RichFaces Developer Guide

@ Richkaces

RichFaces framework with a huge library of
rich components and skinnability support

RichFaces Developer Guide

I 1 To 11 Tt 1o) o [P 1
2. Technical REQUITEMENTSco.uu it ettt ettt e et e e et e e e eaba e eeenes 3
PN 10T o] oTo] o (=To I Fo NV 2= WY £=T = (o] o 1 3

2.2. Supported JavaServer Faces Implementations and Frameworkscccccccoeeeeen. 3

b TS YU o] oY 1 (=10 BRST =T V=T P 3

2.4, SUPPOITEA BIOWSEISiiiitiieeeeiti ettt ettt ettt ettt e e e aaa e e eanens 4

3. Getting Started With RICNFACEScviiiiii e e 5
3.1. Downloading the RICHFACESccouuiiiiiiii e 5

3.2. Simple JSF application with RiIChFacescccoooiiiiiii e, 5
3.2.1. Adding RichFaces libraries into the project ..., 5

3.2.2. Registering RichFaces in Web. XMlccocoviiiiiii i 6

3.2.3. ManaQed DBANccoiiiiiiiii e 8

3.2.4. Registering bean in faces-cofig.xmlccoooiiiiiiiiii 8

3.2.5. RichFaces Greeter iNAEX.JSPeiiuruiiiiiiiieee et 9

3.3. Integration of RichFaces into Maven Projectccoovviiiiii i, 10

3.4. Relevant ReSOUICES LINKSiiiuiiiiieiiiee et e s 16

4. Settings for different eNVIFONMENTSooiiiiiiii e 17
4.1. Web Application Descriptor Parametersuvieiiiiiiiiiiiiiieeein e 17

4.2, SUN JSF RI oot e e e e eae 20

4.3. APACNE MYFACESovuiiiiiii ettt 20

e Yot = 1=y RSRS] o] Lo A 21

4.5, JBOSS SEAM SUPPOIT . vttt ettt et ena s 21

ST o 1=y AT U o] o T o (PN 25

4.7, SYDASE EASEIVEL ...t 25

4.8. OFaCle ASIOCAT ... 25

5. Basic concepts of the RichFaces Frameworkccooooiiiiiii e 27
Lo I o To 11T o] o ST PPPRTPPIN 27

5.2. RichFaces ArchiteCture OVEIVIEWooiouiiiiiiiiiiii e 28

5.3. RichFaces Integral PartScooouiiiiiiiiii it e e e 31

5.4, Limitations and RUIESiiiiiiii e 32

5.5. Ajax Request OPtIMIZAtioniiiiiiieiiiie e e e e e e e e eans 32
5.5.1. RE-RENAEINNG ...oiiiiiiiiii ettt 32

5.5.2. Queue and Traffic Flood Protectioncccooviiiiiiiiiiiiiicie e 35

5.5.3. QUEUE PIINCIPIES . .oveiiiiiii e 36

5.5.4. Data Processing OPtiONScviiiiiiieiiieeiiee e e e e e e 41

5.5.5. Action and Navigationccceuuiiiiiiiiiiiiii e 42

5.5.6. JAvaScript INtEraClioNSiiiiuieii i e e 43

5.5.7. Iteration components Ajax attribULeSoviiiiiiiiiiiiii e 44

5.5.8. Other useful attributescoouiiiiiiii e 45

Lo ST = [0 1A I T PR 46
5.6.1. Send an AJax FEOUESTuiiiiieiii e e e e e 46

5.6.2. Decide What t0 SENdcocouiiiiiiiie e 46

5.6.3. Decide What t0 Changecccuiiiiiiiiiii e 46

5.6.4. Decide What 10 PrOCESScciiitiiieiiiiiee e a7

RichFaces Developer Guide

B.7. Filter ConfiguIationiiiiiiiiii e e e 47
5.8. Scripts and Styles Load Strategyooeeieuiiieiiiiiiieeii e 50
5.9. Request Errors and Session Expiration Handlingccccccoeveiiiiiiieinicceeeennn, 51
5.9.1. Request Errors Handlingoooiiiuiiiiiiiii e 51
5.9.2. Session Expired Handlingcoovuiiiiiiiiii e 52
5.10. SKINNADILY ...eevtiieiii e 53
5.10.1. Why SKINN@DIIILYiiiiiiiiieiis e 53
5.10.2. Using SKINNADIILYccuuniiiiiiiiiii e 53
5.10.3. EXAMPIE ..ooniiiiiii e 54
5.10.4. Skin Parameters Tables in RIChFACEScooveiiiiiiiiiii e 55
5.10.5. Creating and Using Your Own SKin Fileccocoiieiiiiiiiiieeecee e, 57
5.10.6. Built-in Skinnability in RichFaces ... 57
5.10.7. Changing SKin in TUNLIMEcouuiiiiiiiii e 58
5.10.8. Standard Controls SKINNINGuoiiiiiiiiii e 60
5.10.9. Client-side Script for Extended Skinning SUPPOrtccoovevvieeiiiieviieeennnn. 70
5.10.10. XCSS File FOMMAL ...ouuuiiii et e e e e 71
B5.10.271. PIUG-N-SKIN .uiiiiiiieee et e e 72
5.11. State Manager AP ... 79
5.12. Identifying USEr ROIEScouiiiiiiiii et 84
6. The RIChFACeS COMPONENTSuiiiiiiieieii ettt ettt ettt e et e e e e eaanns 85
L0 AN = D1 U o o Yo o S 85
6.1.1. < @d:aJaxLiStENer > oo e 85
6.1.2. < @4j:aCtiONPAraM > ...iiiiiiii e 85
B.1.3. < A4 OM > e 88
T V. = To [T o T 93
B.1.5. < A4 SUPPOI > ottt e aan s 97
6.1.6. < adj:commandBULtON >ciiiiiiiiiiic e 103
6.1.7. < adj:commandLink > ... 110
6.1.8. < @4 SFUNCLION > ..o 117
6.1.9. < A4)iPOll > e 122
6.1.10. < @4J:PUSN > i 126

LN B Vo 01 1 131
6.1.12. < @4JiSALUS > ..iiiiiiiiiii i 136

6.2. Resources/Beans HandliNgcoouuuiiiiiiiiiiiii e 140
6.2.1. < adj:loadBundle > ... 141
6.2.2. < @4JKEEPAIIVE > oo 145
6.2.3. < @4f0adSCriPt > oo 147
6.2.4. < 4Jl0adStyle > .o 149

6.3, AJaX ValidALOIS . ..vuiiiiiiii e e e 150
6.3.1. < rich:ajaxValidator >coiiiiiiiii e 150
6.3.2. < rich:beanValidator > ..o 157
6.3.3. < rich:graphValidator >ccooiiiiiiiiiii e 160

L A = D @ LV o | P 164
6.4.1. < @dfiNCIUAE > ..o 164

RichFaces Developer Guide

6.4.2. < a4iimediaOUIPUL > ..o 166
6.4.3. < adj:outpUtPanel > .. 174
6.5. AjaxX MISCEIIANEOUScccviiiiii i e e e e aaens 179
B.5.1. < A4JIPAGE > iiiiiiii i 179
6.5.2. < AdfiPOrtlet > i 183
6.5.3. < adj:htmlCommandLink >o 184
B.5.4. < A4Jl00 > i 189
6.6. Data Herationcooiiiiiiii i 192
6.6.1. < FICh:COIUMN > oo e e 192
6.6.2. < riCh:COIUMNGIOUP > oottt 207
6.6.3. < FICh:COIUMNS > oo e 215
6.6.4. < rich:dataDefinitionList >ccciiiiiii 226
6.6.5. < rich:dataFilterSHder > ... 233
6.6.6. < rich:dataGrid >ccoooiiiiii e 241
6.6.7. < rich:dataliSt > ..o 251
6.6.8. < rich:dataOrderedLiSt >cooiiiiiiiiiii e 258
6.6.9. < rich:datascroller > ... 265
6.6.10. < rich:dataTable > ... 281
6.6.11. < rich:subDTabIE > .. 294
6.6.12. < rich:extendedDataTable > ..o, 303
6.6.13. < @4JiITEPEAL > oottt 316
6.6.14. < rich:scrollableDataTable >cccoiiiiiiii e 319
6.7. Drag-Drop SUPPOI ...ueii e 324
6.7.1. < rich:dragIndicator > ... 324
6.7.2. < rich:dragSUPPOrt > oo 328
6.7.3. < rich:dragLiStener > ... 334
6.7.4. < rich:dropLIStENEr > ..o 335
6.7.5. < riChidropSUPPOIT > oo e 335
6.7.6. < rich:dndParam > ... 345
B.8. RICN IMENU ...eniiii e e e e ans 347
6.8.1. < riCh:CONEXIMENU > L..oiiiiiiii e e 348
6.8.2. < rich:dropDOWNMENU > . oottt e 358
6.8.3. < FIChIMENUGIOUP > ..ot eaas 368
6.8.4. < rich:menUItEM > o i 376
6.8.5. < richimenuSeparator >ccccoiiiiiiii 386
B.9. RICN TrBBS it 389
B.9.1. < HICIIIEE > oo 389
6.9.2. < iChitreeNOde > ...oooeniii e 397
6.9.3. < rich:treeNOodesAdaptor > ..o 408
6.9.4. < rich:recursiveTreeNodesSAdaptor >cccocvvviiieiiiiii e 410
6.9.5. < rich:changeEXpandLIStENer >cccoiiiiiiiiiii e 414
6.9.6. < rich:nodeSelectLiStener > 414
L O R = o] o T @ T o1 | PP 415
6.10.1. < rich:modalPanel >o 415

RichFaces Developer Guide

6.11.

6.12.

6.13.

6.14.

6.10.2. < FiCh:PAINI2D > ..oiiiiiiii e 430
6.10.3. < riChipanel > .o e 435
6.10.4. < rich:paneIBar >cooiiiiiii i 442
6.10.5. < rich:panelBarltem > ... 448
6.10.6. < rich:panelMENU >o 454
6.10.7. < rich:panelMenUGIOUP >ciiiiiiiiiiiiie ettt 466
6.10.8. < rich:panelMenuItem >ot 479
6.10.9. < rich:progressBar > ... 490
6.10.10. < riCh:SEPAratOr > ..o 503
6.10.11. < rich:simpleTogglePanel > 508
6.10.12. < MChISPACEr > oo 517
6.10.13. < rich:tabPanel > ... 521
6.10.14. < richitab > o 530
6.10.15. < rich:togglePanel > ... 542
6.10.16. < rich:toggleControl > ... 550
6.10.17. < iChitOOIBAr >iiiiiiiiii e 557
6.10.18. < rich:tO0IBarGrOUP >iiiiiiiiieiii e e e e e e e e e e e e 564
6.10.19. < HChIOOITIP > oo 569
RICH INPUL <. e e e e e e e e aeas 578
6.11.1. < rich:calendar > ... 578
6.11.2. < 1ich:COIOrPICKEr > oo 587
6.11.3. < rich:comboBOX > ... 595
6.11.4. < FiIChieditOr > oo 609
6.11.5. <rich:fileUpload > ..o 624
6.11.6. < rich:iinplacelnput > ... 646
6.11.7. < rich:inplaceSelect > ... 660
6.11.8. < rich:inputNUmMberSIlider >cooiiiiii e 675
6.11.9. < rich:inpUINUMDbDEISPINNETr > ..o 686
6.11.10. < rich:suggestionboX > ... 695
o] IS Y= 1= o £ 710
6.12.1. < rich:liStShuttle > ... 710
6.12.2. < rich:orderingLiSt > ..o 729
6.12.3. < FCh:PICKLISE > ooiiiiiii i 745
RiCh SemMantiC LAYOULSiiiiiiiiiiii et 760
6.13.1. < FIChIPAgE > oo 760
6.13.2. < FCh:IaYOUL > oo e 767
6.13.3. < rich:layoutPanel > 769
RICh MISCEIIANEOUSot e 772
6.14.1. < rich:componentControl >coiiiiiiiiii e 772
6.14.2. < richieffeCt > oo 777
6.14.3. < FIChIOMAP > oo 781
6.14.4. < richvirtualEarth > ... 790
6.14.5. < rich:hotKeY > o 795
6.14.6. < FIChIINSEIT > oo e 799

Vi

RichFaces Developer Guide

6.14.7. < rich:message >
6.14.8. < rich:messages >
6.14.9. < FIChIJQUEIY > oo e 815
7. IDE Support
8. Links to information resources

Vii

Chapter 1. Introduction

Introduction

RichFaces is an open source framework that adds Ajax capability into existing JSF applications
without resorting to JavaScript.

RichFaces leverages JavaServer Faces framework including lifecycle, validation, conversion
facilities and management of static and dynamic resources. RichFaces components with built-
in Ajax support and a highly customizable look-and-feel can be easily incorporated into JSF
applications.

RichFaces allows to:

« Intensify the whole set of JSF benefits while working with Ajax. RichFaces is fully integrated into
the JSF lifecycle. While other frameworks only give you access to the managed bean facility,
RichFaces advantages the action and value change listeners, as well as invokes server-side
validators and converters during the Ajax request-response cycle.

» Add Ajax capability to the existing JSF applications. Framework provides two components
libraries (Core Ajax and Ul). The Core library sets Ajax functionality into existing pages, so
there is no need to write any JavaScript code or to replace existing components with new Ajax
ones. RichFaces enables page-wide Ajax support instead of the traditional component-wide
support and it gives the opportunity to define the event on the page. An event invokes an Ajax
request and areas of the page which become synchronized with the JSF Component Tree after
changing the data on the server by Ajax request in accordance with events fired on the client.

« Create quickly complex View basing on out of the box components. RichFaces Ul library
contains components for adding rich user interface features to JSF applications. It extends
the RichFaces framework to include a large (and growing) set of powerful rich Ajax-enabled
components that come with extensive skins support. In addition, RichFaces components are
designed to be used seamlessly with other 3d-party component libraries on the same page, so
you have more options for developing your applications.

« Write your own custom rich components with built-in Ajax support. We're always working on
improvement of Component Development Kit (CDK) that was used for RichFaces Ul library
creation. The CDK includes a code-generation facility and a templating facility using a JSP-
like syntax. These capabilities help to avoid a routine process of a component creation.
The component factory works like a well-oiled machine allowing the creation of first-class
rich components with built-in Ajax functionality even more easily than the creation of simpler
components by means of the traditional coding approach.

» Package resources with application Java classes. In addition to its core, Ajax functionality of
RichFaces provides an advanced support for the different resources management: pictures,
JavaScript code, and CSS stylesheets. The resource framework makes possible to pack easily
these resources into Jar files along with the code of your custom components.

Chapter 1. Introduction

« Easily generate binary resources on-the-fly. Resource framework can generate images,
sounds, Excel spreadsheets etc.. on-the-fly so that it becomes for example possible to create
images using the familiar approach of the "Java Graphics2D" library.

« Create a modern rich user interface look-and-feel with skins-based technology. RichFaces
provides a skinnability feature that allows easily define and manage different color schemes
and other parameters of the Ul with the help of named skin parameters. Hence, it is possible to
access the skin parameters from JSP code and the Java code (e.g. to adjust generated on-the-
fly images based on the text parts of the Ul). RichFaces comes with a number of predefined
skins to get you started, but you can also easily create your own custom skins.

« Test and create the components, actions, listeners, and pages at the same time. An automated
testing facility is in our roadmap for the near future. This facility will generate test cases for your
component as soon as you develop it. The testing framework will not just test the components,
but also any other server-side or client-side functionality including JavaScript code. What is
more, it will do all of this without deploying the test application into the Servlet container.

RichFaces Ul components come ready to use out-of-the-box, so developers save their time and
immediately gain the advantage of the mentioned above features in Web applications creation.
As a result, usage experience can be faster and easily obtained.

Chapter 2. Technical Requirements

Technical Requirements

RichFaces was developed with an open architecture to be compatible with the widest possible
variety of environments.

This is what you need to start working with RichFaces 3.3.1:

e Java
« JavaServer Faces
« Java application server or servlet container

« Browser (on client side)

RichFaces framework

2.1. Supported Java Versions

» JDK 1.5 and higher

2.2. Supported JavaServer Faces Implementations and
Frameworks

Sun JSF-RI-1.2_12

e MyFaces 1.2.5

Facelets 1.1.1-1.2

e Seam1.2.-2.1.0

2.3. Supported Servers

* Apache Tomcat 5.5 - 6.0

 BEA WebLogic 9.1 - 10.0

* Resin 3.1

o Jetty 6.1.x

e Sun Application Server 9 (J2EE 1.5)

* Glassfish (J2EE 5)

Chapter 2. Technical Requirements

* JBoss4.2.x-5
* Websphere 7.0. and higher

e Geronimo 2.0 and higher

2.4. Supported Browsers

Internet Explorer 6.0 - 8.0

Firefox 2.0 - 3.0
* Opera85-9.5

Safari 3.0

Google Chrome

This list is composed basing on reports received from our users. We assume the list can be
incomplete and absence of your environment in the list doesn't mean incompatibility.

We appreciate your feedback on platforms and browsers that aren't in the list but are compatible
with RichFaces. It helps us to keep the list up-to-date.

Chapter 3. Getting Started with RichFaces

Getting Started with RichFaces

This chapter describes all necessary actions and configurations that should be done for plugging
the RichFaces components into a JSF appplication. The description relies on a simple JSF with
RichFaces application creation process from downloading the libraries to running the application
in a browser. The process of application creation described here is common and does not depend
on used IDE.

3.1. Downloading the RichFaces

The latest release of RichFaces components is available for download at JBoss RichFaces
Downloads area [http://labs.jboss.com/jbossrichfaces/downloads] at JBoss community. Binary
files (uploaded there in *. bi n. zi p or *. bi n. t ar. gz archives) contains compiled, ready-to-use
version of RichFaces with set of basic skins.

To start with RichFaces in computer file system create new folder with name "RichFaces",
download and unzip the archive with binaries there.

For those who want to download and compile the RichFaces by themselfs there is an
article at JBoss community that describes the RichFaces repository's structure overview [http://
www.jboss.org/community/docs/DOC-11864] and some aspects of working with it.

3.2. Simple JSF application with RichFaces

"RichFaces Greeter'—the simple application—is hello-world like application but with one
difference: the world of RichFaces will say "Hello!" to user first.

Create standard JSF 1.2 project with all necessary libraries; name the project "Greeter" and follow
the decription.

3.2.1. Adding RichFaces libraries into the project

Go to the folder with unzipped earlier RichFaces binary files and open |i b folder. This folder
contains three *. j ar files with API, Ul and implementation libraries. Copy that "jars" from |i b
folder to VEB- | NF/ | i b folder of "Greeter" JSF application.

Important:

A JSF application with RichFaces assumes that the following JARs are available in
the project: commons-beanutils-1.7.0.jar, commons-collections-3.2.jar, commons-
digester-1.8.jar, commons-logging-1.0.4.jar, jhighlight-1.0.jar.

http://labs.jboss.com/jbossrichfaces/downloads
http://labs.jboss.com/jbossrichfaces/downloads
http://labs.jboss.com/jbossrichfaces/downloads
http://www.jboss.org/community/docs/DOC-11864
http://www.jboss.org/community/docs/DOC-11864
http://www.jboss.org/community/docs/DOC-11864

Chapter 3. Getting Started with RichFaces

3.2.2. Registering RichFaces in web.xml

After RichFaces libraries where added into the project it is necessary to register them in project
web. xm file. Add following lines in web. xm :

<!I-- Plugging the "Blue Sky" skin into the project -->
<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>
</context-param>

<!I-- Making the RichFaces skin spread to standard HTML controls -->
<context-param>
<param-name=>org.richfaces. CONTROL_SKINNING</param-name>
<param-value>enable</param-value>
</context-param>

<!-- Defining and mapping the RichFaces filter -->
<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
</filter-mapping>

For more information on how to work with RichFaces skins read "Skinnabilty" chapter.

Finally the web. xml should look like this:

<?xml version="1.0"?>

<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Chapter 3. Getting Started with RichFaces

xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaeel/web-app_2 5.xsd">
<display-name>Greeter</display-name>

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>
</context-param>

<context-param>
<param-name=>org.richfaces. CONTROL_SKINNING</param-name>
<param-value>enable</param-value>

</context-param>

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<ffilter-mapping>

<listener>
<listener-class>com.sun.faces.config.ConfigureListener</listener-class>
</listener>

<!l-- Faces Servlet -->

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

Chapter 3. Getting Started with RichFaces

<I-- Faces Servlet Mapping -->
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>

<login-config>
<auth-method>BASIC</auth-method>
</login-config>

</web-app>

3.2.3. Managed bean

The "RichFaces Greeter" application needs a managed bean. In project JavaSour ce folder create
a new managed bean with name user in deno package and paste there the following simple code:

package demo;

public class user {
private String name="";
public String getName() {
return name;
}
public void setName(String nhame) {
this.name = name;
}
}

3.2.4. Registering bean in faces-cofig.xml

With the next step the user bean should be registered in f aces- confi g. xm file:

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2"
xmlns="http://java.sun.com/xml/ns/javaee”
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/
ns/javaee/web-facesconfig_1 2.xsd">
<managed-bean>
<description>UsernName Bean</description>
<managed-bean-name>user</managed-bean-name>

Chapter 3. Getting Started with RichFaces

<managed-bean-class>demo.user</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>
<property-name>name</property-name>
<property-class>java.lang.String</property-class>
<value/>

</managed-property>

</managed-bean>
</faces-config>

3.2.5. RichFaces Greeter index.jsp

The "RichFaces Greeter" application has only one JSP page. Create i ndex. j sp page in root of
VEB CONTENT folder and add there following code:

<ldoctype html public "-//w3c//dtd html 4.0 transitional//en">
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<!-- RichFaces tag library declaration -->

<%@ taglib uri="http://richfaces.org/a4j" prefix="a4|"%>
<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

<html>
<head>
<title>RichFaces Greeter</title>
</head>
<body>
<fview>
<adj:form>
<rich:panel header="RichFaces Greeter" style="width: 315px">
<h:outputText value="Your name: " />
<h:inputText value="#{user.name}" >
<fvalidateLength minimum="1" maximum="30" />
</h:inputText>

<adj.commandButton value="Get greeting" reRender="greeting" />

<h:panelGroup id="greeting" >
<h:outputText value="Hello, " rendered="#{not empty user.name}" />
<h:outputText value="#{user.name}" />
<h:outputText value="!" rendered="#{not empty user.name}" />
</h:panelGroup>
</rich:panel>

Chapter 3. Getting Started with RichFaces

</adj:form>
</f.view>
</body>
</html>

The application uses three RichFaces components: <rich:panel> is used as visual container
for information; <adj:commandButton> with built-in Ajax support allows rendering a greeting
dynamically after a response comes back and <a4j:form> helps the button to perform the action.

Note, that the RichFaces tag library should be declared on each JSP page. For XHTML pages
add following lines for tag library declaration:

<xmlns:a4j="http://richfaces.org/a4j">
<xmlns:rich="http://richfaces.org/rich">

That's it. Run the application on server. Point your browser to i ndex. j sp page in browser:
http://1ocal host: 8080/ G eeter/index. | sf

RichFaces Greeter
Your name: [Alex Get greeting
Hello, Alexl

Figure 3.1. "RichFaces Greeter" application

3.3. Integration of RichFaces into Maven Project

In this section we will tell how you can create a simple JSF application with RichFaces using
Maven.

In the first place you need to make sure that Maven is installed on you local machine. We will
run the JSF application on Tomcat 6.0 server, so please download and install it if you haven't
done already so.

Now we can move on to creating the application. To create the project structure and fill it with
minimal content we will use the "maven-archetype-jsfwebapp” Maven archetype which is a part
of RichFaces CDK.

The "maven-archetype-jsfwebapp" archetype and the project itself require extra repositories
to be provided, namely "http://snapshots.jboss.org/maven2/" and "http://repository.jboss.com/
maven2/". The easiest way to make the repositories visible for Maven is to create a profile in
"maven_installation_folder/conf/settings.xml" in <pr of i | es> element. This is the content of the
profile:

10

Chapter 3. Getting Started with RichFaces

<profile>
<id>jsf-app-profile</id>
<repositories>
<repository>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>
<id>snapshots.jboss.org</id>
<name>Snapshot Jboss Repository for Maven</name>
<url>http://snapshots.jboss.org/maven2/</url>
<layout>default</layout>
</repository>
<repository>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>
<id>repository.jboss.com</id>
<name>Jboss Repository for Maven</name>
<url>http://repository.jpboss.com/maven2/</url>
<layout>default</layout>
</repository>
</repositories>
</profile>

When the profile is added you need to activate it in the <acti veProfi | es> element. It can be

done like this:

<activeProfiles>
<activeProfile>jsf-app-profile</activeProfile>
</activeProfiles>

11

Chapter 3. Getting Started with RichFaces

Now you have everything to create the project using the "maven-archetype-jsfwebapp" archetype.
Create a folder that will house your project and run the this command in it:

mvn archetype:generate -DarchetypeGroupld=org.richfaces.cdk -DarchetypeArtifactld=maven-
archetype-jsfwebapp -DarchetypeVersion=3.3.2.CR1 -Dgroupld=org.docs.richfaces -
Dartifactld=jsf-app

You can adjust some parameters of the command.

Table 3.1. Title of the table

Parameter Description

-Dgroupld Defines the package for the Managed beans

-Dartifactld Defines the name of the project

This command generates a JSF project that has the following structure:

jsf-app
|-- pom.xml
-~ src

|
|
|
| “-- richfaces
| *-- Bean.java
|-- resources
|-- WEB-INF
| |-- faces-config.xml
| “-- web.xml
|-- index.jsp
“-- pages

|-- index.jsp

“-- index.xhtml
“-- test

“-- java

12

Chapter 3. Getting Started with RichFaces

“-- org
*-- docs
“-- richfaces
*-- BeanTest.java

Now go to "jsf-app" folder, it contains a project descriptor(pom.xml). Open the project descriptor
to edit and add dependencies to the <dependenci es> element. Your <dependenci es> element
content should be the following:

<dependencies>

<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>javax.servlet</groupld>
<artifactld>servlet-api</artifactld>
<version>2.4</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>javax.servlet</groupld>
<artifactld>jsp-api</artifactld>
<version>2.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>jsti</groupld>
<artifactld>jstl</artifactld>
<version>1.1.2</version>

</dependency>

<dependency>
<groupld>javax.servlet.jsp</groupld>
<artifactld>jsp-api</artifactld>
<version>2.1</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>javax.faces</groupld>

13

Chapter 3. Getting Started with RichFaces

<artifactld>jsf-api</artifactld>
<version>1.2_12</version>

</dependency>

<dependency>
<groupld>javax.faces</groupld>
<artifactld>jsf-impl</artifactld>
<version>1.2_12</version>

</dependency>

<dependency>
<groupld>javax.el</groupld>
<artifactld>el-api</artifactld>
<version>1.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>el-impl</groupld>
<artifactld>el-impl</artifactld>
<version>1.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>javax.annotation</groupld>
<artifactld>jsr250-api</artifactld>
<version>1.0</version>

</dependency>

<!l-- RichFaces libraries -->

<dependency>
<groupld>org.richfaces.framework</groupld>
<artifactld>richfaces-api</artifactld>
<version>3.3.2.CR1</version>

</dependency>

<dependency>
<groupld>org.richfaces.framework</groupld>
<artifactld>richfaces-impl</artifactld>
<version>3.3.2.CR1</version>

</dependency>

<dependency>
<groupld>org.richfaces.ui</groupld>
<artifactld>richfaces-ui</artifactld>
<version>3.3.2.CR1</version>

</dependency>

</dependencies>

14

Chapter 3. Getting Started with RichFaces

The last three dependences add RichFaces libraries to the project. You can now build the project
with the nvn i nstal | command.

When you see the "BUILD SUCCESSFUL" message, the project is assembled and can be
imported to a IDE and run on the server.

The project can be built for Eclipse IDE with mvn eclipse:eclipse -Datpversion=2.0
command.

Then you can import the project into Eclipse. After importing to Eclipse open the "jsf-app/src/main/
webapp/WEB-INF/web.xml" to configure it according to the listing in the Registering RichFaces
in web.xml section of the guide.

The project is configured and now you can start using RichFaces. Open "jsf-app/src/main/webapp/
pages/index.jsp" file and add the tag library declaration.

<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

Add some RichFaces component to the "index.jsp" page, for instance <rich:calendar>. Your
"index.jsp" page will look like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="{"%>
<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>
<htmI>
<head>
<title>JSF Application with RichFaces built by Maven</title>
</head>
<body>
<fview>
<rich:calendar />
</f.view>
</body>
</html>

Now run the application on Tomcat server and open it in your favourite browser by pointing it to
"http://localhost:8080/jsf-app/" .

15

Chapter 3. Getting Started with RichFaces

3.4. Relevant Resources Links

The Photo Album Application [http://livedemo.exadel.com/photoalbum] is designed and
developed with RichFaces.

Maven Resource Dependency Plugin Reference [http://www.jboss.org/community/wiki/
MavenResourceDependencyPluginReference] article discusses plugin configuration and usage.

See also the "How to start RichFaces application with NetBeans IDE" [http://www.jboss.org/
community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE] article in the RichFaces
Cookbook.

JBoss Developer Studio [https://www.redhat.com/apps/store/developers/
jboss_developer_studio.html] comes with a tight integration with RichFaces component
framework. Following links might be useful for those who already use this IDE and RichFaces for
developing applications and those who wish to improve their development process:

« "Rich Components [http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/
html/first_seam.html#rich_components]" chapter in "Getting Started with JBoss Developer
Studio Guide" describes how to add RichFaces components into a CRUD application;

« "JBoss Tools Palette [http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/
palette.html]" chapter in "Visual Web Tools Reference Guide" describes advantages that gives
Tools Pallete (comes together with JBDS) for quick and easy pages creation processs including
RichFaces applications;

» "RichFaces Toolkit for developing Web application [http://docs.jboss.org/tools/movies/demos/
rich_faces _demol/rich_faces demo.htm]" video tutorial demonstrates some aspects of
interaction with JBoss Developer Studio while working with RichFaces.

« "How to Configure Maven for RichFaces [http://docs.jboss.org/tools/movies/demos/
rich_faces _demol/rich_faces demo.htm]" article shortly discusses Maven configuration for
RichFaces.

« " RichFaces Release Procedure [http://www.jboss.org/community/docs/DOC-13446]" article
describes how RichFaces release builds are made.

Read also the quick overview [http://mkblog.exadel.com/?p=110] to "Practical RichFaces " book
by Max Katz at his blog.

16

http://livedemo.exadel.com/photoalbum
http://livedemo.exadel.com/photoalbum
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://www.jboss.org/community/docs/DOC-13446
http://www.jboss.org/community/docs/DOC-13446
http://mkblog.exadel.com/?p=110
http://mkblog.exadel.com/?p=110

Chapter 4. Settings for different environments

Settings for different environments

RichFaces comes with support for all tags (components) included in the JavaServer Faces
specification. To add RichFaces capabilities to the existing JSF project you should just put the
RichFaces libraries into the lib folder of the project and add filter mapping. The behavior of the

existing project doesn't change just because of RichFaces.

4.1. Web Application Descriptor Parameters

RichFaces doesn't require any parameters to be defined in your web.xml. But the RichFaces
parameters listed below may help with development and may increase the flexibility of RichFaces

usage.

Table 4.1. Initialization Parameters

Name

org.richfaces.SKIN

Default
DEFAULT

Description

Is a name of a skin used
in an application. It can be a
literal string with a skin name,
or the EL expression (#{...})
pointed to a String property
(skin name) or a property of
a org.richfaces.framework.skin type.
Skinin last case, this instance is used
as a current skin

org.richfaces.LoadScriptStrategy

org.richfaces.LoadStyleStrategy

org.ajax4jsf.LOGFILE

DEFAULT

DEFAULT

none

Defines how the RichFaces script
files are loaded to application.
Possible values are: ALL, DEFAULT,
NONE. For more information see
"Scripts and Styles Load Strategy".

Defines how the RichFaces style files
are loaded to application. Possible
values are: ALL, DEFAULT, NONE.
For more information see "Scripts
and Styles Load Strategy".

Is an URL to an application or a
container log file (if possible). If this
parameter is set, content from the
given URL is shown on a Debug
error page in the iframe window

org.ajax4jsf.VIEW_HANDLERS

none

Is a comma-separated list of
custom ViewHandler instances
for inserting in chain. Handlers

17

Chapter 4. Settings for different environ

ments

Name

org.ajax4jsf. CONTROL_COMPONEN

org.ajaxdjsf.ENCRYPT_RESOURCE

org.ajax4jsf. ENCRYPT_PASSWORD

org.ajax4jsf. COMPRESS_SCRIPT

org.ajax4jsf. RESOURCE_URI_PREF

Default

Tone

BASEA

random

true

144

Description

are inserted BEFORE RichFaces
viewhandlers in the given order.
For example, in facelets application
this parameter contain
com.sun.facelets.FaceletViewHandle
instead of declaration in faces-
config.xml

must

Is a comma-separated list of names
for a component as a special control
case, such as messages bundle
loader, alias bean components,
etc. Is a type of component got
by a reflection from the static
field COMPONENT_TYPE . For
components with such types encode
methods always are called in
rendering Ajax responses, even if a
component isn't in an updated part

For generated resources, such as
encrypt generation data, it's encoded
in the resource URL. For example,
URL for an image generated from the
mediaOutput component contains a
name of a generation method, since
for a hacker attack, it is possible to
create a request for any JSF baked
beans or other attributes. To prevent
such attacks, set this parameter to
"true" in critical applications (works
with JRE > 1.4)

Is a password for encryption of
resources data. If isn't set, a random
password is used

It doesn't allow framework to reformat
JavaScript files (makes it impossible
to debug)

Defines prefix which is added to all
URIs of generated resources. This
prefix designed to handle RichFaces

generated resources requests

18

Chapter 4. Settings for different environ

ments

Name

Default

org.ajax4jsf. GLOBAL_RESOURCE_URMBREFIX

Description

Defines prefix which is added to
URIs of global This
prefix designed to handle RichFaces
generated resources requests

resources.

org.ajax4jsf.SESSION_RESOURCE_UR|/PREFIX Defines prefix which is used for
session tracking for generated
resources. This prefix designed
to handle RichFaces generated
resources requests

org.ajax4jsf.DEFAULT_EXPIRE 86400 Defines in seconds how long

streamed back to browser resources
can be cached

org.ajax4jsf.SERIALIZE_SERVER_S]

ThRilge

If enabled the component state (not
the tree) will be serialized before
being stored in the session. This
may be desirable for applications that
may have issues with view state
being sensitive to model changes.
Instead of this parameter can use
com sun. faces. seri al i zeServer St
and

or g. apache. nyf aces. SERI ALl ZE_ST
parameters for corresponding
environments.

Note:

org. richfaces. SKI Nis used in the same way as or g. aj ax4j sf. SKI N

Table 4.2. org.ajax4jsf.Filter Initialization Parameters

Name Default
log4j-init-file -
enable-cache true

Description

Is a path (relative to web
application context) to the
log4j.xml configuration file, it
can be used to setup per-
application custom logging

Enable caching of framework-

generated resources
(JavaScript, CSS, images,
etc.). For debug purposes

19

ate

ATE_| N_SESSI ON

Chapter 4. Settings for different environments

Name Default Description

development custom
JavaScript or Style prevents
to use old cached data in a
browser

forcenotrf true Force parsing by a filter
HTML syntax checker on
any JSF page. If "false", only
Ajax responses are parsed to
syntax check and conversion
to well-formed XML. Setting to
"false" improves performance,
but can provide visual effects
on Ajax updates

4.2. Sun JSF RI

RichFaces works with implementation of JSF (JSF 1.2_12) and with most JSF component libraries
without any additional settings. For more information look at:

java.sun.com [http://java.sun.com/javaee/javaserverfaces/]

Additional information how to get Vi ewExpi r edExcept i ons when using RichFaces
with JSF 1.2 12 you can find in RichFaces Cookbook article [http://wiki.jboss.org/auth/wiki//
RichFacesCookbook/ViewExpiredException].

4.3. Apache MyFaces

RichFaces works with Apache MyFaces 1.2.5 version including specific libraries like TOMAHAWK
Sandbox and Trinidad (the previous ADF Faces). However, there are some considerations to take
into account for configuring applications to work with MyFaces and RichFaces.

Note:

There are some problems with different filters defined in the web.xml file clashing.
To avoid these problems, the RichFaces filter must be the first one among other
filters in the web.xml configuration file.

For more information look at: http://myfaces.apache.org [http://myfaces.apache.org]

There's one more problem while using MyFaces + Seam . If you use this combination you should
use <adj.page> inside <f:view> (right after it in your code) wrapping another content inside
your pages because of some problems in realization of <f:view> in myFaces.

The problem is to be overcome in the nearest future.

20

http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException
http://myfaces.apache.org
http://myfaces.apache.org

Chapter 4. Settings for different environments

4.4. Facelets Support

A high-level support for Facelets is one of our main support features. When working with
RichFaces, there is no difference what release of Facelets is used.

You should also take into account that some JSF frameworks such as Facelets use their
own Vi ewHandl er and need to have it first in the chain of ViewHandlers and the RichFaces
AjaxViewHandler is not an exception. At first RichFaces installs its ViewHandler in any case, so in
case of two frameworks, for example RichFaces + Facelets, no changes in settings are required.
Although, when more then one framework (except RichFaces) is used, it's possible to use the
VI EW HANDLERS parameter defining these frameworks view handlers according to its usage order
in it. For example, the declaration:

Example:

<context-param>
<param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
<param-value>com.sun.facelets.FaceletViewHandler</param-value>
</context-param>

says that Facelets will officially be the first, however Aj axVi ewHandl er will be a little ahead
temporarily to do some small, but very important job.

Note:

In this case you don't have to define Facel et Vi enHandl er in the WEB-INF/faces-
config.xml.

4.5. JBoss Seam Support

RichFaces now works out-of-the-box with JBoss Seam and Facelets running inside JBoss AS
4.0.4 and higher. There is no more shared JAR files needed. You just have to package the
RichFaces library with your application.

Your web.xml for Seam 1.2 must be like this:

<?xml version="1.0" ?>
<web-app xmIns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2eel/web-app_2_4.xsd"

21

Chapter 4. Settings for different environments

version="2.4">

<l-- richfaces -->

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<url-pattern>*.seam</url-pattern>
<[filter-mapping>

<l-- Seam -->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.web.SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
<[filter-mapping>

<I-- MyFaces -->

<listener>

22

Chapter 4. Settings for different environments

<listener-class>org.apache.myfaces.webapp.StartupServietContextListener</listener-
class>
</listener>

<l-- JSF -->

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>
</web-app>

Seam 2 supports RichFaces Filter. Thus your web.xml for Seam 2 must be like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/
ns/javaeel/web-app_2 5.xsd">

<context-param>
<param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
<param-value>com.sun.facelets.FaceletViewHandler</param-value>
</context-param>

<l-- Seam -->

23

Chapter 4. Settings for different environments

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
<[filter-mapping>

<l-- JSF -->

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<context-param>
<param-name>facelets. DEVELOPMENT</param-name>
<param-value>true</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</serviet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

24

Chapter 4. Settings for different environments

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>
</web-app>

Only one issue still persists while using Seam with MyFaces. Look at myFaces part of this section.

Detailed information on how to integrate Richfaces and Trinidad and how to hide ".seam"
postfix in the URL you can find in the RichFaces Cookbook article [http://wiki.jboss.org/auth/wiki/
RichFacesWithTrinidad]

4.6. Portlet Support

JBoss Portlets have support since version Ajax4jsf 1.1.1. This support is improved from RichFaces
3.2.1. Provide your feedback on compatible with RichFaces if you face some problems.

4.7. Sybase EAServer

The load-on-startup for the Faces Servlet had to be set to 0 in web.xml.

Example:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</serviet-class>
<load-on-startup>0</load-on-startup>

</servlet>

This is because, EAServer calls servleti ni t () before the Servl et ContextInitializer.Notan
EAServer bug, this is in Servlet 2.3 spec.

4.8. Oracle AS/OC4J

In order to deploy your project with RichFaces components to an Oracle AS you just have to
prevent the application's class loader from importing the Oracle XML parser. Use the following
notation in orion-application.xml :

<imported-shared-libraries>
<remove-inherited name="oracle.xml"/>
<remove-inherited name="oracle.xml.security"/>

25

http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad
http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad
http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad

Chapter 4. Settings for different environments

</imported-shared-libraries>

26

Chapter 5. Basic concepts of the RichFaces
Framework

Basic concepts of the RichFaces
Framework

5.1. Introduction

The framework is implemented as a component library which adds Ajax capability into existing
pages, so you don't need to write any JavaScript code or to replace existing components with new
Ajax widgets. RichFaces enables page-wide Ajax support instead of the traditional component-
wide support. Hence, you can define the event on the page that invokes an Ajax request and
the areas of the page that should be synchronized with the JSF Component Tree after the Ajax
request changes the data on the server according to the events fired on the client.

Next Figure shows how it works:

27

Chapter 5. Basic concepts of the RichFaces

Framework
- (B. Update Page :J-
JSP Page) Ajax Engine
' T
- 1 1. JS Event -
': 2. Submit Request -_;]‘
[l?_ Send Response JJ.
RichFaces
UlViewRoot XML Filter InternetResourceBuilder
f_b. Build R-::-Uurc-:s_j
(6. Chack xmL I
.
AjaxViewRoot Ajax RenderKit
|: 3. Progress Phases -] i: 4. Encode Region \I
—_— - - e
JSF Phases

) Apply Request Process Process Invol-:el Renderer
Restore View » peﬂ’glues ‘ Validations ’ Updates Application Response

Figure 5.1. Request Processing flow

RichFaces allows to define (by means of JSF tags) different parts of a JSF page you wish to
update with an Ajax request and provide a few options to send Ajax requests to the server. Also
JSF page doesn't change from a "regular" JSF page and you don't need to write any JavaScript
or XMLHTTPRequest objects by hands, everything is done automatically.

5.2. RichFaces Architecture Overview

Next figure lists several important elements of the RichFaces framework

28

Chapter 5. Basic concepts of the RichFaces
Framework

= Rioces

Ajax Filter Ajax Action Components

Ajax Containers Skinnability

RichFaces JavaScript
Engine

Figure 5.2. Core Ajax component structure

Ajax Filter. To get all benefits of RichFaces , you should register a Filter in web.xml file of
your application. The Filter recognizes multiple request types. Necessary information about Filter
configuration can be found in the "Filter configuration" section. The sequence diagram on Figure
3 shows the difference in processing of a "regular" JSF request and an Ajax request.

In the first case the whole JSF tree will be encoded, in the second one option it depends on the
"size" of the Ajax region. As you can see, in the second case the filter parses the content of an
Ajax response before sending it to the client side.

Have a look at the next picture to understand these two ways:

29

Chapter 5. Basic concepts of the RichFaces

Framework
WiebClient DomTree Web Ajax Filter Ajax JSF Ajam Resource
Container WiewR oot Process Eender kit Builder
! : ! !] : ! !
1 1 1 1 1 1 1 1
' ' 1 1 1 1 1 1
] J5F Request ; ; ; i i :
T ._ . 1 1 [1 1
1 Senrice 1 1 1 1 1
1 —’_ S A 1 1 1 1
anyice ; | \

: b J5F Tree 1 1 :
: Render Trae o ! Create .

i Resources

1

1 1
FEEEEE [S i i
i ERTEEEIE PPt | i
! e . : : !
JSF Response s 7 : d : i
‘\‘C """""""""" | p R e b g e T 1 1 1 1 1
1 1 1 1 1 1
1 1 1 | \ |
1 1 1 1 1 1
1 1 1 1 1 I
1 1 1 1 1 1
1 1 1 1 1 1
1 1 ' ' ' I
1 1 1 1 1 1
1 1 1 1 1 1
1 1 \ ! | |
e . i i : : : ;
7 :]] i i i ;
1 1 1 1] 1 1 I
\ J% Event | 1 1 ! 1 ! 1
e S i B o B v 1 1 1 1 1 1
JSF Request ' i i ; ; i
h_; ’ 1 ' | ' '
Senvice ! : : : :
Sernvice ! ! ! !
Ajax Regiong | Render : !
Dalta Ajax) Create :
Resaurzes _ 1
- Chedd AL | I :
1 1 1 1
JESF Response e 1 : i : ;
Tt FEOC 5 :] : : :
[Update : : : : : ;
Bt : : . : : :
L] L 1 1 1 1 1 I
i i i i i i i ;
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 I
1 ' ' 1 1 1 1 1

Figure 5.3. Request Processing sequence diagram

In both cases, the information about required static or dynamic resources that your application
requests is registered in the ResourseBuilder class.

When a request for a resource comes (Figure 4), the RichFaces filter checks the Resource Cache
for this resource and if it is there, the resource is sent to the client. Otherwise, the filter searches for
the resource among those that are registered by the ResourceBuilder. If the resource is registered,
the RichFaces filter will send a request to the ResourceBuilder to create (deliver) the resource.

Next Figure shows the ways of resource request processing.

30

Chapter 5. Basic concepts of the RichFaces

Framework
WebClient DomTree Meb fjax Filter Fesaurce Resaurce Fesource
Container Cache Lifecycle Builder
i - : | 5 | e
it [: : : : :
Resource Request > ' ! : i
Servi : : 1 :
[In Eache] B : . i
Get Rezource ! i :
Fesource Response : : : :
et e o P oD i H i i
[elze] Resource Request : ; i ! !
: f : i i
Service 1 ' 1 .
= : i i
: i
! Get Rezource)
5 < oo []
.................... B e eeimaman !
"E
e Resource Responze

Figure 5.4. Resource request sequence diagram

AJAX Action Components. There are Ajax Action Components: <adj:commandButton> ,
<adj:commandLink>, <a4j:poll> and <a4dj:support> and etc. You can use them to send Ajax
requests from the client side.

