variable with the type returned by the value range provider.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

2.2.7.2. The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances wused for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

2.2.8. Create the application

Now you are ready to put everything together and create a Java application. The main() method
performs the following tasks:

1. Creates the SolverFactory to build a Solver per dataset.

2. Loads a dataset.

3. Solves it with Solver.solve().

4, Visualizes the solution for that dataset.
Typically, an application has a single SolverFactory to build a new Solver instance for each problem

dataset to solve. A SolverFactory is thread-safe, but a Solver is not. In this case, there is only one
dataset, so only one Solver instance.

Create the src/main/java/org/acme/schooltimetabling/TimeTableApp.java class:

package org.acme.schooltimetabling;

import java.time.DayOfWeek;
import java.time.Duration;
import java.time.lLocalTime;
import java.util.Arraylist;

27

28

import
import
import
import

import
import
import
import
import
import
import
import
import
import

java.util.Collections;
java.util.Llist;
java.util.Map;
java.util.stream.Collectors;

org.acme.
org.acme.
org.acme.
org.acme.
org.acme.

schooltimetabling.domain.Lesson;
schooltimetabling.domain.Room;
schooltimetabling.domain.TimeTable;
schooltimetabling.domain.Timeslot;
schooltimetabling.solver.TimeTableConstraintProvider;

org.optaplanner.core.api.solver.Solver;
org.optaplanner.core.api.solver.SolverFactory;
org.optaplanner.core.config.solver.SolverConfig;
org.slf4j.Logger;

org.slf4j.LoggerFactory;

public class TimeTableApp {

private static final Logger LOGGER = LoggerFactory.getLogger(TimeTableApp.class);

public static void main(String[] args) {
SolverFactory<TimeTable> solverFactory = SolverFactory.create(new
SolverConfig()

}

// Load

.withSolutionClass(TimeTable.class)
.withEntityClasses(Lesson.class)
.withConstraintProviderClass(TimeTableConstraintProvider.class)

// The solver runs only for 5 seconds on this small dataset.

// It's recommended to run for at least 5 minutes ("5m") otherwise.
.withTerminationSpentLimit(Duration.ofSeconds(5)));

the problem

TimeTable problem = generateDemoData();

// Solve the problem
Solver<TimeTable> solver = solverFactory.buildSolver();
TimeTable solution = solver.solve(problem);

// Visualize the solution
printTimetable(solution);

public static TimeTable generateDemoData() {

List<Timeslot> timeslotList = new ArraylList<>(10);
timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30),
LocalTime.of(9, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30),
LocalTime.of(10, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30),
LocalTime.of (11, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30),
LocalTime.of (14, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30),
LocalTime.of(15, 30)));

timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(8, 30),
LocalTime.of(9, 30)));

timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(9, 30),
LocalTime.of(10, 30)));

timeslotList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(10, 30),
LocalTime.of (11, 30)));

timeslotlList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(13, 30),
LocalTime.of (14, 30)));

timeslotlList.add(new Timeslot(DayOfWeek.TUESDAY, LocalTime.of(14, 30),
LocalTime.of(15, 30)));

List<Room> roomList = new ArraylList<>(3);
roomList.add(new Room("Room A"));
roomList.add(new Room("Room B"));
roomList.add(new Room("Room C"));

List<Lesson> lessonlList = new ArraylList<>();

long id = 0;

lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade"));
lessonList.add(new Lesson(id++, "Math", "A. Turing", "9th grade"));
lessonList.add(new Lesson(id++, "Physics", "M. Curie", "9th grade"));
lessonlList.add(new Lesson(id++, "Chemistry", "M. Curie", "9th grade"));
lessonList.add(new Lesson(id++, "Biology", "C. Darwin", "9th grade"));
lessonList.add(new Lesson(id++, "History", "I. Jones", "9th grade"));
lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade"));
lessonList.add(new Lesson(id++, "English", "I. Jones", "9th grade"));
lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade"));
lessonList.add(new Lesson(id++, "Spanish", "P. Cruz", "9th grade"));

lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade"));
lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade"));
lessonList.add(new Lesson(id++, "Math", "A. Turing", "10th grade"));
lessonList.add(new Lesson(id++, "Physics", "M. Curie", "10th grade"));
lessonList.add(new Lesson(id++, "Chemistry", "M. Curie", "10th grade"));
lessonList.add(new Lesson(id++, "French", "M. Curie", "10th grade"));
lessonList.add(new Lesson(id++, "Geography", "C. Darwin", "10th grade"));
lessonList.add(new Lesson(id++, "History", "I. Jones", "10th grade"));
lessonList.add(new Lesson(id++, "English", "P. Cruz", "10th grade"));
lessonlList.add(new Lesson(id++, "Spanish", "P. Cruz", "10th grade"));

return new TimeTable(timeslotlList, roomList, lessonlList);

}

private static void printTimetable(TimeTable timeTable) {
LOGGER.info("");
List<Room> roomList = timeTable.getRoomList();
List<Lesson> lessonlList = timeTable.getlLessonList();
Map<Timeslot, Map<Room, List<Lesson>>> lessonMap = lessonlList.stream()

30

.filter(lesson -> lesson.getTimeslot() != null && lesson.getRoom() !=
null)

.collect(Collectors.groupingBy(Lesson::getTimeslot, Collectors
.groupingBy(Lesson::getRoom)));
LOGGER. info(" | | " + roomList.stream()
.map(room -> String.format("%-10s", room.getName())).collect
(Collectors.joining(" | ")) + " |");
LOGGER.info("|" + "------------ |".repeat(roomList.size() + 1));
for (Timeslot timeslot : timeTable.getTimeslotlList()) {
List<List<Lesson>> celllList = roomList.stream()
.map(room -> {
Map<Room, List<Lesson>> byRoomMap = lessonMap.get(timeslot);
if (byRoomMap == null) {
return Collections.<Lesson>emptylList();
}
List<Lesson> celllessonList = byRoomMap.get(room);
if (celllessonlList == null) {
return Collections.<Lesson>emptylList();
}
return celllessonlList;
1))
.collect(Collectors.tolList());

LOGGER.info("| " + String.format("%-10s",
timeslot.getDayOfWeek().toString().substring(0, 3) + " " +
timeslot.getStartTime()) + " | "
+ celllist.stream().map(celllessonlList -> String.format("%-10s",
celllessonlList.stream().map(Lesson::getSubject).collect
(Collectors.joining(", "))))
.collect(Collectors.joining(" | "))
£
LOGGER. info(" | | "
+ celllist.stream().map(celllLessonList -> String.format("%-10s",
celllessonlist.stream().map(Lesson::getTeacher).collect
(Collectors.joining(", "))))
.collect(Collectors.joining(" | "))
+" ")
LOGGER. info(" | | "
+ celllist.stream().map(celllessonlList -> String.format("%-10s",
celllessonlList.stream().map(Lesson::getStudentGroup)
.collect(Collectors.joining(", "))))
.collect(Collectors.joining(" | "))
£
LOGGER.info("|" + "------------ |".repeat(roomList.size() + 1));
}
List<Lesson> unassignedLessons = lessonlList.stream()
.filter(lesson -> lesson.getTimeslot() == null || lesson.getRoom() ==
null)
.collect(Collectors.tolList());
if (lunassignedlLessons.isEmpty()) {
LOGGER.info("");

LOGGER.info("Unassigned lessons");
for (Lesson lesson : unassignedlLessons) {
LOGGER.info(" " + lesson.getSubject() + " - " + lesson.getTeacher() +
" - " + lesson.getStudentGroup());
+
}

The main() method first creates the SolverFactory:

SolverFactory<TimeTable> solverFactory = SolverFactory.create(new SolverConfig()
.withSolutionClass(TimeTable.class)
.withEntityClasses(Lesson.class)
.withConstraintProviderClass(TimeTableConstraintProvider.class)
// The solver runs only for 5 seconds on this small dataset.
// It's recommended to run for at least 5 minutes ("5m") otherwise.
.withTerminationSpentLimit(Duration.ofSeconds(5)));

This registers the @PlanningSolution class, the @PlanningEntity classes, and the ConstraintProvider
class, all of which you created earlier.

Without a termination setting or a terminationEarly() event, the solver runs forever. To avoid that,
the solver limits the solving time to five seconds.

After five seconds, the main() method loads the problem, solves it, and prints the solution:

// Load the problem
TimeTable problem = generateDemoData();

// Solve the problem
Solver<TimeTable> solver = solverFactory.buildSolver();
TimeTable solution = solver.solve(problem);

// Visualize the solution
printTimetable(solution);

The solve() method doesn’t return instantly. It runs for five seconds before returning the best
solution.

OptaPlanner returns the best solution found in the available termination time. Due to the nature of
NP-hard problems, the best solution might not be optimal, especially for larger datasets. Increase
the termination time to potentially find a better solution.

The generateDemoData() method generates the school timetable problem to solve.

The printTimetable() method pretty prints the timetable to the console, so it’s easy to determine

31

visually whether or not it’s a good schedule.
2.2.8.1. Configure logging
To see any output in the console, logging must be configured properly.

Create the src/main/resource/logback.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<configuration>

<appender name="consoleAppender" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d{HH:mm:ss.SSS} [%-12.12t] %-5p %m%n</pattern>
</encoder>
</appender>
<logger name="org.optaplanner" level="info"/>
<root level="info">
<appender-ref ref="consoleAppender" />

</root>

</configuration>

2.2.9. Run the application

2.2.9.1. Run the application in IDE

Run that TimeTableApp class as the main class of a normal Java application:

INFO |

| Room A | Room B | Room C |
INFO |------------ |---mmmmmme- |---mmmmmme- |---mmmmmme- |
INFO | MON ©08:30 | English | Math | |
INFO | | I. Jones | A. Turing | |
INFO | | 9th grade | 10th grade | |
INFO [------------ |----mmoee- |----mmmeee |- |
INFO | MON 09:30 | History | Physics | |
INFO | | I. Jones | M. Curie | |
INFO | | 9th grade | 10th grade | |

Verify the console output. Does it conform to all hard constraints? What happens if you comment
out the roomConflict constraint in TimeTableConstraintProvider?

The info log shows what OptaPlanner did in those five seconds:

32

... Solving started: time spent (33), best score (-8init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (@) ended: time spent (73), best score (@hard/@soft),
score calculation speed (459/sec), step total (4).

. Local Search phase (1) ended: time spent (5000), best score (@hard/@soft), score
calculation speed (28949/sec), step total (28398).

. Solving ended: time spent (5000), best score (@hard/@soft), score calculation
speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).

2.2.9.2. Test the application

A good application includes test coverage.

2.2.9.2.1. Test the constraints

To test each constraint in isolation, use a ConstraintVerifier in unit tests. This tests each
constraint’s corner cases in isolation from the other tests, which lowers maintenance when adding
a new constraint with proper test coverage.

Create the src/test/java/org/acme/schooltimetabling/solver/TimeTableConstraintProviderTest.java
class:

package org.acme.schooltimetabling.solver;

import java.time.DayOfWeek;
import java.time.LocalTime;

import org.acme.schooltimetabling.domain.Lesson;

import org.acme.schooltimetabling.domain.Room;

import org.acme.schooltimetabling.domain.TimeTable;

import org.acme.schooltimetabling.domain.Timeslot;

import org.junit.jupiter.api.Test;

import org.optaplanner.test.api.score.stream.ConstraintVerifier;

class TimeTableConstraintProviderTest {

private static final Room ROOM1 = new Room("Room1");

private static final Timeslot TIMESLOT1 = new Timeslot(DayOfWeek.MONDAY,
LocalTime.NOON);

private static final Timeslot TIMESLOT2 = new Timeslot(DayOfWeek.TUESDAY,
LocalTime.NOON);

ConstraintVerifier<TimeTableConstraintProvider, TimeTable> constraintVerifier =

ConstraintVerifier.build(
new TimeTableConstraintProvider(), TimeTable.class, Lesson.class);

void roomConflict() {
Lesson firstlLesson = new Lesson(1, "Subject1", "Teacher1", "Group1",

33

TIMESLOT1, ROOM1);
Lesson conflictinglesson = new Lesson(2, "Subject2", "Teacher2", "Group2",
TIMESLOT1, ROOM1);
Lesson nonConflictinglesson = new Lesson(3, "Subject3", "Teacher3", "Group3",
TIMESLOT2, ROOM1);
constraintVerifier.verifyThat(TimeTableConstraintProvider::roomConflict)
.given(firstLesson, conflictinglLesson, nonConflictinglLesson)
.penalizesBy(1);

This test verifies that the constraint TimeTableConstraintProvider::roomConflict penalizes with a
match weight of 1 when given three lessons in the same room, where two lessons have the same
timeslot. Therefore, a constraint weight of 10hard would reduce the score by -106hard.

Notice how ConstraintVerifier ignores the constraint weight during testing - even if those
constraint weights are hard coded in the ConstraintProvider - because constraints weights change
regularly before going into production. This way, constraint weight tweaking does not break the
unit tests.

For more, see Testing Constraint Streams.

2.2.9.3. Logging

When adding constraints in your ConstraintProvider, keep an eye on the score calculation speed in
the info log, after solving for the same amount of time, to assess the performance impact:

. Solving ended: ..., score calculation speed (29455/sec), ...

To understand how OptaPlanner is solving your problem internally, change the logging in the
logback. xml file:

<logger name="org.optaplanner" level="debug"/>
Use debug logging to show every step:

. Solving started: time spent (67), best score (-20init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
. CH step (@), time spent (128), score (-18init/@hard/@soft), selected move
count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY
08:30}1).
. CH step (1), time spent (145), score (-16init/@hard/@soft), selected move
count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY
09:30}1).

34

Use trace logging to show every step and every move per step.

2.2.9.4. Make a standalone application

In order to run the application outside an IDE easily, you will need to make some changes to the
configuration of your build tool.

2.2.9.4.1. Executable JAR in Maven

In Maven, add the following to your pom. xml:

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>${version.assembly.plugin}</version>
<configuration>
<finalName>hello-world-run</finalName>
<appendAssemblyId>false</appendAssemblyIld>
<descriptors>
<descriptor>src/assembly/jar-with-dependencies-and-
services.xml</descriptor>
</descriptors>
<archive>
<manifestEntries>
<Main-Class>org.acme.schooltimetabling.TimeTableApp</Main-Class>
<Multi-Release>true</Multi-Release>
</manifestEntries>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>

</plugins>
</build>

Also, create a new file in src/assembly directory called jar-with-dependencies-and-services.xml with
the following contents:

35

<assembly xmlns="http://maven.apache.org/ASSEMBLY/2.1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/ASSEMBLY/2.1.0
http://maven.apache.org/xsd/assembly-2.1.0.xsd">
<id>jar-with-dependencies-and-services</id>
<formats>
<format>jar</format>
</formats>
<containerDescriptorHandlers>
<containerDescriptorHandler>
<handlerName>metalnf-services</handlerName>
</containerDescriptorHandler>
</containerDescriptorHandlers>
<includeBaseDirectory>false</includeBaseDirectory>
<dependencySets>
<dependencySet>
<outputDirectory>/</outputDirectory>
<useProjectArtifact>true</useProjectArtifact>
<unpack>true</unpack>
<scope>runtime</scope>
</dependencySet>
</dependencySets>
</assembly>

This enables the Maven Assembly Plugin and tells it to do the following:

» Take all dependencies of your project and put their classes and resources into a new JAR.
o If any of the dependencies use Java SPI, it properly bundles all the service descriptors.
o If any of the dependencies are multi-release JARs, it takes that into account.

» Set that JAR’s main class to be org.acme.schooltimetabling.TimeTableApp.

* Make that JAR available as hello-world-run.jar in your project’s build directory, most likely
target/.

This executable JAR can be run like any other JAR:

$ mvn clean install

$ java -jar target/hello-world-run.jar

2.2.9.4.2. Executable application in Gradle

In Gradle, add the following to your build.gradle:

application {
mainClass = "org.acme.schooltimetabling.TimeTableApp"

36

https://maven.apache.org/plugins/maven-assembly-plugin/
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://openjdk.org/jeps/238

After building the project, you can find an archive with a runnable application inside the
build/distributions/ directory.

2.2.10. Summary
Congratulations! You have just developed a Java application with OptaPlanner!
If you ran into any issues, take a look at the quickstart source code.

Read the next guide to build a pretty web application for school timetabling with a REST service
and database integration, by leveraging Quarkus.

2.3. Quarkus Java quick start

This guide walks you through the process of creating a Quarkus application with OptaPlanner's
constraint solving Artificial Intelligence (AD).

2.3.1. What you will build

You will build a REST application that optimizes a school timetable for students and teachers:

Refresh Score: DhardM8soft m By teacher By student group
Timeslot Room A W RoomB W RoomC W
Physics w Spanish w
Monday 08:30 - 09:30 W by M. Curie by P. Cruz
10th grade 27 Sth grade 22
Physics w Spanish w
Monday 09:30 - 10:30 W by M. Curie by P. Cruz
Gth grade 16 10th grade 3

e - -

Your service will assign Lesson instances to Timeslot and Room instances automatically by using Al to
adhere to hard and soft scheduling constraints, such as the following examples:

Monday 13:30 - 14:30 W

Monday 14:30 - 15:30 W

37

https://www.optaplanner.org/
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/hello-world
https://quarkus.io/
https://www.optaplanner.org/

* Aroom can have at most one lesson at the same time.

* Ateacher can teach at most one lesson at the same time.

* A student can attend at most one lesson at the same time.

* A teacher prefers to teach all lessons in the same room.

» A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

* A student dislikes sequential lessons on the same subject.

Mathematically speaking, school timetabling is an NP-hard problem. This means it is difficult to
scale. Simply brute force iterating through all possible combinations takes millions of years for a
non-trivial dataset, even on a supercomputer. Luckily, Al constraint solvers such as OptaPlanner
have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time.

2.3.2. Solution source code
Follow the instructions in the next sections to create the application step by step (recommended).
Alternatively, you can also skip right to the completed example:

1. Clone the Git repository:
$ git clone https://github.com/kiegroup/optaplanner-quickstarts

or download an archive.

