
Table of Contents

Table of Contents ... i

Chapter 1
Introduction.. 1

Chapter 2
Getting Started... 2

Chapter 3
Architecture.. 13

Chapter 4
Enterprise Integration Patterns .. 21

Chapter 5
Pattern Appendix ... 26

Chapter 6
Component Appendix.. 69
Index ... 0

TABLE OF CONTENTS i

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

C H A P T E R 1

° ° ° °

Introduction

Apache Camel is a powerful Spring based Integration Framework.
Camel implements the Enterprise Integration Patterns allowing you to configure routing
and mediation rules in either a Java based Domain Specific Language (or Fluent API) or
via Spring based Xml Configuration files. Either approaches mean you get smart
completion of routing rules in your IDE whether in your Java or XML editor.

Apache Camel uses URIs so that it can easily work directly with any kind of
Transport or messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF
Bus API together with working with pluggable Data Format options. Apache Camel is a
small library which has minimal dependencies for easy embedding in any Java
application.

Apache Camel can be used as a routing and mediation engine for the following
projects:

• Apache ActiveMQ which is the most popular and powerful open source
message broker

• Apache CXF which is a smart web services suite (JAX-WS)
• Apache MINA a networking framework
• Apache ServiceMix which is the most popular and powerful distributed open

source ESB and JBI container

So don't get the hump, try Camel today!

1 CHAPTER 1 - INTRODUCTION

http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Transport
http://cwiki.apache.org/confluence/display/CAMEL/HTTP
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JBI
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://cwiki.apache.org/confluence/display/CAMEL/What+are+the+dependencies
http://activemq.apache.org/
http://activemq.apache.org/
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://mina.apache.org/
http://mina.apache.org/
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://activemq.apache.org/
http://incubator.apache.org/cxf/
http://mina.apache.org/
http://incubator.apache.org/servicemix/

C H A P T E R 2

° ° ° °

Getting Started with Apache Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK
The purpose of a "patterns" book is not to advocate new techniques that the authors
have invented, but rather to document existing best practices within a particular field. By
doing this, the authors of a patterns book hope to spread knowledge of best practices
and promote a vocabulary for discussing architectural designs.
One of the most famous patterns books is Design Patterns: Elements of Reusable
Object-oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides. Some people refer to this as the "gang of four" book, partly to distinguish this
book from other books that use "Design Patterns" in their titles and, perhaps, partly
because they cannot remember the names of all four authors.
Since the publication of Design Patterns, many other patterns books, of varying quality,
have been written. One famous patterns book is called Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe and Bobby
Woolfe. It is common for people to refer to this book as EIP, which is an acronym of its
title. As the subtitle of EIP suggests, the book focusses on design patterns for
asynchronous messaging systems. The book discusses 65 patterns. Each pattern is
given a textual name and most are also given a graphical symbol. The graphical
symbols are intended to be used in architectural diagrams.

THE CAMEL PROJECT
Camel (http://activemq.apache.org/camel/) is an open-source, Java-based project that is
a part of the Apache ActiveMQ project. Camel provides a class library that, according to
its documentation, can be used to implement 31 design patterns in the EIP book. I am
not sure why the Camel documentation discusses only 31 of the 65 EIP design patterns.
Perhaps this is due to incomplete documentation. Or perhaps it means that the Camel
project, which is less than 1 year old at the time of writing, is not yet as feature rich as
the EIP book.
Because Camel implements many of the design patterns in the EIP book, it would be a
good idea for people who work with Camel to read the EIP book.

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 2

http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://activemq.apache.org/camel/
http://activemq.apache.org/camel/
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://activemq.apache.org/camel/

ONLINE DOCUMENTATION FOR CAMEL
The Camel project was started in early 2007. At the time of writing, the Camel project is
too young for there to be published books available on how to use Camel. Instead, the
only source of documentation seems to the documentation page on the Apache Camel
website.

Problems with Camel's online documentation
Currently, the online documentation for the Apache Camel project suffers from two
problems. First, the documentation is incomplete. Second, there is no clearly specified
reading order to the documentation. For example, there is no table of contents. Instead,
documentation is fragmented over a collection of 60+ web pages, and hypertext links
haphazardly tie these web pages to each other. This documentation might suffice as
reference material for people already familiar with Camel but it does not qualify as a
tutorial for beginners.
The problems with the documentation are unlikely to be due to, say, its author(s) lacking
writing ability. Rather, it is more likely that the problems are due to the author(s) lack of
time. I expect Camel's documentation will improve over time. I am writing this overview
of Camel to partially counter some of the problems that currently afflict the Camel
documentation. In particular, this document aims to serve as a (so far, incomplete)
"beginner's guide to Camel". As such, this document tries to complement, rather than
compete with, the online Camel documentation.

A useful tip for navigating the online documentation
There is one useful hint I can provide for reading the online Camel documentation. Each
documentation page has a logo at the top, and immediately underneath this is a think
reddish bar that contains some hypertext links. The Hypertext links on left side of this
reddish bar indicate your position in documentation. For example, If you are on the
"Languages" documentation page then the left-hand side of the reddish bar contains the
following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of
the Apache Camel project, and clicking on "Documentation" takes you to the main
documentation page. You can interpret the "Architeture" and "Languages" buttons as
indicating you are in the "Languages" section of the "Architecture" chapter. Doing this
gives you at least some sense of where you are within the documentation. If you are
patient then you can spend a few hours clicking on all the hypertext links you can find in
the documentation pages, bookmark each page with a hierarchical name (for example,
you might bookmark the above page with the name "Camel ? Arch ? Languages") and

3 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

http://activemq.apache.org/camel/documentation.html
http://activemq.apache.org/camel/documentation.html
http://activemq.apache.org/camel/documentation.html

then you can use your bookmarks to serve as a primitive table of contents for the online
Camel documentation.

ONLINE JAVADOC DOCUMENTATION
The Apache Camel website provides Javadoc documentation. It is important to note that
the Javadoc documentation is spread over several independent Javadoc hierarchies
rather than being all contained in a single Javadoc hierarchy. In particular, there is one
Javadoc hierarchy for the core APIs of Camel, and a separate Javadoc hierarchy for
each communications technology supported by Camel. For example, if you will be using
Camel with ActiveMQ and FTP then you need to look at the Javadoc hierarchies for the
core API, ActiveMQ API and FTP API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL
I said in Section 3.1 ("Problems with Camel's online documentation") that the online
Camel documentation does not provide a tutorial for beginners. Because of this, in this
section I try to explain some of the concepts and terminology that are fundamental to
Camel. This section is not a complete Camel tutorial, but it is a first step in that direction.

Endpoint
The term endpoint is often used when talking about inter-process communication. For
example, in client-server communication, the client is one endpoint and the server is the
other endpoint. Depending on the context, an endpoint might refer to an address, such
as a host:port pair for TCP-based communication, or it might refer to a software entity
that is contactable at that address. For example, if somebody uses
"www.example.com:80" as an example of an endpoint, they might be referring to the
actual port at that host name (that is, an address), or they might be referring to the web
server (that is, software contactable at that address). Often, the distinction between the
address and software contactable at that address is not an important one.
Some middleware technologies make it possible for several software entities to be
contactable at the same physical address. For example, CORBA is an object-oriented,
remote-procedure-call (RPC) middleware standard. If a CORBA server process contains
several objects then a client can communicate with any of these objects at the same
physical address (host:port), but a client communicates with a particular object via that
object's logical address (called an IOR in CORBA terminology), which consists of the
physical address (host:port) plus an id that uniquely identifies the object within its server
process. (An IOR contains some additional information that is not relevant to this
present discussion.) When talking about CORBA, some people may use the term
"endpoint" to refer to a CORBA server's physical address, while other people may use

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 4

http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/

the term to refer to the logical address of a single CORBA object, and other people still
might use the term to refer to any of the following:

• The physical address (host:port) of the CORBA server process
• The logical address (host:port plus id) of a CORBA object.
• The CORBA server process (a relatively heavyweight software entity)
• A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least
two ways. First, it is ambiguous because it might refer to an address or to a
software entity contactable at that address. Second, it is ambiguous in the
granularity of what it refers to: a heavyweight versus lightweight software
entity, or physical address versus logical address. It is useful to understand
that different people use the term endpoint in slightly different (and hence
ambiguous) ways because Camel's usage of this term might be different to
whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the Camel-
supported endpoint technologies.

• A JMS queue.
• A web service.
• A file. A file may sound like an unlikely type of endpoint, until you realize that in

some systems one application might write information to a file and, later,
another application might read that file.

• An FTP server.
• An email address. A client can send a message to an email address, and a

server can read an incoming message from a mail server.
• A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some
endpoints and connect these endpoints with routes, which I will discuss later in
Section 4.8 ("Routes, RouteBuilders and Java DSL"). Camel defines a Java
interface called Endpoint. Each Camel-supported endpoint has a class that
implements this Endpoint interface. As I discussed in Section 3.3 ("Online
Javadoc documentation"), Camel provides a separate Javadoc hierarchy for
each communications technology supported by Camel. Because of this, you
will find documentation on, say, the JmsEndpoint class in the JMS Javadoc
hierarchy, while documentation for, say, the FtpEndpoint class is in the FTP
Javadoc hierarchy.

CamelContext
A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following
steps.

1. Create a CamelContext object.

5 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/

2. Add endpoints ? and possibly Components, which are discussed in Section 4.5
("Components") ? to the CamelContext object.

3. Add routes to the CamelContext object to connect the endpoints.
4. Invoke the start() operation on the CamelContext object. This starts

Camel-internal threads that are used to process the sending, receiving and
processing of messages in the endpoints.

5. Eventually invoke the stop() operation on the CamelContext object. Doing
this gracefully stops all the endpoints and Camel-internal threads.
Note that the CamelContext.start() operation does not block indefinitely.
Rather, it starts threads internal to each Component and Endpoint and then
start() returns. Conversely, CamelContext.stop() waits for all the
threads internal to each Endpoint and Component to terminate and then
stop() returns.
If you neglect to call CamelContext.start() in your application then
messages will not be processed because internal threads will not have been
created.
If you neglect to call CamelContext.stop() before terminating your
application then the application may terminate in an inconsistent state. If you
neglect to call CamelContext.stop() in a JUnit test then the test may fail
due to messages not having had a chance to be fully processed.

CamelTemplate
Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as the TransactionTemplate and JmsTemplate classes in Spring.
The CamelTemplate class is a thin wrapper around the CamelContext class. It has
methods that send a Message or Exchange ? both discussed in Section 4.6 ("Message
and Exchange")) ? to an Endpoint ? discussed in Section 4.1 ("Endpoint"). This
provides a way to enter messages into source endpoints, so that the messages will
move along routes ? discussed in Section 4.8 ("Routes, RouteBuilders and Java DSL")
? to destination endpoints.

The Meaning of URL, URI, URN and IRI
Some Camel methods take a parameter that is a URI string. Many people know that a
URI is "something like a URL" but do not properly understand the relationship between
URI and URL, or indeed its relationship with other acronyms such as IRI and URN.
Most people are familiar with URLs (uniform resource locators), such as "http://...",
"ftp://...", "mailto:...". Put simply, a URL specifies the location of a resource.
A URI (uniform resource identifier) is a URL or a URN. So, to fully understand what URI
means, you need to first understand what is a URN.

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 6

http://www.springframework.org/
http://www.springframework.org/
http://www.springframework.org/

URN is an acronym for uniform resource name. There are may "unique identifier"
schemes in the world, for example, ISBNs (globally unique for books), social security
numbers (unique within a country), customer numbers (unique within a company's
customers database) and telephone numbers. Each "unique identifier" scheme has its
own notation. A URN is a wrapper for different "unique identifier" schemes. The syntax
of a URN is "urn:<scheme-name>:<unique-identifier>". A URN uniquely identifies a
resource, such as a book, person or piece of equipment. By itself, a URN does not
specify the location of the resource. Instead, it is assumed that a registry provides a
mapping from a resource's URN to its location. The URN specification does not state
what form a registry takes, but it might be a database, a server application, a wall chart
or anything else that is convenient. Some hypothetical examples of URNs are
"urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee", "customer"
and "foo" in these examples) part of a URN implicitly defines how to parse and interpret
the <unique-identifier> that follows it. An arbitrary URN is meaningless unless: (1) you
know the semantics implied by the <scheme-name>, and (2) you have access to the
registry appropriate for the <scheme-name>. A registry does not have to be public or
globally accessible. For example, "urn:employee:08765245" might be meaningful only
within a specific company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely misused
as a synonym for URL.
IRI is an acronym for internationalized resource identifier. An IRI is simply an
internationalized version of a URI. In particular, a URI can contain letters and digits in
the US-ASCII character set, while a IRI can contain those same letters and digits, and
also European accented characters, Greek letters, Chinese ideograms and so on.

Components
Component is confusing terminology; EndpointFactory would have been more
appropriate because a Component is a factory for creating Endpoint instances. For
example, if a Camel-based application uses several JMS queues then the application
will create one instance of the JmsComponent class (which implements the
Component interface), and then the application invokes the createEndpoint()
operation on this JmsComponent object several times. Each invocation of
JmsComponent.createEndpoint() creates an instance of the JmsEndpoint class
(which implements the Endpoint interface). Actually, application-level code does not
invoke Component.createEndpoint() directly. Instead, application-level code
normally invokes CamelContext.getEndpoint(); internally, the CamelContext
object finds the desired Component object (as I will discuss shortly) and then invokes
createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

7 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

The parameter to getEndpoint() is a URI. The URI prefix (that is, the part before ":")
specifies the name of a component. Internally, the CamelContext object maintains a
mapping from names of components to Component objects. For the URI given in the
above example, the CamelContext object would probably map the pop3 prefix to an
instance of the MailComponent class. Then the CamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")
on that MailComponent object. The createEndpoint() operation splits the URI into
its component parts and uses these parts to create and configure an Endpoint object.
In the previous paragraph, I mentioned that a CamelContext object maintains a
mapping from component names to Component objects. This raises the question of
how this map is populated with named Component objects. There are two ways of
populating the map. The first way is for application-level code to invoke
CamelContext.addComponent(String componentName, Component
component). The example below shows a single MailComponent object being
registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named Component objects in
the CamelContext object is to let the CamelContext object perform lazy initialization.
This approach relies on developers following a convention when they write a class that
implements the Component interface. I illustrate the convention by an example. Let's
assume you write a class called com.example.myproject.FooComponent and you
want Camel to automatically recognize this by the name "foo". To do this, you have to
write a properties file called "META-INF/services/org/apache/camel/component/foo"
(without a ".properties" file extension) that has a single entry in it called class, the
value of which is the fully-scoped name of your class. This is shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo
class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you
have written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you
add this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint("foo:...") on a CamelContext object, Camel will find the "foo""
properties file on the CLASSPATH, get the value of the class property from that
properties file, and use reflection APIs to create an instance of the specified class.
As I said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support for

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 8

numerous communication technologies. The out-of-the-box support consists of classes
that implement the Component interface plus properties files that enable a
CamelContext object to populate its map of named Component objects.
Earlier in this section I gave the following example of calling
CamelContext.getEndpoint().

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to getEndpoint() was
a URI. I said that because the online Camel documentation and the Camel source code
both claim the parameter is a URI. In reality, the parameter is restricted to being a URL.
This is because when Camel extracts the component name from the parameter, it looks
for the first ":", which is a simplistic algorithm. To understand why, recall from Section
4.4 ("The Meaning of URL, URI, URN and IRI") that a URI can be a URL or a URN. Now
consider the following calls to getEndpoint.

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn".
It would be more useful if the latter components were identified as "urn:foo" and
"urn:bar" or, alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix).
So, in practice you must identify an endpoint with a URL (a string of the form
"<scheme>:...") rather than with a URN (a string of the form "urn:<scheme>:..."). This
lack of proper support for URNs means the you should consider the parameter to
getEndpoint() as being a URL rather than (as claimed) a URI.

Message and Exchange
The Message interface provides an abstraction for a single message, such as a
request, reply or exception message.
There are concrete classes that implement the Message interface for each Camel-
supported communications technology. For example, the JmsMessage class provides a
JMS-specific implementation of the Message interface. The public API of the Message
interface provides get- and set-style methods to access the message id, body and
individual header fields of a messge.
The Exchange interface provides an abstraction for an exchange of messages, that is,
a request message and its corresponding reply or exception message. In Camel
terminology, the request, reply and exception messages are called in, out and fault
messages.
There are concrete classes that implement the Exchange interface for each Camel-
supported communications technology. For example, the JmsExchange class provides

9 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

a JMS-specific implementation of the Exchange interface. The public API of the
Exchange interface is quite limited. This is intentional, and it is expected that each
class that implements this interface will provide its own technology-specific operations.
Application-level programmers rarely access the Exchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are
instantiated on (a class that implements) Exchange. Because of this, the Exchange
interface appears a lot in the generic signatures of classes and methods.

Processor
The Processor interface represents a class that processes a message. The signature
of this interface is shown below.

Listing 2. Processor
package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the process() method is an Exchange rather than a
Message. This provides flexibility. For example, an implementation of this method
initially might call exchange.getIn() to get the input message and process it. If an
error occurs during processing then the method can call exchange.setException().
An application-level developer might implement the Processor interface with a class
that executes some business logic. However, there are many classes in the Camel
library that implement the Processor interface in a way that provides support for a
design pattern in the EIP book. For example, ChoiceProcessor implements the
message router pattern, that is, it uses a cascading if-then-else statement to route a
message from an input queue to one of several output queues. Another example is the
FilterProcessor class which discards messages that do not satisfy a stated
predicate (that is, condition).

Routes, RouteBuilders and Java DSL
A route is the step-by-step movement of a Message from an input queue, through
arbitrary types of decision making (such as filters and routers) to a destination queue (if
any). Camel provides two ways for an application developer to specify routes. One way
is to specify route information in an XML file. A discussion of that approach is outside
the scope of this document. The other way is through what Camel calls a Java DSL
(domain-specific language).

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 10

Introduction to Java DSL
For many people, the term "domain-specific language" implies a compiler or interpreter
that can process an input file containing keywords and syntax specific to a particular
domain. This is not the approach taken by Camel. Camel documentation consistently
uses the term "Java DSL" instead of "DSL", but this does not entirely avoid potential
confusion. The Camel "Java DSL" is a class library that can be used in a way that looks
almost like a DSL, except that it has a bit of Java syntactic baggage. You can see this in
the example below. Comments afterwards explain some of the constructs used in the
example.

Listing 3. Example of Camel's "Java DSL"
RouteBuilder builder = new RouteBuilder() {

public void configure() {
from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of an
anonymous subclass of RouteBuilder with the specified configure() method.
The CamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) ? so the RouteBuilder object knows which
CamelContext object it is associated with ? and then invokes
builder.configure(). The body of configure() invokes methods such as
from(), filter(), choice(), when(), isEqualTo(), otherwise() and to().
The RouteBuilder.from(String uri) method invokes getEndpoint(uri) on
the CamelContext associated with the RouteBuilder object to get the specified
Endpoint and then puts a FromBuilder "wrapper" around this Endpoint. The
FromBuilder.filter(Predicate predicate) method creates a
FilterProcessor object for the Predicate (that is, condition) object built from the
header("foo").isEqualTo("bar") expression. In this way, these operations
incrementally build up a Route object (with a RouteBuilder wrapper around it) and
add it to the CamelContext object associated with the RouteBuilder.

Critique of Java DSL
The online Camel documentation compares Java DSL favourably against the alternative
of configuring routes and endpoints in a XML-based Spring configuration file. In
particular, Java DSL is less verbose than its XML counterpart. In addition, many

11 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

integrated development environments (IDEs) provide an auto-completion feature in their
editors. This auto-completion feature works with Java DSL, thereby making it easier for
developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider:
that of writing a parser that can process DSL stored in, say, an external file. Currently,
Camel does not provide such a DSL parser, and I do not know if it is on the "to do" list of
the Camel maintainers. I think that a DSL parser would offer a significant benefit over
the current Java DSL. In particular, the DSL would have a syntactic definition that could
be expressed in a relatively short BNF form. The effort required by a Camel user to
learn how to use DSL by reading this BNF would almost certainly be significantly less
than the effort currently required to study the API of the RouterBuilder classes.

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 12

C H A P T E R 3

° ° ° °

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml
Configuration to configure routing and mediation rules which are added to a
CamelContext to implement the various Enterprise Integration Patterns.
At a high level Camel consists of a CamelContext which contains a collection of
Component instances. A Component is essentially a factory of Endpoint instances. You
can explicitly configure Component instances in Java code or an IoC container like
Spring or Guice, or they can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a
JMS system; you can communicate with an endpoint; either sending messages to it or
consuming messages from it. You can then create a Producer or Consumer on an
Endpoint to exchange messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or
Predicate to make a truly powerful DSL which is extensible to the most suitable
language depending on your needs. The following languages are supported

• Bean Language
• Constant
• the unified EL from JSP and JSF
• Header
• JXPath
• OGNL
• Scripting Languages such as

◦ BeanShell
◦ JavaScript
◦ Groovy
◦ Python
◦ PHP
◦ Ruby

• Simple
◦ File Language

• SQL
• XPath
• XQuery

Most of these languages is also supported used as Annotation Based Expression
Language.

13 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Languages
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
http://cwiki.apache.org/confluence/display/CAMEL/Constant
http://cwiki.apache.org/confluence/display/CAMEL/EL
http://cwiki.apache.org/confluence/display/CAMEL/Header
http://cwiki.apache.org/confluence/display/CAMEL/JXPath
http://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://cwiki.apache.org/confluence/display/CAMEL/Python
http://cwiki.apache.org/confluence/display/CAMEL/PHP
http://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://cwiki.apache.org/confluence/display/CAMEL/Simple
http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
http://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html

URIS
Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily
created by a Component if you refer to them within Routes

Current Supported URIs

Component / ArtifactId / URI Description

ActiveMQ / activemq-camel

activemq:[topic:]destinationName
For JMS Messaging with Apache
ActiveMQ

ActiveMQ Journal / activemq-core

activemq.journal:directory-on-filesystem

Uses ActiveMQ's fast disk
journaling implementation to store
message bodies in a rolling log file

AMQP / camel-amqp

amqp:[topic:]destinationName For Messaging with AMQP protocol

Atom / camel-atom

atom:uri

Working with Apache Abdera for
atom integration, such as
consuming an atom feed.

Bean / camel-core

bean:beanName[?methodName=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in
the Registry. Is also used for
exposing and invoking POJO (Plain
Old Java Objects).

CXF / camel-cxf

cxf:address[?serviceClass=...]
Working with Apache CXF for web
services integration

DataSet / camel-core

dataset:name

For load & soak testing the DataSet
provides a way to create huge
numbers of messages for sending
to Components or asserting that
they are consumed correctly

Direct / camel-core

direct:name

Direct invocation of the consumer
from the producer so that single
threaded (non-SEDA) in VM
invocation is performed

CHAPTER 3 - ARCHITECTURE 14

http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ+Journal
http://cwiki.apache.org/confluence/display/CAMEL/AMQP
http://www.amqp.org/
http://www.amqp.org/
http://cwiki.apache.org/confluence/display/CAMEL/Atom
http://incubator.apache.org/abdera/
http://incubator.apache.org/abdera/
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://apache.org/cxf/
http://apache.org/cxf/
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Direct
http://activemq.apache.org/
http://www.amqp.org/
http://incubator.apache.org/abdera/
http://apache.org/cxf/
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html

Esper / camel-esper in camel-extra

esper:name
Working with the Esper Library for
Event Stream Processing

Event / camel-spring

event://default
Working with Spring
ApplicationEvents

File / camel-core

file://nameOfFileOrDirectory
Sending messages to a file or
polling a file or directory

FIX / camel-fix in FUSE

fix://configurationResource
Sends or receives messages using
the FIX protocol

Flatpack / camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or delimited
files or messages using the
FlatPack library

FTP / camel-ftp

ftp://host[:port]/fileName
Sending and receiving files over
FTP

Hibernate / camel-hibernate in camel-extra

hibernate://entityName
For using a database as a queue
via the Hibernate library

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7 MLLP
protocol and the HL7 model using
the HAPI library

HTTP / camel-http

http://hostname[:port]
For calling out to external HTTP
servers

iBATIS / camel-ibatis

ibatis://sqlOperationName

Performs a query, poll, insert,
update or delete in a relational
database using Apache iBATIS

IMap / camel-mail

imap://hostname[:port] Receiving email using IMap

15 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/Esper
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://esper.codehaus.org
http://cwiki.apache.org/confluence/display/CAMEL/Event
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/FIX
http://open.iona.com/products/enterprise-camel/
http://open.iona.com/products/enterprise-camel/
http://en.wikipedia.org/wiki/FIX_protocol
http://en.wikipedia.org/wiki/FIX_protocol
http://cwiki.apache.org/confluence/display/CAMEL/Flatpack
http://flatpack.sourceforge.net
http://flatpack.sourceforge.net
http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/Hibernate
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://www.hibernate.org/
http://cwiki.apache.org/confluence/display/CAMEL/HL7
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net
http://cwiki.apache.org/confluence/display/CAMEL/HTTP
http://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
http://ibatis.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://open.iona.com/products/enterprise-camel/
http://en.wikipedia.org/wiki/FIX_protocol
http://flatpack.sourceforge.net
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://hl7api.sourceforge.net
http://ibatis.apache.org/

IRC / camel-irc

irc:host[:port]/#room For IRC communication

JavaSpace / camel-javaspace in FUSE

javaspace:jini://host?spaceName=mySpace?...
Sending and receiving messages
through JavaSpace

JBI / servicemix-camel

jbi:serviceName
For JBI integration such as working
with Apache ServiceMix

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
(JSR-170) compliant repository like
Apache Jackrabbit

JDBC / camel-jdbc

jdbc:dataSourceName?options
For performing JDBC queries and
operations

Jetty / camel-jetty

jetty:url For exposing services over HTTP

JMS / camel-jms

jms:[topic:]destinationName Working with JMS providers

JPA / camel-jpa

jpa://entityName

For using a database as a queue
via the JPA specification for
working with OpenJPA, Hibernate
or TopLink

JT/400 / camel-jt400

jt400://user:pwd@system/<path_to_dtaq>

For integrating with data queues on
an AS/400 (aka System i, IBM i, i5,
...) system

LDAP / camel-ldap

ldap:host[:port]?base=...[&scope=<scope>]

Performing searches on LDAP
servers (<scope> must be one of
object|onelevel|subtree)

CHAPTER 3 - ARCHITECTURE 16

http://cwiki.apache.org/confluence/display/CAMEL/IRC
http://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
http://open.iona.com/products/enterprise-camel/
http://open.iona.com/products/enterprise-camel/
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://cwiki.apache.org/confluence/display/CAMEL/JBI
http://servicemix.apache.org
http://servicemix.apache.org
http://cwiki.apache.org/confluence/display/CAMEL/JCR
http://jackrabbit.apache.org
http://jackrabbit.apache.org
http://cwiki.apache.org/confluence/display/CAMEL/JDBC
http://cwiki.apache.org/confluence/display/CAMEL/Jetty
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://openjpa.apache.org/
http://openjpa.apache.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://cwiki.apache.org/confluence/display/CAMEL/JT400
http://cwiki.apache.org/confluence/display/CAMEL/LDAP
http://open.iona.com/products/enterprise-camel/
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://servicemix.apache.org
http://jackrabbit.apache.org
http://openjpa.apache.org/
http://www.hibernate.org/

List / camel-core

list:someName

Provdes a simple
BrowsableEndpoint which can be
useful for testing, visualisation tools
or debugging. The exchanges sent
to the endpoint are all available to
be browsed.

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to
log the message exchange to some
underlying logging system like log4j

Mail / camel-mail

mail://user-info@host:port Sending and receiving email

MINA / camel-mina

[tcp|udp|multicast]:host[:port] Working with Apache MINA

Mock / camel-core

mock:name
For testing routes and mediation
rules using mocks

MSMQ / camel-msmq in FUSE

msmq:msmqQueueName
Sending and receiving messages
with Microsoft Message Queuing

MSV / camel-msv

msv:someLocalOrRemoteResource
Validates the payload of a message
using the MSV Library

Multicast / camel-mina

multicast://host:port
Working with TCP protocols using
Apache MINA

Pojo / camel-core

pojo:name
Deprecated. It is now an alias to
the Bean component.