AJAX Containers. AjaxContainer is an interface that describes an area on your JSF page that
should be decoded during an Ajax request. Aj axVi ewRoot and Aj axRegi on are implementations

of this interface.

JavaScript Engine. RichFaces JavaScript Engine runs on the client-side. It knows how to
update different areas on your JSF page based on the information from the Ajax response. Do
not use this JavaScript code directly, as it is available automatically.

5.3. RichFaces Integral Parts

The RichFaces comes with a number of integral parts (framework, libraries):

» Prototype 1.6.0.3 [http://prototypejs.org]

31

http://prototypejs.org
http://prototypejs.org

Chapter 5. Basic concepts of the RichFaces
Framework

e jQuery 1.3.1 [http://jquery.com]
e Script.aculo.us 1.8.1 [http://script.aculo.us]

For more information about framework and libraries loading see the following section in the FAQ
[http://www.jboss.org/community/wiki/Commonclientside#resourcesfromjars].

Note:

In order to prevent JavaScript versions conflict you should use only one version of
the framework or library. You could find more information about libraries exclusion
in the [http://www.jboss.org/community/wiki/Commonclientside#jsconflicts].

5.4. Limitations and Rules

In order to create RichFaces applications properly, keep the following points in mind:

« Any Ajax framework should not append or delete, but only replace elements on the page. For
successful updates, an element with the same ID as in the response must exist on the page.
If you'd like to append any code to a page, put in a placeholder for it (any empty element). For
the same reason, it's recommended to place messages in the "AjaxOutput" component (as
no messages is also a message).

e Don't use <f:verbatim> for self-rendered containers, since this component is transient and
not saved in the tree.

« Ajax requests are made by XMLHTTPRequest functions in XML format, but this XML bypasses
most validations and the corrections that might be made in a browser. Thus, create only a strict
standards-compliant code for HTML and XHTML, without skipping any required elements or
attributes. Any necessary XML corrections are automatically made by the XML filter on the
server, but lot's of unexpected effects can be produced by an incorrect HTML code.

« The RichFaces ViewHandler puts itself in front of the Facelets ViewHandlers chain.

» RichFaces components uses their own renderers. On the Render Response Phase RichFaces
framework makes a traversal of the component tree, calls its own renderer and put the result
into the Faces Response.

5.5. Ajax Request Optimization

5.5.1. Re-Rendering

Ajax attributes are common for Ajax components such as <adj:support> ,
<adj:commandButton> , <adj:jsFunction> , <adj:poll> , <adj:push> and so on. Also, most

32

http://jquery.com
http://jquery.com
http://script.aculo.us
http://script.aculo.us
http://www.jboss.org/community/wiki/Commonclientside#resourcesfromjars
http://www.jboss.org/community/wiki/Commonclientside#resourcesfromjars
http://www.jboss.org/community/wiki/Commonclientside#jsconflicts
http://www.jboss.org/community/wiki/Commonclientside#jsconflicts

Chapter 5. Basic concepts of the RichFaces
Framework

RichFaces components with built-in Ajax support have these attributes for a similar purpose. Ajax
components attributes help RichFaces to expose its features. Most of the attributes have default
values. Thus, you can start working with RichFaces without knowing the usage of these attribute.
However, their usage allows to tune the required Ajax behavior very smoothly.

"reRender" is a key attribute. The attribute allows to point to area(s) on a page that should be
updated as a response on Ajax interaction. The value of the "reRender" attribute is an id of the
JSF component or an id list.

A simple example is placed below:

<adj.commandButton value="update" reRender="infoBlock"/>
<h:panelGrid id="infoBlock">

</h:panelGrid>

The value of "reRender" attribute of the <a4j:commandButton> tag defines which part(s) of your
page is (are) to be updated. In this case, the only part of the page to update is the <h:panelGrid>
tag because its ID value matches to the value of "reRender" attribute. As you see, it's not difficult
to update multiple elements on the page, only list their IDs as the value of "reRender" .

"reRender" uses UlComponent.findComponent() algorithm [http://java.sun.com/javaee/
javaserverfaces/1.2_MR1/docs/api/javax/faces/component/
UlComponent.html#findComponent(java.lang.String)] (with some additional exceptions) to find
the component in the component tree. As can you see, the algorithm presumes several steps.
Each other step is used if the previous step is not successful. Therefore, you can define how fast
the component is found mentioning it more precisely. The following example shows the difference
in approaches (both buttons will work successfully):

<h:form id="form1">

<a4j: commandButton value="Usual Way" reRender="infoBlock, infoBlock2" />
<a4j:commandButton value="Shortcut" reRender=":infoBlockl,:sv:infoBlock2" />

</h:form>
<h:panelGrid id="infoBlock">

</h:panelGrid>

<f:subview id="sv">

33

http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)

Chapter 5. Basic concepts of the RichFaces
Framework

<h:panelGrid id="infoBlock2">
</h:panelGrid>

</f:subview>

It's also possible to use JSF EL expression as a value of the reRender attribute. It might be a
property of types Set, Collection, Array or simple String. The EL for reRender is resolved right
before the Render Response phase. Hence, you can calculate what should be re-rendered on
any previous phase during the Ajax request processing.

Most common problem with using reRender is pointing it to the component that has a "rendered"
attribute. Note, that JSF does not mark the place in the browser DOM where the outcome of the
component should be placed in case the "rendered" condition returns false. Therefore, after the
component becomes rendered during the Ajax request, RichFaces delivers the rendered code to
the client, but does not update a page, because the place for update is unknown. You need to
point to one of the parent components that has no "rendered" attribute. As an alternative, you
can wrap the component with <adj:outputPanel> | ayout =" none" .

"ajaxRendered" attribute of the <adj:outputPanel> setto "true" allows to define the area of the
page that will be re-rendered even if it is not pointed in the reRender attribute explicitly. It might be
useful if you have an area on a page that should be updated as a response on any Ajax request.
For example, the following code allows to output error messages regardless of what Ajax request
causes the Validation phase failed.

<adj.outputPanel ajaxRendered="true">
<h:messages />
</adj.outputPanel>

"limitToList" attribute allows to dismiss the behavior of the <a4dj:outputPanel> "ajaxRendered"
attribute. 1imitToList = "true" means to update only the area(s) that mentioned in the
"reRender" attribute explicitly. All output panels with aj axRender ed="true" is ignored. An
example is placed below:

<h:form>
<h:inputText value="#{person.name}">
<adj:support event="onkeyup" reRender="test" limitToList="true"/>
</h:inputText>
<h:outputText value="#{person.name}" id="test"/>

34

Chapter 5. Basic concepts of the RichFaces
Framework

</form>

5.5.2. Queue and Traffic Flood Protection

"eventsQueue" attribute defines the name of the queue that will be used to order upcoming
Ajax requests. By default, RichFaces does not queue Ajax requests. If events are produced
simultaneously, they will come to the server simultaneously. JSF implementations (especially, the
very first ones) does not guaranty that the request that comes first will be served or passed into
the JSF lifecycle first. The order how the server-side data will be modified in case of simultaneous
request might be unpredictable. Usage of eventsQueue attribute allows to avoid possible mess.
Define the queue name explicitly, if you expect intensive Ajax traffic in your application.

The next request posted in the same queue will wait until the previos one is not processed and
Ajax Response is returned back if the "eventsQueue" attribute is defined. In addition, RichFaces
starts to remove from the queue "similar" requests. "Similar"requests are the requests produced
by the same event. For example, according to the following code, only the newest request will be
sent to the server if you type very fast and has typed the several characters already before the
previous Ajax Response is back.

<h:inputText value="#{userBean.name}">
<adj:support event="onkeyup" eventsQueue="foo" reRender="bar" />
</h:inputText>

"requestDelay" attribute defines the time (in ms) that the request will be wait in the queue before
it is ready to send. When the delay time is over, the request will be sent to the server or removed
if the newest "similar" request is in a queue already .

"ignoreDupResponses" attribute orders to ignore the Ajax Response produced by the request
if the newest "similar" request is in a queue already. i gnor eDupResponses" ="t rue" does not
cancel the request while itis processed on the server, but just allows to avoid unnecessary updates
on the client side if the response loses the actuality.

Defining the "eventsQueue" along with "requestDelay” allows to protect against unnecessary
traffic flood and synchronizes Ajax requests order. If you have several sources of Ajax requests,
you can define the same queue name there. This might be very helpful if you have Ajax
components that invoke request asynchronously from the ones produced by events from users.
For example, <adj:poll> or <adj:push> . In case the requests from such components modify
the same data, the synchronization might be very helpful.

More information can be found on the RichFaces Users Forum [http://jboss.com/index.html?
module=bb&op=viewtopic&t=105766] .

35

http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766

Chapter 5. Basic concepts of the RichFaces
Framework

"timeout" attribute is used for setting response waiting time on a particular request. If a response
is not received during this time, the request is aborted.

5.5.3. Queue Principles
Starting from 3.3.0 version RichFaces has an improved queue.

There are some reasons why the queue has been improved. In previous versions the queue had
quite simple implementation: it sent to the server only the last Ajax request out of all requests
coming in the queue during request delay.

The improved queue allows to

« Eliminate the possibility of collisions when several JSF requests pass the JSF lifecycle at the
same time. The queue prevents sending such requests. Only one request is processed. The
rest ones are waiting.

» Reduce the traffic between browser and the server. The "similar" requests came within request
delay are absorbed. Only the last one is actually sent. Reducing the number of request reduces
the server load.

There are 4 types of the queue:

Global default queue, defined in the web.xml file
» View scoped default queue
* View scoped named queue
» Form-based default queue

In this section we will take a closer look at the listed above types of the queue and see in more
detail how they differ. Usage details are covered in the <a4j:queue> chapter.

5.5.3.1. Global default queue, defined in the web.xml file

Design details

* Only one global queue will ever exist on a view

If you define more than one with this name while attempting to set its attributes a warning will
appear in server console during rendering. All the same named queues after the first instance
are ignored.

« The queue class name is "org.richfaces.queue.global"

36

Chapter 5. Basic concepts of the RichFaces
Framework

Global default queue has application scope and is defined in the web.xml

It can be done as follows:

<context-param>
<param-name>org.richfaces.queue.global.enabled</param-name>
<param-value>true</param-value>

</context-param>

The global default queue is disabled by default, because artificial serializing of all Ajax requests
on a page can significantly affect expected behavior. The global default queue causes all
Asynchronous JavaScript And XML requests becoming synchronous via the single global queue.
If the global queue is turned on it can change the behavior on all views of the application without
any visible or obvious setting.

5.5.3.2. View scoped default queue

Design details

« Only one default queue is ever active at one time for a given view or form.

« If ever more are detected a warning will appears in server console during rendering. All the
same named queues after the first instance are ignored.

» View scoped default queue is also created for components which have the following Ajax
attributes: (in this case queue has a component scope)

» "requestDelay"
* "ignoreDupResponce"

« View scoped default queue is created automatically if the "eventsQueue" attribute is defined
with some name in a component but not found in the view. It has a scope the same as defined
in corresponding context param.

The view scoped default, named and formed-based types of queue utilize the <a4j:queue> tag
to override the settings of the global queue defined in the web.xml file.

You can also programmatically enable/disable the global queue on a single view using the
following:

<adj.queue name="org.richfaces.global_queue" disabled="true"... />

37

Chapter 5. Basic concepts of the RichFaces
Framework

Hence, to enable the queue for a single view page you need to define the "disable" attribute with
"false".

Now, you can override the default settings using the attributes of the <a4j:queue> component.
The full list of attributes [file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/
en-US/html_single/index.html#d0e10019] is given in the "6.20. <a4j:.queue>" chapter of the guide.

Example:

<adj:queue name="org.richfaces.global_queue" requestDelay="1000" />

View scoped queue can be also added by just definition of the queue without name specified.
In this case it should be placed anywhere outside the forms in order not to be recognized as a
form-based queue.

<adj.queue ... />

5.5.3.3. View scoped named queue

Design details

« Named queues must have a unique name, if a second queue with the same name is defined
all the same named queues after the first instance are ignored.

» Form elements are used as naming container for the queue i.e. custom queue defined within
the form cannot be used by the components outside this concrete form.

You can reference a named queue from any Ajax4JSF or RichFaces component that supports
the "eventsQueue" attribute. Below there is an example of how the components can reference
a named queue.

Example:

<adj:queue name="sampleQueue"/>
<h:inputText value="#{bean.inputValue}" >

38

file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019
file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019
file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019

Chapter 5. Basic concepts of the RichFaces
Framework

<adj:support id="inputSupport" event="onkeyup" eventsQueue="sampleQueue"/>
</h:inputText>
<rich:comboBalye="#{bean.stavygestionValues="#{bean.suggestiomsghtsQueue="sampleQuéue"
>

In this example, two components(<adj:queue>, <rich.comboBox>,) reference the named
("sampleQueue") queue via the "eventsQueue" attribute.

5.5.3.4. Form based default queue

Design details

« Only one enabled form based default queue can be active at a time.

« A warning appears in server console during rendering if more than one enabled form based
queue exists. All queues with the same name after the first instance should be ignored.

» Users can define more than one form queue, however all but one must be disabled.

Queues are often used within forms, but defining the "eventsQueue" attribute on every component
within a form can be tedious work. To avoid that you can create a default queue for a form
(overriding the global default queue).

You can use either a JSF <h:form> or an Ajax4JSF <a4j:form>.

Example:

<h:form ... >
<adj.queue ... /><!-- note no name specified -->

</h:form>

Though, using an Ajax4JSF <a4j:form> you can refrence a named queue via the "eventsQueue".

Example:

<adj:form eventsQueue="fooQueue" ...>

</adj:form>

39

Chapter 5. Basic concepts of the RichFaces
Framework

However the implementation of the queue allows you to reference a named queue from the form
with a form-based queue.

Example:

<adj.queue name="sampleQueue" ... /> <!-- named queue -->

<h:form ... >
<adj:queue ... [><!-- form-based queue-->
<adj.commandButton ... /> <!-- uses the form-based queue -->
<adj:commandButton eventsQueue="sampleQueue" /> <!-- uses named queue -->
</h:form>

5.5.3.5. Queue functionality
This section will cover some queue's functionality aspects.
5.5.3.5.1. Events Similarity

By default all the events raised by the same component are similar to the queue (according to
client Id of event source). This means that if new requests come from the same component they
are combined with the previous ones. For example: if we use adj:support on an input field and
the user types frequently all the request raised by key up during requestDelay will be combined
into one.

You can also manually specify multiple components which will produce similar requests. The
"similarityGroupingld" attribute is added to all the Ajax action components with 3.3.0 release.
Hence, for example, you can add two <a4j:support/> components to the input (one for key up
and the second for blur) and define that request events are similar by specifying the same
"similarityGroupingld".

5.5.3.5.2. Similar requests during request delay

As written above requests are collected in the queue during requestDelay and similar ones are
combined. But similar requests can only be combined if they are raised sequentially. This is done
in order not to block the queue and not to change the requests order.

Example:

A request with some delay comes to the queue, let it be Al the delay counter for this request is
started. If similar request(e.g. from the same component - A2) appears - these two requests are
combined(AlA? to A©™"edy and the counter is reset.

40

Chapter 5. Basic concepts of the RichFaces
Framework

But if some not similar request comes to the queue B - it is placed after the first one(A%™P"ed g1y,

And if the A®™ "4 request doesn't exit the queue and another request similar to A (let is be A%)
appears again - these requests are not combined with the first one. The request is placed after
Bl. (Acombined Bl A3).

Such behavior allows

« to maximize similar requests throughput
 to send only the latest fields state for similar requests

« not to block the queue if the different types of requests comes to queue and should wait one
for another

The <adj:poll> component has delay time 0 by default staring from 3.3.0 version in order not
to use the queue delay(its own value for this parameter redefines queue's parameter) to avoid
blocking periodical update in the queue. You can redefine this on the component level if need.

5.5.3.5.3. JavaScript API

Table 5.1. JavaScript API

Function Description

getSize() Returns the current size to the queue

getMaximumsSize() Returns the maximum size to the queue,
specified in the "size" attribute

5.5.4. Data Processing Options

RichFaces uses form based approach for Ajax request sending. This means each time, when you
click an Ajax button or <adj:poll> produces an asynchronous request, the data from the closest
JSF form is submitted with the XMLHTTPRequest object. The form data contains the values from
the form input element and auxiliary information such as state saving data.

When "ajaxSingle" attribute value is "true" , it orders to include only a value of the current
component (along with <f:param> or <a4j:actionparam> values if any) to the request map. In
case of <adj:support> , itis a value of the parent component. An example is placed below:

<h:form>
<h:inputText value="#{person.name}">
<adj:support event="onkeyup" reRender="test" ajaxSingle="true"/>
</h:inputText>
<h:inputText value="#{person.middleName}"/>
</form>

41

Chapter 5. Basic concepts of the RichFaces
Framework

In this example the request contains only the input component causes the request generation, not
all the components contained on a form, because of aj axSi ngl e="true" usage.

Note, that aj axSi ngl e="t r ue" reduces the upcoming traffic, but does not prevent decoding other
input components on the server side. Some JSF components, such as <h:selectOneMenu> do
recognize the missing data in the request map value as a null value and try to pass the validation
process with a failed result. Thus, use <adj:region> to limit a part of the component tree that will
be processed on the server side when it is required.

"immediate” attribute has the same purpose as any other non-JSF component. The default
"ActionListener" should be executed immediately (i.e. during the Apply Request Values phase
of a request processing lifecycle), rather than waiting until the Invoke Application phase. Using
i medi ate="true" is one of the ways to have some data model values updated when other
cannot be updated because of a problem with passing the Validation phase successfully. This
might be important inside the <h:dataTable> like components where using <a4j:region> is
impossible due to the <h:dataTable> component architecture.

"bypassUpdates" attribute allows to bypass the Update Model phase. It might be useful if you need
to check your input against the available validator, but not to update the model with those data.
Note, that an action will be invoked at the end of the Validation phase only if the Validation phase
is passed successfully. The listeners of the Application phase will not be invoked in any case.

5.5.5. Action and Navigation

Ajax component is similar to any other non-Ajax JSF component like <h:commandButton> . It
allows to submit the form. You can use "action" and "actionListener" attributes to invoke the
action method and define the action event.

"action" method must return null if you want to have an Ajax Response with a partual page update.
This is regular mode called " Aj ax request generates Non-Aj ax Response". In case of action
does not return null, but the action outcome that matches one of navigation rules, RichFaces starts
towork in " Aj ax request generates Non-Aj ax Response" mode. This mode might be helpful
in two major cases:

» RichFaces allows to organize a page flow inside the <a4j:include> component. This is a typical
scenario for Wizard like behavior. The new content is rendered inside the <a4j:include> area.
The content is taken from the navigation rule of the faces configuration file (usually, the faces-
config.xml). Note, that the content of the "wizard" is not isolated from the rest of the page. The
included page should not have own <f:view> (it does not matter if you use facelets). You need
to have an Ajax component inside the <adj:include> to navigate between the wizard pages.
Otherwize, the whole page update will be performed.

e If you want to involve the server-side validators and navigate to the next page only if
the Validation phase is passed successfully, you can replace <h:commandButton> with

42

Chapter 5. Basic concepts of the RichFaces
Framework

<adj:commandButton> and point to the action method that navigates to the next page. If
Validation process fails, the partial page update will occur and you will see an error message.
Otherwize, the application proceeds to the next page. Make sure, you define <redirect/> option
for the navigation rule to avoid memory leaks.

5.5.6. JavaScript Interactions

RichFaces allows writing Ajax-enabled JSF application without writing any Javascript code.
However, you can still invoke the JavaScript code if you need. There are several Ajax attributes
that helps to do it.

"onsubmit" attribute allows to invoke JavaScript code before an Ajax request is sent. If "onsubmit"
returns "false" , the Ajax request is canceled. The code of "onsubmit" is inserted before the
RichFaces Ajax call. Hence, the "onsubmit" should not has a "return" statement if you want
the Ajax request to be sent. If you are going to invoke a JavaScript function that returns "true"
or "false" , use the conditional statement to return something only when you need to cancel the
request. For example:

onsubmit="if (mynosendfunct()==false){return false}"

"onclick” attribute is similar to the "onsubmit* , but for clickable components such as
<adj:commandLink> and <a4j:commandButton> . If it returns "false" , the Ajax request is
canceled also.

The "oncomplete" attribute is used for passing JavaScript that would be invoked right after the
Ajax response returns back and DOM is updated. It is not recommended to use use keyword t hi s
inside the EL-expression, because it will not always point to the component where Ajax request
was initiated.

"onbeforedomupdate" attribute defines JavaScript code for call after Ajax response receiving and
before updating DOM on a client side.

"data" attribute allows to get the additional data from the server during an Ajax call. You can use
JSF EL to point the property of the managed bean and its value will be serialized in JSON format
and be available on the client side. You can refer to it using the "data" variable. For example:

<adj:commandButizalue="Updatidta="#{userBean.namefcomplete="showTheName(data.namg)"
>

43

Chapter 5. Basic concepts of the RichFaces
Framework

RichFaces allows to serialize not only primitive types into JSON format, but also complex types
including arrays and collections. The beans should be serializable to be refered with "data" .

There is a number of useful functions which can be used in JavaScript:

e rich:clientld('id) -returnsclientid by shortid or null if the component with the id specified
hasn't been found

e rich:elenent('id") - is a shortcut for
docunent . get El enent Byl d(#{rich:clientld('id)})

e rich: conponent ('id') -isashortcut for#{rich:clientld('id)}.conponent

e rich: findConponent ('id') -returns an instance of UIComponent taking the short ID of the
component as a parameter.

<h:inputText id="mylnput">
<adj:support event="onkeyup" reRender="outtext"/>
</h:inputText>
<h:outputText id="outtext" value="#{rich:findComponent('mylnput’).value}" />

5.5.7. Iteration components Ajax attributes

"ajaxKeys" attribute defines strings that are updated after an Ajax request. It provides possibility
to update several child components separately without updating the whole page.

<adj:poll intervall="1000" action="#{repeater.action}" reRender="text">
<table>
<tbody>
<adjrepeat value="#{bean.props}" var="detail" ajaxKeys="#{repeater.ajaxedRowsSet}">
<tr>
<td>
<h:outputText value="detail.someProperty" id="text"/>
</td>
</tr>
</a4dj.:repeat>
</tbody>
</table>
</a4j:poll>

44

Chapter 5. Basic concepts of the RichFaces
Framework

5.5.8. Other useful attributes

"status" attribute for Ajax components (such as <adj:commandButton> , <adj:poll> , etc.)
points to an ID of <adj:status> component. Use this attribute if you want to share <adj:status>
component between different Ajax components from different regions. The following example
shows it.

<adj:region id="extr">
<h:form>
<h:outputText value="Status:" />
<adj:status id="commonstatus" startText="In Progress...." stopText=""/>
<h:panelGrid columns="2">
<h:outputText value="Name"/>
<h:inputText id="name" value="#{userBean.name}">
<adj:support event="onkeyup" reRender="out" />
</h:inputText>
<h:outputText value="Job"/>
<adjregion id="intr">
<h:inputText id="job" value="#{userBean.job}">
<adj:support event="onkeyup" reRender="out" status="commonstatus"/>
</h:inputText>
</adj.region>
</h:panelGrid>
<adj.rregion>
<h:outputText id="out" value="Name: #{userBean.name}, Job: #{userBean.job}" />

<adj:commandButton ajaxSingle="true" value="Clean Up Form" reRender="name, job,
out" status="commonstatus">
<adj:actionparam name="n" value="" assignTo="#{userBean.name}" />
<adj:actionparam name="j" value="" assignTo="#{userBean.job}" />
</a4j.commandButton>
</a4j.region>
</h:form>
</a4dj.region>

In the example <adj:support> and <adj:commandButton> are defined in different regions.
Values of "status" attribute for these components points to an ID of <a4j:support> .Thus, the
<adj:support> component is shared between two components from different regions.

More information could be found on the RichFaces Live Demo [http://livedemo.exadel.com/
richfaces-demo/richfaces/status.jsf?c=status] .

45

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status

Chapter 5. Basic concepts of the RichFaces
Framework

Other useful attribute is "focus" . It points to an ID of a component where focus will be set after
an Ajax request.

5.6. How To...

5.6.1. Send an Ajax request

There are different ways to send Ajax requests from your JSF page. For example you can use
<adj:commandButton> , <adj:commandLink>, <adj:poll> or <adj:support> tags or any
other.

All these tags hide the usual JavaScript activities that are required for an XMHTTPRequest object
building and an Ajax request sending. Also, they allow you to decide which components of your
JSF page are to be re-rendered as a result of the Ajax response (you can list the IDs of these
components in the "reRender" attribute).

<adj:commandButton> and <adj:commandLink> tags are used to send an Ajax request on
"onclick" JavaScript event.

<adj:poll> tag is used to send an Ajax request periodically using a timer.

The <adj:support> tag allows you to add Ajax functionality to standard JSF components and
send Ajax request onto a chosen JavaScript event: "onkeyup", "onmouseover" , etc.

5.6.2. Decide What to Send

You may describe a region on the page you wish to send to the server, in this way you can control
what part of the JSF View is decoded on the server side when you send an Ajax request.

The easiest way to describe an Ajax region on your JSF page is to do nothing, because the content
between the <f:view> and </f:view> tags is considered the default Ajax region.

You may define multiple Ajax regions on the JSF page (they can even be nested) by using the
<adj:region> tag.

If you wish to render the content of an Ajax response outside of the active region then the value
of the "renderRegionOnly" attribute should be set to "false" ("false" is default value). Otherwise,
your Ajax updates are limited to elements of the active region.

5.6.3. Decide What to Change

Using IDs inthe "reRender" attribute to define " AJAX zones" for update works fine in many cases.

But you can not use this approach if your page contains, e.g. a <f:verbatim> tag and you wish
to update its content on an Ajax response.

The problem with the <f:verbatim/> tag as described above is related to the value of the
transientFlag of JSF components. If the value of this flag is true, the component must not
participate in state saving or restoring of process.

46

Chapter 5. Basic concepts of the RichFaces
Framework

In order to provide a solution to this kind of problems, RichFaces uses the concept of an output
panel that is defined by the <a4dj:outputPanel> tag. If you put a <f:verbatim> tag inside of the
output panel, then the content of the <f:verbatim/> tag and content of other panel's child tags
could be updated on Ajax response. There are two ways to control this:

» By setting the "ajaxRendered" attribute value to "true".

» By setting the "reRender" attribute value of an Action Component to the output panel ID.

5.6.4. Decide what to process

The "process" attribute allows to define the ids of components to be processed together with the
component which is marked as ajaxSingle or wrapped to region.

You could make use of the "process" attribute when you need to process only two components
in the different parts of view.

Imagine you need to process only two input fields but not all the view. If you wrap the first input
to region or make <adj:support> component with aj axSi ngl e="t rue" nested the second input
will not be processed.

Here is a simple solution:

<h:inputText value="#{bean.name}" id="name">

<adj:support ajaxSingle="true" process="email" event="onblur" reRender="someOut"/>
</h:inputText>
<h:inputTextarea value="#{bean.description}" id="desc" />
<h:inputText value="#{bean.email}" id="email">

<adj:support ajaxSingle="true" process="name" event="onblur" reRender="someOut"/>
</h:inputText>

In the example above when the input field with the i d="name" looses focus, an Ajax request is
sent. So only two input fields (with i d="nane" and additionally with i d="emai | ") are processed:
decoding, conversion/validation, value applying phases are executed. The input field with the
i d="emai | " is handled the same way on blur event.

5.7. Filter Configuration

RichFaces uses a filter for a correction of code received on an Ajax request. In case of a "regular"
JSF request a browser makes correction independently. In case of Ajax request in order to prevent
layout destruction it's needed to use a filter, because a received code could differ from a code
validated by a browser and a browser doesn't make any corrections.

An example of how to set a Filter in a web.xml file of your application is placed below.

47

Chapter 5. Basic concepts of the RichFaces
Framework

Example:

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

Note:

Fast Filter is deprecated and available only for backward compatibility with previous
RichFaces versions. Fast Filter usage isn't recomended, because there is another
way to use its functionality by means of [48] .

From RichFaces 3.2 filter configuration becomes more flexible. It's possible to configure different
filters for different sets of pages for the same application.

The possible filter types are:

* TIDY

"TIDY" filter type based on the Tidy parser. This filter is recommended for applications with
complicated or non-standard markup when all necessary code corrections are made by the filter
when a response comes from the server.

* NEKO

"NEKO" filter type corresponds to the former "Fast Filter" and it's based on the Neko parser. In
case of using this filter code isn't strictly verified. Use this one if you are sure that your application
markup is really strict for this filter. Otherwise it could cause lot's of errors and corrupt a layout as
a result. This filter considerably accelerates all Ajax requests processing.

* NONE
No correction.
An example of configuration is placed below.

Example:

<context-param>
<param-name>org.ajax4jsf.xmlparser. ORDER</param-name>

48

Chapter 5. Basic concepts of the RichFaces
Framework

<param-value>NONE,NEKO,TIDY</param-value>

</context-param>

<context-param>
<param-name=>org.ajax4jsf.xmlparser.NONE</param-name>
<param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>

</context-param>

<context-param>
<param-name=>org.ajax4jsf.xmlparser.NEKO</param-name>
<param-value>/pages/repeat\.xhtml</param-value>

</context-param>

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>

<[filter-mapping>

The example shows that ORDER parameter defines the order in which particular filter types are
used for pages code correction.

First of all "NONE" type is specified for the filter. Then two different sets of pages are defined for
which two filter types (NONE and NEKO) are used correspondingly. If a page relates to the first
set that is defined in the following way:

<param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>

it's not corrected, because filter type for this page is defined as "NONE". If a page is not from the
first set, then "NEKO" type is set.

If a page relates to the second set that is defined in the following way:

<param-value>/pages/repeat\.xhtml</param-value>

then "NEKQ" filter type is used for correction. If it's not related to the second set, "TIDY" type is
set for the filter ("TIDY" filter type is used for code correction).

49

Chapter 5. Basic concepts of the RichFaces
Framework

5.8. Scripts and Styles Load Strategy

Before the version 3.1.3, RichFaces loaded styles and script on demand. l.e. files are loaded only
if they are required on a particular page. Since RichFaces 3.1.3, it's possible to manage how the
RichFaces script and style files are loaded to application.

org.richfaces.LoadScriptStrategy

The following declaration in your web.xml allows loading the integrated script files.

<context-param>
<param-name=>org.richfaces.LoadScriptStrategy</param-name>
<param-value>ALL</param-value>

</context-param>

If you do not declare the or g. ri chf aces. LoadScri pt St r at egy in the web.xml, it equals to:

<context-param>
<param-name>org.richfaces.LoadScriptStrategy</param-name>
<param-value>DEFAULT</param-value>

</context-param>

The third possible value is "NONE". You have no a special reason to use it unless you obtain the
newest (or modified) version of the script and want to include it manually in a page header.

Note:

If you use ALL value of Scripts Load Strategy, the JavaScript files compression
turns off!

org.richfaces.LoadStyleStrategy

The following declaration allows to load only one integrated style sheet file.

<context-param>
<param-name>org.richfaces.LoadStyleStrategy</param-name>

50

Chapter 5. Basic concepts of the RichFaces
Framework

<param-value>ALL</param-value>
</context-param>

The integrated style sheet contains style for all shipped components. The skinnability feature still
works.

The "DEFAULT" value is a classical on-demand variant.

The "NONE" stops loading the styles at all. The earlier introduced plain skin resets all color and
font parameters to null. The "NONE" value for or g. ri chf aces. LoadSt yl eSt r at egy means that
predefined styles for RichFaces are not used.

For more information see RichFaces User Forum [http://www.jboss.com/index.htm|?
module=bb&op=viewtopic&p=4114033] .

5.9. Request Errors and Session Expiration Handling

RichFaces allows to redefine standard handlers responsible for processing of different exceptional
situations. It helps to define own JavaScript, which is executed when these situations occur.

Add the following code to web.xmil:

<context-param>
<param-name=>org.ajax4jsf.nandleViewExpiredOnClient</param-name>
<param-value>true</param-value>

</context-param>

5.9.1. Request Errors Handling

To execute your own code on the client in case of an error during Ajax request, it's necessary to
redefine the standard " A4J. AJAX. onErr or" method:

A4J.AJAX.onError = function(req, status, message){
window.alert("Custom onError handler "+message);

The function defined this way accepts as parameters:

e req - a params string of a request that calls an error

51

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033

Chapter 5. Basic concepts of the RichFaces
Framework

 status - the number of an error returned by the server
* nessage - a default message for the given error

Thus, it's possible to create your own handler that is called on timeouts, internal server errors,
and etc.

5.9.2. Session Expired Handling

It's possible to redefine also the "onExpired" framework method that is called on the "Session
Expiration" event.

Example:

A4J.AJAX.onExpired = function(loc, expiredMsg){
if(window.confirm("Custom onExpired handler "+expiredMsg+" for a location: "+loc)){
return loc;
}else{
return false;

}

Here the function receives in params:

* loc - URL of the current page (on demand can be updated)

* expiredMsg - a default message on "Session Expiration" event.

<context-param>
<param-name>org.apache.myfaces.ERROR_HANDLING</param-name>
<param-value>false</param-value>

</context-param>

52

Chapter 5. Basic concepts of the RichFaces
Framework

5.10. Skinnability

5.10.1. Why Skinnability

If you have a look at a CSS file in an enterprise application, for example, the one you're working
on now, you'll see how often the same color is noted in it. Standard CSS has no way to define
a particular color abstractly for defining as a panel header color, a background color of an active
pop-up menu item, a separator color, etc. To define common interface styles, you have to copy
the same values over and over again and the more interface elements you have the more copy-
and-paste activity that needs to be performed.

Hence, if you want to change the application palette, you have to change all interrelating values,
otherwise your interface can appear a bit clumsy. The chances of such an interface coming
about is very high, as CSS editing usually becomes the duty of a general developer who doesn't
necessarily have much knowledge of user interface design.

Moreover, if a customer wishes to have an interface look-and-feel that can be adjusted on-the-fly
by an end user, your work is multiplied, as you have to deal with several CSS files variants, each
of which contains the same values repeated numerous times.

These problems can be solved with the skinnability system built into the RichFaces project and
implemented fully in RichFaces. Every named skin has some skin-parameters for the definition of
a palette and the other parameters of the user interface. By changing just a few parameters, you
can alter the appearance of dozens of components in an application in a synchronized fashion
without messing up user interface consistency.

The skinnability feature can't completely replace standard CSS and certainly doesn't eliminate
its usage. Skinnability is a high-level extension of standard CSS, which can be used together
with regular CSS declarations. You can also refer to skin parameters in CSS via JSF Expression
Language. You have the complete ability to synchronize the appearance of all the elements in
your pages.

5.10.2. Using Skinnability
RichFaces skinnability is designed for mixed usage with:

« Skin parameters defined in the RichFaces framework
» Predefined CSS classes for components
» User style classes

The color scheme of the component can be applied to its elements using any of three style classes:

» A default style class inserted into the framework

This contains style parameters linked to some constants from a skin. It is defined for every
component and specifies a default representation level. Thus, an application interface could be
modified by changing the values of skin parameters.

53

Chapter 5. Basic concepts of the RichFaces
Framework

« A style class of skin extension

This class name is defined for every component element and inserted into the framework to
allow defining a class with the same name into its CSS files. Hence, the appearance of all
components that use this class is extended.

« User style class

It's possible to use one of the styleClass parameters for component elements and define your
own class in it. As a result, the appearance of one particular component is changed according
to a CSS style parameter specified in the class.

5.10.3. Example

Here is a simple panel component:

Example:

<rich:panel> ... </rich:panel>

The code generates a panel component on a page, which consists of two elements: a wrapper
<div> element and a <div> element for the panel body with the particular style properties. The
wrapper <div> element looks like:

Example:

<div class="dr-pnl rich-panel">

</div>

dr-pnl is a CSS class specified in the framework via skin parameters:

» background-color is defined with generalBackgroundColor
 border-color is defined with panelBorderColor
It's possible to change all colors for all panels on all pages by changing these skin parameters.

However, if a <rich:panel> class is specified somewhere on the page, its parameters are also
acquired by all panels on this page.

A developer may also change the style properties for a particular panel. The following definition:

Example:

54

Chapter 5. Basic concepts of the RichFaces
Framework

<rich:panel styleClass="customClass" />

Could add some style properties from customClass to one particular panel, as a result we get
three styles:

Example:

<div class="dr_pnl rich-panel customClass">

</div>

5.10.4. Skin Parameters Tables in RichFaces

RichFaces provides eight predefined skin parameters (skins) at the simplest level of common
customization:

DEFAULT

 plain

* emeraldTown

* blueSky

* wine

 japanCherry

e ruby

* classic

» deepMarine

To plug one in, it's necessary to specify a skin name in the or g. ri chf aces. SKI N context-param.

Here is an example of a table with values for one of the main skins, "blueSky" .

Table 5.2. Colors

Parameter name Default value

headerBackgroundColor #BEDG6F8
‘ headerGradientColor #F2F7FF ‘
‘ headTextColor #000000 ‘

55

Chapter 5. Basic concepts of the RichFaces

Framework

Parameter name Default value

generalFamilyFont

headerWeightFont bold
generalBackgroundColor #FFFFFF
generalTextColor #000000
generalSizeFont 11px

Arial, Verdana, sans-serif

controlTextColor #000000
controlBackgroundColor #fffff
additionalBackgroundColor #ECFAFE
shadowBackgroundColor #000000
shadowOpacity 1
panelBorderColor #BEDG6F8
subBorderColor HTTF
tabBackgroundColor #C6DEFF
tabDisabledTextColor #8DB7F3
trimColor #D6EGFB
tipBackgroundColor #FAEG6BO
tipBorderColor #E5973E
selectControlColor #E79A00
generalLinkColor #0078D0
hoverLinkColor #0090FF
visitedLinkColor #0090FF

Table 5.3. Fonts

Parameter name Default value

headerSizeFont

11px

headerFamilyFont
tabSizeFont

tabFamilyFont

Avrial, Verdana, sans-serif
11px

Arial, Verdana, sans-serif

buttonSizeFont

11px

buttonFamilyFont

Arial, Verdana, sans-serif

tableBackgroundColor #FFFFFF
tableFooterBackgroundColor #cceecce
tableSubfooterBackgroundColor #f1f1f1
tableBorderColor #CO0OCOCO

56

Chapter 5. Basic concepts of the RichFaces
Framework

Skin "plain” was added from 3.0.2 version. It doesn't have any parameters. It's necessary for
embedding RichFaces components into existing projecst which have its own styles.

To get detailed information on particular parameter possibilities, see the chapter where each
component has skin parameters described corresponding to its elements.

5.10.5. Creating and Using Your Own Skin File

In order to create your own skin file, do the following:

» Create a file and define in it skin constants which are used by style classes (see section
"Skin Parameters Tables in RichFaces"). The name of skin file should correspond to the
following format: <nane>. ski n. properti es . As an example of such file you can see RichFaces
predefined skin parameters (skins): blueSky, classic, deepMarine, etc. These files are located
inthe ri chf aces-i npl - xxxxx. j ar inside the /IMETA-INF/skins folder.

« Add a skin definition <cont ex- par an to the web.xml of your application. An example is placed
below:

Example:

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>name</param-value>
</context-param>

» Put your <nanme>. ski n. properti es file in one of the following classpath elements: META-INF/
skins/ or classpath folder (e.g. WEB-INF/classes).

5.10.6. Built-in Skinnability in RichFaces

RichFaces gives an opportunity to incorporate skinnability into Ul design. With this framework
you can easily use named skin parameters in properties files to control the appearance of the
skins that are applied consistently to a whole set of components. You can look at examples of
predefined skins at:

http://livedemo.exadel.com/richfaces-demo/ [http://livedemo.exadel.com/richfaces-demo/]

You may simply control the look-and-feel of your application by using the skinnability service of the
RichFaces framework. With the means of this service you can define the same style for rendering
standard JSF components and custom JSF components built with the help of RichFaces.

To find out more on skinnability possibilities, follow these steps:

57

http://livedemo.exadel.com/richfaces-demo/
http://livedemo.exadel.com/richfaces-demo/

Chapter 5. Basic concepts of the RichFaces
Framework

« Create a custom render kit and register it in the faces-config.xml like this:

<render-kit>
<render-kit-id>NEW_SKIN</render-kit-id>
<render-kit-class>org.ajax4jsf.framework.renderer.ChameleonRenderKitimpl</render-kit-
class>
</render-kit>

« Then you need to create and register custom renderers for the component based on the look-
and-feel predefined variables:

<renderer>
<component-family>javax.faces.Command</component-family>
<renderer-type>javax.faces.Link</renderer-type>
<renderer-class>newskin.HtmlCommandLinkRenderer</renderer-class>
</renderer>

 Finally, you need to place a properties file with skin parameters into the class path root. There
are two requirements for the properties file:

* The file must be named <ski nName>. ski n. properties , in this case, it would be called
newski n. ski n. properties .

» The first line in this file should be render. kit=<render-kit-id> inthis case, it would be
called render . ki t =NEW SKI N..

Extra information on custom renderers creation can be found at:

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html [http://java.sun.com/
javaeeljavaserverfaces/reference/docs/index.html]

5.10.7. Changing skin in runtime

It's possible to change skins in runtime. In order to do that, define the EL-expression in the
web.xml. For example:

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>#{skinBean.skin}</param-value>
</context-param>

The ski nBean code looks as follows:

58

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html
http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html
http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html

Chapter 5. Basic concepts of the RichFaces
Framework

public class SkinBean {

private String skin;

public String getSkin() {
return skin;

}

public void setSkin(String skin) {
this.skin = skin;

Further, it is necessary to set the skin property to the initial value in the configuration file. For
example, "classic":

<managed-bean>
<managed-bean-name>skinBean</managed-bean-name>
<managed-bean-class>SkinBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name=>skin</property-name>
<value>classic</value>
</managed-property>
</managed-bean>

You can also change the default skin, for instance, change the default color. To do this, edit the
file properties of the skin. Here is an example of the code for page:

<h:form>
<div style="display: block; float: left">

<h:selectOneRadiovalue="#{skinBean.skin}"border="0"layout="pageDirection"title="Changing
skin" style="font-size: 8; font-family: comic" onchange="submit()">
<f:selectltem itemLabel="plain" itemValue="plain" />

<f:selectltem itemLabel="emeraldTown" itemValue="emeraldTown" />

<f:selectltem itemLabel="blueSky" itemValue="blueSky" />

<f:selectltem itemLabel="wine" itemValue="wine" />

<f:selectltem itemLabel="japanCherry" itemValue="japanCherry" />

<f:selectltem itemLabel="ruby" itemValue="ruby" />

<f:selectltem itemLabel="classic" itemValue="classic" />

59

Chapter 5. Basic concepts of the RichFaces
Framework

<f:selectltem itemLabel="laguna" itemValue="laguna" />
<f:selectltem itemLabel="deepMarine" itemValue="deepMarine" />
<f:selectltem itemLabel="blueSky Modified" itemValue="blueSkyModify" />
</h:selectOneRadio>
</div>
<div style="display: block; float: left">
<rich:panelBar height="100" width="200">
<rich:panelBarltem label="Item 1" style="font-family: monospace; font-size: 12;">
Changing skin in runtime
</rich:panelBarltem>

<rich:panelBarltem label="Item 2" style="font-family: monospace; font-size: 12;">
This is a result of the modification "blueSky" skin
</rich:panelBarltem>
</rich:panelBar>
</div>
</h:form>

This is result:

plain Mem1
ermeraldTown _

This is a result of the

bluesky rmadification "BlueSky" skin

wine
japanCherry
ruby

classic

laguna

5 Bhe TS TS TS BRSBTS T

deepMarine

bluesky Modified

o)

Figure 5.5. Changing skin in runtime

5.10.8. Standard Controls Skinning

The feature is designed to unify the look and feel of standard HTML element and RichFaces
components. Skinning can be applied to all controls on a page basing on elements' hame and
attribute type (where applicable). Also this feature provides a set of CSS styles so that skinning
can be applied assigning rich-* classes to particular elements or to container of elements that
nests controls.

Standard controls skinning feature provides 2 levels of skinning: Standard and Extended. The level
is based on detecting the browser type. If browser type is not identified, Advanced level is used.

60

Chapter 5. Basic concepts of the RichFaces
Framework

However, if you want to explicitly specify the level of skinning you want to be applied, you need
to add a context parameter to your web.xml with or g. ri chf aces. CONTROL_SKI NNI NG_LEVEL as
the parameter name and value set to either basi c or ext ended.
« Standard level provides customization for only basic style properties.

To the following browsers Standard level of skinning is applied:

* Internet Explorer 6

* Internet Explorer 7 in BackCompat mode (see document.compatMode property in MSDN
[http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx])

* Opera
e Safari

» Extended level extends basic level introducing broader number of style properties and is applied
to browsers with rich visual styling capability of controls

The following browsers support Extended level of skinning:
* Mozilla Firefox
* Internet Explorer 7 in Standards-compliant mode (CSS1Compat mode)

These are the elements that affected by skinning:

* input

* select
* textarea
* keygen
* isindex
* legend
* fieldset

e hr

a (together with a:hover, a:visited "pseudo”-elements)

Skinning for standard HTML controls can be initialized in two ways:

* by adding org. ri chf aces. CONTROL_SKI NNI NG parameter to web.xml. Values: "enable" and
"disable". This way implies that skinning style properties are applied to elements by element

61

http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx

Chapter 5. Basic concepts of the RichFaces
Framework

name and attribute type (where applicable). No additional steps required. Please find below the
table that contains the list of elements to which skinning is applicable.

* byadding org.richfaces. CONTROL_SKI NNl NG CLASSES parameter to web.xml file. Possible
values "enable" and "disable". When this option is enabled you are provided with a set of
predefined CSS classes that you can use for skinning your HTML components.