2. Find the solution in the use-cases directory and run it (see its README file).

2.3.3. Prerequisites
To complete this guide, you need:

* JDK 11+ with JAVA_HOME configured appropriately
* Apache Maven 3.8.1+ or Gradle 4+
* An IDE, such as Intelli] IDEA, VSCode or Eclipse

2.3.4. The build file and the dependencies

Use code.quarkus.io to generate an application with the following extensions, for Maven or Gradle:

RESTEasy JAX-RS (quarkus-resteasy)

RESTEasy Jackson (quarkus-resteasy-jackson)

* OptaPlanner (optaplanner-quarkus)

OptaPlanner Jackson (optaplanner-quarkus-jackson)

Alternatively, generate it from the command line with Maven:

38

https://www.optaplanner.org/download/download.html
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/use-cases/school-timetabling
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/use-cases/school-timetabling
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/use-cases/school-timetabling
https://adoptopenjdk.net/
https://maven.apache.org/download.html
https://gradle.org/install/
https://www.jetbrains.com/idea
https://code.quarkus.io/

$ mvn io.quarkus:quarkus-maven-plugin:3.0.0.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=optaplanner-quickstart \
-Dextensions="resteasy,resteasy-jackson,optaplanner-quarkus,optaplanner-quarkus
-jackson" \
-DnoExamples
$ cd optaplanner-quickstart

If you choose Maven, your pom.xml file has the following content:

<?xml version="1.0" encoding="UTF-8"7>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/PONM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.acme</groupld>
<artifactId>optaplanner-quarkus-school-timetabling-quickstart</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<maven.compiler.release>11</maven.compiler.release>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<version.io.quarkus>3.0.0.Final</version.io.quarkus>
<version.org.optaplanner>9.38.1-SNAPSHOT</version.org.optaplanner>
</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-bom</artifactId>
<version>${version.io.quarkus}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-bom</artifactId>
<version>${version.org.optaplanner}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>

39

<groupId>io.quarkus</groupld>
<artifactId>quarkus-resteasy</artifactId>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jackson</artifactId>
</dependency>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-quarkus</artifactId>
</dependency>
<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-quarkus-jackson</artifactId>
</dependency>

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-junit5</artifactld>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-test</artifactId>
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${version.io.quarkus}</version>
<executions>
<execution>
<goals>
<goal>build</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<systemPropertyVariables>
<java.util.logging.manager>
org.jboss.logmanager.LogManager</java.util.logging.manager>
</systemPropertyVariables>
</configuration>
</plugin>

40

</plugins>
</build>
</project>

On the other hand, in Gradle, your build.gradle file has this content:

plugins {
id "java"
id "io.quarkus" version "3.0.0.Final"

}

def quarkusVersion = "3.0.0.Final"
def optaplannerVersion = "9.38.1-SNAPSHOT"

group = "org.acme"
version = "1.0-SNAPSHOT"

repositories {
mavenCentral()

}

dependencies {
implementation platform("io.quarkus:quarkus-bom:${quarkusVersion}")
implementation "io.quarkus:quarkus-resteasy"
implementation "io.quarkus:quarkus-resteasy-jackson"
testImplementation "io.quarkus:quarkus-junit5"

implementation platform("org.optaplanner:optaplanner-bom:${optaplannerVersion}")
implementation "org.optaplanner:optaplanner-quarkus"

implementation "org.optaplanner:optaplanner-quarkus-jackson"

testImplementation "org.optaplanner:optaplanner-test"

¥
java {
sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11
}

compilelava {
options.encoding = "UTF-8"
options.compilerArgs << "-parameters”

}

compileTest]ava {
options.encoding = "UTF-8"

}

test {
systemProperty "java.util.logging.manager", "org.jboss.logmanager.LogManager"

41

2.3.5. Model the domain objects

Your goal is to assign each lesson to a time slot and a room. You will create these classes:

Time table class diagram

Timeslot Lesson
dayOfWeek : DayOfWeek subject : String
startTime : LocalTime , teacher : String
endTime : LocalTime - timeslot _ studentGroup : String

| Room
name : String room
0.1 *

2.3.5.1. Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. For simplicity’s sake, all time slots have the same duration and
there are no time slots during lunch or other breaks.

A time slot has no date, because a high school schedule just repeats every week. So there is no need
for continuous planning.

Create the src/main/java/org/acme/schooltimetabling/domain/Timeslot.java class:

package org.acme.schooltimetabling.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {
private DayOfWeek dayOfWeek;
private LocalTime startTime;

private LocalTime endTime;

public Timeslot() {
}

42

public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
this.dayOfWeek = dayOfWeek;
this.startTime = startTime;
this.endTime = endTime;

}

public DayOfWeek getDayOfWeek() {
return dayOfWeek;
}

public LocalTime getStartTime() {
return startTime;

}

public LocalTime getEndTime() {
return endTime;

}

public String toString() {

return dayOfWeek + " " + startTime;

}

Because no Timeslot instances change during solving, a Timeslot is called a problem fact. Such
classes do not require any OptaPlanner specific annotations.

Notice the toString() method keeps the output short, so it is easier to read OptaPlanner’s DEBUG or
TRACE log, as shown later.

2.3.5.2. Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. For
simplicity’s sake, all rooms are without capacity limits and they can accommodate all lessons.

Create the src/main/java/org/acme/schooltimetabling/domain/Room. java class:

package org.acme.schooltimetabling.domain;
public class Room {
private String name;

public Room() {
}

public Room(String name) {
this.name = name;

43

}

public String getName() {
return name;

}

public String toString() {
return name;

}

Room instances do not change during solving, so Room is also a problem fact.

2.3.5.3. Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students,
for example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times per week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons
a week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class, to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning
entity:

Time table class diagram

The timeslot and room fields are
normally null before solving
and non-null after solving

Timeslot Lesson
dayOfWweek : DayOfWeek subject : String
startTime : LocalTime teacher : String
endTime : LocalTime studentGroup : String

@PlanningEntity

@PlanningVariable
timeslot
0.1 *

@PlanningVariable
room
0.1 *

| Room
name : String

Most of the fields in the previous diagram contain input data, except for the orange fields: A
lesson’s timeslot and room fields are unassigned (null) in the input data and assigned (not null) in
the output data. OptaPlanner changes these fields during solving. Such fields are called planning

44

variables. In order for OptaPlanner to recognize them, both the timeslot and room fields require an
@PlanningVariable annotation. Their containing class, Lesson, requires an @PlanningEntity
annotation.

Create the src/main/java/org/acme/schooltimetabling/domain/Lesson.java class:

package org.acme.schooltimetabling.domain;

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.lookup.Planningld;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

public class Lesson {

private Long id;

private String subject;
private String teacher;
private String studentGroup;

private Timeslot timeslot;
private Room room;

public Lesson() {
}

public Lesson(Long id, String subject, String teacher, String studentGroup) {
this.id = id;
this.subject = subject;
this.teacher = teacher;
this.studentGroup = studentGroup;

}

public Long getId() {
return id;

}

public String getSubject() {
return subject;

}

public String getTeacher() {
return teacher;

}

public String getStudentGroup() {

45

return studentGroup;

public Timeslot getTimeslot() {
return timeslot;

}

public void setTimeslot(Timeslot timeslot) {
this.timeslot = timeslot;

}

public Room getRoom() {
return room;

}

public void setRoom(Room room) {
this.room = room;

}

public String toString() {
return subject + "(" + id + ")";

}

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class changes
during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can change its
value. In order to find potential Timeslot instances to assign to this field, OptaPlanner uses the
variable type to connect to a value range provider that provides a List<Timeslot> to pick from.

The room field also has an @PlanningVariable annotation, for the same reasons.

Determining the @PlanningVariable fields for an arbitrary constraint solving use
case is often challenging the first time. Read the domain modeling guidelines to
avoid common pitfalls.

2.3.6. Define the constraints and calculate the score

A score represents the quality of a specific solution. The higher the better. OptaPlanner looks for the
best solution, which is the solution with the highest score found in the available time. It might be
the optimal solution.

Because this use case has hard and soft constraints, use the HardSoftScore class to represent the
score:

* Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.

46

 Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted too,
against other soft constraints. Hard constraints always outweigh soft constraints, regardless of
their respective weights.

To calculate the score, you could implement an EasyScoreCalculator class:

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable,
HardSoftScore> {

@0verride
public HardSoftScore calculateScore(TimeTable timeTable) {
List<Lesson> lessonlList = timeTable.getlLessonList();
int hardScore = 0;
for (Lesson a : lessonlist) {
for (Lesson b : lessonlList) {
if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
&& a.getId() < b.getId()) {
// A room can accommodate at most one lesson at the same time.
if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
hardScore--;
}
// A teacher can teach at most one lesson at the same time.
if (a.getTeacher().equals(b.getTeacher())) {
hardScore--;
}
// A student can attend at most one lesson at the same time.
if (a.getStudentGroup().equals(b.getStudentGroup())) {
hardScore--;

}

}
}

int softScore = 0;
// Soft constraints are only implemented in the optaplanner-quickstarts code
return HardSoftScore.of(hardScore, softScore);

Unfortunately that does not scale well, because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

Instead, create a
src/main/java/org/acme/schooltimetabling/solver/TimeTableConstraintProvider.java class to
perform incremental score calculation. It uses OptaPlanner’s ConstraintStream API which is
inspired by Java Streams and SQL:

47

48

package org.acme.schooltimetabling.solver;

import org.acme.schooltimetabli
import org.optaplanner.core.api
import org.optaplanner.core.api
import org.optaplanner.core.api
import org.optaplanner.core.api
import org.optaplanner.core.api

ng.domain.Lesson;
.score.buildin.hardsoft.HardSoftScore;
.score.stream.Constraint;
.score.stream.ConstraintFactory;
.score.stream.ConstraintProvider;
.score.stream.Joiners;

public class TimeTableConstraintProvider implements ConstraintProvider {

@0verride

public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {

return new Constraint[]

{

// Hard constraints

roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),

// Soft constraints are only implemented in the optaplanner-

quickstarts code
I
}

private Constraint roomConflict(ConstraintFactory constraintFactory) {
// A room can accommodate at most one lesson at the same time.

// Select a lesson ...

return constraintFactory
.forEach(Lesson.class)
// ... and pair it with another lesson ...
.join(Lesson.class,

/] ...

in the same timeslot ...

Joiners.equal(Lesson::getTimeslot),

/] ..

in the same room ...

Joiners.equal(Lesson::getRoom),

/] ...

and the pair is unique (different id, no reverse pairs)

Joiners.lessThan(Lesson::getId))
// ... then penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)

.asConstraint("

}

Room conflict");

private Constraint teacherConflict(ConstraintFactory constraintFactory) {

// A teacher can teach

at most one lesson at the same time.

return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getTeacher),
Joiners.lessThan(Lesson::getId))

.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Teacher conflict");

}

private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
// A student can attend at most one lesson at the same time.
return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getStudentGroup),
Joiners.lessThan(Lesson::getId))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Student group conflict");

The ConstraintProvider scales an order of magnitude better than the EasyScoreCalculator: O(n)
instead of O(n2).

2.3.7. Gather the domain objects in a planning solution

A TimeTable wraps all Timeslot, Room, and Lesson instances of a single dataset. Furthermore, because
it contains all lessons, each with a specific planning variable state, it is a planning solution and it
has a score:

* If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with
the score -4init/0hard/@soft.

« If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

« If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score Qhard/-7soft.

Create the src/main/java/org/acme/schooltimetabling/domain/TimeTable. java class:

package org.acme.schooltimetabling.domain;
import java.util.List;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;

import org.optaplanner.core.api.domain.solution.PlanningSolution;

import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

public class TimeTable {

49

private List<Timeslot> timeslotList;

private List<Room> roomList;

private List<Lesson> lessonList;

private HardSoftScore score;

public TimeTable() {
}

public TimeTable(List<Timeslot> timeslotList, List<Room> roomList, List<Lesson>
lessonList) {
this.timeslotList = timeslotList;
this.roomList = roomlList;
this.lessonlList = lessonlList;

}

public List<Timeslot> getTimeslotList() {
return timeslotList;

}

public List<Room> getRoomList() {
return roomList;

}

public List<Lesson> getlLessonList() {
return lessonlist;

}

public HardSoftScore getScore() {
return score;

}

The TimeTable class has an @PlanningSolution annotation, so OptaPlanner knows that this class
contains all of the input and output data.

Specifically, this class is the input of the problem:

* A timeslotlist field with all time slots
o This is a list of problem facts, because they do not change during solving.
* AroomlList field with all rooms

o This is a list of problem facts, because they do not change during solving.

50

* A lessonlist field with all lessons
o This is a list of planning entities, because they change during solving.
o Of each Lesson:

= The values of the timeslot and room fields are typically still null, so unassigned. They are
planning variables.

= The other fields, such as subject, teacher and studentGroup, are filled in. These fields are
problem properties.

However, this class is also the output of the solution:

e A lessonlist field for which each Lesson instance has non-null timeslot and room fields after
solving

* A score field that represents the quality of the output solution, for example, Ohard/-5soft
2.3.7.1. The value range providers

The timeslotList field is a value range provider. It holds the Timeslot instances which OptaPlanner
can pick from to assign to the timeslot field of Lesson instances. The timeslotlList field has an
@ValueRangeProvider annotation to connect the @PlanningVariable with the @ValueRangeProvider, by
matching the type of the planning variable with the type returned by the value range provider.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

2.3.7.2. The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances wused for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

2.3.8. Create the solver service

Now you are ready to put everything together and create a REST service. But solving planning
problems on REST threads causes HTTP timeout issues. Therefore, the Quarkus extension injects a
SolverManager instance, which runs solvers in a separate thread pool and can solve multiple
datasets in parallel.

Create the src/main/java/org/acme/schooltimetabling/rest/TimeTableResource.java class:

package org.acme.schooltimetabling.rest;

import java.util.UUID;
import java.util.concurrent.ExecutionException;

31

import javax.inject.Inject;
import javax.ws.rs.POST;
import javax.ws.rs.Path;

import org.acme.schooltimetabling.domain.TimeTable;
import org.optaplanner.core.api.solver.SolverJob;
import org.optaplanner.core.api.solver.SolverManager;

("/timeTable")
public class TimeTableResource {

SolverManager<TimeTable, UUID> solverManager;

("/solve")
public TimeTable solve(TimeTable problem) {
UUID problemId = UUID.randomUUID();
// Submit the problem to start solving
SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem

)i
TimeTable solution;
try {
// Wait until the solving ends
solution = solverJob.getFinalBestSolution();
} catch (InterruptedException | ExecutionException e) {
throw new I1legalStateException("Solving failed.", e);
}
return solution;
}
}

For simplicity’s sake, this initial implementation waits for the solver to finish, which can still cause
an HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.

2.3.9. Set the termination time

Without a termination setting or a terminationEarly() event, the solver runs forever. To avoid that,
limit the solving time to five seconds. That is short enough to avoid the HTTP timeout.

Create the src/main/resources/application.properties file:

The solver runs only for 5 seconds to avoid a HTTP timeout in this simple
implementation.

It's recommended to run for at least 5 minutes ("5m") otherwise.
quarkus.optaplanner.solver.termination.spent-limit=5s

OptaPlanner returns the best solution found in the available termination time. Due to the nature of

32

NP-hard problems, the best solution might not be optimal, especially for larger datasets. Increase
the termination time to potentially find a better solution.

2.3.10. Run the application

First start the application:

$ mvn compile quarkus:dev

2.3.10.1. Try the application

Now that the application is running, you can test the REST service. You can use any REST client you
wish. The following example uses the Linux command curl to send a POST request:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-
Type:application/json" -d

"{"timeslotList":[{"dayOfWeek": "MONDAY","startTime":"08:30:00","endTime":"09:30:00"}, {
"dayOfWeek": "MONDAY", "startTime":"09:30:00","endTime":"10:30:00"}], "roomList":[{"name"
:"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math", "teacher":"A.
Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M.

Curie","studentGroup":"9th grade"},{"id":3,"subject":"French", "teacher":"M.

Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I.

Jones", "studentGroup":"10th grade"}]}'

After about five seconds, according to the termination spent time defined in your
application.properties, the service returns an output similar to the following example:

HTTP/1.1 200
Content-Type: application/json

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math", "teacher":"A
. Turing","studentGroup":"9th
grade","timeslot":{"dayOfWeek": "MONDAY", "startTime":"08:30:00","endTime":"09:30:00"},"
room":{"name":"Room A"}},{"i1d":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th
grade","timeslot":{"dayOfWeek": "MONDAY", "startTime":"09:30:00","endTime":"10:30:00"},"
room":{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th

grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"08:30:00", "endTime":"09:30:00"},"
room":{"name":"Room B"}},{"id":4,"subject":"History", "teacher":"I.

Jones", "studentGroup":"10th

grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"09:30:00", "endTime":"10:30:00"},"

room":{"name":"Room B"}}],"score":"@hard/0@soft"}

Notice that your application assigned all four lessons to one of the two time slots and one of the two
rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are

33

in different time slots.

On the server side, the info log shows what OptaPlanner did in those five seconds:

. Solving started: time spent (33), best score (-8init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (@) ended: time spent (73), best score (@hard/@soft),
score calculation speed (459/sec), step total (4).

. Local Search phase (1) ended: time spent (5000), best score (@hard/@soft), score
calculation speed (28949/sec), step total (28398).
... Solving ended: time spent (5000), best score (@hard/@soft), score calculation
speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).

2.3.10.2. Test the application

A good application includes test coverage.

2.3.10.2.1. Test the constraints

To test each constraint in isolation, use a ConstraintVerifier in unit tests. It tests each constraint’s
corner cases in isolation from the other tests, which lowers maintenance when adding a new
constraint with proper test coverage.