POP / camel-mail

pop3://user-info@host:port
Receiving email using POP3 and
JavaMail

17 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/List
http://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
http://cwiki.apache.org/confluence/display/CAMEL/Log
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/msmq
http://open.iona.com/products/enterprise-camel/
http://open.iona.com/products/enterprise-camel/
http://cwiki.apache.org/confluence/display/CAMEL/MSV
https://msv.dev.java.net/
https://msv.dev.java.net/
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://mina.apache.org/
http://open.iona.com/products/enterprise-camel/
https://msv.dev.java.net/
http://mina.apache.org/

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of
messages using the Quartz
scheduler

Queue / camel-core

queue:name
Deprecated. It is now an alias
to the SEDA component.

Ref / camel-core

ref:name
Component for lookup of existing
endpoints bound in the Registry.

RMI / camel-rmi

rmi://host[:port] Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri
Validates the payload of a message
using RelaxNG Compact Syntax

RNG / camel-jing

rng:/relativeOrAbsoluteUri
Validates the payload of a message
using RelaxNG

SEDA / camel-core

seda:name

Used to deliver messages to a
java.util.concurrent.BlockingQueue,
useful when creating SEDA style
processing pipelines within the
same CamelContext

SFTP / camel-ftp

sftp://host[:port]/fileName
Sending and receiving files over
SFTP

Smooks / camel-smooks in camel-extra

unmarshal(edi)
For working with EDI parsing using
the Smooks library

SMTP / camel-mail

smtp://user-info@host[:port]
Sending email using SMTP and
JavaMail

CHAPTER 3 - ARCHITECTURE 18

http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://cwiki.apache.org/confluence/display/CAMEL/Ref
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/RMI
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/Smooks
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://http://milyn.codehaus.org/Smooks
http://http://milyn.codehaus.org/Smooks
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://www.opensymphony.com/quartz/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://code.google.com/p/camel-extra/
http://http://milyn.codehaus.org/Smooks

SpringIntegration / camel-spring-integration

spring-integration:defaultChannelName
The bridge component of Camel
and Spring Integration

SQL / camel-sql

sql:select * from table where id=#
Performing SQL queries using
JDBC

Stream / camel-stream

stream:[in|out|err|file]

Read or write to an input/output/
error/file stream rather like unix
pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource
Generates a response using a
String Template

TCP / camel-mina

tcp://host:port
Working with TCP protocols using
Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint which
expects to receive all the message
bodies that could be polled from the
given underlying endpoint

Timer / camel-core

timer://name A timer endpoint

UDP / camel-mina

udp://host:port
Working with UDP protocols using
Apache MINA

Validation / camel-spring

validation:someLocalOrRemoteResource

Validates the payload of a message
using XML Schema and JAXP
Validation

Velocity / camel-velocity

velocity:someTemplateResource
Generates a response using an
Apache Velocity template

19 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/SpringIntegration
http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://cwiki.apache.org/confluence/display/CAMEL/SQL+Component
http://cwiki.apache.org/confluence/display/CAMEL/Stream
http://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Validation
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://velocity.apache.org/
http://velocity.apache.org/
http://www.springframework.org/spring-integration
http://www.stringtemplate.org/
http://mina.apache.org/
http://mina.apache.org/
http://www.w3.org/XML/Schema
http://velocity.apache.org/

VM / camel-core

vm:name

Used to deliver messages to a
java.util.concurrent.BlockingQueue,
useful when creating SEDA style
processing pipelines within the
same JVM

XMPP / camel-xmpp

xmpp://host:port/room Working with XMPP and Jabber

XQuery / camel-saxon

xquery:someXQueryResource
Generates a response using an
XQuery template

XSLT / camel-spring

xslt:someTemplateResource
Generates a response using an
XSLT template

For a full details of the individual components see the Component Appendix

CHAPTER 3 - ARCHITECTURE 20

http://cwiki.apache.org/confluence/display/CAMEL/VM
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/XSLT
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://cwiki.apache.org/confluence/display/CAMEL/Book+Component+Appendix
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://www.w3.org/TR/xslt

C H A P T E R 4

° ° ° °

Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book of
the same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book,
particularly for users of Camel.

PATTERN INDEX
There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with another using
messaging?

Message How can two applications connected by a message channel
exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a message
while maintaining independence and flexibility?

Message
Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a
set of conditions?

Message
Translator

How can systems using different data formats communicate
with each other using messaging?

Message
Endpoint

How does an application connect to a messaging channel to
send and receive messages?

21 CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
http://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one receiver will
receive the document or perform the call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all interested
receivers?

Dead Letter
Channel

What will the messaging system do with a message it
cannot deliver?

Guaranteed
Delivery

How can the sender make sure that a message will be
delivered, even if the messaging system fails?

Message
Bus

What is an architecture that enables separate applications
to work together, but in a de-coupled fashion such that
applications can be easily added or removed without
affecting the others?

Message Construction

Correlation
Identifier

How does a requestor that has received a reply know
which request this is the reply for?

Message Routing

Content
Based
Router

How do we handle a situation where the
implementation of a single logical function (e.g.,
inventory check) is spread across multiple
physical systems?

Message
Filter

How can a component avoid receiving
uninteresting messages?

Dynamic
Router

How can you avoid the dependency of the router
on all possible destinations while maintaining its
efficiency?

Recipient
List

How do we route a message to a list of
dynamically specified recipients?

Splitter
How can we process a message if it contains
multiple elements, each of which may have to be
processed in a different way?

CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS 22

http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
http://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
http://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
http://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
http://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
http://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
http://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://cwiki.apache.org/confluence/display/CAMEL/Splitter

Aggregator
How do we combine the results of individual, but
related messages so that they can be processed
as a whole?

Resequencer How can we get a stream of related but out-of-
sequence messages back into the correct order?

Routing Slip

How do we route a message consecutively
through a series of processing steps when the
sequence of steps is not known at design-time
and may vary for each message?

Unable to render
embedded
object: File
(clear.png) not
found.

Throttler

How can I throttle messages to ensure that a
specific endpoint does not get overloaded, or we
don't exceed an agreed SLA with some external
service?

Unable to render
embedded
object: File
(clear.png) not
found.

Delayer How can I delay the sending of a message?

Unable to render
embedded
object: File
(clear.png) not
found.

Load
Balancer

How can I balance load across a number of
endpoints?

Unable to render
embedded
object: File
(clear.png) not
found.

Multicast How can I route a message to a number of
endpoints at the same time?

Unable to render
embedded
object: File
(clear.png) not
found.

Loop How can I repeat processing a message in a
loop?

23 CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS

http://cwiki.apache.org/confluence/display/CAMEL/Aggregator
http://cwiki.apache.org/confluence/display/CAMEL/Resequencer
http://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
http://cwiki.apache.org/confluence/display/CAMEL/Throttler
http://cwiki.apache.org/confluence/display/CAMEL/Delayer
http://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
http://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
http://cwiki.apache.org/confluence/display/CAMEL/Multicast
http://cwiki.apache.org/confluence/display/CAMEL/Loop

Message Transformation

Content
Enricher

How do we communicate with another system if the
message originator does not have all the required data
items available?

Content
Filter

How do you simplify dealing with a large message, when
you are interested only in a few data items?

Normalizer How do you process messages that are semantically
equivalent, but arrive in a different format?

Messaging Endpoints

Unable to render
embedded object:
File (clear.png) not
found.

Messaging
Mapper

How do you move data between domain
objects and the messaging infrastructure
while keeping the two independent of each
other?

Event Driven
Consumer

How can an application automatically
consume messages as they become
available?

Polling
Consumer

How can an application consume a message
when the application is ready?

Competing
Consumers

How can a messaging client process multiple
messages concurrently?

Message
Dispatcher

How can multiple consumers on a single
channel coordinate their message
processing?

Selective
Consumer

How can a message consumer select which
messages it wishes to receive?

Durable
Subscriber

How can a subscriber avoid missing
messages while it's not listening for them?

Unable to render
embedded object:
File (clear.png) not
found.

Idempotent
Consumer

How can a message receiver deal with
duplicate messages?

Transactional
Client

How can a client control its transactions with
the messaging system?

CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS 24

http://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Normalizer
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
http://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
http://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
http://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client

Messaging
Gateway

How do you encapsulate access to the
messaging system from the rest of the
application?

Service
Activator

How can an application design a service to
be invoked both via various messaging
technologies and via non-messaging
techniques?

System Management

Wire
Tap

How do you inspect messages that travel on a point-to-point
channel?

For a full breakdown of each pattern see the Book Pattern Appendix

25 CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS

http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
http://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
http://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
http://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
http://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
http://cwiki.apache.org/confluence/display/CAMEL/Book+Pattern+Appendix

C H A P T E R 5

° ° ° °

Pattern Appendix

There now follows a breakdown of the various Enterprise Integration Patterns that
Camel supports

MESSAGING SYSTEMS

Message Channel
Camel supports the Message Channel from the EIP patterns. The Message Channel is
an internal implementation detail of the Endpoint interface and all interactions with the
Message Channel are via the Endpoint interfaces.

For more details see
• Message
• Message Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message
Camel supports the Message from the EIP patterns using the Message interface.

CHAPTER 5 - PATTERN APPENDIX 26

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html

To support various message exchange patterns like one way event messages and
request-response messages Camel uses an Exchange interface which is used to
handle either oneway messages with a single inbound Message, or request-reply where
there is an inbound and outbound message.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Pipes and Filters
Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent Endpoint
instances which can then be chained together.

Using Routing Logic
You can create pipelines of logic using multiple Endpoint or Message Translator
instances as follows

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", "mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in
Camel. The opposite to pipeline is multicast; which fires the same message into each of
its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element as of 1.4.0 onwards

<route>
<from uri="activemq:SomeQueue"/>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</route>

27 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html

In the above the pipeline element is actually unnecessary, you could use this...

<route>
<from uri="activemq:SomeQueue"/>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline -
to send the same message into multiple pipelines - then the <pipeline/> element comes
into its own.

<route>
<from uri="activemq:SomeQueue"/>
<multicast>

<pipeline>
<bean ref="something"/>
<to uri="log:Something"/>

</pipeline>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</multicast>

</route>

In the above example we are routing from a single Endpoint to a list of different
endpoints specified using URIs. If you find the above a bit confusing, try reading about
the Architecture or try the Examples

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message Router
The Message Router from the EIP patterns allows you to consume from an input
destination, evaluate some predicate then choose the right output destination.

CHAPTER 5 - PATTERN APPENDIX 28

http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://www.enterpriseintegrationpatterns.com/MessageRouter.html

The following example shows how to route a request from an input queue:a endpoint
to either queue:b, queue:c or queue:d depending on the evaluation of various
Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice().when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c").otherwise().to("seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<choice>

<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>

</when>
<otherwise>

<to uri="seda:d"/>
</otherwise>

</choice>
</route>

</camelContext>

Choice without otherwise
If you use a choice without adding an otherwise, any unmatched exchanges will be
dropped by default. If you prefer to have an exception for an unmatched exchange, you
can add a throwFault to the otherwise.

....otherwise().throwFault("No matching when clause found on choice block");

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

29 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples

Message Translator
Camel supports the Message Translator from the EIP patterns by using an arbitrary
Processor in the routing logic, by using a bean to perform the transformation, or by
using transform() in the DSL. You can also use a Data Format to marshal and
unmarshal messages in different encodings.

Using the Fluent Builders
You can transform a message using Camel's Bean Integration to call any method on

a bean in your Registry such as your Spring XML configuration file as follows

from("activemq:SomeQueue").
beanRef("myTransformerBean", "myMethodName").
to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in
JNDI etc. You can omit the method name parameter from beanRef() and the Bean
Integration will try to deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").transform(body().append(" World!")).to("mock:result");

Use Spring XML
You can also use Spring XML Extensions to do a transformation. Basically any

Expression language can be substituted inside the transform element as shown below

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<transform>

<simple>${in.body} extra data!</simple>
</transform>
<to uri="mock:end"/>

</route>
</camelContext>

CHAPTER 5 - PATTERN APPENDIX 30

http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html

Or you can use the Bean Integration to invoke a bean

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

You can also use Templating to consume a message from one destination, transform it
with something like Velocity or XQuery and then send it on to another destination. For
example using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then sending
responses back to the JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest
• TransformProcessorTest
• TransformWithExpressionTest (test resource)

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message Endpoint
Camel supports the Message Endpoint from the EIP patterns using the Endpoint
interface.

31 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/TransformWithExpressionTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/TransformWithExpressionTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/TransformWithExpressionTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml?view=markup
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html

When using the DSL to create Routes you typically refer to Message Endpoints by
their URIs rather than directly using the Endpoint interface. Its then a responsibility of
the CamelContext to create and activate the necessary Endpoint instances using the
available Component implementations.

For more details see
• Message

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel
Camel supports the Point to Point Channel from the EIP patterns using the following
components

• Queue for in-VM seda based messaging
• JMS for working with JMS Queues for high performance, clustering and load

balancing
• JPA for using a database as a simple message queue
• XMPP for point-to-point communication over XMPP (Jabber)

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Publish Subscribe Channel
Camel supports the Publish Subscribe Channel from the EIP patterns using the
following components

• JMS for working with JMS Topics for high performance, clustering and load
balancing

CHAPTER 5 - PATTERN APPENDIX 32

http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html

• XMPP when using rooms for group communication

Using Routing Logic
Another option is to explicitly list the publish-subscribe relationship in your routing logic;
this keeps the producer and consumer decoupled but lets you control the fine grained
routing configuration using the DSL or Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").multicast().to("seda:b", "seda:c", "seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<multicast>

<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

</multicast>
</route>

</camelContext>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

33 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples

Dead Letter Channel
Camel supports the Dead Letter Channel from the EIP patterns using the
DeadLetterChannel processor which is an Error Handler.

Redelivery
It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it
will complete fine. So we typically wish to use some kind of redelivery policy to decide
how many times to try redeliver a message and how long to wait before redelivery
attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can
customize things like

• how many times a message is attempted to be redelivered before it is
considered a failure and sent to the dead letter channel

• the initial redelivery timeout
• whether or not exponential backoff is used (i.e. the time between retries

increases using a backoff multiplier)
• whether to use collision avoidance to add some randomness to the timings

Once all attempts at redelivering the message fails then the message is forwarded to
the dead letter queue.

Redelivery default values
The default redeliver policy will use the following values:

• maximumRedeliveries=5
• initialRedeliveryDelay=1000L (1 second)
• maximumRedeliveryDelay = 60 * 1000L (60 seconds, new option in Camel

1.4)
• And the exponential backoff and collision avoidance is turned off.

The maximum redeliver delay ensures that a delay is never longer than the value,
default 1 minute. This can happen if you turn on the exponential backoff.

CHAPTER 5 - PATTERN APPENDIX 34

http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

The maximum redeliveries is the number of re delivery attempts. By default Camel
will try to process the exchange 1 + 5 times. 1 time for the normal attempt and then 5
attempts as redeliveries.
Setting the maximumRedeliveries to a negative value such as -1 will then always
redelivery (unlimited).
Setting the maximumRedeliveries to 0 will disable any re delivery attempt.

Redelivery header
When a message is redelivered the DeadLetterChannel will append a customizable
header to the message to indicate how many times its been redelivered. The default
value is org.apache.camel.redeliveryCount.
The header org.apache.camel.Redelivered contains a boolean if the message is
redelivered or not.

Configuring via the DSL
The following example shows how to configure the Dead Letter Channel configuration
using the DSL

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

}
};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).useExponentialBackOff());
from("seda:a").to("seda:b");

}
};

ExceptionPolicyStrategy (New feature in Camel 1.4)
ExceptionPolicyStrategy is a strategy for resolving which rule (ExceptionType) should
handle the given thrown exception.

DeadLetterChannel supports pluggable strategies for resolving how exceptions
should be handled. It is common to how different strategies for different types of
exceptions. For instance network and IO related exceptions is more prone for network
outages so the redeliver policy could have a higher attempts, timeouts etc. Where as a

35 CHAPTER 5 - PATTERN APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/ExceptionPolicyStrategy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/ExceptionPolicyStrategy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/model/ExceptionType.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/model/ExceptionType.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/ExceptionPolicyStrategy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/model/ExceptionType.html

NullPointerException is typically a programming error so these kind of exception is
severe and should not be redelivered. Camel uses a default strategy
DefaultExceptionPolicyStrategy that applies the following rules:

▪ The exception type must be configured with an Exception that is an instance of
the thrown exception

▪ If the exception type has exactly the thrown exception then its selected
▪ Otherwise the type that has an exception that is super of the thrown exception

is selected (recurring up the exception hierarchy)
The example below illustrates a common exception handling configuration in Camel:

exception(NullPointerException.class)
.maximumRedeliveries(1)
.setHeader(MESSAGE_INFO, constant("Damm a NPE"))
.to(ERROR_QUEUE);

exception(IOException.class)
.initialRedeliveryDelay(5000L)
.maximumRedeliveries(3)
.maximumRedeliveryDelay(30000L)
.backOffMultiplier(1.0)
.useExponentialBackOff()
.setHeader(MESSAGE_INFO, constant("Damm somekind of IO exception"))
.to(ERROR_QUEUE);

exception(Exception.class)
.initialRedeliveryDelay(1000L)
.maximumRedeliveries(2)
.setHeader(MESSAGE_INFO, constant("Damm just exception"))
.to(ERROR_QUEUE);

Here we have configured the handling of exceptions into three categories:
▪ NullPointerException (for special handling of these hard to track down bugs)
▪ IOException (for IO and network related issues we can attempt many times)
▪ Exception (fallback exception handling for all other kind of exceptions)

Camel will with the default strategy try to select the best suited category from above for
any thrown exception.
So if a java.net.ScoketException is thrown then the IOException category will handle it.
If a NumberFormatException or CamelExchangeException is thrown it is handled by the
general purpose Exception category.

Camel supports pluggable exception policy strategies. See Error Handler for such
details.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

CHAPTER 5 - PATTERN APPENDIX 36

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/DefaultExceptionPolicyStrategy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/DefaultExceptionPolicyStrategy.html
http://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/exceptionpolicy/DefaultExceptionPolicyStrategy.html

Guaranteed Delivery
Camel supports the Guaranteed Delivery from the EIP patterns using the following
components

• File for using file systems as a persistent store of messages
• JMS when using persistent delivery (the default) for working with JMS Queues

and Topics for high performance, clustering and load balancing
• JPA for using a database as a persistence layer

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message Bus
Camel supports the Message Bus from the EIP patterns. You could view Camel as a
Message Bus itself as it allows producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to
the JMS component for traditional MOM support.

Also worthy of node is the XMPP component for supporting messaging over XMPP
(Jabber)

37 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

MESSAGE ROUTING

Content Based Router
The Content Based Router from the EIP patterns allows you to route messages to the
correct destination based on the contents of the message exchanges.

The following example shows how to route a request from an input seda:a endpoint
to either seda:b, seda:c or seda:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice().when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c").otherwise().to("seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<choice>

<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>

</when>
<otherwise>

<to uri="seda:d"/>
</otherwise>

</choice>

CHAPTER 5 - PATTERN APPENDIX 38

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html

</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message Filter
The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming
messages from an endpoint called queue:a which if the Predicate is true will be
dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");
}

};

You can of course use many different Predicate languages such as XPath, XQuery,
SQL or various Scripting Languages. Here is an XPath example

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</filter>
</route>

</camelContext>

39 CHAPTER 5 - PATTERN APPENDIX

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Filter.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Filter.html
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java

For further examples of this pattern in use you could look at the junit test case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Recipient List
The Recipient List from the EIP patterns allows you to route messages to a number of
dynamically specified recipients.

Static Recipient List
The following example shows how to route a request from an input queue:a endpoint to
a static list of destinations

Using Annotations
You can use the RecipientList Annotation on a POJO to create a Dynamic Recipient
List. For more details see the Bean Integration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").multicast().to("seda:b", "seda:c", "seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<multicast>

<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

CHAPTER 5 - PATTERN APPENDIX 40

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RecipientList.html

</multicast>
</route>

</camelContext>

Dynamic Recipient List
Usually one of the main reasons for using the Recipient List pattern is that the list of
recipients is dynamic and calculated at runtime. The following example demonstrates
how to create a dynamic recipient list using an Expression (which in this case it extracts
a named header value dynamically) to calculate the list of endpoints which are either of
type Endpoint or are converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").recipientList(header("foo"));
}

};

The above assumes that the header contains a list of endpoint URIs. The following
takes a single string header and tokenizes it

from("direct:a").recipientList(
header("recipientListHeader").tokenize(","));

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<recipientList>

<xpath>$foo</xpath>
</recipientList>

</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

41 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup

Splitter
The Splitter from the EIP patterns allows you split a message into a number of pieces
and process them individually

Example
The following example shows how to take a request from the queue:a endpoint the split
it into pieces using an Expression, then forward each piece to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").splitter(body(String.class).tokenize("\n")).to("seda:b");
}

};

The splitter can use any Expression language so you could use any of the Languages
Supported such as XPath, XQuery, SQL or one of the Scripting Languages to perform
the split. e.g.

from("activemq:my.queue").splitter(xpath("//foo/
bar")).convertBodyTo(String.class).to("file://some/directory")

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<splitter>

<xpath>/invoice/lineItems</xpath>
<to uri="seda:b"/>

</splitter>
</route>

</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

CHAPTER 5 - PATTERN APPENDIX 42

http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Languages+Supported
http://cwiki.apache.org/confluence/display/CAMEL/Languages+Supported
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup

Parallel execution of distinct 'parts'
If you want to execute all parts in parallel you can use special notation of splitter()
with two arguments, where the second one is a boolean flag if processing should be
parallel. e.g.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").splitter(xPathBuilder, true).to("activemq:my.parts");

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Resequencer
The Resequencer from the EIP patterns allows you to reorganise messages based on
some comparator. By default in Camel we use an Expression to create the comparator;
so that you can compare by a message header or the body or a piece of a message etc.

Camel supports two resequencing algorithms:
• Batch resequencing collects messages into a batch, sorts the messages and

sends them to their output.
• Stream resequencing re-orders (continuous) message streams based on the

detection of gaps between messages.

Batch Resequencing
The following example shows how to use the batch-processing resequencer so that
messages are sorted in order of the body() expression. That is messages are collected
into a batch (either by a maximum number of messages per batch or using a timeout)
then they are sorted in order and then sent out to their output.

Using the Fluent Builders

from("direct:start").resequencer(body()).to("mock:result");

This is equvalent to

from("direct:start").resequencer(body()).batch().to("mock:result");

43 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://www.enterpriseintegrationpatterns.com/Resequencer.html

The batch-processing resequencer can be further configured via the size() and
timeout() methods.

from("direct:start").resequencer(body()).batch().size(300).timeout(4000L).to("mock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch
size is 100 and the timeout is 1000 ms). Alternatively, you can provide a configuration
object.

from("direct:start").resequencer(body()).batch(new BatchResequencerConfig(300,
4000L)).to("mock:result")

So the above example will reorder messages from endpoint direct:a in order of their
bodies, to the endpoint mock:result. Typically you'd use a header rather than the body
to order things; or maybe a part of the body. So you could replace this expression with

resequencer(header("JMSPriority"))

for example to reorder messages using their JMS priority.
You can of course use many different Expression languages such as XPath, XQuery,

SQL or various Scripting Languages.
You can also use multiple expressions; so you could for example sort by priority first

then some other custom header

resequencer(header("JMSPriority"), header("MyCustomerRating"))

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start" />
<resequencer>

<simple>body</simple>
<to uri="mock:result" />
<!--

batch-config can be ommitted for default (batch) resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>
</route>

</camelContext>

Stream Resequencing
The next example shows how to use the stream-processing resequencer. Messages are
re-ordered based on their sequence numbers given by a seqnum header using gap
detection and timeouts on the level of individual messages.

Using the Fluent Builders

CHAPTER 5 - PATTERN APPENDIX 44

http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

from("direct:start").resequencer(header("seqnum")).stream().to("mock:result");

The stream-processing resequencer can be further configured via the capacity() and
timeout() methods.

from("direct:start").resequencer(header("seqnum")).stream().capacity(5000).timeout(4000L).to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the
capacity is 100 and the timeout is 1000 ms). Alternatively, you can provide a
configuration object.

from("direct:start").resequencer(header("seqnum")).stream(new
StreamResequencerConfig(5000, 4000L)).to("mock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a
message stream rather than on a fixed batch size. Gap detection in combination with
timeouts removes the constraint of having to know the number of messages of a
sequence (i.e. the batch size) in advance. Messages must contain a unique sequence
number for which a predecessor and a successor is known. For example a message
with the sequence number 3 has a predecessor message with the sequence number 2
and a successor message with the sequence number 4. The message sequence 2,3,5
has a gap because the sucessor of 3 is missing. The resequencer therefore has to
retain message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor
relationship with respect to the sequence number) in a message stream is known, then
the resequencer's timeout parameter should be set to this value. In this case it is
guaranteed that all messages of a stream are delivered in correct order to the next
processor. The lower the timeout value is compared to the out-of-sequence time
difference the higher is the probability for out-of-sequence messages delivered by this
resequencer. Large timeout values should be supported by sufficiently high capacity
values. The capacity parameter is used to prevent the resequencer from running out of
memory.

By default, the stream resequencer expects long sequence numbers but other
sequence numbers types can be supported as well by providing a custom comparator
via the comparator() method

ExpressionResultComparator<Exchange> comparator = new MyComparator();
from("direct:start").resequencer(header("seqnum")).stream().comparator(comparator).to("mock:result");

or via a StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(100, 1000L,
comparator);
from("direct:start").resequencer(header("seqnum")).stream(config).to("mock:result");

Using the Spring XML Extensions

45 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<resequencer>

<simple>in.header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>
</route>

</camelContext>

Further Examples
For further examples of this pattern in use you could look at the batch-processing
resequencer junit test case and the stream-processing resequencer junit test case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

MESSAGE TRANSFORMATION

Content Enricher
Camel supports the Content Enricher from the EIP patterns using a Message Translator
or by using an artibrary Processor in the routing logic to enrich the message.

Using the Fluent Builders
You can use Templating to consume a message from one destination, transform it

with something like Velocity or XQuery and then send it on to another destination. For
example using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

CHAPTER 5 - PATTERN APPENDIX 46

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/DataEnricher.html

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then sending
responses back to the JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Here is a simple example using the DSL directly to transform the message body

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor using explicit Java code

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Finally we can use Bean Integration to use any Java method on any bean to act as the
transformer

from("activemq:My.Queue").
beanRef("myBeanName", "myMethodName").
to("activemq:Another.Queue");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Content Filter
Camel supports the Content Filter from the EIP patterns using one of the following
mechanisms in the routing logic to transform content from the inbound message.

47 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/ContentFilter.html

• Message Translator
• invoking a Java bean
• Processor object

A common way to filter messages is to use an Expression in the DSL like XQuery,
SQL or one of the supported Scripting Languages.

Using the Fluent Builders
Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Normalizer
Camel supports the Normalizer from the EIP patterns by using a Message Router in
front of a number of Message Translator instances.

CHAPTER 5 - PATTERN APPENDIX 48

http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Normalizer.html

See Also
• Message Router
• Content Based Router
• Message Translator

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

MESSAGING ENDPOINTS

Messaging Mapper
Camel supports the Messaging Mapper from the EIP patterns by using either Message
Translator pattern or the Type Converter module.

See also
• Message Translator
• Type Converter

49 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html

• CXF for JAX-WS support for binding business logic to messaging & web
services

• POJO
• Bean

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Event Driven Consumer
Camel supports the Event Driven Consumer from the EIP patterns. The default
consumer model is event based (i.e. asynchronous) as this means that the Camel
container can then manage pooling, threading and concurrency for you in a declarative
manner.

The Event Driven Consumer is implemented by consumers implementing the
Processor interface which is invoked by the Message Endpoint when a Message is
available for processing.

For more details see
• Message
• Message Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Polling Consumer
Camel supports implementing the Polling Consumer from the EIP patterns using the
PollingConsumer interface which can be created via the
Endpoint.createPollingConsumer() method.

CHAPTER 5 - PATTERN APPENDIX 50

http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()

So in your Java code you can do

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

There are 3 main polling methods on PollingConsumer
Method name Description

receive() Waits until a message is available and then returns it; potentially
blocking forever

receive(long)
Attempts to receive a message exchange, waiting up to the given
timeout and returning null if no message exchange could be
received within the time available

receiveNoWait()
Attempts to receive a message exchange immediately without
waiting and returning null if a message exchange is not available
yet

Scheduled Poll Components
Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages
and push them through the Camel processing routes. That is to say externally from the
client the endpoint appears to use an Event Driven Consumer but internally a scheduled
poll is used to monitor some kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this pattern.

There is also the Quartz Component which provides scheduled delivery of messages
using the Quartz enterprise scheduler.