By setting or g. ri chf aces. CONTROL_SKI NNI NG_CLASSES to "enable" you are provided with style
classes applicable to:

» Basic elements nested inside element having rich-container class, e.g.:

Example:

.rich-container select {
/Iclass content

« Elements that have class name corresponding to one of the basic elements name/type mapped
by the following scheme ri ch- <el ement Nane>[- <el ement Type>] . See the example:

Example:

.rich-select {
/Iclass content

}

.rich-input-text {
/Iclass content

}

Note:

Elements have classes based on "link" and pseudo class name, e.g.: rich-link,
rich-link-hover, rich-link-visited

Additionally, the predefined rich CSS classes that we provide can be used not only as classes for
basic HTML elements but also as classes for creation of complex elements .

62

Chapter 5. Basic concepts of the RichFaces
Framework

There is a snippet with some of them for example:

<u:selector name=".rich-box-bgcolor-header">

<u:style name="background-color" skin="headerBackgroundColor" />
</u:selector>
<u:selector name=".rich-box-bgcolor-general">

<u:style name="background-color" skin="generalBackgroundColor" />
</u:selector>

/[gradient elements

<u:selector name=".rich-gradient-menu">
<u:style name="background-image">
<firesource f:key="org.richfaces.renderkit.html.gradientimages.MenuGradientimage"/>
</u:style>
<u:style name="background-repeat" value="repeat-x" />
</u:selector>
<u:selector name=".rich-gradient-tab">
<u:style name="background-image">
<frresource f:key="org.richfaces.renderkit.html.gradientimages.TabGradientimage"/>
</u:style>
<u:style name="background-repeat" value="repeat-x" />
</u:selector>

To get a better idea of standard component skinning we recommend to explore CSS files located
in ui/core/src/main/resources/org/richfaces/ folder of RichFaces svn.

5.10.8.1. Standard level

Table 5.4. Html Elements Skin Bindings for input, select, textarea, button,
keygen, isindex, legend

CSS Properties Skin parameters

font-size generalSizeFont
font-family generalFamilyFont
color controlTextColor

Table 5.5. Html Elements Skin Bindings for fieldset

CSS Properties Skin parameters

border-color panelBorderColor

63

Chapter 5. Basic concepts of the RichFaces
Framework

Table 5.6. Html Elements Skin Bindings for hr

CSS Properties Skin parameters

border-color panelBorderColor

Table 5.7. Htm| Elements Skin Bindings for a

CSS Properties Skin parameters

color generalLinkColor

Table 5.8. Html Elements Skin Bindings for a:hover

CSS Properties Skin parameters

‘ color hoverLinkColorgeneralLinkColor ‘

Table 5.9. Html Elements Skin Bindings for a:visited

CSS Properties Skin parameters

color visitedLinkColor

Table 5.10. Rich Elements Skin Bindings for .rich-input, .rich-select, .rich-
textarea, .rich-keygen, .rich-isindex, .rich-link

CSS Properties Skin parameters

font-size generalSizeFont
font-family generalFamilyFont
color controlTextColor

Table 5.11. Rich Elements Skin Bindings for .rich-fieldset

CSS Properties Skin parameters

border-color panelBorderColor

Table 5.12. Rich Elements Skin Bindings for .rich-hr

CSS Properties Skin parameters/Value

border-color panelBorderColor
border-width 1px
border-style solid

Table 5.13. Rich Elements Skin Bindings for .rich-link

CSS Properties Skin parameters

color generalLinkColor

64

Chapter 5. Basic concepts of the RichFaces
Framework

Table 5.14. Rich Elements Skin Bindings for .rich-link:hover

CSS Properties Skin parameters

color hoverLinkColor

Table 5.15. Rich Elements Skin Bindings for .rich-link:visited

CSS Properties Skin parameters

color visitedLinkColor

Table 5.16. Rich Elements Skin Bindings for .rich-field

border-width 1px

border-style inset

border-color panelBorderColor
background-color controlBackgroundColor

background-repeat no-repeat

background-position 1px 1px

Table 5.17. Rich Elements Skin Bindings for .rich-field-edit

border-width 1px

border-style inset

border-color panelBorderColor
background-color editBackgroundColor

Table 5.18. Rich Elements Skin Bindings for .rich-field-error

border-width 1px

border-style inset

border-color panelBorderColor
background-color warningBackgroundColor

background-repeat no-repeat

background-position center left

padding-left 7px

6

a1

Chapter 5. Basic concepts of the RichFaces
Framework

Table 5.19. Rich Elements Skin Bindings for .rich-button, .rich-button-
disabled, .rich-button-over

CSS Properties Skin parameter/Value

border-width 1px

border-style solid

border-color panelBorderColor
background-color trimColor

padding 2px 10px 2px 10px
text-align center

cursor pointer
background-repeat repeat-x
background-position top left

Table 5.20. Rich Elements Skin Bindings for .rich-button-press

CSS Properties Skin parameter/Value

background-position bottom left

Table 5.21. Rich Elements Skin Bindings for .rich-container fieldset, .rich-
fieldset

border-color panelBorderColor
border-width 1px

border-style solid

padding 10px

padding 10px

Table 5.22. Rich Elements Skin Bindings for .rich-legend

font-size generalSizeFont
font-family generalFamilyFont
color controlTextColor
font-weight bold

Table 5.23. Rich Elements Skin Bindings for .rich-form

CSS Properties Skin parameters/Value

padding Opx

Chapter 5. Basic concepts of the RichFaces
Framework

CSS Properties Skin parameters/Value

margin Opx

5.10.8.2. Extended level

Table 5.24. Html Elements Skin Bindings for input, select, textarea, button,
keygen, isindex

‘ border-width 1px ‘
‘ border-color panelBorderColor ‘
‘ color controlTextColor ‘

Table 5.25. Html Elements Skin Bindings for *|button

border-color panelBorderColor
font-size generalSizeFont
font-family generalFamilyFont
color headerTextColor
background-color headerBackgroundColor
background-image org.richfaces.renderkit.html.images.ButtonBackgroundimage
Table 5.26. Html Elements Skin Bindings

for button[type=button], button[type=reset], button[type=submit],
input[type=reset], input[type=submit], input[type=button]

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color headerTextColor

background-color headerBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonBackgroundimage

Table 5.27. Html Elements Skin Bindings for *|button[disabled], .rich-
container *|button[disabled], .rich-button-disabled

CSS properties Skin parameters

color tabDisabledTextColor

6

~

Chapter 5. Basic concepts of the RichFaces
Framework

CSS properties Skin parameters

border-color tableFooterBackgroundColor

background-color tableFooterBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonDisabledBackgroundimage
Table 5.28. Html Elements Skin Bindings for .rich-button-

disabled, .rich-container button[type="button"][disabled], .rich-button-
button-disabled, .rich-container button[type="reset"][disabled], .rich-
button-reset-disabled, .rich-container button[type="submit"]
[disabled], .rich-button-submit-disabled, .rich-container input[type="reset"]
[disabled], .rich-input-reset-disabled, .rich-container input[type="submit"]
[disabled], rich-input-submit-disabled, .rich-container
input[type="button"][disabled], .rich-input-button-disabled

color tabDisabledTextColor

background-color tableFooterBackgroundColor

border-color tableFooterBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonDisabledBackgroundimage

Table 5.29. Html Elements Skin Bindings for *button[type="button"]
[disabled], button[type="reset"][disabled], button[type="submit"]
[disabled], input[type="reset"][disabled], input[type="submit"][disabled],
input[type="button"][disabled]

color tabDisabledTextColor
border-color tableFooterBackgroundColor
background-color tableFooterBackgroundColor

Table 5.30. Html Elements Skin Bindings for *|textarea

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

background-color controlBackgroundColor

background-image org.richfaces.renderkit.html.images.InputBackgroundimage

6

(o]

Chapter 5. Basic concepts of the RichFaces
Framework

Table 5.31. Html Elements Skin Bindings for textarea[type=textarea],
input[type=text], input[type=password], select

CSS properties Skin parameters

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

background-color controlBackgroundColor

background-image org.richfaces.renderkit.html.images.InputBackgroundimage

Table 5.32. Html Elements Skin Bindings for *|textarea[disabled], .rich-
container *|textarea[disabled]

CSS properties Skin parameters

‘ color tableBorderColor ‘

Table 5.33. textarea[type="textarea"][disabled], input[type="text"]
[disabled], input[type="password"][disabled]

CSS properties Skin parameters
color tableBorderColor
Table 5.34. textarea[type="textarea"][disabled], input[type="text"]

[disabled], input[type="password"][disabled]

CSS properties Skin parameters

‘ color tableBorderColor ‘

Note:

Standard skinning level can fall if configuration of aj axPort | et is as following:

<portlet>
<portlet-name>ajaxPortlet</portlet-name>
<header-content>
<script src="/faces/rfRes/org/ajax4jsf/framework.pack.js" type="text/
javascript" />
<script src="/faces/rfRes/org/richfaces/ui.pack.js" type="text/javascript" />

69

Chapter 5. Basic concepts of the RichFaces
Framework

<link rel="stylesheet" type="text/css" href="/faces/rfRes/org/richfaces/
skin.xcss" />
</header-content>
</portlet>

Attention. The <adj:portlet> component is DEPRECATED as far as
[http://jcp.org/en/jsr/detail?id=301] was defined the same functionality for a
Ul Vi emRoot component. Thus, it is implicitly defined by mandatory <f:view>
component.

5.10.9. Client-side Script for Extended Skinning Support

As it was mentioned earlier in the guide, extended skinning of standard HTML controls is applied
automatically: the browser type is detected and if a browser doesn't fully support extended skinning
feature, only basic skinning is applied.

However, if you don't want the RichFaces components and standard HTML controls to be skinned
automatically and perform the skinnability implementation yourself, you might encounter with a
problem, namely standard HTML controls in such browsers as Opera and Safari will be affected by
standard controls skinning. (In this section you can get more details on how to disable skinnability.)

In brief, to disable the skinnability mechanism of RichFaces you need to set the
"org.richfaces.LoadStyleStrategy" parameter to "NONE" in the web. xn file.

<context-param>
<param-name=>org.richfaces.LoadStyleStrategy</param-name>
<param-value>NONE</param-value>

</context-param>

Additionally, you should include the style sheets that perform skinning of the RichFaces
component and standard HTML controls.

In order to resolve the problem with extended skinning in Opera and Safari a client script
(ski nni ng. j s) is added to the RichFaces library. The script detects the browser type and enables
extended skinning only for those browsers that fully support it.

The script can be activated by inserting this JavaScript code to the page:

<script type="text/javascript">
window.RICH_FACES_EXTENDED_SKINNING_ON = true;

70

http://jcp.org/en/jsr/detail?id=301
http://jcp.org/en/jsr/detail?id=301

Chapter 5. Basic concepts of the RichFaces
Framework

</script>

When NO script loading strategy is used and extended skinning is turned on then corresponding
warning message will appears in the console.

You also need to specify "media" attribute in the <link> tag which includes the
"extended_both.xcss" style sheet with "rich-extended-skinning".

This is how you can include the style sheets to the page, in case automatic skinnability
implementation is disabled.

<link href="/YOUR_PROJECT_NAME/a4j 3 2 2-SNAPSHOTorg/richfaces/renderkit/html/css/
basic_both.xcss/DATB/eAF7sqpgb-jyGdIAFrMEaw___.jsf' type="text/
css' rel="stylesheet' class='component' />

<link media="rich-extended-skinning’ href=/ YOUR_PROJECT_NAME /a4j 3 2 2-
SNAPSHOTorg/richfaces/renderkit/html/css/extended_both.xcss/DATB/eAF7sqpgb-
jyGdIAFrMEaw___.jsf' type="text/css' rel='stylesheet' class='component' />

<link href="/ YOUR_PROJECT_NAME /a4j_3 2 2-SNAPSHOT/org/richfaces/skin.xcss/DATB/
eAF7sgpgb-jyGdIAFrMEaw__.jsf' type="text/css' rel="stylesheet' class='component’ />

Note

Now it's necessary to use ad4j/versionXXX resources prefix instead of
adj _ver si onXXX. Base64 encoder changed to use ' ' instead of *. .

5.10.10. XCSS File Format

XCSS files are the core of RichFaces components skinnability.

XCSS is an XML formatted CSS that adds extra functionality to the skinning process. XCSS
extends skinning possibilities by parsing the XCSS file that contains all look-and-feel parameters
of a particular component into a standard CSS file that a web browser can recognize.

XCSS file contains CSS properties and skin parameters mappings. Mapping of a CSS selector
to a skin parameter is performed using < u:selector > and < u:style> XML tags that form the
mapping structure. Please study the example below.

<u:selector name=".rich-component-name">
<u:style name="background-color" skin="additionalBackgroundColor" />
<u:style name="border-color" skin="tableBorderColor" />
<u:style name="border-width" skin="tableBorderWidth" />

71

Chapter 5. Basic concepts of the RichFaces
Framework

<u:style name="border-style" value="solid" />
</u:selector>

During processing the code in the shown example is parsed into a standard CSS format.

.rich-component-name {
background-color: additionalBackgroundColor; /*the value of the constant defined by your skin*/
border-color: tableBorderColor; /*the value of the constant defined by your skin*/
border-width: tableBorderWidth; /*the value of the constant defined by your skin*/
border-style: solid;

The "name" attribute of <u:selector> tag defines the CSS selector, while "name" attribute of
the <u:style> tag defines what skin constant is mapped to a CSS property. The "value" attribute
of the <u:style> tag can also be used to assign a value to a CSS property.

CSS selectors with identical skinning properties can be set as a comma separated list.

<u:selector name=".rich-ordering-control-disabled, .rich-ordering-control-top, .rich-ordering-
control-bottom, .rich-ordering-control-up, .rich-ordering-control-down">

<u:style name="border-color" skin="tableBorderColor" />
</u:selector>

5.10.11. Plug-n-Skin

Plug-n-Skin is a feature that gives you an opportunity to easily create, customize and plug into
your project a custom skin. The skin can be created basing on parameters of some predefined
RichFaces skin.

The feature also provides an option to unify the appearance of rich controls with standard HTML
elements.

In order to create your own skin using Plug-n-Skin feature, you can follow these step by step
instructions.

First of all, you need to create a template for the new skin. Creation of the template can
be performed using Maven build and deployment tool. More information on how to configure
Maven for RichFaces you can find out from JBoss wiki article [http://wiki.jboss.org/wiki/

72

http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces
http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces

Chapter 5. Basic concepts of the RichFaces
Framework

HowToConfigureMavenForRichFaces] . You can copy and paste these Maven instructions to
command line and execute them.

mvn archetype:create -DarchetypeGroupld=org.richfaces.cdk -DarchetypeArtifactid=maven-
archetype-plug-n-skin ~ -DarchetypeVersion=RF-VERSION -Dartifactld=ARTIFACT-ID -
Dgroupld=GROUP-ID -Dversion=VERSION

Primary keys for the command:

 ar chet ypeVer si on indicates the RichFaces version. For example, " 3. 3. 2. CR1"
e artifactld artifact id of the project

e groupl d group id of the project

« ver si on the version of the project you create, by default it is " 1. 0. - SNAPSHOT"

After this operation, a folder with the name of your " ARTI FACT- | D' appears. The folder contains
a template of Maven project.

Next steps will guide you though creating of the skin itself.

In the root folder of Maven project (the one that contains "pom.xml" file) you should run the
following command in the command line:

mvn cdk:add-skin -Dname=SKIN-NAME -Dpackage=SKIN-PACKAGE

Primary keys for the command:

» nane defines the name of the new skin
» package base package of the skin. By default "groupld" of the project is used.

Additional optional keys for the command:

* baseSki n defines the name of the base skin.

e createExt if setto "true", extended CSS classes are added. For more information, please, see
"Standard controls skinning"

As a result of the performed operations the following files and folders are created:

» Baselmage.java - the base class to store images. Location: "\src\main\java\SKIN-PACKAGE
\SKIN-NAME\images\"

73

http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces

Chapter 5. Basic concepts of the RichFaces
Framework

« BaselmageTest.java - a test version of a class that stores images. Location: "\src\test\java
\SKIN-PACKAGE\SKIN-NAME\images\"

« XCSS files - XCSS files define the new look of RichFaces components affected by the new skin.
Location: "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\"

» SKIN-NAME.properties - a file that contains properties of the new skin. Location: "\src\main
\resources\SKIN-PACKAGE\SKIN-NAME\css\"

The following properties are used to configure the SKIN-NAME.properties file:

» baseSkin — the name of the base skin to be used as basis. The look of the skin you define
will be affected by new style properties.

» generalStyleSheet - a path to the style sheet (SKIN-NAME.xcss) that imports style sheets of
the components to be affected by the new skin.

» extendedStyleSheet - a path to a style sheet that is used to unify the appearance of RichFaces
components and standard HTML controls. For additional information please read "Standard
controls skinning” chapter.

» gradientType - a predefined property to set the type of gradient applied to the new skin.
Possible values are glass, plastic, plain. More information on gradient implementation you
can find further in this chapter.

« SKIN-NAME.xcss - a XCSS file that imports XCSS files of the components to be affected by
the new skin. Location: "src\main\resources\META-INF\skins "

« XCSS files If the command is executed with the "DcreateExt" key set to "true", the XCSS
(extended_classes.xcss and extended.xcss) files that define style for standard controls will be
created. Location: "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\".

« SKIN-NAME-ext.xcss If the command is executed with the "DcreateExt" key set to "true", the
configuration SKIN-NAME-ext.xcss file that imports XCSS file defining styles for the standard
controls will be created. Location: "src\main\resources\META-INF\skins ".

« SKIN-NAME-resources.xml - the file contains the description of all listed above files. Location:
"src\main\config\resources ".

Now you can start editing the XCSS files located in "\src\main\resources\SKIN-PACKAGE\SKIN-
NAME\css\". New style properties can be assigned to the selectors (the selectors listed in the
XCSS files) in two ways, which are both valid, and it'up to you what way to choose.

« Standard CSS coding approach, i.e. you can add CSS properties to the given selectors. The
only thing, you have to keep in mind is that the selectors must be inside <f: verbatinm» <!
[CDATA[...]]> </f:verbatim> tags.

For example

74

Chapter 5. Basic concepts of the RichFaces
Framework

.rich-calendar-cell {
background: #537df8;

» Using XCSS coding approach, the same way as XCSS files are normally formed in RichFaces.
The XCSS tags have to be placed outside <f : verbati nm> <! [CDATA[...]]> </f:verbatine
tags.

<u:selector name=".rich-calendar-cell">
<u:style name="border-bottom-color" skin="panelBorderColor"/>
<u:style name="border-right-color" skin="panelBorderColor"/>
<u:style name="background-color" skin="tableBackgroundColor"/>
<u:style name="font-size" skin="generalSizeFont"/>
<u:style name="font-family" skin="generalFamilyFont"/>
</u:selector>

Having performed described above steps and edited the XCSS files you can proceed to building
the new skin and to plugging it into the project. Building the new skin can be done by executing
the given below command in the command line in the root folder of you skin project (the one that
contains pom.xml file).

mvn clean install

In addition Plug-n-Skin has a number of predefined gradients that you can also use to make your
application look nicer. The given below code snippet shows how a gradient can be used

<u:selector name=".rich-combobox-item-selected">
<u:style name="border-width" value="1px" />
<u:style name="border-style" value="solid" />
<u:style name="border-color" skin="newBorder" />
<u:style name="background-position" value="0% 50%" />
<u:style name="background-image">

75

Chapter 5. Basic concepts of the RichFaces
Framework

<firesource f:key="org.richfaces.renderkit.ntml.CustomizeableGradient">
<f:attribute name="valign" value="middle" />
<f:attribute name="gradientHeight" value="17px" />
<f:attribute name="baseColor" skin="headerBackgroundColor" />
</f:resource>
</u:style>
</u:selector>

So, as you can see, the background-image CSS property is defined with <f:resource
f:key="org.richfaces.renderkit.htnl.Custonizeabl eG adi ent"> that sets the gradient.
While the gradient type can be specified in the SKIN-NAME.properties file with gradientType
property. The gradientType property can be set to one of the possible values glass, plastic, plain.
The gradient in it's turn can be can be adjusted using baseColor, gradientColor, gradientHeight,
valign attributes. Their usage is shown in the snippet above.

Now, you can use your newly-created and customized skin in your project by adding your new
skin parameters to web.xml file and placing the jar file with your skin (the jar file is located in
"target" folder of your skin project) to "\WebContent\WEB-INF\lib\".

<context-param>
<param-name=>org.ajax4jsf.SKIN</param-name>
<param-value>SKIN-NAME</param-value>
</context-param>

5.10.11.1. Details of Usage

This section will cover some practical aspects of Plug-n-Skin implementation. It's assumed that
you have read the section of the guide that tells how the new skin using Plug-n-Skin prototype
can be created.

Above all, we need to create a new skin, in order to do that we just have to follow the steps
described in the previous section.

This command will be used to create a template of the new skin project.

mvn archetype:create -DarchetypeGroupld=org.richfaces.cdk -DarchetypeArtifactid=maven-
archetype-plug-n-skin -DarchetypeVersion=3.3.2.CR1 -Dartifactld=P-n-S -Dgroupld=GROUPID -
Dversion=1.0.-SNAPSHOT

76

Chapter 5. Basic concepts of the RichFaces
Framework

Now you can browse the "P-n-S" folder to view what files and folders were created there.

Next, we will use Maven to add all needed files to the skin project. This will done by the following
command:

mvn cdk:add-skin -DbaseSkin=blueSky -DcreateExt=true -Dname=PlugnSkinDemo -
Dpackage=SKINPACKAGE

As you remember from the previous section "-DbaseSkin" key defines what RichFaces built-in
skin to be used as a base one, "-DcreateExt=true" determines that the new skin will come with
XCSS files that unify the look of the rich components with standard HTML controls.

So, now the files and folder with all needed resources are created and redefining/editing the new
skin can be started.

Now we can start editing XCSS files of the rich components. In order to see how the Plug-n-Skin
feature works we will change some style attributes of <rich:calendar> and some basic HTML
controls to see how they are affected by standard controls skinning.

Thus, it will be demonstrated how to:

* Recolor the current day's cell background of the <rich:calendar> to see how the new skin
created with the help of Plug-n-Skin feature affects the style of the component;

* Recolor a standard HTML submit button;

In oder to edit the style properties of <rich:calendar> you need to open the "calendar.xcss" file
located in "P-n-S\src\main\resources\skinpackage\plugnskindemo\css\". Once, you have opened
the file, please find ".rich-calendar-today" selector and amend it as follows: backgr ound- col or:
#075ad1; . The current day's background color can be considered recolored.

Now we will see how font style of a standard HTML submit button can be changed. Please,
open "extended.xcss" file located in "P-n-S\src\main\resources\skinpackage\plugnskindemo\css
\" and put in font-weight: bold; inside the curly braces of these coma separated
selectors button[type="button"], button[type="reset"], button[type="submit"],
input[type="reset"], input[type="subnmit"], input[type="button"]. So,the CSS code
should look like this.

button[type="button"], button[type="reset"],
button[type="submit"],

input[type="submit"], input[type="button"] { font-weight: bold;

}

77

input[type="r

Chapter 5. Basic concepts of the RichFaces
Framework

All the changes that were planned to be preformed are done and now you can proceed to building
the new PlugnSkinDemo skin and import it into the project. As you read in the previous section,
the skin should be built in the "P-n-S" folder of the skin project by executing mvn cl ean i nstal |
command. This procedure results in creating a "target" folder that contains a .jar file with a
compiled new skin, it our case the file is named "P-n-S-1.0.-SNAPSHOT .jar". The next step is to
import the new PlugnSkinDemo skin into the project.

What you need to do, in order to have the new skin imported to the project is to

* Copy the "P-n-S-1.0.-SNAPSHOT jar" file to the "\WebContent\WEB-INF\lib\" folder.

* Add the new skin's name to the "web.xml" file. It is done like this

<context-param>
<param-name>ord.ajax4jsf.SKIN</param-name>
<param-value>PlugnSkinDemo</param-value>
</context-param>

Please, do not forget that standard controls skinning has to be enabled in the "web.xml" file, which
can be done by adding the following code to the "web.xml" file:

<context-param>
<param-name=>org.richfaces. CONTROL_SKINNING</param-name>
<param-value>enable</param-value>

</context-param>

The result of both operations is displayed on the figure below.

78

Chapter 5. Basic concepts of the RichFaces

Framework
|
<< < Original current day's background color <= < LT; E:L:ir;intcslaej,r;'dsalﬁsé{gr?und recolored
rich- - y" selector
SUM WL TUE W ITId TR SaEL SUM MON TUe ¥ . IAu PR a8t
27 1 2 3 4 27 1 23 4
25 oL 8 10 N 25 35 8 10 N
29 15 16 17 18 29 (P8 15 16 17 18
30 M2 I3 24 23 30 222 23 24 25
i 2B/ 29 30 3 Ky 28 23 30 3
32 32

Tndayéﬂppw

Criginal submit buttan font style.

zend

Today EAppw

Changed font style using standard con-
trols skinning built into Plug-n-Skin

Figure 5.6. Plug-n-Skin feature in action.

5.11. State Manager API

send

JSF has an advanced navigation mechanism that allows you to define navigation from view to
view. Navigation happens in a Web Application when a user tries to switch from one page to
another page either by clicking a button, a hyperlink, or another command component. But there
is no switch mechanism between some logical states of the same view. For example in Login/
Register dialog an existing user signs in with his user name and password, but if a new user
registers an additional field "Confirm" is displayed, buttons labels and methods are changed when
the user clicks "To register" link:

Login Existing User

Username |

password |

Login

Figure 5.7. Login Dialog

79

Chapter 5. Basic concepts of the RichFaces
Framework

Reqgister New User

username |

passwaord |

confirm |

Eegister

Figure 5.8. Register Dialog

RichFaces State API allows easily to define some set of states for the pages and any properties
for this states.

Actually States is a map where the entry key is a name of the State and the value is a State map.
Particular State map has entries with some names as keys and any objects as values that are used
after the state activation. Thus, in the State map you could define any values, method bindings,
or just some simple state variables (constants) which have different values for every State.

e

| Value binding

Login o
| Method binding |

Register State variables |

Figure 5.9. RichFaces State API

One of the most convenience features of the RichFaces State API is a navigation between states.
The RichFaces State APl implements states change as the standard JSF navigation. Action
component just returns outcome and the RichFaces State API extension for the JSF navigation
handler checks whether this outcome is registered as a state change outcome or not. If the state
change outcome is found the corresponding state is activated. Otherwise the standard navigation
handling is called.

In order to use RichFaces State APl you should follow the next steps:

* Register State Manager EL resolver and navigation handler in the faces-config.xml:

80

Chapter 5. Basic concepts of the RichFaces
Framework

<application>
<navigation-handler>org.richfaces.ui.application.StateNavigationHandler</navigation-
handler>
<el-resolver>org.richfaces.el.StateELResolver</el-resolver>
</application>

» Register an additional application factory in the faces-config.xmil:

<factory>
<application-factory>org.richfaces.ui.application.StateApplicationFactory</application-

factory>

</factory>

» Register two managed beans in the faces-config.xml:

<managed-bean>
<managed-bean-name>state</managed-bean-name>
<managed-bean-class>org.richfaces.ui.model.States</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>
<property-name>states</property-name>
<property-class>org.richfaces.ui.model.States</property-class>
<value>#{config.states}</value>
</managed-property>
</managed-bean>
<managed-bean>
<managed-bean-name>config</managed-bean-name>
<managed-bean-class>org.richfaces.demo.stateApi.Config</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>
</managed-bean>

One bean ("config") defines and stores states as it is shown in the following example:

81

Chapter 5. Basic concepts of the RichFaces
Framework

public class Config {

/**

* States

*

public States getStates() {
FacesContext facesContext = FacesContext.getCurrentinstance();
States states = new States();

/I Registering new User State definition
states.setCurrentState("register"); / Name of the new state

/] Text labels, properties and Labels for controls in "register” state
states.put("showConfirm", Boolean.TRUE); // confirm field rendering
states.put("link", "(To login)"); // Switch State link label
states.put("okBtn", "Register"); // Login/Register button label
states.put("stateTitle", "Register New User"); // Panel title

ExpressionFactory expressionFactory = facesContext.getApplication()
.getExpressionFactory();

/I Define "registerbean" available under "bean" EL binding on the page
ValueExpression beanExpression = expressionFactory
.createValueExpression(facesContext.getELContext(),
"#{registerbean}", Bean.class);
states.put("bean”, beanExpression);

/I Define "registeraction™ available under "action" EL binding on the

I/l page

beanExpression = expressionFactory.createValueExpression(facesContext
.getELContext(), "#{registeraction}", RegisterAction.class);

states.put("action", beanExpression);

/I Define method expression inside registeraction binding for this state
MethodExpression methodExpression = expressionFactory.createMethodExpression(
facesContext.getELContext(), "#{registeraction.ok}",
String.class, new Class[] {});
states.put("ok", methodExpression);

/I Outcome for switching to login state definition

states.setNavigation("switch", "login");

Chapter 5. Basic concepts of the RichFaces
Framework

/I Login Existent User State analogous definition
states.setCurrentState("login");
states.put("showConfirm", Boolean.FALSE);
states.put("link", "(To register)");
states.put("okBtn", "Login");
states.put("stateTitle", "Login Existing User");

beanExpression = expressionFactory.createValueExpression(facesContext
.getELContext(), "#{loginbean}", Bean.class);
states.put("bean”, beanExpression);

beanExpression = expressionFactory.createValueExpression(facesContext
.getELContext(), "#{loginaction}", LoginAction.class);
states.put("action", beanExpression);

methodExpression = expressionFactory.createMethodExpression(
facesContext.getELContext(), "#{loginaction.ok}",
String.class, new Class[] {});

states.put("ok", methodExpression);

states.setNavigation("switch", "register");

return states;

The other bean ("state") with the type org. ri chf aces. ui . nodel . St at es has the "states"
managed property that is bound to the "config" bean which defines states.

» Use state bindings on the page. See the following example:

<h:panelGrid columns="3">
<h:outputText value="username" />
<h:inputText value="#{state.bean.name}" id="name" required="true" />
<h:outputText value="password" />
<h:inputSecret value="#{state.bean.password}" id="password" required="true" />
<h:outputText value="confirm" rendered="#{state.showConfirm}" />

<h:inputSecattie="#{state.bean.confirmPasswarefyt ered="#{state.showConfirdg"confiequired="tfrue"
>

</h:panelGrid>

83

Chapter 5. Basic concepts of the RichFaces
Framework

<adj:commandBagtionListener="#{state.action.liste¢id h="#{statealkje="#{state.ok8trifction"/
>

To get full Login/Register dialog example, please, have a look at RichFaces Live Demo [http://
livedemo.exadel.com/richfaces-demo/richfaces/state API.jsf?c=stateAPI].

5.12. Identifying User Roles

RichFaces provides a function to check whether the logged-in user belongs to a certain user role.
The function is ri ch: i sUser | nRol e(Ohj ect), it takes a String, a comma-separated list String,
Collection etc. as arguments and returns a boolean value.

For example, you need to render some controls only for administrators. To do this you
need to create a role "admin" in web.xml and implement authorisation that assigns the
"admin" role to the user that loggged-in as an administrator. Afterwards, you can use the
rich:isUserlnRol e(Obj ect) function with the "rendered" attribute of any component.

Example:
<rich:editor value="#{bean.text}" rendered="#{rich:isUserinRole(‘admin’)}" />

In the example above only a logged-in user with the role "admin" can see the text editor while for
the user with other roles the component will not be rendered.

84

http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI
http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI
http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI

Chapter 6. The RichFaces Components

The RichFaces Components

The library encompasses ready-made components built based on the Rich Faces CDK.

6.1. Ajax Support

The component in this section lets you easily add Ajax capabilities to other components as well
as manage Ajax requests.

6.1.1. < a4jiajaXListener > available since 3.0.0

6.1.1.1. Description
The component adds an action listener to a parent component to provide possibility of Ajax update.
It works like the <f:actionListener> or <f:valueChangeListener> JSF components but for the

whole Ajax container.

6.1.1.2. Key Features

* The listener is invoked for Ajax requests only

» The listener is always guaranteed to be invoked

Table 6.1. a4j : ajaxListener attributes

Attribute Name Description

type HTML: Fully qualified Java class name of an
AjaxListener to be created and registered.

6.1.2. < a4j:actionparam > available since 3.0.0

6.1.2.1. Description
The <adj:actionparam> component combines the functionality of both JSF <f:param> and

<f:actionListener> and allows to assign the value to the property of the manager bean directly
using the assignTo attribute.

Table 6.2. a4j : actionparam attributes

Attribute Name Description

actionListener A method binding that refers to a method with
this signature: void methodName(ActionEvent)

85

Chapter 6. The RichFaces Components

Attribute Name Description

assignTo

binding

EL expression for updatable bean property.
This property will be wupdated if the
parent command component performs an
actionEvent.

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

converter

JSF: ID of a converter to be used or areference
to a converter.

JSF: Every component may have a unique id
that is automatically created if omitted

name

noEscape

A name of this parameter

If set to true, the value will not enclosed within
single quotes and there will be no escaping of
characters. This allows the use of the value
as JavaScript code for calculating value on the
client-side. This doesn't work with non-AJAX
components.

value

JSF: An initial value or a value binding

Table 6.3. Component identification parameters

Name Value

component-type

org.ajax4jsf.ActionParameter

component-class

org.ajax4jsf.component.html.HtmlActionParame

6.1.2.2. Creating the Component with a Page Tag

Simple component definition example:

Example:

>ter

<adj:actionparanmoEscape="truetame="paramlValue="getMyValue()assignTo="#{bean.prop1}

>

6.1.2.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlActionParameter;

86

Chapter 6. The RichFaces Components

HtmlActionParameter myActionParameter = new HtmlActionParameter();

6.1.2.4. Details of usage

The component <adj:actionparam> is a combination of the functionality of two JSF tags:
<f:param> and <f:actionListener> .

At the render phase, it's decoded by parent component (<h:commandLink> or like) as usual. At
the process request phase, if the parent component performs an action event, update the "value"
specified in the "assignTo" attribute as its "value" . If a "converter" attribute is specified, use it to
encode and decode the "value" to a string stored in the html parameter. To make the "assignTo"
attribute usable add the act i onPar aminstance to the parent component as an action listener.

<adj.actionparam> has a "noEscape" attribute. If it is set to "true", the "value" is evaluated
as a JavaScript code.

Example:

<script>
var foo = "bar";
</script>

<adj:actionparam noEscape="true" name="paraml" value="foo" assignTo="#{bean.prop1}" />

The <adj:param> extends <f:param>, sothe "name" attribute is mandatory. Otherwise, the
"value" misses due missing the request parameter name for it.

6.1.2.5. Relevant resources links

Vizit the ActionParamter page [http://livedemo.exadel.com/richfaces-demo/richfaces/
actionparam.jsf?c=actionparam] at RichFaces LiveDemo for examples of component usage abd
their sources.

More information can be found on the Ajax4jsf Users Forum [http://www.jboss.com/index.htm|?
module=bb&op=viewtopic&p=4063764].

More information about <f:param> and <f:actionListener> can be found in Sun JSF TLD
documentation [http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html].

87

http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

Chapter 6. The RichFaces Components

available since 3.0.0

6.1.3. <a4j:.form >

6.1.3.1. Description

The <adj:form> component is very similar to JSF <h:form> the only difference is in generation
of links inside and possibility of default Ajax submission.

Table 6.4. a4j : form attributes

Attribute Name Description

accept HTML: This attribute specifies a comma-
separated list of content types that a server
processing this form will handle correctly. User
agents may use this information to filter out
non-conforming files when prompting you to
select files to be sent to the server (cf. the
INPUT element when type="file")

acceptCharset This attribute specifies the list of character
encodings for input data that is accepted by
the server processing this form. The value
is a space- and/or comma-delimited list of
charset values. The client must interpret this
list as an exclusive-or list, i.e., the server is
able to accept any single character encoding
per entity received. The default value for this
attribute is the reserved string "UNKNOWN?".
User agents may interpret this value as the
character encoding that was used to transmit
the document containing this FORM element

ajaxSingle Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

ajaxSubmit If "true", it becomes possible to set AJAX
submission way for any components inside .

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

88

Chapter 6. The RichFaces Components

Attribute Name Description

data

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

enctype

This attribute specifies the content type used
to submit the form to the server (when the
value of method is "post"). The default value
for this attribute is "application/x-www-form-
urlencoded". The value "multipart/form-data”
should be used in combination with the INPUT
element, type="file"

eventsQueue

focus

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

ID of an element to set focus after request is
completed on client side

JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses

iterationState

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

iterationState

limitToList

onbeforedomupdate

If "true", then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

The client-side script method to be called
before DOM is updated

oncomplete

The client-side script method to be called after
the request is completed

89

Chapter 6. The RichFaces Components

Attribute Name Description

onreset DHTML: The client-side script method to be
called when a form is reset. It is only applied to
the FORM element

onsubmit DHTML: The client-side script method to be
called when a form is submitted. It is only
applied to the FORM element

prependld The flag indicating whether or not this form
should prepend its id to its descendent id during
the clientld generation process. If this flag is not
set, the default value is "true".

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

style HTML: CSS style rules to be applied to the
component

90

Chapter 6. The RichFaces Components

Attribute Name Description

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

target HTML: This attribute specifies the name of a
frame where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

timeout Timeout (in ms) for request.

Table 6.5. Component identification parameters

INETE] Value

component-type org.ajax4jsf.Form

component-family javax.faces.Form

component-class org.ajax4jsf.component.html.AjaxForm
renderer-type org.ajax4jsf.FormRenderer

6.1.3.2. Creating the Component with a Page Tag

Component definition on a page is similar to definition of the original component from JSF HTML
library.

Example:

<adj:.form>
<h:panelGrid>
<h:commandButton value="Button" action="#{userBean.nameltMark}" />
</h:panelGrid>
</a4j.form>

6.1.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxForm;

AjaxForm myForm = new AjaxForm();

91

Chapter 6. The RichFaces Components

6.1.3.4. Details of usahe

The difference with the original component is that all hidden fields required for command links are
always rendered and it doesn't depend on links rendering on the initial page. It solves the problem
with invalid links that weren't rendered on a page immediately, but after some Ajax request.

Beginning with release 1.0.5 additional attributes that make this form variant universal have
appeared.

If "ajaxSubmit" attribute is true, it becomes possible to set Ajax submission way for any
components inside with the help of the javascript A4J. AJAX. Subnit (...)call. In this case,
the "reRender" attribute contains a list of Ids of components defined for re-rendering. If
you have <h:commandButton> or <h:commandLink> inside the form, they work as
<adj:commandButton> .

Example:

<a4j:form id="helloForm" ajaxSubmit="true" reRender="table">
;;:dataTabIe id="table"... >
</t;.o.lataTabIe>
;;:datascroller for="table"... >
</t.:.c;latascroller>

</adj:form>

This example shows that in order to make <t:datascroller> submissions to be Ajax ones it's
required only to place this <t:datascroller> into <a4j:form> . In the other case it is necessary
to redefine renders for its child links elements that are defined as <h:commandLink> and can't
be made Ajax ones with using e.g. <adj:support>.

With the help of "limitToList" attribute you can limit areas, which are updated after the responses.
If "limitToList" is true, only the reRender attribute is taken in account. Therefore, if you use blocks
of text wrapped with <adj:outputPanel> and aj axRender ed= "t rue", blocks of text are ignored.

Information about the "process" attribute usage you can find in the "Decide what to process"
guide section.

6.1.3.5. Relevant resources links

Vizit AjaxForm [http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form] at
RichFaces Livedemo for examples of component usage and their sources. a

92

http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form
http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form

Chapter 6. The RichFaces Components

available since 3.0.0

6.1.4. <adj.region >

6.1.4.1. Description

The <adj:region> component specifies the part of the component tree to be processed on server.
If no <adj:region> is defined the whole View functions as a region.

Table 6.6. a4j : region attributes

Attribute Name Description

ajaxListener MethodExpression representing an action
listener method that will be notified when this
component is activated by the ajax Request
and handle it. The expression must evaluate
to a public method that takes an AjaxEvent
parameter, with a return type of void

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

immediate Flag indicating that, if this component is
activated by ajaxrequest, notifications should
be delivered to interested listeners and actions
immediately (that is, during Apply Request
Values phase) rather than waiting until Invoke
Application phase

rendered JSF: If "false", this component is not rendered

renderRegionOnly Excludes all the components from the outside
of the region from updating on the page on
Renderer Response phase. Default value is
"false".

selfRendered if "true", self-render subtree at
InvokeApplication (or Decode, if immediate
property set to true) phase

Table 6.7. Component identification parameters

Name Value

component-type org.ajax4jsf.AjaxRegion

component-family org.ajax4jsf.AjaxRegion

component-class org.ajax4jsf.component.html.HtmlAjaxRegion
renderer-type org.ajax4jsf.components.AjaxRegionRenderer

93

Chapter 6. The RichFaces Components

6.1.4.2. Creating the Component with a Page Tag

To create the simplest variant of the <adj:region> component on a page use the following syntax:

<adj:rregion>

</adj:region>

6.1.4.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRegion;

HtmlAjaxRegion newRegion = new HtmlAjaxRegion();

6.1.4.4. Details of Usage

The <adj:region> component specifies the part of the component tree to be processed on server.
The processing includes data handling during decoding, conversion, validation and model update.
Note that the whole Form is still submitted but only part taken into region will be processed.

Example:

<h:form>

<adj:region>
<adj:commandLink/>
</a4j:region>

<h:form>

The whole Form on the schematic listing above will be submitted by request invoked with the
<adj:commandLink> . The only part that is going to be processed on the server is enclosed with
<adj:region> and </adj:region> tags. If no <adj:region> is defined the whole View functions
as a region.

The regions could be nested. Server picks out and decodes only the region, which contains the
component that initiates the request.

Example:

94

Chapter 6. The RichFaces Components

<h:form>

<adj.region>
<adj.commandLink value="Link 1" id="link1"/>
<adj:region>
<adj:.commandLink value="Link 2" id="link2"/>
</adj:region >
</a4j.region>

<h:form>

The external region is decoded for | i nk1 and the internal one is decoded for | i nk2.

The "renderRegionOnly" attribute is used when it is necessary to exclude all the components
from the outside of the region from updating on the page during Renderer Response phase. Such
manipulation allows region to be passed straight into Encode and reduces performance time. This
optimization should be implemented carefully because it doesn't allow data from the outside of
active region to be updated.

Example:

<h:form>

<adj.region renderRegionOnly="true">
<adj:commandLink value="Link 1" id="link1"/>
</adj.region>

<adj:region renderRegionOnly="false">
<adj:commandLink value="Link 2" id="link2"/>
</adj.region>

</h:form>

On the example above the first region only will be updated if | i nk1 initiates a request. When a
request is initiated by | i nk2 both regions will be updated. In this case search for components to
include them into Renderer Response will be performed on the whole component tree.

RichFaces allows setting Ajax responses rendering basing on component tree nodes directly,
without referring to the JSP (XHTML) code. This speeds up a response output considerably and
could be done by setting the <a4j:region> "selfRendered" attribute to "true". However, this rapid
processing could cause missing of transient components that present on view and don't come into
a component tree as well as omitting of <a4j:outputPanel> usage described below.

95

Chapter 6. The RichFaces Components

Example:

<adj:region selfRendered ="true">
<adj.commandLink value="Link" id="link"/>
<!--Some HTML content-->

</adj:region>

In this case the processing is quicker and going on without referring to the page code. The HTML
code is not saved in a component tree and could be lost. Thus, such optimization should be
performed carefully and additional RichFaces components usage (e.g. <a4j:outputPanel>) is
required.

Starting from RichFaces 3.2.0 the <a4j:region> can be used together with iterative components
(e.g. <rich:column> or <rich:scrollableDataTable> , etc.). It became possible to re-render a
particular row in a table without updating the whole table and without any additional listeners.

Example:

<rich:column>
<adj:region>
<a4j:commandLink reRender="out"/>
</adj:region>
</rich:column>
<rich:column>
<h:outputText id="out">
</rich:column>

In most cases there is no need to use the <adj:region> as Vi ewRoot is a default one.
6.1.4.5. Relevant resources links

Visit <a4dj:region> demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?
c=region] at RichFaces live demo for examples of component usage and their sources.

Useful articles and examples:

» <adjrregion> and two <h:inputTexts> [http://www.jboss.org/community/docs/DOC-11866] in
RichFaces cookbook at JBoss portal;

e "A sad story about Ullnput [http://ishabalov.blogspot.com/2007/08/sad-story-about-
uiinput.html]* at personal blog of I|.Shabalov and exhaustive example [http:/
livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf] of solving the
problem with the help of <a4j:region>.

96

http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://www.jboss.org/community/docs/DOC-11866
http://www.jboss.org/community/docs/DOC-11866
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf

Chapter 6. The RichFaces Components

6.1.5. <adj:support >

6.1.5.1. Description

available since 3.0.0

The <adj:support> component is the most important core component in the RichFaces library.
It enriches any existing non-Ajax JSF or RichFaces component with Ajax capability. All other
RichFaces Ajax components are based on the same principles <a4j:support> has.