Add a optaplanner-test dependency in your pom. xml:

<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-test</artifactId>
<scope>test</scope>

</dependency>

Create the src/test/java/org/acme/schooltimetabling/solver/TimeTableConstraintProviderTest.java
class:

package org.acme.schooltimetabling.solver;

import java.time.DayOfWeek;
import java.time.LocalTime;

import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;

import org.acme.schooltimetabling.domain.Lesson;

import org.acme.schooltimetabling.domain.Room;

import org.acme.schooltimetabling.domain.TimeTable;

import org.acme.schooltimetabling.domain.Timeslot;

import org.junit.jupiter.api.Test;

import org.optaplanner.test.api.score.stream.ConstraintVerifier;

54

class TimeTableConstraintProviderTest {

private static final Room ROOM = new Room("Room1");

private static final Timeslot TIMESLOTT = new Timeslot(DayOfWeek.MONDAY,
LocalTime.of(9,0), LocalTime.NOON);

private static final Timeslot TIMESLOT2 = new Timeslot(DayOfWeek.TUESDAY,
LocalTime.of(9,0), LocalTime.NOON);

ConstraintVerifier<TimeTableConstraintProvider, TimeTable> constraintVerifier;

void roomConflict() {
Lesson firstlLesson = new Lesson(1, "Subject1", "Teacher1", "Group1");
Lesson conflictinglLesson = new Lesson(2, "Subject2", "Teacher2", "Group2");
Lesson nonConflictingLesson = new Lesson(3, "Subject3", "Teacher3", "Group3");

firstLesson.setRoom(ROOM);
firstLesson.setTimeslot(TIMESLOT1);

conflictinglLesson.setRoom(ROOM);
conflictinglLesson.setTimeslot(TIMESLOTT);

nonConflictinglLesson.setRoom(ROOM);
nonConflictinglesson.setTimeslot(TIMESLOT2);

constraintVerifier.verifyThat(TimeTableConstraintProvider::roomConflict)
.given(firstLesson, conflictinglLesson, nonConflictinglesson)
.penalizesBy(1);

This test verifies that the constraint TimeTableConstraintProvider::roomConflict, when given three
lessons in the same room, where two lessons have the same timeslot, it penalizes with a match
weight of 1. So with a constraint weight of 10hard it would reduce the score by -10hard.

Notice how ConstraintVerifier ignores the constraint weight during testing - even if those
constraint weights are hard coded in the ConstraintProvider - because constraints weights change
regularly before going into production. This way, constraint weight tweaking does not break the
unit tests.

2.3.10.2.2. Test the solver

In a JUnit test, generate a test dataset and send it to the TimeTableResource to solve.

Create the src/test/java/org/acme/schooltimetabling/rest/TimeTableResourceTest.java class:

55

package org.acme.schooltimetabling.rest;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.Arraylist;
import java.util.List;

import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;

import org.acme.schooltimetabling.domain.Room;

import org.acme.schooltimetabling.domain.Timeslot;

import org.acme.schooltimetabling.domain.Lesson;

import org.acme.schooltimetabling.domain.TimeTable;
import org.acme.schooltimetabling.rest.TimeTableResource;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.Timeout;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class TimeTableResourceTest {

TimeTableResource timeTableResource;

(600_000)
public void solve() {

TimeTable problem = generateProblem();

TimeTable solution = timeTableResource.solve(problem);

assertFalse(solution.getlessonList().isEmpty());

for (Lesson lesson : solution.getlessonList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());

}

assertTrue(solution.getScore().isFeasible());

}

private TimeTable generateProblem() {

List<Timeslot> timeslotList = new ArraylList<>();

timeslotlList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30),
LocalTime.of(9, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30),
LocalTime.of (10, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30),
LocalTime.of (11, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30),

LocalTime.of(14, 30)));
timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30),
LocalTime.of(15, 30)));

List<Room> roomList = new ArraylList<>();
roomList.add(new Room("Room A"));
roomList.add(new Room("Room B"));
roomList.add(new Room("Room C"));

List<Lesson> lessonlList = new ArraylList<>();

lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade"));
lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade"));
lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade"));
lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade"));
lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade"));

lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade"));
lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade"));
lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade"));
lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade"));
lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade"));
return new TimeTable(timeslotlList, roomList, lessonlList);

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies
that it found a feasible solution (no hard constraints broken).

Add test properties to the src/main/resources/application.properties file:

quarkus.optaplanner.solver.termination.spent-limit=5s

Effectively disable spent-time termination in favor of the best-score-limit
%test.quarkus.optaplanner.solver.termination.spent-limit=1h
%test.quarkus.optaplanner.solver.termination.best-score-limit=0hard/*soft

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
application.properties overwrites the solver termination during tests to terminate as soon as a
feasible solution (@hard/*soft) is found. This avoids hard coding a solver time, because the unit test
might run on arbitrary hardware. This approach ensures that the test runs long enough to find a
feasible solution, even on slow machines. But it does not run a millisecond longer than it strictly
must, even on fast machines.

2.3.10.3. Logging

When adding constraints in your ConstraintProvider, keep an eye on the score calculation speed in
the info log, after solving for the same amount of time, to assess the performance impact:

57

... Solving ended: ..., score calculation speed (29455/sec), ...

To understand how OptaPlanner is solving your problem internally, change the logging in the
application.properties file or with a -D system property:

quarkus.log.category."org.optaplanner".level=debug
Use debug logging to show every step:

. Solving started: time spent (67), best score (-20init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
. CH step (@), time spent (128), score (-18init/@hard/@soft), selected move
count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY
08:30}]).
. CH step (1), time spent (145), score (-16init/@hard/@soft), selected move
count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY
09:30}]).

Use trace logging to show every step and every move per step.

2.3.11. Summary

Congratulations! You have just developed a Quarkus application with OptaPlanner!

2.3.12. Further improvements: Database and Ul integration
Now try adding database and Ul integration:

1. Store Timeslot, Room, and Lesson in the database with Hibernate and Panache.
2. Expose them through REST.

3. Adjust the TimeTableResource to read and write a TimeTable instance in a single transaction and
use those accordingly:

package org.acme.schooltimetabling.rest;

import javax.inject.Inject;

import javax.transaction.Transactional;
import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import io.quarkus.panache.common.Sort;

import org.acme.schooltimetabling.domain.Lesson;
import org.acme.schooltimetabling.domain.Room;

38

https://www.optaplanner.org/
https://quarkus.io/guides/hibernate-orm-panache
https://quarkus.io/guides/rest-json

import org.acme.schooltimetabling.domain.TimeTable;

import org.acme.schooltimetabling.domain.Timeslot;

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.solver.SolutionManager;

import org.optaplanner.core.api.solver.SolverManager;

import org.optaplanner.core.api.solver.SolverStatus;

@Path("/timeTable")
public class TimeTableResource {

public static final Long SINGLETON_TIME_TABLE_ID = 1L;

@Inject

SolverManager<TimeTable, Long> solverManager;

@Inject

SolutionManager<TimeTable, HardSoftScore> solutionManager;

// To try, open http://localhost:8080/timeTable

@GET

public TimeTable getTimeTable() {
// Get the solver status before loading the solution
// to avoid the race condition that the solver terminates between them
SolverStatus solverStatus = getSolverStatus();
TimeTable solution = findById(SINGLETON_TIME_TABLE_ID);
solutionManager.update(solution); // Sets the score
solution.setSolverStatus(solverStatus);
return solution;

}

@POST
@Path("/solve")
public void solve() {
solverManager.solveAndListen(SINGLETON_TIME_TABLE_ID,
this::findByld,
this::save);

}

public SolverStatus getSolverStatus() {
return solverManager.getSolverStatus(SINGLETON_TIME_TABLE_ID);

}

@POST

@Path("/stopSolving")

public void stopSolving() {
solverManager.terminateEarly(SINGLETON_TIME_TABLE_ID);

}

@Transactional
protected TimeTable findById(Long id) {
if (!SINGLETON_TIME_TABLE_ID.equals(id)) {
throw new I1legalStateException("There is no timeTable with id (" + id

39

4.

60

+").")
}
// Occurs in a single transaction, so each initialized lesson references
the same timeslot/room instance
// that is contained by the timeTable's timeslotList/roomList.
return new TimeTable(
Timeslot.listAl1(Sort.by("dayOfWeek").and("startTime").and("
endTime").and("id")),
Room.1listA11(Sort.by("name").and("id")),
Lesson.listAl1(Sort.by("subject").and("teacher").and("studentGroup
").and("id")));
}

@Transactional
protected void save(TimeTable timeTable) {
for (Lesson lesson : timeTable.getlLessonList()) {
// TODO this is awfully naive: optimistic locking causes issues if
called by the SolverManager
Lesson attachedlLesson = Lesson.findById(lesson.getId());
attachedlLesson.setTimeslot(lesson.getTimeslot());
attachedLesson.setRoom(1lesson.getRoom());

For simplicity’s sake, this code handles only one TimeTable instance, but it is straightforward to
enable multi-tenancy and handle multiple TimeTable instances of different high schools in
parallel.

The getTimeTable() method returns the latest timetable from the database. It uses the
SolutionManager (which is automatically injected) to calculate the score of that timetable, so the
UI can show the score.

The solve() method starts a job to solve the current timetable and store the time slot and room
assignments in the database. It uses the SolverManager.solveAndListen() method to listen to
intermediate best solutions and update the database accordingly. This enables the UI to show
progress while the backend is still solving.

Adjust the TimeTableResourceTest instance accordingly, now that the solve() method returns
immediately. Poll for the latest solution until the solver finishes solving:

package org.acme.schooltimetabling.rest;
import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;

import org.acme.schooltimetabling.domain.Lesson;
import org.acme.schooltimetabling.domain.TimeTable;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.Timeout;
import org.optaplanner.core.api.solver.SolverStatus;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class TimeTableResourceTest {
TimeTableResource timeTableResource;

(600_000)
public void solveDemoDataUntilFeasible() throws InterruptedException {

timeTableResource.solve();

TimeTable timeTable = timeTableResource.getTimeTable();

while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) {
// Quick polling (not a Test Thread Sleep anti-pattern)
// Test is still fast on fast machines and doesn't randomly fail on

slow machines.

Thread.sleep(20L);
timeTable = timeTableResource.getTimeTable();

}

assertFalse(timeTable.getlLessonList().isEmpty());

for (Lesson lesson : timeTable.getlessonList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());

}

assertTrue(timeTable.getScore().isFeasible());

5. Build an attractive web UI on top of these REST methods to visualize the timetable.

Take a look at the quickstart source code to see how this all turns out.

2.4. Spring Boot Java quick start

This guide walks you through the process of creating a Spring Boot application with OptaPlanner's
constraint solving Artificial Intelligence (AD).

2.4.1. What you will build

You will build a REST application that optimizes a school timetable for students and teachers:

61

https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/use-cases/school-timetabling
https://www.optaplanner.org/

| B0 Score: Dhard/18soft m By teacher By student group

Timeslot Room A W RoomB ® RoomC &
Physics L] Spanish L]

Monday 08:30 - 09:30 W by M. Curie by P. Cruz
10th grade T 8th grade 2z
Physics w Spanish w

Monday 09:30 - 10:30 ¥ by M. Curig by P. Cruz
Sth grade 16 10th grade 31

e - -
" - -

Your service will assign Lesson instances to Timeslot and Room instances automatically by using Al to
adhere to hard and soft scheduling constraints, such as the following examples:

Monday 13:30 - 14:30 ¥

e A room can have at most one lesson at the same time.

e A teacher can teach at most one lesson at the same time.

A student can attend at most one lesson at the same time.

* A teacher prefers to teach all lessons in the same room.

A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

A student dislikes sequential lessons on the same subject.

Mathematically speaking, school timetabling is an NP-hard problem. This means it is difficult to
scale. Simply brute force iterating through all possible combinations takes millions of years for a
non-trivial data set, even on a supercomputer. Luckily, Al constraint solvers such as OptaPlanner
have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time.

2.4.2. Solution source code
Follow the instructions in the next sections to create the application step by step (recommended).
Alternatively, you can also skip right to the completed example:

1. Clone the Git repository:

$ git clone https://github.com/kiegroup/optaplanner-quickstarts

62

or download an archive.

2. Find the solution in the technology directory and run it (see its README file).

2.4.3. Prerequisites
To complete this guide, you need:

* JDK 11+ with JAVA_HOME configured appropriately
* Apache Maven 3.8.1+ or Gradle 4+
* An IDE, such as Intelli] IDEA, VSCode or Eclipse

2.4.4. The build file and the dependencies
Create a Spring Boot application with the following dependencies:

» Spring Web (spring-boot-starter-web)

* OptaPlanner (optaplanner-spring-boot-starter)

If you choose Maven, your pom.xml file has the following content:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.0.5</version>
</parent>

<groupIld>org.acme</groupld>
<artifactId>optaplanner-spring-boot-school-timetabling-quickstart</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<java.version>11</java.version>
<version.org.optaplanner>9.38.1-SNAPSHOT</version.org.optaplanner>
</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-bom</artifactId>
<version>${version.org.optaplanner}</version>
<type>pom</type>

63

https://www.optaplanner.org/download/download.html
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/technology/java-spring-boot
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/technology/java-spring-boot
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/technology/java-spring-boot
https://adoptopenjdk.net/
https://maven.apache.org/download.html
https://gradle.org/install/
https://www.jetbrains.com/idea

<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>
<dependency>
<groupld>org.optaplanner</groupId>
<artifactId>optaplanner-spring-boot-starter</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.optaplanner</groupId>
<artifactId>optaplanner-test</artifactId>
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

On the other hand, in Gradle, your build.gradle file has this content:

plugins {
id "org.springframework.boot" version "3.0.5"
id "io.spring.dependency-management" version "1.0.11.RELEASE"
id "java"

}

def optaplannerVersion = "9.38.1-SNAPSHOT"

64

group = "org.acme"
version = "1.0-SNAPSHOT"
sourceCompatibility = "11"

repositories {
mavenCentral()

}

dependencies {
implementation "org.springframework.boot:spring-boot-starter-web"
implementation "org.springframework.boot:spring-boot-starter-data-rest"
testImplementation("org.springframework.boot:spring-boot-starter-test")

implementation platform("org.optaplanner:optaplanner-bom:${optaplannerVersion}")
implementation "org.optaplanner:optaplanner-spring-boot-starter"
testImplementation("org.optaplanner:optaplanner-test")

+

test {
useJUnitPlatform()

}

2.4.5. Model the domain objects

Your goal is to assign each lesson to a time slot and a room. You will create these classes:

Time table class diagram

Timeslot Lesson
dayOfWeek : DayOfWeek subject : String
startTime : LocalTime , teacher : String
endTime : LocalTime - timeslot _ studentGroup : String

Room
name : String room
0.1 *

2.4.5.1. Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. For simplicity’s sake, all time slots have the same duration and

65

there are no time slots during lunch or other breaks.

A time slot has no date, because a high school schedule just repeats every week. So there is no need
for continuous planning.

Create the src/main/java/org/acme/schooltimetabling/domain/Timeslot.java class:

package org.acme.schooltimetabling.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {

private DayOfWeek dayOfWeek;
private LocalTime startTime;
private LocalTime endTime;

public Timeslot() {
}

public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
this.dayOfWeek = dayOfWeek;
this.startTime = startTime;
this.endTime = endTime;

}

public DayOfWeek getDayOfWeek() {
return dayOfWeek;

}

public LocalTime getStartTime() {
return startTime;

}

public LocalTime getEndTime() {
return endTime;

}

public String toString() {

return dayOfWeek + " " + startTime;

}

Because no Timeslot instances change during solving, a Timeslot is called a problem fact. Such
classes do not require any OptaPlanner specific annotations.

Notice the toString() method keeps the output short, so it is easier to read OptaPlanner’s DEBUG or

66

TRACE log, as shown later.

2.4.5.2. Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. For
simplicity’s sake, all rooms are without capacity limits and they can accommodate all lessons.

Create the src/main/java/org/acme/schooltimetabling/domain/Room. java class:

package org.acme.schooltimetabling.domain;
public class Room {
private String name;

public Room() {
}

public Room(String name) {
this.name = name;

}

public String getName() {
return name;

}

public String toString() {
return name;

}

Room instances do not change during solving, so Room is also a problem fact.

2.4.5.3. Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students,
for example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times per week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons
a week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class, to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning
entity:

67

Time table class diagram

The timeslot and room fields are
normally null before solving
and non-null after solving

@PlanningEntity

Timeslot Lesson
dayOfWeek : DayOfWeek @PlanningVariable subject : String
startTime : LocalTime] , | teacher : String
endTime : LocalTime LG studentGroup : String

0.1 *

| Room @PlanningVariable
name : String ree AL

0.1 *

Most of the fields in the previous diagram contain input data, except for the orange fields: A
lesson’s timeslot and room fields are unassigned (null) in the input data and assigned (not null) in
the output data. OptaPlanner changes these fields during solving. Such fields are called planning
variables. In order for OptaPlanner to recognize them, both the timeslot and room fields require an
@PlanningVariable annotation. Their containing class, Lesson, requires an @PlanningEntity
annotation.

Create the src/main/java/org/acme/schooltimetabling/domain/Lesson.java class:

package org.acme.schooltimetabling.domain;
import org.optaplanner.core.api.domain.entity.PlanningEntity;

import org.optaplanner.core.api.domain.lookup.Planningld;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

public class Lesson {
private Long 1id;
private String subject;

private String teacher;
private String studentGroup;

private Timeslot timeslot;

private Room room;

68

public Lesson() {
}

public Lesson(Long id, String subject, String teacher, String studentGroup) {
this.id = id;
this.subject = subject;
this.teacher = teacher;
this.studentGroup = studentGroup;

}

public Long getId() {
return 1id;

}

public String getSubject() {
return subject;

}

public String getTeacher() {
return teacher;

}

public String getStudentGroup() {
return studentGroup;

}

public Timeslot getTimeslot() {
return timeslot;

}

public void setTimeslot(Timeslot timeslot) {
this.timeslot = timeslot;

}

public Room getRoom() {
return room;

}

public void setRoom(Room room) {
this.room = room;

}

public String toString() {
return subject + "(" + id + ")";

}

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class changes

69

during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can change its
value. In order to find potential Timeslot instances to assign to this field, OptaPlanner uses the
variable type to connect to a value range provider that provides a List<Timeslot> to pick from.

The room field also has an @PlanningVariable annotation, for the same reasons.

Determining the @PlanningVariable fields for an arbitrary constraint solving use
case is often challenging the first time. Read the domain modeling guidelines to
avoid common pitfalls.

2.4.6. Define the constraints and calculate the score

A score represents the quality of a specific solution. The higher the better. OptaPlanner looks for the
best solution, which is the solution with the highest score found in the available time. It might be
the optimal solution.

Because this use case has hard and soft constraints, use the HardSoftScore class to represent the
score:

* Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.

* Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted too,
against other soft constraints. Hard constraints always outweigh soft constraints, regardless of
their respective weights.