For more details see
• PollingConsumer
• Scheduled Polling Components

◦ ScheduledPollConsumer
◦ File
◦ JPA
◦ Mail
◦ Quartz

51 CHAPTER 5 - PATTERN APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Competing Consumers
Camel supports the Competing Consumers from the EIP patterns using a few different
components.

You can use the following components to implement competing consumers:-
• Queue for SEDA based concurrent processing using a thread pool
• JMS for distributed SEDA based concurrent processing with queues which

support reliable load balancing,Ã? failover and clustering.

Enabling Competing Consumers with JMS
To enable Competing Consumers you just need to set the concurrentConsumers
property on the JMS endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5").bean(SomeBean.class);

Or just run multiple JVMs of any ActiveMQ or JMS route

CHAPTER 5 - PATTERN APPENDIX 52

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Message Dispatcher
Camel supports the Message Dispatcher from the EIP patterns using various
approaches.

You can use a component like JMS with selectors to implement a Selective
Consumer as the Message Dispatcher implementation. Or you can use an Endpoint as
the Message Dispatcher itself and then use a Content Based Router as the Message
Dispatcher.

See Also
• JMS
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

53 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html

Selective Consumer
The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when
creating your consumer. For example when using JMS you can specify a selector
parameter so that the message broker will only deliver messages matching your criteria.

The other approach is to use a Message Filter which is applied; then if the filter
matches the message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).process(myProcessor);
}

};

Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<process ref="myProcessor"/>

</filter>
</route>

</camelContext>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Durable Subscriber
Camel supports the Durable Subscriber from the EIP patterns using the JMS
component which supports publish & subscribe using Topics with support for non-
durable and durable subscribers.

CHAPTER 5 - PATTERN APPENDIX 54

http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html

Another alternative is to combine the Message Dispatcher or Content Based Router
with File or JPA components for durable subscribers then something like Queue for non-
durable.

See Also
• JMS
• File
• JPA
• Message Dispatcher
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Idempotent Consumer
The Idempotent Consumer from the EIP patterns is used to filter out duplicate
messages.

This pattern is implemented using the IdempotentConsumer class. This uses an
Expression to calculate a unique message ID string for a given message exchange; this
ID can then be looked up in the MessageIdRepository to see if it has been seen before;
if it has the message is consumed; if its not then the message is processed and the ID
is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out
duplicates.

Using the Fluent Builders

55 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html

The following example will use the header myMessageId to filter out duplicates

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").idempotentConsumer(header("myMessageId"),
memoryMessageIdRepository(200))

.to("seda:b");
}

};

The above example will use an in-memory based MessageIdRepository which can
easily run out of memory and doesn't work in a clustered environment. So you might
prefer to use the JPA based implementation which uses a database to store the
message IDs which have been processed

return new SpringRouteBuilder() {
public void configure() {

from("direct:start").idempotentConsumer(
header("messageId"),
jpaMessageIdRepository(bean(JpaTemplate.class), PROCESSOR_NAME)

).to("mock:result");
}

};

In the above example we are using the header messageId to filter out duplicates and
using the collection myProcessorName to indicate the Message ID Repository to use.
This name is important as you could process the same message by many different
processors; so each may require its own logical Message ID Repository.

Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<process ref="myProcessor"/>

</filter>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

CHAPTER 5 - PATTERN APPENDIX 56

https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Transactional Client
Camel recommends supporting the Transactional Client from the EIP patterns using
spring transactions.

Transaction Oriented Endpoints (Camel Toes) like JMS support using a transaction
for both inbound and outbound message exchanges. Endpoints that support
transactions will participate in the current transaction context that they are called from.
You should use the SpringRouteBuilder to setup the routes since you will need to setup
the spring context with the TransactionTemplates that will define the transaction
manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a
Spring PlatformTransactionManager. In the case of the JMS component, this can be
done by looking it up in the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = (PlatformTransactionManager)
spring.getBean("jmsTransactionManager");

ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");

JmsComponent component =
JmsComponent.jmsComponentTransacted(connectionFactory, transactionManager);

component.getConfiguration().setConcurrentConsumers(1);
ctx.addComponent("activemq", component);

Transaction Policies
Outbound endpoints will automatically enlist in the current transaction context. But what
if you do not want your outbound endpoint to enlist in the same transaction as your
inbound endpoint? The solution is to add a Transaction Policy to the processing route.

57 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/What+is+a+Camel+TOE
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html

Configuration of Redelivery

The redelivery in transacted mode is not handled by Camel but by the backing
system (the transaction manager). In such cases you should resort to the backing
system how to configure the redelivery. Camel only supports setting a fixed delay
between each redelivery attempt. This is the configured by setting a DelayPolicy
with the fixed value.

You first have to define transaction policies that you will be using. The policies use a
spring TransactionTemplate to declare the transaction demarcation use. So you will
need to add something like the following to your spring xml:

<bean id="PROPAGATION_REQUIRED"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION_NOT_SUPPORTED"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_NOT_SUPPORTED"/>

</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy
objects for each of the templates.

public void configure() {
...
Policy requried = new SpringTransactionPolicy(bean(TransactionTemplate.class,

"PROPAGATION_REQUIRED"));
Policy notsupported = new

SpringTransactionPolicy(bean(TransactionTemplate.class,
"PROPAGATION_NOT_SUPPORTED"));

Policy requirenew = new
SpringTransactionPolicy(bean(TransactionTemplate.class,
"PROPAGATION_REQUIRES_NEW"));

...
}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

CHAPTER 5 - PATTERN APPENDIX 58

http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("activemq:queue:bar");

Transaction Policies improvements in Camel 1.4
In Camel 1.4 we have eased the syntax to setup the transaction polices directly on the
SpringTransactionPolicy object:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

And the Java DSL is a bit simpler now:

Policy requried = bean(SpringTransactionPolicy.class, "PROPAGATION_REQUIRED"));

Database Sample
In this sample we want to ensure that two endpoints is under transaction control. These
two endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we have
defined a DataSource to the HSQLDB and a most importantly
the Spring DataSoruce TransactionManager that is doing the heavy lifting of ensuring
our transactional policies. You are of course free to use any
of the Spring based TransactionMananger, eg. if you are in a full blown J2EE container
you could use JTA or the WebLogic or WebSphere specific managers.

We use the required transaction policy that we define as the
PROPOGATION_REQUIRED spring bean. And as last we have our book service bean
that does the business logic
and inserts data in the database as our core business logic.

<!-- datasource to the database -->
<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:mem:camel"/>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>

59 CHAPTER 5 - PATTERN APPENDIX

http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceTest.java?view=log
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceTest.java?view=log
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceTest.java?view=log

<!-- spring transaction manager -->
<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

<!-- policy for required transaction used in our Camel routes -->
<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
</bean>

<!-- bean for book business logic -->
<bean id="bookService" class="org.apache.camel.spring.interceptor.BookService">

<property name="dataSource" ref="dataSource"/>
</bean>

In our Camel route that is Java DSL based we setup the transactional policy, wrapped
as a Policy.

// Notice that we use the SpringRouteBuilder that has a few more features than
// the standard RouteBuilder
return new SpringRouteBuilder() {

public void configure() throws Exception {
// setup the transaction policy
SpringTransactionPolicy required = context.getRegistry()

.lookup("PROPAGATION_REQUIRED", SpringTransactionPolicy.class);

// use this error handler instead of DeadLetterChannel that is the
default

// Notice: transactionErrorHandler is in SpringRouteBuilder
if (useTransactionErrorHandler) {

// useTransactionErrorHandler is only used for unit testing to reuse
code

// for doing a 2nd test without this transaction error handler, so
ignore

// this. For spring based transaction, end users are encouraged to
use the

// transaction error handler instead of the default
DeadLetterChannel.

errorHandler(transactionErrorHandler(required).
// notice that the builder has builder methods for chained

configuration
delay(5 * 1000L));

}

Then we are ready to define our Camel routes. We have two routes: 1 for success
conditions, and 1 for a forced rollback condition.
This is after all based on a unit test.

// set the required policy for this route
from("direct:okay").policy(required).

CHAPTER 5 - PATTERN APPENDIX 60

setBody(constant("Tiger in Action")).beanRef("bookService").
setBody(constant("Elephant in Action")).beanRef("bookService");

// set the required policy for this route
from("direct:fail").policy(required).

setBody(constant("Tiger in Action")).beanRef("bookService").
setBody(constant("Donkey in Action")).beanRef("bookService");

As its a unit test we need to setup the database and this is easily done with Spring
JdbcTemplate

// create database and insert dummy data
final DataSource ds = getMandatoryBean(DataSource.class, "dataSource");
jdbc = new JdbcTemplate(ds);
jdbc.execute("create table books (title varchar(50))");
jdbc.update("insert into books (title) values (?)", new Object[] {"Camel in
Action"});

And our core business service, the book service, will accept any books except the
Donkeys.

public class BookService {

private SimpleJdbcTemplate jdbc;

public BookService() {
}

public void setDataSource(DataSource ds) {
jdbc = new SimpleJdbcTemplate(ds);

}

public void orderBook(String title) throws Exception {
if (title.startsWith("Donkey")) {

throw new IllegalArgumentException("We don't have Donkeys, only
Camels");

}

// create new local datasource to store in DB
jdbc.update("insert into books (title) values (?)", title);

}
}

Then we are ready to fire the tests. First to commit condition:

public void testTransactionSuccess() throws Exception {
template.sendBody("direct:okay", "Hello World");

int count = jdbc.queryForInt("select count(*) from books");
assertEquals("Number of books", 3, count);

}

And lastly the rollback condition since the 2nd book is a Donkey book:

61 CHAPTER 5 - PATTERN APPENDIX

public void testTransactionRollback() throws Exception {
try {

template.sendBody("direct:fail", "Hello World");
} catch (RuntimeCamelException e) {

// expeced as we fail
assertTrue(e.getCause() instanceof IllegalArgumentException);
assertEquals("We don't have Donkeys, only Camels",

e.getCause().getMessage());
}

int count = jdbc.queryForInt("select count(*) from books");
assertEquals("Number of books", 1, count);

}

JMS Sample
In this sample we want to listen for messages on a queue and process the messages
with our business logic java code and send them along. Since its based on a unit test
the destination is a mock endpoint.

This time we want to setup the camel context and routes using the Spring XML
syntax.

<!-- here we define our camel context -->
<camel:camelContext id="myroutes">

<!-- and now our route using the XML syntax -->
<camel:route>

<!-- 1: from the jms queue -->
<camel:from uri="activemq:queue:okay"/>
<!-- 2: setup the transactional boundaries to require a transaction -->
<camel:policy ref="PROPAGATION_REQUIRED"/>
<!-- 3: call our business logic that is myProcessor -->
<camel:process ref="myProcessor"/>
<!-- 4: if success then send it to the mock -->
<camel:to uri="mock:result"/>

</camel:route>
</camel:camelContext>

<!-- this bean is our business logic -->
<bean id="myProcessor"
class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest$MyProcessor"/>

Since the rest is standard XML stuff its nothing fancy now for the reader:

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="brokerURL"
value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory"/>

CHAPTER 5 - PATTERN APPENDIX 62

http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/JMSTransactionalClientTestjava?view=log
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/JMSTransactionalClientTestjava?view=log
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/JMSTransactionalClientTestjava?view=log

</bean>

<bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="jmsConnectionFactory"/>
<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="transacted" value="true"/>
<property name="concurrentConsumers" value="1"/>

</bean>

<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent">
<property name="configuration" ref="jmsConfig"/>

</bean>

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<constructor-arg>
<bean

class="org.springframework.transaction.support.TransactionTemplate">
<property name="transactionManager" ref="jmsTransactionManager"/>

</bean>
</constructor-arg>

</bean>

Our business logic is set to handle the incomming messages and fail the first two times.
When its a success it responds with a Bye World message.

public static class MyProcessor implements Processor {
private int count;

public void process(Exchange exchange) throws Exception {
if (++count <= 2) {

throw new IllegalArgumentException("Forced Exception number " +
count + ", please retry");

}
exchange.getIn().setBody("Bye World");
exchange.getIn().setHeader("count", count);

}
}

And our unit test is tested with this java code. Notice that we expect the Bye World
message to be delivered at the 3rd attempt.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Bye World");
// success at 3rd attempt
mock.message(0).header("count").isEqualTo(3);

template.sendBody("activemq:queue:okay", "Hello World");

mock.assertIsSatisfied();

63 CHAPTER 5 - PATTERN APPENDIX

Spring based configuration
In Camel 1.4 we have introduced the concept of configuration of the error handlers
using spring XML configuration. The sample below demonstrates that you can configure
transaction error handlers in Spring XML as spring beans. These can then be set as
global, per route based or per policy based error handler. The latter has been
demonstrated in the samples above. This sample is the database sample configured in
Spring XML.

Notice that we have defined two error handler, one per route. The first route uses the
transaction error handler, and the 2nd uses no error handler at all.

<!-- here we define our camel context -->
<camel:camelContext id="myroutes">

<!-- first route with transaction error handler -->
<!-- here we refer to our transaction error handler we define in this Spring

XML file -->
<!-- in this route the transactionErrorHandler is used -->
<camel:route errorHandlerRef="transactionErrorHandler">

<!-- 1: from the jms queue -->
<camel:from uri="activemq:queue:okay"/>
<!-- 2: setup the transactional boundaries to require a transaction -->
<camel:policy ref="required"/>
<!-- 3: call our business logic that is myProcessor -->
<camel:process ref="myProcessor"/>
<!-- 4: if success then send it to the mock -->
<camel:to uri="mock:result"/>

</camel:route>

<!-- 2nd route with no error handling -->
<!-- this route doens't use error handler, in fact the spring bean with id

noErrorHandler -->
<camel:route errorHandlerRef="noErrorHandler">

<camel:from uri="activemq:queue:bad"/>
<camel:to uri="log:bad"/>

</camel:route>

</camel:camelContext>

The following snippet is the Spring XML configuration to setup the error handlers in pure
spring XML:

<!-- camel policy we refer to in our route -->
<bean id="required" class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="template" ref="PROPAGATION_REQUIRED"/>
</bean>

<!-- the standard spring transaction template for required -->
<bean id="PROPAGATION_REQUIRED"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

CHAPTER 5 - PATTERN APPENDIX 64

<!-- the transaction error handle we refer to from the route -->
<bean id="transactionErrorHandler"
class="org.apache.camel.spring.spi.TransactionErrorHandlerBuilder">

<property name="transactionTemplate" ref="PROPAGATION_REQUIRED"/>
<!-- here we refer to the configurations of the error handler -->
<property name="delayPolicy" ref="delayPolicyConfig"/>

</bean>

<!-- configuration of the transaction error handler -->
<bean id="delayPolicyConfig" class="org.apache.camel.processor.DelayPolicy">

<!-- wait 5 seconds between redelivery -->
<property name="delay" value="5000"/>

</bean>

<!-- the no error handler -->
<bean id="noErrorHandler"
class="org.apache.camel.builder.NoErrorHandlerBuilder"/>

DelayPolicy
DelayPolicy is a new policy introduced in Camel 1.5, to replaces the RedeliveryPolicy
used in Camel 1.4. Notice the transactionErrorHandler can be configured with a
DelayPolicy to set a fixed delay in millis between each redelivery attempt. Camel does
this by sleeping the delay until transaction is marked for rollback and the caused
exception is rethrown.

This allows a simple redelivery interval that can be configured for development mode
or light production to avoid a rapid redelivery strategy that can exhaust a system that
constantly fails.

We strongly recommend that you configure the backing system for correct
redelivery policy in your environment.

See Also
• JMS
• Dead Letter Channel
• Error Handler

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

65 CHAPTER 5 - PATTERN APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DelayPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DelayPolicy.html
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DelayPolicy.html

Messaging Gateway
Camel has several endpoint components that support the Messaging Gateway from the
EIP patterns.

Components like Bean, CXF and Pojo provide a a way to bind a Java interface to the
message exchange.

See Also
• Bean
• Pojo
• CXF

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

Service Activator
Camel has several endpoint components that support the Service Activator from the EIP
patterns.

Components like Bean, CXF and Pojo provide a a way to bind the message
exchange to a Java interface/service where the route defines the endpoints and wires it
up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using
annotation.

CHAPTER 5 - PATTERN APPENDIX 66

http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html

See Also
• Bean
• Pojo
• CXF

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

SYSTEM MANAGEMENT

Wire Tap
The Wire Tap from the EIP patterns allows you to route messages to a separate tap
location while it is forwarded to the ultimate destination.

The following example shows how to route a request from an input queue:a endpoint
to the wire tap location queue:tap it is received by queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").multicast().to("seda:tap", "seda:b");
}

};

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="seda:a"/>
<multicast>

<to uri="seda:tap"/>
<to uri="seda:b"/>

</multicast>

67 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/WireTap.html

</route>
</camelContext>

Further Example
For another example of this pattern in use you could look at the wire tap test case.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started, you may
also find the Architecture useful particularly the description of Endpoint and URIs. Then
you could try out some of the Examples first before trying this pattern out.

CHAPTER 5 - PATTERN APPENDIX 68

http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java

C H A P T E R 6

° ° ° °

Component Appendix

There now follows the documentation on each Camel component.

ACTIVEMQ COMPONENT
The ActiveMQ component allows messages to be sent to a JMS Queue or Topic; or
messages to be consumed from a JMS Queue or Topic using Apache ActiveMQ.

This component is based on the JMS Component and uses Spring's JMS support for
declarative transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming.

To use this component make sure you have the activemq.jar or activemq-core.jar on
your classpath along with any Camel dependencies such as camel-core.jar, camel-
spring.jar and camel-jms.jar.

URI format

activemq:[topic:]destinationName

So for example to send to queue FOO.BAR you would use

activemq:FOO.BAR

You can be completely specific if you wish via

activemq:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

activemq:topic:Stocks.Prices

Configuring the Connection Factory
The following test case shows how to add an ActiveMQComponent to the CamelContext
using the activeMQComponent() method while specifying the brokerURL used to
connect to ActiveMQ

69 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/configuring-transports.html
http://java.sun.com/products/jms/
http://activemq.apache.org/
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML
You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="tcp://somehost:61616"/>
</bean>

</beans>

Invoking MessageListener POJOs in a Camel route
The ActiveMQ component also provides a helper Type Converter from a JMS
MessageListener to a Processor. This means that the Bean component is capable of
invoking any JMS MessageListener bean directly inside any route.

So for example you can create a MessageListener in JMS like this....

public class MyListener implements MessageListener {
public void onMessage(Message jmsMessage) {

// ...
}

}

Then use it in your Camel route as follows

from("file://foo/bar").
bean(MyListener.class);

i.e. you can reuse any of the Camel Components and easily integrate them into your
JMS MessageListener POJO!

Getting Component JAR
The ActiveMQ Camel component is released with the ActiveMQ project itself.

CHAPTER 6 - COMPONENT APPENDIX 70

http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Components

For Maven 2 users you simply just need to add the following dependency to your
project.

ActiveMQ 5.2 or later
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>
<version>5.2.0</version>

</dependency>

ActiveMQ 5.1.0
For 5.1.0 its in the activemq-core library

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-core</artifactId>
<version>5.1.0</version>

</dependency>

Alternatively you can download the component jar directly from the Maven repository:
• activemq-camel-5.2.0.jar
• activemq-core-5.1.0.jar

ActiveMQ 4.x
For this version you must use the JMS component instead. Please be careful to use a
pooling connection factory as described in the JmsTemplate Gotchas

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

ACTIVEMQ JOURNAL COMPONENT
The ActiveMQ Journal Component allows messages to be stored in a rolling log file and
then consumed from that log file. The journal aggregates and batches up concurrent
writes so that to overhead of writing and waiting for the disk sync is relatively constant
regardless of how many concurrent writes are being done. Therefore, this component

71 CHAPTER 6 - COMPONENT APPENDIX

http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://activemq.apache.org/jmstemplate-gotchas.html

supports and encourages you to use multiple concurrent producers to the same journal
endpoint.

Each journal endpoint uses a different log file and therefore write batching (and the
associated performance boost) does not occur between multiple endpoints.

This component only supports 1 active consumer on the endpoint. After the message
is processed by the consumer's processor, the log file is marked and only subsequent
messages in the log file will get delivered to consumers.

URI format

activemq.journal:directory-name[?options]

So for example to send to the journal located in the /tmp/data directory you would use

activemq.journal:/tmp/data

Options

Name Default
Value Description

syncConsume false
If set to true, when the journal is marked after a message
is consumed, wait till the Operating System has verified
the mark update is safely stored on disk

syncProduce true If set to true, wait till the Operating System has verified
the message is safely stored on disk

Expected Exchange Data Types
The consumer of a Journal endpoint generates DefaultExchange objects with the in
message :

• header "journal" : set to the endpoint uri of the journal the message came from
• header "location" : set to a Location which identifies where the recored was

stored on disk
• body : set to ByteSequence which contains the byte array data of the stored

message
The producer to a Journal endpoint expects an Exchange with an In message where the
body can be converted to a ByteSequence or a byte[].

See Also
• Configuring Camel
• Component

CHAPTER 6 - COMPONENT APPENDIX 72

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html

• Endpoint
• Getting Started

AMQP
The AMQP component supports the AMQP protocol via the Qpid project.

URI format

amqp:[queue:][topic:]destinationName[?option1=value[&option2=value2]]

You can specify all of the various configuration options of the JMS component after the
destination name.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

ATOM COMPONENT
The atom: component is used for polling atom feeds.

Camel will default poll the feed every 60th seconds.
Note: The component currently only supports polling (consuming) feeds.

URI format

atom://atomUri

Where atomUri is the URI to the atom feed to poll.

Options

Property Default Description

73 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.amqp.org/
http://www.amqp.org/
http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.amqp.org/
http://cwiki.apache.org/qpid/

splitEntries true

If true Camel will poll the feed and for the
subsequent polls return each entry poll by
poll. If the feed contains 7 entries then Camel
will return the first entry on the first poll, the
2nd entry on the next poll, until no more
entries where as Camel will do a new update
on the feed. If false then Camel will poll a
fresh feed on every invocation.

filter true

Is only used by the split entries to filter the
entries to return. Camel will default use the
UpdateDateFilter that only return new entries
from the feed. So the client consuming from
the feed never receives the same entry more
than once. The filter will return the entries
ordered by the newest last.

lastUpdate null

Is only used by the filter, as the starting
timestamp for selection never entries (uses
the entry.updated timestamp). Syntax format
is: yyyy-MM-ddTHH:MM:ss. Example:
2007-12-24T17:45:59.

consumer.delay 60000 Delay in millis between each poll

consumer.initialDelay 1000 Millis before polling starts

consumer.userFixedDelay false
true to use fixed delay between pools,
otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

Exchange data format
Camel will set the in body on the returned Exchange with the entries. Depending on the
splitEntries flag Camel will either return one Entry or a List<Entry>.
Option Value Behavior

splitEntries true Only a single entry from the currently being processed feed is
set: exchange.in.body(Entry)

splitEntries false The entires list of entries from the feed is set:
exchange.in.body(List<Entry>)

Camel will set the Feed object on the in header:

exchange.in.header("org.apache.camel.component.atom.feed", feed)

CHAPTER 6 - COMPONENT APPENDIX 74

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Samples
In this sample we poll James Strahams blog.

from("atom://http://macstrac.blogspot.com/feeds/posts/default").to("seda:feeds");

In this sample we want to filter only good blogs we like to a seda queue. The sample
also shows how to setup Camel standalone, not running in any Container or using
Spring.

// This is the CamelContext that is the heart of Camel
private CamelContext context;

// We use a simple Hashtable for our bean registry. For more advanced usage
Spring is supported out-of-the-box
private Hashtable beans = new Hashtable();

// We iniitalize Camel
private void setupCamel() throws Exception {

// First we register a blog service in our bean registry
beans.put("blogService", new BlogService());

// Then we create the camel context with our bean registry
context = new DefaultCamelContext(new

CamelInitialContextFactory().getInitialContext(beans));

// Then we add all the routes we need using the route builder DSL syntax
context.addRoutes(createRouteBuilder());

// And finally we must start Camel to let the magic routing begins
context.start();

}

/**
* This is the route builder where we create our routes in the advanced Camel

DSL syntax
*/

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// We pool the atom feeds from the source for further processing in

the seda queue
// we set the delay to 1 second for each pool as this is a unit test

also and we can
// not wait the default poll interval of 60 seconds.
// Using splitEntries=true will during polling only fetch one Atom

Entry at any given time.
// As the feed.atom file contains 7 entries, using this will require

7 polls to fetch the entire
// content. When Camel have reach the end of entries it will refresh

the atom feed from URI source
// and restart - but as Camel by default uses the UpdatedDateFilter

it will only deliver new
// blog entries to "seda:feeds". So only when James Straham updates

75 CHAPTER 6 - COMPONENT APPENDIX

his blog with a new entry
// Camel will create an exchange for the seda:feeds.
from("atom:file:src/test/data/

feed.atom?splitEntries=true&consumer.delay=1000").to("seda:feeds");

// From the feeds we filter each blot entry by using our blog
service class

from("seda:feeds").filter().method("blogService",
"goodBlog").to("seda:goodBlogs");

// And the good blogs is moved to a mock queue as this sample is
also used for unit testing

// this is one of the strengths in Camel that you can also use the
mock endpoint for your

// unit tests
from("seda:goodBlogs").to("mock:result");

}
};

}

/**
* This is the actual junit test method that does the assertion that our routes

is working
* as expected
*/

public void testFiltering() throws Exception {
// Get the mock endpoint
MockEndpoint mock = context.getEndpoint("mock:result", MockEndpoint.class);

// There should be two good blog entries from the feed
mock.expectedMessageCount(2);

// Asserts that the above expectations is true, will throw assertions
exception if it failed

// Camel will default wait max 20 seconds for the assertions to be true, if
the conditions

// is true sooner Camel will continue
mock.assertIsSatisfied();

}

/**
* Services for blogs
*/

public class BlogService {

/**
* Tests the blogs if its a good blog entry or not
*/

public boolean isGoodBlog(Exchange exchange) {
Entry entry = exchange.getIn().getBody(Entry.class);
String title = entry.getTitle();

// We like blogs about Camel
boolean good = title.toLowerCase().contains("camel");

CHAPTER 6 - COMPONENT APPENDIX 76

return good;
}

}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

BEAN COMPONENT
The bean: component binds beans to Camel message exchanges.

URI format

bean:someName[?options]

Where someName can be any string which is used to lookup the bean in the Registry

Options

Name Description Example Required? default value

method

The method
name that
bean will be
inovked

method=someMethod No

someMethod
defines the
name of the
method to
invoke,This
will use the
Bean Binding
to map the
message
exchange to
the bean.

77 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding

multiParameterArray

New option
in Camel
1.5: How to
treat the
parameters
which are
passed
from the
message
body, if it is
true, the in
message
body should
be the an
array of
parameters

multiParameterArray=true No false

Using
The object instance that is used to consume messages must be explicitly registered with
the Registry. For example if you are using Spring you must define the bean in the
spring.xml; or if you don't use Spring then put the bean in JNDI.

// lets populate the context with the services we need
// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();
context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);

Once an endpoint has been registered, you can build Camel routes that use it to
process exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {

public void configure() {
from("direct:hello").to("pojo:bye");

}
});

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume
from it, you can only route from some inbound message Endpoint to the bean endpoint
as output. So consider using a direct: or queue: endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy that will
generate BeanExchanges and send them to any endpoint:

CHAPTER 6 - COMPONENT APPENDIX 78

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

Bean Binding
How bean methods are chosen to be invoked (if they are not specified explicitly via the
method parameter) and how parameter values are constructed from the Message are
all defined by the Bean Binding mechanism which is used througout all of the various
Bean Integration mechanisms in Camel.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Bean Binding
• Bean Integration

CXF COMPONENT
The cxf: component provides integration with Apache CXF for connecting to JAX-WS
services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core

version -->
</dependency>

URI format

cxf://address?options

Where address represents the CXF endpoint's address

cxf:bean:cxfEndpoint

Where cxfEndpoint represents the spring bean's name which presents the CXF
endpoint

79 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

Options

Name Description Example Required? default
value

wsdlURL The location of the
WSDL.

file://local/wsdl/hello.wsdl
or wsdl/hello.wsdl No

WSDL
is
obtained
from
endpoint
address
by
default

serviceClass

The name of the
SEI(Service
Endpoint Interface)
implementation
class. This class can
have but does not
require JSR181
annotations.

org.apache.camel.Hello

Yes for CXF
provider, for
CXF
Consumer
only if POJO
dataFormat
option is
used

serviceName

The service name
this service is
implementing, it
maps to the
wsdl:service@name.