Table 6.8. a4j : support attributes

Attribute Name Description

action

actionListener

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle

binding

Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates

data

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled

disableDefault

HTML: If "true", disable this component on
page.
Disables default action for target event

(append "return false;" to JavaScript). Default
value is "false"

event

Name of JavaScript event property (onclick,
onchange, etc.) of parent component, for which
we will build AJAX submission code

97

Chapter 6. The RichFaces Components

Attribute Name Description

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus

ID of an element to set focus after request is
completed on client side

ignoreDupResponses

JSF: Every component may have a unique id
that is automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate

limitToList

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate

The client-side script method to be called
before DOM is updated

oncomplete

onsubmit

The client-side script method to be called after
the request is completed

DHTML: The client-side script method to be
called before an ajax request is submitted

process

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-

98

Chapter 6. The RichFaces Components

Attribute Name Description

separated list of Id's, or EL Expression with
array or Collection

rendered

JSF: If "false", this component is not rendered

requestDelay

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

reRender

similarityGroupingld

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout Timeout (in ms) for request

Table 6.9. Component identification parameters

INETE] Value

component-type

component-family

org.ajax4jsf.Support
org.ajax4jsf.AjaxSupport

component-class

org.ajax4jsf.component.html.HtmlAjaxSupport

renderer-type

org.ajax4jsf.components.AjaxSupportRenderer

6.1.5.2. Creating the Component with a Page Tag

To create the simplest variant on a page you should put <adj:support> as a nested element
into the component that you want to enhance with Ajax functionality. You should also specify an

event that will trigger an Ajax request.

Example:

<h:inputText value="#{bean.text}">

<adj:support event="onkeyup" reRender="repeater"/>

99

Chapter 6. The RichFaces Components

</h:inputText>
<h:outputText id="repeater" value="#{bean.text}"/>

6.1.5.3. Creating the Component Dynamically Using Java

In order to add the <adj:support> in Java code you should add it as facet , not as a child:

Example:

HtmlinputText inputText = new HtmlinputText();

HtmlAjaxSupport ajaxSupport = new HtmlAjaxSupport();

ajaxSupport.setActionExpression(FacesContext.getCurrentinstance().getApplication().getExpressionFactory().creat
FacesContext.getCurrentinstance().getELContext(), "#{bean.action}", String.class, new Class[] {}));

ajaxSupport.setEvent("onkeyup");

ajaxSupport.setReRender("output™);

inputText.getFacets().put("adjsupport”, ajaxSupport);

6.1.5.4. Details of Usage

The <adj:support> component has two key attributes:

« mandatory "event" attribute that defines the JavaScript event the Ajax support will be attached
to

« "reRender" attribute that defines id(s) of JSF component(s) that should be rerendered after an
Ajax request

As mentioned above, the <adj:support> component adds Ajax capability to non-Ajax JSF
components. Let's create ajaxed <h:selectOneMenu> called "Planets and Their Moons".

We begin with the common behavior description. When a page is rendered you see only one
select box with the list of planets. When you select a planet the <h:dataTable> containing moons
of the selected planet appears.

In other words we need <h:selectOneMenu> with the nested <a4j:support> component that
is attached to the onchange event.

When an Ajax response comes back the <h:dataTable> is re-rendered on the server side and
updated on the client.

<h:form id="planetsForm">
<h:outputLabel value="Select the planet:" for="planets" />

100

Chapter 6. The RichFaces Components

<h:selectOneMenu id="planets" value="#{planetsMoons.currentPlanet}" valueChangeListener="#{planetsMoons

<f:selectltems value="#{planetsMoons.planetsList}" />
<adj:support event="onchange" reRender="moons" />

</h:selectOneMenu>

<h:dataTable id="moons" value="#{planetsMoons.moonsList}" var="item">
<h:column>

<h:outputText value="#item}"/>

</h:column>

</h:dataTable>

</h:form>

Finally we need a backing bean:

public class PlanetsMoons {
private String currentPlanet="";
public List<Selectltem> planetsList = new ArrayList<Selectltem>();
public List<String> moonsList = new ArrayList<String>();
private static final String [| EARTH = {"The Moon"};
private static final String [MARS = {"Deimos", "Phobos"};
private static final String [JUPITER = {"Europa", "Gamymede", "Callisto"};

public PlanetsMoons() {
Selectltem item = new Selectltem("earth", "Earth");

planetsList.add(item);

item = new Selectltem("mars", "Mars");
planetsList.add(item);

item = new Selectltem("jupiter", "Jupiter");
planetsList.add(item);

public void planetChanged(ValueChangeEvent event){

moonsList.clear();

String[] currentltems;

if (((String)event.getNewValue()).equals("earth™)) {
currentltems = EARTH;

lelse if(((String)event.getNewValue()).equals("mars™)){
currentitems = MARS;

lelsef
currentltems = JUPITER;

101

Chapter 6. The RichFaces Components

for (inti=0;i < currentltems.length; i++) {
moonsList.add(currentltems]i]);

/IGetters and Setters

There are two properties pl anet sLi st and moonsLi st. The pl anet sLi st is filled with planets
names in the constructor. After you select the planet, the pl anet Changed() listener is called and
the noonsLi st is populated with proper values of moons.

With the help of "onsubmit" and "oncomplete" attributes the <adj:support> component allows
to use JavaScript calls before and after an Ajax request respectively. Actually the JavaScript
specified in the "oncomplete" attribute will be executed in any case whether the Ajax request is
completed successfully or not.

You can easily add confirmation dialog for the planet select box and colorize <h:dataTable>
after the Ajax response:

<h:form id="planetsForm">
<h:outputLabel value="Select the planet:" for="planets" />

<h:selectOneMenu id="planets" value="#{planetsMoons.currentPlanet}" valueChangeListener="#{planetsMoons
<f:selectltems value="#{planetsMoons.planetsList}" />
<adj:support event="onchange" reRender="moons"
onsubmit="if(lconfirm(‘Are you sure to change the planet?")) {form.reset(); return false;}"
oncomplete="document.getElementByld('planetsForm:moonsPanel'’).style.backgroundColor="#c8dcf9";’
>
</h:selectOneMenu>
<h:dataTable id="moons" value="#{planetsMoons.moonsList}" var="item">
<h:column>
<h:outputText value="#{item}"/>
</h:column>
</h:dataTable>
</h:form>

There is the result:

102

Chapter 6. The RichFaces Components

Select the planet:l Mars TI
Deimos
Phobos

Figure 6.1. "Planets and Their Moons"

Information about the "process" attribute usage you can find in the " Decide what to process "
guide section.

<h:inputText value="#{bean.text}">
<adj:support event="onkeyup" reRender="output" action="#{bean.action}"/>

</h:inputText>

<input onkeyup="A4J.AJAX.Submit(Some request parameters)"/>

6.1.5.5. Relevant resources links

Visit <a4j:support>demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?
c=support] at RichFaces live demo for examples of component usage and their sources.

6.1.6. < adj:commandButton > 2valablesince 3.0.0

6.1.6.1. Description

The <adj:commandButton> component is very similar to JSF <h:commandButton>, the only
difference is that an Ajax form submit is generated on a click and it allows dynamic rerendering
after a response comes back.

103

http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support
http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support
http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support

Chapter 6. The RichFaces Components

Lo something

Figure 6.2. The <adj:commandButton> component rendered in Blue Sky

skin

Table 6.10. a4j : commandButton attributes

Attribute Name Description

accesskey

HTML: This attribute assigns an access key to
an element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action

actionListener

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle

Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

alt

binding

HTML: Alternate textual description of the
element rendered by this component.

JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

104

Chapter 6. The RichFaces Components

Attribute Name Description

data

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

dir

HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

disabled

HTML: If "true", disable this component on
page.

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus

ID of an element to set focus after request is
completed on client side

ignoreDupResponses

image

JSF: Every component may have a unique id
that is automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now.

Absolute or relative URL of the image to
be displayed for this button. If specified,
this "input" element will be of type "image".
Otherwise, it will be of the type specified by
the "type" property with a label specified by the
"value" property.

immediate

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

lang

HTML: Code describing the language used in
the generated markup for this component

limitToList

If "true", then of all AJAX-rendered on the
page components only those will be updated,

105

Chapter 6. The RichFaces Components

Attribute Name Description

which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onblur

onchange

onbeforedomupdate

The client-side script method to be called
before DOM is updated

DHTML: The client-side script method to be
called when the element loses the focus

DHTML: The client-side script method to be
called when the element value is changed

onclick

oncomplete

ondblclick

DHTML: The client-side script method to be
called when the element is clicked

The client-side script method to be called after
the request is completed

DHTML: The client-side script method to be
called when the element is double-clicked

onfocus

DHTML: The client-side script method to be
called when the element gets the focus

onkeydown

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

DHTML: The client-side script method to be
called when a key is released

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

onmouseout

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

106

Chapter 6. The RichFaces Components

Attribute Name Description

onmouseup DHTML: The client-side script method to be
called when a mouse button is released

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

size HTML: This attribute tells the user agent the

initial width of the control. The width is given in
pixels except when type attribute has the value
"text" or "password". In that case, its value
refers to the (integer) number of characters

status ID (in format of call
UlComponent.findComponent()) of Request
status component

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
“class" attribute.

tabindex HTML: This attribute specifies the position of
the current element in the tabbing order for

107

Chapter 6. The RichFaces Components

Attribute Name Description

timeout

title

type

the current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

Timeout (in ms) for request.

HTML: Advisory title information about markup
elements generated for this component

HTML: This attribute specifies a type of control
to create. The possible values are "submit",
"reset”, "image" and "button". The default value
for this attribute is "submit"

value

JSF: The current value for this component

Table 6.11. Component identification parameters

INETE] Value

component-type

org.ajax4jsf.CommandButton

component-family

javax.faces.Command

component-class

org.ajax4jsf.component.html.HtmlAjaxComman

renderer-type

org.ajax4jsf.components.AjaxCommandButtonk

6.1.6.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

<adj:commandButton reRender="someData" action="#{bean.action}" value="Button"/>

The example above creates a button on a page clicking on which causes an Ajax form submit
on the server, "act i on" method performance, and rendering the component with " soneDat a" ID

after response comes back.

6.1.6.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandButton;

HtmlAjaxCommandButton myButton = new HtmlAjaxCommandButton();

108

dButton

Renderer

Chapter 6. The RichFaces Components

6.1.6.4. Details of Usage

The <adj:commandButton> componentis used in the same way as JSF <h:commandButton>
. The difference is that in case of <a4j:commandButton> the components to be updated should
be specified.

The example above [108] generates the following HTML code:

<input type="submit" onclick="A4J.AJAX.Submit(request parameters);return
false;" value="Button"/>

#licking the generated anchor fires the utility method A4J. AJAX. Subni t () that perfroms Ajax
request.

Note:

The <a4dj:commandButton> already has Ajax support built-in and there is no
need to add <adj:support>.

The usage of the keyword ' t hi s' in JavaScript code in the value for "oncomplete" attribute
depends on the location of <adj:commandButton> . If the <ad4j:commandButton> is situated
outside the re-rendered region it is possible to use keyword 'this' as in the following example:

<h:form>

<adj:commandBu#action="director.rollCamematlick="this.disabled=trmet omplete="this.disabled=false"
>

</h:form>

Otherwise, if the <adj:commandButton> is contained in a re-rendered region than the
"oncomplete" attribute has a problem with obtaining a reference of the commandButton object
when using the keyword ' t hi s' . In this case use the "oncomplete" attribute as in the following
example:

<h:form id="form">

j:comaetibottadifector. roliChokerahis. disabledrtplete="document.getElementByld(‘form:cbutton').disabled=false"
>

</h:form>

109

Chapter 6. The RichFaces Components

Common JSF navigation could be performed after an Ajax submit and partial rendering, but
Navigation Case must be defined as <redirect/> in order to avoid problems with some browsers.

As any Core Ajax component that sends Ajax requests and processes server responses the
<adj:commandButton> has all attributes that provide the required behavior of requests (delay,
limitation of submit area and rendering, etc.)

<adj:commandButton value="Show Current
Selection" reRender="table" action="#{dataTableScrollerBean.takeSelection}" id='

ich:componentContattachTo="buttofd'r="panel’ent="oncompleteperation="show"
>

</adj:commandButton>

<adj:commandButton value="Show Current

Selection” reRender="table" action="#{dataTableScrollerBean.takeSelection}" id="'
<rich:componentControl for="panel" event="oncomplete" operation="show" />

</adj:commandButton>

Information about the "process" attribute usage you can find in the "Decide what to process"
guide section.

6.1.6.5. Relevant resources links

Vizit CommandButton demo [http:/Nlivedemo.exadel.com/richfaces-demo/richfaces/
commandButton.jsf?c=commandButton] page at RichFaces live demo for examples of component
usage and their sources.

6.1.7. <adj:commandLink > available since 3.0.0

6.1.7.1. Description

The <a4j:commandLink> component is very similar to the <h:commandLink> component, the
only difference is that an Ajax form submit is generated on a click and it allows dynamic rerendering

110

button">

button">

http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton

Chapter 6. The RichFaces Components

after a response comes back. It's not necessary to plug any support into the component, as Ajax
support is already built in.

Table 6.12. adj : commandLink attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to
an element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

charset HTML: The character encoding of a resource
designated by this hyperlink

coords HTML: The attribute specifies shape and it
position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", “circle: center-
X, center-y, radius", "poly: x1, y1, X2, y2, ..., XN,
yN". Notes: a) when giving the radius value in
percents, user agents should calculate the final
radius value in pixels based on the associated
object's width and height; b) the radius value
should be smaller than center-x and center-

y values; c) for a polygon, the first and last

111

Chapter 6. The RichFaces Components

Attribute Name Description

coordinate pairs should have same x and y to
close the shape (x1=xN; yl1=yN) (when these
coordinates are different, user agents should
infer an additional pair to close a polygon).
Coordinates are relative to the top left corner
of an object. All values are lengths. All values
are comma separated.

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

dir HTML.: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

disabled HTML: Disables the component on page.
Boolean.
eventsQueue Name of requests queue to avoid send next

request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus ID of an element to set focus after request is
completed on client side

hreflang HTML: Base language of a resource specified
with the href attribute; hreflang may only be
used with href

id JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

112

Chapter 6. The RichFaces Components

Attribute Name Description

lang HTML: Code describing the language used in
the generated markup for this component

limitToList If "true", then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called
before DOM is updated

onblur DHTML: The client-side script method to be
called when the element loses the focus either
when pointing a device or tabbing navigation.
The attribute may be used with the same
elements as onfocus

onclick DHTML: The client-side script method to be
called when the element is clicked

oncomplete The client-side script method to be called after
the request is completed

ondblclick DHTML: The client-side script method to be
called when the element is double-clicked

onfocus DHTML: The client-side script method to be
called when the element gets the focus

onkeydown DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element
and released

onkeyup DHTML: The client-side script method to be
called when a key is released

onmousedown DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove DHTML: The client-side script method to be
called when a pointer is moved within the
element

113

Chapter 6. The RichFaces Components

Attribute Name Description

onmouseout

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

DHTML: The client-side script method to be
called when a mouse button is released

process

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rel

HTML: The relationship from the current
document to the anchor specified by this
hyperlink. The value of this attribute is a space-
separated list of link types

rendered

JSF: If "false", this component is not rendered

requestDelay

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

reRender

rev

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

HTML: A reverse link from the anchor specified
by this hyperlink to the current document. The
value of this attribute is a space-separated list
of link types

shape

HTML: This attribute specifies the shape of
a region. The possible values are "default",

"rect", "circle" and "poly".

114

Chapter 6. The RichFaces Components

Attribute Name Description

similarityGroupingld

If there are any component requests with
identical IDs then these requests will be
grouped.

status

ID (in format of call
UlComponent.findComponent()) of Request
status component

style

HTML: CSS style rules to be applied to the
component

styleClass

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
“class" attribute.

tabindex

target

timeout

HTML: This attribute specifies the position of
the current element in the tabbing order for
the current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

HTML: This attribute specifies the name of a
frame where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

Timeout (in ms) for request.

title

type

HTML.: Advisory title information about markup
elements generated for this component

HTML: The content type of the resource
designated by this hyperlink

value

JSF: The current value for this component

Table 6.13. Component identification parameters

INETE] Value

component-type
component-family

component-class

org.ajax4jsf.CommandLink
javax.faces.Command

org.ajax4jsf.component.html.HtmlAjaxComman

dLink

renderer-type

org.ajaxdjsf.components.AjaxCommandLinkRe

6.1.7.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

115

nderer

Chapter 6. The RichFaces Components

<adj:commandLink value="Follow this link" reRender="some ID" action="#{bean.action}" />

The example above creates a link on a page clicking on which causes an Ajax form submit on the
server, "act i on" method performance, and rendering the component with "soneDat a" ID after
response comes back.

6.1.7.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandLink;

HtmlAjaxCommandLink myLink = new HtmlAjaxCommandLink();

6.1.7.4. Details of Usage

The <adj:commandLink> component is used in the same way as JSF <h:commandLink> .
The difference is that in case of <a4dj:commandLink> the components to be updated should
be specified. In this chapter we will use the code from RichFaces Greeter and change there
<adj:commandButton> to <adj:commandLink> :

<adj:commandLink value="Get greeting" reRender="greeting" />

It's not necessary to add nested <adj:support> as the <adj:commandLink> has an Ajax
support already built-in. As a result of our changes we will get a form with "Get greeting” link
instead of the button:

RichFaces Greeter

Your name: |Alex iZet greeting
Hello, Alex!

Figure 6.3. The RicjFaces greeter with <a4j:commandLink>

The example above [115] generates the following HTML code:

116

Chapter 6. The RichFaces Components

<a href="#" onclick="A4J.AJAX.Submit(?"request parameters"); return
false;">Get greeting

If you click on the generated anchor the utility method A4J. AJAX. Subni t () will be fired.

Note:

Common JSF navigation could be performed after Ajax submit and partial
rendering, but Navigation Case must be defined as <redirect/> in order to avoid
problems with some browsers.

As any Core Ajax component that sends Ajax requests and processes server responses the
<adj:commandLink> has all attributes that provide the required behavior of requests (delay,
limitation of submit area and rendering, etc.)

Information about the "process" attribute usage you can find "Decide what to process" guide
section.

6.1.7.5. Relevant resources links

Vizit CommandLink demo [http://livedemo.exadel.com/richfaces-demo/richfaces/
commandLink.jsf?c=commandLink] page at RichFaces live demo for examples of component
usage and their sources.

Useful articles:

e How to use "window.confirm" JavaScript with <a4j:commandLink> "onclick" attribute [http://
www.jboss.org/community/docs/DOC-11850] in RichFaces cookbook at JBoss portal.

6.1.8. < a4j:jsFunction > available since 3.0.0

6.1.8.1. Description

The <adj:jsFunction> component allows to perform Ajax requests directly from JavaScript code,
invoke server-side data and return it in a JSON format to use in a client JavaScript calls.

Table 6.14. a4j : jsFunction attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

117

http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://www.jboss.org/community/docs/DOC-11850
http://www.jboss.org/community/docs/DOC-11850
http://www.jboss.org/community/docs/DOC-11850

Chapter 6. The RichFaces Components

Attribute Name Description

actionListener

ajaxSingle

MethodBinding pointing at method accepting
an ActionEvent with return type void

Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding

bypassUpdates

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data

eventsQueue

focus

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

ID of an element to set focus after request is
completed on client side

JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

limitToList

If "true", then of all AJAX-rendered on the
page components only those will be updated,

118

Chapter 6. The RichFaces Components

Attribute Name Description

which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

name Name of generated JavaScript function
definition
onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

119

Chapter 6. The RichFaces Components

Table 6.15. Component identification parameters

Name Value

component-type org.ajax4jsf.Function

component-family org.ajax4jsf.components.ajaxFunction
component-class org.ajax4jsf.component.html.HtmlajaxFunction
renderer-type org.ajax4jsf.components.ajaxFunctionRenderer

6.1.8.2. Creating the Component with a Page Tag

To create the simpliest example of the component on the page use the following syntax:
Example:
<head>
<script>
<!--There is some script named "myScript" that uses parameters which will be taken from
server-->
</script>

</head>
<body>

<adj:jsFunctidata="#{bean.somePropertggme="callScripticomplete="myScript(data.subProperty1,
data.subProperty2)"/>

</body>

The script "myScri pt " is called after bean. somePr operty data is returned from server (e.g. It'l
be object with two subproperties).

6.1.8.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlajaxFunction;

HtmlajaxFunction myFunction = new HtmlajaxFunction();

120

Chapter 6. The RichFaces Components

6.1.8.4. Details of usage

As the component uses Ajax request to get data from server it has all common Ajax Action
attributes. Hence, "action" and "actionListener" can be invoked, and reRendering some parts of
the page fired after calling function.

When using the <adj:jsFunction> it's possible to initiate the Ajax request from the JavaScript
and perform partial update of a page and/or invoke the JavaScript function with data returned by
Ajax response.

<body onload="callScript()">
<h:form>

<adj;jshamésicatBarip#{bean.someProp&érider="someCongarentjlete="myScript(data.subProperty1,
data.subProperty2)">
<adj:actionparam name="param_name" assignTo="#{bean.someProperty2}"/>
</adj:jsFunction>

</h:form>

</body>

The <adj:jsFunction> allows to use <adj:actionparam> or pure <f:param> for passing
any number of parameters of the JavaScript function into Ajax request. <adj:jsFunction> is
similar to <adj:commandButton>, but it could be activated from the JavaScript code. It allows
to invoke some server-side functionality and use the returned data in the JavaScript function
invoked from "oncomplete" attribute. Hence it's possible to use <adj:jsFunction> instead of
<adj:commandButton> . You can put it anywhere, just don't forget to use <h:form> and </
h:form> around it.

Information about the "process" attribute usage you can find "Decide what to process" guide
section.

6.1.8.5. Relevant resources links

Vizit the jsFunction page [http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?
c=jsFunction] at RichFaces LiveDemo for component usage and sources for the given examples.

Useful articles:

« "JsFunctionJson [http://www.jboss.org/community/docs/DOC-11856]" article in the RichFaces
Cookbook describes how to use "a4j:jsFunction” to call the jsonTest backing bean that
generates some random data in a JSON String;

121

http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://www.jboss.org/community/docs/DOC-11856
http://www.jboss.org/community/docs/DOC-11856

Chapter 6. The RichFaces Components

6.1.9. <adj:poll >

6.1.9.1. Description

available since 3.0.0

The <a4j:poll> component allows periodical sending of Ajax requests to a server and is used
for a page updating according to a specified time interval.

Table 6.16. a4j : poll attributes

Attribute Name Description

action

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener

ajaxSingle

MethodBinding pointing at method accepting
an ActionEvent with return type void

Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding

bypassUpdates

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data

enabled

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Enables/disables polling. Default value is
"true”.

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus

ID of an element to set focus after request is
completed on client side

122

Chapter 6. The RichFaces Components

Attribute Name Description

id JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

interval Interval (in ms) for call poll requests. Default
value is "1000"ms (1 second).

limitToList If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called
before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

onsubmit DHTML: The client-side script method to be
called before an ajax request is submitted

process Id['s] (in format of call
UlComponent.findComponent()) of

components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered JSF: If "false", this component is not rendered
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest

123

Chapter 6. The RichFaces Components

Attribute Name Description

caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

timeout Timeout (in ms) for request

Table 6.17. Component identification parameters

Name Value

component-type org.ajax4jsf.Poll

component-family org.ajax4jsf.components.AjaxPoll
component-class org.ajax4jsf.component.html.AjaxPoll
renderer-type org.ajax4jsf.components.AjaxPollIRenderer

6.1.9.2. Creating the component with a Page Tag

To create the simplest variant on a page use the following syntax:

<adj:poll interval="500" reRender="grid"/>

6.1.9.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxPoll;

AjaxPoll myPoll = new AjaxPoll();

6.1.9.4. Details of usage

The <adj:poll> componet is used for periodical polling of server data. In order to use the
component it's necessary to set an update interval. The "interval" attribute defines an interval in
milliseconds between the previous response and the next request. The total period beetween two

124

Chapter 6. The RichFaces Components

requests generated by the <adj:poll> component is a sum of an "interval" attribute value and
server response time. Default value for "interval”" attribute is setto "1000" milliseconds (1 second).
See an example of definition in the "Creating the component with a Page Tag [124]" section.

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received
during this period a connection is aborted and the next request is sent. Default value for "timeout"
attribute isn't set.

The "enabled" attribute defines should the <adj:poll> send request or not. It's necessary to
render the <adj:poll> to apply the current value of "enabled" attribute. You can use an EL-
expression for "enabled" attribute to point to a bean property. An example of usage of mentioned
above attributes is placed below:

Example:

<adj:region>
<h:form>

<adj:poll id="poll" interval="1000" enabled="#{userBean.pollEnabled}" reRender="poll,grid"/>
</h:form>
</a4j.region>
<h:form>
<h:panelGrid columns="2" width="80%" id="grid">
<h:panelGrid columns="1">
<h:outputText value="Polling Inactive" rendered="#{not userBean.pollEnabled}" />
<h:outputText value="Polling Active" rendered="#{userBean.pollEnabled}" />

<adj:commandButtoistyle="width:120pxid="controlValue="#{userBean.pollEnabled?'Stop".'Start'}
Polling" reRender="poll, grid">
<adj:actionparam name="polling" value="#!
userBean.pollEnabled}" assignTo="#{userBean.pollEnabled}"/>
</a4j:commandButton>
</h:panelGrid>
<h:outputText id="serverDate" style="font-size:16px" value="Server Date:
#{userBean.date}"/>
</h:panelGrid>
</h:form>

The example shows how date and time are updated on a page in compliance with data taken
from a server. The <adj:poll> componet sends requests to the server every second. "reRender"
attribute of the <adj:poll> contains poll's own | d. Hence, it is self rendered for applying the
current value of "enabled" attribute.

125

Chapter 6. The RichFaces Components

Notes:

* The form around the <a4j:poll> component is required.

 To make the <a4j:poll> component send requests periodically when it
I'i mitToLi st is set to "true", pass the <a4j:poll> ID to it reRender attribute.

Information about the "process" attribute usage you can find "Decide what to process" guide
section.

6.1.9.5. Relevant resources links

Visit the Poll page [http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll] at
RichFaces LiveDemo for examples of the component usage and their sources.

Useful examples and articles:

e "Create a Banner Using Effects and Poll [http://www.jboss.org/community/wiki/
CreateABannerUsingEffectsAndPoll]" article at RichFaces Wiki gives an example of how to
create an image banner using <rich:effect> and <a4j:poll> components;

e "Create an HTML Banner Using Effects and Poll [http://www.jboss.org/community/wiki/
CreateAHTMLBannerUsingEffectsAndPoll]" article at RichFaces Wiki brings the code of the
way of creating an HTML banner banner using <rich:effect> and <ad4j:poll> components;

* "RichFaces and Slideshow [http://www.jboss.org/index.html|?
module=bb&op=viewtopic&t=125621]" thread in the RichFaces users forum contains an
information and code on making a Slide Show with the help of the <adj:poll> component;

Manage the RichFaces Users Forum [http://jboss.com/index.htm|?
module=bb&op=viewtopic&t=103909] for fresh issues about the component usage.

6.1.10. < adj:push > available since 3.0.0

6.1.10.1. Description

The <adj:push> periodically perform Ajax request to server, to simulate 'push' data.

The main difference between <adj:push> and <adj:poll> components is that <a4j:push>
makes request to minimal code only (not to JSF tree) in order to check the presence of messages
in the queue. If the message exists the complete request is performed. The component doesn't
poll registered beans but registers Event Li st ener which receives messages about events.

126

http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909

Chapter 6. The RichFaces Components

Table 6.18. a4j : push attributes

Attribute Name Description

action

actionListener

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle

Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

enabled

Enables/disables pushing. Default value is
"true”.

eventProducer

eventsQueue

focus

MethodBinding pointing at method accepting
an PushEventListener with return type void.
User bean must register this listener and send
EventObiject to this listener on ready.

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

ID of an element to set focus after request is
completed on client side

JSF: Every component may have a unique id
that is automatically created if omitted

127

Chapter 6. The RichFaces Components

Attribute Name Description

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

interval

limitToList

Interval (in ms) for call push requests. Default
value is "1000"ms (1 second).

If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate

The client-side script method to be called
before DOM is updated

oncomplete

process

The client-side script method to be called after
the request is completed

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered

JSF: If "false", this component is not rendered

reRender

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

128

Chapter 6. The RichFaces Components

Attribute Name Description

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

timeout Timeout (in ms) for request

Table 6.19. Component identification parameters

INETE Value

component-type org.ajax4jsf.Push

component-family org.ajax4jsf.components.AjaxPush
component-class org.ajax4jsf.component.html.AjaxPush
renderer-type org.ajax4jsf.components.AjaxPushRenderer

6.1.10.2. Creating on a page
<adj:push reRender="msg" eventProducer="#{messageBean.addListener}" interval="3000"/>
6.1.10.3. Creating the Component Dynamically Using Java

import org.ajax4jsf.component.html.AjaxPush;

AjaxPush myPush = new AjaxPush();

6.1.10.4. Key attributes and ways of usage

The <adj:push> implements reverse Ajax technique.

The bean, for example, could be subscribed to Java Messaging Service (JMS [http://java.sun.com/
products/jms/]) topic or it could be implemented as Message Driven Bean (MDB) in order to send
a message to the <a4j:push> component about an event presence. In the presence of the event
some action occurs.

Thus, a work paradigm with the <adj:push> component corresponds to an anisochronous model,
but not to pools as for <a4j:poll> component. See the simplest example below:

Example:

129

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 6. The RichFaces Components

class MyPushEventListener implements PushEventListener {
public void onEvent(EventObject evt) {
System.out.printin(evt.getSource());
//ISome action

Code for Event Li st ener registration in the bean is placed below:

Example:

public void addListener(EventListener listener) {
synchronized (listener) {
if (this.listener I= listener) {
this.listener = (PushEventListener) listener;

A page code for this example is placed below.

Example:

<adj:status startText="in progress" stopText="done"/>
<adj:.form>
<adj:region>
<a4j:push reRender="msg" eventProducer="#{pushBean.addListener}" interval="2000"/>
</adj.region>
<adj.outputPanel id="msg">
<h:outputText value="#{pushBean.date}">
<f.convertDateTime type="time"/>
</h:outputText>
</adj.outputPanel>
<adj:commandButton value="Push!!" action="#{pushBean.push}" ajaxSingle="true"/>
</a4j:form>

130

Chapter 6. The RichFaces Components

The example shows how date is updated on a page in compliance with data taken from a server. In
the example "interval" attribute has value "2000". This attribute defines an interval in milliseconds
between the previous response and the next request. Default value is set to "1000" milliseconds
(1 second). It's possible to set value equal to "0". In this case connection is permanent.

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received
during this period a connection is aborted and the next request is sent. Default value for "timeout”
attribute isn't set. Usage of "interval" and “"timeout" attributes gives an opportunity to set short
polls of queue state or long connections.

Note:

The form around the <adj:push> component is required.

Information about the "process" attribute usage you can find " Decide what to process " guide
section.

6.1.10.5. Relevant resources links
On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?
c=push] you can found some additional information for <adj:push> component usage.

available since 3.3.0

6.1.11. <a4dj:queue >
3.3.0

6.1.11.1. Description

The <adj:queue> component enqueues set of Ajax requests sent from client. The RichFaces
components with built-in Ajax can reference the queue to optimize Ajax requests.

Table 6.20. a4j : queue attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

disabled HTML: If "true", disables this component on
page.
id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows you to ignore an Ajax
response produced by a request if the newest
'similar’ request is in the queue already.
ignoreDupResponses="true" does not cancel

131

http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push
http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push
http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push

Chapter 6. The RichFaces Components

Attribute Name Description

the request while it is processed on the server,
but just allows avoiding unnecessary updates
on the client side if the response isn't actual
now

onsizeexceeded

onsubmit

name Specifies to name for the named queue.

onbeforedomupdate The client-side script method to be called
before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

onerror The client-side script method to be called
whenever a JavaScript error occurs

onrequestdequeue The client-side script method to be called after
the request is removed from the queue

onrequestqueue The client-side script method to be called when

the request is added to the queue

The client-side script method to be called when
a size is exceeded

DHTML: The client-side script method to be
called before an ajax request is submitted

requestDelay

Attribute defines the time (in ms) the request
will be waiting in the queue before it is ready
to be sent.

size

HTML: Defines the number of requests allowed
in the queue at one time.

sizeExceededBehavior

Defines the strategies of the queue's behavior
if the number of the requests waiting in the
gueue is exceeded. There are four strategies:
dropNext (by default), dropNew, fireNext ,
fireNew.

status

timeout

ID (in format of call
UlComponent.findComponent()) of Request
status component

Waiting time for response on a particular
request. If no response is received during this
time, the request is aborted

Table 6.21. Component identification parameters

Name Value

‘ component-family

org.ajax4jsf.Queue

132

Chapter 6. The RichFaces Components

Name Value

component-class org.ajax4jsf.component.html.HtmIQueue
renderer-type org.ajax4jsf.QueueRenderer
tag-class org.ajaxd4jsf.taglib.html.jsp.QueueTag

6.1.11.2. Creating the Component with a Page Tag

To create the simplest variant of the Form Based queue use the following syntax.

Example:

<h:form id="form">
<adj:.queue />
<h:inputText value="#{bean.a}">
<adj:support event="onkeyup" />
</h:inputText>
</h:form>

6.1.11.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmIQueue;

HtmlQueue myQueue = new HtmlQueue();

6.1.11.4. Details of usage

The RichFaces Queue has four different types: global default, view scoped default, view scoped
named and form-based default queue (general Queue principles are good documented in the
"Queue Principles" section). The current section will take closer to the form based queue. The
usage of other types is similar.

In order to disable or enable the <a4j:queue> component on the page you can use the "disabled"
attribute.

The ‘"requestDelay" attribute defines delay time for all the requests fired by the action
components.

The "size" attribute specifies the number of requests that can be stored in the queue at atime. The
attribute helps to prevent server overloading. It is also possible to determine queue's behaviour
when it's size is exceeded. Use the "sizeExceededBehavior" for this purpose. There are four
possible strategies of exceeded queue's behavior:

133

Chapter 6. The RichFaces Components

« "dropNext" drops next request that should be fired

« "dropNew" drops the incoming request

« "fireNext" immediately fires the next request in line to be fired
« "fireNew" immediately fires the incoming request.

Example:

<h:form>

<adj.quesize="EquestDelay="508lzeExceededBehavior="dropNexihsizeexceeded="alert('The
size of the queue is exceeded")" />
<h:inputText value="#{bean.a}">
<adj:support event="onkeyup" />
</h:inputText>
<h:inputText value="#{bean.b}">
<adj:support event="onblur" />
</h:inputText>
<h:selectBooleanCheckbox value="#{bean.check}" id="checkboxID">
<adj:support id="checkboxSupport" event="onchange" />
</h:selectBooleanCheckbox>
</h:form>

In this example if the queue has more than 2 requests waiting to be processed the next event will
be dropped and a message (the "onsizeexceeded" attribute fires a JavaScript function) saying
that the queues is exceeded will be displayed.

The "ignoreDupResponses" attribute that takes a boolean value can also help optimize your
Ajax requests. If set to true, response processing for request will not occur if a similar request is
already waiting in the queue. New request will be fired immediately when the response from the
previous one returns.

Example:

<h:form>
<adj:queue requestDelay="500" ignoreDupResponses="true" />
<h:inputText value="#{bean.a}">
<adj:support event="onkeyup" />
</h:inputText>
</h:form>

In this example, the requests are glued together and only the last one is submitted.

134

Chapter 6. The RichFaces Components

Another key attribute that easies server load is "timeout" . The attribute specifies the amount of
time an item can be in the queue before the sent event is be aborted and dropped from the queue.

If the request is sent and response is not returned within the time frame defined in this attribute
- the request is aborted, and the next one is sent.

Example:

<h:form>
<a4j:queue timeout="1000" />
<h:inputText value="#{bean.a}">
<adj:support event="onkeyup" />
</h:inputText>
</h:form>

In this case if the sever doesn't respond within a second the request will be aborted.

As you can see the implementation of the queue provides some custom event handlers that you
may use to call JavaScript functions.

The "oncomplete” is fired after request completed. In this event handler request object is be
passed as a parameter. Thus queue is be accessible using r equest . queue. And the element
which was a source of the request is available using t hi s.

Example:

<h:form>
<adj:queue oncomplete="alert(request.queue.getSize())" requestDelay="1000" />
<h:inputText value="#{bean.a}">
<adj:support event="onkeyup" />
</h:inputText>
<h:selectBooleanCheckbox value="#{bean.check}">
<adj:support event="onchange"/>
</h:selectBooleanCheckbox>
</h:form>

In this example you can see how the number of requests waiting in the queue change. You will
get a message with the number of the requests in the queue.
The "onbeforedomupdate" event handler called before updating DOM on a client side.

The "onrequestqueue" event handler called after the new request has been added to queue. And
the "onrequestdequeue" event handler called after the request has been removed from queue.

135

Chapter 6. The RichFaces Components

The "onsubmit" event handler called after request is completed. This attribute allows to invoke
JavaScript code before an Ajax request is sent.

6.1.11.5. JavaScript API

Table 6.22. JavaScript API

Function Description
getSize() Returns the current size to the queue
getMaximumsSize() Returns the maximum size to the queue,

specified in the "size" attribute

6.1.11.6. Relevant resources links

Vizit the Queue Page [http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue]
at the RichFaces LiveDemo for examples of component usage and their sources.

Useful articles:

"Queue Principles" section of the RichFaces developer guide describes general Queue principles.

available since 3.0.0

6.1.12. < adj:status >

6.1.12.1. Description

The <adj:status> component generates elements for displaying of the current Ajax requests
status. There are two status modes: Ajax request is in process or finished.

Table 6.23. a4j : status attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

for ID of the AjaxContainer component whose
status is indicated (in the format of
a javax.faces.UIComopnent.findComponent()
call).

forceld If true, render the ID of the componentin HTML
code without JSF modifications.

id JSF: Every component may have a unique id
that is automatically created if omitted

136

http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue
http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue

Chapter 6. The RichFaces Components

Attribute Name Description

lang

layout

HTML: Code describing the language used in
the generated markup for this component

Define visual layout of panel, can be "block" or
"inline".

onclick

DHTML: The client-side script method to be
called when the element is clicked

ondblclick

onkeydown

DHTML: The client-side script method to be
called when the element is double-clicked

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

DHTML: The client-side script method to be
called when a key is released

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

DHTML: The client-side script method to be
called when a pointer is moved within the
element

onmouseout

onmouseover

onmouseup

onstart

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

DHTML: The client-side script method to be
called when a mouse button is released

The client-side script method to be called at the
start of the request

onstop

The client-side script method to be called when
the request is finished

rendered

JSF: If "false", this component is not rendered

startStyle

CSS style rules to be applied to the element
displayed when a request is in progress

137

Chapter 6. The RichFaces Components

Attribute Name Description

startStyleClass Assigns one or more space-separated CSS
class names to the element displayed when a
request is in progress

startText Text to display on starting request.

stopStyle CSS style rules to be applied to the element
displayed on a request completion

stopStyleClass Assigns one or more space-separated CSS
class names to the element displayed on a
request completion

stopText Text for display on request complete.

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

title HTML: Advisory title information about markup
elements generated for this component

Table 6.24. Component identification parameters

Name Value

component-type

component-family

org.ajax4jsf.Status

javax.faces.Panel

component-class

org.ajax4jsf.component.html.HtmlAjaxStatus

renderer-type

org.ajax4jsf.components.AjaxStatusRenderer

6.1.12.2. Creating the Component with a Page Tag

There are two ways to define elements indicating a request status :

* With "StartText"/"StopText" atributes:

<adj:status startText="Progress" stopText="Done" for="stat1">

In this case, text elements for the corresponding status are generated.

« With "Start"/ "Stop" facets definition:

<adj:status for="stat2">

138

Chapter 6. The RichFaces Components

<f:facet name="start">
<h:graphiclmage value="ajax_process.png" />
</f:facet>
<f:facet name="stop">
<h:graphiclmage value="ajax_stoped.png" />
</f:facet>
</adj.status>

In this case, the elements are generated for each status and correspond the facets content.

6.1.12.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxStatus;

HtmlAjaxStatus myStatus = new HtmlAjaxStatus();

6.1.12.4. Facets

Table 6.25. Facets

Facet name Description

start Redefines the content for display on starting
request

stop Redefines the content for display on request
complete

6.1.12.5. Details of usage

There are two ways for the components or containers definition, which Ajax requests status is
tracked by a component.

 Definition with the "for" attribute on the <adj:status> component. Here "for" attribute should
point at an Ajax container (<adj:region>) id, which requests are tracked by a component.

« Definition with the "status" attribute obtained by any RichFaces library action component. The
attribute should point at the <adj:status> component id. Then this <adj:status> component
shows the status for the request fired from this action component.

The component creates two or <div> elements depending on attribute "layout” with
content defined for each status, one of the elements (start) is initially hidden. At the beginning of

139

Chapter 6. The RichFaces Components

an Ajax request, elements state is inversed, hence the second element is shown and the first is
hidden. At the end of a response processing, elements display states return to its initial values.

Example:
<adj:status startText="Started" stopText="stopped" />
The code shown in the example above is decoded on a page as:

Started

Stopped

and after the generation of an Ajax response is changed to:

Started

Stopped

There is a possibility to group a <adj:status> elements content into <div> elements, instead of
. To use it, just redefine the "layout" attribute from "inline" (default) to "block".

6.1.12.6. Relevant resources links

Vizit Status page [http://livedemo.exadel.com/richfaces-demof/richfaces/status.jsf?c=status] at
RichFaces Livedemo for examples of component usage and their sources.

Useful articles at JBoss portal:

» RichFacesPleaseWaitBox [http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox] describes how
to show a "Please Wait" box and block the input while the Ajax request is processed using
combination of <adj:status> and <rich:modalPanel> .

6.2. Resources/Beans Handling

The main purpose of the components covered in this section is to load resources (style sheets,
JavaScript files and resource bundle) and to keep a state of a bean between requests.

140

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox
http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox

Chapter 6. The RichFaces Components

6.2.1. < a4j2|0adBund|e > available since 3.0.0

6.2.1.1. Description

The <adj:loadBundle> component is similarto JSF <f:loadBundle> : it loads a resource bundle
localized for the Locale of the current view and stores properties as a Map in the current request
attributes of the current request.

Table 6.26. a4j : loadBundle attributes

Attribute Name Description

basename Base name of the resource bundle to be
loaded.
binding JSF. The attribute takes a value-binding

expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

var Name of a request scope attribute under which
the resource bundle will be exposed as a Map.

Table 6.27. Component identification parameters

Name Value

‘ component-type org.ajax4jsf.Bundle ‘
‘ component-family org.ajax4jsf.Bundle ‘
‘component—class org.ajax4jsf.component.html.AjaxLoadBundle ‘

6.2.1.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<adj:loadBundle baseName="demo.bundle.Messages" var="Message"/>

6.2.1.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLoadBundle;

141

Chapter 6. The RichFaces Components

AjaxLoadBundle myBundle = new AjaxLoadBundle();

6.2.1.4. Details of usage

Internationalization and Localization are the processes of adaptation of web applications for
different languages and cultures. When you develop English and German versions of a site it
can be said that you localize the site for England and Germany. Language is not the only thing
that undergoes the localization — dates, times, numbers, currencies, phone numbers, addresses,
graphics, icons, colors, personal titles and even favourite sounds are also varies from country to
country. It means that an internationalized application may have lots of different types information,
which should be changed depending on user location.

There are several approaches of organizing the localization. The JSF <h:loadBundle> loads
bundles into the request scope when page is being rendered and updates all the needed areas
in a crowd. Bundle information loaded in such way becomes unavailable when dealing with
Ajax requests that work in their own request scopes. The approach provided by RichFaces
<adj:loadBundle> component enriches one given by the JSF <h:loadBundle> with Ajax
capability: it allows to use reference to a particular bundle item during an Ajax update.

The <adj:loadBundle> usage is pretty simple. Imagine a small application that says "Hello!"
in different languages, where switching between translations (localizations, in our case) occurs
when corresponding links are being clicked, like you have used to see on lots of sites. In our JSF
with RichFaces application (those who feel not strong with that should better read the "Getting
started with RichFaces" chapter) create resource bundles with "Hello!" message for three different
languages: English, German and Italian. Resource bundles are represented with *. properti es
extention files that keep items in key(name) - val ue pairs. A key for an item should be the same
for all locales.

142

Chapter 6. The RichFaces Components

meszage_en. properties
=

p
meszage_en.properties #3

meszage_de.properties 1 meszage_ik properties

Fame

| valle

greeting

Hellol

r
meszage_en.properties

(meszage_de properties 23

meszage_de. properties

mezzage_it properties

name

| wvalue

qresting

[aruzsl

P
message._en.properties

(meszage_de properties

lf message._itproperties &4

meszage_ru. propertics
=

(=l | value

gresting Privet!

Figure 6.4. Resource bundles *.properties files with Keys and Values for
multi-language application.

#essage resource bundles should be registered in the Faces configuration (f aces- confi g. xm)
file of your application as <message- bundl e> inside the <appli cati on> element. Name of
a resource should be specified without language or country code and without . properti es
extension. Supported locales should be specified inside the <suppor t ed- | ocal e> element.

Registering resource bundles in the Faces configuration file:

<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>en</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>it</supported-locale>
</locale-config>
<message-bundle>demo.message</message-bundle>
</application>

For the application we will use JSF j avax. f aces. conponent . Ul Vi ewRoot . set Local e method
that will set a needed Locale (each link will invoke corresponding method — there are, off course,
another ways to do that).

ChangeLocal e Java class with three methods for setting the correponding Locale:

143

Chapter 6. The RichFaces Components

package demo;

import java.util.Locale;
import javax.faces.context.FacesContext;

public class ChangelLocale {
public String germanAction() {
FacesContext context = FacesContext.getCurrentinstance();
context.getViewRoot().setLocale(Locale. GERMAN);
return null;

public String englishAction() {
FacesContext context = FacesContext.getCurrentinstance();
context.getViewRoot().setLocale(Locale. ENGLISH);
return null;

public String italianAction() {
FacesContext context = FacesContext.getCurrentinstance();
context.getViewRoot().setLocale(Locale.ITALIAN);
return null;

Recently, the JSP page will look as following:

<h:form>
<a4j:loadBundle var="msg" basename="demo.message"/>
<h:outputText id="messageBundle" value="#{msg.greeting}"/>

<adj:commandLinkalue="Dedction="#{changeLocale.germanActiony'eRender="messageBundle"
>

<adj:commandLinkalue="Engiction="#{changelLocale.englishActionfeRender="messageBundleg"
>

<adj:commandLinkvalue="Itaction="#{changeLocale.italianAction}'teRender="messageBundle"
>

</h:form>

144

Chapter 6. The RichFaces Components

As an output we will get a simple application with English "Hello!" by default. Clicking on links
"De", "Eng" and "It" will show the messages specified within the corresponding *. properties
file. To reference to a particular bundle item during an Ajax update it is necessary to point
the component(s) that shold be re-rendered (in this example it is done with the help of
<adj:commandLink> "reRender" attribute).

szl De Eng |

Figure 6.5. Using of the RichFaces <a4dj:loadBundle> component for
application localization.