To calculate the score, you could implement an EasyScoreCalculator class:

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable,
HardSoftScore> {

public HardSoftScore calculateScore(TimeTable timeTable) {
List<Lesson> lessonlList = timeTable.getlLessonList();
int hardScore = 0;
for (Lesson a : lessonlList) {
for (Lesson b : lessonlist) {
if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
&& a.getId() < b.getId()) {
// A room can accommodate at most one lesson at the same time.
if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
hardScore--;
}
// A teacher can teach at most one lesson at the same time.
if (a.getTeacher().equals(b.getTeacher())) {
hardScore--;

70

}

// A student can attend at most one lesson at the same time.
if (a.getStudentGroup().equals(b.getStudentGroup())) {
hardScore--;

}

}

int softScore = 0;

// Soft constraints are only implemented in the optaplanner-quickstarts code
return HardSoftScore.of(hardScore, softScore);

Unfortunately that does not scale well, because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

Instead,

create a

src/main/java/org/acme/schooltimetabling/solver/TimeTableConstraintProvider.java class to
perform incremental score calculation. It uses OptaPlanner’s ConstraintStream API which is
inspired by Java Streams and SQL:

package org.acme.schooltimetabling.solver;

import org.acme.schooltimetabling.domain.Lesson;

import org.optaplanner.core.
import org.optaplanner.core.
import org.optaplanner.core.
import org.optaplanner.core.
import org.optaplanner.core.

api

api

api.
.score.

api

.score.
api.
.score.
.stream.ConstraintProvider;

score

score

buildin.hardsoft.HardSoftScore;

.stream.Constraint;

stream.ConstraintFactory;

stream.Joiners;

public class TimeTableConstraintProvider implements ConstraintProvider {

@0verride

public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
return new Constraint[] {
// Hard constraints
roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),
// Soft constraints are only implemented in the optaplanner-

quickstarts code
h
}

private Constraint roomConflict(ConstraintFactory constraintFactory) {
// A room can accommodate at most one lesson at the same time.

// Select a lesson ...

71

return constraintFactory

.forEach(Lesson.class)

// ... and pair it with another lesson ...

.join(Lesson.class,
// ... in the same timeslot ...
Joiners.equal(Lesson::getTimeslot),
// ... in the same room ...
Joiners.equal(Lesson::getRoom),
// ... and the pair is unique (different id, no reverse pairs)

Joiners.lessThan(Lesson::getId))
// ... then penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Room conflict");

}

private Constraint teacherConflict(ConstraintFactory constraintFactory) {
// A teacher can teach at most one lesson at the same time.
return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getTeacher),
Joiners.lessThan(Lesson::getId))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Teacher conflict");

}

private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
// A student can attend at most one lesson at the same time.
return constraintFactory.forEach(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getStudentGroup),
Joiners.lessThan(Lesson::getId))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Student group conflict");

The ConstraintProvider scales an order of magnitude better than the EasyScoreCalculator: O(n)
instead of O(n?).

2.4.7. Gather the domain objects in a planning solution

A TimeTable wraps all Timeslot, Room, and Lesson instances of a single dataset. Furthermore, because
it contains all lessons, each with a specific planning variable state, it is a planning solution and it
has a score:

* If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with

72

the score -4init/0hard/0soft.

o If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

« If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score Qhard/-7soft.

Create the src/main/java/org/acme/schooltimetabling/domain/TimeTable.java class:

package org.acme.schooltimetabling.domain;
import java.util.list;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;

import org.optaplanner.core.api.domain.solution.PlanningSolution;

import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

public class TimeTable {

private List<Timeslot> timeslotList;

private List<Room> roomlList;

private List<Lesson> lessonList;

private HardSoftScore score;

public TimeTable() {
}

public TimeTable(List<Timeslot> timeslotList, List<Room> roomList, List<Lesson>
lessonlist) {
this.timeslotlist = timeslotlList;
this.roomList = roomList;
this.lessonlList = lessonlList;

}

public List<Timeslot> getTimeslotList() {
return timeslotlist;

}

public List<Room> getRoomList() {

73

return roomList;

public List<Lesson> getlLessonList() {
return lessonlist;

}

public HardSoftScore getScore() {
return score;

}

The TimeTable class has an @PlanningSolution annotation, so OptaPlanner knows that this class
contains all of the input and output data.

Specifically, this class is the input of the problem:

* A timeslotlist field with all time slots

o This is a list of problem facts, because they do not change during solving.
* A roomlList field with all rooms

o This is a list of problem facts, because they do not change during solving.
* A lessonlist field with all lessons

o This is a list of planning entities, because they change during solving.

o Of each Lesson:

= The values of the timeslot and room fields are typically still null, so unassigned. They are
planning variables.

= The other fields, such as subject, teacher and studentGroup, are filled in. These fields are
problem properties.

However, this class is also the output of the solution:

e A lessonlist field for which each Lesson instance has non-null timeslot and room fields after
solving

* A score field that represents the quality of the output solution, for example, Ohard/-5soft
2.4.7.1. The value range providers

The timeslotList field is a value range provider. It holds the Timeslot instances which OptaPlanner
can pick from to assign to the timeslot field of Lesson instances. The timeslotlList field has an
@ValueRangeProvider annotation to connect the @PlanningVariable with the @ValueRangeProvider, by
matching the type of the planning variable with the type returned by the value range provider.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

74

2.4.7.2. The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances wused for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

2.4.8. Create the solver service

Now you are ready to put everything together and create a REST service. But solving planning
problems on REST threads causes HTTP timeout issues. Therefore, the Spring Boot starter injects a
SolverManager instance, which runs solvers in a separate thread pool and can solve multiple
datasets in parallel.

Create the src/main/java/org/acme/schooltimetabling/rest/TimeTableController.java class:

package org.acme.schooltimetabling.rest;

import java.util.UUID;
import java.util.concurrent.ExecutionException;

import org.acme.schooltimetabling.domain.TimeTable;

import org.optaplanner.core.api.solver.SolverJob;

import org.optaplanner.core.api.solver.SolverManager;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

("/timeTable")
public class TimeTableController {

private SolverManager<TimeTable, UUID> solverManager;

("/solve")
public TimeTable solve(TimeTable problem) {
UUID problemId = UUID.randomUUID();
// Submit the problem to start solving
SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem

TimeTable solution;
try {

75

// Wait until the solving ends
solution = solverJob.getFinalBestSolution();
} catch (InterruptedException | ExecutionException e) {
throw new I1legalStateException("Solving failed.", e);
}

return solution;

For simplicity’s sake, this initial implementation waits for the solver to finish, which can still cause

an HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.

2.4.9. Set the termination time

Without a termination setting or a terminationEarly() event, the solver runs forever. To avoid that,

limit the solving time to five seconds. That is short enough to avoid the HTTP timeout.

Create the src/main/resources/application.properties file:

The solver runs only for 5 seconds to avoid a HTTP timeout in this simple
implementation.

It's recommended to run for at least 5 minutes ("5m") otherwise.
optaplanner.solver.termination.spent-limit=5s

OptaPlanner returns the best solution found in the available termination time. Due to the nature of
NP-hard problems, the best solution might not be optimal, especially for larger datasets. Increase

the termination time to potentially find a better solution.

2.4.10. Make the application executable
Package everything into a single executable JAR file driven by a standard Java main() method:

Replace the DemoApplication.java class created by Spring Initializr with
src/main/java/org/acme/schooltimetabling/TimeTableSpringBootApp.java class:

package org.acme.schooltimetabling;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
public class TimeTableSpringBootApp {
public static void main(String[] args) {

SpringApplication.run(TimeTableSpringBootApp.class, args);
}

76

the

Run that TimeTableSpringBootApp class as the main class of a normal Java application.

2.4.10.1. Try the application

Now that the application is running, you can test the REST service. You can use any REST client you
wish. The following example uses the Linux command curl to send a POST request:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-
Type:application/json" -d

"{"timeslotList":[{"dayOfWeek": "MONDAY","startTime":"08:30:00","endTime":"09:30:00"}, {
"dayOfWeek": "MONDAY", "startTime":"09:30:00", "endTime":"10:30:00"}], "roomList":[{"name"
:"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math", "teacher":"A.
Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M.

Curie","studentGroup":"9th grade"},{"id":3,"subject":"French","teacher":"M.

Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I.
Jones", "studentGroup":"10th grade"}]}'

After about five seconds, according to the termination spent time defined in your
application.properties, the service returns an output similar to the following example:

HTTP/1.1 200
Content-Type: application/json

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math", "teacher":"A
. Turing","studentGroup":"9th

grade","timeslot":{"dayOfWeek": "MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"
room":{"name":"Room A"}},{"i1d":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th
grade","timeslot":{"dayOfWeek": "MONDAY", "startTime":"09:30:00","endTime":"10:30:00"},"
room":{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th

grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"08:30:00", "endTime":"09:30:00"},"
room":{"name":"Room B"}},{"id":4,"subject":"History", "teacher":"I.

Jones", "studentGroup":"10th

grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"09:30:00", "endTime":"10:30:00"},"

room":{"name":"Room B"}}],"score":"@hard/0@soft"}

Notice that your application assigned all four lessons to one of the two time slots and one of the two
rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are
in different time slots.

On the server side, the info log shows what OptaPlanner did in those five seconds:

. Solving started: time spent (33), best score (-8init/@hard/@soft), environment

77

mode (REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (@) ended: time spent (73), best score (@hard/@soft),
score calculation speed (459/sec), step total (4).

. Local Search phase (1) ended: time spent (5000), best score (@hard/@soft), score
calculation speed (28949/sec), step total (28398).
... Solving ended: time spent (5000), best score (@hard/@soft), score calculation
speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).

2.4.10.2. Test the application

A good application includes test coverage.

2.4.10.2.1. Test the constraints

To test each constraint in isolation, use a ConstraintVerifier in unit tests. It tests each constraint’s
corner cases in isolation from the other tests, which lowers maintenance when adding a new
constraint with proper test coverage.

Add a optaplanner-test dependency in your pom. xml:

<dependency>
<groupIld>org.optaplanner</groupId>
<artifactId>optaplanner-test</artifactId>
<scope>test</scope>

</dependency>

Create the src/test/java/org/acme/schooltimetabling/solver/TimeTableConstraintProviderTest.java
class:

package org.acme.schooltimetabling.solver;

import java.time.DayOfWeek;

import java.time.localTime;

import javax.inject.Inject;

import org.acme.schooltimetabling.domain.Lesson;

import org.acme.schooltimetabling.domain.Room;

import org.acme.schooltimetabling.domain.TimeTable;

import org.acme.schooltimetabling.domain.Timeslot;

import org.junit.jupiter.api.Test;

import org.optaplanner.test.api.score.stream.ConstraintVerifier;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
class TimeTableConstraintProviderTest {

private static final Room ROOM = new Room("Room1");
private static final Timeslot TIMESLOT1 = new Timeslot(DayOfWeek.MONDAY,

78

LocalTime.of(9,0), LocalTime.NOON);
private static final Timeslot TIMESLOT2 = new Timeslot(DayOfWeek.TUESDAY,
LocalTime.of(9,0), LocalTime.NOON);

ConstraintVerifier<TimeTableConstraintProvider, TimeTable> constraintVerifier;

void roomConflict() {
Lesson firstLesson = new Lesson(1, "Subject1", "Teacher1", "Group1");
Lesson conflictinglesson = new Lesson(2, "Subject2", "Teacher2", "Group2");
Lesson nonConflictinglesson = new Lesson(3, "Subject3", "Teacher3", "Group3");

firstLesson.setRoom(ROOM);
firstLesson.setTimeslot(TIMESLOT1);

conflictinglLesson.setRoom(ROOM);
conflictinglLesson.setTimeslot(TIMESLOTT);

nonConflictinglLesson.setRoom(ROOM);
nonConflictinglesson.setTimeslot(TIMESLOT2);

constraintVerifier.verifyThat(TimeTableConstraintProvider::roomConflict)
.given(firstLesson, conflictinglLesson, nonConflictinglLesson)
.penalizesBy(1);

This test verifies that the constraint TimeTableConstraintProvider::roomConflict, when given three
lessons in the same room, where two lessons have the same timeslot, it penalizes with a match
weight of 1. So with a constraint weight of 10hard it would reduce the score by -10hard.

Notice how ConstraintVerifier ignores the constraint weight during testing - even if those
constraint weights are hard coded in the ConstraintProvider - because constraints weights change
regularly before going into production. This way, constraint weight tweaking does not break the
unit tests.

2.4.10.2.2. Test the solver

In a JUnit test, generate a test dataset and send it to the TimeTableController to solve.

Create the src/test/java/org/acme/schooltimetabling/rest/TimeTableControllerTest.java class:

package org.acme.schooltimetabling.rest;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.Arraylist;
import java.util.List;

79

80

import
import
import
import
import
import
import
import

import

import
import

public

org.acme.schooltimetabling.domain.Lesson;
org.acme.schooltimetabling.domain.Room;
org.acme.schooltimetabling.domain.TimeTable;
org.acme.schooltimetabling.domain.Timeslot;
org.junit.jupiter.api.Test;
org.junit.jupiter.api.Timeout;

org.springframework.beans.factory.annotation.Autowired;
org.springframework.boot.test.context.SpringBootTest;

static org.junit.jupiter.api.Assertions.assertFal

se,

static org.junit.jupiter.api.Assertions.assertNotNull;
static org.junit.jupiter.api.Assertions.assertTrue;

(properties = {

// Effectively disable spent-time termination in favor of the best-score-limit

"optaplanner.solver.termination.spent-limit=1h",

"optaplanner.solver.termination.best-score-limit=0hard/*soft"})

class TimeTableControllerTest {

private TimeTableController timeTableController;

(600_000)

public void solve() {

}

TimeTable problem = generateProblem();

TimeTable solution = timeTableController.solve(p

assertFalse(solution.getlessonList().isEmpty());

for (Lesson lesson : solution.getlessonList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());

}

assertTrue(solution.getScore().isFeasible());

private TimeTable generateProblem() {

List<Timeslot> timeslotlList = new ArraylList<>();
timeslotList.add(new Timeslot(DayOfWeek.MONDAY,

LocalTime.of(9, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY,

LocalTime.of(10, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY,

LocalTime.of (11, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY,

LocalTime.of (14, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY,

LocalTime.of (15, 30)));

List<Room> roomList = new ArraylList<>();
roomList.add(new Room("Room A"));
roomList.add(new Room("Room B"));

roblem);

LocalTime.
LocalTime.
LocalTime.
LocalTime.

LocalTime.

of (8, 30),
of (9, 30),
of (10, 30),
of (13, 30),

of (14, 30),

roomList.add(new Room("Room C"));

List<Lesson> lessonlList = new ArraylList<>();

lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade"));
lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade"));
lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade"));
lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade"));
lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade"));

lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade"));
lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade"));
lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade"));
lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade"));
lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade"));
return new TimeTable(timeslotlList, roomList, lessonlList);

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies
that it found a feasible solution (no hard constraints broken).

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
@SpringBootTest annotation’s properties property overwrites the solver termination during tests to
terminate as soon as a feasible solution (6hard/*soft) is found. This avoids hard coding a solver
time, because the unit test might run on arbitrary hardware. This approach ensures that the test
runs long enough to find a feasible solution, even on slow machines. But it does not run a
millisecond longer than it strictly must, even on fast machines.

2.4.10.3. Logging

When adding constraints in your ConstraintProvider, keep an eye on the score calculation speed in
the info log, after solving for the same amount of time, to assess the performance impact:

... Solving ended: ..., score calculation speed (29455/sec), ...

To understand how OptaPlanner is solving your problem internally, change the logging in the
application.properties file or with a -D system property:

logging.level.org.optaplanner=debug
Use debug logging to show every step:

. Solving started: time spent (67), best score (-20init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
. CH step (@), time spent (128), score (-18init/@hard/@soft), selected move
count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY

81

08:30}1).

. CH step (1), time spent (145), score (-16init/@hard/@soft), selected move
count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY
09:30}1).

Use trace logging to show every step and every move per step.

2.4.11. Summary

Congratulations! You have just developed a Spring application with OptaPlanner!

2.4.12. Further improvements: Database and Ul integration
Now try adding database and UI integration:

1. Create JPA repositories for Timeslot, Room, and Lesson.
2. Expose them through REST.

3. Build a TimeTableRepository facade to read and write a TimeTable instance in a single
transaction.

4. Adjust the TimeTableController accordingly:

package org.acme.schooltimetabling.rest;

import org.acme.schooltimetabling.domain.TimeTable;

import org.acme.schooltimetabling.persistence.TimeTableRepository;
import org.optaplanner.core.api.solver.SolutionManager;

import org.optaplanner.core.api.solver.SolverManager;

import org.optaplanner.core.api.solver.SolverStatus;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

("/timeTable")
public class TimeTableController {
private TimeTableRepository timeTableRepository;
private SolverManager<TimeTable, Long> solverManager;
private SolutionManager<TimeTable, HardSoftScore> solutionManager;
// To try, GET http://localhost:8080/timeTable

O

82

https://www.optaplanner.org/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-rest/

public TimeTable getTimeTable() {
// Get the solver status before loading the solution
// to avoid the race condition that the solver terminates between them
SolverStatus solverStatus = getSolverStatus();
TimeTable solution = timeTableRepository.findById(TimeTableRepository
.SINGLETON_TIME_TABLE_ID);
solutionManager.update(solution); // Sets the score
solution.setSolverStatus(solverStatus);
return solution;

("/solve")
public void solve() {
solverManager.solveAndListen(TimeTableRepository.SINGLETON_TIME_TABLE_ID,
timeTableRepository::findById,
timeTableRepository::save);

}

public SolverStatus getSolverStatus() {
return solverManager.getSolverStatus(TimeTableRepository
.SINGLETON_TIME _TABLE_ID);
}

("/stopSolving")
public void stopSolving() {
solverManager.terminateEarly(TimeTableRepository.SINGLETON_TIME_TABLE_ID);
}

For simplicity’s sake, this code handles only one TimeTable instance, but it is straightforward to
enable multi-tenancy and handle multiple TimeTable instances of different high schools in
parallel.

The getTimeTable() method returns the latest timetable from the database. It uses the
SolutionManager (which is automatically injected) to calculate the score of that timetable, so the
UI can show the score.