{http://org.apache.camel}
ServiceName

Only if more
than one
serviceName
in WSDL
present

portName

The port name this
service is
implementing, it
maps to the
wsdl:port@name.

{http://org.apache.camel}
PortName

Only if more
than one
portName
under the
serviceName
is present

dataFormat
Which data type
messages the CXF
endpoint supports

POJO, PAYLOAD,
MESSAGE No POJO

CHAPTER 6 - COMPONENT APPENDIX 80

/local/wsdl/hello.wsdl
/local/wsdl/hello.wsdl
http://org.apache.camel
http://org.apache.camel
http://org.apache.camel
http://org.apache.camel
/local/wsdl/hello.wsdl
http://org.apache.camel
http://org.apache.camel

wrapped

Which kind of
operation that CXF
endpoint producer
will invoke

true, false No false

setDefaultBus

Will set the default
bus when CXF
endpoint create a
bus by itself

true, false No false

The serviceName and portName are QNames, so if you provide them be sure to prefix
them with their {namespace} as shown in the examples above.

The descriptions of the dataformats

DataFormat Description

POJO POJOs (Plain old Java objects) are the Java parameters to the
method being invoked on the target server.

PAYLOAD PAYLOAD is the message payload (the contents of the soap:body)
after message configuration in the CXF endpoint is applied.

MESSAGE MESSAGE is the raw message that is received from the transport
layer.

Configure the CXF endpoints with spring
You can configure the CXF endpoint with the below spring configuration file, and you
can also embed the endpoint into the camelContext tags.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://activemq.apache.org/camel/schema/cxfEndpoint"

xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/cxfEndpoint

http://activemq.apache.org/camel/schema/cxf/cxfEndpoint.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd
">

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/
CamelContext/RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>

81 CHAPTER 6 - COMPONENT APPENDIX

http://en.wikipedia.org/wiki/QName
http://en.wikipedia.org/wiki/QName
http://en.wikipedia.org/wiki/QName

<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/
SoapContext/SoapPort"

wsdlURL="testutils/hello_world.wsdl"
serviceClass="org.apache.hello_world_soap_http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"

xmlns:s="http://apache.org/hello_world_soap_http" />

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="cxf:bean:routerEndpoint" />
<to uri="cxf:bean:serviceEndpoint" />

</route>
</camelContext>

</beans>

Be sure to include the JAX-WS schemaLocation attribute specified on the root beans
element. This allows CXF to validate the file and is required. Also note the namespace
declarations at the end of the <cxf:cxfEndpoint/> tag--these are required because the
combined "{namespace}localName" syntax is presently not supported for this tag's
attribute values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

PortName
The endpoint name this service is implementing, it maps to the
wsdl:port@name. In the format of "ns:PORT_NAME" where ns is a
namespace prefix valid at this scope.

serviceName
The service name this service is implementing, it maps to the
wsdl:service@name. In the format of "ns:SERVICE_NAME" where ns
is a namespace prefix valid at this scope.

wsdlURL The location of the WSDL. Can be on the classpath, file system, or
be hosted remotely.

bindingId The bindingId for the service model to use

address The service publish address

bus The bus name that will be used in the jaxws endpoint.

serviceClass The class name of the SEI(Service Endpoint Interface) class which
could have JSR181 annotation or not

It also supports many child elements:
Name Value

CHAPTER 6 - COMPONENT APPENDIX 82

cxf:inInterceptors The incoming interceptors for this endpoint. A list of
<bean>s or <ref>s.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of
<bean>s or <ref>s.

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of
<bean>s or <ref>s.

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of
<bean>s or <ref>s.

cxf:properties A properties map which should be supplied to the JAX-WS
endpoint. See below.

cxf:dataBinding
You can specify the which DataBinding will be use in the
endpoint, This can be supplied using the Spring <bean
class="MyDataBinding"/> syntax.

cxf:binding
You can specify the BindingFactory for this endpoint to
use. This can be supplied using the Spring <bean
class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A
list of <bean>s or <ref>s

cxf:schemaLocations The schema locations for endpoint to use. A list of
<schemaLocation>s

cxf:serviceFactory
The service factory for this endpoint to use. This can be
supplied using the Spring <bean
class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide interceptors and
properties here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

NOTE
You can use cxf:properties to set the camel-cxf endpoint's dataFormat and
setDefaultBus properties from spring configuration file.

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
serviceClass="org.apache.camel.component.cxf.HelloService"
endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
<entry key="setDefaultBus" value="true"/>

</cxf:properties>
</cxf:cxfEndpoint>

83 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

How to let camel-cxf component to use log4j instead of java.util.logging
CXF's default logger is using java.util.logging, if you want to change it to log4j.
Here is the instruction: Create a file, in the classpath, named META-INF/cxf/
org.apache.cxf.logger.This file should contain the fully-qualified name of the class
(org.apache.cxf.common.logging.Log4jLogger), with no comments, on a single line.

How to consume the message from the camel-cxf endpoint in POJO data format
The camel-cxf endpoint consumer POJO data format is based on the cxf invoker, so the
message header has a property with the name of CxfConstants.OPERATION_NAME
and the message body is a list of the SEI method parameters.

public class PersonProcessor implements Processor {

private static final transient Log LOG =
LogFactory.getLog(PersonProcessor.class);

public void process(Exchange exchange) throws Exception {
LOG.info("processing exchange in camel");

BindingOperationInfo boi =
(BindingOperationInfo)exchange.getProperty(BindingOperationInfo.class.toString());

if (boi != null) {
LOG.info("boi.isUnwrapped" + boi.isUnwrapped());

}
// Get the parameters list which element is the holder.
MessageContentsList msgList =

(MessageContentsList)exchange.getIn().getBody();
Holder<String> personId = (Holder<String>)msgList.get(0);
Holder<String> ssn = (Holder<String>)msgList.get(1);
Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length() == 0) {
LOG.info("person id 123, so throwing exception");
// Try to throw out the soap fault message
org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =

new org.apache.camel.wsdl_first.types.UnknownPersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl_first.UnknownPersonFault fault =

new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null
value of person name", personFault);

// Since camel has its own exception handler framework, we can't
throw the exception to trigger it

// We just set the fault message in the exchange for camel-cxf
component handling

exchange.getFault().setBody(fault);
}

name.value = "Bonjour";
ssn.value = "123";
LOG.info("setting Bonjour as the response");

CHAPTER 6 - COMPONENT APPENDIX 84

http://cwiki.apache.org/CXF20DOC/invokers.html
http://cwiki.apache.org/CXF20DOC/invokers.html
http://cwiki.apache.org/CXF20DOC/invokers.html

// Set the response message, first element is the return value of the
operation,

// the others are the holders of method parameters
exchange.getOut().setBody(new Object[] {null, personId, ssn, name});

}

}

How to prepare the message for the camel-cxf endpoint in POJO data format
The camel-cxf endpoint producer is based on the cxf client API. First you need to
specify the operation name in the message header , then add the method parameters
into a list and set the message with this parameter list will be ok. The response
message's body is a messageContentsList, you can get the result from that list.

NOTE After Camel 1.5 , we change the message body from object array to message
content list. If you still want to get the object array from the message body, you can get
the body with this code message.getbody(Object[].class)

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();
// The response message's body is an MessageContentsList which first element is
the return value of the operation,
// If there are some holder parameters, the holder parameter will be filled in
the reset of List.
// The result will be extract from the MessageContentsList with the String class
type
MessageContentsList result = (MessageContentsList)out.getBody();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext =
CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-8",
responseContext.get(org.apache.cxf.message.Message.ENCODING));
assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE,
result.get(0));

How to propagate camel-cxf endpoint's request and response context
cxf client API provides a way to invoke the operation with request and response context.
If you are using camel-cxf endpoint producer to invoke the outside web service, you can
set the request context and get response context with below codes.

85 CHAPTER 6 - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new
Processor() {

public void process(final Exchange exchange) {
final List<String> params = new ArrayList<String>();
params.add(TEST_MESSAGE);
// Set the request context to the inMessage
Map<String, Object> requestContext = new HashMap<String,

Object>();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

JAXWS_SERVER_ADDRESS);
exchange.getIn().setBody(params);
exchange.getIn().setHeader(Client.REQUEST_CONTEXT ,

requestContext);
exchange.getIn().setHeader(CxfConstants.OPERATION_NAME,

GREET_ME_OPERATION);
}

});
org.apache.camel.Message out = exchange.getOut();
// The output is an object array, the first element of the array is the

return value
Object[] output = out.getBody(Object[].class);
LOG.info("Received output text: " + output[0]);
// Get the response context form outMessage
Map<String, Object> responseContext =

CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("Get the wrong wsdl opertion name", "{http://apache.org/

hello_world_soap_http}greetMe",
responseContext.get("javax.xml.ws.wsdl.operation").toString());

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

DATASET COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult. The Mock,
Test and DataSet endpoints work great with the Spring Testing framework to simplify
your unit and integration testing using Enterprise Integration Patterns and Camel's large
range of Components together with the powerful Mock and Test testing endpoints.
The DataSet component (available since 1.3.0) provides a mechanism to easily perform
load & soak testing of your system. It works by allowing you to create DataSet instances
both as a source of messages and as a way to assert that the data set is received.

CHAPTER 6 - COMPONENT APPENDIX 86

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html

URI format

dataset:name

Where name is used to find the DataSet instance in the Registry

Example
For example to test that a set of messages are sent to a queue then consumed from a
queue without loosing any messages.

// send the dataset to a queue
from("dataset:foo").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemq:SomeQueue").to("dataset:foo");

The above would look in the Registry to find the foo DataSet instance which is used to
create the messages.

Then you create a DataSet implementation, such as using the SimpleDataSet as
described below, configuring things like how big the data set is and what the messages
look like etc.

Properties on SimpleDataSet

Property Description

defaultBody
Specifies the default message body. For SimpleDataSet it is a
constant payload; though if you want to create custom payloads per
message create your own derivation of DataSetSupport

reportGroup Specifies the number of messages to be received before reporting
progress. Useful for showing progress of a large load test

size Specifies how many messages to send/consume

Load testing ActiveMQ with Camel
There is an example of load testing an ActiveMQ queue using Camel in the ActiveMQ
source code repository. The code lives at this location

• https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/
You can grab the code

svn co https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/

Then try running the test case

87 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://activemq.apache.org/
http://activemq.apache.org/
https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/
https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/
https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/

cd activemq-camel-loadtest
mvn clean install

To see how the test is defined see the Spring XML file

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd
http://activemq.apache.org/schema/core http://activemq.apache.org/schema/

core/activemq-core.xsd
">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">

<route>
<!-- sends messages every 10 milliseconds -->
<from uri="dataset:myDataSet?produceDelay=10"/>
<to uri="activemq:test.queue"/>

</route>

<route>
<from uri="activemq:test.queue"/>
<to uri="dataset:myDataSet?produceDelay=10"/>

</route>

</camelContext>

<bean id="myDataSet" class="org.apache.camel.component.dataset.SimpleDataSet">
<property name="size" value="10000"/>
<property name="reportCount" value="100"/>

</bean>

<!-- lets create an embedded broker for this test -->
<broker xmlns="http://activemq.apache.org/schema/core" dataDirectory="target/

activemq">

<transportConnectors>
<transportConnector uri="tcp://localhost:61616"/>

</transportConnectors>

</broker>

<!-- Lets connect the Camel ActiveMQ component to the embedded broker.
See http://activemq.apache.org/camel/activemq.html for more information.

-->
<bean id="activemq"

class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>
</beans>

CHAPTER 6 - COMPONENT APPENDIX 88

https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/src/test/resources/org/apache/activemq/soaktest/LoadTest-context.xml
https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/src/test/resources/org/apache/activemq/soaktest/LoadTest-context.xml
https://svn.apache.org/repos/asf/activemq/trunk/activemq-camel-loadtest/src/test/resources/org/apache/activemq/soaktest/LoadTest-context.xml

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

DIRECT COMPONENT
The direct: component provides direct, synchronous invocation of any consumers when
a producer sends a message exchange.
This endpoint can be used connect existing routes or if a client in the same JVM as the
Camel router wants to access the routes.

URI format

direct:someName

Where someName can be any string to uniquely identify the endpoint

Options

Name Default
Value Description

allowMultipleConsumers true
If set to false, then when a second consumer is
started on the endpoint, a IllegalStateException
is thrown

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

ESPER
The Esper component supports the Esper Library for Event Stream Processing. The
camel-esper library is provided by the Camel Extra project which hosts all *GPL related
components for Camel.

89 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://esper.codehaus.org
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://code.google.com/p/camel-extra/

URI format

esper:name[?option1=value[&option2=value2]]

When consuming from an Esper endpoint you must specify a pattern or eql statement
to query the event stream.

For example

from("esper://cheese?pattern=every event=MyEvent(bar=5)").
to("activemq:Foo");

Options

Name Default Value Description

pattern The Esper Pattern expression as a String to filter events

eql The Esper EQL expression as a String to filter events

Demo
There is a demo which shows how to work with ActiveMQ, Camel and Esper in the
Camel Extra project

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Esper Camel Demo

EVENT COMPONENT
The event: component provides access to the Spring ApplicationEvent objects. This
allows you to publish ApplicationEvent objects to a Spring ApplicationContext or to
consume them. You can then use Enterprise Integration Patterns to process them such
as Message Filter.

URI format

event://default

CHAPTER 6 - COMPONENT APPENDIX 90

http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/wiki/EsperDemo

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FILE COMPONENT
The File component provides access to file systems; allowing files to be processed by
any other Camel Components or messages from other components can be saved to
disk.

URI format

file:fileOrDirectoryName[?options]

or

file://fileOrDirectoryName[?options]

Where fileOrDirectoryName represents the underlying file name. Camel will determine
if fileOrDirectoryName is a file or directory.

URI Options

Name Default
Value Description

initialDelay 1000 Camel 1.3 or older: milliseconds
before polling the file/directory starts

delay 500
Camel 1.3 or older: milliseconds
before the next poll of the file/
directory

useFixedDelay false

Camel 1.3 or older: true to use fixed
delay between pools, otherwise fixed
rate is used. See
ScheduledExecutorService in JDK
for details.

consumer.initialDelay 1000 Camel 1.4: milliseconds before
polling the file/directory starts

91 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Important Information

See the section "Common gotchas with folder and filenames" below.

Timestamp

In Camel 1.4 or older the file consumer uses an internal timestamp for last polling.
This timestamp is used to match for new or changed files: if file modified timestamp
> last poll timestamp => file can be consumed.

You can disable this algorithm with the new option consumer.timestamp=false
or setting the consumer.alwaysConsume=true.
This algorithm has been marked for @deprecation and will be removed in Camel
2.0

We encourage you to use a different strategy for matching new files: such as
deleting or moving the file after processing, then new files is always if there exists a
file in the directory to poll.

consumer.delay 500 Camel 1.4: milliseconds before the
next poll of the file/directory

consumer.useFixedDelay false

Camel 1.4: true to use fixed delay
between pools, otherwise fixed rate
is used. See
ScheduledExecutorService in JDK
for details.

consumer.exclusiveReadLock true

Camel 1.5: Used by FileConsumer. If
set to true Camel will only poll the
files if it has exclusive read lock to
the file (= the file is not in progress of
being written). Camel will wait until
the file lock is granted. Setting to
false Camel will poll the file even if
its in progress of being written (= this
is the behavior of Camel 1.4).

CHAPTER 6 - COMPONENT APPENDIX 92

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

consumer.recursive true/
false

if a directory, will look for changes in
files in all the sub directories. Notice:
Default value in Camel 1.4 or older is
true. In Camel 1.5 the default value
is changed to false.

consumer.regexPattern null will only fire a an exchange for a file
that matches the regex pattern

consumer.alwaysConsume false

Camel 1.5: @deprecated. Is used to
force consuming the file even if it
hasn't changed since last time it was
consumed. Is useful if you for
instance move files back into a folder
and the file keeps the original
timestamp.

consumer.timestamp true

Camel 1.5: @deprecated. This
option is introduced to have similar
name as the same option in FTP
component. Setting this option will
internally in Camel set the
consumer.alwaysConsume option
to the ! value. So if this option is
true, then alwaysConsume is false
and vice verca.

lock true if true will lock the file for the duration
of the processing

delete false
If delete is true then the file will be
deleted when it is processed (the
default is to move it, see below)

noop false

If true then the file is not moved or
deleted in any way (see below). This
option is good for read only data, or
for ETL type requirements

moveNamePrefix .camel/

The prefix String perpended to the
filename when moving it. For
example to move processed files into
the done directory, set this value to
'done/'

93 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/ETL

moveNamePostfix null

The postfix String appended to the
filename when moving it. For
example to rename processed files
from foo to foo.old set this value to
'.old'

append true When writing do we append to the
end of the file, or replace it?

autoCreate true
If set to true Camel will create the
directory to the file if the file path
does not exists - Uses File#mkdirs()

bufferSize 128kb Write buffer sized in bytes. Camel
uses a default of 128 * 1024 bytes.

ignoreFileNameHeader false

If this flag is enabled then producers
will ignore the
'org.apache.camel.file.name' header
and generate a new dynamic
filename

excludedNamePrefixes null

@Deprecated. Is used to exclude
files if filename is starting with any of
the given prefixes. The parameter is
a String[]

excludedNamePostfixes null

@Deprecated. Is used to exclude
files if filename is ending with any of
the given prefixes. The parameter is
a String[]

excludedNamePrefix null
Camel 1.5: Is used to exclude files if
filename is starting with the given
prefix.

excludedNamePostfix null
Camel 1.5: Is used to exclude files if
filename is ending with the given
postfix.

generateEmptyExchangeWhenIdle false

Option only for the FileConsumer. If
this option is true and there was no
files to process we simulate
processing a single empty file, so an
exchange is fired. Note: In this
situation the File attribute in
FileExchange is null.

CHAPTER 6 - COMPONENT APPENDIX 94

expression null

Camel 1.5: Use expression to
dynamically set the filename. This
allows you to very easily set dynamic
pattern style filenames. If an
expression is set it take precedes
over the
org.apache.camel.file.name
header. (Note: The header can itself
also be an expression). The
expression options supports both
String and Expression types. If the
expression is a String type then its
always evaluated using the File
Language. If the expression is an
Expression type then this type is of
course used as it - this allows for
instance to use OGNL as expression
too.

By default the file is locked for the duration of the processing. Also when files are
processed they are moved into the .camel subdirectory; so that they appear to be
deleted.

The File Consumer will always skip any file which name starts with a dot, such as
".", ".camel", ".m2" or ".groovy". Only files (not directories) is matched for
valid filename if options such as: consumer.regexPattern,
excludeNamePrefix, excludeNamePostfix is used. Notice: this only works
properly in Camel 1.5, due to issue CAMEL-920.

The File Consumer stores internally the last poll time. This is used to avoid polling
already polled files as it will compare the lastpolltime with the modification timestamp on
the file. Beware that its not persistent in any way so restarting Camel will restart the
lastpolltime variable and you can potentially consume the same file again. Therefore
you should either delete or move consumed files to a different folder.

By default Camel will move consumed files to the sub folder .camel relative where
the file was consumed.

Message Headers
The following message headers can be used to affect the behavior of the component
Header Description

95 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://issues.apache.org/activemq/browse/CAMEL-920
http://issues.apache.org/activemq/browse/CAMEL-920
http://issues.apache.org/activemq/browse/CAMEL-920

org.apache.camel.file.name

Specifies the output file name (relative to the
endpoint directory) to be used for the output
message when sending to the endpoint. If
this is not present and no expression either
then a generated message Id is used as
filename instead.

org.apache.camel.file.name.produced

New in Camel 1.4: The actual absolute
filepath (path + name) for the output file that
was written. This header is set by Camel
and its purpose is providing end-users the
name of the file that was written.

Default Behavior Changed in Camel 1.5
In Camel 1.5 the file consumer will avoid polling files that is currently in the progress of
being written (see option consumer.exclusiveReadLock). However this requires
Camel being able to rename the file for its testing. If the Camel user hasn't this rights on
the file system, you can set this option to false to revert the change to the default
behavior of Camel 1.4 or older.

The recursive option has changed its default value from true to false in Camel 1.5.

Common gotchas with folder and filenames
When Camel is producing files (writing files) there are a few gotchas how to set a
filename of your choice. By default Camel will use the message id as the filename, and
since the message id is normally a unique generated id you will end up with filenames
such as: ID-MACHINENAME\2443-1211718892437\1-0. Such a filename is not desired
and therefore best practice is to provide the filename in the message header
"org.apache.camel.file.name".

The sample code below produces files using the message id as the filename:

from("direct:report").to("file:target/reports");

To use report.txt as the filename you have to do:

from("direct:report").setHeader(FileComponent.HEADER_FILE_NAME,
constant("report.txt")).to("file:target/reports");

Canel will default try to auto create the folder if it does not exists, and this is a bad
combination with the UUID filename from above. So if you have:

from("direct:report").to("file:target/reports/report.txt");

CHAPTER 6 - COMPONENT APPENDIX 96

And you want Camel to store in the file report.txt and autoCreate is true, then Camel will
create the folder: target/reports/report.txt/. To fix this set the autoCreate=false and
create the folder target/reports manually.

from("direct:report").to("file:target/reports/report.txt?autoCreate=false");

With auto create disabled Camel will store the report in the report.txt as expected.

File consumer, scanning for new files gotcha
The file consumer scans for new files by keeping an internal modified timestamp of the
last consumed file. So if you copy a new file that has an older modified timestamp, then
Camel will not pickup this file. This can happen if you are testing and you copy the
same file back to the folder that has just been consumed. To remedy this modify the
timestamp before copying the file back.

Filename Expression
In Camel 1.5 we have support for setting the filename using an expression. This can be
set either using the expression option or as a string based File Language expression in
the org.apache.camel.file.name header. See the File Language for some
samples.

Samples

Read from a directory and write to another directory
from("file://inputdir/?delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the
contents to the outputdir and delete the file in the inputdir.

Read from a directory and process the message in java
from("file://inputdir/").process(new Processor() {

public void process(Exchange exchange) throws Exception {
Object body = exchange.getIn().getBody();
// do some business logic with the input body

}
});

Body will be File object pointing to the file that was just dropped to the inputdir directory.

97 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/File+Language

Read files from a directory and send the content to a jms queue
from("file://inputdir/").convertBodyTo(String.class).to("jms:test.queue")

By default the file endpoint sends a FileMessage which contains a File as body. If you
send this directly to the jms component the jms message will only contain the File object
but not the content. By converting the File to a String the message will contain the file
contents what is probably what you want to do.

Writing to files
Camel is of course also able to write files, eg. producing files. In the sample below we
receive some reports on the SEDA queue that we processes before they are written to a
directory.

public void testToFile() throws Exception {
template.sendBody("seda:reports", "This is a great report");

// give time for the file to be written before assertions
Thread.sleep(1000);

// assert the file exists
File file = new File("target/test-reports/report.txt");
file = file.getAbsoluteFile();
assertTrue("The file should have been written", file.exists());

}

protected JndiRegistry createRegistry() throws Exception {
// bind our processor in the registry with the given id
JndiRegistry reg = super.createRegistry();
reg.bind("processReport", new ProcessReport());
return reg;

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// the reports from the seda queue is processed by our processor
// before they are written to files in the target/reports directory
from("seda:reports").processRef("processReport").to("file://target/

test-reports");
}

};
}

private class ProcessReport implements Processor {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
// do some business logic here

CHAPTER 6 - COMPONENT APPENDIX 98

// set the output to the file
exchange.getOut().setBody(body);

// set the output filename using java code logic, notice that this is
done by setting

// a special header property of the out exchange
exchange.getOut().setHeader(FileComponent.HEADER_FILE_NAME,

"report.txt");
}

}

FileProducer filename gotchas
This unit test demonstrates some of the gotchas with filenames for the File Producer.

public void testProducerWithMessageIdAsFileName() throws Exception {
Endpoint endpoint = context.getEndpoint("direct:report");
Exchange exchange = endpoint.createExchange();
exchange.getIn().setBody("This is a good report");

FileEndpoint fileEndpoint = resolveMandatoryEndpoint("file:target/reports/
report.txt", FileEndpoint.class);

String id = fileEndpoint.getGeneratedFileName(exchange.getIn());

template.send("direct:report", exchange);

File file = new File("target/reports/report.txt/" + id);
assertEquals("File should exists", true, file.exists());

}

public void testProducerWithConfiguedFileNameInEndpointURI() throws Exception {
template.sendBody("direct:report2", "This is another good report");
File file = new File("target/report2.txt");
assertEquals("File should exists", true, file.exists());

}

public void testProducerWithHeaderFileName() throws Exception {
template.sendBody("direct:report3", "This is super good report");
File file = new File("target/report-super.txt");
assertEquals("File should exists", true, file.exists());

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:report").to("file:target/reports/report.txt");

from("direct:report2").to("file:target/
report2.txt?autoCreate=false");

from("direct:report3").setHeader(FileComponent.HEADER_FILE_NAME,
constant("report-super.txt")).to("file:target/");

99 CHAPTER 6 - COMPONENT APPENDIX

}
};

}

Using expression for filenames
In this sample we want to move consumed files to a backup folder using todays date as
a sub foldername:

from("file://inbox?expression=backup/${date:now:yyyyMMdd}/
${file:name}").to("...");

See File Language for more samples.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FIX
The FIX component supports the FIX protocol by using the QuickFix/J library.

URI format

fix://configurationResource

Where configurationResource points to the QuickFix/J configuration file to define how
to connect to FIX. This could be a resource on the classpath or refer to a full URL using
http: or file: schemes.

Message Formats
By default this component will attempt to use the Type Converter to turn the inbound
message body into a QuickFix Message class and all outputs from FIX will be in the
same format.

If you are using the Artix Data Services support then any payload such as files or
streams or byte arrays can be converted nicely into FIX messages.

CHAPTER 6 - COMPONENT APPENDIX 100

http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://en.wikipedia.org/wiki/FIX_protocol
http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/
http://www.quickfixj.org/
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://cwiki.apache.org/confluence/display/CAMEL/Artix+Data+Services
http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html

Using camel-fix
To use this module you need to use the FUSE Mediation Router distribution. Or you
could just add the following to your pom.xml, substituting the version number for the
latest & greatest release.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-parent</artifactId>
<version>1.3.0.1-fuse</version>

</dependency>

And ensure you are pointing at the maven repo

<repository>
<id>open.iona.m2</id>
<name>IONA Open Source Community Release Repository</name>
<url>http://repo.open.iona.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>

<enabled>true</enabled>
</releases>

</repository>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FLATPACK COMPONENT
The Flatpack component supports fixed width and delimited file parsing via the FlatPack
library.
Notice: This component only supports consuming from flatpack files to Object model.
You can not (yet) write from Object model to flatpack format.

URI format

flatpack:[delim|fixed]:flatPackConfig.pzmap.xml

or for a delimited file handler with no configuration file just use

flatpack:someName

101 CHAPTER 6 - COMPONENT APPENDIX

http://open.iona.com/products/fuse-mediation-router/
http://open.iona.com/products/fuse-mediation-router/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://flatpack.sourceforge.net
http://flatpack.sourceforge.net
http://flatpack.sourceforge.net
http://open.iona.com/products/fuse-mediation-router/
http://flatpack.sourceforge.net

Examples
• flatpack:fixed:foo.pzmap.xml creates a fixed width endpoint using the

foo.pzmap.xml file configuration
• flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the

bar.pzmap.xml file configuration
• flatpack:foo creates a delimited endpoint called foo with no file configuration

URI Options

Name Default
Value Description

delimiter ',' The default character delimiter for delimited files

textQualifier '"' The text qualifier delimited files

ignoreFirstRecord true Whether the first line is ignored for delimited files (for
the column headers)

splitRows true As of Camel 1.5 the component can either process
each row one by one or the entire content at once.

Message Headers
Camel will store the following headers on the IN message:
Header Description

camelFlatpackCounter The current row index. For splitRows=false the counter
is the total number of rows.

Message Body
The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that have
converters for java.util.Map or java.util.List.
Usually you want the Map if you process one row at a time (splitRows=true). And the
List for the entire content (splitRows=false), where each element in the list is a Map.
Each Map contain the key for the column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn().getBody(Map.class);
String firstName = row.get("FIRSTNAME");

However you can also always get it as a List (even for splitRows=true). The same
example:

CHAPTER 6 - COMPONENT APPENDIX 102

List data = exchange.getIn().getBody(List.class);
Map row = (Map)data.get(0);
String firstName = row.get("FIRSTNAME");

Header and Trailer records
In Camel 1.5 onwards the header and trailer notions in Flatpack is supported. However
it is required that you must use fixed record id names:

• header for the header record (must be lowercase)
• trailer for the trailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit
one or both of them if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="DATE" length="8"/>

</RECORD>

<COLUMN name="FIRSTNAME" length="35" />
<COLUMN name="LASTNAME" length="35" />
<COLUMN name="ADDRESS" length="100" />
<COLUMN name="CITY" length="100" />
<COLUMN name="STATE" length="2" />
<COLUMN name="ZIP" length="5" />

<RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="STATUS" length="7"/>

</RECORD>

Using the endpoint
A common use case is sending a file to this endpoint for further processing in a
separate route. For example...