6.2.1.5. Relevant resources links

Vizit the LoadBundle page [http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?
c=loadBundle] at RichFaces LiveDemo for additional information on the component.

More useful examples and articles:

« loadBundle tag reference [http://java.sun.com/javaeel/javaserverfaces/1.1_01/docs/tiddocs/f/
loadBundle.html] at java.sun portal;

« Backing a ResourceBundle with Properties Files [http://java.sun.com/docs/books/tutorial/i18n/
resbundle/propfile.html] at java.sun portal;

 Internationalization and Localization of J2EE application [http://www.objectsource.com/
j2eechapters/Ch19-118N_and_L10N.htm] explains main principles of the internationalization of
a web application;

e one more useful tutorial [http://www.laliluna.de/javaserver-faces-message-resource-bundle-
tutorial.html] explains the internationalization of a web application using JSF message resource
bundle;

* Some special problem with JSF internationalization [http://www.i-coding.de/www/en/jsf/
application/locale.html] and solution from the i-coding.de portal.

available since 3.0.0

6.2.2. < adj:keepAlive >

6.2.2.1. Description

The <adj:keepAlive> tag allows to keep a state of a bean between requests.

145

http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.i-coding.de/www/en/jsf/application/locale.html
http://www.i-coding.de/www/en/jsf/application/locale.html
http://www.i-coding.de/www/en/jsf/application/locale.html

Chapter 6. The RichFaces Components

Table 6.28. a4j : keepAlive attributes

Attribute Name Description

ajaxOnly if true, bean value restored in ajax requests
only.
beanName name of bean for EL-expressions.

Table 6.29. Tag identification parameters

component-type org.ajax4jsf.components.KeepAlive
‘ component-family org.ajax4jsf.components.AjaxKeepAlive ‘
‘ component-class org.ajax4jsf.components.AjaxKeepAlive ‘

6.2.2.2. Using the tag on a Page

To create the simplest variant on a page use the following syntax:

Example:

<adj:keepAlive beanName = "testBean"/>

Note, that to be put into the request scope the pointed bean should be registered inside f aces-
confi g. xnm file and marked with or g. aj ax4j sf. nodel . KeepAl i ve annotation. A bean instance
in the request scope could also be saved directly through the declaration of @eepAl i ve annotation
inside the bean.

6.2.2.3. Details of usage

If a managed bean is declared with request scope in the configuration file with the help of
<managed-bean-scope> tag then the life-time of this bean instance is valid only for the current
request. Any attempts to make a reference to the bean instance after the request end will throw
in lllegal Argument Exception by the server. To avoid these kinds of Exceptions component
<adj:keepAlive> is used to maintain the state of the whole bean object among subsequent
request.

Example:

<adj:keepAlive beanName = "#{myClass.testBean}"/>

The "beanName" attribute defines the request scope bean name you'd like to re-use. Note that
this attribute must point to a legal JSF EL expression which resolves to a managed mean instance.
For example for the above code the class definition may look like this one:

146

Chapter 6. The RichFaces Components

class MyClass{

private TestBean testBean;
/I Getters and Setters for testBean.

—

The "ajaxOnly" attribute declares whether the value of the bean should be available during a
non-Ajax request. If the value of this attribute is "true" a request scope bean keeps the same value
during Ajax requests from the given page. If a non-Ajax request is sent from this page the bean
is re-created as a regular request scope bean.

6.2.2.4. Relevant resources links

Vizit KeepAlive page [http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?
c=keepAlive] at RichFaces Livedemo for examples of component usage and their sources.

Search the RichFaces Users forum [http://www.jboss.org/index.html?
module=bb&op=viewforum&f=261] for some additional information about usage of component.

available since 3.0.0

6.2.3. < a4dj:loadScript >

6.2.3.1. Description

The <adj:loadScript> component allows to load scripts from alternative sources like a jar files,
etc.

Table 6.30. a4j : loadScript attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

src name of JavaScript resource to load.

Table 6.31. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadScript ‘

147

http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261

Chapter 6. The RichFaces Components

Name Value

component-family org.ajax4jsf.LoadScript
component-class org.ajax4jsf.component.html.HtmlLoadScript
renderer-type org.ajax4jsf.LoadScriptRenderer

6.2.3.2. Creating the Component with a Page Tag
To create the simplest variant on a page use the following syntax:

Example:

<adj:loadScript src="scripts/someScript.js"/>

6.2.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlLoadScript;

HtmlLoadScript myScript = new HtmlLoadScript();

6.2.3.4. Details of usage

The main attribute of the <a4j:loadScript> is "src", wich defines the context relative path to the
script. The value of the attribute does not require a prefix of an application. Leading slash in the
path means the root of the web context. It is also possible to use resource: /// prefix to access
the script file using RichFaces resource framework.

Example:

<adj:loadScript src="resource:///lorg/mycompany/assets/script/focus.js" />

The ‘"src" attribute passses value to the get ResourceURL() method of the ViewHandler
of the application, The result is passed through the encodeResourceURL() method of the
ExternalContext.

6.2.3.5. Relevant resources links

Vizit the Script page at RichFaces LiveDemo [http://livedemo.exadel.com/richfaces-demo/
richfaces/script.jsf?c=loadScript] for examples of component usage abd their sources.

148

http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript
http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript
http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript

Chapter 6. The RichFaces Components

available since 3.0.0

6.2.4. <adj:loadStyle >

6.2.4.1. Description

The <a4j:loadStyle> component allows to load a style sheet file from alternative sources like a
jar file, etc. It inserts stylesheet links to the head element.

Table 6.32. a4j : loadStyle attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

media This attribute defines the device to which it
is necessary to apply style registration. The
possible values are "all", "screen” (by default),
"print", "projection”, "projection”, "braille" and

"speech".
rendered JSF: If "false", this component is not rendered
src Defines the context relative path to the style
sheet file.

Table 6.33. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadStyle

component-family org.ajax4jsf.LoadStyle

component-class org.ajax4jsf.component.html.HtmlLoadStyle
renderer-type org.ajax4jsf.LoadStyleRenderer

6.2.4.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<adj:loadStyle src="styles/style.css"/>

6.2.4.3. Creating the Component Dynamically Using Java

Example:

149

Chapter 6. The RichFaces Components

import org.ajax4jsf.component.html.HtmlLoadStyle;

HtmlLoadScript myStyle = new HtmlLoadStyle();

6.2.4.4. Details of usage

The main attribute of the <adj:loadStylet> is "src", wich defines the context relative path to the
script. The value of the attribute does not require a prefix of an application. Leading slash in the
path means the root of the web context. It is also possible to use resource: /// prefix to access
the script file using RichFaces resource framework.

Example:

<adj:loadStyle src="resource:///org/mycompany/assets/script/focus.js" />

The “src" attribute passses value to the get ResourceURL() method of the ViewHandler
of the application, The result is passed through the encodeResourceURL() method of the
ExternalContext.

6.2.4.5. Relevant resources links

Vizit the Script page at RichFaces LiveDemo [http://livedemo.exadel.com/richfaces-demo/
richfaces/style.jsf?c=loadStyle] for examples of component usage abd their sources.

6.3. Ajax Validators

RichFaces components library provides 3 components to validate user input data. These
components enhance JSF validation capabilities with Ajax support and possibility to use Hibernate
validators.

ich:aj : ilable since 3.2.2
6.3.1. <rich:ajaxValidator > “V#@>'¢5iNce

322
6.3.1.1. Description

The <rich:ajaxValidator> is a component designed to provide Ajax validation inside for JSF
inputs.

6.3.1.2. Key Features

 Skips all JSF processing except validation

150

http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle

Chapter 6. The RichFaces Components

 Possibility to use both standard and custom validation

 Possibility to use Hibernate Validation

« Event based validation triggering

Table 6.34. rich : ajaxValidator attributes

Attribute Name Description

ajaxListener

MethodExpression representing an action
listener method that will be notified when this
component is activated by the ajax Request
and handle it. The expression must evaluate
to a public method that takes an AjaxEvent
parameter, with a return type of void. Default
value is "null"

disableDefault

event

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Disables default action for target event
(append "return false;" to JavaScript). Default
value is "false"

Name of JavaScript event property (onclick,
onchange, etc.) of parent component by which
validation will be triggered. Default value is
"onblur"

eventsQueue

focus

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

ID of an element to set focus after request is
completed on client side

JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,

151

Chapter 6. The RichFaces Components

Attribute Name Description

but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

limitToList If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called
before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

onsubmit DHTML: The client-side script method to be
called before an ajax request is submitted

profiles This attribute defines JavaBean Validation
‘groups' feature (JSR-303). It is ignored if
Hibernate Validator is used.

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

summary Summary message for a validation errors.

152

Chapter 6. The RichFaces Components

Attribute Name Description

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

Table 6.35. Component identification parameters

Name Value

=

component-type org.richfaces.ajaxValidator

component-class org.richfaces.component.html.HtmlajaxValidato
component-family org.richfaces.ajaxValidator

renderer-type org.richfaces.ajaxValidatorRenderer

tag-class org.richfaces.taglib.ajaxValidatorTag

6.3.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<h:outputText value="Name:" />

<h:inputText value="#{userBean.name}" id="name" required="true">
<fvalidateLength minimum="3" maximum="12"/>
<rich:ajaxValidator event="onblur"/>

</h:inputText>

6.3.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmICalendar;

HtmlAjaxValidator myAjaxValidator= new HtmlAjaxValidator();

6.3.1.5. Details of Usage

The <rich:ajaxValidator> component should be added as a child component to an input JSF
tag which data should be validated and an event that triggers validation should be specified as
well. The component is ajaxSingle by default so only the current field will be validated.

153

Chapter 6. The RichFaces Components

The following example demonstrates how the <rich:ajaxValidator> adds Ajax functionality
to standard JSF validators. The request is sent when the input field loses focus, the action is
determined by the "event" attribute that is set to "onbl ur".

<rich:panel>
<f:facet name="header">
<h:outputText value="User Info:" />
</f:.facet>
<h:panelGrid columns="3">
<h:outputText value="Name:" />
<h:inputText value="#{userBean.name}" id="name" required="true">
<fivalidateLength minimum="3" maximum="12"/>
<rich:ajaxValidator event="onblur"/>
</h:inputText>
<rich:message for="name" />

<h:outputText value="Age:" />

<h:inputText value="#{userBean.age}" id="age" required="true">
<f:convertNumber integerOnly="true"/>
<f.validateLongRange minimum="18" maximum="99"/>
<rich:ajaxValidator event="onblur"/>

</h:inputText>

<rich:message for="age"/>

</h:panelGrid>
</rich:panel>

This is the result of the snippet.

User Info:
Marme: | ajaxvalidatorForm: narme: Yalidation Error: Yalue is required.
Lge: | ajaxvalidatorForm: age: Walidation Error: Yalue is required.

Figure 6.6. Simple example of <rich:ajaxValidator> with

In the example above it's show how to work with standard JSF validators. The
<rich:ajaxValidator> component also works perfectly with custom validators enhancing their
usage with Ajax.

Custom validation can be performed in two ways:

« Using JSF Validation API is available in javax.faces.validator package

154

Chapter 6. The RichFaces Components

« Using Hibernate Validator, specifying a constraint for the data to be validated. A reference
on Hibernate Validator can be found in Hibernated documentation [http://www.hibernate.org/
hib_docs/validator/reference/en/html_single/].

The following example shows how the data entered by user can be validated using Hibernate
Validator.

<rich:panel>

<f:facet name="header">
<h:outputText value="User Info:" />

</f:.facet>

<h:panelGrid columns="3">
<h:outputText value="Name:" />
<h:inputText value="#{validationBean.name}" id="name" required="true">

<rich:ajaxValidator event="onblur" />

</h:inputText>
<rich:message for="name" />

<h:outputText value="Email:" />
<h:inputText value="#{validationBean.email}" id="email">
<rich:ajaxValidator event="onblur" />
</h:inputText>
<rich:message for="email" />

<h:outputText value="Age:" />
<h:inputText value="#{validationBean.age}" id="age">
<rich:ajaxValidator event="onblur" />
</h:inputText>
<rich:message for="age" />
</h:panelGrid>
</rich:panel>

Here is the source code of the managed bean.

package org.richfaces.demo.validation;

import org.hibernate.validator.Email;
import org.hibernate.validator.Length;
import org.hibernate.validator.Max;
import org.hibernate.validator.Min;
import org.hibernate.validator.NotEmpty;

155

http://www.hibernate.org/hib_docs/validator/reference/en/html_single/
http://www.hibernate.org/hib_docs/validator/reference/en/html_single/
http://www.hibernate.org/hib_docs/validator/reference/en/html_single/

Chapter 6. The RichFaces Components

import org.hibernate.validator.NotNull;
import org.hibernate.validator.Pattern;

public class ValidationBean {

private String progressString="Fill the form please";

@NOotEmpty

@Pattern(regex="*["\s].*", message="This string contain only spaces")
@Length(min=3,max=12)

private String name;

@Email

@NOtEmpty

private String email;

@NotNull

@Min(18)
@Max(100)

private Integer age;

public ValidationBean() {
}

[* Corresponding Getters and Setters */

By default the Hibernate Validator generates an error message in 10 language, though you can
redefine the messages that are displayed to a user when validation fails. In the shows example it
was done by adding (nmessage="w ong emai | format") tothe @mai | annotation.

This is how it looks.

User Info:
Mare: | ajaxvalidatorForm2:name: Walidation Errar: Yalue is required.
Ermail: | may not be null or empty
Lge: | may not be null

Figure 6.7. Validation using Hibernate validator

156

Chapter 6. The RichFaces Components

6.3.1.6. Relevant Resources Links

Visit the AjaxValidator page [http://livedemo.exadel.com/richfaces-demo/richfaces/

ajaxValidator.jsf?c=ajaxValidator] at RichFaces LiveDemo for examples of component usage and

their sources.

6.3.2. <rich:beanValidator >
3.2.2

6.3.2.1. Description

The <rich:beanValidator> component designed to provide validation using Hibernate model-

based constraints.
6.3.2.2. Key Features

« Validation using Hibernate constraints

available since 3.2.2

Table 6.36. rich : beanValidator attributes

Attribute Name Description

binding JSF: A ValueExpression that evaluates to an
instance of FacesBeanValidator.

profiles This attribute defines JavaBean Validation
‘groups' feature (JSR-303). It is ignored if
Hibernate Validator is used.

summary Summary message for a validation errors.

Table 6.37. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.beanValidator
org.richfaces.component.html.HtmlbeanValidat

org.richfaces.beanValidator

or

renderer-type

org.richfaces.beanValidatorRenderer

tag-class

org.richfaces.taglib.beanValidatorTag

6.3.2.3. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

<h:inputText value="#{validationBean.email}" id="email">
<rich:beanValidator summary="Invalid email"/>

</h:inputText>

157

http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator

Chapter 6. The RichFaces Components

6.3.2.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.HtmICalendar;

HtmlbeanValidator mybeanValidator= new HtmlbeanValidator();

6.3.2.5. Details of Usage

Starting from 3.2.2 GA version Rich Faces provides support for model-based constraints defined
using Hibernate Validator. Thus it's possible to use Hibernate Validators the same as for Seam
based applications.

The <rich:beanValidator> component is defined in the same way as any JSF validator. Look
at the example below.

<rich:panel>
<f:facet name="header">
<h:outputText value="#{validationBean.progressString}" id="progress"/>
</f:facet>
<h:panelGrid columns="3">
<h:outputText value="Name:" />
<h:inputText value="#{validationBean.name}" id="name">
<rich:beanValidator summary="Invalid name"/>
</h:inputText>
<rich:message for="name" />

<h:outputText value="Email:" />

<h:inputText value="#{validationBean.email}" id="email">
<rich:beanValidator summary="Invalid email"/>

</h:inputText>

<rich:message for="email" />

<h:outputText value="Age:" />

<h:inputText value="#{validationBean.age}" id="age">
<rich:beanValidator summary="Wrong age"/>

</h:inputText>

<rich:message for="age" />

<f:facet name="footer">

<adj:commandButtonvalue="Submit"action="#{validationBean.success}"reRender="progress"/
>

</f:-facet>

158

Chapter 6. The RichFaces Components

</h:panelGrid>
</rich:panel>

Please play close attention on the bean code that contains the constraints defined with Hibernate

annotation which perform validation of the input data.

package org.richfaces.demo.validation;

import org.hibernate.validator.Email;
import org.hibernate.validator.Length;
import org.hibernate.validator.Max;
import org.hibernate.validator.Min;
import org.hibernate.validator.NotEmpty;
import org.hibernate.validator.NotNull;
import org.hibernate.validator.Pattern;

public class ValidationBean {

private String progressString="Fill the form please";

@NotEmpty

@Pattern(regex="*["\s].*", message="This string contain only spaces")
@Length(min=3,max=12)

private String name;

@Email

@NOtEmpty

private String email;

@NotNull

@Min(18)
@Max(100)

private Integer age;

public ValidationBean() {
}

[* Corresponding Getters and Setters */

public void success() {
setProgressString(getProgressString() + "(Strored successfully)");

159

Chapter 6. The RichFaces Components

public String getProgressString() {
return progressString;

public void setProgressString(String progressString) {
this.progressString = progressString;

The following figure shows what happens if validation fails

Fill the form please

Mare: | may not be null or empty
Email: |- not a well-formed email address
Age: |IIIIIIIII must be greater than or equal to 15

Submit

Figure 6.8. <rich:beanValidator> usage

As you can see from the example that in order to validate the <rich:beanValidator> should be
nested into a input JSF or RichFaces component.

The component has the only attribute - "summary" which displays validation messages about
validation errors.

6.3.2.6. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demol/richfaces/
beanValidator.jsf?c=beanValidator] you can see an example of <rich:beanValidator> usage
and sources for the given example.

available since 3.2.2

6.3.3. <rich:graphValidator >
3.2.2

6.3.3.1. Description

The <rich:graphValidator> component allows to register Hibernate Validators for multiple input
components.

6.3.3.2. Key Features

 Skips all JSF processing except validation

160

http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator

Chapter 6. The RichFaces Components

Table 6.38. rich : graphValidator attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

profiles This attribute defines JavaBean Validation
‘groups’ feature (JSR-303). It is ignored if
Hibernate Validator is used.

summary Summary message for a validation errors.

type HTML: JSF Validator type, that implements
GraphValidator interface.This validator is used
for the Graph and input fields validation.

value JSF: The current value for this component.

Table 6.39. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.graphValidator
org.richfaces.component.html.HtmlgraphValida

org.richfaces.graphValidator

renderer-type

org.richfaces.graphValidatorRenderer

tag-class

org.richfaces.taglib.graphValidatorTag

6.3.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<h:outputText value="Name:" />

<h:inputText value="#{userBean.name}" id="name" required="true">
<fivalidateLength minimum="3" maximum="12"/>

<rich:graphValidator event="onblur"/>
</h:inputText>

161

tor

Chapter 6. The RichFaces Components

6.3.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmICalendar;

HtmlgraphValidator mygraphValidator= new HtmligraphValidator();

6.3.3.5. Details of usage

The <rich:graphValidator> component behaves basically the same way as the
<rich:beanValidator> The deference between these two components is that in order to validate
some input data with a <rich:beanValidator> component, it should be a nested element of
an input component, whereas <rich:graphValidator> wraps multiple input components and
validates the data received from them.

The following example demonstrates a pattern of how the <rich:graphValidator> can be used:

<rich:graphValidator>
<h:panelGrid columns="3">
<h:outputText value="Name:" />
<h:inputText value="#{validationBean.name}" id="name">
<f:validateLength minimum="2" />
</h:inputText>
<rich:message for="name" />
<h:outputText value="Email:" />
<h:inputText value="#{validationBean.email}" id="email" />
<rich:message for="email" />
</h:panelGrid>
</rich:graphValidator>

The data validation can be also performed using Hibernate Validator, the same way as it is done
with <rich:beanValidator> .

The components's architecture provides an option to bind the component to a managed bean,
which is done with the "value" attribute. The attribute ensures that the entered data is valid after
the model is updated by revalidating the bean properties.

Please look at the example below.

162

Chapter 6. The RichFaces Components

<rich:graphValidator summary="Invalid values: " value="#{dayStatistics}">
<adjrepeat value="#{dayStatistics.dayPasstimes}" var="pt" id="table">
<h:outputText value="#{pt.title}" />
<rich:inputNumberSpinner minValue="0" maxValue="24" value="#{pt.time}" id="time" />
<rich:message for="time" />
</adj.rrepeat>
</rich:graphValidator>

Hence, the given above code will provide the functionality that is illustrated on the images below.

Activity Time
Sport 3 =
Entertainment (2 3
Sleeping IEi -
Games Iﬁi » must be less than or equal to 12

Stare my details |

Figure 6.9. "Games" field did not pass validation

As you can see from the picture the "Games" field did not pass validation, as
<rich:graphValidator> can be used to perform validation of a single input item.

Activity Time
Sport |37 =
Entertainment [2 3
Sleeping [6 |2

Gl
o
3
m
i
|
'

Only 24k in a day!

Figure 6.10. Total sum of all input values is incorrect

The figure above shows that the entered data was revalidated after all fields were completed, and
the data did not pass revalidation since the total sum was incorrect.

163

Chapter 6. The RichFaces Components

6.3.3.6. Relevant Resources Links

Visit the GraphValidator page [http:/livedemo.exadel.com/richfaces-demo/richfaces/
graphValidator.jsf?c=graphValidator] at RichFaces LiveDemo for examples of component usage
and their sources.

6.4. Ajax Output

The components described in this section render some content dynamically using Ajax
capabilities.

6.4.1. < a4j'include > available since 3.0.0

6.4.1.1. Description

The <adj:include> component is used to include one view as part of another and navigate there
using standard JSF navigation.

Table 6.40. a4j : include attributes

Attribute Name Description

ajaxRendered Defines, whether the content of this component
must be (or not) included in AJAX response
created by parent AJAX Container, even if it
is not forced by reRender list of ajax action.
Ignored if component marked to output by
some Ajax action component. Default value is
"true"”.

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

dir HTML.: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

id JSF: Every component may have a unique id
that is automatically created if omitted

keepTransient Flag for mark all child components to non-
transient. If true, all children components will
be set to non-transient state and keep in saved
components tree. For output in self-renderer
region all content (By default, all content
in <f:verbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for
ajax processing).

164

http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator

Chapter 6. The RichFaces Components

Attribute Name Description

lang

layout

HTML: Code describing the language used in
the generated markup for this component

HTML layout for generated markup. Possible
values: "block" for generating an HTML <div>
element, "inline" for generating an HTML
 element, and "none" for generating no
HTML element. There is a minor exception for
the "none" case where a child element has the
property "rendered" set to "false". In this case,
we create an empty element with same
ID as the child element to use as a placeholder
for later processing. Default value is "inline"

rendered

style

JSF: If "false", this component is not rendered

HTML: CSS style rules to be applied to the
component

styleClass

title

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML: Advisory title information about markup
elements generated for this component

viewld

Specifies the view id of a page that is included.

Table 6.41. Component identification parameters

INET[E Value

component-type

org.ajax4jsf.Include

component-family
component-class

renderer-type

javax.faces.Output
org.ajax4jsf.component.html.Include

org.ajax4jsf.components.AjaxincludeRenderer

6.4.1.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

<h:panelGrid>

<adj:include viewld="/pages/include/first.xhtml" />

</rich:panelGrid>

165

Chapter 6. The RichFaces Components

6.4.1.3. Creating the Component Dynamically Using Java
This component cannot be created dynamically.

6.4.1.4. Details of usage

The component is used to include one view as part of another and may be put anywhere in the
page code. The 'viewlID' attribute is used to point at the part to be included and should present
a full context-relative path of the resource in order to be used as from-view and to-view in the
JSF navigation cases. In general the component functions as Fecelets <ui:include> tag but with
partial page navigation in Ajax mode as an advantage.

The navigation rules could look as following:

Example:

<navigation-rule>
<from-view-id>/pages/include/first.xhtml</from-view-id>
<navigation-case>
<from-outcome>next</from-outcome>
<to-view-id>/pages/include/second.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

6.4.1.5. Relevant resources links

Vizit the Include page [http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?
c=include] for examples of component usage and their sources.

available since 3.0.0

6.4.2. <a4dj:mediaOutput >

6.4.2.1. Description

The <adj:mediaOutput> component is a facility for generating images, video, sounds and other
binary resources defined by you on-the-fly.

166

http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include

Chapter 6. The RichFaces Components

Table 6.42. a4j : mediaOutput attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to
an element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

align Deprecated. This attribute specifies the
position of an IMG, OBJECT, or APPLET with
respect to its context. The possible values are
"bottom", "middle", "top", "left" and "right". The
default value is "middle".

archive Specifies a space-separated list of URIs

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

border HTML: Deprecated. This attribute specifies the
width of an IMG or OBJECT border, in pixels.
The default value for this attribute depends on
the user agent

cacheable Attribute is a flag that defines the caching
strategy. If 'cacheable’ is set to false, the
response will not be cached. If it is set to true,
it will be cached and the serialized value of
'value' attribute plays the role of a cache key.

charset HTML: The character encoding of a resource
designated by this hyperlink

classid identifies an implementation

codebase base URI for classid, data, archive

codetype Defines content type for code

converter JSF: ID of a converter to be used or a reference

to a converter.

coords HTML: The attribute specifies shape and it
position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", "circle: center-
X, center-y, radius”, "poly: x1, y1, x2,y2, ..., XN,
yN". Notes: a) when giving the radius value in
percents, user agents should calculate the final

radius value in pixels based on the associated

167

Chapter 6. The RichFaces Components

Attribute Name Description

object's width and height; b) the radius value
should be smaller than center-x and center-
y values; c) for a polygon, the first and last
coordinate pairs should have same x and y to
close the shape (x1=xN; y1=yN) (when these
coordinates are different, user agents should
infer an additional pair to close a polygon).
Coordinates are relative to the top left corner
of an object. All values are lengths. All values
are comma separated.

createContent Method call expression to send generated
resource to OutputStream. It must have two
parameter with a type of java.io.OutputStream
and java.lang.Object (deserialized value of
data attribute)

createContentExpression Attribute references to the method that will be
used for content creating. The method accepts
two parameters. The first parameter has an
OutputStream type. It is a reference to the
steam that should be used for output. The
second parameter is a reference to a 'value'
attribute of the component.

declare declare but don't instantiate flag

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

element Name of html element for resource link - may
be <a> <object> <applet> <script> or
<link>

expires The attribute allows to manage caching and
defines the period after which a resource is
reloaded.

hreflang HTML: Base language of a resource specified
with the href attribute; hreflang may only be
used with href

hspace Deprecated. This attribute specifies the
amount of white space to be inserted to the left
and right of an IMG, APPLET, or OBJECT. The
default value is not specified, but is generally a
small, non-zero length

168

Chapter 6. The RichFaces Components

Attribute Name Description

id

ismap

JSF: Every component may have a unique id
that is automatically created if omitted

use server-side image map

lang

lastModified

HTML: Code describing the language used in
the generated markup for this component

The attribute allows to manage caching. A
browser can send request with the header
"If-Modified-Since” for necessity of object
reloading. If time of modification is earlier,
then the framework doesn't call generation and
return code 304.

mimeType

Geterated content mime-type for append to
response header ('image/jpeg' etc)

onblur

DHTML: The client-side script method to be
called when the element loses the focus either
when pointing a device or tabbing navigation.
The attribute may be used with the same
elements as onfocus

onclick

DHTML: The client-side script method to be
called when the element is clicked

ondblclick

onfocus

DHTML: The client-side script method to be
called when the element is double-clicked

DHTML: The client-side script method to be
called when the element gets the focus

onkeydown

onkeypress

onkeyup

onmousedown

onmousemove

DHTML: The client-side script method to be
called when a key is pressed down over the
element

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

DHTML: The client-side script method to be
called when a key is released

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

DHTML: The client-side script method to be
called when a pointer is moved within the
element

169

Chapter 6. The RichFaces Components

Attribute Name Description

onmouseout

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

DHTML: The client-side script method to be
called when a mouse button is released

rel

rendered

HTML: The relationship from the current
document to the anchor specified by this
hyperlink. The value of this attribute is a space-
separated list of link types

JSF: If "false", this component is not rendered

rev

session

shape

standby
style

styleClass

tabindex

HTML: A reverse link from the anchor specified
by this hyperlink to the current document. The
value of this attribute is a space-separated list
of link types

If "true”, a session for an object generation is
restored.

HTML: This attribute specifies the shape of
a region. The possible values are "default",

"rect”, "circle" and "poly".

message to show while loading

HTML: CSS style rules to be applied to the
component

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML: This attribute specifies the position of
the current element in the tabbing order for
the current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

target

HTML: This attribute specifies the name of a
frame where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

170

Chapter 6. The RichFaces Components

Attribute Name Description

title HTML: Advisory title information about markup
elements generated for this component

type HTML: The content type of the resource
designated by this hyperlink

uriAttribute Name of attribute for resource-link attribute
('href' for <a>, 'src' for or <script>, etc)

usemap Specifies an image as a client-side image-map

value JSF: Data value calculated at render time and
stored in URI (also as part of cache Key),
at generation time passed to send method.
Can be used for update cache at change of
generating conditions, and for creating beans
as "Lightweight" pattern components (request
scope). IMPORTANT: Since serialized data
stored in URI, avoid using big objects.

vspace Deprecated. This attribute specifies the
amount of white space to be inserted above
and below an IMG, APPLET, or OBJECT. The
default value is not specified, but is generally a
small, non-zero length

Table 6.43. Component identification parameters

INET[E Value

component-type org.ajax4jsf.MediaOutput
component-family org.ajax4jsf.Resource

component-class org.ajax4jsf.component.html.MediaOutput
renderer-type org.ajax4jsf.MediaOutputRenderer

6.4.2.2. Creating the Component with a Page Tag
Component definition on a page for graphical data output

Example:

<a4j:medialempuntatimeglb | esefd seti réaeContent="#{paintBean glaiaty"#{painida&lype="image/
png"/>

6.4.2.3. Creating the Component Dynamically Using Java

Example:

171

Chapter 6. The RichFaces Components

import org.ajax4jsf.component.html.MediaOutput;

MediaOutput myMedia = new MediaOutput ();

6.4.2.4. Details of usage

The <adj:mediaOutput> component is used for generating images, videos or sounds on-the-fly.
Let's consider an image creation and generate a JPEG image with verification digits for captcha
(the image will include just digits without any graphical noise and distortion).

Write the following line on the page:

<adj:medel@mientcliregh | se¥alsatréfaie€o ntent="#{mediaBeavabaet}#{mediaDed}pe="image/
jpeg”/>

As You see from the example above, first it is necessary to specify the kind of media data You
want to generate. This can be done with the help of "element" attribute, which possible values
are i ng, obj ect, appl et, script,linkora.

The "cacheable" defines whether the response will be cached or not. In our case we don't need
our image to be cached, cause we need it to be changed every time we refresh the page.

The "mimeType" attribute defines the type of output content. It is used to define the corresponded
type in the header of an HTTP response.

The <a4dj:mediaOutput> attribute has two main attributes:

» "createContent" specifies a method that will be used for content creating. The method accepts
two parameters. The first one — with an j ava. i 0. Qut put St r eamtype — is a reference to the
stream that should be used for output. An output stream accepts output bytes and sends them
to a recipient. The second parameter is a reference to the component's "value" attribute and
has j ava. | ang. Obj ect type. This parameter contains deserialized object with data specified
in the "value" attribute.

« "value" attribute specifies a bean class that keeps data for transmitting it into a stream in the
method specified with "createContent” .

Now let's create the Medi aBean class and specify there a primitive random-number generator and
pai nt method that will convert the generated numbers into an output stream and give a JPEG
image as a result. The code for Medi aBean class is going to look as following:

Example:

package demo;

172

Chapter 6. The RichFaces Components

import java.awt.Graphics2D;

import java.awt.image.Bufferedimage;
import java.io.lOException;

import java.io.OutputStream;

import java.util.Random;

import javax.imageio.lmagelO;

public class MediaBean {
public void paint(OutputStream out, Object data) throws IOException{

Integer high = 9999;

Integer low = 1000;

Random generator = new Random();

Integer digits = generator.nextint(high - low + 1) + low;

if (data instanceof MediaData) {
MediaData paintData = (MediaData) data;
Bufferedimage img = new Bufferedimage(paintData.getWidth(),paintData.getHeight(),Bufferedimage. TYPE_
Graphics2D graphics2D = img.createGraphics();
graphics2D.setBackground(paintData.getBackground());
graphics2D.setColor(paintData.getDrawColor());
graphics2D.clearRect(0,0,paintData.getWidth(),paintData.getHeight());
graphics2D.setFont(paintData.getFont());
graphics2D.drawString(digits.toString(), 20, 35);
ImagelO.write(img,"png",out);

Now it is necessary to create a class that will keep transmissional data that will be used as input
data for a content creation method. The code for Medi aDat a class is going to be as following:

Note:

A bean class transmitted into value should implement Seri al i zabl e interface in
order to be encoded to the URL of the resource.

Example:

package demo;

import java.awt.Color;
import java.awt.Font;

173

Chapter 6. The RichFaces Components

import java.io.Serializable;
public class MediaData implements Serializable{

private static final long serialVersionUID = 1L;

Integer Width=110;

Integer Height=50;

Color Background=new Color(190, 214, 248);

Color DrawColor=new Color(0,0,0);

Font font = new Font("Serif", Font. TRUETYPE_FONT, 30);

[* Corresponding getters and setters */

As a result the <adj:mediaOutput> component will generate the following image that will be
updated on each page refresh:

04506

Figure 6.11. Using the <a4j:mediaOutput> for generating an image for
captcha

Hence, when using the component it's possible to output your data of any type on a page with
Ajax requests.

6.4.2.5. Relevant resources links

Vizit the MediaOutput page [http://livedemo.exadel.com/richfaces-demo/richfaces/
mediaOutput.jsf?c=mediaOutput] at RichFaces LiveDemo for more examples of component
usage and their sources.

available since 3.0.0

6.4.3. < adj.outputPanel >

6.4.3.1. Description

The component is used for components grouping in the Ajax output area, which offers several
additional output opportunities such as inserting of non-present in tree components, saving of
transient elements after Ajax request and some others.

174

http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput
http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput
http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput

Chapter 6. The RichFaces Components

Table 6.44. a4j : outputPanel attributes

Attribute Name Description

ajaxRendered

Defines, whether the content of this component
must be (or not) included in AJAX response
created by parent AJAX Container, even if it
is not forced by reRender list of ajax action.
Ignored if component marked to output by
some Ajax action component. Default value is
"false".

binding

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

dir

HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

JSF: Every component may have a unique id
that is automatically created if omitted

keepTransient

lang

Flag to mark all child components to non-
transient. If true, all children components will
be set to non-transient state and keep in saved
components tree. For output in self-renderer
region all content (By default, all content
in <f.verbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for
ajax processing). Default value is "true"

HTML: Code describing the language used in
the generated markup for this component

layout

HTML layout for generated markup. Possible
values: "block" for generating an HTML <div>
element, "inline" for generating an HTML
 element, and "none" for generating no
HTML element. There is a minor exception for
the "none" case where a child element has the
property "rendered" set to "false". In this case,
we create an empty element with same
ID as the child element to use as a placeholder
for later processing. Default value is "inline"

onclick

DHTML: The client-side script method to be
called when the element is clicked

175

Chapter 6. The RichFaces Components

Attribute Name Description

ondblclick

onkeydown

DHTML: The client-side script method to be
called when the element is double-clicked

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

onmousedown

DHTML: The client-side script method to be
called when a key is released

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

DHTML: The client-side script method to be
called when a pointer is moved within the
element

onmouseout

onmouseover

onmouseup

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

DHTML: The client-side script method to be
called when a mouse button is released

rendered

style

JSF: If "false", this component is not rendered

HTML: CSS style rules to be applied to the
component

styleClass

title

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML: Advisory title information about markup
elements generated for this component

Table 6.45. Component identification parameters

component-type
‘ component-family

‘ component-type

org.ajax4jsf.OutputPanel

javax.faces.Panel

org.ajax4jsf.ajax.OutputPanel

176

Chapter 6. The RichFaces Components

Name Value

renderer-type org.ajax4jsf.components.AjaxOutputPanelRend

6.4.3.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:
Example:
<adj.outputPanel>
<h:form>
<h:outputText value="Some text"/>
<h:inputText id="text1" label="text1" value="#{rsBean.text1}"/>

</h:form>
</a4dj.outputPanel>

6.4.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxOutputPanel;

HtmlAjaxOutputPanel myPanel = new HtmlAjaxOutputPanel();

6.4.3.4. Details of usage

The <a4j:outputPanel> component is used when one or more components should be always
updated. The component job is similar to that the "reRender" attribute does, but instead of
specifying a comma separated list of components it wraps the components to be updated. This
could be useful in cases when some components aren't rendered during the primary non-ajax
response.

Example:

<adj:support reRender="mypanel"/>

<adj:outputPanel id="mypanel">
<h:panelGrid rendered="#{not empty foo.bar}">

</h:panelGrid>

177

component-class org.ajax4jsf.component.html.HtmlAjaxOutputPanel

erer

Chapter 6. The RichFaces Components

</adj.outputPanel>

By default the <a4j:outputPanel> is rendered as opening and closing HTML tags and
functions as container. With the help of the "layout" attribute this output way could be set to any
of three variants:

* "inline" (default)
* "block"
e "none"

If I ayout ="bl ock" is set, the component is rendered as a pair of opening and closing <div>
tags. In this case it is possible to apply available for <div> elements style attributes. | ayout
="none" helps to avoid an unnecessary tag around a context that is rendered or not according to
the "rendered" attribute value. In case an inner context isn't rendered the <adj:.outputPanel>
is rendered in a tags with ID equal to ID of a child component and di spl ay: none style.
If a child component is rendered, <a4j:outputPanel> doesn't present at all in a final code.

Example:

<a4j:support reRender="mypanel"/>

<adj.outputPanel layout="none">
<h:panelGrid id="mypanel" rendered="#{not empty foo.bar}">

</h:panelGrid>
</adj.outputPanel>

As you see, the code is very similar to the one shown above, but "reRender " attribute refers
directly to the updating panelGrid and not to the framing outputPanel, and it's more semantically
correct.

The <adj:outputPanel> allows to update a part of a page basing on its own flag. The flag is
defined by the "ajaxRendered" attribute. The flag is commonly used when a part of a page must
be updated or can be updated on any response.

Example:
<adj.outputPanel ajaxRendered="true">

<h:messages/>
</adj.outputPanel>

178

Chapter 6. The RichFaces Components

The <adj:outPanel> should be used for non-JSF component part framing, which is to be updated
on Ajax response, as RichFaces specifies the list of updating areas as a list of an existing JSF
component.

On default non-JSF context isn't saved in a component tree, but is rendered anew every time.
To accelerate the processing speed and Ajax response input speed, RichFaces saves non-JSF
context in a component tree on default. This option could be canceled by "keepTransient" attribute
that cancels transient flag forced setting for child components. This flag setting keeps the current
value set by child components.

Note:

In JSF 1.1 implementation and lower, where non-JSF context should be framed
with the <f:verbatim> component, <a4j:outputPanel> doesn't improve this
JSF implementation option in any way, so you still have to use this tag where it's
necessary without RichFaces usage.

RichFaces allows setting Ajax responses rendering directly basing on component tree nodes
without referring to the JSP (XHTML) page code. It could be defined by "selfRendered" attribute
setting to "true" on <adj:region> and could help considerably speed up a response output.
However, if a transient flag is kept as it is, this rapid processing could cause missing of transient
components that present on view and don't come into a component tree. Hence, for any particular
case you could choose a way for you application optimization: speed up processing or redundant
memory for keeping tree part earlier defined a transient.

6.4.3.5. Relevant resources links

Vizit OutputPanel page [http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?
c=outputPanel] at RichFaces Livedemo for examples of component usage and their sources.

Useful articles:

e search the RichFaces Users Forum [http://www.jboss.org/index.html?
module=bb&op=viewforum&f=26] for some additional information on component usage;

6.5. Ajax Miscellaneous

available since 3.0.0

6.5.1. <adj.page >

6.5.1.1. Description

The <a4j:page> component encodes the full HTML-page structure and used for solving some
incompatibility in JSP environment with MyFaces in early Ajax4Jsf versions.

179

http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26

Chapter 6. The RichFaces Components

Table 6.46. a4j : page attributes

Attribute Name Description

ajaxListener MethodExpression representing an action
listener method that will be notified when this
component is activated by the ajax Request
and handle it. The expression must evaluate
to a public method that takes an AjaxEvent
parameter, with a return type of void

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

contentType Set custom mime content type to response

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

format Page layout format (html, xhtml, html-
transitional, html-3.2) for encoding DOCTYPE,
namespace and Content-Type definitions

id JSF: Every component may have a unique id
that is automatically created if omitted

immediate Flag indicating that, if this component is
activated by ajaxrequest, natifications should
be delivered to interested listeners and actions
immediately (that is, during Apply Request
Values phase) rather than waiting until Invoke
Application phase

lang HTML: Code describing the language used in
the generated markup for this component

namespace Set html element default namespace

onload The client-side script method to be called

before a page is loaded

onunload The client-side script method to be called when
a page is unloaded

pageTitle String for output as a page title.
rendered JSF: If "false", this component is not rendered
selfRendered if "true", self-render subtree at

InvokeApplication (or Decode, if immediate
property set to true) phase

180

Chapter 6. The RichFaces Components

Attribute Name Description

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
"class" attribute.

title HTML: Advisory title information about markup
elements generated for this component

Table 6.47. Component identification parameters

Name Value

component-type org.ajax4jsf.components.Page
component-family org.ajax4jsf.components.AjaxRegion
component-class org.ajax4jsf.component.html.HtmIPage
renderer-type org.ajax4jsf.components.AjaxPageRenderer

6.5.1.2. Creating the component with a Page Tag

The <adj:page> should be the only child of <f:view>:

<f:view>
<adj.page>
<f:facet name="head">
<!--Head Content-->
</f:facet>
<!--Page Content-->
</adj.page>
</f:view>

6.5.1.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmIPage;

HtmIPage myPage = new HtmlIPage();

181

Chapter 6. The RichFaces Components

6.5.1.4. Details of usage

The component solves the problem with MyFaces for early Ajax4Jsf versions: in MyFaces
implementation the <f:view> JSP tag doesn't get control for encoding contents during the
RENDER_RESPONSE phase, thus Ajax can't neiher get a control nor make a response. The
<adj:page> solves this problem by wrapping the Ajax updatable areas. In the last versions of
both frameworks the problem is successfully fixed and no <adj:page> usage is required.

The component uses facet "head" for defining the contents corresponding to the HTML HEAD.
There is no need to use "body" facet in order to define first body section. The attribute "format"
defines page layout format for encoding DOCTYPE. The attribute "pageTitle" is rendered as
title section.

According to the described above, the component defined at page as following

<adj:page format="xhtml" pageTitle="myPage">
<f:facet name="head">
<!--Head Content here-->
</f:facet>
<!--Page Content Here-->
</adj.page>

will be rendered on a page as

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0 Strict/EN" "http://www.w3.0rg/TR/xhtml|1/
DTD/xhtml1-strict.dtd">
<html>
<head>
<title>myPage</title>
<!--Head Content here-->
</head>
<body>
<!--Page Content Here-->
</body>
</html>

6.5.1.5. Facets

Table 6.48. Facets

Facet name Description

head Defines a head content

182

Chapter 6. The RichFaces Components

6.5.1.6. Relevant resources links
Vizit the AjaxPage page [http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page]
at RichFaces LiveDemo for examples of component usage and their sources.

available since 3.0.0

6.5.2. < adj:portlet >

6.5.2.1. Description

The <adj:portlet> component is DEPRECATED as far as JSR-301 was defined a same
functionality for a UlViewRoot component. Thus, it is implicitly defined by mandatory <f:view>
component.

Table 6.49. a4j : portlet attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

Table 6.50. Component identification parameters

Name Value

component-type org.ajax4jsf.Portlet
component-family org.ajax4jsf.component.Portlet
component-class org.ajax4jsf.component.html.HtmlIPortlet

6.5.2.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<f:view>
<adj:portlet>

</adj:portlet>
</f:view>

6.5.2.3. Creating the Component Dynamically Using Java

183

http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page
http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page

Chapter 6. The RichFaces Components

import org.ajax4jsf.component.html.HtmlPortlet;

HtmlPortlet myPortlet = new HtmlPortlet();

6.5.2.4. Details of usage

The main component purpose is realization of possibility to create several instances the same
portlet on one page. But clientld of elements should be different for each window. In that case
namespace is used for each portlet. The <adj:portlet> i npl enets Nai ni ngCont ai ner interface
and adds namespace to all componets on a page. All portlet content should be wrapped by
<adj:portlet> for resolving problems mentioned before.

6.5.2.5. Relevant resources links

Vizit the Portlet page [http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet]
at RichFaces LiveDemo for examples of component usage and their sources.