The solve() method starts a job to solve the current timetable and store the time slot and room
assignments in the database. It uses the SolverManager.solveAndListen() method to listen to
intermediate best solutions and update the database accordingly. This enables the UI to show
progress while the backend is still solving.

5. Adjust the TimeTableControllerTest instance accordingly, now that the solve() method returns
immediately. Poll for the latest solution until the solver finishes solving:

package org.acme.schooltimetabling.rest;

import org.acme.schooltimetabling.domain.Lesson;
import org.acme.schooltimetabling.domain.TimeTable;

83

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.Timeout;

import org.optaplanner.core.api.solver.SolverStatus;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(properties = {
"optaplanner.solver.termination.spent-limit=1h", // Effectively disable
this termination in favor of the best-score-limit
"optaplanner.solver.termination.best-score-limit=0hard/*soft"})
public class TimeTableControllerTest {

@Autowired
private TimeTableController timeTableController;

@Test
@Timeout(600_000)
public void solveDemoDataUntilFeasible() throws InterruptedException {
timeTableController.solve();
TimeTable timeTable = timeTableController.getTimeTable();
while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) {
// Quick polling (not a Test Thread Sleep anti-pattern)
// Test is still fast on fast machines and doesn't randomly fail on
slow machines.
Thread.sleep(20L);
timeTable = timeTableController.getTimeTable();
}
assertFalse(timeTable.getlLessonList().isEmpty());
for (Lesson lesson : timeTable.getlLessonlList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());
}

assertTrue(timeTable.getScore().isFeasible());

6. Build an attractive web UI on top of these REST methods to visualize the timetable.

Take a look at the quickstart source code to see how this all turns out.

84

https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/technology/java-spring-boot

Chapter 3. Use cases and examples

3.1. Examples overview

OptaPlanner has several examples. In this manual we explain mainly using the n queens example
and cloud balancing example. So it is advisable to read at least those sections.

Some of the examples solve problems that are presented in academic contests. The Contest column
in the following table lists the contests. It also identifies an example as being either realistic or
unrealistic for the purpose of a contest. A realistic contest is an official, independent contest:

* that clearly defines a real-world use case.

e with real-world constraints.

» with multiple, real-world datasets.

* that expects reproducible results within a specific time limit on specific hardware.

* that has had serious participation from the academic and/or enterprise Operations Research

community.

Realistic contests provide an objective comparison of OptaPlanner with competitive software and

academic research.

The source code of all these examples is available in the distribution zip under examples/sources
and also in git under optaplanner/optaplanner-examples.

Table 1. Examples overview

Example

N queens

Cloud balancing

Traveling
salesman

Domain

* 1 entity class

o 1 variable

* 1 entity class

o 1 variable

* 1 entity class

o 1 chained
variable

Size Contest
* Entity < 256 » Pointless
. Value < 256 (cheatable)
» Search space
< 101616
* Entity < 2400 * No
» Value « 800 * Defined by us
» Search space
< 1076967
» Entity < 980 * Unrealistic
* Value < 980 » TSP web

» Search space

< 1012504

Special features
used

None

* Real-time
planning

* Real-time
planning

85

https://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.math.uwaterloo.ca/tsp/

Example

Tennis club
scheduling

Meeting
scheduling

Course
timetabling

Machine
reassignment

Vehicle routing

Vehicle routing
with time
windows

86

Domain

1 entity class

o 1 variable

1 entity class

o 2 variables

1 entity class

o 2 variables

1 entity class

o 1 variable

1 entity class

o1 list
variable

1 shadow
entity class

o 3
automatic
shadow
variable

All of Vehicle
routing

1 shadow
variable

Size

Entity < 72
Value < 7

Search
< 10160

space

Entity < 10

Value <« 320
and € 5

Search
< 101320

space

Entity < 434

Value <« 25
and < 20

Search space
< 10M171

Entity < 50000
Value < 5000

Search space
< 107184948

Entity < 55
Value < 2750

Search space
< 10"8380

Entity < 55
Value < 2750

Search space
< 1018380

Contest

* No

* Defined by us

* No

* Defined by us

» Realistic

* ITC 2007 track

3

* Nearly
realistic

* ROADEF 2012

e Unrealistic

* VRP web

* Unrealistic

* VRP web

Special features
used

Fairness score
constraints

Pinned entities

TimeGrain
pattern

Pinned entities

Real-time
planning

Shadow
variable

Real-time
planning

Nearby
selection

Real
distances

road

All of Vehicle
routing

Custom
VariableListen
er

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
https://neo.lcc.uma.es/vrp/
https://neo.lcc.uma.es/vrp/

Example

Project job
scheduling

Hospital bed
planning

Task assigning

Exam timetabling

Nurse rostering

Traveling
tournament

Domain

* 1 entity class
o 2 variables

o1 shadow
variable

* 1 entity class

o 1 nullable
variable

* 1 entity class

o1
variable

list

1 shadow
entity class

o 1
automatic
shadow
variable

o1 shadow
variable

* 2 entity classes
(same
hierarchy)

o 2 variables

* 1 entity class

o 1 variable

* 1 entity class

o 1 variable

Size

Entity < 640

Value <« ? and
&7

Search
<7

space

Entity < 2750
Value < 471

Search space
< 1016851

Entity < 20
Value < 500

Search space
< 101168

Entity < 1096

e Value <« 80
and < 49

» Search space
< 1073374

Entity < 752
Value < 50

Search space
< 10M277

Entity < 1560
Value < 78

Search space
< 1012301

Contest

* Nearly
realistic

* MISTA 2013

* Unrealistic

» Kaho PAS

* No

* Defined by us

» Realistic

o ITC 2007 track
1

* Realistic

* INRC 2010

* Unrealistic

* TTP

Special features
used

* Bendable
score

¢ Custom
VariableListen
er

» ValueRangeFa
ctory

e Overconstrain
ed planning

* Bendable
score

e Chained
through
pattern

time

¢ Custom
VariableListen
er

* Continuous
planning

* Real-time

planning

¢ Custom
VariableListen
er

¢ Continuous
planning

¢ Real-time

planning

¢ Custom
MoveListFacto

ry

87

http://gent.cs.kuleuven.be/mista2013challenge/
https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/nrpcompetition_description.pdf
http://mat.tepper.cmu.edu/TOURN/

Example Domain Size Contest Special features

used
Conference * 1 entity class * Entity < 216 * No
scheduling o 2variables e« Value <« 18 e Defined by us
and < 20
» Search space
< 107552
Flight crew * 1 entity class * Entity < 4375 * No
scheduling o 1 variable » Value < 750 * Defined by us
1 shadow « Search space
entity class < 10M 2578
|
automatic
shadow
variable

3.2. N queens

3.2.1. Problem description

Place n queens on a n sized chessboard so that no two queens can attack each other. The most
common n queens puzzle is the eight queens puzzle, with n = 8:

88

W

Constraints:

» Use a chessboard of n columns and n rows.

* Place n queens on the chessboard.

* No two queens can attack each other. A queen can attack any other queen on the same
horizontal, vertical or diagonal line.

This documentation heavily uses the four queens puzzle as the primary example.

A proposed solution could be:

Ww N H O

Figure 1. A Wrong Solution for the Four Queens Puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0 and

D0). Removing queen B@ would respect the "no two queens can attack each other" constraint, but
would break the "place n queens" constraint.

89

Below is a correct solution:

Ww N B O

iy

Figure 2. A Correct Solution for the Four Queens Puzzle

All the constraints have been met, so the solution is correct.

Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single
correct solution for a given n, not on finding the number of possible correct solutions for a given n.

3.2.2. Problem size

4queens has 4 queens with a search
8queens has 8 queens with a search
16queens has 16 queens with a search
32queens has 32 queens with a search
64queens has 64 queens with a search
256queens has 256 queens with a search

The implementation of the n queens example has not been optimized because it functions as a
beginner example. Nevertheless, it can easily handle 64 queens. With a few changes it has been

space
space
space
space
space
space

shown to easily handle 5000 queens and more.

3.2.3. Domain model

This example uses the domain model to solve the four queens problem.

1. Creating a Domain Model A good domain model will make it easier to understand and solve

your planning problem.

of 256.
of 1077.
of 10M9,
of 10748,
of 107115.
of 107616.

This is the domain model for the n queens example:

public class Column {
private int index;

// ... getters and setters

public class Row {

90

private int index;

// ... getters and setters

public class Queen {

private Column column;
private Row row;

public int getAscendingDiagonalIndex() {...}
public int getDescendingDiagonalIndex() {...}

// ... getters and setters

2. Calculating the Search Space.

A Queen instance has a Column (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: 0 isrow 0, 1 isrow 1, ...).

The ascending diagonal line and the descending diagonal line can be calculated based on the
column and the row.

The column and row indexes start from the upper left corner of the chessboard.

public class NQueens {
private int n;
private List<Column> columnList;
private List<Row> rowlList;
private List<Queen> queenList;

private SimpleScore score;

// ... getters and setters

3. Finding the Solution

A single NQueens instance contains a list of all Queen instances. It is the solution implementation
which is supplied to, solved by, and retrieved from the Solver.

Notice that in the four queens example, NQueens’s getN() method will always return four.

Table 2. A Solution for Four Queens Shown in the Domain Model

91

A solution Queen column rowInd ascend descen
Index ex ingDia dingDi
gonall agonall
ndex ndex
(colum (colum
nindex nIndex
+ -

rowlnd rowInd

ex) ex)
A B C D Al 0 1 1% -1
(8]
=1 BO 1 0 () 1% 1
1
2 iy C2 2 2 4 0
3 DO 3 0 3 3

When two queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

3.3. Cloud balancing

3.3.1. Cloud balancing tutorial

3.3.1.1. Problem description

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer.

The following hard constraints must be fulfilled:
* Every computer must be able to handle the minimum hardware requirements of the sum of its

processes:

o CPU capacity: The CPU power of a computer must be at least the sum of the CPU power
required by the processes assigned to that computer.

- Memory capacity: The RAM memory of a computer must be at least the sum of the RAM
memory required by the processes assigned to that computer.

- Network capacity: The network bandwidth of a computer must be at least the sum of the
network bandwidth required by the processes assigned to that computer.

The following soft constraints should be optimized:

* Each computer that has one or more processes assigned, incurs a maintenance cost (which is
fixed per computer).

o Cost: Minimize the total maintenance cost.

92

This problem is a form of bin packing. The following is a simplified example, in which we assign
four processes to two computers with two constraints (CPU and RAM) with a simple algorithm:

cPU Computers RAM
Cloud balance O 7 Jx(6)
Assign each process to a computer.
T “ <o (&6) & T
CPU Processes RAM

B (a@sn)
4 8 | T
c ()7 e
- (s e)

b Notenough[| 2 | 4]x[3 | 3 }

room [| 5]Y{ 5 ‘]

Optimal solution

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it is not
optimal, as it does not leave enough room to assign the yellow process D.

OptaPlanner does find the more optimal solution by using additional, smarter algorithms. It also
scales: both in data (more processes, more computers) and constraints (more hardware
requirements, other constraints). So let’s see how OptaPlanner can be used in this scenario.

Here’s an executive summary of this example and an advanced implementation with more
constraints:

93

Cloud optimization

Assign processes to machines more efficiently.

_— Computers Users
o Maximum
Ve Processes

capacity : .
CPU RAM Cost V] rt
4 M -jsso.lthour

Yy~
Needs to run Same service Safety capacit
on Linux 7 (failover for each other) alely capaclty
(load fragmenation)
CloudBalancing benchmark Average Min/Max # datasets Biggest dataset
I 0 -16% 1600 computers
ClOUd hostlng COSt -18 /D -21%0 S 4800 processes
OptaPlanner versus traditional algorithm with domain knowledge 5 mins Simulated Annealing vs First Fit Decreasing
MachineReassignment benchmark Average Min/Max # datasets Biggest dataset
1 0 -25% 50k machines
H ardware CO ng EStI O N '63 A} -97% 20 Sk processes
OptaPlanner versus arbitrary feasible assignments & mins Tabu Search vs First Feasible Fit

Dan't believe us? Run our open benchmarks yourself: hitps:/fww.optaplanner.org/code/benchmarks. htmi

3.3.1.2. Problem size

Table 3. Cloud Balancing Problem Size

Problem Size Computers Processes Search Space
2computers-6processes 2 6 64
3computers-9processes 3 9 10n4
4computers-12processes 4 12 1017
100computers-300processes 100 300 107600
200computers-600processes 200 600 1071380
400computers-1200processes 400 1200 1013122
800computers-2400processes 800 2400 1076967

3.3.2. Using the domain model

3.3.2.1. Domain model design

Using a domain model helps determine which classes are planning entities and which of their
properties are planning variables. It also helps to simplify constraints, improve performance, and
increase flexibility for future needs.

94

To create a domain model, define all the objects that represent the input data for the problem. In
this simple example, the objects are processes and computers.

A separate object in the domain model must represent a full data set of problem, which contains
the input data as well as a solution. In this example, this object holds a list of computers and a list of
processes. Each process is assigned to a computer; the distribution of processes between computers
is the solution.

1. Draw a class diagram of your domain model.

2. Normalize it to remove duplicate data.

3. Write down some sample instances for each class.

o Computer: represents a computer with certain hardware and maintenance costs.

In this example, the sample instances for the Computer class are: cpuPower, memory,
networkBandwidth, cost.

o Process: represents a process with a demand. Needs to be assigned to a Computer by
OptaPlanner.

Sample instances for Process are: requiredCpuPower, requiredMemory, and
requiredNetworkBandwidth.

o (loudBalance: represents a problem. Contains every Computer and Process for a certain data
set.

For an object representing the full data set and solution, a sample instance holding the score
must be present. OptaPlanner can calculate and compare the scores for different solutions;
the solution with the highest score is the optimal solution. Therefore, the sample instance
for CloudBalance is score.

4. Determine which relationships (or fields) change during planning.

o Planning entity: The class (or classes) that OptaPlanner can change during solving. In this
example, it is the class Process, because OptaPlanner can assign processes to computers.

> Problem fact: A class representing input data that OptaPlanner cannot change.

o Planning variable: The property (or properties) of a planning entity class that changes
during solving. In this example, it is the property computer on the class Process.

o Planning solution: The class that represents a solution to the problem. This class must
represent the full data set and contain all planning entities. In this example that is the class
CloudBalance.

In the UML class diagram below, the OptaPlanner concepts are already annotated:

95

Cloud balance class diagram

@PlanningEntity
Computer . . Process
cpuPower @°Flanningvanabie requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 * | requiredNetworkBandwidth
cost
@PlanningSolution
CloudBalance
score
computerList processList
@ PlanningEntityCollectionProperty

3.3.2.2. Domain model implementation

3.3.2.2.1. The Computer class

The Computer class is a POJO (Plain Old Java Object). Usually, you will have more of this kind of
classes with input data.

Example 1. CloudComputer.java

public class CloudComputer ... {
private int cpuPower;
private int memory;
private int networkBandwidth;

private int cost;

... // getters

3.3.2.2.2. The Process class

The Process class is particularly important. It is the class that is modified during solving.

96

We need to tell OptaPlanner that it can change the property computer. To do this: . Annotate the class
with @PlanningEntity.. Annotate the getter getComputer () with @PlanningVariable.

Of course, the property computer needs a setter too, so OptaPlanner can change it during solving.

Example 2. CloudProcess.java

@PlanningEntity(...)
public class CloudProcess ... {

private int requiredCpuPower;
private int requiredMemory;
private int requiredNetworkBandwidth;

private CloudComputer computer;
... // getters

@PlanningVariable
public CloudComputer getComputer() {
return computer;

}

public void setComputer(CloudComputer computer) {
computer = computer;

}

// kkhkhkhrrhrkkkkhkhkhhrhrhkkkhkhkhhhrhkkkhkhrhrhrhrhkkkhkhhhrhkkkkhkhhhrhrhkkhkhkhrhrhrhrkkkkhkhhhrkkkkkrkhkhkhrkxkx

// Complex methods

// kkhkhrrrrkkkkhkhkhrhrhrhkkkkhkhhrhrhkkhkhrrrhrhrhkkkhkhhhrhrkkkkhkhhhrhhkkhkhrrhrhrhrkkkkhkhhhrhkkkkhkhkhkhrkxkx

» OptaPlanner needs to know which values it can choose from to assign to the property computer.
Those values are retrieved from the method (loudBalance.getComputerList() on the planning
solution, which returns a list of all computers in the current data set.

* The @PlanningVariable automatically matches with the @ValueRangeProvider on
(loudBalance.getComputerList().

o Instead of getter annotations, it is also possible to use field annotations.

3.3.2.2.3. The CloudBalance class

The CloudBalance class has a @PlanningSolution annotation.

* It holds a list of all computers and a list of all processes.

97

» To save a solution, OptaPlanner initializes a new instance of the class.

1. The processlList property holds a list of processes. OptaPlanner can change the processes,
allocating them to different computers. Therefore, a process is a planning entity and the list
of processes is a collection of planning entities. We annotate the getter getProcessList() with
@PlanningEntityCollectionProperty.

2. The computerList property holds a list of computers. OptaPlanner cannot change the
computers. Therefore, a computer is a problem fact. Especially for Constraint Streams, the
property computerList needs to be annotated with a @ProblemFactCollectionProperty so that
OptaPlanner can retrieve the list of computers (problem facts) and make it available to the
rule engine.

3. The CloudBalance class also has a @PlanningScore annotated property score, which is the Score
of that solution in its current state. OptaPlanner automatically updates it when it calculates
a Score for a solution instance. Therefore, this property needs a setter.