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="file://someDirectory"/>
<to uri="flatpack:foo"/>

</route>

<route>
<from uri="flatpack:foo"/>
...

</route>
</camelContext>

You can also convert the payload of each message created to a Map for easy Bean
Integration

103 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

FLATPACK DATAFORMAT
The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.

▪ marshal = from List<Map<String, Object>> to OutputStream (can be
converted to String)

▪ unmarshal = from java.io.InputStream (such as a File, String) to a List
(org.apache.camel.component.flatpack.DataSetList)
The result of the operation will contain all the data. If you need to process each
row one by one you can split the exchange, using the splitter DSL.

Notice: The Flatpack library does currently not support header and trailers for the
marshal operation.

Options
The DataFormat has the following options:
Option Default Description

definition null
The flatpack pzmap configuration file. Can be omitted
in simpler situations, but its preferred to use the
pzmap.

fixed false Delimited or fixed

ignoreFirstRecord true Whether the first line is ignored for delimited files (for
the column headers)

textQualifier " if the text is qualified with a char such as "

delimiter , the delimiter char (; , or the likes)

parserFactory null Uses the default Flatpack parser factory

Usage
To use the data format simply instantiate an instance and invoke the marhsal or
unmarshl operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
...
from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the input using
the Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures
the structure of the files. The result is a DataSetList object we store on the seda
queue.

CHAPTER 6 - COMPONENT APPENDIX 104

http://cwiki.apache.org/confluence/display/CAMEL/Flatpack

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the
corresponding value. This structure can be created in Java code from e.g. a processor.
We marshal the data according to the Flatpack format and converts the result as a
String object and store it on a jms queue.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FTP/SFTP COMPONENT
This component provides access to remote file systems over the FTP and SFTP
protocols.
This component is an extension of the File component.

URI format

ftp://[username@]hostname[:port]/filename[?options]
sftp://[username@]hostname[:port]/filename[?options]

Where filename represents the underlying file name or directory. Can contain nested
folders.
The username is currently only possible to provide in the hostname parameter.

If no username is provided then anonymous login is attempted using no password.
If no port number is provided. Camel will provide default values according to the
protocol. (ftp = 21, sftp = 22)

Examples
ftp://someone@someftpserver.com/public/upload/images/
holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/

105 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/File
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true

budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download

Options

Name Default
Value Description

directory true
indicates whether or not the given file name should be
interpreted by default as a directory or file (as it
sometimes hard to be sure with some FTP servers)

password null specifies the password to use to login to the remote file
system

binary false specifies the file transfer mode BINARY or ASCII.
Default is ASCII.

ftpClientConfig null

Camel 1.5: Reference to a bean in the registry as a
org.apache.commons.net.ftp.FTPClientConfig
class. Use this option if you need to configure the client
according to the FTP Server date format, locale,
timezone, platform etc. See the javadoc
FTPClientConfig for more documentation.

consumer.recursive true/
false

if a directory, will look for changes in files in all the sub
directories. Is true as default for Camel 1.4 or older. Will
change to false as default value as of Camel 1.5

consumer.setNames false

Used by FTPConsumer. If set to true Camel will set the
special filename header
FileComponent.HEADER_FILE_NAME value to the
filename from the FTP Server.
Note: In Camel 1.4 the default value has changed to
true.

consumer.delay 500 Delay in millis between each poll

consumer.initialDelay 1000 Millis before polling starts

consumer.userFixedDelay false
true to use fixed delay between pools, otherwise fixed
rate is used. See ScheduledExecutorService in JDK for
details.

consumer.regexPattern null Used by FTPConsumer. Regular expression to use for
matching files when consuming.

CHAPTER 6 - COMPONENT APPENDIX 106

ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download
ftp://publicftpserver.com/download
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/apidocs/org/apache/commons/net/ftp/FTPClientConfig.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Timestamp

In Camel 1.4 or older the FTP consumer uses an internal timestamp for last polling.
This timestamp is used to match for new remote files: if remote file modified
timestamp > last poll timestamp => file can be consumed.

In Camel 1.5 this algorithm has been disabled by default as its not reliable over
the FTP protocol. FTP Servers only return file modified timestamps using HH:mm
(not seconds). And of course the clocks between the client and server can also be
out of sync. Bottom line is that timestamp check for FTP protocol should not be
used. That is why this feature is marked as @deprecated and will be removed in
Camel 2.0.

We encourage you to use a different strategy for matching new remote files: such
as deleting or moving the file after download.

consumer.exclusiveReadLock false

Camel 1.5: Used by FTPConsumer. If set to true Camel
will only poll the ftp files if it has exclusive read to the file
(= the file is not in progress of being written). Camel will
wait until it is granted, testing once every second. The
test is implemented by Camel will try to rename the file.
Setting to false Camel will poll the file even if its in
progress of being written.

consumer.deleteFile false
Camel 1.5: Used by FTPConsumer. Flag to set if the
consumed file should be deleted after it has been
downloaded.

consumer.moveNamePrefix null

Camel 1.5: Used by FTPConsumer. The prefix String
perpended to the filename when moving it. For example
to move processed files into the done directory, set this
value to 'done/'

consumer.moveNamePostfix null

Camel 1.5: Used by FTPConsumer. The postfix String
appended to the filename when moving it. For example
to rename processed files from foo to foo.old set this
value to '.old'

consumer.excludedNamePrefix null Camel 1.5: Used by FTPConsumer. Is used to exclude
files if filename is starting with the given prefix.

consumer.excludedNamePostfix null Camel 1.5: Used by FTPConsumer. Is used to exclude
files if filename is ending with the given postfix.

consumer.timestamp false Camel 1.5: @deprecated will be removed in Camel 2.0.
This option is only for backwards comparability.

107 CHAPTER 6 - COMPONENT APPENDIX

expression null

Camel 1.5: Use expression to dynamically set the
filename. This allows you to very easily set dynamic
pattern style filenames. If an expression is set it take
precedes over the org.apache.camel.file.name
header. (Note: The header can itself also be an
expression). The expression options supports both
String and Expression types. If the expression is a String
type then its always evaluated using the File Language.
If the expression is an Expression type then this type is
of course used as it - this allows for instance to use
OGNL as expression too.

New default behavior for FTP/SFTP-Consumers in Camel 1.5
The consumer will always skip any file which name starts with a dot, such as ".",
".camel", ".m2" or ".groovy". Only files (not directories) is matched for valid
filename if options such as: consumer.regexPattern,
consumer.excludeNamePrefix, consumer.excludeNamePostfix is used.

The consumer recursive option will be changed from true to false as the default
value. We don't feel that Camel out-of-the-box should recursive poll.

The consumer will not use timestamp algorithm for determine if a remote file is a new
file - see warning section above. To use the old behavior of Camel 1.4 or older you can
use the option consumer.timestamp=true.

Exclusive Read Lock
The new option consumer.exclusiveReadLock can be used to force Camel not to
consume files that is currently in the progress of being written. However this option is
default turned off, as it requires that the user has write access. There are other solutions
to avoid consuming files that are currently being written over FTP, for instance you can
write the a temporary destination and move the file after it has been written.

Message Headers
The following message headers can be used to affect the behavior of the component
Header Description

CHAPTER 6 - COMPONENT APPENDIX 108

http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/OGNL

org.apache.camel.file.name

Specifies the output file name (relative to the
endpoint directory) to be used for the output
message when sending to the endpoint. If
this is not present and no expression either
then a generated message Id is used as
filename instead.

org.apache.camel.file.name.produced

New in Camel 1.5: The actual absolute
filepath (path + name) for the output file that
was written. This header is set by Camel
and its purpose is providing end-users the
name of the file that was written.

file.remote.host The hostname of the remote server

file.remote.name The name of the file consumed from the
remote server

file.remote.fullName The fullname of the file consumed from the
remote server

Consumer properties
When using FTPConsumer (downloading files from a FTP Server) the consumer
specific properties from the File component should be prefixed with "consumer.". For
example the delay option from File Component should be specified as
"consumer.delay=30000" in the URI. See the samples or some of the unit tests of this
component.

Filename Expression
In Camel 1.5 we have support for setting the filename using an expression. This can be
set either using the expression option or as a string based File Language expression in
the org.apache.camel.file.name header. See the File Language for some
samples.

Known issues
See the timestamp warning.

When consuming files (downloading) you must use type conversation to either String
or to InputStream for ASCII and BINARY file types.
In Camel 1.4 this is fixed, as there are build in type converters for the ASCII and
BINARY file types, meaning that you do not need the convertBodyTo expression.

109 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/File+Language

In Camel 1.4 or below Camel FTPConsumer will poll files regardless if the file is
currently being written. See the consumer.exclusiveReadLock option.

Also in Camel 1.3 since setNames is default false then you must explicitly set the
filename using the setHeader expression when consuming from FTP directly to File.
The code below illustrates this:

private String ftpUrl =
"ftp://camelrider@localhost:21/public/downloads?password=admin&binary=false";
private String fileUrl = "file:myfolder/?append=false&noop=true";

return new RouteBuilder() {
public void configure() throws Exception {

from(ftpUrl).setHeader(FileComponent.HEADER_FILE_NAME,
constant("downloaded.txt")).convertBodyTo(String.class).to(fileUrl);

}
};

Or you can set the option to true as illustrated below:

private String ftpUrl =
"ftp://camelrider@localhost:21/public/downloads?password=admin&binary=false&consumer.setNames=true";
private String fileUrl = "file:myfolder/?append=false&noop=true";

return new RouteBuilder() {
public void configure() throws Exception {

from(ftpUrl).convertBodyTo(String.class).to(fileUrl);
}

};

Sample
In the sample below we setup Camel to download all the reports from the FTP server
once every hour (60 min) as BINARY content and store it as files on the local file
system.

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// we use a delay of 60 minutes (eg. once pr. hour we poll the FTP

server
long delay = 60 * 60 * 1000L;

// from the given FTP server we poll (= download) all the files
// from the public/reports folder as BINARY types and store this as

files
// in a local directory. Camel will use the filenames from the

FTPServer

// notice that the FTPConsumer properties must be prefixed with
"consumer." in the URL

// the delay parameter is from the FileConsumer component so we

CHAPTER 6 - COMPONENT APPENDIX 110

should use consumer.delay as
// the URI parameter name. The FTP Component is an extension of the

File Component.

from("ftp://scott@localhost/public/reports?password=tiger&binary=true&consumer.delay="
+ delay).

to("file://target/test-reports");
}

};
}

Using expression for filenames
In this sample we want to move consumed files to a backup folder using today's date as
a sub foldername:

from(ftpUrl + "&expression=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

See File Language for more samples.

Debug logging
This component has log level TRACE that can be helpful if you have problems.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

HIBERNATE COMPONENT
The hibernate: component allows you to work with databases using Hibernate as the
object relational mapping technology to map POJOs to database tables. The camel-
hibernate library is provided by the Camel Extra project which hosts all *GPL related
components for Camel.

Sending to the endpoint
Sending POJOs to the hibernate endpoint inserts entities into the database. The body of
the message is assumed to be an entity bean that you have mapped to a relational table
using the hibernate .hbm.xml files.

If the body does not contain an entity bean then use a Message Translator in front of
the endpoint to perform the necessary conversion first.

111 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://code.google.com/p/camel-extra/

Consuming from the endpoint
Consuming messages removes (or updates) entities in the database. This allows you to
use a database table as a logical queue, consumers take messages from the queue and
then delete/update them to logically remove them from the queue.

If you do not wish to delete the entity when it has been processed you can specify
consumeDelete=false on the URI. This will result in the entity being processed each
poll.

If you would rather perform some update on the entity to mark it as processed (such
as to exclude it from a future query) then you can annotate a method with @Consumed
which will be invoked on your entity bean when the entity bean is consumed.

URI format

hibernate:[entityClassName]

For sending to the endpoint, the entityClassName is optional. If specified it is used to
help use the [Type Conversion] to ensure the body is of the correct type.

For consuming the entityClassName is mandatory.

Options

Name Default Value Description

entityType entityClassName Is the provided entityClassName
from the URI

consumeDelete true

Option for HibernateConsumer only.
Enables / disables whether or not
the entity is deleted after it is
consumed.

consumeLockEntity true

Option for HibernateConsumer only.
Enables / disables whether or not to
use exclusive locking of each entity
while processing the results from the
pooling.

flushOnSend true
Option for HibernateProducer only.
Flushes the EntityManager after the
entity beans has been persisted.

maximumResults -1
Option for HibernateConsumer only.
Set the maximum number of results
to retrieve on the Query.

CHAPTER 6 - COMPONENT APPENDIX 112

http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

consumer.delay 500 Option for HibernateConsumer only.
Delay in millis between each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only.
Millis before polling starts.

consumer.userFixedDelay false

Option for HibernateConsumer only.
true to use fixed delay between
pools, otherwise fixed rate is used.
See ScheduledExecutorService in
JDK for details.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

HL7 COMPONENT
The hl7 component is used for working with the HL7 MLLP protocol and the HL7 model
using the HAPI library.

This component supports the following:
▪ HL7 MLLP codec for Mina
▪ Agnostic data format using either plain String objects or HAPI HL7 model

objects.
▪ Type Converter from/to HAPI and String
▪ HL7 DataFormat using HAPI library
▪ Even more easy-of-use as its integrated well with the camel-mina component.

HL7 MLLP protocol
HL7 is often used with the HL7 MLLP protocol that is a text based TCP socket based
protocol. This component ships with a Mina Codec that conforms to the MLLP protocol
so you can easily expose a HL7 listener that accepts HL7 requests over the TCP
transport.

To expose a HL7 listener service we reuse the existing camel-mina component
where we just use the HL7MLLPCodec as codec.

The HL7 MLLP codec has the following options:

Name Default
Value Description

113 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.hl7.org/
http://www.hl7.org/
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://www.hl7.org/
http://hl7api.sourceforge.net
http://mina.apache.org/

startByte 0x0b The start byte spanning the HL7 payload. Is the HL7
default value of 0x0b (11 decimal)

endByte1 0x1c The first end byte spanning the HL7 payload. Is the HL7
default value of 0x1c (28 decimal)

endByte2 0x0d The 2nd end byte spanning the HL7 payload. Is the HL7
default value of 0x0d (13 decimal)

charset JVM
Default

The encoding (is a charset name) to use for the codec. If
not provided Camel will use the JVM default Charset.

convertLFtoCR true
Will convert \n to \r (0x0d, 13 decimal) as HL7 usually
uses \r as segment terminators. The HAPI library
requires to use \r.

Exposing a HL7 listener
In our spring xml file we configure an endpoint to listen for HL7 requests using TCP:

<endpoint id="hl7listener"
uri="mina:tcp://localhost:8888?sync=true&codec=hl7codec"/>

Notice we configure it to use camel-mina with TCP on the localhost on port 8888. We
use the sync=true to indicate that this listener is synchronous and therefore will return a
HL7 response to the caller. Then we setup mina to use our HL7 codec with
codec=hl7codec. Notice that hl7codec is just a spring bean id, so we could have
named it mygreatcodecforhl7 or whatever. The codec is also setup in the spring xml
file:

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
<property name="charset" value="iso-8859-1"/>

</bean>

And here we configure the charset encoding to use, and iso-8859-1 is commonly
used.

The endpoint hl7listener can then be used in a route as a consumer, as this java
DSL example illustrates:

from("hl7socket").to("patientLookupService");

This is a very simple route that will listen for HL7 and route it to a service named
patientLookupService that is also a spring bean id we have configured in the spring
xml as:

<bean id="patientLookupService"
class="com.mycompany.healtcare.service.PatientLookupService"/>

CHAPTER 6 - COMPONENT APPENDIX 114

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

And another powerful feature of Camel is that we can have our busines logic in POJO
classes that is not at all tied to Camel as shown here:

public class PatientLookupService {
public Message lookupPatient(Message input) throws HL7Exception {

QRD qrd = (QRD)input.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

// find patient data based on the patient id and create a HL7 model
object with the response

Message response = ... create and set response data
return response

}

Notice that this class is just using imports from the HAPI library and none from Camel.

HL7 Model using java.lang.String
The HL7MLLP codec uses plain String as data format. And Camel uses Type Converter
to convert from/to Strings to the HAPI HL7 model objects. However you can use the
plain String objects if you would like to, for instance if you need to parse the data
yourself.

See samples for such an example.

HL7 Model using HAPI
The HL7 model is Java objects from the HAPI library. Using this library we can encode
and decode from the EDI format (ER7) that is mostly used with HL7.
With this model you can code with Java objects instead of the EDI based HL7 format
that can be hard for humans to read and understand.

The ER7 sample below is a request to lookup a patient with the patient id
0101701234.

MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

Using the HL7 model we can work with the data as a
ca.uhn.hl7v2.model.Message.Message object.
To retrieve the patient id for the patient in the ER7 above you can do this in java code:

Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

Camel has build in type converters so when this operation is invoked:

Message msg = exchange.getIn().getBody(Message.class);

115 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter

Camel will converter the received HL7 data from String to the Message object. This is
powerful when combined with the HL7 listener, then you as the end-user don't have to
work with byte[], String or any other simple object formats. You can just use the HAPI
HL7 model objects.

HL7 DATAFORMAT
The HL7 component ships with a HL7 dataformat that can be used to format between
String and HL7 model objects.

▪ marshal = from Message to byte stream (can be used when returning as
response using the HL7 MLLP codec)

▪ unmarshal = from byte stream to Message (can be used when receiving
streamed data from the HL7 MLLP

To use the data format simply instantiate an instance and invoke the marhsal or
unmarshl operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
...
from("direct:hl7in").marshal(hl7).to("jms:queue:hl7out");

In the sample above the HL7 is marshalled from a HAPI Message object to a byte
stream and put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat();
...
from("jms:queue:hl7out").unmarshal(hl7).to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is passed to our
patient lookup service.

Notice there is a shorthand syntax in Camel for well known data formats that is
commonly used.
Then you don't need to create an instance of the HL7DataFormat object:

from("direct:hl7in").marshal().hl7().to("jms:queue:hl7out");
from("jms:queue:hl7out").unmarshal().hl7().to("patientLookupService");

The unmarshal operation adds these MSH fields as headers on the Camel message:
Key MSH field Example

hl7.msh.sendingApplication MSH-3 MYSERVER

hl7.msh.sendingFacility MSH-4 MYSERVERAPP

hl7.msh.receivingApplication MSH-5 MYCLIENT

hl7.msh.receivingFacility MSH-6 MYCLIENTAPP

CHAPTER 6 - COMPONENT APPENDIX 116

http://cwiki.apache.org/confluence/display/CAMEL/HL7

hl7.msh.timestamp MSH-7 20071231235900

hl7.msh.security MSH-8 null

hl7.msh.messageType MSH-9-1 ADT

hl7.msh.triggerEvent MSH-9-2 A01

hl7.msh.messageControl MSH-10 1234

hl7.msh.processingId MSH-11 P

hl7.msh.versionId MSH-12 2.4
All headers are String types. If a header value is missing its value is null.

SAMPLES
In the following example we send a HL7 request to a HL7 listener and retrieves a
response. We use plain String types in this example:

String line1 =
"MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4";
String line2 = "QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||";

StringBuffer in = new StringBuffer();
in.append(line1);
in.append("\n");
in.append(line2);

String out =
(String)template.requestBody("mina:tcp://localhost:8888?sync=true&codec=hl7codec",
in.toString());

In the next sample we want to route HL7 requests from our HL7 listener to our business
logic. We have our business logic in a plain POJO that we have registered in the
registry as hl7service = for instance using Spring and letting the bean id =
hl7service.

Our business logic is a plain POJO only using the HAPI library so we have these
operations defined:

public class MyHL7BusinessLogic {

// This is a plain POJO that has NO imports whatsoever on Apache Camel.
// its a plain POJO only importing the HAPI library so we can much easier

work with the HL7 format.

public Message handleA19(Message msg) throws Exception {
// here you can have your business logic for A19 messages
assertTrue(msg instanceof QRY_A19);
// just return the same dummy response

117 CHAPTER 6 - COMPONENT APPENDIX

return createADR19Message();
}

public Message handleA01(Message msg) throws Exception {
// here you can have your business logic for A01 messages
assertTrue(msg instanceof ADT_A01);
// just return the same dummy response
return createADT01Message();

}
}

Then we setup the Camel routes using the RouteBuilder as:

DataFormat hl7 = new HL7DataFormat();
// we setup or HL7 listener on port 8888 (using the hl7codec) and in sync mode
so we can return a response
from("mina:tcp://localhost:8888?sync=true&codec=hl7codec")

// we use the HL7 data format to unmarshal from HL7 stream to the HAPI
Message model

// this ensures that the camel message has been enriched with hl7 specific
headers to

// make the routing much easier (see below)
.unmarshal(hl7)
// using choice as the content base router
.choice()

// where we choose that A19 queries invoke the handleA19 method on our
hl7service bean

.when(header("hl7.msh.triggerEvent").isEqualTo("A19"))
.beanRef("hl7service", "handleA19")
.to("mock:a19")

// and A01 should invoke the handleA01 method on our hl7service bean
.when(header("hl7.msh.triggerEvent").isEqualTo("A01")).to("mock:a01")

.beanRef("hl7service", "handleA01")

.to("mock:a19")
// other types should go to mock:unknown
.otherwise()

.to("mock:unknown")
// end choice block
.end()
// marhsal response back
.marshal(hl7);

Notice that we use the HL7 DataFormat to enrich our Camel Message with the MSH
fields preconfigued on the Camel Message. This let us much more easily define our
routes using the fluent builders.
If we do not use the HL7 DataFormat then we do not gains these headers and we must
resort to a different technique for computing the MSH trigger event (= what kind of HL7
message it is). This is a big advantage of the HL7 DataFormat over the plain HL7 type
converters.

CHAPTER 6 - COMPONENT APPENDIX 118

Sample using plain String objects
In this sample we use plain String objects as the data format, that we send, process and
receive. As the sample is part of an unit test there is some code for assertions, but you
should be able to understand what happens. First we send the plain String Hello World
to the HL7MLLPCodec and receives the response that is also just plain string as we
receive Bye World.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Bye World");

// send plain hello world as String
Object out =
template.requestBody("mina:tcp://localhost:8888?sync=true&codec=hl7codec",
"Hello World");

assertMockEndpointsSatisifed();

// and the response is also just plain String
assertEquals("Bye World", out);

Here we process the incoming data as plain String and send the response also as plain
String:

from("mina:tcp://localhost:8888?sync=true&codec=hl7codec")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
// use plain String as message format
String body = exchange.getIn().getBody(String.class);
assertEquals("Hello World", body);

// return the response as plain string
exchange.getOut().setBody("Bye World");

}
})
.to("mock:result");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

HTTP COMPONENT
The http: component provides HTTP based endpoints for consuming external HTTP
resources.

119 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint

URI format

http:hostname[:port][/resourceUri][?options]

Usage
You can only produce to endpoints generated by the HTTP component. Therefore it
should never be used aas input into your camel Routes. To bind/expose an HTTP
endpoint via an http server as input to a camel route, you can use the Jetty Component

URI Parameters
The http producer supports URI parameters to be sent to the HTTP server. The URI
parameters can either be set directly on the endpoint URI or as a header with the key
HttpProducer.QUERY on the message. See samples below.

How to set the POST/PUT/INFO/DELETE/GET to the HTTP producer
The HTTP component provides a way to set the HTTP request method by setting the
message header. Here is an example;

new RouteBuilder() {
public void configure() {

from("direct:start")
.setHeader(org.apache.camel.component.http.HttpMethods.HTTP_METHOD,

constant(org.apache.camel.component.http.HttpMethods.POST))
.to("http://www.google.com")

.to("mock:results");
}

};

And the equivalent spring sample:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<setHeader headerName="http.requestMethod">

<constant>POST</constant>
</setHeader>
<to uri="http://www.google.com"/>
<to uri="mock:results"/>

</route>
</camelContext>

Sample with scheduled poll
The sample polls the Google homepage every 10 seconds and write the page to the file
message.html

CHAPTER 6 - COMPONENT APPENDIX 120

http://cwiki.apache.org/confluence/display/CAMEL/Jetty

from("timer://foo?fixedRate=true&delay=0&period=10000")
.to("http://www.google.com")
.setHeader(FileComponent.HEADER_FILE_NAME, "message.html").to("file:target/

google");

URI Parameters from the endpoint URI
In this sample we have the complete URI endpoint that is just what you would have
typed in a web browser. Multiple URI parameters can of course be set using the & as
separator, just as you would in the web browser. Camel does no tricks here.

// we query for Camel at the Google page
template.sendBody("http://www.google.com/search?q=Camel", "");

URI Parameters from the Message

Map headers = new HashMap();
headers.put(HttpProducer.QUERY, "q=Camel&lr=lang_en");
// we query for Camel and english language at Google
template.sendBody("http://www.google.com/search", "", headers);

In the header value above notice that it should not be prefixed with ? and you can
separate parameters as usual with the & char.

Response Code
You can get the http response code from the http component by getting the value from
out message header with HttpProducer.HTTP_RESPONSE_CODE.

Exchange exchange = template.send("http://www.google.com/search", new
Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getIn().setHeader(HttpProducer.QUERY,

constant("hl=en&q=activemq"));
}

});
Message out = exchange.getOut();
int responseCode = out.getHeader(HttpProducer.HTTP_RESPONSE_CODE,

Integer.class);

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

121 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

IBATIS
The ibatis: component allows you to query, poll, insert, update and delete data in a
relational database using Apache iBATIS.

URI format

ibatis:operationName

Where operationName is the name in the iBATIS XML configuration file which maps to
the query, insert, update or delete operation you wish to evaluate.

Options
None

Message Headers
Camel will populate the result message, either IN or OUT with a header with the
operationName used:
Header Type Description

org.apache.camel.ibatis.queryName String The operationName used
(for example: insertAccount)

Samples
For example if you wish to consume beans from a JMS queue and insert them into a
database you could do.

from("activemq:queue:newAccount").
to("ibatis:insertAccount");

Where insertAccount is the iBatis id in the SQL map file:

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterClass="Account">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL

)
values (

#id#, #firstName#, #lastName#, #emailAddress#
)

</insert>

CHAPTER 6 - COMPONENT APPENDIX 122

http://ibatis.apache.org/
http://ibatis.apache.org/
http://ibatis.apache.org/

Scheduled polling example
Since this component does not support scheduled polling you need to use another
mechanism for triggering the scheduled pools such as the Timer or Quartz components.

In the sample below we poll the database, every 30th second using the Timer
component and sends the data to the JMS queue:

from("timer://pollTheDatabase?delay=30000").to("ibatis:selectAllAccounts").to("activemq:queue:allAccounts");

And the iBatis SQL map file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

IRC COMPONENT
The irc: component implements an IRC (Iternet Relay Chat) transport.

URI format

irc:host[:port]/#room

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JAVASPACE COMPONENT
The javaspace: component is a transport for working with any JavaSpace compliant
implementation, this component has been tested with both the Blitz implementation and
the GigaSpace implementation .
This component can be used for sending and receiving any object inheriting from the

123 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.dancres.org/blitz/
http://www.dancres.org/blitz/
http://www.gigaspaces.com/
http://www.gigaspaces.com/
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.dancres.org/blitz/
http://www.gigaspaces.com/

Jini Entry class, it's also possible to pass an id (Spring Bean) of a template that can be
used for reading/taking the entries from the space.
This component can be also used for sending/receiving any serializable object acting as
a sort of generic transport. The JavaSpace component contains a special optimization
for dealing with the BeanExchange. It can be used, then, for invoking remotely a POJO
using as a transport a JavaSpace.
This latter feature can be used for an easy implementation of the master/worker pattern
where a POJO provides the business logic for the worker.
Look at the test cases for seeing the various usage option for this component.

URI format

javaspace:jini://host?options

Examples

Sending and Receiving Entries
//Sending route
from("direct:input").to("javaspace:jini://localhost?spaceName=mySpace");

//Receiving Route
from("javaspace:jini://localhost?spaceName=mySpace&templateId=template&verb=take&concurrentConsumers=1")
In this case the payload can be any object inheriting from the Jini Entry.