Useful publications:

o Ajax4Jsf Users Forum [http://www.jboss.com/index.html?
module=bb&op=viewtopic&t=107325] — check the forum for additional information about
component usage;

» portal-echo application [http://anonsvn.jboss.org/repos/ajax4jsfitrunk/samples/portal-echo/] —
Portlet Sample, could be checked out from JBoss SVN;

e First snapshot with Portal environment support [http://www.jboss.com/index.html?
module=bb&op=viewtopic&t=107325] contains usage instructions for the Portlet Sample demo.

available since 3.0.0

6.5.3. <a4dj:htmlCommandLink >

6.5.3.1. Description

The <adj:htmlCommandLink> component is very similar to the same component from the JSF
HTML library, the only slight difference is in links generation and problem solving that occurs when
an original component is used.

Table 6.51. a4j : htmlCommandLink attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to
an element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

184

http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325

Chapter 6. The RichFaces Components

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

charset HTML: The character encoding of a resource
designated by this hyperlink

coords HTML: The attribute specifies shape and it
position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", "circle: center-
X, center-y, radius”, "poly: x1, y1, x2,y2, ..., XN,
yN". Notes: a) when giving the radius value in
percents, user agents should calculate the final
radius value in pixels based on the associated
object's width and height; b) the radius value
should be smaller than center-x and center-
y values; c) for a polygon, the first and last
coordinate pairs should have same x and y to
close the shape (x1=xN; yl1=yN) (when these
coordinates are different, user agents should
infer an additional pair to close a polygon).
Coordinates are relative to the top left corner
of an object. All values are lengths. All values
are comma separated.

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

disabled HTML: When set for a form control, this
boolean attribute disables the control for your
input.

hreflang HTML: Base language of a resource specified

with the href attribute; hreflang may only be
used with href

id JSF: Every component may have a unique id
that is automatically created if omitted

185

Chapter 6. The RichFaces Components

Attribute Name Description

immediate

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

lang

HTML: Code describing the language used in
the generated markup for this component

onblur

DHTML: The client-side script method to be
called when the element loses the focus either
when pointing a device or tabbing navigation.
The attribute may be used with the same
elements as onfocus

onclick

ondbilclick

onfocus

DHTML: The client-side script method to be
called when the element is clicked

DHTML: The client-side script method to be
called when the element is double-clicked

DHTML: The client-side script method to be
called when the element gets the focus

onkeydown

onkeypress

onkeyup

DHTML: The client-side script method to be
called when a key is pressed down over the
element

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

DHTML: The client-side script method to be
called when a key is released

onmousedown

onmousemove

onmouseout

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

186

Chapter 6. The RichFaces Components

Attribute Name Description

onmouseup

rel

DHTML: The client-side script method to be
called when a mouse button is released

HTML: The relationship from the -current
document to the anchor specified by this
hyperlink. The value of this attribute is a space-
separated list of link types

rendered

rev

JSF: If "false", this component is not rendered

HTML: A reverse link from the anchor specified
by this hyperlink to the current document. The
value of this attribute is a space-separated list
of link types

shape

style

HTML: This attribute specifies the shape of
a region. The possible values are "default",

"rect", "circle" and "poly".

HTML: CSS style rules to be applied to the
component

styleClass

tabindex

target

title

type

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML: This attribute specifies the position of
the current element in the tabbing order for
the current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

HTML: This attribute specifies the name of a
frame where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

HTML: Advisory title information about markup
elements generated for this component

HTML: The content type of the resource
designated by this hyperlink

value

JSF: The current value for this component

Table 6.52. Component identification parameters

INETE Value

‘ component-type

‘ component-family

javax.faces.HtmlCommandLink

javax.faces.Command

187

Chapter 6. The RichFaces Components

Name Value

component-class javax.faces.component.html.HtmlICommandLink

renderer-type org.ajax4jsf.HtmICommandLinkRenderer

6.5.3.2. Creating the Component with a Page Tag

Component definition on a page is the same as for the original component from the JSF HTML
library.

Example:

<adj:htmlCommandLink value="value" action="action"/>

6.5.3.3. Creating the Component Dynamically Using Java

Example:

import javax.faces.component.html.HtmlICommandLink;

HtmlCommandLink myCommandLink = new HtmlCommandLink();

6.5.3.4. Key attributes and ways of usage

The difference with the original component is that all hidden fields required for command links with
the child <f:param> elements are always rendered and it doesn't depend on links rendering on
the initial page. It solves the problem with invalid links that weren't rendered on a page immediately,
but after some Ajax request.

Example:

<adj:form>
<adj:htmlComandLink action="action" value="link" rendered="#{bean.rendered}">
<f:param .../>

<adj:htmlComandLink>

</adj:form>

188

Chapter 6. The RichFaces Components

In this example <adj:htmlCommandLink> works as standard <h:commandLink> , but here
hidden fields required for correct functionality are rendered before the first downloading of a page,
though it doesn't happen if its attribute isn't set to "false".

6.5.3.5. Relevant resources links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
htmlCommandLink.jsf?c=htmlCommandLink] you can found some additional information for
<adj:htmlCommandLink> component usage.

On RichFaces LiveDemo page [http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/
f/param.html] you can found some additional information about <f:param> component.

available since 3.0.0

6.5.4. <adj:log >

6.5.4.1. Description

The <adj:log > component generates JavaScript that opens a debug window with useful debug
information.

Table 6.53. a4j : log attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

height Height of pop-up. Default value is "600".

hotkey Keyboard key for activate (in combination with
CTRL+SHIFT) log window. Default value is "L"

id JSF: Every component may have a unique id
that is automatically created if omitted

lang HTML: Code describing the language used in
the generated markup for this component

level Log level. The possible values are "FATAL",
"ERROR", "WARN", "INFO", "DEBUG", "ALL".
Component sets level 'ALL' by default.

name Name of pop-up window. Default value is
"LogWindow"
onclick DHTML: The client-side script method to be

called when the element is clicked

189

http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

Chapter 6. The RichFaces Components

Attribute Name Description

ondblclick

onkeydown

DHTML: The client-side script method to be
called when the element is double-clicked

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

onmousedown

DHTML: The client-side script method to be
called when a key is released

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

DHTML: The client-side script method to be
called when a pointer is moved within the
element

onmouseout

onmouseover

onmouseup

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

DHTML: The client-side script method to be
called when a mouse button is released

popup

Renders log as pop-up window or as div
element on the page. Default value is "true".

rendered

JSF: If "false", this component is not rendered

style

HTML: CSS style rules to be applied to the
component

styleClass

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

title

HTML: Advisory title information about markup
elements generated for this component

width

HTML: Width of pop-up. Default value is "800".

190

Chapter 6. The RichFaces Components

Table 6.54. Component identification parameters

Name Value

component-type org.ajax4jsf.Log

component-family org.ajax4jsf.Log

component-class org.ajax4jsf.component.html.AjaxLog
renderer-type org.ajax4jsf.LogRenderer

6.5.4.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:
<adj:log popup="false" level="ALL" style="width: 800px; height: 300px;"></a4j:log>

Then, in order to open a log window, press "CTRL+SHIFT+L" on a page with the component.

6.5.4.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLog;

AjaxLog myLog = new AjaxLog();

6.5.4.4. Details of usage

The <adj:log > component generates JavaScript that opens a log window with useful debug
information, which contains data on requests and responses, DOM tree changes et al. The log
could be generated not only in a new window, but also on the current page in a separate <div>
element. This feature is controlled with the component "popup” attribute. The window is opened
on pressing of "CTRL+SHIFT+L", which is default registered key. The hot key could be changed
with the "hotkey" attribute, where it's necessary to define one letter that together with "CTRL
+SHIFT" opens a window.

The "level" attribute has several possible values "FATAL", "ERROR", "WARN", "INFO", "ALL"
and is used when it is necessary to change a logging level.

Example:

<adj:log level="ALL" popup="false" width="400" height="200"/>

191

Chapter 6. The RichFaces Components

The component defined this way is decoded on a page as <div> inside a page, where all the
information beginning with informational message is generated.

Note:

<adj:log> is getting renewed automatically after execution of Ajax requests. Do
not renew <adj:log> by using reRender!

6.5.4.5. Relevant resources links

Vizit the Log page [http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log] at
RichFaces LiveDemo for example of component usage and their sources.

6.6. Data Iteration

The following components iterate over a collection of data and represent it on the page.

6.6.1. <rich:column > available since 3.0.0

6.6.1.1. Description

The component for row rendering for a UlData component.

United States Capitals
Capitals and States Table

Ztate Flag | Capital Mame | State Mame | TimeZone

Montgomery | Alabama GhT-6
Juneau Alaska GhT-9
Phioenix Arizonas GhT-7

Little Rock Arkanzas | GMT-EB

b K EX

Sacramento | Califarnia GhT-2

State Flag | Capital Mame | State Mame | TimeZone
Capitals and States Table
Figure 6.12. <rich:column> component

6.6.1.2. Key Features

« Completely skinned table rows and child elements
* Possibility to combine columns with the help of "colspan”

 Possibility to combine rows with the help of "rowspan" and "breakBefore"

192

http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log
http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log

Chapter 6. The RichFaces Components

e Sorting column values

* Filtering column values

Table 6.55. rich : column attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

breakBefore if "true" next column begins from the first row
colspan Corresponds to the HTML colspan attribute
comparator Defines value binding to the comparator that is

used to compare the values

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

filterBy Defines iterable object property which is used
when filtering performed.

filterEvent Event for filter input that forces the filtration
(default value is "onchange")

filterExpression Attribute defines a bean property which is used
for filtering of a column

filterMethod This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

footerClass Assigns one or more space-separated CSS
class names to any footer generated for this
component

headerClass Assigns one or more space-separated CSS
class names to any header generated for this
component

id JSF: Every component may have a unique id
that is automatically created if omitted

label Column label for drag indicator. Usable only for
extendedDataTable component

lang HTML: Code describing the language used in
the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowspan Corresponds to the HTML rowspan attribute

193

Chapter 6. The RichFaces Components

Attribute Name Description

selfSorted

Manages if the header of the column is
clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component. Default value is "true"

sortable

Boolean attribute. If "true" it's possible to sort
the column content after click on the header.
Default value is "true"

sortBy

SortExpression

sortlcon

sortlconAscending

Defines a bean property which is used for
sorting of a column. This attribute used with
<rich:dataTable>

Defines a bean property which is used for
sorting of a column and used only with
<rich:scrollableDataTable>.

Defines sort icon. The value for the attribute is
context related.

Defines sort icon for ascending order. The
value for the attribute is context related.

sorticonDescending

Defines sort icon for descending order. The
value for the attribute is context related.

sortOrder SortOrder is an enumeration of the possible
sort orderings. Default value is "UNSORTED"

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

title HTML: Advisory title information about markup
elements generated for this component

visible The attribute is used to define whether the
component is visible or not. The default value
is "true”.

width HTML: Attribute defines width of column.

Table 6.56. Component identification parameters

component-type

component-class

org.richfaces.Column

org.richfaces.component.html.HtmIColumn

194

Chapter 6. The RichFaces Components

Name Value

component-family org.richfaces.Column
renderer-type org.richfaces.ColumnRenderer
tag-class org.richfaces.taglib.ColumnTag

6.6.1.3. Creating the Component with a Page Tag

To create the simplest variant of column on a page, use the following syntax:

Example:

<rich:dataTable var="set">
<rich:column>
<h:outputText value="#{set.property1}"/>
</rich:column>
<I--Set of another columns and header/footer facets-->
</rich:dataTable>

6.6.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumn;

HtmIColumn myColumn = new HtmIColumn();

6.6.1.5. Details of Usage

To output a simple table, the <rich:column> component is used the same way as the standard
<h:column> , i.e. the following code on a page is used:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column>
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>

195

Chapter 6. The RichFaces Components

</rich:column>
<rich:column>
<f:facet name="header">State Name</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<f:facet name="header">State Capital</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column>
<f:facet name="header">Time Zone</f:facet>
<h:outputText value="#{cap.timeZone}'/>
</rich:column>
</rich:dataTable>

The result is:

State Flag | State Mame | State Capital | Time Zone

Alabama Mortgomery | GMT-B
Alazka Juneau GhT-9
Arizona Phoenix GMT-7

Arkanzas | Litthe Rock GhT-6

B KEX

Califarnis Sacramento | GMT-2

"
1
1l

Figure 6.13. Generated <rich:column> component

Now, in order to group columns with text information into one row in one column with a flag, use
the "colspan" attribute, which is similar to an HTML one, specifying that the first column contains
3 columns. In addition, it's necessary to specify that the next column begins from the first row with
the help of the br eakBef ore="t rue".

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column colspan="3">
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>

196

Chapter 6. The RichFaces Components

<rich:column breakBefore="true">
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column>
<h:outputText value="#{cap.timeZone}'/>
</rich:column>
</rich:dataTable>

As a result the following structure is rendered:

X

Alabama | Montgomery GMT-B

Juneau GMT-9

=
@
]
-
]

Arizona | Phoenix GMWT-T

9

Arkanzas | Litle Rock GMT-E

California | Sacramento | GMT-S

Figure 6.14. <rich:column> modified with "colspan" and "breakbefore"
attributes

The same way is used for columns grouping with the "rowspan" attribute that is similar to an HTML
one responsible for rows quantity definition occupied with the current one. The only thing to add
in the example is an instruction to move onto the next row for each next after the second column.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column rowspan="3">
<f:facet name="header">State Flag</f:facet>

197

Chapter 6. The RichFaces Components

<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column>
<f:facet name="header">State Info</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

As a result:

State Flag | State Info
Alabama
Mortgomery
GMT-B
Alaska
Junesu
GhAT-9

Arizons

K B X

Phioenix
GhT-7

Arkanzas

k

Little Rock
GhT-6

Califarnis

.

o Sacramento

GhAT-G

Figure 6.15. <rich:column> generated with "rowspan" attribute

Hence, additionally to a standard output of a particular row provided with the <h:column>
component, it becomes possible to group easily the rows with special HTML attribute.

The columns also could be grouped in a particular way with the help of the <h:columnGroup>
component that is described in the following chapter.

198

Chapter 6. The RichFaces Components

In the Dynamic Columns Wiki article [http://wiki.jboss.org/wiki/DynamicColumns] you can find
additional information about dynamic columns.

6.6.1.6. Sorting and Filtering

6.6.1.6.1. Sorting

In order to sort the columns you should use "sortBy" attribute that indicates what values to be
sorted.This attribute can be used only with the <rich:dataTable> component. In order to sort the
column you should click on its header. See the following example.

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">
<f:facet name="header">
<h:outputText value="Sorting Example"/>
</f:facet>
<rich:column sortBy="#{cap.state}">
<f:facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column sortBy="#{cap.name}">
<f:facet name="header">
<h:outputText value="State Capital"/>
</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
</rich:dataTable>
</h:form>

This is result:

199

http://wiki.jboss.org/wiki/DynamicColumns
http://wiki.jboss.org/wiki/DynamicColumns

Chapter 6. The RichFaces Components

Sorting Example

State Hame 2 State Capital 2
Alabama Montgomery
Alaska Juneau
Arizona Phioenizx
Arkansas Little Rock
California Sacramento

Figure 6.16. <rich:column> with "sortBy" attribute

The "sortExpression" attribute defines a bean property which is used for sorting of a column.
This attribute can be used only with the <rich:scrollableDataTable> component. The following

example is a example of the attribute usage.

Example:

<rich:scrollableDataTable id="carList"
value="#{dataTableScrollerBean.allCars}" sortMode="single"
binding="#{dataTableScrollerBean.table}">
<rich:column id="make" sortExpression="#{cap.make}">
<f:facet name="header">
<h:outputText styleClass="headerText" value="Make" />
</f:facet>
<h:outputText value="#{category.make}" />
</rich:column>
<rich:column id="model">
<f:facet name="header">
<h:outputText styleClass="headerText" value="Model" />
</f:facet>
<h:outputText value="#{category.model}" />
</rich:column>
<rich:column id="price">
<f:facet name="header">
<h:outputText styleClass="headerText" value="Price" />
</f:facet>
<h:outputText value="#{category.price}" />
</rich:column>
</rich:scrollableDataTable>

200

Chapter 6. The RichFaces Components

The "selfSorted" attribute that would add the possibility of automatic sorting by clicking the column
header. Default value is "true”. In the example below the second column is unavailable for sorting.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:column>
<f:facet name="header">
<h:outputText value="State Flag"/>
</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column sortBy="#{cap.state}" selfSorted="false">
<f:facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
</rich:dataTable>

"sortOrder" attribute is used for changing the sorting of columns by means of external controls.

Possible values are:

« "ASCENDING" - column is sorted in ascending
* "DESCENDING" - column is sorted in descending
e "UNSORTED" - column isn't sorted

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">
<f:facet name="header">
<h:outputText value="Sorting Example"/>
</f:facet>
<rich:column sortBy="#{cap.state}" sortOrder="ASCENDING">

201

Chapter 6. The RichFaces Components

<f:facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column sortBy="#{cap.name}" sortOrder="DESCENDING">
<f:facet name="header">
<h:outputText value="State Capital"/>
</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
</rich:dataTable>
</h:form>

Below you can see the result:

Sorting Example
Time Zone - State Hame a State Capital 2
GMT-3 Alaska Juneau
GhT-5 Califarnia Sacramento
GhMT-3 [cdshio Boise
GMT-5 Mevada Carson City
GMT-5 Qregon Salem

Figure 6.17. <rich:column> with "sortOrder" attribute

In the example above the first column is sorted in descending order. But if recurring rows appear
in the table the relative second column are sorted in ascending order.

If the values of the columns are complex, the "sortOrder" attribute should point to a bean
property containing the sort order. See how it's done in the LiveDemo [http://livedemo.exadel.com/
richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage] for <rich:columns> .

You can customize the sorting's icon element using "rich-sort-icon" class.

202

http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage

Chapter 6. The RichFaces Components

6.6.1.6.2. Filtering

There are two ways to filter the column value:

 Using built-in filtering. It uses startsWth() function to make filtering. In this case you need
to define "filterBy" attribute at column you want to be filterable. This attribute defines iterable
object property which is used when filtering performed.

The "filterValue" attribute is used to get or change current filtering value. It could be defined with
initial filtering value on the page or as value binding to get/change it on server. If the "filterValue"
attribute isn't empty from the beginning table is filtered on the first rendering.

You can customize the input form using "rich-filter-input" CSS class.

In order to change filter event you could use 'filterEvent" attribute on column, e.g.
"onblur"(default value).

Below you can see the example:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="500px">

<rich:column filterBy="#{cap.state}" filterValue="#{filterName.filterBean}" filterEvent="onkeyup">
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column filterBy="#{cap.name}" filterEvent="onkeyup">
<h:outputText value="#{cap.name}"/>
</rich:column>
</rich:dataTable>

This is the result:

203

Chapter 6. The RichFaces Components

Filtering Example

State Hame State Capital
Alabams Mantgomery
Alaska Juneau
Atizona Phoenix
Arkanzas Little Rock

Figure 6.18. Built-in filtering feature usage

» Using external filtering. In this case you need to write your custom filtering function or expression
and define controls.

The "filterExpression" attribute is used to define expression evaluated to boolean value. This
expression checks if the object satisfies filtering condition.

The "filterMethod" attribute is defined with method binding. This method accepts on Object
parameter and return boolean value. So, this method also could be used to check if the object
satisfies filtering condition. The usage of this attribute is the best way for implementing your
own complex business logic.

See the following example:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" id="table">
<rich:column filterMethod="#{filteringBean.filterStates}">
<f:facet name="header">
<h:inputText value="#{filteringBean.filterValue}" id="input">
<adj:support event="onkeyup" reRender="table"
ignoreDupResponses="true" requestDelay="700" focus="input" />
</h:inputText>
</f:facet>
<h:outputText value="#{cap.state}" />
</rich:column>
<rich:column filterExpression="#{fn:containsignoreCase(cap.timeZone,
filteringBean.filterZone)}"'>
<f:facet name="header">
<h:selectOneMenu value="#{filteringBean.filterZone}">
<f:selectltems value="#{filteringBean.filterZones}" />
<adj:support event="onchange" reRender="table" />
</h:selectOneMenu>

204

Chapter 6. The RichFaces Components

</f:facet>
<h:outputText value="#{cap.timeZone}" />
</rich:column>
</rich:dataTable>

6.6.1.7. Facets

Table 6.57. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.1.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:column> components at once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:column> component

6.6.1.9. Skin Parameters Redefinition

Skin parameters redefinition for <rich:column> are the same as for the <rich:dataTable>
component.

6.6.1.10. Definition of Custom Style Classes
Custom style classes for <rich:column> are the same as for the <rich:dataTable> component.

In order to redefine styles for all <rich:column> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-table-cel{
font-style: italic;

205

Chapter 6. The RichFaces Components

This is a result:

State Flag State Hame State Capital Time Zone

Alabama Montgomery | GMT-E

Alazka JUBeIY =T

Arizoha Phoenix EMT-7

Arkahsas Littie Rock FWT-&

POKEX

Caiifarnia Sacramento =FMT-5

Figure 6.19. Redefinition styles with predefined classes
In the example cells font style was changed.

Also it's possible to change styles of particular <rich:column> component. In this case you
should create own style classes and use them in corresponding <rich:column> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight: bolder;

The "styleClass" attribute for <rich:column> is defined as it's shown in the example below:

Example:
<rich:column styleClass="myClass">

This is a result:

206

Chapter 6. The RichFaces Components

State Flag State Hame State Capital Time Zone

Alabama Montgamery | GMWT-6

Alaska Juneau GMT-9

Arizona Phioenizx GMT-7

Arkansas | Little Rock GMT-E

California Sacramento GMT-2

PEKEX

Figure 6.20. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font weight for second column was changed.

6.6.1.11. Relevant Resources Links

Vizit Column [http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column]
page at RichFaces live demo for examples of component usage and their sources.

Using the "rendered" attribute of <rich:column> [http://www.jboss.org/community/docs/
DOC-9607]" article in RichFaces cookbook at JBoss portal gives an example of code of the
component usage case.

6.6.2. <rich:columnGroup > available since 3.0.0

6.6.2.1. Description

The component combines columns in one row to organize complex subparts of a table.

207

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column
http://www.jboss.org/community/docs/DOC-9607
http://www.jboss.org/community/docs/DOC-9607
http://www.jboss.org/community/docs/DOC-9607

Chapter 6. The RichFaces Components

Ztate Flag

X

Alabama | Montgomery | GMT-6

Juneau GMT-9

=
]
7]
=
@

Arizona | Phoenix GMT-F

9

Arkanzas Litle Rock GMWT-E

California | Sacramento | GMT-S

Figure 6.21. <rich:columnGroup> component

6.6.2.2. Key Features

« Completely skinned table columns and child elements

 Possibility to combine columns and rows inside

» Possibility to update a limited set of strings with Ajax

Table 6.58. rich : columnGroup attributes

Attribute Name Description

binding

JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

columnClasses

JSF. Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

208

Chapter 6. The RichFaces Components

Attribute Name Description

dir

HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

JSF: Every component may have a unique id
that is automatically created if omitted

lang

rendered

rowClasses

style

HTML: Code describing the language used in
the generated markup for this component

JSF: If "false", this component is not rendered

JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class names are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

HTML: CSS style rules to be applied to the
component

styleClass

title

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML: Advisory title information about markup
elements generated for this component

Table 6.59. Component identification parameters

Name Value

component-type

org.richfaces.ColumnGroup

component-class

org.richfaces.component.html.HtmIColumnGrou

component-family

org.richfaces.ColumnGroup

renderer-type

tag-class

org.richfaces.ColumnGroupRenderer

org.richfaces.taglib.ColumnGroupTag

6.6.2.3. Creating the Component with a Page Tag

To create the simplest variant of columnGroup on a page, use the following syntax:

Example:

209

P

Chapter 6. The RichFaces Components

<rich:columnGroup>
<rich:column>
<h:outputText value="Column1"/>
</rich:column>
<rich:column>
<h:outputText value="Column2"/>
</rich:column>
</rich:columnGroup>

6.6.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumnGroup;

HtmIColumnGroup myRow = new HtmIColumnGroup();

6.6.2.5. Details of Usage

The <rich:columnGroup> component combines columns set wrapping them into the <tr>
element and outputting them into one row. Columns are combined in a group the same way as
when the "breakBefore" attribute is used for columns to add a moving to the next rows, but the
first variant is clearer from a source code. Hence, the following simple examples are very same.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">
<rich:column colspan="3">
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:columnGroup>
<rich:column>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.name}"/>
</rich:column>

210

Chapter 6. The RichFaces Components

<rich:column >
<h:outputText value="#{cap.timeZone}'/>
</rich:column>
</rich:columnGroup>
</rich:dataTable>

And representation without a grouping:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">
<rich:column colspan="3">
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

The result is:

211

Chapter 6. The RichFaces Components

=Ztate Flag

X

Alabama Montgomery | GMT-6

Juneau GMT-9

=
]
7]
-
@

Arizona | Phoenix GMT-F

&

Arkanzas Litle Rock GMT-6

California | Sacramento | GMT-5

Figure 6.22. Generated <rich:columnGroup> component with
"breakBefore" attribute

It's also possible to use the component for output of complex headers in a table. For example
adding of a complex header to a facet for the whole table looks the following way:

Example:

<f:facet name="header">
<rich:columnGroup>
<rich:column rowspan="2">
<h:outputText value="State Flag"/>
</rich:column>
<rich:column colspan="3">
<h:outputText value="State Info"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="State Name"/>
</rich:column>
<rich:column>
<h:outputText value="State Capital"/>
</rich:column>
<rich:column>
<h:outputText value="Time Zone"/>
</rich:column>
</rich:columnGroup>

212

Chapter 6. The RichFaces Components

</f:-facet>

Generated on a page as:

State Info
State Hame State Capital Time Zone

Alabama Mortgomery | GMWT-6
Alaska Juneau GhT-3
Arizons Phoenix GMT-7

Arkanzas Little Rock GMT-E

P OEEX

Californis Sacramento GMT-2

Figure 6.23. <rich:columnGroup> with complex headers

6.6.2.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columnGroup> components at once:

» Redefine the corresponding skin parameters

< Add to your style sheets style classes used by a <rich:columnGroup> component

6.6.2.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columnGroup> are the same as for the <rich:dataTable>
component.

6.6.2.8. Definition of Custom Style Classes

Custom style classes for <rich:columnGroup> are the same as for the <rich:dataTable>
component.

In order to redefine styles for all <rich:columnGroup> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

213

Chapter 6. The RichFaces Components

.rich-table-cell{
color: #316ac5h;

This is a result:

State Flag

X

Alabama | Montgomery | GMT-B

Alazka Juneau EMT-3

Arizona | Phoenix GMT-T

k

Arkanzas | Litle Rock GMT-6

California | Sacramerto | GMT-8

Figure 6.24. Redefinition styles with predefined classes

In the example cells color was changed.

Also it's possible to change styles of particular <rich:columnGroup> component. In this case
you should create own style classes and use them in corresponding <rich:columnGroup>
styleClass attributes. An example is placed below:

Example:

.myClass{
background-color: #c0c0cO0;

The "columnClasses" attribute for <rich:columnGroup> is defined as it's shown in the example
below:

Example:

214

Chapter 6. The RichFaces Components

<rich:columnGroup columnClasses="myClass">

This is a result:

State Flag

X

Alabama Montgomery GMWT-6

Alaska Juneau GWT-9

Arizona Phoenix GWT-T

9

Arkanzas Litle Rock GWT-E

California Sacramerto GMT-S

Figure 6.25. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.6.2.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dataTable.jsf?c=columnGroup] you can see the example of <rich:columnGroup> usage and
sources for the given example.

6.6.3. <rich:columns > available since 3.2.0

3.2.0

6.6.3.1. Description

The <rich:columns> is a component, that allows you to create a dynamic set of columns from
your model.

215

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup

Chapter 6. The RichFaces Components

Hame State
Montgomery | Alabama
Juneau Alaska
Phioenix Arizona

Little Rock | Arkansas
Sacramento | California
Denver Colorada
Hartford Connecticut
Dover Delaware
Tallshazsee | Florida

Atlarta Geargia

Time fone
EhT-6
-3
EhT-7
GhT-6
GhT-5
GhT-7
GhT-5
EhT-5
GhT-5
GhT-5

Figure 6.26. <rich:columns> component

6.6.3.2. Key Features

 Highly customizable look and feel

« Dynamic tables creation

 Possibility to combine columns with the help of "colspan" and "breakBefore"

» Possibility to combine rows with the help of "rowspan”

 Sorting column values

* Filtering column values

Table 6.60. rich : columns attributes

Attribute Name Description

begin Contains the first iteration item

breakBefore if "true" next column begins from the first row

colspan Corresponds to the HTML colspan attribute

columns Number of columns to be rendered

comparator Defines value binding to the comparator that is
used to compare the values

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

end Contains the last iteration item

filterBy Defines iterable object property which is used
when filtering performed.

216

Chapter 6. The RichFaces Components

Attribute Name Description

filterEvent Event for filter input that forces the filtration
(default value is "onchange")

filterExpression Attribute defines a bean property which is used
for filtering of a column

filterMethod This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

footerClass Assigns one or more space-separated CSS
class names to any footer generated for this
component

headerClass Assigns one or more space-separated CSS
class names to any header generated for this
component

id JSF: Every component may have a unique id
that is automatically created if omitted

index The current counter

label Column label for drag indicator. Usable only for
extendedDataTable component

lang HTML: Code describing the language used in
the generated markup for this component

rendered JSF: Attribute defines if component should be
rendered. Default value is "true".

rowspan Corresponds to the HTML rowspan attribute

selfSorted Manages if the header of the column is
clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component. Default value is "true”

sortable Boolean attribute. If "true" it's possible to sort
the column content after click on the header.
Default value is "true"

sortBy Defines a bean property which is used for
sorting of a column. This attribute used with
<rich:dataTable>

SortExpression Defines a bean property which is used for
sorting of a column and used only with
<rich:scrollableDataTable>.

217

Chapter 6. The RichFaces Components

Attribute Name Description

sortlcon Defines sort icon. The value for the attribute is
context related.

sortlconAscending Defines sort icon for ascending order. The
value for the attribute is context related.

sorticonDescending Defines sort icon for descending order. The
value for the attribute is context related.

sortOrder SortOrder is an enumeration of the possible
sort orderings. Default value is "UNSORTED"

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
"class" attribute.

title HTML: Advisory title information about markup
elements generated for this component

value JSF: The current value for this component

var The current variable

visible The attribute is used to define whether the
component is visible or not. The default value
is "true".

width HTML: Attribute defines width of column.

Table 6.61. Component identification parameters

Name Value

component-type org.richfaces.Column

tag-class org.richfaces.taglib.ColumnsTagHandler

6.6.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:columns value="#{capitalsBean.labels}" var="col" index="index">
<h:outputText value="#{cap[index]}" />
</rich:columns>
</rich:dataTable>

218

Chapter 6. The RichFaces Components

6.6.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumn;

HtmIColumn myColumns = new HtmIColumn();

6.6.3.5. Details of Usage

The <rich:columns> component gets a list from data model and outputs corresponding set of
columns inside <rich:dataTable> on a page. It is possible to use "header" and "footer" facets
with <rich:columns> component.

The "value" and "var" attributes are used to access the values of collection.
The simple example is placed below.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:columns value="#{capitalsBean.labels}" var="col" index="index">
<f:facet name="header">
<h:outputText value="#{col.text}" />
</f:facet>
<h:outputText value="#{cap[index]}" />
<f:facet name="footer">
<h:outputText value="#{col.text}" />
</f:facet>
</rich:columns>
</rich:dataTable>

The "columns" attribute defines the count of columns.

The "rowspan" attribute defines the number of rows to be displayed. If the value of this attribute
is zero, all remaining rows in the table are displayed on a page.

The "begin" attribute contains the first iteration item. Note, that iteration begins from zero.

219

Chapter 6. The RichFaces Components

The "end" attribute contains the last iteration item.

With the help of the attributes described below you can customize the output, i.e. define which
columns and how many rows appear on a page.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">

<rich:columns value="#{capitalsBean.labels}" var="col" index="index" rowspan="0" columns="3" begin="1" end
<f:facet name="header">
<h:outputText value="#{col.text}" />
</f:.facet>
<h:outputText value="#{cap[index]}" />
</rich:columns>
</rich:dataTable>

In the example below, columns from first to second and all rows are shown in the
<rich:dataTable> .

The result is:

Hame Capital
Montgomery | Alabama
Juneau Alaska
Phoenix Arizona
Little Rock | Arkansas
Sacramerto | California
Dervver Colarada
Hartfard Connecticut
Dovwver Delaware
Tallshazsee Florida

Atlanta Geargia

Figure 6.27. Generated <rich:columns> with columns from first to second
and all rows

The <rich:columns> component does not prevent to use <rich:column> . In the following
example one column renders in any way and another columns could be picked from the model.

Example:

220

Chapter 6. The RichFaces Components

<rich:dataTable value="#{rowBean.rows}" var="row">
<rich:column>
<h:outputText value ="#{row.columnValue}'/>
</rich:column>
<rich:columns value="#{colBean.columns}" var="col">
<f:facet name="header">
<h:outputText value="#{col.header}"/>
</f.facet>
<h:outputText value="#{row.columnValue}'/>
<f:facet name="footer">
<h:outputText value="#{col.footer}"/>
</f.facet>
</rich:columns>
</rich:dataTable>

Now, you can use a few <rich:columns> together with <rich:column> within the one table:

<rich:dataTable value="#{dataTableScrollerBean.model}" var="model" width="500px" rows="5">
<f:facet name="header">
<h:outputText value="Cars Available"></h:outputText>
</f:facet>
<rich:columns value="#{dataTableScrollerBean.columns}" var="columns" index="ind">
<f:facet name="header">
<h:outputText value="#{columns.header}" />
</f:facet>
<h:outputText value="#{model[ind].model} " />
</rich:columns>
<rich:column>
<f:facet name="header">
<h:outputText value="Price" />
</f:facet>
<h:outputText value="Price" />
</rich:column>
<rich:columns value="#{dataTableScrollerBean.columns}" var="columns" index="ind">
<f:facet name="header">
<h:outputText value="#{columns.header}" />
</f:facet>
<h:outputText value="#{model[ind].mileage}$" />
</rich:columns>

221

Chapter 6. The RichFaces Components

</rich:dataTable>

In order to group columns with text information into one row, use the "colspan" attribute, which
is similar to an HTML one. In the following example the third column contains 3 columns. In
addition, it's necessary to specify that the next column begins from the first row with the help of
the br eakBefore = "true" .

Example:

<rich:dataTable value="#{columns.datal}" var="data">
<rich:column>
<h:outputText value="#{column.ltem1}" />
</rich:column>
<rich:column>
<h:outputText value="#{column.ltem2}" />
</rich:column>
<rich:column>
<h:outputText value="#{column.ltem3}" />
</rich:column>
<rich:columns columns="3" colspan="3" breakBefore="true">
<h:outputText value="#{data.str0}" />
</rich:columns>
</rich:dataTable>

The same way is used for columns grouping with the "rowspan" attribute that is similar to an
HTML. The only thing to add in the example is an instruction to move onto the next row for each
next after the second column.

Example:

<rich:dataTable value="#{columns.datal}" var="data">
<rich:columns columns="2" rowspan="3">
<h:outputText value="#{data.str0}" />
</rich:columns>
<rich:column>
<h:outputText value="#{column.ltem1}" />
</rich:column>
<rich:column breakBefore="true">

222

Chapter 6. The RichFaces Components

<h:outputText value="#{column.ltem2}" />
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{column.Iltem3}" />
</rich:column>
</rich:dataTable>

<rich:dataTable value="#{bean.data}" var="var">
<rich:columns value="#{var.columns}">

</rich:columns>
</rich:dataTable>

<c:forEach items="#{bean.data}" var="var">
<rich:columns value="#{var.columns}">

</rich:columns>
</c:forEach>

223

Chapter 6. The RichFaces Components

<rich:columns value="#{bean.columns}" var="col" index="ind" ... >
<h:inputText id="input#{ind}" value="">
<adj:support id="support#{ind}" event="onchange" reRender="someld" />
</h:inputText>
</rich:columns>

Sorting and filtering for the <rich:columns> component works the same as for <rich:column>
. See the "Sorting and Filtering" section.

6.6.3.6. Facets

Table 6.62. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columns> components at once:

» Redefine the corresponding skin parameters
» Add to your style sheets style classes used by a <rich:columns> component
6.6.3.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columns> are the same as for the <rich:dataTable>
component .

224

Chapter 6. The RichFaces Components

6.6.3.9. Definition of Custom Style Classes

Custom style classes for <rich:columns> are the same as for the <rich:dataTable> component

In order to redefine styles for all <rich:columns> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-table-subheadercell{
color: #a0a0a0;

This is a result:

Cars Available

Corvette Explorer Maxima Camry | Yukon | G35
350245 215468 | 42175F | 23065 | 47005% 22270%

Corvette Explorer Maxima Camry | Yukon | G35
202018 28753F 48531F 186723 | 536823 | 383208

Corvette Explorer Maxima Camry | Yukon | G35
418658 45383F 37191 53521 A4651% 4669708

Corvette Explorer Maxima Camey | Yuokon G35
2T37FE 20883F 22004% 19503F | 18273% | 454858

Corvette Explorer Maxima Camry | Yukon | G35
Z23e4a3 246758 | 25192F | 165633 | 441593 2a54a%

Figure 6.28. Redefinition styles with predefined classes
In the example column header cells color was changed.

Also it's possible to change styles of particular <rich:columns> component. In this case you
should create own style classes and use them in corresponding <rich:columns> styleClass
attributes. An example is placed below:

Example:

225

Chapter 6. The RichFaces Components

.myClass {
font-style: oblique;

The "styleClass" attribute for <rich:columns> is defined as it's shown in the example below:

Example:

<rich:columns styleClass="myClass">

This is a result:

Cars Auvailable
Chevrolet | Ford Hizzan Toyota GMC | Infiniti

Caorvette Expliorer Maxima Cakwy | ¥ukon | 535
205388 27253F 35577F 335603 53746 53130%

Convette Explorer Maxima Cawmey | ¥okon | 535
386158 429975 17040% 37E41% 43658F | 325143

Corvette Expliorer Maxima Camvy | ¥ukon | 535
442138 2T264F | 32297F 200213 2E0103 174853

Corvetle Explorer | Maxima Cakwvy | ¥okon | 535
415118 23427 420328 390943 33153F 242138

Corette Expiorer) Maxima Cakwy | Yokow | 535
457623 2ATSZE 26400F £IER1T SOFIZE 29630%

Figure 6.29. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.

6.6.3.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dataTable.jsf?c=columns] you can found some additional information for <rich:columns>
component usage.

available since 3.0.0

6.6.4. <rich:dataDefinitionList >

6.6.4.1. Description

The component for definition lists rendering that allows choosing data from a model and obtains
built-in support of Ajax updates.

226

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns

Chapter 6. The RichFaces Components

Chevrolet Corvette
Price:12098
Mileage:16296.0

Chevralet Malbu
Price:36523
Mileage:46112.0

Chevralet Malibu
Price:33307
Mileage:57709.0

Chevraolet Malibu
Price:34248
Mileage:62321.0

Chevraolet Malibu
Price:51555
Mileage:51549.0

Figure 6.30. <rich:dataDefinitionList> component

6.6.4.2. Key Features

« Completely skinned table rows and child elements

» Possibility to update a limited set of rows with Ajax

* Possibility to receive values dynamically from a model

Table 6.63. rich : dataDefinitionList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request
binding JSF. The attribute takes a value-binding

expression for a component property of a
backing bean

columnClasses

JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

componentState

dir

It defines EL-binding for a component state for
saving or redefinition

HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

227

Chapter 6. The RichFaces Components

Attribute Name Description

first

A zero-relative row number of the first row to
display

JSF: Every component may have a unique id
that is automatically created if omitted

lang

HTML: Code describing the language used in
the generated markup for this component

rendered

JSF: If "false", this component is not rendered

rowClasses

JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class nhames are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

rowKey

rowKeyConverter

RowKey is a representation of an identifier for
a specific data row

Converter for a RowKey object.

rowKeyVar

rows

The attribute provides access to a row key in a
Request scope

HTML: A number of rows to display, or zero for
all remaining rows in the table

style

HTML: CSS style rules to be applied to the
component

styleClass

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

title

HTML: Advisory title information about markup
elements generated for this component

value

JSF: The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

228

Chapter 6. The RichFaces Components

Table 6.64. Component identification parameters

Name Value

component-type org.richfaces.DataDefinitionList

component-class org.richfaces.component.html.HtmIDataDefinitionList
component-family org.richfaces.DataDefinitionList

renderer-type org.richfaces.DataDefinitionListRenderer

tag-class org.richfaces.taglib.DataDefinitionListTag

6.6.4.3. Creating the Component with a Page Tag
To create the simplest variant of dataDefinitionList on a page, use the following syntax:

Example:

<rich:dataDefinitionList value="#{bean.capitals}" var="caps">
<f:facet name="term">Cars</f:facet>
<h:outputText value="#{car.model}"/>
</rich:dataDefinitionList>

6.6.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataDefinitionList;

HtmIDataDefinitionList myList = new HtmIDataDefinitionList();

6.6.4.5. Details of Usage

The <rich:dataDefinitionList> component allows to generate an definition list from a model.

The component has the "term" facet, which corresponds to the "type" parameter for the <DT>
HTML element.

Here is an example:

<h:form>

229

Chapter 6. The RichFaces Components

<rich:dataDefinitionList var="car" value="#{dataTableScrollerBean.allCars}" rows="5" first="4" title="Cars">

<f:facet name="term">
<h:outputText value="#{car.make} #{car.model}"></h:outputText>

</f:facet>

<h:outputText value="Price:" styleClass="label"></h:outputText>

<h:outputText value="#{car.price}" />

<h:outputText value="Mileage:" styleClass="label"></h:outputText>

<h:outputText value="#{car.mileage}" />

</rich:dataDefinitionList>
</h:form>

This is a result:

Chevrolet Corvette
Price:15095
Mileage:16296.0

Chevralet Malibu
Price:36523
Mileage:4611Z2.0

Chevraolet Malibu
Price:33307
Mileage:57709.0

Chevraolet Malibu
Price:34248
Mileage:n2521.0

Chevraolet Malibu
Price:51555
Mileage:51549.0

Figure 6.31. <rich:dataDefinitionList> component with "term" facet
In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <adj:repeat> component and as a result it could be
partially updated with Ajax. The "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request, you need to pass an array with key (lines) of the list that you want to be
updated after the Ajax request is executed.

Here is an example:

Example:

<rich:dataDefinitionList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list">

230

Chapter 6. The RichFaces Components

</rich:dataDefinitionList>

<adj:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

Inthe example "reRender" attribute contains value of "id" attribute for <rich:dataDefinitionList>
component. As a result the component is updated after an Ajax request.

6.6.4.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataDefinitionList> components
at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataDefinitionList> component

6.6.4.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

tich-definition-term

Chevrolet Corvette
Price:15095
Mileage:16296.0

Chevrolet Malibu
Price:36523
Mileage:4511Z2.0

Chevrolet Malibu
Price:33307
Mileage:57709.0

Chevrolet Malibu
Price:34248
Mileage:6z2521.0

Chevrolet Malibu
Price:51555
Mileage:51549.0

tich-deflist

tich-definition

Figure 6.32. Style classes

Table 6.65. Classes names that define a list appearance

Class name Description

‘ rich-deflist Defines styles for an html <dI> element ‘

‘ rich-definition Defines styles for an html <dd> element ‘

231

Chapter 6. The RichFaces Components

Class name Description

rich-definition-term Defines styles for an html <dt> element

In order to redefine styles for all <rich:dataDefinitionList> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-definition-term{
font-weight:bold;
}

This is a result:

Chevrolet Corvette
Price:25005
Mileage:>9307 .0

Chevrolet Malibu
Price:41590
Mileage:55513.0

Chevrolet Malibu
Price:45E663
Mileage:256354 .10

Chevrolet Malibu
Price:o4627
Mileage:43515.10

Chevrolet Malibu
Price:31953
Mileage:34377 .0

Figure 6.33. Redefinition styles with predefined classes
In the example a term font weight was changed.

Also it's possible to change styles of particular <rich:dataDefinitionList> component.
In this case you should create own style classes and use them in corresponding
<rich:dataDefinitionList> styleClass attributes. An example is placed below:

Example:

232

Chapter 6. The RichFaces Components

.myClass{
font-style: italic;

}

Example:

<rich:dataDefinitionList ... rowClasses="myClass"/>

This is a result:

Chevrolet Corvette
Price: 25005
AMifeage: 333070
Chevralet Malibu
Price: 471530
AMifeage:555713.0
Chevralet Malibu
Price: 45663
WMifeage: 256534.0
Chevralet Malibu
Price: 54627
WMifeage: 435150
Chevralet Malibu
Price: 37953
NMileage: 34377.0

Figure 6.34. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style for rows was changed.
6.6.4.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dataLists.jsf?c=dataDefinitionList] you can see the example of <rich:dataDefinitionList> usage
and sources for the given example.

available since 3.0.0

6.6.5. <rich:dataFilterSlider >

6.6.5.1. Description

A slider-based action component is used for filtering table data.