Example 3. CloudBalance.java

public class CloudBalance ... {
private List<CloudComputer> computerList;
private List<CloudProcess> processlList;

private HardSoftScore score;

public List<CloudComputer> getComputerList() {
return computerlList;

}

public List<CloudProcess> getProcessList() {
return processlList;

}

public HardSoftScore getScore() {
return score;

}

public void setScore(HardSoftScore score) {
this.score = score;

}

98

3.3.3. Run the cloud balancing Hello World

1. Download and configure the examples in your preferred IDE.

2. Create a run configuration with the following main class:
org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWor1ld

By default, the Cloud Balancing Hello World is configured to run for 120 seconds.
It executes the following code:

Example 4. CloudBalancingHelloWorld.java

public class CloudBalancingHelloWorld {

public static void main(String[] args) {
// Build the Solver
SolverFactory<CloudBalance> solverFactory = SolverFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
Solver<(CloudBalance> solver = solverFactory.buildSolver();

// Load a problem with 400 computers and 1200 processes
CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance (400, 1200);

// Solve the problem
CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

// Display the result
System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
+ toDisplayString(solvedCloudBalance));
}

The code example does the following:

1. Build the Solver based on a solver configuration which can come from an XML file as classpath
resource:

SolverFactory<CloudBalance> solverFactory = SolverFactory

99

.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
Solver<CloudBalance> solver = solverFactory.buildSolver();

Or to avoid XML, build it through the programmatic API instead:

SolverFactory<CloudBalance> solverFactory = SolverFactory.create(new

SolverConfig()
.withSolutionClass(CloudBalance.class)
.withEntityClasses(CloudProcess.class)
.withEasyScoreCalculatorClass(CloudBalancingEasyScoreCalculator
.class)

.withTerminationSpentLimit(Duration.ofMinutes(2)));
Solver<(CloudBalance> solver = solverFactory.buildSolver();

The solver configuration is explained in the next section.
2. Load the problem.

CloudBalancingGenerator generates a random problem: replace this with a class that loads a real
problem, for example from a database.

CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance (400, 1200);

3. Solve the problem.
CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);
4. Display the result.

System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
+ toDisplayString(solvedCloudBalance));

3.3.4. Solver configuration

The solver configuration file determines how the solving process works; it is considered a part of
the code. The file is named cloudBalancingSolverConfig.xml.

Example 5. cloudBalancingSolverConfig.xml

<?xml version="1.0" encoding="UTF-8"7>
<solver xmlns="https://www.optaplanner.org/xsd/solver" xmlns:xsi=

100

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://www.optaplanner.org/xsd/solver

https://www.optaplanner.org/xsd/solver/solver.xsd">

<!-- Domain model configuration -->

<solutionClass>
org.optaplanner.examples.cloudbalancing.domain.CloudBalance</solutionClass>

<entity(Class>
org.optaplanner.examples.cloudbalancing.domain.CloudProcess</entity(Class>

<!-- Score configuration -->
<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(C
loudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
gl ==
<constraintProviderClass>org.optaplanner.examples.cloudbalancing.score.(CloudBalanc
ingConstraintProvider</constraintProviderClass>-->
</scoreDirectorFactory>

<!-- Optimization algorithms configuration -->
<termination>
<secondsSpentLimit>30</secondsSpentLimit>
</termination>
</solver>

This solver configuration consists of three parts:
1. Domain model configuration: What can OptaPlanner change?
We need to make OptaPlanner aware of our domain classes, annotated with @PlanningEntity

and @PlanningSolution annotations:

<solutionClass>
org.optaplanner.examples.cloudbalancing.domain.CloudBalance</solutionClass>

<entity(Class>
org.optaplanner.examples.cloudbalancing.domain.CloudProcess</entity(Class>

2. Score configuration: How should OptaPlanner optimize the planning variables? What is our
goal?

Since we have hard and soft constraints, we use a HardSoftScore. But we need to tell
OptaPlanner how to calculate the score, depending on our business requirements. Further
down, we will look into two alternatives to calculate the score, such as using an easy Java
implementation, or Constraint Streams.

<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(Cl

101

oudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
gll==
<constraintProviderClass>org.optaplanner.examples.cloudbalancing.score.CloudBalanci
ngConstraintProvider</constraintProviderClass>-->
</scoreDirectorFactory>

3. Optimization algorithms configuration: How should OptaPlanner optimize it?
In this case, we use the default optimization algorithms (because no explicit optimization

algorithms are configured) for 30 seconds:

<termination>
<secondsSpentLimit>30</secondsSpentLimit>
</termination>

OptaPlanner should get a good result in seconds (and even in less than 15 milliseconds with
real-time planning), but the more time it has, the better the results. Advanced use cases might
use different termination criteria than a hard time limit.

The default algorithms already easily surpass human planners and most in-house
implementations. Use the Benchmarker to power tweak to get even better results.

3.3.5. Score configuration

OptaPlanner searches for the solution with the highest Score. This example uses a HardSoftScore,
which means OptaPlanner looks for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

102

Processes Computers

CPU CPU Cost
Bl < (4) =
e <6 v wom
Score
2
U < s
. §] -2hard / -500s0ft
| Y 1000%

|
AN

] Y 1000%

Ohard / -1500soft

w

A

=

500 %
Optimal solution e [Ohard / -1000soft]

CEEROER © v e

Of course, OptaPlanner needs to be told about these domain-specific score constraints. There are
several ways to implement such a score function:

» Easy Java
¢ Constraint Streams

* Incremental Java
3.3.5.1. Easy Java score configuration

One way to define a score function is to implement the interface EasyScore(Calculator in plain Java.

<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(Cloud
BalancingEasyScoreCalculator</easyScoreCalculatorClass>
</scoreDirectorFactory>

Just implement the calculateScore(Solution) method to return a HardSoftScore instance.

Example 6. CloudBalancingEasyScoreCalculator.java

public class CloudBalancingEasyScoreCalculator

103

implements EasyScoreCalculator<CloudBalance, HardSoftScore> {

/**

* A very simple implementation. The double loop can easily be removed by
using Maps as shown 1in
* {@link
CloudBalancingMapBasedEasyScoreCalculator#calculateScore(CloudBalance)}.
*/
@0verride
public HardSoftScore calculateScore(CloudBalance cloudBalance) {
int hardScore = 0;
int softScore = 0;
for (CloudComputer computer : cloudBalance.getComputerList()) {
int cpuPowerUsage = 0;
int memoryUsage = 0;
int networkBandwidthUsage = 0;
boolean used = false;

// Calculate usage
for (CloudProcess process : cloudBalance.getProcessList()) {
if (computer.equals(process.getComputer())) {
cpuPowerUsage += process.getRequiredCpuPower();
memoryUsage += process.getRequiredMemory();
networkBandwidthUsage += process.getRequiredNetworkBandwidth(

used = true;

}

// Hard constraints
int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;
if (cpuPowerAvailable < 0) {
hardScore += cpuPowerAvailable;
}
int memoryAvailable = computer.getMemory() - memoryUsage;
if (memoryAvailable < 0) {
hardScore += memoryAvailable;
}
int networkBandwidthAvailable = computer.getNetworkBandwidth() -
networkBandwidthUsage;
if (networkBandwidthAvailable < 0) {
hardScore += networkBandwidthAvailable;

}

// Soft constraints
if (used) {
softScore -= computer.getCost();
}
}

return HardSoftScore.of(hardScore, softScore);

104

Even if we optimize the code above to use Maps to iterate through the processList only once, it is still
slow because it does not do incremental score calculation. To fix that, either use constraint streams,
incremental Java score calculation or Drools score calculation.

3.3.5.2. Constraint streams score configuration

Constraint Streams use incremental calculation. To wuse it, implement the interface
ConstraintProvider in Java.

<scoreDirectorFactory>

<constraintProviderClass>org.optaplanner.examples.cloudbalancing.score.CloudBalancingC
onstraintProvider</constraintProviderClass>
</scoreDirectorFactory>

We want to make sure that all computers have enough CPU, RAM and network bandwidth to
support all their processes, so we make these hard constraints. If those constraints are met, we
want to minimize the maintenance cost, so we add that as a soft constraint.

Example 7. CloudBalancingConstraintProvider.java

public class CloudBalancingConstraintProvider implements ConstraintProvider {

public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
return new Constraint[] {
requiredCpuPowerTotal(constraintFactory),
requiredMemoryTotal(constraintFactory),
requiredNetworkBandwidthTotal(constraintFactory),
computerCost(constraintFactory)

};

Constraint requiredCpuPowerTotal(ConstraintFactory constraintFactory) {
return constraintFactory.forEach(CloudProcess.class)
.groupBy(CloudProcess: :getComputer, sum(CloudProcess:
:getRequiredCpuPower))
.filter((computer, requiredCpuPower) -> requiredCpuPower >
computer.getCpuPower())
.penalize(HardSoftScore.ONE_HARD,
(computer, requiredCpuPower) -> requiredCpuPower -
computer.getCpuPower())
.asConstraint("requiredCpuPowerTotal");

}

105

Constraint requiredMemoryTotal(ConstraintFactory constraintFactory) {
return constraintFactory.forEach(CloudProcess.class)
.groupBy(CloudProcess::getComputer, sum(CloudProcess:
:getRequiredMemory))

.filter((computer, requiredMemory) -> requiredMemory > computer

.getMemory())
.penalize(HardSoftScore.ONE_HARD,
(computer, requiredMemory) -> requiredMemory - computer
.getMemory())
.asConstraint("requiredMemoryTotal");
}

Constraint requiredNetworkBandwidthTotal(ConstraintFactory constraintFactory)

return constraintFactory.forEach(CloudProcess.class)
.groupBy(CloudProcess: :getComputer, sum(CloudProcess:
:getRequiredNetworkBandwidth))
.filter((computer, requiredNetworkBandwidth) ->
requiredNetworkBandwidth > computer.getNetworkBandwidth())
.penalize(HardSoftScore.ONE_HARD,
(computer, requiredNetworkBandwidth) ->
requiredNetworkBandwidth - computer.getNetworkBandwidth())
.asConstraint("requiredNetworkBandwidthTotal");

}

Constraint computerCost(ConstraintFactory constraintFactory) {
return constraintFactory.forEach(CloudComputer.class)
.ifExists(CloudProcess.class, equal(Function.identity(),
CloudProcess::getComputer))
.penalize(HardSoftScore.ONE_SOFT,
CloudComputer::getCost)
.asConstraint("computerCost");

3.3.5.3. Incremental Java score configuration

Another way to define a score function is to implement the interface IncrementalScoreCalculator in
plain Java.

<scoreDirectorFactory>
<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(Cloud

BalancingIncrementalScoreCalculator</easyScoreCalculatorClass>
</scoreDirectorFactory>

106

Example 8. CloudBalancingIncrementalScoreCalculator.java

public class CloudBalancingIncrementalScoreCalculator
implements IncrementalScoreCalculator<CloudBalance, HardSoftScore> {

private Map<CloudComputer, Integer> cpuPowerUsageMap;

private Map<CloudComputer, Integer> memoryUsageMap;

private Map<CloudComputer, Integer> networkBandwidthUsageMap;
private Map<CloudComputer, Integer> processCountMap;

private int hardScore;
private int softScore;

public void resetWorkingSolution(CloudBalance cloudBalance) {

int computerListSize = cloudBalance.getComputerList().size();

cpuPowerUsageMap = new HashMap<>(computerListSize);

memoryUsageMap = new HashMap<>(computerlListSize);

networkBandwidthUsageMap = new HashMap<>(computerListSize);

processCountMap = new HashMap<>(computerListSize);

for (CloudComputer computer : cloudBalance.getComputerList()) {
cpuPowerUsageMap.put(computer, 0);
memoryUsageMap.put(computer, 0);
networkBandwidthUsageMap.put(computer, 0);
processCountMap.put(computer, 0);

}

hardScore = 0;

softScore = 0;

for (CloudProcess process : cloudBalance.getProcessList()) {
insert(process);

}

public void beforeVariableChanged(Object entity, String variableName) {
retract((CloudProcess) entity);

}

public void afterVariableChanged(Object entity, String variableName) {
insert((CloudProcess) entity);
}

public void beforeEntityRemoved(Object entity) {
retract((CloudProcess) entity);

}

107

108

private void insert(CloudProcess process) {
CloudComputer computer = process.getComputer();
if (computer != null) {
int cpuPower = computer.getCpuPower();
int oldCpuPowerUsage = cpuPowerUsageMap.get(computer);
int oldCpuPowerAvailable = cpuPower - oldCpuPowerUsage;
int newCpuPowerUsage = oldCpuPowerUsage + process.getRequiredCpuPower
0;
int newCpuPowerAvailable = cpuPower - newCpuPowerUsage;
hardScore += Math.min(newCpuPowerAvailable, @) - Math.min
(oldCpuPowerAvailable, 0);
cpuPowerUsageMap.put(computer, newCpuPowerUsage);

int memory = computer.getMemory();

int oldMemoryUsage = memoryUsageMap.get(computer);

int oldMemoryAvailable = memory - oldMemoryUsage;

int newMemoryUsage = oldMemoryUsage + process.getRequiredMemory();

int newMemoryAvailable = memory - newMemoryUsage;

hardScore += Math.min(newMemoryAvailable, @) - Math.min
(oldMemoryAvailable, 0);

memoryUsageMap.put(computer, newMemoryUsage);

int networkBandwidth = computer.getNetworkBandwidth();

int oldNetworkBandwidthUsage = networkBandwidthUsageMap.get(computer);

int oldNetworkBandwidthAvailable = networkBandwidth -
oldNetworkBandwidthUsage;

int newNetworkBandwidthUsage = oldNetworkBandwidthUsage + process
.getRequiredNetworkBandwidth();

int newNetworkBandwidthAvailable = networkBandwidth -
newNetworkBandwidthUsage;

hardScore += Math.min(newNetworkBandwidthAvailable, 0) - Math.min
(oldNetworkBandwidthAvailable, 0);

networkBandwidthUsageMap.put(computer, newNetworkBandwidthUsage);

int oldProcessCount = processCountMap.get(computer);
if (oldProcessCount == 0) {

softScore -= computer.getCost();
}
int newProcessCount = oldProcessCount + 1;
processCountMap.put(computer, newProcessCount);

}

private void retract(CloudProcess process) {
CloudComputer computer = process.getComputer();
if (computer != null) {
int cpuPower = computer.getCpuPower();
int oldCpuPowerUsage = cpuPowerUsageMap.get(computer);
int oldCpuPowerAvailable = cpuPower - oldCpuPowerUsage;
int newCpuPowerUsage = oldCpuPowerUsage - process.getRequiredCpuPower

0);

int newCpuPowerAvailable = cpuPower - newCpuPowerUsage;

hardScore += Math.min(newCpuPowerAvailable, @) - Math.min
(oldCpuPowerAvailable, 0);

cpuPowerUsageMap.put(computer, newCpuPowerUsage);

int memory = computer.getMemory();

int oldMemoryUsage = memoryUsageMap.get(computer);

int oldMemoryAvailable = memory - oldMemoryUsage;

int newMemoryUsage = oldMemoryUsage - process.getRequiredMemory();

int newMemoryAvailable = memory - newMemoryUsage;

hardScore += Math.min(newMemoryAvailable, @) - Math.min
(oldMemoryAvailable, 0);

memoryUsageMap.put(computer, newMemoryUsage);

int networkBandwidth = computer.getNetworkBandwidth();

int oldNetworkBandwidthUsage = networkBandwidthUsageMap.get(computer);

int oldNetworkBandwidthAvailable = networkBandwidth -
oldNetworkBandwidthUsage;

int newNetworkBandwidthUsage = oldNetworkBandwidthUsage - process
.getRequiredNetworkBandwidth();

int newNetworkBandwidthAvailable = networkBandwidth -
newNetworkBandwidthUsage;

hardScore += Math.min(newNetworkBandwidthAvailable, 0) - Math.min
(oldNetworkBandwidthAvailable, 0);

networkBandwidthUsageMap.put(computer, newNetworkBandwidthUsage);

int oldProcessCount = processCountMap.get(computer);
int newProcessCount = oldProcessCount - 1;
if (newProcessCount == 0) {

softScore += computer.getCost();

}

processCountMap.put(computer, newProcessCount);

public HardSoftScore calculateScore() {
return HardSoftScore.of(hardScore, softScore);

}

This score calculation is the fastest we can possibly make it. It reacts to every planning variable
change, making the smallest possible adjustment to the score.

3.3.6. Beyond this tutorial

Now that this simple example works, you can try going further. For example, you can enrich the
domain model and add extra constraints such as these:

109

* Each Process belongs to a Service. A computer might crash, so processes running the same
service must be assigned to different computers.

* Each Computer is located in a Building. A building might burn down, so processes of the same
services should (or must) be assigned to computers in different buildings.

3.4. Traveling salesman (TSP - traveling salesman
problem)

3.4.1. Problem description
Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia. It is one of the most intensively studied problems in
computational mathematics. Yet, in the real world, it is often only part of a planning problem, along
with other constraints, such as employee shift rostering constraints.

3.4.2. Problem size

dj38 has 38 cities with
europed® has 40 cities with
st70 has 70 cities with
pcb442 has 442 cities with
1u980 has 980 cities with

search space of 10743,
search space of 10M46.
search space of 10798.
search space of 107976.
search space of 10/2504.

[V e} R oV B oV I o]

3.4.3. Problem difficulty

Despite TSP’s simple definition, the problem is surprisingly hard to solve. Because it is an NP-hard
problem (like most planning problems), the optimal solution for a specific problem dataset can
change a lot when that problem dataset is slightly altered:

110

https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.math.uwaterloo.ca/tsp/

TSP optimal solution volatility

How much does the optimal solution change if we add 1 new |location?

No effect Side effect Snowball effect

new

new new

/
TN

N

3.5. Tennis club scheduling

3.5.1. Problem description

Every week the tennis club has four teams playing round robin against each other. Assign those
four spots to the teams fairly.

Hard constraints:

* Conflict: A team can only play once per day.

* Unavailability: Some teams are unavailable on some dates.
Medium constraints:

 Fair assignment: All teams should play an (almost) equal number of times.
Soft constraints:

* Evenly confrontation: Each team should play against every other team an equal number of
times.

111

3.5.2. Problem size

munich-7teams has 7 teams, 18 days, 12 unavailabilityPenalties and 72 teamAssignments
with a search space of 10/60.

3.5.3. Domain model

Tennis class diagram

[UnavalilabilityPenalty | @PlanningVariable

4 @~PlanningEntity
[TeamAssignment]

*

@PlanningEntityCollectionProperty

@PlanningSolution

[TennisSolution]

3.6. Meeting scheduling

3.6.1. Problem description
Assign each meeting to a starting time and a room. Meetings have different durations.
Hard constraints:

* Room conflict: two meetings must not use the same room at the same time.
* Required attendance: A person cannot have two required meetings at the same time.