Sending and receiving serializable objects
Using the routes as above it's also possible to send and receive any serializable object.
The camel component detects that the payload is not a Jini Entry and then it
automatically wraps the payload into a Camel Jini Entry. In this way a JavaSpace can
be used as a generic transport.

Using JavaSpace as a remote invocation transport
The camel-javaspace component has been tailored to work in combination with the
camel-bean component. It's possible, then, to call a remote POJO using JavaSpace as
a transport:
from("direct:input").to("javaspace:jini://localhost?spaceName=mySpace");
//Client side

CHAPTER 6 - COMPONENT APPENDIX 124

from("javaspace:jini://localhost?concurrentConsumers=10&spaceName=mySpace").to("pojo:pojo");
//Server side
In the code there are two test cases showing how to use the a POJO for realizing the
master/worker pattern. The idea is to use the POJO for providing the business logic and
relying on camel for sending/receiving requests/replies with the proper correlation.

Options

Name Default Value Description

spaceName null This is the JavaSpace name

verb take This is the verb for getting JavaSpace
entries, it can be: take or read

transactional false
if true, sending and receiving of
entries is performed under a
transaction

transactionalTimeout Long.MAX_VALUE the transaction timeout

concurrentConsumers 1 the number of concurrent consumer
getting entries from the JavaSpace

templateId null
if present, this option it's a Spring
Bean id to be used as a template for
reading/taking entries

Using camel-javaspace
To use this module you need to use the FUSE Mediation Router distribution. Or you
could just add the following to your pom.xml, substituting the version number for the
latest & greatest release.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-parent</artifactId>
<version>1.4.0.0-fuse</version>

</dependency>

And ensure you are pointing at the maven repo

<repository>
<id>open.iona.m2</id>
<name>IONA Open Source Community Release Repository</name>
<url>http://repo.open.iona.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>

125 CHAPTER 6 - COMPONENT APPENDIX

http://open.iona.com/products/fuse-mediation-router/
http://open.iona.com/products/fuse-mediation-router/
http://open.iona.com/products/fuse-mediation-router/

<releases>
<enabled>true</enabled>

</releases>
</repository>

Building From Source
The source for camel-javaspace is available here: https://projects.open.iona.com/
projects/svn/iona/camel/trunk/components/camel-javaspace/

You'll need to register with http://open.iona.com to be able to access subversion.
The full FUSE distro is here: https://projects.open.iona.com/projects/svn/iona/camel/

trunk/

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JBI COMPONENT
The jbi: component is provided by the ServiceMix Camel module and provides
integration with a JBI Normalized Message Router such as provided by Apache
ServiceMix

Following code

from("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

automatically exposes new endpoint to the bus where service qname is
{http://foo.bar.org}MyService and endpoint name is MyEndpoint (refer to URI format
later).

All that has to be done to use this endpoint is to send messages from some endpoint
already declared (for example with jms:endpoint) to this JBI camel endpoint (the
same way as messages are sent to EIP endpoints or any other endpoint) and camel will
pick it up the same way as it picks any other messages.

Sending works in the same way:

to("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

Is used to send messages to JBI endpoint already deployed to the bus. It could be an
endpoint exposed by jms:endpoint, http:provider or anything else.

CHAPTER 6 - COMPONENT APPENDIX 126

https://projects.open.iona.com/projects/svn/iona/camel/trunk/components/camel-javaspace/
https://projects.open.iona.com/projects/svn/iona/camel/trunk/components/camel-javaspace/
https://projects.open.iona.com/projects/svn/iona/camel/trunk/components/camel-javaspace/
http://open.iona.com
http://open.iona.com
https://projects.open.iona.com/projects/svn/iona/camel/trunk/
https://projects.open.iona.com/projects/svn/iona/camel/trunk/
https://projects.open.iona.com/projects/svn/iona/camel/trunk/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://foo.bar.org
http://foo.bar.org
https://projects.open.iona.com/projects/svn/iona/camel/trunk/components/camel-javaspace/
http://open.iona.com
https://projects.open.iona.com/projects/svn/iona/camel/trunk/
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/
http://foo.bar.org

URI format

jbi:service:serviceNamespace[sep]serviceName
jbi:endpoint:serviceNamespace[sep]serviceName[sep]endpointName
jbi:name:endpointName

The separator used will be:
• '/' if the namespace looks like 'http://'
• ':' if the namespace looks like 'urn:foo:bar'

For more details of valid JBI URIs see the ServiceMix URI Guide.
Using the jbi:service: or jbi:endpoint: URI forms will set the service QName on the

JBI endpoint to the exact one you give. Otherwise the default Camel JBI Service
QName will be used which is

{http://activemq.apache.org/camel/schema/jbi}endpoint

Examples
jbi:service:http://foo.bar.org/MyService
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint
jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint
jbi:name:cheese

URI options

Name Default
value Description

mep
<MEP of
Camel
Exchange>

Allows users to override the MEP being used for interacting
with JBI (values are in-only, in-out, robust-in-out and
in-optional-out)

Examples
jbi:service:http://foo.bar.org/MyService?mep=in-out (override the MEP, use
InOut JBI MessageExchanges)
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?mep=in (override the MEP, use
InOnly JBI MessageExchanges)

Creating a JBI Service Unit
If you have some Camel routes you want to deploy inside JBI as a Service Unit you can
use the JBI Service Unit Archetype to create a new project.

127 CHAPTER 6 - COMPONENT APPENDIX

http://incubator.apache.org/servicemix/uris.html
http://incubator.apache.org/servicemix/uris.html
http://cwiki.apache.org/confluence/display/CAMEL/JBI+Service+Unit+Archetype
http://incubator.apache.org/servicemix/uris.html

If you have an existing maven project which you need to convert into a JBI Service
Unit you may want to refer to the ServiceMix Maven JBI Plugins for further help.
Basically you just need to make sure

• you have a spring XML file at src/main/resources/camel-context.xml which
is used to boot up your routes inside the JBI Service Unit

• you change the pom's packaging to jbi-service-unit
Your pom.xml should look something like this to enable the jbi-service-unit packaging.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>myGroupId</groupId>
<artifactId>myArtifactId</artifactId>
<packaging>jbi-service-unit</packaging>
<version>1.0-SNAPSHOT</version>

<name>A Camel based JBI Service Unit</name>

<url>http://www.myorganization.org</url>

<properties>
<camel-version>1.0.0</camel-version>
<servicemix-version>3.2-incubating</servicemix-version>

</properties>

<dependencies>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-jbi</artifactId>
<version>${camel-version}</version>

</dependency>

<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-core</artifactId>
<version>${servicemix-version}</version>
<scope>provided</scope>

</dependency>
</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>

CHAPTER 6 - COMPONENT APPENDIX 128

http://incubator.apache.org/servicemix/maven-jbi-plugin.html
http://incubator.apache.org/servicemix/maven-jbi-plugin.html
http://incubator.apache.org/servicemix/maven-jbi-plugin.html

<target>1.5</target>
</configuration>

</plugin>

<!-- creates the JBI deployment unit -->
<plugin>

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• ServiceMix Camel module
• Using Camel with ServiceMix

JCR COMPONENT
The jcr: component allows you to add nodes to a JCR (JSR-170) compliant content
repository (e.g. Apache Jackrabbit).

URI format

jcr://user:password@repository/path/to/node

Usage
The repository element of the URI is used to look up the JCR Repository object in
the Camel context registry.

If a message is sent to a producer endpoint created by this component:
• a new node is created in the content repository
• all the message properties of the in message will be transformed to JCR
Value instances and added to the new node

• the node's UUID is returned in the out message

129 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://incubator.apache.org/servicemix/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://jackrabbit.apache.org/

Message properties
All message properties are converted to node properties, except for the
org.apache.camel.component.jcr.node_name (you can refer to
JcrComponent.NODE_NAME in your code), which is used to determine the node name.

Example
The snippet below will create a node named node under the /home/test node in the
content repository. One additional attribute will be added to the node as well:
my.contents.property will contain the body of the message being sent.

from("direct:a").setProperty(JcrComponent.NODE_NAME, constant("node"))
.setProperty("my.contents.property", body()).to("jcr://user:pass@repository/

home/test");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JDBC COMPONENT
The jdbc: component allows you to work with databases using JDBC queries and
operations via SQL text as the message payload.
This component uses standard Java JDBC to work with the database, unlike the SQL
Component component that uses spring-jdbc.

URI format

jdbc:dataSourceName?options

This component only supports producer, meaning that you can not use routes with this
component in the from type.

Options

Name Default
Value Description

readSize 2000 The default maximum number of rows that can be read by a
polling query

CHAPTER 6 - COMPONENT APPENDIX 130

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/SQL+Component
http://cwiki.apache.org/confluence/display/CAMEL/SQL+Component

So far endpoints from this component could be used only as producers. It means
that you cannot use them in from() statement.

Result
The result is returned in the out body as a ArrayList<HashMap<String,
Object>> list object with the result. The List contains the list of rows and the Map
contains each row with the string key as the column name.

Note: This component fetches ResultSetMetaData to be able to return the column
name as the key in the Map.

If the query is an update query the update count is returned in the header
jdbc.updateCount

Samples
In the sample below we fetch the rows from the customer table.

First we register our datasource in the Camel registry as testdb:

JndiRegistry reg = super.createRegistry();
reg.bind("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component so the SQL will be
executed, notice that we refer to the testdb datasource that was bound in the previous
step:

// lets add simple route
public void configure() throws Exception {

from("direct:hello").to("jdbc:testdb?readSize=100");
}

And then we create the endpoint and sends the exchange containing the SQL query to
execute in the in body. The result is returned in the out body.

// first we create our exchange using the endpoint
Endpoint endpoint = context.getEndpoint("direct:hello");
Exchange exchange = endpoint.createExchange();
// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receives the response from Camel
Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);

131 CHAPTER 6 - COMPONENT APPENDIX

assertNotNull(out.getOut());
ArrayList<HashMap<String, Object>> data = out.getOut().getBody(ArrayList.class);
assertNotNull("out body could not be converted to an ArrayList - was: "

+ out.getOut().getBody(), data);
assertEquals(2, data.size());
HashMap<String, Object> row = data.get(0);
assertEquals("cust1", row.get("ID"));
assertEquals("jstrachan", row.get("NAME"));
row = data.get(1);
assertEquals("cust2", row.get("ID"));
assertEquals("nsandhu", row.get("NAME"));

Sample - Polling the database every minute
If we want to poll a database using this component we need to combine this with a
polling scheduler such as the Timer or Quartz etc.
In this sample we retrieve data from the database every 60th seconds.

from("timer://foo?period=60000").setBody(constant("select * from
customer")).to("jdbc:testdb").to("activemq:queue:customers");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JETTY COMPONENT
The jetty: component provides HTTP based endpoints for consuming HTTP requests
that arrive at an http endpoint.

URI format

jetty:http://hostname[:port][/resourceUri][?options]

Options

Name Description Example Required? default
value

CHAPTER 6 - COMPONENT APPENDIX 132

http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint

sessionSupport

The option for
enable the session
manager in the
server side of Jetty.

sessionSupport=true No false

Message Headers
Camel will add the following headers to the input message on the exchange
header description

http.requestMethod The request method: POST,
GET, PUT, etc.

org.apache.camel.component.http.query The HTTP query string
(request.getQueryString)

Camel will also populate all request.parameter and request.headers. For instance of a
client request with http://myserver/myserver?orderid=123 then the exchange
will contain a header named orderid with the value 123. This feature is introduced in
Camel 1.5.

Usage
You can only consume from endpoints generated by the Jetty component. Therefore it
should only be used as input into your camel Routes. To issue HTTP requests against
other HTTP endpoints you can use the HTTP Component

Sample
In this sample we define a route where we expose a http service at
http://localhost:8080/myapp/myservice:

from("jetty:http://localhost:8080/myapp/myservice").process(new MyBookService());

Our business logic is implemented in our MyBookService class where we can access
the http request stuff and return a response.
Note: The assert is because the code is part of an unit test.

public class MyBookService implements Processor {
public void process(Exchange exchange) throws Exception {

// just get the body as a string
String body = exchange.getIn().getBody(String.class);

// we have access to the HttpServletRequest here and we can grab it if
we need it

HttpServletRequest req =
exchange.getIn().getBody(HttpServletRequest.class);

133 CHAPTER 6 - COMPONENT APPENDIX

http://myserver/myserver?orderid=123
http://myserver/myserver?orderid=123
http://cwiki.apache.org/confluence/display/CAMEL/HTTP
http://localhost:8080/myapp/myservice
http://localhost:8080/myapp/myservice
http://myserver/myserver?orderid=123
http://localhost:8080/myapp/myservice

assertNotNull(req);

// for unit testing
assertEquals("bookid=123", body);

// send a html response
exchange.getOut(true).setBody("<html><body>Book 123 is Camel in

Action</body></html>");
}

}

In the sample below we have a content based route that routes all requests that contain
the URI parameter one to mock:one and all others to mock:other.

from("jetty:" + serverUri)
.choice()
.when().simple("in.header.one").to("mock:one")
.otherwise()
.to("mock:other");

So if a client sends the http request: http://serverUri?one=hello then camel-
jetty will copy the http request parameter one to the exchange.in.header. Then we can
use the simple language to route exchanges that contain this header to a specific
endpoint and all others to another. If we used a more powerful language than Simple
such as El or OGNL would could also test for the parameter value and do routing based
on the header value as well.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JING COMPONENT
The Jing component uses the Jing Library to perform XML validation of the message
body using either

• RelaxNG XML Syntax
• RelaxNG Compact Syntax

Note that the MSV component can also support RelaxNG XML syntax.

URI format

rng:someLocalOrRemoteResource
rnc:someLocalOrRemoteResource

CHAPTER 6 - COMPONENT APPENDIX 134

http://serverUri?one=hello
http://serverUri?one=hello
http://cwiki.apache.org/confluence/display/CAMEL/Simple
http://cwiki.apache.org/confluence/display/CAMEL/EL
http://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://cwiki.apache.org/confluence/display/CAMEL/MSV
http://serverUri?one=hello
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html

Where rng means use the RelaxNG XML Syntax whereas rnc means use RelaxNG
Compact Syntax. The following examples show possible URI values
Example Description

rng:foo/bar.rng Will take the XML file foo/bar.rng on the classpath

rnc:http://foo.com/
bar.rnc

Will use the RelaxNG Compact Syntax file from the URL
http://foo.com/bar.rnc

Example
The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on
whether or not the XML matches the given RelaxNG Compact Syntax schema (which is
supplied on the classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="rnc:org/apache/camel/component/validator/jing/schema.rnc"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</catch>
</try>

</route>
</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JMS COMPONENT
The JMS component allows messages to be sent to a JMS Queue or Topic; or
messages to be consumed from a JMS Queue or Topic. The implementation of the JMS
Component uses Spring's JMS support for declarative transactions, using Spring's
JmsTemplate for sending and a MessageListenerContainer for consuming.

135 CHAPTER 6 - COMPONENT APPENDIX

http://relaxng.org/
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html
http://java.sun.com/products/jms/

URI format

jms:[topic:]destinationName?properties

So for example to send to queue FOO.BAR you would use

jms:FOO.BAR

You can be completely specific if you wish via

jms:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

jms:topic:Stocks.Prices

Using Temporary Destinations
As of 1.4.0 of Camel you can use temporary queues using the following URL format

jms:temp:queue:foo

or temporary topics as

jms:temp:topic:bar

Where foo and bar, the text after the String jms:temp:queue: or jms:temp:topic:, are
the names of the destinations. This enables multiple routes or processors or beans to
refer to the same temporary destination. e.g. you can create 3 temporary destinations
and use them in routes as inputs or outputs by referring to them by name.

Notes
If you wish to use durable topic subscriptions, you need to specify both clientId and
durableSubscriberName. Note that the value of the clientId must be unique and can
only be used by a single JMS connection instance in your entire network. You may
prefer to use Virtual Topics instead to avoid this limitation. More background on durable
messaging here.

When using message headers; the JMS specification states that header names must
be valid Java identifiers. So by default camel will ignore any headers which do not
match this rule. So try name your headers as if they are valid Java identifiers. One
added bonus of this is that you can then use your headers inside a JMS Selector -
which uses SQL92 syntax which mandates Java identifier syntax for headers.

From Camel 1.4 a simple strategy for mapping headers names is used by default.
The strategy is to replace any dots in the headername with underscore, and vice-versa
when the header name is restored from the JMS message that was sent over the wire.

CHAPTER 6 - COMPONENT APPENDIX 136

http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

If you are using ActiveMQ

Note that the JMS component reuses Spring 2's JmsTemplate for sending
messages. This is not ideal for use in a non-J2EE container and typically requires
some caching JMS provider to avoid performance being lousy.

So if you intent to use Apache ActiveMQ as your Message Broker - which is a

good choice as ActiveMQ rocks , then we recommend that you either
• use the ActiveMQ component which is already configured to use

ActiveMQ efficiently
• use the PoolingConnectionFactory in ActiveMQ

What does this means? No more loosing method names to invoke on a bean
component, no more loosing the filename header for the File Component etc.

Current header name strategy used for accepting header names in Camel:
▪ replace all dots with underscores (e.g. org.apache.camel.MethodName =>
org_apache_camel_MethodName)

▪ test if the name is a valid java identifier using the JDK core classes
▪ if test success then the header is added and sent over the wire, if not its

dropped (logged at DEBUG level)

Properties
You can configure lots of different properties on the JMS endpoint which map to
properties on the JMSConfiguration POJO.
Property Default Value Description

acceptMessagesWhileStopping false Should the consumer accept
messages while it is stopping

acknowledgementModeName "AUTO_ACKNOWLEDGE"

The JMS acknowledgement
name which is one of:
TRANSACTED,
CLIENT_ACKNOWLEDGE,
AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

autoStartup true Should the consumer
container auto-startup

cacheLevelName "CACHE_CONSUMER"
Sets the cache level name for
the underlying JMS
resources

137 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html

For Consuming Messages cacheLevelName settings are vital!

If you are using Spring before 2.5.1 and Camel before 1.3.0 then you might want to
set the cacheLevelName to be CACHE_CONSUMER for maximum performance.

Due to a bug in earlier Spring versions causing a lack of transactional integrity,
previous versions of Camel and Camel versions from 1.3.0 onwwards when used
with earlier Spring versions than 2.5.1 will default to use CACHE_CONNECTION.
See the JIRAs CAMEL-163 and CAMEL-294.

Also if you are using XA or running in a J2EE container then you may want to set
the cacheLevelName to be CACHE_NONE as we have seen using JBoss with
TibCo EMS and JTA/XA you must disable caching.

clientId null

Sets the JMS client ID to use.
Note that this value if
specified must be unique and
can only be used by a single
JMS connection instance. Its
typically only required for
durable topic subscriptions.
You may prefer to use Virtual
Topics instead

concurrentConsumers 1 Specifies the default number
of concurrent consumers

connectionFactory null

The default JMS connection
factory to use for the
listenerConnectionFactory
and
templateConnectionFactory if
neither are specified

deliveryPersistent true Is persistent delivery used by
default?

disableReplyTo false

Do you want to ignore the
JMSReplyTo header and so
treat messages as InOnly by
default and not send a reply
back?

CHAPTER 6 - COMPONENT APPENDIX 138

http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
https://issues.apache.org/activemq/browse/CAMEL-294
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
http://activemq.apache.org/virtual-destinations.html

durableSubscriptionName null
The durable subscriber name
for specifying durable topic
subscriptions

exceptionListener null
The JMS Exception Listener
used to be notified of any
underlying JMS exceptions

explicitQosEnabled false

Set if the deliveryMode,
priority or timeToLive should
be used when sending
messages

exposeListenerSession true
Set if the listener session
should be exposed when
consuming messages

idleTaskExecutionLimit 1

Specify the limit for idle
executions of a receive task,
not having received any
message within its execution.
If this limit is reached, the
task will shut down and leave
receiving to other executing
tasks (in case of dynamic
scheduling; see the
"maxConcurrentConsumers"
setting).

listenerConnectionFactory null
The JMS connection factory
used for consuming
messages

maxConcurrentConsumers 1
Specifies the maximum
number of concurrent
consumers

maxMessagesPerTask 1 The number of messages per
task

messageConverter null The Spring Message
Converter

messageIdEnabled true When sending, should
message IDs be added

139 CHAPTER 6 - COMPONENT APPENDIX

messageTimestampEnabled true
Should timestamps be
enabled by default on
sending messages

priority -1

Values of > 1 specify the
message priority when
sending, if the
explicitQosEnabled property
is specified

selector null

Sets the JMS Selector which
is an SQL 92 predicate used
to apply to messages to filter
them at the message broker.
You may have to encode
special characters such as =
as %3D

receiveTimeout none The timeout when receiving
messages

requestTimeout 20000 The timeout when sending
messages

recoveryInterval none The recovery interval

serverSessionFactory null

The JMS
ServerSessionFactory if you
wish to use
ServerSessionFactory for
consumption

subscriptionDurable false

Enabled by default if you
specify a
durableSubscriberName and
a clientId

taskExecutor null
Allows you to specify a
custom task executor for
consuming messages

templateConnectionFactory null The JMS connection factory
used for sending messages

timeToLive null Is a time to live specified
when sending messages

CHAPTER 6 - COMPONENT APPENDIX 140

transacted false Is transacted mode used for
sending/receiving messages?

transactionManager null The Spring transaction
manager to use

transactionName null The name of the transaction
to use

transactionTimeout null
The timeout value of the
transaction if using
transacted mode

useVersion102 false Should the old JMS API be
used

Concurrent Consuming
A common requirement with JMS is to consume messages concurrently in many
threads to achieve high throughput. As shown above you use the
concurrentConsumers property above.

e.g.

from("jms:SomeQueue?concurrentConsumers=20").bean(MyClass.class);

You can configure the properties on the JmsComponent if you wish or on specific
endpoints via the URI or by configuring the JmsEndpoint directly.

Message format
The exchange that is sent over the JMS wire must conform to the JMS Message spec.

For the exchange.in.header the following rules apply for the keys:
▪ Keys stating with JMS or JMSX is reserved. All user keys will be dropped.
▪ exchange.in.headers keys must be literals and all be valid Java identifiers.

(do not use dots in the key name)
▪ In Camel 1.4 onwards Camel will automatically replace all dots with underscore

for key names. And vice-versa when Camel consumes JMS messages.
For the exchange.in.header the following rules apply for the values:

▪ The values must be primitives or their counter objects (such as Integer, Long,
Character). String, CharSequence, Date, BigDecimal or BigInteger is all
converted to their toString() representation. All other types is dropped.

Camel will log with category org.apache.camel.component.jms.JmsBinding at
DEBUG level if it drops a given header value. Example:

141 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

2008-07-09 06:43:04,046 [main] DEBUG JmsBinding -
Ignoring non primitive header: order of class:
org.apache.camel.component.jms.issues.DummyOrder with value:
DummyOrder{orderId=333, itemId=4444, quantity=2}

Configuring different JMS providers
You can configure your JMS provider inside the Spring XML as follows...

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost?broker.persistent=false"/>

</bean>
</property>

</bean>

Basically you can configure as many JMS component instances as you wish and give
them a unique name via the id attribute. The above example configures an 'activemq'
component. You could do the same to configure MQSeries, TibCo, BEA, Sonic etc.

Once you have a named JMS component you can then refer to endpoints within that
component using URIs. For example for the component name'activemq' you can then
refer to destinations as activemq:[queue:|topic:]destinationName. So you could use
the same approach for working with all other JMS providers.

This works by the SpringCamelContext lazily fetching components from the spring
context for the scheme name you use for Endpoint URIs and having the Component
resolve the endpoint URIs.

Enabling Transacted Consumption
A common requirement is to consume from a queue in a transaction then process the
message using the Camel route. To do this just ensure you set the following properties
on the component/endpoint

• transacted = true
• transactionManager = a Transsaction Manager - typically the

JmsTransactionManager

Using JNDI to find the ConnectionFactory
If you are using a J2EE container you might want to lookup in JNDI to find your
ConnectionFactory rather than use the usual <bean> mechanism in spring. You can do
this using Spring's factory bean or the new XML namespace. e.g.

CHAPTER 6 - COMPONENT APPENDIX 142

http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Component

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="myConnectionFactory"/>

</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="java:env/
ConnectionFactory"/>

Using request timeout
In the sample below we send a request-reply style message (we use the requestBody
method = InOut) to the slow queue for further processing in Camel and we wait for a
return reply.

// send a in-out with a timeout for 5 sec
Object out = template.requestBody("activemq:queue:slow?requestTimeout=5000",
"Hello World");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JPA COMPONENT
The jpa: component allows you to work with databases using JPA (EJB 3 Persistence)
such as for working with OpenJPA, Hibernate, TopLink to work with relational
databases.

Sending to the endpoint
Sending POJOs to the JPA endpoint inserts entities into the database. The body of the
message is assumed to be an entity bean (i.e. a POJO with an @Entity annotation on
it).

If the body does not contain an entity bean then use a Message Translator in front of
the endpoint to perform the necessary conversion first.

Consuming from the endpoint
Consuming messages removes (or updates) entities in the database. This allows you to
use a database table as a logical queue, consumers take messages from the queue and
then delete/update them to logically remove them from the queue.

143 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html

If you do not wish to delete the entity when it has been processed you can specify
consumeDelete=false on the URI. This will result in the entity being processed each
poll.

If you would rather perform some update on the entity to mark it as processed (such
as to exclude it from a future query) then you can annotate a method with @Consumed
which will be invoked on your entity bean when the entity bean is consumed.

URI format

jpa:[entityClassName]

For sending to the endpoint, the entityClassName is optional. If specified it is used to
help use the [Type Conversion] to ensure the body is of the correct type.

For consuming the entityClassName is mandatory.

Options

Name Default Value Description

entityType entityClassName Is the provided entityClassName
from the URI

persistenceUnit camel the JPA persistence unit used by
default

consumeDelete true

Option for JpaConsumer only.
Enables / disables whether or not
the entity is deleted after it is
consumed.

consumeLockEntity true

Option for JpaConsumer only.
Enables / disables whether or not to
use exclusive locking of each entity
while processing the results from the
pooling.

flushOnSend true
Option for JpaProducer only.
Flushes the EntityManager after the
entity beans has been persisted.

maximumResults -1
Option for JpaConsumer only. Set
the maximum number of results to
retrieve on the Query.

consumer.delay 500 Option for JpaConsumer only. Delay
in millis between each poll.

CHAPTER 6 - COMPONENT APPENDIX 144

http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html

consumer.initialDelay 1000 Option for JpaConsumer only. Millis
before polling starts.

consumer.userFixedDelay false

Option for JpaConsumer only. true
to use fixed delay between pools,
otherwise fixed rate is used. See
ScheduledExecutorService in JDK
for details.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

LDAP COMPONENT
The ldap: component allows you to perform searches in LDAP servers using filters as
the message payload.
This component uses standard JNDI (javax.naming) to access the server.

URI format

ldap:ldapServerUrl?options

This component only supports producer, meaning that you can not use routes with this
component in the from type.

Options

Name Default
Value Description

base ou=system The base DN for searches

scope subtree Search the whole subtree. Value must be one of: "object",
"onelevel" or "subtree"

Result
The result is returned in the out body as a
ArrayList<javax.naming.directory.SearchResult> list object with the result.

145 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Samples
In the sample below we fetch the rows from the customer table.

First we register our datasource in the Camel registry as testdb:

JndiRegistry reg = super.createRegistry();
reg.bind("localhost:" + port, getWiredContext());
return reg;

Then we configure a route that routes to the LDAP component so the search will be
executed, notice that we refer to the LdapContext that was bound in the previous step:

public void configure() throws Exception {
from("direct:start").to("ldap:localhost:" + port + "?base=ou=system");

}

And then we create the endpoint and sends the exchange containing the LDAP filter to
execute in the in body. The result is returned in the out body.