233

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList

Chapter 6. The RichFaces Components

rich:dataFilterslider
Table data filtered

by mileage
B | 20000

Make Model Price Mileage
Chewrolet Corvette 28367 19307.0
Chevrolet Corvette 52071 14735.0
Chewrolet Corvette 44407 9251.0
Chevrolet Corvette 21103 16625.0
Chevrolet Corvette 46108 16164.0
Chewrolet Corvette 45452 19619.0
Chewrolet Corvette 43359 14445.0
Chewrolet rlalibn 24960 19973.0
Chewrolet rlalibi 43127 10848.0
Chevrolet Malibu 17195 15394.0

Figure 6.35. <rich:dataFilterSlider> component
6.6.5.2. Key Features

« Filter any UlData based component in dependency on its child's values
 Fully skinnable control and input elements

» Optional value text field with an attribute-managed position

» Optional disablement of the component on a page

« Optional toolTip to display the current value while a handle is dragged
» Dragged state is stable after the mouse moves

« Optional manual input possible if a text input field is present

 Validation of manual input

Table 6.66. rich : dataFilterSlider attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,
conversion, validation and model updating)

234

Chapter 6. The RichFaces Components

Attribute Name Description

only to a component that sends the request.
Boolean

binding

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

clientErrorMessage

data

endRange

An error message to use in client-side
validation events

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

A slider end point

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

fieldStyleClass

Assigns one or more space-separated CSS
class names to the component input field. The
value of the "manuallnput” attribute must be
"true”.

filterBy

A getter of an object member required to
compare a slider value to. This is a value that
is used in results filtering

focus

ID of an element to set focus after request is
completed on client side

for

The component using UlData (datatable id)

forValRef

handleStyleClass

handleValue

id

This is a string which is used in a value attribute
of the datatable. It is used for resetting the
datatable back to the original list provided by a
backing bean

Assigns one or more space-separated CSS
class names to the component handle

Current handle value

JSF: Every component may have a unique id
that is automatically created if omitted

235

Chapter 6. The RichFaces Components

Attribute Name Description

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

increment

limitToList

Amount to which a handle on each slide/move
should be incremented

If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

manuallnput

False value for this attribute makes text field
"read-only" and "hidden". Hence, the value can
be changed only from a handle. Default value
is "true"

onbeforedomupdate

onchange

The client-side script method to be called
before DOM is updated

DHTML: The client-side script method to be
called when the component input field value is
changed

onclick

oncomplete

DHTML: The client-side script method to be
called when the element is clicked

The client-side script method to be called after
the request is completed

ondblclick

DHTML: The client-side script method to be
called when the element is double-clicked

onerror

The client-side script method to be called
whenever a JavaScript error occurs

236

Chapter 6. The RichFaces Components

Attribute Name Description

oninputkeydown

The client-side script method to be called when
a key is pressed down in the component input
field

oninputkeypress

The client-side script method to be called
when a key is pressed and released in the
component input field

oninputkeyup

The client-side script method to be called when
a key is released in the component input field

onkeydown

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

onkeyup

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

DHTML: The client-side script method to be
called when a key is released

onmousedown

onmousemove

onmouseout

onmouseover

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

onslide

onSlideSubmit

process

DHTML: The client-side script method to be
called when a mouse button is released

The client-side script method to be called when
a slider handle is moved

DEPRECATED (use submitOnSlide). If the
slider value is changed, the form is submitted.
Default value is "true".

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this

237

Chapter 6. The RichFaces Components

Attribute Name Description

component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rangeStyleClass Assigns one or more space-separated CSS
class names to the background div element
wrapping a full range

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

sliderListener MethodBinding representing an action listener

method that will be notified after changing of
slider control position

startRange A slider begin point

status ID (in format of call
UlComponent.findComponent()) of Request
status component

storeResults Specifies if the component will store a UlData
object (your table rows) in session

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more space-separated

CSS class names to the container surrounding
the component. Corresponds to the HTML
“class" attribute.

submitOnSlide If the slider value is changed, the form is
submitted. Default value is "true”.

238

Chapter 6. The RichFaces Components

Attribute Name Description

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

trackStyleClass Assigns one or more space-separated CSS
class names to the component track

trailer It shows or hides a trailer following a handle

trailerStyleClass Assigns one or more space-separated CSS
class names to the trailer following the
component handle

value JSF: The current value for this component
width HTML: Width of the slider control. Default value
is "200px".

Table 6.67. Component identification parameters

INET[E Value

component-type org.richfaces.dataFilterSlider

component-class org.richfaces.component.html.HtmIDataFilterSlider
component-family org.richfaces.DataFilterSlider

renderer-type org.richfaces.DataFilterSliderRenderer

tag-class org.richfaces.taglib.dataFilterSliderTag

6.6.5.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}" startRange="0"
endRange="50000" increment="10000" handleValue="1" />

6.6.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataFilterSlider;

239

Chapter 6. The RichFaces Components

HtmlIDataFilterSlider mySlider = new HtmlDataFilterSlider();

6.6.5.5. Details of Usage

The dataFilterSlider component is bound to some UlData component using a "for" attribute
and filters data in a table.

Example:

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}"
startRange="0"
endRange="50000"
increment="10000"
handleValue="1"
for="carlndex"
forValRef="inventoryList.carlnventory"
filterBy="getMileage" />

<h:dataTable id="carlndex">

</h:dataTable>

In this example other two attributes are used for filtering:

« "forValRef" is a string which is used in a value attribute of the target UlData component. It's
designed for resetting the UlData component back to the original list provided by a backing bean.

« "filterBy" is a getter of an object member that is to be compared to a slider value. It's a value
that is used in results filtering.

"handleValue" is an attribute for keeping the current handle position on the dataFilterSlider
component. Based on the current value, appropriate values obtained from a getter method defined
in “filterBy" are filtered.

One more important attribute is a "storeResults" one that allows the dataFilterSlider component
to keep UlData target object in session.

If it's necessary the component submits a form on event of a handle state changing, use the
"submitOnSlide" attribute. When the attribute definition is "t rue", submission on this event is
defined.

240

Chapter 6. The RichFaces Components

Information about the "process" attribute usage you can find in the "Decide what to process "
guide section.

6.6.5.6. Look-and-Feel Customization

The <rich:dataFilterSlider> component has no skin parameters and special style classes ,
as it consists of one element generated with a your method on the server. To define some style
properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes
on the component.

6.6.5.7. Relevant Resources Links

On the component LiveDemo page [http:/livedemo.exadel.com/richfaces-demo/richfaces/
dataFilterSlider.jsf?c=dataFilterSlider] you can see the example of <rich:dataFilterSlider>
usage and sources for the given example.

6.6.6. <rich:dataGrid > available since 3.0.0

6.6.6.1. Description

The component to render data as a grid that allows choosing data from a model and obtains built-
in support of Ajax updates.

Car Store

Chevrolet Corvette Chevrolet Corvette

Price: 46071 Price: 46416
Mileage: 40446.0 Mileage: 43531.0

Chevrolet Corvette Chevrolet Corvette

Price: 47822 Price: 16629
Mileage: 154330 Mileage: 69237 .0
1_ L

Figure 6.36. <rich:dataGrid> component

6.6.6.2. Key Features

» A completely skinned table and child elements
» Possibility to update a limited set of rows with Ajax

 Possibility to receive values dynamically from a model

241

http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider

Chapter 6. The RichFaces Components

Table 6.68. rich : dataGrid attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

align Deprecated. This attribute specifies the
position of the table with respect to the
document. The possible values are "left",
"center” and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background
color for the document body or table cells.
This attribute sets the background color of
the canvas for the document body (the
BODY element) or for tables (the TABLE, TR,
TH, and TD elements). Additional attributes
for specifying text color can be used with
the BODY element. This attribute has been
deprecated in favor of style sheets for
specifying background color information

binding JSF:. The attribute takes a value-binding
expression for a component property of a
backing bean

border HTML: This attributes specifies the width of the
frame around a component. Default value is
IIOII.

captionClass Assigns one or more space-separated CSS

class names to the component caption

captionStyle CSS style rules to be applied to the component
caption
cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.
Default value is "0".

cellspacing This attribute specifies the amount of space
between the border of the cell and its contents.
The attribute also specifies the amount of
space to leave between cells. Default value is
"0".

columnClasses JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.

242

Chapter 6. The RichFaces Components

Attribute Name Description

columns

componentState

dir

elements

first

footerClass

If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

Number of columns

It defines EL-binding for a component state for
saving or redefinition

HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

Number of elements in grid

A zero-relative row number of the first row to
display

Assigns one or more space-separated CSS
class names to the component footer

frame

headerClass

This attribute specifies which sides of the frame
surrounding a table will be visible. Possible
values: "void", "above", "below", "hsides", "lhs",

rhs", "vsides", "box" and "border". The default
value is "void".

Assigns one or more space-separated CSS
class names to the component header

id JSF: Every component may have a unique id
that is automatically created if omitted

lang HTML: Code describing the language used in
the generated markup for this component

onclick DHTML: The client-side script method to be
called when the element is clicked

ondblclick DHTML: The client-side script method to be
called when the element is double-clicked

onkeydown DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup DHTML: The client-side script method to be

called when a key is released

243

Chapter 6. The RichFaces Components

Attribute Name Description

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

DHTML: The client-side script method to be
called when a pointer is moved within the
element

onmouseout

onmouseover

onmouseup

onRowClick

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

DHTML: The client-side script method to be
called when a mouse button is released

The client-side script method to be called when
the row is clicked

onRowDDblIClick

The client-side script method to be called when
the row is double-clicked

onRowMouseDown The client-side script method to be called when
a mouse button is pressed down over the row
onRowMouseMove The client-side script method to be called when
a pointer is moved within the row
onRowMouseOut The client-side script method to be called when
a pointer is moved away from the row
onRowMouseOver The client-side script method to be called when
a pointer is moved onto the row
onRowMouseUp The client-side script method to be called when
a mouse button is released over the row
rendered JSF: If "false", this component is not rendered
rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If
the CSS class names are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

244

Chapter 6. The RichFaces Components

Attribute Name Description

rowKey

rowKeyConverter

RowKey is a representation of an identifier for
a specific data row

Converter for a row key object

rowKeyVar

rules

stateVar

style

Request scoped variable for client access to
rowKey

This attribute specifies which rules will appear
between cells within a table. The rendering
of rules is user agent dependent. Possible
values: * none: No rules. This is the default
value. * groups: Rules will appear between row
groups (see THEAD, TFOOT, and TBODY)
and column groups (see COLGROUP and
COL) only. * rows: Rules will appear between
rows only. * cols: Rules will appear between
columns only. * all: Rules will appear between
all rows and columns

The attribute provides access to a component
state on the client side

HTML: CSS style rules to be applied to the
component

styleClass

summary

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

This attribute provides a summary of the
table's purpose and structure for user agents
rendering to non-visual media such as speech
and Braille

title

value

HTML: Advisory title information about markup
elements generated for this component

JSF: The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

width

HTML: This attribute specifies the desired
width of the entire table and is intended
for visual user agents. When the value is
percentage value, the value is relative to the
user agent's available horizontal space. In the
absence of any width specification, table width
is determined by the user agent

245

Chapter 6. The RichFaces Components

Table 6.69. Component identification parameters

Name Value

component-type org.richfaces.DataGrid

component-class org.richfaces.component.html.HtmIDataGrid
component-family org.richfaces.DataGrid

renderer-type org.richfaces.DataGridRenderer

tag-class org.richfaces.taglib.DataGridTag

6.6.6.3. Creating the Component with a Page Tag
To create the simplest variant of dataGrid on a page, use the following syntax:

Example:

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car">
<h:outputText value="#{car.model}"/>
</rich:dataGrid>

6.6.6.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataGrid;

HtmIDataGrid myList = new HtmIDataGrid();

6.6.6.5. Details of Usage

The component takes a list from a model and outputs it the same way as with <h:panelGrid> for
inline data. To define grid properties and styles, use the same definitions as for <h:panelGrid>.

The component allows to:

« Use "header" and "footer" facets for output

 Limit number of output elements ("elements” attribute) and define first element for output (
"first" attribute)

246

Chapter 6. The RichFaces Components

» Bind pages with <rich:datascroller> component
Here is an example:

Example:

<rich:panel style="width:150px;height:200px;">
<h:form>

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" columns="2" elements="4" first="1">
<f:facet name="header">
<h:outputText value="Car Store"></h:outputText>
</f:facet>
<rich:panel>
<f:facet name="header">
<h:outputText value="#{car.make} #{car.model}"></h:outputText>
</f.facet>
<h:panelGrid columns="2">
<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price}"/>
<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage}"/>
</h:panelGrid>
</rich:panel>
<f:facet name="footer">
<rich:datascroller></rich:datascroller>
</f:facet>
</rich:dataGrid>
</h:form>
</rich:panel>

This is a result:

247

Chapter 6. The RichFaces Components

“heagdar’ facet
first elernent

Car Store

Chevrolet Corvette Chevrolet Corvette

Price: 34643 Price: 45459
Mileage: 7260.0 Mileage: 14014.0

Chevrolet Corvette Chevrolet Corvette

Price: 15458 Price: 24189
Mileage: 12705.0 Mileage: 33452.0
1_ L

footer” facet

Figure 6.37. Component usage

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataGrid}" id="grid" elements="4" columns="2">

</rich:dataGrid>

<a4j:commandButton action="#{listBean.action}" reRender="grid" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataGrid>
component. As a result the component is updated after an Ajax request.

248

Chapter 6. The RichFaces Components

6.6.6.6. Facets

Table 6.70. Facets

Facet name Description

header Defines the header content
‘ footer Defines the footer content ‘
‘ caption Defines the caption content ‘

6.6.6.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataGrid> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataGrid> component

6.6.6.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:dataGrid> are the same as for the <rich:dataTable>
component.

6.6.6.9. Definition of Custom Style Classes

Custom style classes for <rich:dataGrid> are the same as for the <rich:dataTable>
component.

In order to redefine styles for all <rich:dataGrid> components on a page using CSS, it's
enough to create classes with the same names (possible classes are the same as for the
<rich:dataTable>) and define necessary properties in them.

Example:

.rich-table-footercell{
color:#ff7800;

This is a result:

249

Chapter 6. The RichFaces Components

Car Store

Chevrolet Corvette

Price: 49672

Mileage: 49221.0

YIN: FHWUELAMOQHOK GO
Stock: PTRBEZR

Chevrolet Corvette

Price: 15122

Mileage: 15400.0

YIN: TVeQGCIFIEMEGIE
Stock: ®LIERBT

Figure 6.38. Redefinition styles with predefined classes
In the example color of footercell was changed.

Also it's possible to change styles of particular <rich:dataGrid> component. In this case you
should create own style classes and use them in corresponding <rich:dataGrid> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-style:italic;

The "columnClasses" attribute for <rich:dataGrid> is defined as it's shown in the example
below:

Example:
<rich:dataGrid ... columnClasses="myClass"/>

This is a result:

250

Chapter 6. The RichFaces Components

Car Store

Ghevrofet Corvette

Price: IEFIF

Mileage: 488700

I In: YFrSDONIMOERUS
Stock: HXMHOM

Ghevrofet Corvette

Price: 28834

Mileage: 459020

I In: KMNFE YRS TOMEMT Y
Stock: OWRTTAE

1 »oo

Figure 6.39. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.
6.6.6.10. Relevant Resources Links

On the component LiveDemo page [http:/livedemo.exadel.com/richfaces-demo/richfaces/
dataGrid.jsf?c=dataGrid] you can see the example of <rich:dataGrid> usage and sources for
the given example.

available since 3.0.0

6.6.7. <rich:dataList >

6.6.7.1. Description

The component for unordered lists rendering that allows choosing data from a model and obtains
built-in support of Ajax updates.

+ Chevrolet Corvette
Price:41753
Mileage:10413.0

+« Chevrolet Corvette
Price:17540
Mileage:45531.0

+« Chevrolet Corvette
Price:20191
Mileage:5927.0

+« Chevrolet Corvette
Price:46960
Mileage:13937.0

+« Chevrolet Corvette
Price:34164
Mileage:72236.0

Figure 6.40. <rich:dataList> component

251

http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid
http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid
http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid

Chapter 6. The RichFaces Components

6.6.7.2. Key Features

» A completely skinned list and child elements
» Possibility to update a limited set of rows with Ajax

» Possibility to receive values dynamically from a model

Table 6.71. rich : dataList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

componentState It defines EL-binding for a component state for
saving or redefinition

dir HTML.: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to
display
id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in
the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If
the CSS class nhames are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class nhames than rows, the
overflow ones are ignored.

rowKey RowKey is a representation of an identifier for
a specific data row

rowKeyConverter Converter for a row key object

252

Chapter 6. The RichFaces Components

Attribute Name Description

rowKeyVar The attribute provides access to a row key in a
Request scope

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

stateVar The attribute provides access to a component
state on the client side

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
“class" attribute.

title HTML.: Advisory title information about markup
elements generated for this component

type HTML: Corresponds to the HTML DL type
attribute

value JSF: The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.72. Component identification parameters

INETE] Value

component-type
component-class

component-family

org.richfaces.Datal.ist
org.richfaces.component.html.HtmIDataList

org.richfaces.Datal.ist

renderer-type

org.richfaces.DataListRenderer

tag-class

org.richfaces.taglib.DataListTag

6.6.7.3. Creating the Component with a Page Tag

To create the simplest variant of dataList on a page, use the following syntax:

Example:

<rich:dataList var="car" value="#{dataTableScrollerBean.allCars}" >

<h:outputText value="#{car.model}"/>

</rich:dataList>

253

Chapter 6. The RichFaces Components

6.6.7.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataList;

HtmlIDataList myList = new HtmlDataList();

6.6.7.5. Details of Usage

The <rich:dataList> component allows to generate a list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the
 HTML element and defines a marker type. Possible values for "type" attribute are: "disc",
"circle", "square".

Here is an example:

<h:form>

<rich:dataListvar="car"value="#{dataTableScrollerBean.allCars}"rows="5"type="disc"title="Car
Store">
<h:outputText value="#{car.make} #{car.model}"'/>

<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price} "/>

<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage} "/>

</rich:dataList>
</h:form>

This is a result:

254

Chapter 6. The RichFaces Components

+« Chevrolet Corvette
Price:41753
Mileage:10419.0

+« Chevraolet Carvette
Price:17540
Mileage:45531.0

type ="disc” . Chevrolet Corvetts
Price:20191
Mileage:5927.0

+« Chevralet Corvette
Price:d69a60
Mileage:13937.0

+ Chevrolet Corvette
Price:34164
Mileage:72236.0

Figure 6.41. <rich:dataList> component with "type" attribute
In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title. See picture below:

Chevrolet Corvette
Price:17540
Mileage:45531 .0

Chevrolet Corvette
Price:201 91
Mileage:S927 .0

Chevrolet Comette

Price:46a60 _
-Car Skore

Mileage:1 393710

Chevrolet Corvette
Price:34164
Mileage:r2236.0

Chevrolet Malibu
Price:31100
Mileage:54733.0

Figure 6.42. <rich:dataList> component with "title" attribute

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list" rows="5" type="disc">

255

Chapter 6. The RichFaces Components

</rich:dataList>

<adj:commandButton action="#{listBean.action}" reRender="Ilist" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:datalList>
component. As a result the component is updated after an Ajax request.

6.6.7.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataList> components at once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:dataList> component

6.6.7.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.
rich-datalist

+ Chevrolet Corvette
Price:41753
Mileage:10419.0

+« Chevrolet Corvette
Price:17540
Mileage:45531.0
tich-list-item « Chevrolet Corvette
Price:Z0191
Mileage:5927.0
+« Chevrolet Corvette
Price:469a60
Mileage:13937.0
+ Chevrolet Corvette
Price:34164
Mileage:72236.0

Figure 6.43. Style classes

Table 6.73. Classes names that define a list appearance

Class name Description

‘ rich-datalist Defines styles for an html element ‘

256

Chapter 6. The RichFaces Components

Class name Description

rich-list-item Defines styles for an html element

In order to redefine styles for all <rich:datalList> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-list-item{
font-style:italic;

This is a result:

Chevrolet Corvette
Price:a0008
Mifeage:d4059.0
Cheprolet Corpette
Price 0235
Mifeage:75805.0
Chevrolet Corvette

Price:21373
Mileage:318595.0

Cheprolet Corpette
Price 3028
Mifeage:d1750.0

Chevrolet Corvette
Price:d5318
Mileagerddsdz.0

Figure 6.44. Redefinition styles with predefined classes
In the example the font style for list item text was changed.

Also it's possible to change styles of particular <rich:dataList> component. In this case you
should create own style classes and use them in corresponding <rich:dataList> styleClass
attributes. An example is placed below:

Example:

257

Chapter 6. The RichFaces Components

.myClass{
background-color:#ffead9;

The "styleClass" attribute for <rich:datalList> is defined as it's shown in the example below:

Example:
<rich:dataList ... styleClass="myClass"/>
This is a result:

Chevraolet Corvette
Price:23174 Mileage: 26199 0 VIH:GMDDGHPFLX Y GLBE

Chevrolet Corvette
Price:231 45 Mileage:54302 .0 WIH:ORXWWC K XPOPAVOER X

Chevrolet Corvette
Price:41463 Mileage:22651 .0 WIH:KGYIDHMG S APAEI

Chevrolet Corvette
Price:31635 Mileage:341 70.0 ¥IN:JSABPTRPSZODIZL

Chevrolet Corvette
Price:21153 Mileage:25967 .0 WIN:MAEDY U TCCL G WHE

Figure 6.45. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, background color for <rich:dataList> was changed.
6.6.7.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
datalists.jsf?c=datalList] you can see the example of <rich:dataList> usage and sources for
the given example.

6.6.8. <rich:dataOrderedList > 2/@ablesince 3.0.0

6.6.8.1. Description

The component for ordered lists rendering that allows choosing data from a model and obtains
built-in support of Ajax updates.

258

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList

Chapter 6. The RichFaces Components

1. Chewrolet Corvette
Price:16050
Mileage:55773.0

2. Chewrolet Corvette
Price:49936
Mileage:72356.0

3. Chewrolet Corvette
Price:52167
Mileage:30749.0

4, Chevrolet Corvette
Price:21148
Mileage:55447.0

5. Chewrolet Corvette
Price:15093
Mileage:15295.0

Figure 6.46. <rich:dataOderedList> component

6.6.8.2. Key Features

* A completely skinned list and child elements
» Possibility to update a limited set of rows with Ajax

* Possibility to receive values dynamically from a model

Table 6.74. rich : dataOrderedList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to
display
id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in
the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If
the CSS class nhames are comma-separated,

259

Chapter 6. The RichFaces Components

Attribute Name Description

rowKey

each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

RowKey is a representation of an identifier for
a specific data row

rowKeyConverter

rowKeyVar

Converter for a RowKey object.

The attribute provides access to a row key in a
Request scope

rows

style

styleClass

title

type

HTML: A number of rows to display, or zero for
all remaining rows in the table

HTML: CSS style rules to be applied to the
component

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

HTML.: Advisory title information about markup
elements generated for this component

HTML: Corresponds to the HTML OL type
attribute

value

JSF: The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.75. Component identification parameters

Name Value

component-type

org.richfaces.DataOrderedList

component-class

org.richfaces.component.html.HtmIDataOrdere

dList

component-family

org.richfaces.DataOrderedList

renderer-type

tag-class

org.richfaces.DataOrderedListRenderer

org.richfaces.taglib.DataOrderedListTag

6.6.8.3. Creating the Component with a Page Tag

To create the simplest variant of dataOrderedList on a page, use the following syntax:

260

Chapter 6. The RichFaces Components

Example:

<rich:dataOrderedList var="car" value="#{dataTableScrollerBean.allCars}" >
<h:outputText value="#{car.model}"/>
</rich:dataOrderedList>

6.6.8.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataOrderedList;

HtmIDataOrderedList myList = new HtmlIDataOrderedList();

6.6.8.5. Details of Usage

The <rich:dataOrderedList> component allows to generate an ordered list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the
 HTML element and defines a marker type. Possible values for "type" attribute are: "A",
"a"’ "I", "i", "1"_

Here is an example:

<h:form>

<rich:dataOrderedLisvar="carValue="#{dataTableScrollerBean.allCars}lfows="5type="title="Car

Store">
<h:outputText value="#{car.make} #{car.model}"/>

<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price}" />

<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage}" />

</rich:dataOrderedList>
</h:form>

This is a result:

261

Chapter 6. The RichFaces Components

1. Chewrolet Corvette
Price:16050
Mileage:55773.0

2. Chewrolet Corvette
Price:49936
Mileage:72356.0

3. Chewrolet Corvette
Price:52167
Mileage:30749.0

4, Chevrolet Corvette
Price:21148
Mileage:55447.0

5. Chewrolet Corvette
Price:15093
Mileage:15295.0

Figure 6.47. <rich:dataOrderedList> component with "type" attribute
In the example the "rows" attribute limits number of output elements of the list.
"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataOrderedList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list">

</rich:dataOrderedList>

<adj.commandButton action="#{listBean.action}"' reRender="list" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataOrderedList>
component. As a result the component is updated after an Ajax request.

6.6.8.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataOrderedList> components at
once:

262

Chapter 6. The RichFaces Components

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataOrderedList> component

6.6.8.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

tich-orderadlist

1. Chevrolet Corvette
Price:1lc050
Mileage:55773.0

2. Chevrolet Corvette
Price:49936
Mileage:72356.0

3. Chevrolet Corvette
Price:52167
Mileage:30749.0

Chevrolet Corvette
Price:21148
Mileage:55447.0

5, Chevrolet Corvette
Price:15098
Mileage:16295.0

rich-list-iterm

e

Figure 6.48. Style classes

Table 6.76. Classes names that define a list appearance

Class name Description

rich-orderedlist Defines styles for an html element

rich-list-item Defines styles for an html element

In order to redefine styles for all <rich:dataOrderedList> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-orderedlist{
background-color: #ebf3fd;
}

This is a result:

263

Chapter 6. The RichFaces Components

Chevrolet Corvette
Price:25725 Mileage:S0464 .0 WIHZ Y HFPHRNHBG AR TP

Chevrolet Corvette
Price:36506 Mileage: 20522 .0 VIH:GLAUZEMBOUFHE]

Chevrolet Corvette
Price:29736 Mileage:43560.0 VWIN:EUHBYIPPKEPUCE G

Chevrolet Corvette
Price:15514 Mileage:39912.0 VWIH:JDOGEJLMIOBEZRL

Chevrolet Corvette
Price:16541 Mileage:33920.0 VWIH AR GWRMBILKLEL

Chevrolet Malib
Price:32912 Mileage:456169.0 WIH:TJAHER L0081 D

Chevrolet Malibu
Price:25603 Mileage:10209.0 WIN:FODF BPYREUF AR

Chevrolet Malib
Price:1 6600 Mileage:S71 02 .0 WIN:NHCHY JTLGGOATPE

Chevrolet Malibu
Price:1 7263 Mileage:56316 .0 WIH:LY ZPMUBCYWHEY 2l E

Chewrolet Malitbw

Price:19603 Mileage:1 3563 .0 VIH:OKREBMABLJOC AP
Figure 6.49. Redefinition styles with predefined classes
In the example background color was changed.

Also it's possible to change styles of particular <rich:dataOrderedList> component. In this case
you should create own style classes and use them in corresponding <rich:dataOrderedList>
styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

}

Example:

<rich:dataOrderedList ... styleClass="myClass"/>

264

Chapter 6. The RichFaces Components

This is a result:

Chevrolet Coprette
Prica: 22281 Mifagge: 61 762 0 WIN: UGLIAPIIE ZYEHCY

Chevrolet Conette
Prico: 20040 Mfagge: 75037 .0 WINE RXNONFRSXIMEGEXNG

Chevrolet Coprette
Prica: 37657 Mifagge: 446150 WN: FAGEMPWIWE Fi 00

Chevrolet Conette
Prica: 15540 Mfagge: 2427 5.0 WINe DFBNINUR FFOLEC 1Y

Chevrolet Coprette
Price: 25005 Mifagga: 39907 0 U Pl XU Y T OXAY

Chevrofet MafiHy
Prico: 41530 Mfagge: 5557130 VN UL BFSEUCNAUAY L

Chevrolet Malimy
Price; 45665 Mifeage: 25634 .0 UIN: FRPCJEMIFCMORPX G TH

Chevrolet Maliby
Price: 54627 Mifaage: 9515 0 WN: HAUZNTRQQAMFREHO

Chevrolet Malimy
Price; 31355 Mifeage; 3437 7.0 UIN: FALL GdNIUNLMDZ

Chevrolet Maliby

Price: 27167 Milaage: 440760 VN A PLLFN G K IGIHEE
Figure 6.50. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style was changed.
6.6.8.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
datalLists.jsf?c=dataOrderedList] you can see the example of <rich:dataOrderedList > usage
and sources for the given example.

6.6.9. <rich:datascroller > 2valaplesince 3.0.0

6.6.9.1. Description

The component designed for providing the functionality of tables scrolling using Ajax requests.

265

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList

Chapter 6. The RichFaces Components

Capitals and States Table
State Flag Capital Mame State Mame

>< Mortgomery Alabama
- Juresu Alazka
w Phoenizx Arizons
Little Rock Arkansas
..\ Sacramenta California

il
1
1]

E?I
|l
m
= |
&0
[[+]

Capital Marme State Mame

e a“ 1

TimeZone

GhAT-6

hAT-9

GhT-7

GhAT-6

GhAT-5

TimeLone

L

g

rich: datascroller

Figure 6.51. <rich:datascroller> component

6.6.9.2. Key Features

» Provides table scrolling functionality
* Built-in Ajax processing
* Provides fast controls

 Skin support

Table 6.77. rich : datascroller attributes

Attribute Name Description

action

actionListener

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle

align

Boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only.
Default value is "true"

This attribute specifies the position of the
table with relatively to the document. Possible

266

Chapter 6. The RichFaces Components

Attribute Name Description

values are "left","center","right ". Default value
is "center".

binding

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

boundaryControls

The attribute specifies the visibility
of boundaryControls. Possible values
are: "show" (controls are always
visible). "hide" (controls are hidden.
"auto" (unnecessary controls are hidden).
Default value is "show".

bypassUpdates

data

eventsQueue

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

fastControls

The attribute specifies the visibility
of fastControls. Possible values
are: "show" (controls are always
visible). "hide" (controls are hidden.
"auto" (unnecessary controls are hidden).
Default value is "show".

fastStep The attribute indicates pages quantity to switch
onto when fast scrolling is used. Default value
is IIOII.

focus ID of an element to set focus after request is
completed on client side

for ID of the table component whose data is
scrollled

handleValue Current handle value

id JSF: Every component may have a unique id

that is automatically created if omitted

267

Chapter 6. The RichFaces Components

Attribute Name Description

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now. Default value is "true".

A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

inactiveStyle

inactiveStyleClass

CSS style rules to be applied to the scroller
inactive cells

Assigns one or more space-separated CSS
class names to the scroller inactive cells

lastPageMode

The attribute to control whether last page of
datascroller shows "rows" number of items or
just the rest. Possible values are "full" and
"short". Default value is "short".

limitToList

maxPages

onbeforedomupdate

If "true", then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

Maximum quantity of pages. Default value is
"10"_

The client-side script method to be called
before DOM is updated

onclick

oncomplete

ondblclick

DHTML: The client-side script method to be
called when the element is clicked

The client-side script method to be called after
the request is completed

DHTML: The client-side script method to be
called when the element is double-clicked

onkeydown

DHTML: The client-side script method to be
called when a key is pressed down over the
element

268

Chapter 6. The RichFaces Components

Attribute Name Description

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

DHTML: The client-side script method to be
called when a key is released

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

DHTML: The client-side script method to be
called when a pointer is moved within the
element

onmouseout

onmouseover

onmouseup

onpagechange

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

DHTML: The client-side script method to be
called when a mouse button is released

The client-side script method to be called when
a page is changed

page

If page >= 1 then it's a page number to show

pagelndexVar

Name of variable in request scope containing
index of active page

pagesVar

process

Name of variable in request scope containing
number of pages

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered

JSF: If "false", this component is not rendered

renderlfSinglePage

If renderlfSinglePage is "true" then datascroller
is displayed on condition that the data hold on
one page. Default value is "true".

requestDelay

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is

269

Chapter 6. The RichFaces Components

Attribute Name Description

ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

reRender

scrollerListener

selectedStyle

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

MethodBinding representing an action listener
method that will be notified after scrolling

CSS style rules to be applied to the scroller
selected cell

selectedStyleClass

similarityGroupingld

Assigns one or more space-separated CSS
class names to the scroller selected cell

If there are any component requests with
identical IDs then these requests will be
grouped.

status

ID (in format of call
UlComponent.findComponent()) of Request
status component

stepControls

The attribute specifies the visibility
of stepControls. Possible values
are: "show" (controls are always
visible). "hide" (controls are hidden.
"auto" (unnecessary controls are hidden).
Default value is "show".

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more space-separated
CSS class names to the component.
Corresponds to the HTML "class" attribute.

tableStyle CSS style rules to be applied to the wrapper
table element of the component

tableStyleClass Assigns one or more space-separated CSS

class names to the wrapper table element of
the component

270

Chapter 6. The RichFaces Components

Attribute Name Description

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

value JSF: The current value for this component

Table 6.78. Component identification parameters

Name Value

component-type org.richfaces.Datascroller

component-class org.richfaces.component.html.HtmIDatascroller
component-family org.richfaces.Datascroller

renderer-type org.richfaces.DataScrollerRenderer

tag-class org.richfaces.taglib.DatascrollerTag

6.6.9.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<h:dataTable id="table">
</h:dataTable>

<rich:datascroller for="table"/>

6.6.9.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDatascroller;

HtmlIDatascroller myScroll = new HtmlDatascroller();

271

Chapter 6. The RichFaces Components

6.6.9.5. Details of Usage

The <rich:datascroller> component provides table scrolling functionalitity the same as
TOMAHAWK scroller but with Ajax requests usage.

The <rich:datascroller> component should be reRendered also with <rich:dataTable> when
you changing filter in order to be updated according to the <rich:dataTable> current model.

The component should be placed into footer of the parent table or be bound to it with the "for"
attribute. Note, that "for" is evaluated on view build, not on view render, that is why it will ignore
JSTL tags.

The table should also have the defined "rows" attribute limiting the quantity of inputted table rows.

The scroller could limit the maximum quantity of rendered links on the table pages with the help
of the "maxPages" attribute.

Component provides two controllers groups for switching:

« Page numbers for switching onto a particular page
» The controls of fast switching: "first”, "last", "next", "previous", "fastforward", "fastrewind"

The controls of fast switching are created adding the facets component with the corresponding
name:

Example:

<rich:datascroller for="table" maxPages="10">
<f:facet name="first">
<h:outputText value="First"/>
</f:facet>
<f:facet name="last">
<h:outputText value="Last"/>
</f:facet>
</rich:datascroller>

272

Chapter 6. The RichFaces Components

Capitals and States Table

State Flag Capital Marme State Mame TimeZone

>< Montgomery Alabams GMT-E
- Juneau Alaska hT-4
w Phioenix Arizona GhT-7
Little Rock Arkansas GhT-6
.. Sacramento California GMT-5
—
State Flag Capital Mame State Mame TimeZone
First « KR » Last
Third page link Fast forward to

the last page

Figure 6.52. <rich:datascroller> controls of fast switching
The screenshot shows one controller from each group.

There are also facets used to create the disabled states: "first_disabled",
"l ast _di sabl ed", "next_disabled", "previous_disabled", "fastforward_disabled",
"fastrew nd_di sabl ed".

Forthe "fastforward"/"fastrew nd" controls customization the additional "fastStep" attribute
is used. The attribute indicates pages quantity to switch onto when fast scrolling is used.

The "page" is a value-binding attribute used to define and save current page number. The
example is placed below.

Example:

<h:form id="myForm">

<rich:dataTable id="carList" rows="7" value="#{dataTableScrollerBean.allCars}" var="category">
<f:facet name="header">
<rich:columnGroup>

<h:column>
<h:outputText value="Make" />

</h:column>

<h:column>
<h:outputText value="Model" />

</h:column>

273

Chapter 6. The RichFaces Components

<h:column>
<h:outputText value="Price" />
</h:column>
</rich:columnGroup>
<[f:facet>
<h:column>
<h:outputText value="#{category.make}" />
</h:column>
<h:column>
<h:outputText value="#{category.model}" />
</h:column>
<h:column>
<h:outputText value="#{category.price}" />
</h:column>
</rich:dataTable>

<rich:datascroitbr"st@'="carLigfRender="soidxPagesady e="#{dataTableScrollerBean.scrollerPage}"
>
<h:panelGrid>
<h:panelGroup>
<h:outputText value="Set current page number:" />
<h:inputText value="#{dataTableScrollerBean.scrollerPage}" id="scl1" size="1"/>
<h:commandButton value="Set" />
</h:panelGroup>
</h:panelGrid>
</h:form>

In the example above you can enter the page number you want and set it by clicking on the
<h:commandButton> . By the way, if you use <rich:datascroller> page links the input field
rerenders and current page number changes.

The result should be like below:

274

Chapter 6. The RichFaces Components

Make Model Price
Chervrolet =-10 43845
Chevrolet =10 28756
Chevrolet =-10 38657
Chevrolet =-10 28487
Chevrolet =-10 2871
Chevrolet =-10 40935
Chevralet =-10 45454
L34 # T k3 B

Set current page number: E Set

Figure 6.53. The "page" attribute usage

The "pagelndexVar" and "pagesVar" attributes define a request scope variables and provide
an ability to show the current page and the number of pages in the <rich:datascroller> .

These attributes are used for definition the names of variables, that is used in the facet with name
"pages" . An example can be found below:

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column>
<h:outputText value="#{cap.name}" />
</rich:column>
<f:facet name="footer">
<rich:datascroller pagelndexVar="pagelndex" pagesVar="pages">
<f:facet name="pages">
<h:outputText value="#{pagelndex} / #{pages}" />
</f:facet>
</rich:datascroller>
</f:facet>
</rich:dataTable>
</h:form>

It's possible to insert optional separators between controls. For this purpose use a
"controlsSeparator” facet. An example is placed below.

275

Chapter 6. The RichFaces Components

<f:facet name="controlsSeparator">
<h:graphiclmage value="/image/sep.png"/>
</f:facet>

Starting from 3.2.1 of RichFaces multiple <rich:datascroller> instances behavior and page
bindings are corrected. Incorrect page after model changes handling is added. Phase Listener
called before RenderResponce scans the page for the <rich:datascroller> and performs the
following operations:

» Checks if the <rich:datascroller> is rendered. (If the checking generates an exception, the
<rich:datascroller> is considered to be not rendered)

« Ifthe <rich:datascroller> isrendered - the table to which the <rich:datascroller> is attached
gets the value of the page attribute of <rich:datascroller> .

Information about the "process" attribute usage you can find in the " Decide what to process
" guide section.

Note:

Make sure, that all <rich:datascroller> components, defined for a table, have
same values for all "page" attributes. The page, specified in the last "page" , will
be rendered in browser.

6.6.9.6. JavaScript API

Table 6.79. JavaScript API

Function Description

switchToPage(page) Switches to the defined page, "page" is
Number or String

next() Navigates to the next page

previous() Navigates to the previous page

first() Navigates to the first page

last() Navigates to the last page

fastForward() Navigates ahead over a certain number of

pages. The number of pages to traverse is
defined with fastStep attribute

276

Chapter 6. The RichFaces Components

Function

fastRewind()

Description

Navigates backwards over a certain number
of pages. The number of pages to traverse is
defined with fastStep attribute

6.6.9.7. Facets

Table 6.80. Facets

Facet Description

controlsSeparator

Redefines optional separators between
controls

first

Redefines the "first" button with the content set

first_disabled

Redefines the disabled "first" button with the
content set

fastrewind_disabled

fastforward

last Redefines the "last" button with the content set

last_disabled Redefines the disabled "last" button with the
content set

fastrewind Redefines the "fastrewind" button with the

content set

Redefines the disabled "fastrewind" button with
the content set

Redefines the "fastforward" button with the
content set

fastforward_disabled

Redefines the disabled "fastforward" button
with the content set

previous

previous_disabled

Redefines the "previous" button with the
content set

Redefines the disabled "previous” button with
the content set

next

next_disabled

Redefines the "next" button with the content set

Redefines the disabled "next" button with the
content set

pages

Redefines the pages buttons with the content
set

6.6.9.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:datascroller> components at once:

277

Chapter 6. The RichFaces Components

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:datascroller> component

6.6.9.9. Skin Parameters Redefinition

Table 6.81. Skin parameters redefinition for a wrapper element

Skin parameters CSS properties
‘ tableBackgroundColor background-color ‘
‘ panelBorderColor border-color ‘

Table 6.82. Skin parameters redefinition for a button

additionalBackgroundColor background-color
panelBorderColor border-color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.83. Skin parameters redefinition for an active button

generalTextColor border-top-color
generalTextColor color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.84. Skin parameters redefinition for an inactive button

headerBackgroundColor border-top-color
headerBackgroundColor color
generalFamilyFont font-family
generalSizeFont font-size

6.6.9.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

278

Chapter 6. The RichFaces Components

tich-dtascroller-table tich-datascr-button

fich-datascr-button-dshbld))
rich-datascr-act tich-datascr-inact

tich-datascrctrls-separator

Figure 6.54. Style classes

Table 6.85. Classes names that define a component appearance

Class name Description

rich-datascr Defines styles for a wrapper <div> element of
a datascroller

rich-dtascroller-table Defines styles for a wrapper <table> element
of a datascroller

rich-datascr-button Defines styles for a button

rich-datascr-ctrls-separator Defines styles for a separator between buttons

Table 6.86. Classes names that define a buttons appearance

Class name Description

‘ rich-datascr-act Defines styles for an active button ‘
‘ rich-datascr-inact Defines styles for an inactive button ‘
‘ rich-datascr-button-dsbld Defines styles for a disabled button ‘

In order to redefine styles for all <rich:datascroller> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the table
above) and define necessary properties in them. An example is placed below:

Example:

.rich-datascr-button{
color: #CD6600;

—

This is a result:

279

Chapter 6. The RichFaces Components

4 # 1 # i

Figure 6.55. Redefinition styles with predefined classes
In the example an input text font style was changed.

Also it's possible to change styles of particular <rich:datascroller> component. In this case you
should create own style classes and use them in corresponding <rich:datascroller> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color: #C6E2FF;

The "styleClass" attribute for <rich:datascroller> is defined as it's shown in the example below:

Example:
<rich:datascroller ... selectedStyleClass="myClass"/>

This is a result:

Figure 6.56. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color of the selected cell on scroller was
changed.

6.6.9.11. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dataTableScroller.jsf?c=dataTableScroller] you can see the example of <rich:datascroller>
usage and sources for the given example.

The solution about how to do correct pagination using datascroller (load a part of data from
database) can be found on the RichFaces Users Forum [http://www.jboss.com/index.html?
module=bb&op=viewtopic&p=4060199#4060199].

280

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199

Chapter 6. The RichFaces Components

How to use <rich:dataTable> and <rich:datascroller> in a context of Extended
Data Model see on the RichFaces Users Forum [http://www.jboss.com/index.html?
module=bb&op=viewtopic&t=115636].

6.6.10. <rich:dataTable > available since 3.0.0

6.6.10.1. Description

The component for tables rendering that allows choosing data from a model and obtains built-in
support of Ajax updates.

United States Capitals
Capitals and States Table

State Flag | Capital Mame | State Mame | TimeZone

Mortgomery | Alabama GhT-E
Juneau Alaska GhT-9
Phoenix Arizona GhT-7

Little Rock Arkanzasz | GMT-B

PEEKRX

Sacramento | Califarnia GhT-5

State Flag Capital Mame | State Mame | TimeZone
Capitals and States Table

Figure 6.57. <rich:dataTable> component
6.6.10.2. Key Features

« A completely skinned table and child elements

 Possibility to insert the complex subcomponents "colGroup" and "subTable"
 Possibility to update a limited set of strings with Ajax

 Possibility to sort and to filter of columns

 Sorting column values

* Filtering column values

Table 6.87. rich : dataTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

align Deprecated. This attribute specifies the
position of the table with respect to the

281

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636

Chapter 6. The RichFaces Components

Attribute Name Description

document. The possible values are "left",
"center” and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background
color for the document body or table cells.
This attribute sets the background color of
the canvas for the document body (the
BODY element) or for tables (the TABLE, TR,
TH, and TD elements). Additional attributes
for specifying text color can be used with
the BODY element. This attribute has been
deprecated in favor of style sheets for
specifying background color information

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

border HTML: This attributes specifies the width of the
frame around a component. Default value is
"0".

captionClass Assigns one or more space-separated CSS

class names to the component caption

captionStyle CSS style rules to be applied to the component
caption
cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.
Default value is "0".

cellspacing This attribute specifies the amount of space
between the border of the cell and its contents.
The attribute also specifies the amount of
space to leave between cells. Default value is
"0".

columnClasses JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

282

Chapter 6. The RichFaces Components

Attribute Name Description

columns Specifies the number of columns

columnsWidth Comma-separated list of width attribute for
every column. Specifies a default width for
each column in the table. In addition to
the standard pixel, percentage, and relative
values, this attribute allows the special form
"0*" (zero asterisk) which means that the width
of the each column in the group should be
the minimum width necessary to hold the
column's contents. This implies that a column's
entire contents must be known before its width
may be correctly computed. Authors should
be aware that specifying "0*" will prevent
visual user agents from rendering a table
incrementally

componentState It defines EL-binding for a component state for
saving or redefinition

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to
display
footerClass Assigns one or more space-separated CSS

class names to the component footer

frame This attribute specifies which sides of the frame
surrounding a table will be visible. Possible
values: "void", "above", "below", "hsides", "Ihs",

rhs", "vsides", "box" and "border". The default
value is "void".

headerClass Assigns one or more space-separated CSS
class names to the component header

id JSF: Every component may have a unique id
that is automatically created if omitted

lang HTML: Code describing the language used in
the generated markup for this component

onclick DHTML: The client-side script method to be
called when the element is clicked

ondblclick DHTML: The client-side script method to be
called when the element is double-clicked

283

Chapter 6. The RichFaces Components

Attribute Name Description

onkeydown

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

DHTML: The client-side script method to be
called when a key is released

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

onmouseout

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

onRowClick

DHTML: The client-side script method to be
called when a mouse button is released

The client-side script method to be called when
the row is clicked

onRowContextMenu

The client-side script method to be called
when a right mouse button is clicked over the
row. Returning false prevents default browser
context menu from being displayed.

onRowDDblIClick

onRowMouseDown

onRowMouseMove

The client-side script method to be called when
the row is double-clicked

The client-side script method to be called when
a mouse button is pressed down over the row

The client-side script method to be called when
a pointer is moved within the row

onRowMouseOut

The client-side script method to be called when
a pointer is moved away from the row

onRowMouseOver

The client-side script method to be called when
a pointer is moved onto the row

284

Chapter 6. The RichFaces Components

Attribute Name Description

onRowMouseUp The client-side script method to be called when
a mouse button is released over the row

rendered JSF: If "false", this component is not rendered
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

rowClasses JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class names are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

rowKeyConverter Converter for a RowKey object.

rowKeyVar The attribute provides access to a row key in a
Request scope

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

rules This attribute specifies which rules will appear
between cells within a table. The rendering
of rules is user agent dependent. Possible
values: * none: No rules. This is the default
value. * groups: Rules will appear between row
groups (see THEAD, TFOOT, and TBODY)
and column groups (see COLGROUP and
COL) only. * rows: Rules will appear between
rows only. * cols: Rules will appear between
columns only. * all: Rules will appear between
all rows and columns

sortMode Defines mode of sorting. Possible values are
'single’ for sorting of one column and 'multi* for
some.

sortPriority Defines a set of columns ids in the sorting order

285

Chapter 6. The RichFaces Components

Attribute Name Description

stateVar The attribute provides access to a component
state on the client side

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
"class" attribute.

title HTML: Advisory title information about markup
elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

width HTML: This attribute specifies the desired

width of the entire table and is intended
for visual user agents. When the value is
percentage value, the value is relative to the
user agent's available horizontal space. In the
absence of any width specification, table width
is determined by the user agent

Table 6.88. Component identification parameters

Name Value

component-type org.richfaces.DataTable

component-class org.richfaces.component.html.HtmIDataTable
component-family org.richfaces.DataTable

renderer-type org.richfaces.DataTableRenderer

tag-class org.richfaces.taglib.DataTableTag

6.6.10.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>

286

Chapter 6. The RichFaces Components

</rich:dataTable>

6.6.10.4. Creating the Component Dynamically from Java

Example:

import org.richfaces.component.html.HtmIDataTable;

HtmIDataTable myTable = new HtmlIDataTable();

6.6.10.5. Details of Usage

The <rich:dataTable> component is similar to the <h:dataTable> one, except Ajax support
and skinnability. Ajax support is possible, because the component was created basing on the
<adj:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"
attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals"
ajaxKeys="#{bean.ajaxSet}" binding="#{bean.table}" id="table">

</rich:dataTable>

<adj:commandButton action="#{tableBean.action}" reRender="table" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataTable>
component. As a result the component is updated after an Ajax request.