* Required room capacity: A meeting must not be in a room that doesn’t fit all of the meeting’s
attendees.

 Start and end on same day: A meeting shouldn’t be scheduled over multiple days.

112

Medium constraints:

Preferred attendance: A person cannot have two preferred meetings at the same time, nor a
preferred and a required meeting at the same time.

Soft constraints:

Sooner rather than later: Schedule all meetings as soon as possible.

A break between meetings: Any two meetings should have at least one time grain break
between them.

Overlapping meetings: To minimize the number of meetings in parallel so people don’t have to
choose one meeting over the other.

Assign larger rooms first: If a larger room is available any meeting should be assigned to that
room in order to accommodate as many people as possible even if they haven’t signed up to that
meeting.

Room stability: If a person has two consecutive meetings with two or less time grains break
between them they better be in the same room.

3.6.2. Problem size

50meetings-160timegrains-5rooms has 50 meetings, 160 timeGrains and 5 rooms with a
search space of 107145,

100meetings-320timegrains-5rooms has 100 meetings, 320 timeGrains and 5 rooms with a
search space of 107320.

200meetings-640timegrains-5rooms has 200 meetings, 640 timeGrains and 5 rooms with a
search space of 107701.

400meetings-1280timegrains-5rooms has 400 meetings, 1280 timeGrains and 5 rooms with a
search space of 1071522.

800meetings-2560timegrains-5rooms has 800 meetings, 2560 timeGrains and 5 rooms with a
search space of 10/3285.

3.7. Course timetabling (ITC 2007 Track 3 - Curriculum
Course Scheduling)

3.7.1. Problem description

Schedule each lecture into a timeslot and into a room.

Hard constraints:

Teacher conflict: A teacher must not have two lectures in the same period.
Curriculum conflict: A curriculum must not have two lectures in the same period.
Room occupancy: two lectures must not be in the same room in the same period.

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

113

Soft constraints:

* Room capacity: A room’s capacity should not be less than the number of students in its lecture.

* Minimum working days: Lectures of the same course should be spread out into a minimum
number of days.

e Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to each
other (so in consecutive periods).

* Room stability: Lectures of the same course should be assigned to the same room.

The problem is defined by the International Timetabling Competition 2007 track 3.

3.7.2. Problem size

comp@1 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6 rooms
and 53 unavailable period constraints with a search space of 10/360.
comp@2 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16 rooms
and 513 unavailable period constraints with a search space of 10/736.
comp@3 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16 rooms
and 382 unavailable period constraints with a search space of 107653.
comp@4 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18 rooms
and 396 unavailable period constraints with a search space of 107758.
comp@5 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9 rooms
and 771 unavailable period constraints with a search space of 10/7381.
comp0b has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms
and 632 unavailable period constraints with a search space of 10/957.
comp@7 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms
and 667 unavailable period constraints with a search space of 10/1171.
comp@8 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18 rooms
and 478 unavailable period constraints with a search space of 10/859.
comp@9 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18 rooms
and 405 unavailable period constraints with a search space of 107740.
comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms
and 694 unavailable period constraints with a search space of 107981.
comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5 rooms
and 94 unavailable period constraints with a search space of 10/381.
comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11 rooms
and 1368 unavailable period constraints with a search space of 107566.
comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19 rooms
and 468 unavailable period constraints with a search space of 10/824.
comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 rooms
and 486 unavailable period constraints with a search space of 10/722.

3.7.3. Domain model

114

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Curriculum course class diagram

[Teacher] [Day]
1 1
[Curriculum] [Timeslot]
* 1
[Course] [Period] [Room]
1 1 1
@PlanningVariable
@PlanningVariable
* @~PlanningEntity |
[Lecture]

*
@PlanningEntityCollectionProperty

@PlanningSolution

[CourseSchedule]

3.8. Machine reassignment (Google ROADEF 2012)

3.8.1. Problem description

Assign each process to a machine. All processes already have an original (unoptimized) assignment.
Each process requires an amount of each resource (such as CPU, RAM, ...). This is a more complex
version of the Cloud Balancing example.

Hard constraints:
* Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.
* Conflict: Processes of the same service must run on distinct machines.
» Spread: Processes of the same service must be spread out across locations.

* Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

» Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

* Load: The safety capacity for each resource for each machine should not be exceeded.

115

Balance: Leave room for future assignments by balancing the available resources on each
machine.

* Process move cost: A process has a move cost.

e Service move cost: A service has a move cost.

Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012.

Cloud optimization is like Tetris

:a‘ﬂeag
o CcPU CcPU CcPU .
Memory Memory Memory
Metwoark MNetwork 5 Metwoark
CPU CPU CPU
Memary Memory Memary
Netwoark Network Netwoark l
Traditional algorithm OptaPlanner
(Construction Heuristic) {Construction Heuristic + Local Search)
o 180% 1100% 180% 1100%
CPU CPU
@ Memory @ Memor}r t
MNetwark Netwark
CPU CPU |
@ Memary @ Memary
Metwork MNetwork
CPU
@ B @ Memnwﬁ
MNetwork MNetwork

3.8.2. Value proposition

116

http://challenge.roadef.org/2012/en/

'/
\l/

J-'JI||

JjJI||

Cloud optimization

Assign processes to machines maore efficiently.

Computers
~ Processes

N é
&0 @ -

Users

Virt

Maxnnunf
capacny

Cost
13/ hour

Jv[3 -:Ifmlzahour

Needstorun ./

on Linux

CloudBalancing benchmark

Cloud hosting cost

OptaPlanner versus traditional algorithm w

MachineReassignment benchmark

3.8.3. Problem size

model_a1l_1
services,
model_al_2
services,
model _al_3
services,
model_al_4
services,
model _al_ 5
services,
model a2 1
services,
model a2 2
services,
model a2 3
services,
model a2 4
services,
model_a2_5
services,
model b 1
services,

Hardware congestion -63% &% = e
OptaPlanner versus arbitrary feasible assignments & mins Tabu Search vs First Feasible Fit
Dan't believe us? Run our open benchmarks yourself: hitps:/fww.optaplanner.org/code/benchmarks. htmi
has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79
100 processes and 1 balancePenalties with a search space of 10760.
has 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980
1000 processes and @ balancePenalties with a search space of 10/2000.
has 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216
1000 processes and @ balancePenalties with a search space of 10/2000.
has 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142
1000 processes and 1 balancePenalties with a search space of 1071698.
has 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981
1000 processes and 1 balancePenalties with a search space of 10/1079.
has 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000
1000 processes and @ balancePenalties with a search space of 10/2000.
has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170
1000 processes and @ balancePenalties with a search space of 10/2000.
has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129
1000 processes and @ balancePenalties with a search space of 10/2000.
has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180
1000 processes and 1 balancePenalties with a search space of 10/71698.
has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153
1000 processes and @ balancePenalties with a search space of 10"1698.
has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2512
5000 processes and @ balancePenalties with a search space of 10/10000.

Same service

(failover for each other)

Safety capacity
(load fragmenation)

Average Min/Max # datasets Biggest dataset

0, -16% 1600 computers

'18 /D -21% 8 4800 processes

ith domain knowledge 5 mins Simulated Annealing vs First Fit Decreasing
Average Min/Max # datasets Biggest dataset

117

model_b_2 has 12 resources,

services, 5000
model b_3 has
services, 20000
model b 4 has
services, 20000
model b 5 has
services, 40000
model b 6 has
services, 40000
model b _7 has
services, 40000
model b _8 has
services, 50000
model b 9 has
services, 50000
model_b_10 has
services, 50000

processes and
b resources,
processes and
6 resources,
processes and
6 resources,
processes and
6 resources,
processes and
b resources,
processes and
3 resources,
processes and
3 resources,
processes and
3 resources,
processes and

3.8.4. Domain model

— U1 = U010 U1 =01 =010 -= 0TS 0= O

100 machines, 2462
space of 10710000.
100 machines, 15025
space of 10740000.
500 machines, 1732
space of 10/53979.
100 machines, 35082
space of 10/80000.

neighborhoods, 10 locations,

balancePenalties with a search
neighborhoods, 10 locations,

balancePenalties with a search
neighborhoods, 50 locations,

balancePenalties with a search
neighborhoods, 10 locations,

balancePenalties with a search
neighborhoods, 50 locations, 200 machines, 14680
balancePenalties with a search space of 10/192041.
neighborhoods, 50 locations, 4000 machines, 15050
balancePenalties with a search space of 107144082.
neighborhoods, 10 locations, 100 machines, 45030
balancePenalties with a search space of 10°100000.
neighborhoods, 100 locations, 1000 machines, 4609
balancePenalties with a search space of 10/"150000.
neighborhoods, 100 locations, 5000 machines, 4896
balancePenalties with a search space of 107184948.

Machine reassignment class diagram

)

. dependency
[Service] * [Neighborhood
1 1
[ProcessRequirement] [MachineCapacity] Location
* * * * 1
* 1 1 1 1 * *
[Process] [Resource] [Machine]
1 1 1
originalMachine
@PlanningVariable
1 @~PlanningEntity * -
[ProcessAssignment]

*

@PlanningEntityCollectionProperty

@PlanningSolution

MachineReassignment

118

3.9. Vehicle routing

3.9.1. Problem description

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

21

{ 17 11

!
67 /100 / < ”

! P 99 /100
! o
h .
! A
i ; 25 15
; , .
! o el 2
.|l /{ - @- =-a
l|' !/ __d_.-'
tS o, o
e -

\2\1 o 67 /100
11 97 ;104 m
5 225100
A) ,
3
7" e
* Customer: demand 32 customers 742'69 fue'

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).
Hard constraints:

 Vehicle capacity: a vehicle cannot carry more items then its capacity.
* Time windows (only in CVRPTW):
o Travel time: Traveling from one location to another takes time.

o Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

o Customer ready time: a vehicle may arrive before the customer’s ready time, but it must

119

wait until the ready time before servicing.

o Customer due time: a vehicle must arrive on time, before the customer’s due time.
Soft constraints:
* Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

The capacitated vehicle routing problem (CVRP) and its timewindowed variant (CVRPTW) are
defined by the VRP web.

3.9.2. Value proposition

Vehicle routing

Assign the delivery order of vehicles more efficiently.

Depot —__ ~— Delivery locations Users
Driver wage N sae N)
/ hot Capacity
s fhour - " < 201on Supermarkets
i ' & retail stores
o
................. 10 ton .
Freight
Optional e N 3ton transportation
Can wait till tommorrow ;
Time window) Buses, taxis
Deliver between " o H
8 AM and 10 AM & airlines
A d vehitle .
mored venee : Technicians
Expensive delivery ... on the road
VehicleRouting benchmark (Belgium datasets) Average Min/Max # datasets Biggest dataset
mn I 904 2750 deliveries
Driving time -15% G s e
OptaPlanner versus traditional algorithm with domain knowledge 5 mins Late Acceptance Mearby vs First Fit Decreasing

Dan't believe us? Run our open benchmarks yourself: hitps:/hfwww.optaplanner.org/code/benchmarks. html

3.9.3. Problem size

CVRP instances (without time windows):

belgium-n50-k10 has 1 depots, 10 vehicles and 49 customers with a
search space of 10M74.
belgium-n100-k10 has 1 depots, 10 vehicles and 99 customers with a
search space of 107170.
belgium-n500-k20 has 1 depots, 20 vehicles and 499 customers with a
search space of 1071168.
belgium-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a

search space of 10/2607.

120

https://neo.lcc.uma.es/vrp/

belgium-n2750-k55

search space of 10/8380.
belgium-road-km-n50-k10
search space of 10774,
belgium-road-km-n100-k10
search space of 107170.
belgium-road-km-n500-k20
search space of 1071168.
belgium-road-km-n1000-k20
search space of 10/2607.
belgium-road-km-n2750-k55
search space of 10/8380.
belgium-road-time-n50-k10
search space of 10M74.
belgium-road-time-n100-k10
search space of 107170.
belgium-road-time-n500-k20
search space of 1071168.

belgium-road-time-n1000-k20

search space of 10/2607.

belgium-road-time-n2750-k55

search space of 10/8380.
belgium-d2-n50-k10
search space of 10M74.
belgium-d3-n100-k10
search space of 107170.
belgium-d5-n500-k20
search space of 1071168.
belgium-d8-n1000-k20
search space of 10/2607.
belgium-d10-n2750-k55
search space of 10/8380.

A-n32-k5 has 1 depots, 5
A-n33-k5 has 1 depots, 5
A-n33-k6 has 1 depots, 6
A-n34-k5 has 1 depots, 5
A-n36-k5 has 1 depots, 5
A-n37-k5 has 1 depots, 5
A-n37-k6 has 1 depots, 6
A-n38-k5 has 1 depots, 5
A-n39-k5 has 1 depots, 5
A-n39-k6 has 1 depots, 6
A-n44-k7 has 1 depots, 7
A-n45-k6 has 1 depots, 6
A-n45-k7 has 1 depots, 7
A-n46-k7 has 1 depots, 7
A-n48-k7 has 1 depots, 7
A-n53-k7 has 1 depots, 7
A-n54-k7 has 1 depots, 7
A-n55-k9 has 1 depots, 9

has 1

has 1

has 1

has 1

has 1

has 1

has 1

has 1

has 1

has 1

has 1

has 2

has 3

has 5

has 8

has 10

vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles
vehicles

depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,

depots,

55

10

10

20

20

55

10

10

20

20

55

10

10

20

20

55

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

31
32
32
33
35
36
36
37
38
38
43
44
44
45
47
52
53
54

customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

2749

49

99

499

999

2749

49

99

499

999

2749

48

97

495

992

2740

0 o0 0D VoY oD oD Dy

search
search
search
search
search
search
search
search
search
search
search
search
search
search
search
search
search
search

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space
space

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

of
of

10/40.
10741,
101742,
10143,
10/\46.
10/\48.
10749,
10149,
10/51.
10152,
10/61.
10162.
10763.
10765.
10/68.
101717
10179.
10182.

121

A-n60-k9
A-n61-k9
A-n62-k8
A-n63-k9
A-n63-k10
A-n64-k9
A-n65-k9
A-n69-k9
A-n80-k10
F-n45-k4
F-n72-k4
F-n135-k7

has
has
has
has
has
has
has
has
has
has
has
has

—_—)) e))) a2 2

depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,

10

9 vehicles
9 vehicles
8 vehicles
9 vehicles
vehicles
9 vehicles
9 vehicles
vehicles
vehicles
vehicles
vehicles
vehicles

~N &~ b~ o O

and
and
and
and
and
and
and
and
and
and
and
and

59
60
61
62
62
63
64
68
79
44
1
134

customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers
customers

CVRPTW instances (with time windows):

belgium-tw-d2-n50-k10
space of 10774,
belgium-tw-d3-n100-k10
space of 107M170.
belgium-tw-d5-n500-k20
space of 1071168.
belgium-tw-d8-n1000-k20
space of 10/2607.
belgium-tw-d10-n2750-k5
space of 10/8380.
belgium-tw-n50-k10
space of 10774,
belgium-tw-n100-k10
space of 107M170.
belgium-tw-n500-k20
space of 1071168.
belgium-tw-n1000-k20
space of 10/2607.
belgium-tw-n2750-k55
space of 10/8380.

Solomon_025 C101
space of 10740.
Solomon_025 (€201
space of 10740.
Solomon_025 R101
space of 10740.
Solomon_025 R201
space of 10740.
Solomon_025 RC101
space of 10740.
Solomon_025 RC201
space of 10740.
Solomon_100 _C101
space of 107M185.

122

has

has

has

has

5 has

has

has

has

has

has

has 1

has 1

has 1

has 1

has 1

has 1

has 1

depots,
depots,
depots,
depots,
depots,
depots,

depots,

2 depots,
3 depots,
5 depots,
8 depots,
depots,
1 depots,
1 depots,
1 depots,
1 depots,

1 depots,

25
25
25
25
25
25

25

10

10

20

20

55

10

10

20

20

55

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

with
with
with
with
with
with
with
with
with
with
with
with

(9 I =V I oV o) B o o ¥ R o} B a Y o) BV RN o) B aV)

48

97

495

992

2740

49

99

499

999

2749

25

25

25

25

25

25

100

search
search
search
search
search
search
search
search
search
search
search
search

space
space
space
space
space
space
space
space
space
space
space
space

of
of
of
of
of
of
of
of
of
of
of
of

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

with

with

with

with

with

with

with

with

with

with

with a

with a

with a

with a

with a

with a

with a

10191.
10193,
10194,
10197
10198.
10199,
107M101.
10/1108.
107130.
10160.
10/1108.
101240.

a search

3 search

a search

a search

a search

a search

a search

a search

a search

a search

search

search

search

search

search

search

search

Solomon_100_(C201
space of 107M85.
Solomon_100 R101
space of 107M85.
Solomon_100 _R201
space of 107185.
Solomon_100 RC101
space of 107M185.
Solomon_100 RC201
space of 107M185.
Homberger_0200_C1_2_1
space of 107429.
Homberger_0200_C2_2_1
space of 107429.
Homberger_0200_R1_2_1
space of 107429.
Homberger_0200_R2_2_1
space of 107429,
Homberger_0200_RC1_2_1
space of 107429.
Homberger_0200_RC2_2_1
space of 107429.
Homberger_0400_C1_4_1
space of 107978.
Homberger_0400_C2_4_1
space of 107978.
Homberger_0400_R1_4_1
space of 107978.
Homberger_0400_R2_4_1
space of 107978.
Homberger_0400_RC1_4_1
space of 107978.
Homberger_0400_RC2_4_1
space of 107978.
Homberger_0600_C1_6_1
space of 107M1571.
Homberger_0600_C2_6_1
space of 107M1571.
Homberger_0600_R1_6_1
space of 107M1571.
Homberger_0600_R2_6_1
space of 107M1571.
Homberger_0600_RC1_6_1
space of 107M1571.
Homberger_0600_RC2_6_1
space of 107M571.
Homberger_0800_C1_8_1
space of 10/2195.
Homberger_0800_C2_8_1
space of 10/2195.
Homberger_0800_R1_8_1

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

has

depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,
depots,

depots,

25

25

25

25

25

50

50

50

50

50

50

100

100

100

100

100

100

150

150

150

150

150

150

200

200

200

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

vehicles

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

100

100

100

100

100

200

200

200

200

200

200

400

400

400

400

400

400

600

600

600

600

600

600

800

800

800

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

customers

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

with

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

search

123

space of 10/2195.
Homberger_0800_R2_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10/2195.
Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10/2195.
Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10/2195.
Homberger_1000_C110_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.
Homberger_1000_C210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.
Homberger_1000_R110_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.
Homberger_1000_R210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.
Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.
Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10/2840.