Endpoint endpoint = context.getEndpoint("direct:start");
Exchange exchange = endpoint.createExchange();
// then we set the LDAP filter on the in body
exchange.getIn().setBody("(!(ou=test1))");

// now we send the exchange to the endpoint, and receives the response
from Camel

Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);
assertNotNull(out.getOut());
Collection<SearchResult> data = out.getOut().getBody(Collection.class);
assertNotNull("out body could not be converted to a Collection - was: "

+ out.getOut().getBody(), data);

assertFalse(contains("uid=test1,ou=test,ou=system", data));
assertTrue(contains("uid=test2,ou=test,ou=system", data));
assertTrue(contains("uid=testNoOU,ou=test,ou=system", data));
assertTrue(contains("uid=tcruise,ou=actors,ou=system", data));

}

@Override
protected JndiRegistry createRegistry() throws Exception {

JndiRegistry reg = super.createRegistry();
reg.bind("localhost:" + port, getWiredContext());
return reg;

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
public void configure() throws Exception {

from("direct:start").to("ldap:localhost:" + port +

CHAPTER 6 - COMPONENT APPENDIX 146

"?base=ou=system");
}

};
}

}

Sample - Polling the server every minute
If we want to poll an LDAP server using this component we need to combine this with a
polling scheduler such as the Timer or Quartz etc.
In this sample we retrieve data every 60th seconds.

from("timer://foo?period=60000").setBody(constant("(o=apache)")).to("ldap:localhost:1024").to("activemq:queue:committers");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

LIST COMPONENT
The List component provdes a simple BrowsableEndpoint which can be useful for
testing, visualisation tools or debugging. The exchanges sent to the endpoint are all
available to be browsed.

URI format

list:someName

Where someName can be any string to uniquely identify the endpoint

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

LOG COMPONENT
The log: component logs message exchanges to the underlying logging mechanism.
Camel uses commons-logging which allows you to configure logging via

147 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://commons.apache.org/logging/
http://commons.apache.org/logging/
http://commons.apache.org/logging/

• Log4j
• JDK 1.4 logging
• Avalon
• SimpleLog - a simple provider in commons-logging

Refer to the commons-logging user guide for a more complete overview of how to use
and configure commons-logging.

URI format

log:loggingCategory[?level=loggingLevel][options]

Where loggingCategory is the name of the logging category to use and loggingLevel
is the logging level such as DEBUG, INFO, WARN, ERROR - the default is INFO

Formatting
The log formats the execution of exchanges to log lines.
The log uses by default LogFormatter to format the log output.

LogFormatter has the following options:
Option Default Description

showExchangeId false To output the unique exchange id.

showProperties false Output the exchange properties

showHeaders false Output the in message headers

showBodyType true Output the in body Java type

showBody true Output the in body

showOut false If the exchange has an out message then its also
shown

showAll false quick option for turning all options on

multiline false if enabled then each information is logged on a
newline

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Tracer
• How do I use log4j

CHAPTER 6 - COMPONENT APPENDIX 148

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Tracer
http://cwiki.apache.org/confluence/display/CAMEL/How+do+I+use+log4j
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html

• How do I use Java 1.4 logging

MAIL COMPONENT
The mail component provides access to Email via Spring's Mail support and the
underlying JavaMail system.

URI format

smtp://[user-info@]host:port[?password=somepwd]
pop3://[user-info@]host:port[?password=somepwd]
imap://[user-info@]host:port[?password=somepwd]

which supports either POP, IMAP or SMTP underlying protocols.
It is possible to omit the user-info and specify the username as a URI parameter

instead

smtp://host:port?password=somepwd&username=someuser

Such as:

smtp://mycompany.mailserver:30?password=tiger&username=scott

SSL support
Camel have support for secure mail protocols. Just add a s to the scheme such as:

smtps://[user-info@]host:port[?password=somepwd]
pop3s://[user-info@]host:port[?password=somepwd]
imaps://[user-info@]host:port[?password=somepwd]

Default Ports
As of Camel 1.4 support for default port number has been added. If the port number is
omitted Camel will determine based on the protocol the port number to use.
Protocol Default Port Number

SMPT 25

SMPTS 465

POP3 110

POP3S 995

IMAP 143

149 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/How+do+I+use+Java+1.4+logging

Classpath issue

If you have trouble with sending mails that for instance doesn't contain any subject,
has wrong recipients or other unforeseen errors then it could be because of having
geronimo-javamail_1.4_spec-1.3.jar in the classpath. This was the culprit
in a long bug hunt reported in CAMEL-869.

Default consumer delay changed

As of Camel 1.4 the default consumer delay is now 60 seconds. Camel will
therefore only poll the mailbox once a minute to not exhaust the mail server. The
default value in Camel 1.3 is 500 millis.

SSL Information

Its the underlying mail framework that is handling the SSL support. Camel uses
SUN JavaMail. However SUN JavaMail only trusts certificates issued by well known
Certificate Authorities. So if you have issued your own certificate you have to import
it into the local Java keystore file (see SSLNOTES.txt in JavaMail for details).

If you are using your own signed certificates sometimes it can be cumbersome to
install your certificate in the local keystore. Camel provides a test option
dummyTrustManager that when enabled will accept any given certificate.
Notice: this is strongly discouraged not using in production environments.

IMAPS 993

Options

Property Default Description

host The host name or IP address to
connect to

port See Default
Ports

The TCP port number to
connect on

user-info The user name on the email
server

CHAPTER 6 - COMPONENT APPENDIX 150

https://issues.apache.org/activemq/browse/CAMEL-869
https://issues.apache.org/activemq/browse/CAMEL-869
https://issues.apache.org/activemq/browse/CAMEL-869

username
The user name on the email
server configured as a URI
parameter

password null
The users password to use, can
be omitted if the mail server
does not require a password

ignoreUriScheme false

If enabled Camel will use the
scheme to determine the
transport protocol to use (pop,
imap, smtp etc.)

defaultEncoding null The default encoding to use for
MineMessages

contentType text/plain
New option in Camel 1.5. The
mail message content type. Use
text/html for html mails.

folderName INBOX The folder to poll

destination user-info@host
@deprecated use To option.
The TO recipients (the
receivers of the mail)

to user-info@host

The TO recipients (the
receivers of the mail). This
option is introduced in Camel
1.4.

CC null

The CC recipients (the
receivers of the mail). This
option is introduced in Camel
1.4.

BCC null

The BCC recipients (the
receivers of the mail). This
option is introduced in Camel
1.4.

from camel@localhost The FROM email address

151 CHAPTER 6 - COMPONENT APPENDIX

deleteProcessedMessages true/false

Deletes the messages after
they have been processed. This
is done by setting the
DELETED flag on the mail
message. If false then the flag
SEEN is set instead. As of
Camel 1.5 the default setting is
now false.

processOnlyUnseenMessages false/true

As of Camel 1.4 its possible to
configure MailConsumer to only
process unseen messages (eg
new messages) or all. Note
Camel will always skip deleted
messages. Setting this option to
true will filter to only unseen
messages. As of Camel 1.5 the
default setting is now true.

fetchSize -1

As of Camel 1.4 a maximum
number of messages to
consume during a polling can
be set. This can be used to not
exhaust a mail server if a
mailbox folder contains a lot of
messages. Default value of -1
means no fetch size and all
messages will be consumed.
Setting the value to 0 is a
special corner case where
Camel will not consume any
messages at all.

debugMode false

As of Camel 1.4 its possible to
enable the debug mode on the
underlying mail framework.
SUN Mail framework will default
output to System.out.

connectionTimeout 30000
As of Camel 1.4 the connection
timeout can be configured in
millis. Default is 30 seconds.

CHAPTER 6 - COMPONENT APPENDIX 152

dummyTrustManager false

As of Camel 1.4 testing SSL
connections can be easier if
enabling a dummy
TrustManager that trust any
given certificate. Notice this is
only to be used for testing, as it
does not provide any security at
all.

consumer.initialDelay 1000 Millis before the polling starts

consumer.delay 60000

As of Camel 1.4 the default
consumer delay is now 60
seconds. Camel will therefore
only poll the mailbox once a
minute to not exhaust the mail
server. The default value in
Camel 1.3 is 500 millis.

consumer.useFixedDelay false

true to use fixed delay between
pools, otherwise fixed rate is
used. See
ScheduledExecutorService in
JDK for details.

Defaults changed in Camel 1.5
In Camel 1.5 the following default options has changed:

▪ deleteProcessedMessages is now false as we felt Camel should not delete
mails on the mail server by default.

▪ processOnlyUnseenMessages is now true as we felt Camel should only
poll new mails by default.

Mail Message Content
Camel will use the Exchange Message IN body as the MimeMessage text content. The
body is converted to String.class.

Camel copies all the Exchange Message IN headers to the MimeMessage headers.
The subject of the MimeMessage can be configured using a header property on the

in message. The code below demonstrates this:

from("direct:a").setHeader("subject",
constant(subject)).to("smtp://james2@localhost");

153 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

The same applies for other MimeMessage headers such as recipients, so you can use a
header property as the TO:

Map map = new HashMap();
map.put("To", "davsclaus@apache.org");
map.put("From", "jstrachan@apache.org");
map.put("Subject", "Camel rocks");

String body = "Hello Claus.\nYes it does.\n\nRegards James.";
template.sendBodyAndHeaders("smtp://davsclaus@apache.org", body, map);

Headers take precedence over pre configured recipeients
From Camel 1.5 onwards the recipients from the message headers will always take
precedence over any pre configured. The idea is that if you provide any recipients in the
message headers then its what you get (WYSIWYG). The pre configuration is just there
for fallback or if you use fixed recipients.

In the sample code below the mail is sent to davsclaus@apache.org since it will
take precedence over the pre configured. Even if we have CC pre configured they will
not recieve the mail. The headers is all or nothing, it will not mix and match between
headers and pre configured. You either get one or the other.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org");

template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com",
"Hello World", headers);

Multiple recipients easier configuration
Also new in Camel 1.5 is the possibility to set multiple recipients in a single String
parameter. This applied to both the headers and pre configuration.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ;

ningjiang@apache.org");

In the sample above we use semi colon as separators. Camel support both semicolon
= ; and comma = , as separator char.

Samples
We start with a simple route that sends the messages received from a JMS queue as
emails. The email account with be the admin account on mymailserver.com.

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

CHAPTER 6 - COMPONENT APPENDIX 154

In the next sample we will poll a mailbox for new emails once every minute. Notice that
we use the special consumer parameter for setting the poll interval consumer.delay as
60000 millis = 60 seconds.

from("imap://admin@mymailserver.com?password=secret&processOnlyUnseenMessages=true&consumer.delay=60000").to("seda://mails");

In this sample we want to send a mail to multiple recipients. This feature was introduced
in camel 1.4.

// all the recipients of this mail are:
// To: camel@riders.org , easy@riders.org
// CC: me@you.org
// BCC: someone@somewhere.org
String recipients =
"&To=camel@riders.org,easy@riders.org&CC=me@you.org&BCC=someone@somewhere.org";

from("direct:a").to("smtp://you@mymailserver.com?password=secret&From=you@apache.org"
+ recipients);

Attachment Sample
Attachments is a new feature in Camel 1.4 that of course is also supported by the mail
component. In the sample below we send a mail message containing a plain text
message with a logo file attachment.

// create an exchange with a normal body and attachment to be produced as email
Endpoint endpoint =
context.getEndpoint("smtp://james@mymailserver.com?password=secret");

// create the exchange with the mail message that is multipart with a file and a
Hello World text/plain message.
Exchange exchange = endpoint.createExchange();
Message in = exchange.getIn();
in.setBody("Hello World");
in.addAttachment("logo.jpeg", new DataHandler(new FileDataSource("src/test/data/
logo.jpeg")));

// create a producer that can produce the exchange (= send the mail)
Producer producer = endpoint.createProducer();
// start the producer
producer.start();
// and let it go (processes the exchange by sending the email)
producer.process(exchange);

SSL Sample
In this sample we want to poll our Google mail inbox for mails. Google mail requires to
use SSL and have it configured for other clients to access your mailbox. This is done by
logging into your google mail and change your settings to allow IMAP access. Google
have extensive documentation how to do this.

155 CHAPTER 6 - COMPONENT APPENDIX

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+

"&deleteProcessedMessages=false&processOnlyUnseenMessages=true&consumer.delay=60000").to("log:newmail");

The route above will poll the google mail inbox for new mails once every minute and log
it to the newmail logger category.
Running the sample with DEBUG logging enabled we can monitor the progress in the
logs:

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder:
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1
messages.
2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message:
messageNumber=[332], from=[James Bond <007@mi5.co.uk>],
to=YOUR_USERNAME@gmail.com], subject=[...
2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage:
messageNumber=[332], from=[James Bond <007@mi5.co.uk>],
to=YOUR_USERNAME@gmail.com], subject=[...

SSL Sample with dummyTrustManager
In the next sample we want to sent mails from Camel using our own mail server using
secure connections. As our own mail server is using our own signed certificate we need
either to

1. install our certificate in the local keystore Camel uses
2. use the dummyTrustManager option for testing purpose to see if the secure

communication works
In the sample we use the dummyTrustManager option:

from("seda:mailsToSend").to("imaps://ourmailsserver.com?username=camelmail&password=secret&dummyTrustManager=true");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

MINA COMPONENT
The mina: component is a transport for working with Apache MINA

CHAPTER 6 - COMPONENT APPENDIX 156

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://mina.apache.org/
http://mina.apache.org/
http://mina.apache.org/

URI format

mina:tcp://hostname[:port]
mina:udp://hostname[:port]
mina:multicast://hostname[:port]
mina:vm://hostname[:port}

From Camel 1.3 onwards you can specify a codec in the Registry using the codec
option. If you are using TCP and no codec is specified then the textline flag is used to
determine if text line based codec or object serialization should be used instead. By
default the object serialization is used.

For UDP/Multicast if no codec is specified the default uses a basic ByteBuffer based
codec.

Multicast also has a shorthand notation mcast.
The VM protocol is used as a direct forwarding mechanism in the same JVM. See the

MINA VM-Pipe API documentation for details.
A MinaProducer has a default timeout value of 30 seconds, while it waits for a

response from the remote server.
In normal usage camel-mina only supports marshalling the body content - message

headers and exchange properties will not be sent.
However the option transferExchange does allow to transfer the exchange itself over
the wire. See options below.

Options

Name Default
Value Description

codec null

As of 1.3 or later you can refer to a named
ProtocolCodecFactory instance in your Registry
such as your Spring ApplicationContext which is
then used for the marshalling

textline false

Only used for TCP. If no codec is specified then
you can use this flag in 1.3 or later to indicate a text
line based codec; if not specified or the value is
false then Object Serialization is assumed over
TCP.

157 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html

sync false/
true

As of 1.3 or later you can configure the exchange
pattern to be either InOnly (default) or InOut.
Setting sync=true means a synchronous exchange
(InOut), where the client can read the response
from MINA (The exchange out message). The
default value has changed in Camel 1.5 to true. In
older releases the default value is false.

lazySessionCreation false
As of 1.3 or later session can be lazy created to
avoid exceptions if the remote server is not up and
running when the Camel producer is started.

timeout 30000

As of 1.3 or later you can configure the timeout
while waiting for a response from a remote server.
The timeout unit is in millis, so 60000 is 60
seconds. The timeout is only used for
MinaProducer.

encoding JVM
Default

As of 1.3 or later you can configure the encoding (is
a charset name) to use for the TCP textline codec
and the UDP protocol. If not provided Camel will
use the JVM default Charset.

transferExchange false

Only used for TCP. As of 1.3 or later you can
transfer the exchange over the wire instead of just
the body. The following fields is transfered: in body,
out body, in headers, out headers, exchange
properties, exchange exception.

minaLogger false
As of 1.3 or later you can enable Apache MINA
logging filter. Apache MINA uses slf4j logging at
INFO level to log all input and output.

Default behavior changed
In Camel 1.5 the sync option has changed its default value from false to true, as we felt
it was confusing for end-users when they used Mina to call remote servers and Camel
wouldn't wait for the response.

In Camel 1.4 or later codec=textline is no longer supported. Use the
textline=true option instead.

Using custom codec
See the Mina documentation how to write your own codec. To use your custom codec
with camel-mina you should register your codec in the Registry such as the Spring XML

CHAPTER 6 - COMPONENT APPENDIX 158

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/tutorial-on-protocolcodecfilter.html
http://mina.apache.org/tutorial-on-protocolcodecfilter.html
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://mina.apache.org/tutorial-on-protocolcodecfilter.html

file. Then use the codec option to set your codec with its bean id. See HL7 for
examples.

Samples
In this sample we let Camel expose a service that listen for TCP connections on port
6200. We use the textline codec. In out route we create the mina in the from to create
the consumer that listen on port 6200:

from("mina:tcp://localhost:6200?textline=true").to("mock:result");

As the sample is part of an unit test we test it by sending some data on port 6200 to it.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Hello World");

template.sendBody("mina:tcp://localhost:6200?textline=true", "Hello World");

assertMockEndpointsSatisifed();

In the next sample we have a more common use-case where we expose a TCP service
on port 6201 also using the textline codec. However this time we want to return a
response and indicate that we support this so we set the sync option to true on the
consumer.

from("mina:tcp://localhost:6201?textline=true&sync=true").process(new
Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);

}
});

Then we test it by sending some data and retrieving the response using the
template.requestBody() method. As we know the response is a String we cast it to
String and can assert that the response is in fact something we have dynamically set in
our processor code logic.

String response =
(String)template.sendBody("mina:tcp://localhost:6201?textline=true&sync=true",
"World");
assertEquals("Bye World", response);

See Also
• Configuring Camel
• Component
• Endpoint

159 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/HL7
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint

• Getting Started

MOCK COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult. The Mock,
Test and DataSet endpoints work great with the Spring Testing framework to simplify
your unit and integration testing using Enterprise Integration Patterns and Camel's large
range of Components together with the powerful Mock and Test testing endpoints.
The Mock component provides a powerful declarative testing mechanism which is
similar to jMock in that it allows declarative expectations to be created on any Mock
endpoint before a test begins. Then the test is ran which typically fires messages to one
or more endpoints and finally the expectations can be asserted in a test case to ensure
the system worked as expected.

This allows you to test various things like
• the correct number of messages are received on each endpoint
• that the correct payloads are received, in the right order
• that messages arrive on an endpoint in order, using some Expression to create

an order testing function
• that messages arrive match some kind of Predicate such as that specific

headers have certain values, or that parts of the messages match some
predicate such as by evaluating an XPath or XQuery Expression

Note that there is also the Test endpoint which is-a Mock endpoint but which also uses
a second endpoint to provide the list of expected message bodies and automatically
sets up the Mock endpoint assertions. i.e. its a Mock endpoint which automatically sets
up its assertions from some sample messages in a File or database for example.

URI format

mock:someName

Where someName can be any string to uniquely identify the endpoint

Simple Example
Here's a simple example of MockEndpoint in use. First the endpoint is resolved on the
context. Then we set an expectation, then after the test has run we assert our
expectations are met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo",
MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages

CHAPTER 6 - COMPONENT APPENDIX 160

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://jmock.org
http://jmock.org
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://jmock.org

...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations
were met after running a test.

Setting expectations
You can see from the javadoc of MockEndpoint the various helper methods you can use
to set expectations. The main methods available are as follows
Method Description

expectedMessageCount(int) to define the expected message count on the
endpoint

expectedMinimumMessageCount(int) to define the minimum number of expected
messages on the endpoint

expectedBodiesReceived(...) to define the expected bodies that should be
received (in order)

expectsAscending(Expression)
to add an expectation that messages are
received in order using the given Expression
to compare messages

expectsDescending(Expression)
to add an expectation that messages are
received in order using the given Expression
to compare messages

expectsNoDuplicates(Expression)

to add an expectation that no duplicate
messages are received; using an Expression
to calculate a unique identifier for each
message. This could be something like the
JMSMessageID if using JMS, or some
unique reference number within the
message.

Here's another example

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages
In addition you can use the message(int messageIndex) method to add assertions
about a specific message that is received.

161 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)

For example to add expectations of the headers or body of the first message (using
zero based indexing like java.util.List), you can use this code

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor
tests.

A Spring Example
First here's the spring.xml file

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="file:src/test/data?noop=true"/>
<filter>

<xpath>/person/city = 'London'</xpath>
<to uri="mock:matched"/>

</filter>
</route>

</camelContext>

<bean id="myBean" class="org.apache.camel.spring.mock.MyAssertions"
scope="singleton"/>

As you can see it defines a simple routing rule which consumes messages from the
local src/test/data directory. The noop flag just means not to delete or move the file
after its been processed.

Also note we instantiate a bean called myBean, here is the source of the
MyAssertions bean.

public class MyAssertions implements InitializingBean {
@EndpointInject(uri = "mock:matched")
private MockEndpoint matched;

@EndpointInject(uri = "mock:notMatched")
private MockEndpoint notMatched;

public void afterPropertiesSet() throws Exception {
// lets add some expectations
matched.expectedMessageCount(1);
notMatched.expectedMessageCount(0);

}

public void assertEndpointsValid() throws Exception {
// now lets perform some assertions that the test worked as we expect
Assert.assertNotNull("Should have a matched endpoint", matched);
Assert.assertNotNull("Should have a notMatched endpoint", notMatched);
MockEndpoint.assertIsSatisfied(matched, notMatched);

}
}

CHAPTER 6 - COMPONENT APPENDIX 162

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java

The bean is injected with a bunch of Mock endpoints using the @EndpointInject
annotation, it then sets a bunch of expectations on startup (using Spring's
InitializingBean interface and afterPropertiesSet() method) before the CamelContext
starts up.

Then in our test case (which could be JUnit or TesNG) we lookup myBean in Spring
(or have it injected into our test) and then invoke the assertEndpointsValid() method
on it to verify that the mock endpoints have their assertions met. You could then inspect
the message exchanges that were delivered to any of the endpoints using the
getReceivedExchanges() method on the Mock endpoint and perform further assertions
or debug logging.

Here is the actual JUnit test case we use.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

MSV COMPONENT
The MSV component performs XML validation of the message body using the MSV
Library using any of the XML schema languages supported such as XML Schema or
RelaxNG XML Syntax.

Note that the Jing component also supports RelaxNG Compact Syntax

URI format

msv:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on the
classpath or a full URL to a remote resource or resource on the file system. For
example

• msv:org/foo/bar.rng
• msv:file:../foo/bar.rng
• msv:http://acme.com/cheese.rng

Example
The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on

163 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://msv.dev.java.net/
https://msv.dev.java.net/
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
../foo/bar.rng
../foo/bar.rng
http://acme.com/cheese.rng
http://acme.com/cheese.rng
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
../foo/bar.rng
http://acme.com/cheese.rng
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml

whether or not the XML matches the given RelaxNG XML Schema (which is supplied on
the classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="msv:org/apache/camel/component/validator/msv/schema.rng"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</catch>
</try>

</route>
</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

POJO COMPONENT
The pojo: component is now just an alias for the Bean component.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

QUARTZ COMPONENT
The quartz: component provides a scheduled delivery of messages using the Quartz
scheduler.
Each endpoint represents a different timer (in Quartz terms, a Trigger and JobDetail).

CHAPTER 6 - COMPONENT APPENDIX 164

http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://relaxng.org/
http://www.opensymphony.com/quartz/

URI format

quartz://timerName?parameters
quartz://groupName/timerName?parameters
quartz://groupName/timerName/cronExpression

You can configure the Trigger and JobDetail using the parameters (if not using cron
expression)
Parameter Description

trigger.repeatCount How many times should the timer repeat for?

trigger.repeatInterval The amount of time in milliseconds between repeated triggers

job.name Sets the name of the job
For example the following routing rule will fire 2 timer events to the endpoint
mock:results

from("quartz://myGroup/
myTimerName?trigger.repeatInterval=2&trigger.repeatCount=1").to("mock:result");

Message Headers
Camel adds the getters from Quartz Execution Context as header values. These
headers is added:
calendar, fireTime, jobDetail, jobInstance, jobRuntTime,
mergedJobDataMap, nextFireTime, previousFireTime, refireCount,
result, scheduledFireTime, scheduler, trigger, triggerName,
triggerGroup.

The fireTime header contains the java.util.Date for when the exchange was
fired.

Using Cron Triggers
Quartz supports Cron-like expressions for specifying timers in a handy format. You can
use these expressions in the URI; though to preserve valid URI encoding we allow / to
be used instead of spaces and $ to be used instead of ?.

For example the following will fire a message at 12pm (noon) every day

from("quartz://myGroup/myTimerName/0/0/12/*/*/$").to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0 12 * * ?

The following table shows the URI character encodings we use to preserve valid URI
syntax

165 CHAPTER 6 - COMPONENT APPENDIX

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html

URI Character Cron character

'/' ' '

'$' '?'

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Timer

QUEUE COMPONENT
The queue: component provides asynchronous SEDA behaviour so that messages are
exchanged on a BlockingQueue and consumers are invoked in a seperate thread pool
to the producer.

Note that queues are only visible within a single CamelContext. If you want to
communicate across CamelContext instances such as to communicate across web
applications, see the VM component.

Note also that this component has nothing to do with JMS, if you want a distributed
SEA then try using either JMS or ActiveMQ or even MINA

URI format

queue:someName

Where someName can be any string to uniquely identify the endpoint within the current
CamelContext

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

REF COMPONENT
The ref: component is used for lookup of existing endpoints bound in the Registry.

CHAPTER 6 - COMPONENT APPENDIX 166

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/VM
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html

Deprecated

To avoid confusion with JMS queues, this component is now deprecated in 1.1
onwards. Please use the SEDA component instead

URI format

ref:someName

Where someName can be any string which is used to lookup the endpoint in the
Registry.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

RMI COMPONENT
The rmi: component bind the PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply in regards to what
the methods can be used over it. This component only supports PojoExchanges that
carry a method invocation that is part of an interface that extends the Remote interface.
All parameters in the method should be either Serializable or Remote objects too.

URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path

For example:

rmi://localhost:1099/path/to/service

Using
To call out to an existing RMI service registered in an RMI registry, create a Route
similar to:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing camel processor or service in an RMI registry, create a Route like:

167 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Notice that when binding an inbound RMI endpoint, the Remote interfaces exposed
must be specified.

Options

Name Default
Value Description

method null As of 1.3 or later you can set the name of the method to
invoke

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SEDA COMPONENT
The seda: component provides asynchronous SEDA behaviour so that messages are
exchanged on a BlockingQueue and consumers are invoked in a separate thread to the
producer.

Be aware that adding a thread pool to a seda endpoint by doing something like:
from("seda:stageName").thread(5).process(...) can wind up with two
BlockQueues. One from seda endpoint and one from the workqueue of the thread pool
which may not be what you want. Instead, you might want to consider configuring a
direct endpoint with a thread pool which can process messages both synchronously and
asynchronously. For example:
from(direct:stageName").thread(5).process(..).

Note that queues are only visible within a single CamelContext. If you want to
communicate across CamelContext instances such as to communicate across web
applications, see the VM component.

This component does not implement any kind of persistence or recovery if the VM
termininates while messages are yet to be processed. If you need persistence, reliability
or distributed SEDA then try using either JMS or ActiveMQ

CHAPTER 6 - COMPONENT APPENDIX 168

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/VM
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

URI format

seda:someName

Where someName can be any string to uniquely identify the endpoint within the current
CamelContext

URI Options

Name Description

size The maximum size of the SEDA queue

Sample
In the route below we use the SEDA queue to send the request to this async queue to
be able to send a fire-and-forget message for further processing in another thread, and
return a constant reply in this thread to the original caller.

public void configure() throws Exception {
from("direct:start")

// send it to the seda queue that is async
.to("seda:next")
// return a constant response
.transform(constant("OK"));

from("seda:next").to("mock:result");
}

Here we send a Hello World message and expects the reply to be OK.

Object out = template.requestBody("direct:start", "Hello World");
assertEquals("OK", out);

The "Hello World" message will be consumed from the SEDA queue from another
thread for further processing, since this is from an unit test it will be sent to a mock
endpoint where we can do assertions in the unit test.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

169 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

SMOOKS
The Smooks component supports the Smooks Library for EDI parsing. The camel-
smooks library is provided by the Camel Extra project which hosts all *GPL related
components for Camel.

It is only the EDI parsing feature that is implemented in this component. The other
features from Smooks is covered in existing camel components.
Parsing from a any given data source to EDI is implemented using Camel Data Format.

EDI DATAFORMAT
This component ships with a EDI dataformat that can be used to format from a
java.io.InputStream to XML as a org.w3c.Document Object.

• marshal = currently not supported by Smmoks
• unmarshal = from stream to XML (can be used when reading EDI files)

The EDIDataFormat must be configued with either a:
• setSmooksConfig(configfile) = a fully Smmoks configuration file
• setMappingModel(modelfile) = just the mapping model xml file and

Camel will use a default Smmoks configuration
To use the data format simply instantiate an instance, set the configuration (above) and
invoke the unmarshal operation in the route builder:

DataFormat edi = new EDIDataFormat();
edi.setMappingModel("my-order-mapping.xml");
...
from("file://edi/in").unmarshal(edi).to("jms:queue:edi");

And you can also provide the full Smmoks configuration file where you can configure
Smmoks as you want, in case the default configuration isn't useful:

DataFormat edi = new EDIDataFormat();
edi.setSmooksConfig("my-smooks-config.xml");
...
from("file://edi/in").unmarshal(edi).to("jms:queue:edi");

The default configuration file is provided as a resource in the jar in the location: org/
apache/camel/dataformat/edi/default-smooks-config.xml

SPRING INTEGRATION COMPONENT
The spring-integration: component provides a bridge for Camel components to talk to
spring integration endpoints.

CHAPTER 6 - COMPONENT APPENDIX 170

http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://activemq.apache.org/camel/springintegration.html
http://activemq.apache.org/camel/springintegration.html
http://milyn.codehaus.org/Smooks
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://milyn.codehaus.org/Home
http://activemq.apache.org/camel/springintegration.html

URI format

spring-integration:defaultChannelName[?options]

Where defaultChannelName represents the default channel name which is used by the
Spring Integration Spring context. It will equal to the inputChannel name for the Spring
Integration consumer and the outputChannel name for the Spring Integration provider.

Options

Name Description Example Required default
value

inputChannel

The spring integration
input channel name this
endpoint wants to
consume from that is
defined in the spring
context

inputChannel=requestChannel No

outputChannel

The spring integration
output channel name to
send message to the
spring integration context

outputChannel=replyChannel No

inOut
The exchange pattern that
spring integration endpoint
should use

inOut=true No

inOnly for
the spring
integration
consumer
and
outOnly
for the
spring
integration
provider

consumer.delay Delay in millis between
each poll consumer.delay=60000 No 500

consumer.initialDelay Millis before polling starts consumer.initialDelay=10000 No 1000

consumer.userFixedDelay

true to use fixed delay
between pools, otherwise
fixed rate is used. See
ScheduledExecutorService
in JDK for details.

consumer.userFixedDelay=false No false

171 CHAPTER 6 - COMPONENT APPENDIX

Usage
Spring Integration component is a bridge which connects Spring Integration endpoints
through the Spring integration's input and output channels with the Camel endpoints. In
this way, we can send out the Camel message to Spring Integration endpoints or
receive the message from Spring Integration endpoint in Camel routing context.

Examples

Using the Spring Integration Endpoint
You could setup the Spring Integration Endpoint by using the URI

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/

spring-integration-1.0.xsd
http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<message-bus/>
<channel id="inputChannel"/>
<channel id="outputChannel"/>

<service-activator input-channel="inputChannel"
output-channel="outputChannel"
ref="helloService"
method="sayHello"/>

<beans:bean id="helloService"
class="org.apache.camel.component.spring.integration.HelloWorldService"/>

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="direct:start"/>
<!-- Using the & as the separator of & -->
<to

uri="spring-integration:inputChannel?inOut=true&inputChannel=outputChannel"/>
</route>

</camelContext>

<message-bus/>

<channel id="requestChannel"/>
<channel id="responseChannel"/>

<beans:bean id="myProcessor"

CHAPTER 6 - COMPONENT APPENDIX 172

class="org.apache.camel.component.spring.integration.MyProcessor"/>

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<!-- Using the & as the separator of & -->
<from

uri="spring-integration://requestChannel?outputChannel=responseChannel&inOut=true&consumer.delay=5000"/>
<process ref="myProcessor"/>

</route>
</camelContext>

or by the Spring Integration Channel name

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/

spring-integration-1.0.xsd
http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<message-bus/>

<channel id="outputChannel"/>

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<!-- camel will create a spring integration endpoint automatically -->
<from uri="outputChannel"/>
<to uri="mock:result"/>

</route>
</camelContext>

The Source and Target adapter
Spring Integartion also provides the Spring Integration's Source and Target adapters
which could route the message from the Spring Integration channel to a camel context
endpoint or from a camel context endpoint to a Spring Integration Channel.

Here is the name spaces header

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel-si="http://activemq.apache.org/camel/schema/spring/

integration"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

173 CHAPTER 6 - COMPONENT APPENDIX

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/

spring-integration-1.0.xsd
http://activemq.apache.org/camel/schema/spring/integration
http://activemq.apache.org/camel/schema/spring/integration/

camel-spring-integration.xsd
http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd

">

Now you could bind your source or target to camel context endpoint

<!-- Create the camel context here -->
<camelContext id="camelTargetContext" xmlns="http://activemq.apache.org/camel/
schema/spring">

<route>
<from uri="direct:EndpointA" />
<to uri="mock:result" />

</route>
<route>

<from uri="direct:EndpointC"/>
<process ref="myProcessor"/>

</route>
</camelContext>

<!-- We can bind the camelTarget to the camel context's endpoint by specifying
the camelEndpointUri attribute -->
<camel-si:camelTarget id="camelTargetA" camelEndpointUri="direct:EndpointA"
expectReply="false">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetB" camelEndpointUri="direct:EndpointC"
replyChannel="channelC" expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetD" camelEndpointUri="direct:EndpointC"
expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<beans:bean id="myProcessor"
class="org.apache.camel.component.spring.integration.MyProcessor"/>

<camelContext id="camelSourceContext" xmlns="http://activemq.apache.org/camel/
schema/spring">

<route>
<from uri="direct:OneWay"/>
<to uri="direct:EndpointB" />

</route>
<route>

<from uri="direct:TwoWay"/>

CHAPTER 6 - COMPONENT APPENDIX 174

<to uri="direct:EndpointC" />
</route>

</camelContext>

<!-- camelSource will redirect the message coming for direct:EndpointB to the
spring requestChannel channelA -->

<camel-si:camelSource id="camelSourceA" camelEndpointUri="direct:EndpointB"
requestChannel="channelA" expectReply="false">

<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>
</camel-si:camelSource>

<!-- camelSource will redirect the message coming for direct:EndpointC to the
spring requestChannel channelB
then it will pull the response from channelC and put the response message back

to direct:EndpointC -->

<camel-si:camelSource id="camelSourceB" camelEndpointUri="direct:EndpointC"
requestChannel="channelB" replyChannel="channelC" expectReply="true">

<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>
</camel-si:camelSource>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

STREAM COMPONENT
The stream: component provides access to the System.in, System.out and System.err
streams together with allowing streaming of output to a file.
Notice that some of the stream types has been @deprecated (file and url). These types
are supported by their respective components.

URI format

stream:in
stream:out
stream:err
stream:file?file=/foo/bar.txt (@deprecated)
stream:url (@deprecated)
stream:header

If the stream:header option is specified then the stream header is used to find the
stream to write to. This option is only available for StreamProducer.

175 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

Options

Name Default
Value Description

file null When using the stream:file notation this specifies the file
name to stream to/from. @deprecated.

delay 0 Initial delay in millis before consuming or producing the stream.

encoding JVM
Default

As of 1.4 or later you can configure the encoding (is a charset
name) to use text based streams (eg. message body is a
String object). If not provided Camel will use the JVM default
Charset.

Message content
The stream: component supports either String or byte[] for writing to streams. Just add
to the message.in.body either a Stirng or byte[] content.
The special stream:header URI is used for custom output streams. Just add a
java.io.OutputStream to message.in.header in the key header.
See samples for an example.

Samples
In this sample we output to System.out the content from the message when its put on
the direct:in queue.

public void testStringContent() throws Exception {
template.sendBody("direct:in", "Hello Text World\n");

}

public void testBinaryContent() {
template.sendBody("direct:in", "Hello Bytes World\n".getBytes());

}

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from("direct:in").to("stream:out");

}
};

}

This sample demonstrates how the header type can be used to determine which stream
to use. In the sample we use our own output stream (MyOutputStream).

private OutputStream mystream = new MyOutputStream();
private StringBuffer sb = new StringBuffer();

CHAPTER 6 - COMPONENT APPENDIX 176

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

public void testStringContent() {
template.sendBody("direct:in", "Hello");
// StreamProducer appends \n in text mode
assertEquals("Hello\n", sb.toString());

}

public void testBinaryContent() {
template.sendBody("direct:in", "Hello".getBytes());
// StreamProducer is in binary mode so no \n is appended
assertEquals("Hello", sb.toString());

}

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from("direct:in").setHeader("stream", constant(mystream)).

to("stream:header");
}

};
}

private class MyOutputStream extends OutputStream {

public void write(int b) throws IOException {
char c = (char)b;
sb.append((char)b);

}
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

STRING TEMPLATE
The string-template: component allows you to process a message using a String
Template. This can be ideal when using Templating to generate responses for requests.

URI format

string-template:templateName

Where templateName is the classpath-local URI of the template to invoke; or the
complete URL of the remote template.

177 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://www.stringtemplate.org/

Options

Option Default Description

contentCache false New option in Camel 1.4. Cache for the resource content
when its loaded.

Headers
Camel will store a reference to the resource in the message header in the key
org.apache.camel.stringtemplate.resource. The Resource is an
org.springframework.core.io.Resource object.

Hot reloading
The stringtemplate resource is by default hot reloadable for both file and classpath
resources (expanded jar). Setting the contentCache=true then Camel will only load the
resource once, and thus hot reloading is not possible. This scenario can be used in
production usage when the resource never changes.

StringTemplate Attributes
Camel will provide exchange information as attributes (just a Map) to the string
template. The Exchange is transfered as:
key value

exchange The Exchange itself

headers The headers of the in message

camelContext The Camel Context

request The in message

in The in message

body The in message body

out The out message (only for InOut message exchange pattern)

response The out message (only for InOut message exchange pattern)

Samples
For example you could use something like

from("activemq:My.Queue").
to("string-template:com/acme/MyResponse.tm");

CHAPTER 6 - COMPONENT APPENDIX 178

To use a string template to formulate a response for a message

The Email Sample
In this sample we want to use StringTemplate as templating for an order confirmation
email. The email template is laid out in StringTemplate as:

Dear $headers.lastName$, $headers.firstName$

Thanks for the order of $headers.item$.

Regards Camel Riders Bookstore
$body$

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

public void testVelocityLetter() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of

Camel in Action.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me,
James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("string-template:org/apache/camel/component/

stringtemplate/letter.tm").to("mock:result");
}

};
}

See Also
• Configuring Camel
• Component

179 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component

• Endpoint
• Getting Started

TEST COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult. The Mock,
Test and DataSet endpoints work great with the Spring Testing framework to simplify
your unit and integration testing using Enterprise Integration Patterns and Camel's large
range of Components together with the powerful Mock and Test testing endpoints.
The Test component extends the Mock component to support pulling messages from
another endpoint on startup to set the expected message bodies on the underlying
Mock endpoint.

i.e. you use the test endpoint in a route and messages arriving on it will be implicitly
compared to some expected messages extracted from some other location.

So you can use for example an expected set of message bodies as files. This will
then setup a properly configured Mock endpoint which is only valid if the received
messages match the number of expected messages and their message payloads are
equal.

URI format

test:expectedMessagesEndpointUri

Where expectedMessagesEndpointUri refers to some other Component URI where
the expected message bodies are pulled from before starting the test.

Example
For example you could write a test case as follows

from("seda:someEndpoint").
to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertIsSatisfied(camelContext) method
then your test case will perform the necessary assertions.

Here is a real example test case using Mock and Spring along with its Spring XML.
To see how you can set other expectations on the test endpoint, see the Mock

component.

See Also
• Configuring Camel
• Component

CHAPTER 6 - COMPONENT APPENDIX 180

http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml

• Endpoint
• Getting Started
• Spring Testing

TIMER COMPONENT
The timer: component is used to generate message exchanges when a timer fires You
can only consume events from this endpoint.

URI format

timer:name?options

Where options is a query string that can specify any of the following parameters:

Name Default
Value Description

name null

The name of the Timer object which is created and shared
across endpoints. So if you use the same name for all your
timer endpoints then only one Timer object & thread will be
used

time The date/time that the (first) event should be generated.

period -1 If set to greater than 0, then generate periodic events every
period milliseconds

delay -1
The number of milliseconds to wait before the first event is
generated. Should not be used in conjunction with the time
parameter.

fixedRate false Events take place at approximately regular intervals,
separated by the specified period.

daemon true Should the thread associated with the timer endpoint be run as
a daemon.

Exchange Properties
When the timer is fired it adds the following information as properties to the Exchange.
Name Type Description

org.apache.camel.timer.name String the name option

org.apache.camel.timer.time Date the time option

181 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing

org.apache.camel.timer.period long the period option

org.apache.camel.timer.firedTime Date Camel 1.5: the current time when the
consumer fired

Message Headers
When the timer is fired it adds the following information as headers to the IN message
Name Type Description

firedTime Date Camel 1.5: the current time when the consumer fired

Using
To setup a route that generates an event every 60 seconds:

from("timer://foo?fixedRate=true&delay=0&period=60000").to("bean:myBean?methodName=someMethodName");

The above route will generate an event then invoke the someMethodName on the bean
called myBean in the Registry such as JNDI or Spring.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Quartz

VALIDATION COMPONENT
The Validation component performs XML validation of the message body using the
JAXP Validation API using any of the supported XML schema languages, which defaults
to XML Schema

Note that the Jing component also supports the following schema languages which
are useful

• RelaxNG Compact Syntax
• RelaxNG XML Syntax

The MSV component also supports RelaxNG XML Syntax.

URI format

validator:someLocalOrRemoteResource

CHAPTER 6 - COMPONENT APPENDIX 182

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/MSV
http://relaxng.org/
http://relaxng.org/
http://www.w3.org/XML/Schema
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/

Where someLocalOrRemoteResource is some URL to a local resource on the
classpath or a full URL to a remote resource or resource on the file system which
contains the XSD to validate against. For example

• msv:org/foo/bar.xsd
• msv:file:../foo/bar.xsd
• msv:http://acme.com/cheese.xsd
• validator:com/mypackage/myschema.xsd

Example
The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on
whether or not the XML matches the given schema (which is supplied on the classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="validator:org/apache/camel/component/validator/schema.xsd"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</catch>
</try>

</route>
</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

VELOCITY
The velocity: component allows you to process a message using an Apache Velocity
template. This can be ideal when using Templating to generate responses for requests.

URI format

velocity:templateName

183 CHAPTER 6 - COMPONENT APPENDIX

../foo/bar.xsd
../foo/bar.xsd
http://acme.com/cheese.xsd
http://acme.com/cheese.xsd
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://velocity.apache.org/
http://velocity.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Templating
../foo/bar.xsd
http://acme.com/cheese.xsd
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://velocity.apache.org/

Where templateName is the classpath-local URI of the template to invoke; or the
complete URL of the remote template (eg: file://folder/myfile.vm).

Options

Option Default Description

loaderCache true Velocity based file loader cache

contentCache false New option in Camel 1.4. Cache for the resource content
when its loaded.

Headers
Camel will store a reference to the resource in the message header in the key
org.apache.camel.velocity.resource. The Resource is an
org.springframework.core.io.Resource object.

In Camel 1.4 headers set during the velocity evaluation is returned to the message
and added as headers. Then its kinda possible to return values from Velocity to the
Message.

An example: Set the header value of fruit in the Velocity template .tm:

$in.setHeader('fruit', 'Apple')

The header 'fruit' is now accessible from the message.out.headers.

Velocity Context
Camel will provide exchange information in the Velocity context (just a Map). The
Exchange is transfered as:
key value

exchange The Exchange itself

headers The headers of the in message

camelContext The Camel Context

request The in message

in The in message

body The in message body

out The out message (only for InOut message exchange pattern)

response The out message (only for InOut message exchange pattern)

CHAPTER 6 - COMPONENT APPENDIX 184

/folder/myfile.vm
/folder/myfile.vm
/folder/myfile.vm

Hot reloading
The velocity template resource is by default hot reloadable for both file and classpath
resources (expanded jar). Setting the contentCache=true then Camel will only load the
resource once, and thus hot reloading is not possible. This scenario can be used in
production usage when the resource never changes.

Samples
For example you could use something like

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

To use a velocity template to formulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another
destination you could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

And to use content cache, eg. for production usage where the .vm template never
changes:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

And a file based resource:

from("activemq:My.Queue").
to("velocity:file://myfolder/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

The Email Sample
In this sample we want to use Velocity as templating for an order confirmation email.
The email template is laid out in Velocity as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

185 CHAPTER 6 - COMPONENT APPENDIX

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

public void testVelocityLetter() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of

Camel in Action.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me,
James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("velocity:org/apache/camel/component/velocity/

letter.vm").to("mock:result");
}

};
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

VM COMPONENT
The vm: component provides asynchronous SEDA behaviour so that messages are
exchanged on a BlockingQueue and consumers are invoked in a seperate thread pool
to the producer.

This component differs from the Queue component in that VM supports
communcation across CamelContext instances so you can use this mechanism to
communicate across web applications, provided that the camel-core.jar is on the
system/boot classpath

CHAPTER 6 - COMPONENT APPENDIX 186

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html

URI format

vm:someName

Where someName can be any string to uniquely identify the endpoint within the JVM
(or at least within the classloader which loaded the camel-core.jar)

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

XMPP COMPONENT
The xmpp: component implements an XMPP (Jabber) transport.

URI format

xmpp://[login@]hostname[:port][/participant][?Options]

The component supports both room based and private person-person conversations.
The component supports both producer and consumer (you can get messages from
xmpp or send messages to xmpp). Consumer mode supports rooms starting from
camel-1.5.0.

Options

Name Description

room

If room is specified then component will connect to MUC (Multi User
Chat). Usually domain name for MUC is different from login domain.
For example if you are superman@jabber.org and want to join
"krypton" room then room url is krypton@conference.jabber.org.
Note "conference" part.
Starting from camel-1.5.0 it is not required to provide full room JID.
If room parameter does not contain "@" symbol then domain part
will be discovered and added by Camel

user User name (without server name). If not specified then anonymous
login attempt will be performed.

password Password

187 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

resource XMPP resource. The default is "Camel"

createAccount If "true" then an attempt to create an account will be made. Default
is false

participant JID (Jabber ID) of person to receive messages. "room" parameter
has precedence over "participant".

nickname Use nick when joining room. If room is specified and nickname is
not then "user" will be used for nick

Examples
User "superman" to join room krypton at jabber server with password "secret".

xmpp://superman@jabber.org/?room=krypton@conference.jabber.org&password=secret

User "superman" to send messages to joker

xmpp://superman@jabber.org/joker@jabber.org?password=secret

Routing example in Java

from("timer://kickoff?period=10000").
setBody(constant("I will win!\n Your Superman.")).
to("xmpp://superman@jabber.org/joker@jabber.org?password=secret");

Consumer configuration. Will write all messages from Joker into a queue "evil.talk".

from("xmpp://superman@jabber.org/joker@jabber.org?password=secret").
to("activemq:evil.talk");

Consumer configuration listening to a room messages (supported from camel-1.5.0)

from("xmpp://superman@jabber.org/
?password=secret&room=krypton@conference.jabber.org").
to("activemq:krypton.talk");

Room in short notation (no domain part; for camel-1.5.0+)

from("xmpp://superman@jabber.org/?password=secret&room=krypton").
to("activemq:krypton.talk");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 6 - COMPONENT APPENDIX 188

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

XQUERY
The xquery: component allows you to process a message using an XQuery template.
This can be ideal when using Templating to generate respopnses for requests.

URI format

xquery:templateName

Where templateName is the classpath-local URI of the template to invoke; or the
complete URL of the remote template.

For example you could use something like

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery");

To use a xquery template to forumulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another
destination you could use

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery").
to("activemq:Another.Queue");

Options

Name Default Value Description

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

XSLT
The xslt: component allows you to process a message using an XSLT template. This
can be ideal when using Templating to generate respopnses for requests.

URI format

xslt:templateName

189 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://www.w3.org/TR/xslt

Where templateName is the classpath-local URI of the template to invoke; or the
complete URL of the remote template. Refer to the Spring Documentation for more
detail of the URI syntax

Here are some example URIs
URI Description

xslt:com/acme/mytransform.xsl refers to the file com/acme/mytransform.xsl on the
classpath

xslt:file:///foo/bar.xsl refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/
foo.xsl refers to the remote http resource

Using XSLT endpoints
For example you could use something like

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl");

To use a xslt template to forumulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another
destination you could use

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl").
to("activemq:Another.Queue");

Spring XML versions
To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:My.Queue"/>
<to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

There is a test case along with its Spring XML if you want a concrete example.

CHAPTER 6 - COMPONENT APPENDIX 190

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

Options

Name Default
Value Description

converter null
Option to override default XmlConverter. Will lookup for the
converter in the Registry. The provided converted must be of
type org.apache.camel.converter.jaxp.XmlConverter.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

191 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html

	Table of Contents
	Introduction
	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	Problems with Camel's online documentation
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Architecture
	URIs
	Current Supported URIs

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	Pattern Appendix
	Messaging Systems
	Message Channel
	Using This Pattern

	Message
	Using This Pattern

	Pipes and Filters
	Using Routing Logic
	Using This Pattern

	Message Router
	Choice without otherwise
	Using This Pattern

	Message Translator
	Using This Pattern

	Message Endpoint
	Using This Pattern

	Messaging Channels
	Point to Point Channel
	Using This Pattern

	Publish Subscribe Channel
	Using Routing Logic
	Using This Pattern

	Dead Letter Channel
	Redelivery
	Redelivery default values
	Redelivery header
	Configuring via the DSL
	ExceptionPolicyStrategy (New feature in Camel 1.4)
	Using This Pattern

	Guaranteed Delivery
	Using This Pattern

	Message Bus
	Using This Pattern

	Message Routing
	Content Based Router
	Using This Pattern

	Message Filter
	Using This Pattern

	Recipient List
	Static Recipient List
	Dynamic Recipient List
	Using This Pattern

	Splitter
	Example
	Parallel execution of distinct 'parts'
	Using This Pattern

	Resequencer
	Batch Resequencing
	Stream Resequencing
	Further Examples
	Using This Pattern

	Message Transformation
	Content Enricher
	Using This Pattern

	Content Filter
	Using This Pattern

	Normalizer
	See Also
	Using This Pattern

	Messaging Endpoints
	Messaging Mapper
	See also
	Using This Pattern

	Event Driven Consumer
	Using This Pattern

	Polling Consumer
	Scheduled Poll Components
	Using This Pattern

	Competing Consumers
	Enabling Competing Consumers with JMS
	Using This Pattern

	Message Dispatcher
	See Also
	Using This Pattern

	Selective Consumer
	Using This Pattern

	Durable Subscriber
	See Also
	Using This Pattern

	Idempotent Consumer
	Using This Pattern

	Transactional Client
	Transaction Policies
	Transaction Policies improvements in Camel 1.4

	Database Sample
	JMS Sample
	Spring based configuration
	DelayPolicy
	See Also
	Using This Pattern

	Messaging Gateway
	See Also
	Using This Pattern

	Service Activator
	See Also
	Using This Pattern

	System Management
	Wire Tap
	Further Example
	Using This Pattern

	Component Appendix
	ActiveMQ Component
	URI format
	Configuring the Connection Factory
	Configuring the Connection Factory using Spring XML
	Invoking MessageListener POJOs in a Camel route
	Getting Component JAR
	ActiveMQ 5.2 or later
	ActiveMQ 5.1.0
	ActiveMQ 4.x

	See Also

	ActiveMQ Journal Component
	URI format
	Options
	Expected Exchange Data Types
	See Also

	AMQP
	URI format
	See Also

	Atom Component
	URI format
	Options
	Exchange data format
	Samples
	See Also

	Bean Component
	URI format
	Options
	Using
	Bean Binding
	See Also

	CXF Component
	URI format
	Options
	The descriptions of the dataformats

	Configure the CXF endpoints with spring
	How to let camel-cxf component to use log4j instead of java.util.logging
	How to consume the message from the camel-cxf endpoint in POJO data format
	How to prepare the message for the camel-cxf endpoint in POJO data format
	How to propagate camel-cxf endpoint's request and response context
	See Also

	DataSet Component
	URI format
	Example
	Properties on SimpleDataSet
	Load testing ActiveMQ with Camel
	See Also

	Direct Component
	URI format
	Options
	See Also

	Esper
	URI format
	Options
	Demo
	See Also

	Event Component
	URI format
	See Also

	File Component
	URI format
	URI Options
	Message Headers
	Default Behavior Changed in Camel 1.5
	Common gotchas with folder and filenames
	File consumer, scanning for new files gotcha
	Filename Expression
	Samples
	Read from a directory and write to another directory
	Read from a directory and process the message in java
	Read files from a directory and send the content to a jms queue
	Writing to files
	FileProducer filename gotchas
	Using expression for filenames

	See Also

	FIX
	URI format
	Message Formats
	Using camel-fix
	See Also

	Flatpack Component
	URI format
	Examples
	URI Options
	Message Headers
	Message Body
	Header and Trailer records
	Using the endpoint

	Flatpack DataFormat
	Options
	Usage
	See Also

	FTP/SFTP Component
	URI format
	Examples
	Options
	New default behavior for FTP/SFTP-Consumers in Camel 1.5
	Exclusive Read Lock
	Message Headers
	Consumer properties
	Filename Expression
	Known issues
	Sample
	Using expression for filenames

	Debug logging
	See Also

	Hibernate Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	HL7 Component
	HL7 MLLP protocol
	Exposing a HL7 listener

	HL7 Model using java.lang.String
	HL7 Model using HAPI

	HL7 DataFormat
	Samples
	Sample using plain String objects
	See Also

	HTTP Component
	URI format
	Usage
	URI Parameters
	How to set the POST/PUT/INFO/DELETE/GET to the HTTP producer
	Sample with scheduled poll
	URI Parameters from the endpoint URI
	URI Parameters from the Message
	Response Code
	See Also

	iBATIS
	URI format
	Options
	Message Headers
	Samples
	Scheduled polling example

	See Also

	IRC Component
	URI format
	See Also

	JavaSpace Component
	URI format
	Examples
	Sending and Receiving Entries
	Sending and receiving serializable objects
	Using JavaSpace as a remote invocation transport

	Options
	Using camel-javaspace
	Building From Source
	See Also

	JBI Component
	URI format
	Examples

	URI options
	Examples

	Creating a JBI Service Unit
	See Also

	JCR Component
	URI format
	Usage
	Message properties
	Example
	See Also

	JDBC Component
	URI format
	Options
	Result
	Samples
	Sample - Polling the database every minute
	See Also

	Jetty Component
	URI format
	Options
	Message Headers
	Usage
	Sample
	See Also

	Jing Component
	URI format
	Example
	See Also

	JMS Component
	URI format
	Using Temporary Destinations

	Notes
	Properties
	Concurrent Consuming
	Message format
	Configuring different JMS providers
	Enabling Transacted Consumption
	Using JNDI to find the ConnectionFactory
	Using request timeout

	See Also

	JPA Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	LDAP Component
	URI format
	Options
	Result
	Samples
	Sample - Polling the server every minute
	See Also

	List Component
	URI format
	See Also

	Log Component
	URI format
	Formatting
	See Also

	Mail Component
	URI format
	SSL support
	Default Ports
	Options
	Defaults changed in Camel 1.5
	Mail Message Content
	Headers take precedence over pre configured recipeients
	Multiple recipients easier configuration
	Samples
	Attachment Sample
	SSL Sample
	SSL Sample with dummyTrustManager
	See Also

	MINA Component
	URI format
	Options
	Default behavior changed
	Using custom codec
	Samples
	See Also

	Mock Component
	URI format
	Simple Example
	Setting expectations
	Adding expectations to specific messages

	A Spring Example
	See Also

	MSV Component
	URI format
	Example
	See Also

	Pojo Component
	See Also

	Quartz Component
	URI format
	Message Headers
	Using Cron Triggers
	See Also

	Queue Component
	URI format
	See Also

	Ref Component
	URI format
	See Also

	RMI Component
	URI format
	Using
	Options
	See Also

	SEDA Component
	URI format
	URI Options
	Sample
	See Also

	Smooks
	EDI DataFormat
	Spring Integration Component
	URI format
	Options
	Usage
	Examples
	Using the Spring Integration Endpoint
	The Source and Target adapter

	See Also

	Stream Component
	URI format
	Options
	Message content
	Samples
	See Also

	String Template
	URI format
	Options
	Headers
	Hot reloading
	StringTemplate Attributes
	Samples
	The Email Sample
	See Also

	Test Component
	URI format
	Example
	See Also

	Timer Component
	URI format
	Exchange Properties
	Message Headers
	Using
	See Also

	Validation Component
	URI format
	Example
	See Also

	Velocity
	URI format
	Options
	Headers
	Velocity Context
	Hot reloading
	Samples
	The Email Sample
	See Also

	VM Component
	URI format
	See Also

	XMPP Component
	URI format
	Options
	Examples
	See Also

	XQuery
	URI format
	Options
	See Also

	XSLT
	URI format
	Using XSLT endpoints
	Spring XML versions
	Options
	See Also