3.9.4. Domain model

Vehicle routing class diagram

@PlanningSolution

[VehicleRoutingSolution]
@~PlanningEntityCollectionProperty @ValueRangeProvider
=\ @PlanningEntity =\ @PlanningEntity ~ Shadow variables
| Vehicle | @PlanningListVariable Customer —
- _ - arrivalTime =
capacity customers readyTime i previousC.departureTime
depot 1 dueTime _f + trave|Time
* 7\ serviceDuration | -
. 1 . . .| -~ departureTime =
VEh::dE arnvaITlme. | max(arrivalTime, readyTime)
' depaﬂUTETlme + serviceDuration

T I sseemenennnnnne WEHICIE =

previousCustomer

inverse of Vehicle.customers
nextCustomer -

T previousCustomer =
customer at index - 1

1 1 """"" nextCustomer =
] customer at index + 1

[Depot J L Location

The vehicle routing with timewindows domain model makes heavily use of shadow variables. This
allows it to express its constraints more naturally, because properties such as arrivalTime and

124

departureTime, are directly available on the domain model.

3.9.4.1. Road distances instead of air distances

In the real world, vehicles cannot follow a straight line from location to location: they have to use
roads and highways. From a business point of view, this matters a lot:

Vehicle routing distance type

Can we optimize for air distances, when we need road distances or driving times?

Optimized for air distance
T -
' :v.-":"ﬁ
o
... road distance F -
a]
e e
L Ve ™
B TS 2 327.32 km 118 632 sec
... driving time ' AN " 3.8% worse 4.0% worse
o
. _ © ™. 2243.15km 115516 sec
{ * o ” ' best 1.2% worse
;.) | 2 300.32 km 114 105 sec
: S 2.5% worse best

For the optimization algorithm, this does not matter much, as long as the distance between two
points can be looked up (and are preferably precalculated). The road cost does not even need to be
a distance, it can also be travel time, fuel cost, or a weighted function of those. There are several
technologies available to precalculate road costs, such as GraphHopper (embeddable, offline Java
engine), Open MapQuest (wWeb service) and Google Maps Client API (web service).

125

https://graphhopper.com/
http://open.mapquestapi.com/directions/#matrix
https://developers.google.com/maps/documentation/webservices/client-library

Integration with real maps

Google Maps or GraphHopper (OpenStreetMap) calculate distances, OptaPlanner optimizes the trips.

Locations
with latitude and longitude

Render in browser

Google Maps
REST Client

or

GraphHopper
REST or local

Google Maps
JavaScript

or

Leaflet.js
JavaScript

Fetch distance matrix
for every pair of locations

e ®™ A BCD
| 0 50809050
A |50 0 30 30 60
B 80320 0 3030
C |90 32 30 0 40
D |50 60 30 40 0O -
».JO"'.lI‘
2 OptaPlanner
Optimize trips
under hard and soft constraints
o@ A B CD _C
ST ol
na -~ 30min
A 000 @f’“&,ﬁ’
B SI:I k\éﬂf]l"l 30min 50min
c 30 \f}rJ—%——J"--"
D |50 _
50min

There are also several technologies to render it, such as Leaflet and Google Maps for developers:

126

http://leafletjs.com
https://developers.google.com/maps/

Leaflet.js Google Maps

/ I---_-—_-
at ! %/ -
7 LANOEGEM %
2 Fan

I F S T
Map | Satellite TI

A okapélle
Ka
Antwerp

s

. Dudenaarde
|

var ¥

Denain Ma o

, larenr
=] o

o 1 \ :
Le Quesnoy \j | Walcourl
b g =

¥ "Cﬂg';"!f Au[ncge_—:a.yml_erles .
oy e \ i Couvirr
NS N T Rolnmiess T AE—
I T T ¢

" Parc naturekn
Report & fhiap eror

f " g

~/ Map Data ' Terms of Use 01

It is even possible to render the actual road routes with GraphHopper or Google Map Directions,
but because of route overlaps on highways, it can become harder to see the standstill order:

127

MIOOgIDUrg aues

o : {-_\D}--" _ME”,.:E&U},’E” DEurnE| Map | Satelllte
T s Berge
/ \ Vlissingen op Zoor _ " E'%

KikeaMeist Temeuzen W ol * Yakahsngard =

o Blanigherge £
Ll'rgl'l'fl!

G EE] aMol

Beringen
eringe

Hazeb‘rauck
.N'I11E|Ttl

P e T

Bethune aubourdin . : T v
Garwrl W i ! ’ . / \ schleide
MaITedy

E42

Cambrm Le ﬂuesnay o
o Caudr}' Aulnoye- Aymerles

ST Tergni = et h, Luxembuur
g - .. Postbais

" --.-. Nﬂ!ﬂr{ Ch;uﬁy Laé:ul'l 3 1 —_— 1 o {

i 2 j ~_Rethel Al 2
rETTt,JlF? en Chauss’ée o 2 I eF_e c:, N
auvais < Compieane. . i I'u'lap data ©2015 GeoBasis-DE/BKG {@20!]9] Google | Terms of Hsé - Reportnmap ermor
Take special care that the road costs between two points use the same optimization criteria as the
one used in OptaPlanner. For example, GraphHopper etc will by default return the fastest route, not

the shortest route. Don’t use the km (or miles) distances of the fastest GPS routes to optimize the
shortest trip in OptaPlanner: this leads to a suboptimal solution as shown below:

128

Road distance triangle inequality

Routes and frips must optimize the same property to avoid suboptimal solutions.

Shortest GPS routes Goal: shortest trip Goal: fastest trip
using shortest GPS routes using shortest GPS routes

D
A0km
Ry .
A-C B D A .B.C-.D
60+ 504+ 30+ 30+ 40 = 210km 50+ 20 + 30 + 40 + 50 = 200min
optimal suboptimal
Goal: shortest trip Goal: fastest trip
using fastest GPS routes using fastest GPS routes
Wiolates anghe ineqguality!
A-CEA B+B_C
90 £ 30 + 30 304m
ﬁ 60
50min
In this example, only the A C route A B .C.D .. A LC .B .D
differs between shortest and fastest. ——_—_ _ E _)
in the real world, almost all routes differ. 60+30+30+60+40= 22':,"“" S0 +30 + 30 +30 +50= 19;""'"
suboptimal optimal

Contrary to popular belief, most users do not want the shortest route: they want the fastest route
instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the
real world, the fastest and shortest route are rarely the same.

3.10. Project job scheduling

3.10.1. Problem description

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a
project. A job can be executed in different ways: each way is an execution mode that implies a
different duration but also different resource usages. This is a form of flexible job shop scheduling.

129

Project job scheduling

For each job, choose an execution mode and a start time,

(" Design

Cover
Book1l <

Pages (400/book)

Assembly
L.

" Design

Cover

Book 2 <
Pages (500/book)

Assembly
p.

19;0.@ ay

Resources = 1%;%;

.1. % fday

(-

Hard constraints:

* Job precedence: a job can only start when all its predecessor jobs are finished.
* Resource capacity: do not use more resources than available.

> Resources are local (shared between jobs of the same project) or global (shared between all
jobs)

o Resources are renewable (capacity available per day) or nonrenewable (capacity available
for all days)

Medium constraints:
» Total project delay: minimize the duration (makespan) of each project.
Soft constraints:
» Total makespan: minimize the duration of the whole multi-project schedule.

The problem is defined by the MISTA 2013 challenge.

3.10.2. Problem size

Schedule A-1 has 2 projects, 24 jobs, 64 execution modes, 7 resources and 150
resource requirements.

130

http://gent.cs.kuleuven.be/mista2013challenge/

Schedule A-2 has 2 projects, 44 jobs, 124 execution modes, 7 resources and 420
resource requirements.
Schedule A-3 has 2 projects, 64 jobs, 184 execution modes, 7 resources and 630
resource requirements.
Schedule A-4 has 5 projects, 60 jobs, 160 execution modes, 16 resources and 390
resource requirements.
Schedule A-5 has 5 projects, 110 jobs, 310 execution modes, 16 resources and 900
resource requirements.
Schedule A-6 has 5 projects, 160 jobs, 460 execution modes, 16 resources and 1440
resource requirements.
Schedule A-7 has 10 projects, 120 jobs, 320 execution modes, 22 resources and 900
resource requirements.
Schedule A-8 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1860
resource requirements.
Schedule A-9 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2880
resource requirements.
Schedule A-10 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2970
resource requirements.
Schedule B-1 has 10 projects, 120 jobs, 320 execution modes, 31 resources and 900
resource requirements.
Schedule B-2 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1740
resource requirements.
Schedule B-3 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 3060
resource requirements.
Schedule B-4 has 15 projects, 180 jobs, 480 execution modes, 46 resources and 1530
resource requirements.
Schedule B-5 has 15 projects, 330 jobs, 930 execution modes, 46 resources and 2760
resource requirements.
Schedule B-6 has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500
resource requirements.
Schedule B-7 has 20 projects, 240 jobs, 640 execution modes, 61 resources and 1710
resource requirements.
Schedule B-8 has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180
resource requirements.
Schedule B-9 has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940
resource requirements.
Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260
resource requirements.

3.11. Hospital bed planning (PAS - Patient Admission
Scheduling)

3.11.1. Problem description

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

This problem features overconstrained datasets.

131

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first OptaPlanner
November November
1 2 3 4 5 6 7 1 2 3 4 5 6 T

General ward

Room 11 bed 1

Room 11 bed 2

Intensive care®

Room 22 bed 1

no space

Hard constraints:
* Two patients must not be assigned to the same bed in the same night. Weight: -1000hard *
conflictNightCount.

* A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all. Weight: -50hard * nightCount.

* A department can have a minimum or maximum age. Weight: -100hard * nightCount.

+ A patient can require a room with specific equipment(s). Weight: -56hard * nightCount.
Medium constraints:

* Assign every patient to a bed, unless the dataset is overconstrained. Weight: -Tmedium *
nightCount.

Soft constraints:

* A patient can prefer a maximum room size, for example if he/she wants a single room. Weight:
-8soft * nightCount.

* A patient is best assigned to a department that specializes in his/her problem. Weight: -10soft *
nightCount.

* A patient is best assigned to a room that specializes in his/her problem. Weight: -20soft *
nightCount.

132

- That room speciality should be priority 1. Weight: -10soft * (priority - 1) * nightCount.

* A patient can prefer a room with specific equipment(s). Weight: -20soft * nightCount.

The problem is a variant on Kaho’s Patient Scheduling and the datasets come from real world
hospitals.

3.11.2. Problem size

overconstrainedd1 has 6 specialisms, 4 equipments, 1 departments, 25 rooms, 69 beds,
14 nights, 519 patients and 519 admissions with a search space of 107958.

testdatad has 4 specialisms, 2 equipments, 4 departments, 98 rooms, 286 beds,
14 nights, 652 patients and 652 admissions with a search space of 1071603.
testdata0?2 has 6 specialisms, 2 equipments, 6 departments, 151 rooms, 465 beds,
14 nights, 755 patients and 755 admissions with a search space of 10/2015.
testdata®3 has 5 specialisms, 2 equipments, 5 departments, 131 rooms, 395 beds,
14 nights, 708 patients and 708 admissions with a search space of 10/1840.
testdata04 has 6 specialisms, 2 equipments, 6 departments, 155 rooms, 471 beds,
14 nights, 746 patients and 746 admissions with a search space of 10/1995.
testdatabh has 4 specialisms, 2 equipments, 4 departments, 102 rooms, 325 beds,
14 nights, 587 patients and 587 admissions with a search space of 107"1476.
testdatalb has 4 specialisms, 2 equipments, 4 departments, 104 rooms, 313 beds,
14 nights, 685 patients and 685 admissions with a search space of 1071711.
testdatad? has 6 specialisms, 4 equipments, 6 departments, 162 rooms, 472 beds,
14 nights, 519 patients and 519 admissions with a search space of 10/1389.
testdatals8 has 6 specialisms, 4 equipments, 6 departments, 148 rooms, 441 beds,
21 nights, 895 patients and 895 admissions with a search space of 10/2368.
testdatal9 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds,
28 nights, 1400 patients and 1400 admissions with a search space of 10/3490.
testdatal0 has 4 specialisms, 4 equipments, 4 departments, 104 rooms, 308 beds,
56 nights, 1575 patients and 1575 admissions with a search space of 10/3922.
testdatalil has 4 specialisms, 4 equipments, 4 departments, 107 rooms, 318 beds,
91 nights, 2514 patients and 2514 admissions with a search space of 1076295.
testdatal?2 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds,
84 nights, 2750 patients and 2750 admissions with a search space of 10/6856.
testdatal3 has 5 specialisms, 4 equipments, 5 departments, 125 rooms, 368 beds,

28 nights, 907 patients and 1109 admissions with a search space of 1072847.

3.11.3. Domain model

133

https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/

Hospital bed allocation class diagram
—~ RequiredPE |-

1 1

[Patient k5 PreferredPE | Equipment]
1 1
[Night] [Department] [RoomEquipment]
1 1 1 *
* * * * 1
[AdmissionPart] . [Room]
1 1
[Bed]*7
1
@PlanningVariable
. @~PlanningEntity -
[BedDesignation]
@PlanningEntityCollectionProperty
@~PlanningSolution
[PatientAdmissionSchedule]

3.12. Task assigning

3.12.1. Problem description

Assign each task to a spot in an employee’s queue. Each task has a duration which is affected by the
employee’s affinity level with the task’s customer.

Hard constraints:

« Skill: Each task requires one or more skills. The employee must possess all these skills.
Soft level 0 constraints:

* Critical tasks: Complete critical tasks first, sooner than major and minor tasks.
Soft level 1 constraints:

* Minimize makespan: Reduce the time to complete all tasks.

o Start with the longest working employee first, then the second longest working employee
and so forth, to create fairness and load balancing.

Soft level 2 constraints:

» Major tasks: Complete major tasks as soon as possible, sooner than minor tasks.

134

Soft level 3 constraints:

* Minor tasks: Complete minor tasks as soon as possible.

3.12.2. Value proposition

Task assigning

Optimize the task queue of every employee by reassigning and reordering tasks.

_— Employees Users
rd
B:00 9:00 10:00 1100 12:00 13:00 14:00 15:00 16:00 1700 1800 X
N Lo o b b b b e o oy oy Payroll services
ST =2 = Lunch |QE= =i
== X [{‘ * 7(][{‘ i Tx] [T X][“ Tr] Call centers

" Critical priority . Medium priority

e Wiz m ;I 2 e Tax auditers

... Requires French skill

fairness

_ _ Recruitement
oot [{5'3$ ‘E!‘][{r* ‘59'] Lunch [‘5‘3? "3'][‘.- by] interviewing

... Has health care affinity

Maximize throughput

: Mortgage
l(.o.—'.\ ’ ﬁ A - -I b ﬁ Feeenens
- [‘. . 4] ' L“':.,r' [‘. 4] approval
Lacks affinity, takes longer ™ ... Starts between 12:00 and 13:30
3.12.3. Problem size

24tasks-8employees has 24 tasks, 6 skills, 8 employees, 4 task types and 4
customers with a search space of 10/30.
50tasks-5employees has 50 tasks, 5 skills, 5 employees, 10 task types and 10
customers with a search space of 10769.
100tasks-5employees has 100 tasks, 5 skills, 5 employees, 20 task types and 15
customers with a search space of 10/164.
500tasks-20employees has 500 tasks, 6 skills, 20 employees, 100 task types and 60
customers with a search space of 1071168.

3.12.4. Domain model

135

Task assigning class diagram

[TaskType } - *g Skill]

1 *

[Affinity]

[Customer] -
1
@~PlanningListVariable

S ; tasks S ;

« @PlanningEntity | « __ |+« @PlanningEntity | »
[Task F\ 1[Employee]
* | *
employee

@InverseRelationShadowVariable

@ValueRangeProvider @PlanningEntityCollectionProperty
@PlanningSolution

[TaskAssigningSolution]

3.13. Exam timetabling (ITC 2007 track 1 -
Examination)

3.13.1. Problem description

Schedule each exam into a period and into a room. Multiple exams can share the same room during
the same period.

136

Examination
timetabling

Assign each exam
a period and
a room.

Mon 09:00
Fri 09:00

Fri 14:00

Hard constraints:

Ann

| History | Math |

Bobby [History | Math |
Carla [History |

[Math [Chem)

Chem| Bio | Geo |

[Bio |

|Eng

Geo | Eng

Most students first

Room X Room Y
4 seats 3 seats
[History | [Chem

same time

OptaPlanner
Room X | |Room Y
4 seats 3 seats
Chem| Eng | [History |
D F
Math

* Exam conflict: two exams that share students must not occur in the same period.

* Room capacity: A room’s seating capacity must suffice at all times.

* Period duration: A period’s duration must suffice for all of its exams.

 Period related hard constraints (specified per dataset):

o Coincidence: two specified exams must use the same period (but possibly another room).

o Exclusion: two specified exams must not use the same period.

o After: A specified exam must occur in a period after another specified exam’s period.

* Room related hard constraints (specified per dataset):

o Exclusive: one specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

¢ The same student should not have two exams in a row.

* The same student should not have two exams on the same day.

* Period spread: two exams that share students should be a number of periods apart.

» Mixed durations: two exams that share a room should not have different durations.

Front load: Large exams should be scheduled earlier in the schedule.

137

» Period penalty (specified per dataset): Some periods have a penalty when used.

* Room penalty (specified per dataset): Some rooms have a penalty when used.
It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1. Geoffrey De
Smet finished 4th in that competition with a very early version of OptaPlanner. Many
improvements have been made since then.

3.13.2. Problem size

exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period
constraints and @ room constraints with a search space of 107A1564.
exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period
constraints and 2 room constraints with a search space of 1072864.
exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period
constraints and 15 room constraints with a search space of 1073023.
exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period
constraints and @ room constraints with a search space of 10/360.
exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period
constraints and @ r