The component allows to use "header", "footer" and "caption" facets for output. See an example
below:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<f:facet name="caption">

287

Chapter 6. The RichFaces Components

<h:outputText value="United States Capitals" />
</f:facet>
<f:facet name="header">
<h:outputText value="Capitals and States Table" />
</f:facet>
<rich:column>
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
<f:.facet name="footer">State Flag</f:facet>
</rich:column>
<rich:column>
<f:facet name="header">State Name</f:facet>
<h:outputText value="#{cap.state}"/>
<f:facet name="footer">State Name</f:facet>
</rich:column>
<rich:column >
<f:.facet name="header">State Capital</f:facet>
<h:outputText value="#{cap.name}'/>
<f:facet name="footer">State Capital</f:facet>
</rich:column>
<rich:column>
<f:facet name="header">Time Zone</f:facet>
<h:outputText value="#{cap.timeZone}"/>
<f:facet name="footer">Time Zone</f:facet>
</rich:column>
<f:facet name="footer">
<h:outputText value="Capitals and States Table" />
</f:facet>
</rich:dataTable>

This is a result:

288

Chapter 6. The RichFaces Components

“caption” facet

United States Capitals
Capitals and States Table

Tl apital Mame | State Name | TimeZone

Mortgomery | Alabama GMT-B

“header” facet for column
Juneau Alaska wi=a
Phioenix Atizonas GWT-F

Little Rock Arkanzas | GMT-B

Sacramento | Califarnia GMT-5

b KE X

State Flag | Capital Mame | State Mame | TimeZone

Capitals and States Table
footer” facet for column

“footer” facet for table
Figure 6.58. <rich:dataTable> component with facets
Information about sorting and filtering you can find in the corresponding section.

You can find information how to remove header's gradient in the "How to remove rich:dataTable
header background " article [http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut].

6.6.10.6. Facets

Table 6.89. Facets

Description
header Redefines the header content
‘ footer Redefines the footer content ‘
‘ caption Defines the caption content ‘

6.6.10.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataTable> components at once:

» Redefine the corresponding skin parameters

289

http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut
http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut
http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut

Chapter 6. The RichFaces Components

» Add to your style sheets style classes used by a <rich:dataTable> component

6.6.10.8. Skin Parameters Redefinition

Table 6.90. Skin parameters redefinition for a table

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.91. Skin parameters redefinition for a header

Skin parameters CSS properties

headerBackgroundColor background-color

Table 6.92. Skin parameters redefinition for a footer

Skin parameters CSS properties

‘ tableFooterBackgroundColor background-color

Table 6.93. Skin parameters redefinition for a column header

Skin parameters CSS properties

‘ additionalBackgroundColor background-color

Table 6.94. Skin parameters redefinition for a column footer

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

Table 6.95. Skin parameters redefinition for cells

Skin parameters CSS properties

generalSizeFont font-size
generalTextColor color
generalFamilyFont font-family

6.6.10.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

290

Chapter 6. The RichFaces Components

rich-table-caption
rich-table-header

tich-table-headercell
United States Capitalz

Capitals and States Tanle

rich-table-subheader
State Flag | Capita' Mame State Mame | TimeZone
rich-table-subheadercell =y | Alabams | GhT-B

Juneau Alazka GhT-9
tich-table

fich-table-cell ona | GMT-7 rich-table-row

ol 3

Little Rock Arkanzaz | GMT-G

rich-table-subfooter . . rich-table-subfootercell
Sacramenta | Cali

i
I

State Flag | Capital Mame | Staie Mame | TimeZone
Capitals and States Table

rich-table-footer rich-table-footercell

Figure 6.59. <rich:dataTable> class names

Table 6.96. Classes names that define a whole component appearance

Class name Description

rich-table Defines styles for all table

rich-table-caption Defines styles for a "caption” facet element

Table 6.97. Classes names that define header and footer elements

Class name Description

rich-table-header Defines styles for a table header row
rich-table-header-continue Defines styles for all header lines after the first
rich-table-subheader Defines styles for a column header
rich-table-footer Defines styles for a footer row
rich-table-footer-continue Defines styles for all footer lines after the first
rich-table-subfooter Defines styles for a column footer

291

Chapter 6. The RichFaces Components

Table 6.98. Classes names that define rows and cells of a table

Class name Description

rich-table-headercell Defines styles for a header cell
rich-table-subheadercell Defines styles for a column header cell
rich-table-cell Defines styles for a table cell
rich-table-row Defines styles for a table row
rich-table-firstrow Defines styles for a table's first row
rich-table-footercell Defines styles for a footer cell
rich-table-subfootercell Defines styles for a column footer cell

In order to redefine styles for all <rich:dataTable> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-table-cell{
font-weight:bold;

This is a result:

Expenses
subtotals

Meals Hotels Transport
San Jose
25-4ug-97 | F3T.74 F11200 | F43.00
26-Aug-97 | F27.25 F11200 | F43.00

$65.02 $224.00 $90.00 $379.02
Seattle
27-Lug-97 | F9E.25 $109.00 | §36.00
28-40g-97 | F35.00 $109.00 | §36.00

$131.25 $218.00 $7z.00 $421.25
Totals $196.27 $442.00 $162.00 $800.27

Figure 6.60. Redefinition styles with predefined classes

In the example the font weight for table cell was changed.

292

Chapter 6. The RichFaces Components

Also it's possible to change styles of particular <rich:dataTable> component. In this case you
should create own style classes and use them in corresponding <rich:dataTable> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-style:italic;

The "headerClass" attribute for <rich:dataTable> is defined as it's shown in the example below:

Example:
<rich:dataTable ... headerClass="myClass"/>

This is a result:

EXpoRses
subtotals
Neals Hotefs Transport
San Jose
25-A0-97 FIT T4 F12.00 | F45.00
26-Aug-97 |27 .28 F112.00 | F435.00

$65.02 | $224.00 4$90.00 $379.02
Seattle

27-Aun-97 | §96.23 $109.00 F36.00
258-Aun-97 | $35.00 $109.00 F36.00

$131.25 4$215.00 $72.00 $421.25
Totals $196.27 $442.00 $162.00 $800.27

Figure 6.61. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for header was changed.

Detailed information on how to set <rich:dataTable> border to "Opx" you can find in the " How
to set rich:dataTable border to Opx article " [http://www.jboss.org/community/docs/DOC-11861] .

293

http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861

Chapter 6. The RichFaces Components

6.6.10.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dataTable.jsf?c=dataTable] you can see the example of <rich:dataTable> usage and sources
for the given example.

The article about <rich:dataTable> flexibility can be found in the "rich:dataTable Flexibility "
article [http://www.jboss.org/community/docs/DOC-11847].

Article on dataTable skinability [http://www.jboss.org/community/docs/DOC-11848] provides you
a simple example of skinnability.

More information about using <rich:dataTable> and <rich:subTable>
could be found on the RichFaces Users Forum [http://www.jboss.com/index.html?
module=bb&op=viewtopic&p=4059044#4059044].

How to use <rich:dataTable> and <rich:datascroller> in a context of Extended
Data Model see on the RichFaces Users Forum [http://www.jboss.com/index.html?
module=bb&op=viewtopic&t=115636].

From "rich:dataTable border to Opx " [http://www.jboss.org/community/docs/DOC-11861] article
you'll figure out how to set rich:dataTable border to Opx

dataTable Background Out [http://www.jboss.org/community/docs/DOC-11860] tells you how to
remove rich:dataTable header background

6.6.11. <rich:subTable > available since 3.0.0

6.6.11.1. Description

The component is used for inserting subtables into tables with opportunity to choose data from a
model and built-in Ajax updates support.

294

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11848
http://www.jboss.org/community/docs/DOC-11848
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11860
http://www.jboss.org/community/docs/DOC-11860

Chapter 6. The RichFaces Components

Parent table with

Countries And Capitals

Country

United States

State FI- 7 T T Timezone

subTable with four columns
SlEREr A IVIDEIL, Jrniesry | 2 III-E

- Alazka Juneau GhT-9

W Arizong Phoenix GhT-7
Arkanzas | Little Rock GMT-E

-ﬂ California Sacramenta | GMT-2
—

one colurmn

Figure 6.62. <rich:subTable> element

6.6.11.2. Key Features

Completely skinned table rows and child elements

Possibility to insert complex columnGroup subcomponents

Possibility to combine rows and columns inside

Possibility to update a limited set of rows with Ajax

Table 6.99. rich : subTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request
binding JSF. The attribute takes a value-binding

expression for a component property of a
backing bean

columnClasses

JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

295

Chapter 6. The RichFaces Components

Attribute Name Description

componentState It defines EL-binding for a component state for

first

saving or redefinition

A zero-relative row number of the first row to
display

footerClass

headerClass

onclick

Assigns one or more space-separated CSS
class names to any footer generated for this
component

Assigns one or more space-separated CSS
class names to any header generated for this
component

JSF: Every component may have a unique id
that is automatically created if omitted

DHTML: The client-side script method to be
called when the element is clicked

ondblclick

DHTML: The client-side script method to be
called when the element is double-clicked

onkeydown

DHTML: The client-side script method to be
called when a key is pressed down over the
element

onkeypress

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

onkeyup

DHTML: The client-side script method to be
called when a key is released

onmousedown

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

onmousemove

onmouseout

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

DHTML: The client-side script method to be
called when a mouse button is released

296

Chapter 6. The RichFaces Components

Attribute Name Description

onRowClick The client-side script method to be called when
the row is clicked

onRowDbIClick The client-side script method to be called when
the row is double-clicked

onRowMouseDown The client-side script method to be called when
a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when
a pointer is moved within the row

onRowMouseOut The client-side script method to be called when
a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when
a pointer is moved onto the row

onRowMouseUp The client-side script method to be called when
a mouse button is released over the row

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class nhames are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

stateVar The attribute provides access to a component
state on the client side

value JSF: The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

297

Chapter 6. The RichFaces Components

Table 6.100. Component identification parameters

Name Value

component-type org.richfaces.SubTable

component-class org.richfaces.component.html.HtmISubTable
component-family org.richfaces.SubTable

renderer-type org.richfaces.SubTableRenderer

tag-class org.richfaces.taglib.SubTableTag

6.6.11.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>

<rich:subTable value=#{capitals.details} var="detail">
<rich:column>
</rich:column>

</rich:subTable>
</rich:dataTable>

6.6.11.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmISubTable;

HtmISubTable mySubTable = new HtmISubTable();

6.6.11.5. Details of Usage

The <rich:subTable> component is similar to the <h:dataTable> one, except Ajax support
and skinnability. One more difference is that the component doesn't add the wrapping <table>

298

Chapter 6. The RichFaces Components

and <tbody> tags. Ajax support is possible, because the component was created basing on
the <adj:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"
attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>

<rich:subTable value="#{capitals.details}" var="detail" ajaxKeys="#{bean.ajaxSet}" binding="#{bean.subtable}" ic
<rich:column>

</rich:column>
</rich:subTable>
</rich:dataTable>

<adj:.commandButton action="#{tableBean.action}" reRender="subtable"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:subTable>
component. As a result the component is updated after an Ajax request.

The component allows to use "header" and "footer" facets for output. See an example for
<rich:dataTable> component [287].

6.6.11.6. Facets

Table 6.101. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.11.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:subTable> components at once:

299

Chapter 6. The RichFaces Components

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:subTable> component

6.6.11.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:subTable> are the same as for the <rich:dataTable>

component.

6.6.11.9. Definition of Custom Style Classes

Table 6.102. Classes names that define a component appearance

Class name

rich-subtable

rich-subtable-caption

Description
Defines styles for all subtable

Defines styles for a "caption” facet element

Table 6.103. Classes names that define header and footer elements

Class name

rich-subtable-header

rich-subtable-header-continue

Description
Defines styles for a subtable header row

Defines styles for all subtable header lines after
the first

rich-subtable-subheader

Defines styles for a column header of subtable

rich-subtable-subfooter
rich-subtable-footer

rich-subtable-footer-continue

Defines styles for a column footer of subtable
Defines styles for a subtable footer row

Defines styles for all subtable footer lines after
the first

Table 6.104. Classes names that define rows and cells

Class name

rich-subtable-headercell

Description

Defines styles for a subtable header cell

rich-subtable-subheadercell

rich-subtable-cell

rich-subtable-row

Defines styles for a column header cell of
subtable

Defines styles for a subtable cell

Defines styles for a subtable row

rich-subtable-firstrow

Defines styles for a subtable start row

rich-subtable-subfootercell

Defines styles for a column footer cell of
subtable

rich-subtable-footercell

Defines styles for a subtable footer cell

300

Chapter 6. The RichFaces Components

_ rich-subtable-caption
tich-subtable-headercell o o

United States
Countries and Capitals

Country :
rich-subtable-subheader
United States
Flag State Mame Capital Mame
>< fich-subtable-subheadercell Mortgomery
tich-subtable-firstrow - Alazks Juneau
tich-subtable % Arizona) TI0Enix
tich-subtable-cell

- tich-subtable-row
Arkanzas Little Rock

. trich-subtable-subfootercell
rich-subtable-subfooter California SACKA o

Flag Capital Marme Capital Mame

Countries and Capitals

ehi-BuiallEmales tich-subtable-footercell

Figure 6.63. Style classes

In order to redefine styles for all <rich:subTable> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-subtable-footer{
font-weight: bold;

This is a result:

301

Chapter 6. The RichFaces Components

Country and Capitals
Country
nited States
Flag Mame State Time Zone

Montgomery | Alabama | GMT-E

Junea Alaszka GhT-9

Phoenix Arvizona | GMT-F

Little Rock Arkanzas | GMT-6

Sacramento | California | GMT-S

POKEX

Flag Hame State Time Zone
United States

Figure 6.64. Redefinition styles with predefined classes
In the example a footer font weight was changed.

Also it's possible to change styles of particular <rich:subTable> component. In this case you
should create own style classes and use them in corresponding <rich:subTable> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color: #fff5ec;

}

The "columnClasses" attribute for <rich:subTable> is defined as it's shown in the example
below:

Example:
<rich:subTable ... columnClasses="myClass"/>

This is a result:

302

Chapter 6. The RichFaces Components

Country and Capitals
Country
nited States
Flag Mame State Time Zone

Montgomery | Alabama | GMT-E

Juneau Alaska GhT-9

Phioenix Arizona | GMT-7

Little Rock Arkanzas | GMT-B

Sacramento | California | GMT-2

P OKEX

Flagy Marme State Titme Zone
United States

Figure 6.65. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.6.12. <rich:extendedDataTable >

3.2.2

6.6.12.1. Description

The component for tables extending standard component <rich:dataTable> .

Table header

Id & Hame %

0 biT53eeh-7
1 451 heth-c
1h2328fd-c
e37d01ce-h
OEci3kb7ds-2
hddObele-e
95315d95-4
4341 f46-9

W o« m h B W R

9eadsSEda-6

Date &

1970-06-30 04:52
1979-02-22 21:31
1977-07-03 09:44
1992-03-16 10033
18976-07-05 01:11
2008-01-13 21:08
1990-10-21 21:37
1966-10-13 12:34

1976-07-11 0201

available since 3.2.2

Group 2

group 1 1=
group 2
group 3
group 4
group 5
group 6
group 7
group 5

group 9 -

Figure 6.66. <rich:extendedDataTable> component

303

Chapter 6. The RichFaces Components

6.6.12.2. Key Features

 Possibility to scroll data
» Possibility to add an attribute to set the kind of selection (none, single line or multiple lines)

» Possibility to change the sequence of the displayed columns by dragging the column-header
to another position

» Possibility to show or hide columns by selecting or deselecting them in a context menu

» Possibility to save the current settings (visible columns, column width, sequence of the columns)
to be reused the next time the page will be shown

 Possibility to combine rows to groups

Table 6.105. rich : extendedDataTable attributes

Attribute Name Description

activeClass Assigns one or more space-separated CSS
class names to the component active row

activeRowKey Request scope attribute under which the
activeRowKey will be accessible

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

align Deprecated. This attribute specifies the
position of the table with respect to the
document. The possible values are "left",
"center" and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background
color for the document body or table cells.
This attribute sets the background color of
the canvas for the document body (the
BODY element) or for tables (the TABLE, TR,
TH, and TD elements). Additional attributes
for specifying text color can be used with
the BODY element. This attribute has been
deprecated in favor of style sheets for
specifying background color information

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

border HTML: This attributes specifies the width of the
frame around a component. Default value is "0"

304

Chapter 6. The RichFaces Components

Attribute Name Description

captionClass Assigns one or more space-separated CSS
class names to the component caption

captionStyle CSS style rules to be applied to the component
caption
cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.
Default value is "0"

cellspacing The cellspacing attribute specifies the space
between cells. Default value is "0"

columnClasses JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

componentState It defines EL-binding for a component state for
saving or redefinition

dir HTML: Direction indication for text that does
not inherit directionality. Valid values are
"LTR" (left-to-right) and "RTL" (right-to-left)

enableContextMenu If set to true, table header context menu will be
enabled

first A zero-relative row number of the first row to
display

footerClass Assigns one or more space-separated CSS

class names to the component footer

frame This attribute specifies which sides of the frame
surrounding a table will be visible. Possible

values: "void", "above", "below", "hsides", "lhs",

rhs", "vsides", "box" and "border". The default
value is "void".

groupingColumn Defines an id of column which the data is
grouped by.
headerClass Assigns one or more space-separated CSS

class names to the component header

305

Chapter 6. The RichFaces Components

Attribute Name Description

height

id

Defines a height of the component. Default
value is "500px"

JSF: Every component may have a unique id
that is automatically created if omitted

lang

HTML: Code describing the language used in
the generated markup for this component

noDatalabel

onclick

ondblclick

Defines label to be displayed in case there are
no data rows.

DHTML: The client-side script method to be
called when the element is clicked

DHTML: The client-side script method to be
called when the element is double-clicked

onkeydown

onkeypress

onkeyup

DHTML: The client-side script method to be
called when a key is pressed down over the
element

DHTML: The client-side script method to be
called when a key is pressed over the element
and released

DHTML: The client-side script method to be
called when a key is released

onmousedown

onmousemove

onmouseout

DHTML: The client-side script method to be
called when a mouse button is pressed down
over the element

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

onmouseover

DHTML: The client-side script method to be
called when a pointer is moved onto the
element

onmouseup

DHTML: The client-side script method to be
called when a mouse button is released

onRowClick

onRowDDblIClick

The client-side script method to be called when
the row is clicked

The client-side script method to be called when
the row is double-clicked

306

Chapter 6. The RichFaces Components

Attribute Name Description

onRowMouseDown The client-side script method to be called when
a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when
a pointer is moved within the row

onRowMouseOut The client-side script method to be called when
a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when
a pointer is moved onto the rows

onRowMouseUp The client-side script method to be called when
a pointer is released over the row

onselectionchange The client-side script method to be called when
a selected row is changed

rendered JSF: If "false", this component is not rendered
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

rowClasses JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class nhames are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

rules This attribute specifies which rules will appear
between cells within a table. The rendering
of rules is user agent dependent. Possible
values: * none: No rules. This is the default
value. * groups: Rules will appear between row
groups (see THEAD, TFOOT, and TBODY)

307

Chapter 6. The RichFaces Components

Attribute Name Description

and column groups (see COLGROUP and
COL) only. * rows: Rules will appear between
rows only. * cols: Rules will appear between
columns only. * all: Rules will appear between
all rows and columns

selectedClass Assigns one or more space-separated CSS
class names to the component rows selected

selection Value binding representing selected rows

selectionMode Single row can be selected. multi: Multiple
rows can be selected. none: no rows can be
selected. Default value is "single"

sortMode Defines mode of sorting. Possible values are
'single’ for sorting of one column and 'multi* for
some.

sortPriority Defines a set of column ids in the order the

columns could be set

stateVar The attribute provides access to a component
state on the client side

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
"class" attribute.

tableState ValueBinding pointing at a property of a String
to hold table state

title HTML: Advisory title information about markup
elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

width HTML: This attribute specifies the desired

width of the entire table and is intended
for visual user agents. When the value is
percentage value, the value is relative to the
user agent's available horizontal space. In the
absence of any width specification, table width
is determined by the user agent

308

Chapter 6. The RichFaces Components

Table 6.106. Component identification parameters

Name Value

component-type org.richfaces.ExtendedDataTable

component-class org.richfaces.component.html.HtmIExtendedDataTable
component-family org.richfaces.ExtendedDataTable

renderer-type org.richfaces.ExtendedDataTableRenderer

tag-class org.richfaces.taglib.ExtendedDataTableTag

6.6.12.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<rich:extendedDataTable value="#{extendedDT.dataModel}" var="edt">
<rich:column>

</rich:column>
</rich:extendedDataTable>

6.6.12.4. Creating the Component Dynamically from Java

Example:

import org.richfaces.component.html.HtmIExtendedDataTable;

HtmlExtendedDataTable myTable = new HtmlExtendedDataTable();

6.6.12.5. Details of Usage

The <rich:extendedDataTable> component is similar to the <rich:dataTable> . The data in
component is scrollable. You can also set the type of selection ("none", "single" or "multi" lines).
Selection of multiple lines is possible using Shift and Ctrl keys.

Here is an example:

Example:

309

Chapter 6. The RichFaces Components

<rich:extendedDataTable id="edt" value="#{extendedDT.dataModel}" var="edt" width="500px" height="500px" sel

<rich:column id="id" headerClass="dataTableHeader" width="50" label="1d" sortable="true" sortBy="#{edt.id}" s
<f:facet name="header">
<h:outputText value="Id" />
</f:.facet>
<h:outputText value="#{edt.id}" />
</rich:column>

<rich:column id="name" width="300" headerClass="dataTableHeader" label="Name" sortable="true" sortBy="#
<f:.facet name="header">
<h:outputText value="Name" />
</f:facet>
<h:outputText value="#{edt.name}" />
</rich:column>

<rich:column id="date" width="100" headerClass="dataTableHeader" label="Date" sortable="true" comparator-
<f:facet name="header">
<h:outputText value="Date" />
</f:facet>
<h:outputText value="#{edt.date}"><f.convertDateTime pattern="yyyy-MM-dd
HH:mm:ss" />
</h:outputText>
</rich:column>

<rich:column id="group" width="50" headerClass="dataTableHeader" label="Group" sortable="true" sortBy="#{
<f:.facet name="header">
<h:outputText value="Group" />
</f:facet>
<h:outputText value="#{edt.group}" />
</rich:column>
</rich:extendedDataTable>

310

Chapter 6. The RichFaces Components

Table header

Id & Hame 2 Date & Group =
|

0 biT53eeh-7 1970-06-30 04:52 | group 1 1=
1 431 bebh-c 1879-02-22 2151 group 2 Fres
2 1h2328fd-c 1977-07-05 09:44 | group 3

3 es7dllce-h 1992-05-16 10058 | group 4

4 OEci3kb7ds-2 1975-07-0501:11 | group S

o bddObele-e 2005-01-1521:06 group 6

5 95315d95-4 1990-10-21 21:37 | group 7

7 4341 f46-9 1988-10-1312:34 | group &

g Seadsbda-6 1976-07-11 0201 | group 9 -

Figure 6.67. <rich:extendedDataTable> component with selected multiple
lines

Information about sorting and filtering can be found in RichFaces Developer Guide section on
sorting.

For external filtering <rich:extendedDataTable> component supports “filter" facet for
<rich:column> component. In this facet you can define your own controls for filtering which will be
positioned like built-in filter controls. Rest of the filter scenario is the same as described RichFaces
Developer Guide section on filtering.

In the example "selection" attribute contains object with selected rows.

Note:

Attribute "height" is mandatory. The default value is "500px" .

Menu on the right side of the column header is used to perform action: sorting, grouping, hiding
columns.

This is an example:

Table header

Hame & | Nata o I Cranp &
J Sort Ascending

id| Sort Descending

o bf753ee6.7 @ Eroup by this eolumn -
1 ed481bebh-c £ Columns L FRRt]
2 |1b2328fd-c 1977.07-0809:44 | group3 L MAME
4 Date
3 ea7dllce-h 1992-05-1610:58 group 4
7 Group
4 | OGeskTde-2 19780705 01:11 | group 5
5 | badObele-s 2008-01-15 21:06 | group B
6 | ga3fadacd 1990-10-21 20:37 | group 7
T de34fe6 1988-10-1312:34 | group 8
8 | BeadsBda-G 19760711 0201 | group 8 B

Figure 6.68. Column menu

311

Chapter 6. The RichFaces Components

After selecting a "Group by this column" option, you can see the data grouped. You can collapse
and expand groups by clicking on a group header.

This is an example:

Table header

Id & | Name & Date & Group
|
F Group: 00000 (10} 1=
FE Group: 11111 (10} —
El Group: 22222 (10}
2 d7f1 Gesk-7 1973-11-18 18:36. | 22222
12 | 27853d02-0 1981-02-04 22:28: 22222
22 | 9b8A16ed-h 2008-04-2316:13: | 22222
32 | 649f94b9-9 1973-08-31 01:00: | 22222
42 | 2dcT9h9d-5 2008-05-15 23:22: 22222
52 | 9c2c08ed-2 1997-03-07 19:24; 22222
62 791c792d-h 2000-11-01 20:45: | 222322

|4

Figure 6.69. <rich:extendedDataTable> component with grouped data

The "label" attribute in <rich:column> sets the name of the column, which is used when
dragging columns (in drag window) and in context menu, in "Columns" submenu.

Example:

<rich:column id="name" label="#{msg['name']}"

312

Chapter 6. The RichFaces Components

Table headfr

Id % | Mame # | Date % v| Group # ‘
I ' I: Name

u] bf753eaf-F 1970-05-30 04:52 00000 ;I
1 ed31bedb-o 1979-02-22 21:51 11111 —I
2 1b23281d-o 1977-07-08 08:44 22222

3 ef7dd1ce-b 1992-05-16 10:58 33333

4 08d3bYde-2 1978-07-05 01:11 44444

i1 bdd0bele-« 2008-01-15 21:06 55555

o] 28334954 1990-10-21 21:37 GEGGE

E HaZ41146-9 1988-10-13 12:39 JI77T7

g Qead55da-6 1976-07-11 02:01 82882

Figure 6.70. <rich:extendedDataTable> component with Drag&Drop
column 'Name'

In the component <rich:extendedDataTable> columns can hidden:

Table header

Id =| Mame &
J Sort Ascending
1_” Sort Descending
ul bff53ead-7 @I Group by this column
1 ed31befib-c J I | Columns *
2 1b22281d-¢ J Hame
3 eS7d01ce-b Date
4 0Bd3b7d3-2 Graup
] bddObede-e
G 9333 495-9
T e f45-9
=] Oeadibda-G

(ul FEO2 044 - F LI
Figure 6.71. <rich:extendedDataTable> component with hidden column
'Id" and 'Group'

"tableState" attribute can be used to bind state of the table (column width, column position, visible,
sequence, grouping...) to a backing-bean string property, for a later used. This state can be for
example saved to a database, and it is different form standard JSF state saving mechanisms.

Example:

<rich:extendedDataTable tableState="#{extendedDT.tableState}">

313

Chapter 6. The RichFaces Components

6.6.12.6. Facets

Table 6.107. Facets

Facet Description

header Redefines the header content
footer Redefines the footer content
caption Redefines the caption content

6.6.12.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:extendedDataTable> components
at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:extendedDataTable> component

6.6.12.8. Skin Parameters Redefinition

Table 6.108. Skin parameters redefinition for a table

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.109. Skin parameters redefinition for a header

Skin parameters CSS properties

‘ headerBackgroundColor background-color

Table 6.110. Skin parameters redefinition for a footer

Skin parameters CSS properties

‘ tableFooterBackgroundColor background-color

Table 6.111. Skin parameters redefinition for a column header

Skin parameters CSS properties

additionalBackgroundColor background-color

314

Chapter 6. The RichFaces Components

Table 6.112. Skin parameters redefinition for a column footer

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

Table 6.113. Skin parameters redefinition for cells

Skin parameters CSS properties

generalSizeFont font-size
‘ generalTextColor color ‘
‘ generalFamilyFont font-family ‘

6.6.12.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-extot-caption

rich-gxtet-headercell rich-exdt-header
Capti
rich-extot-subheader ERCER rich-extt-sortable-header
Header
Date | Hame 2 | Group =
1977-04-20 04:55: 24 bEcEfeb3-e group 1 1=
rich-gxtoft-firstrow
2001 -11-15 00:55:00 47247c1a-2 group 2
1975-01-10 00:39:06 c1ed3dad-9 graup 3 rich-gstott-cell
1976-04-22 05:21:35 aaddaaf-g group 4
1995-09-29 10:50:59 46625d3a-7 group S

1997-12-05 01:02:46 ot ~ raup B
rich-extet-subfoctercel ich-extdt-subfooter

1997-12-05 01:02 46 rodcddes Toup ¥ -
Date Mame Group
Footer
rich-extot-footer rich-extot-footercell

Figure 6.72. <rich:extendedDataTable> class names

Table 6.114. Classes names that define a whole component appearance

Class name Description

rich-extdt Defines styles for all table

rich-extdt-caption Defines styles for a "caption” facet element

315

Chapter 6. The RichFaces Components

Table 6.115. Classes names that define header and footer elements

Class name Description

rich-extdt-header Defines styles for a table header row
rich-extdt-header-continue Defines styles for all header lines after the first
rich-extdt-subheader Defines styles for a column header
rich-extdt-footer Defines styles for a footer row
rich-extdt-footer-continue Defines styles for all footer lines after the first
rich-extdt-subfooter Defines styles for a column footer

Table 6.116. Classes names that define rows and cells of a table

Class name Description

rich-extdt-headercell Defines styles for a header cell
rich-extdt-subheadercell Defines styles for a column header cell
rich-extdt-cell Defines styles for a table cell
rich-extdt-row Defines styles for a table row
rich-extdt-firstrow Defines styles for a table start row
rich-extdt-footercell Defines styles for a footer cell
rich-extdt-subfootercell Defines styles for a column footer cell
rich-extdt-group-cell Defines styles for a grouping row cell

An example of use the styles for component <rich:extendedDataTable> is similar to
<rich:dataTable>

6.6.12.10. Relevant resources links

Some additional information about usage of component can be found on its LiveDemo page [http://
livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable].

available since 3.0.0

6.6.13. < adj.repeat >

6.6.13.1. Description

The <adj:repeat> component implements a basic iteration component that allows to update a
set of its children with Ajax.

Table 6.117. a4j : repeat attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request.

316

http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable

Chapter 6. The RichFaces Components

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

componentState It defines EL-binding for a component state for
saving or redefinition.

first A zero-relative row number of the first row to
display
id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered
rowKeyConverter Converter for a row key object
rowKeyVar The attribute provides access to a row key in a

Request scope.

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

stateVar The attribute provides access to a component
state on the client side.

value JSF: The current value for this component.

var A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.118. Component identification parameters

Name Value

component-type org.ajax4jsf.Repeat

component-family javax.faces.Data

component-class org.ajax4jsf.component.html.HtmlAjaxRepeat
renderer-type org.ajax4jsf.components.RepeatRenderer

6.6.13.2. Creating the Component with a Page Tag
To create the simplest variant on a page use the following syntax:
<adj:repeat id="detail" value="#{bean.props}" var="detail">

<h:outputText value="#{detail.someProperty}"/>
</a4dj.repeat>

317

Chapter 6. The RichFaces Components

The output is generated according to a collection contained in bean. pr ops with the det ai | key
passed to child components.

6.6.13.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRepeat;

HtmlAjaxRepeat repeater = new HtmlAjaxRepeat ();

6.6.13.4. Details of usage

The <adj:repeat> component is similar to Facelets <ui:repeat> tag, which is used to iterate
through a collection of objects binded with JSF page as EL expression. The main difference of the
<adj:repeat> is a possibility to update particular components (it's children) instead of all using
Ajax requests. The feature that makes the component different is a special "ajaxKeys" attribute
that defines row that are updated after an Ajax request. As a result it becomes easier to update
several child components separately without updating the whole page.

<table>
<tbody>

<adj:repeat value="#{repeatBean.items}" var="item" ajaxKeys="#{updateBean.updatedRow}">

<tr>
<td><h:outputText value="#{item.code}" id="item1" /></td>
<td><h:outputText value="#{item.price}" id="item2" /></td>

</tr>

</adj:repeat>
</tbody>
</table>

The example above the <a4j:repeat> points to an method that contains row keys to be updated.

Note:

The <adj:repeat> component is defined as fully updated, but really updated there
are only the row keys which defined in the "ajaxKeys" attribute.

318

Chapter 6. The RichFaces Components

One more benefit of this component is absence of strictly defined markup as JSF HTML DataTable
and TOMAHAWK DataTable has. Hence the components could be used more flexibly anywhere
where it's necessary to output the results of selection from some collection.

The next example shows collection output as a plain HTML list:

<adj:repeat ...>
...

...
</adj.repeat>

All other general attributes are defined according to the similar attributes of iterative components
(<h:dataTable> or <ui:repeat>) and are used in the same way.

6.6.13.5. Relevant resources links

Vizit the Repeat page [http://livedemo.exadel.com/richfaces-demolrichfaces/repeat.jsf?c=repeat]
at RichFaces LiveDemo for examples of component usage and their sources.

available since 3.1.0

6.6.14. <rich:scrollableDataTable >
3.1.0

6.6.14.1. Description

The <rich:scrollableDataTable> component is used for the table-like component creation.
The component just adds the set of additional features described below in comparison with the
standard table.

319

http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat
http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat

Chapter 6. The RichFaces Components

State Flag Capital
Alabama >< Mortgomery o«
Alaska - Juneau
Arizonas W Phioenizx
Arkansas - Little Rock
Californiz - Sacramento
Colarado = Denver
Connecticut Hartford
Delarware Dover
Flaorids M Tallahazszee
Geargia E Atlarta
Harwwaii ﬁ Homolulu
Icbsho ﬂ Boize
lirzis & Springfield b
lovves I"“I Des Moines
Kanzaz n Topeka
Wentuck:y n Frankfort

State Flag

1]

Capital -
4

Figure 6.73. <rich:scrollableDataTable> component

6.6.14.2. Key Features

* Highly customizable look and feel

» Variable content of the table cells

« Dynamically fetching the rows from the server when the table is scrolled up and down
« Resizing columns by mouse dragging the column bar

 Sorting column by clicking the header

» Fixed one or more left columns when table is scrolled horizontally

* One and multi-selection rows mode

* Built-it drag-n-drop support

e Sorting column values

Table 6.119. rich : scrollableDataTable attributes

Attribute Name

Description

activeClass Assigns one or more space-separated CSS

class names to the component active row

320

Chapter 6. The RichFaces Components

Attribute Name Description

activeRowKey Request scope attribute under which the
activeRowKey will be accessible

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

columnClasses JSF: Assigns one or more space-separated
CSS class names to the columns of the table.
If the CSS class names are comma-separated,
each class will be assigned to a particular
column in the order they follow in the attribute.
If you have less class names than columns,
the class will be applied to every n-fold column
where n is the order in which the class is listed
in the attribute. If there are more class names
than columns, the overflow ones are ignored.

componentState It defines EL-binding for a component state for
saving or redefinition

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

first A zero-relative row number of the first row to
display

footerClass Assigns one or more space-separated CSS
class names to any footer generated for this
component

frozenColCount Defines the number of the fixed columns from

the left side that will not be scrolled via
horizontal scroll. Default value is "0".

321

Chapter 6. The RichFaces Components

Attribute Name Description

headerClass

Assigns one or more space-separated CSS
class names to any header generated for this
component

height

Defines a height of the component. Default
value is "500px".

hideWhenScrolling

If "true" data will be hidden during scrolling.
Can be used for increase performance. Default
value is "false".

ignoreDupResponses

onRowClick

JSF: Every component may have a unique id
that is automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

The client-side script method to be called when
the row is clicked

onRowDDblIClick

The client-side script method to be called when
the row is double-clicked

onRowMouseDown

onRowMouseUp

The client-side script method to be called when
a mouse button is pressed down over the row

The client-side script method to be called when
a mouse button is released over the row

onselectionchange

The client side script method to be called when
a selected row is changed

rendered

JSF: If "false", this component is not rendered

requestDelay

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

reRender

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,

322

Chapter 6. The RichFaces Components

Attribute Name Description

comma-separated list of 1d's, or EL Expression
with array or Collection

rowClasses JSF: Assigns one or more space-separated
CSS class names to the rows of the table. If
the CSS class hames are comma-separated,
each class will be assigned to a particular row
in the order they follow in the attribute. If you
have less class names than rows, the class will
be applied to every n-fold row where n is the
order in which the class is listed in the attribute.
If there are more class names than rows, the
overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows HTML: A number of rows to display, or zero for
all remaining rows in the table

scriptVar Name of JavaScript variable corresponding to
component
selectedClass Assigns one or more space-separated CSS

class names to the component rows selected

selection Value binding representing selected rows

selectionMode Defines selection behaviour, provides an
enumeration of the possible selection modes.
Default value is "multi"

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

sortMode Defines mode of sorting. Possible values are
'single’ for sorting of one column and 'multi* for
some.

sortOrder ValueBinding pointing at a property of a class

to manage rows sorting

stateVar The attribute provides access to a component
state on the client side

status ID (in format of call
UlComponent.findComponent()) of Request
status component

323

Chapter 6. The RichFaces Components

Attribute Name Description

style HTML: CSS style rules to be applied to the
component
styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML
"class" attribute.

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

value JSF: The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

width HTML: Defines a width of the component.

Default value is "700px".

6.7. Drag-Drop Support

In this section you will find components that help you build drag-and-drop controls, manage their
behaviour and define the area on the page to be used as a drop zone.

I i ilable si .0.
6.7.1. < ”Chidragmdlcator 5 avai able since 3.0.0

6.7.1.1. Description

This is a component for defining what appears under the mouse cursor during drag-and-drop
operations. The displayed drag indicator can show information about the dragged elements.

Single item Dragialue

Figure 6.74. <rich:dragindicator> component

6.7.1.2. Key Features

* Customizable look and feel

» Customizable marker according to the type of dragable elements

Table 6.120. rich : dragIndicator attributes

Attribute Name Description

acceptClass Assigns one or more space-separated CSS
class names to the indicator which are applied
when a drop is accepted

324

Chapter 6. The RichFaces Components

Attribute Name Description

binding

JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

JSF: Every component may have a unique id
that is automatically created if omitted

rejectClass

Assigns one or more space-separated CSS
class names to the indicator which are applied
when a drop is rejected

rendered

JSF: If "false", this component is not rendered

style

HTML: CSS style rules to be applied to the
component

styleClass

JSF: Assigns one or more space-separated
CSS class names to the component.
Corresponds to the HTML "class" attribute.

Table 6.121. Component identification parameters

Name Value

component-type

org.richfaces.Draggable

component-class

org.richfaces.component.html.HtmIDragIndicato

component-family
renderer-type

tag-class

org.richfaces.Draglndicator
org.richfaces.DragindicatorRenderer

org.richfaces.taglib.DraglndicatorTag

6.7.1.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:draglndicator id="indicator">
<f:facet name="single">
<f:verbatim>
Single item {Draglnfo}
</f.verbatim>
</f:facet>
</rich:dragIndicator>

<rich:dragSupport dragType="text" dragIndicator="indicator"/>

325

r

Chapter 6. The RichFaces Components

6.7.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDragIndicator;

HtmlDraglIndicator myDraglndicator = new HtmlIDraglndicator();

6.7.1.5. Details of Usage

In the simplest way the component could be defined empty - in that case a default indicator is
shown like this:

Figure 6.75. The simplest <rich:dragindicator>

For indicator customization you need to define one of the following facets:

« "single" — indicator shown when dragging a single item;
* "multiple" — indicator shown when dragging several items.
Note:

The current implementation of the <rich:draglndicator> component does not
support multiple items selection. The feature is described for future releases.

Thus for specify a look-and-feel you have to define one of these facets and include into it a content
that should be shown in indicator.

6.7.1.5.1. Macro definitions

To place some data from drag or drop zones into component you can use macro definitions. They
are being defining in the following way:

326

Chapter 6. The RichFaces Components

e <rich:dndParam> component with a specific name and value is being included into a drag/
drop support component (an image can be defined as placed inside <rich:dndParam> without
defining a value).

 in needed place a parameter value is included into the marking of indicator using syntax (name
of parameter)

For instance, this:

<rich:dropSupport...>
<rich:dndParam name="testDrop">
<h:graphiclmage value="/images/file-manager.png" />
</rich:dndParam>
</rich:dropSupport>

Is placed into indicator as follows:

<f:facet name="single">
{testDrop}
</f:facet>

6.7.1.5.2. Predefined macro definitions

Indicator can accept two default macro definitions:

* marker
* |abel

Thus including one of these elements in the marking of indicator, in other words after setting up
appropriate parameters in DnD components and defining only default indicator - without specifying
facets - a developer gets these parameters values displayed in indicator in the order "marker -
label".

6.7.1.5.3. Marker customization

The macro definition "marker" can be customized depending on what a draggable element is
located over. For that you should define one of these three parameters (specify a parameter with
one of three names):

327

Chapter 6. The RichFaces Components

e accept

Parameter will be set instead of {marker} into indicator when a draggable element is positioned
over drop zone that accept this type of elements

* reject

Parameter is set instead of {marker} into indicator when a draggable element is positioned over
drop zone that doesn't accept this type of elements

e default

Parameter is set instead of {marker} into indicator when a draggable element is positioned over
all the rest of page elements

Note:

If you use <rich:dragindicator> inside a form do not forget to use id like
form d: i ndi cat or | Ddefined in <rich:dragSupport> indicator attribute.

6.7.1.6. Look-and-Feel Customization

The <rich:draglndicator> component has no skin parameters and special style classes , as
it consists of one element generated with a your method on the server. To define some style
properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes
on the component.

6.7.1.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dragSupport.jsf?c=dragindicator] you can see the example of <rich:dragIndicator> usage and
sources for the given example.

available since 3.0.0

6.7.2. <rich:dragSupport >

6.7.2.1. Description

This component defines a subtree of the component tree as draggable for drag-and-drop
operations. Within such a "drag zone," you can click the mouse button on an item and drag it
to any component that supports drop operations (a "drop zone"). It encodes all the necessary
JavaScript for supporting drag-and-drop operations.

328

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator

Chapter 6. The RichFaces Components

Figure 6.76. <rich:dragSupport> component

6.7.2.2. Key Features

« Encodes all necessary JavaScript to perform drag actions

» Can be used within any component type that provides the required properties for drag operations

e Supports drag-and-drop between different forms

Table 6.122. rich : dragSupport attributes

Attribute Name Description

action

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener

binding

MethodBinding pointing at method accepting
an ActionEvent with return type void

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

329

Chapter 6. The RichFaces Components

Attribute Name Description

disableDefault

dragindicator

Disable default action for target event (append
"return false;" to JavaScript)

Id of a component that is used as drag pointer
during the drag operation

dragListener

MethodBinding representing an action listener
method that will be notified after drag operation

dragType

A drag zone type that is used for zone
definition, which elements can be accepted by
a drop zone

dragValue

Data to be sent to a drop zone after a drop
event

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus

ID of an element to set focus after request is
completed on client side

grabbingCursors

grabCursors

list of comma separated cursors that indicates
then the you has grabbed something

List of comma separated cursors that indicates
then you can grab and drag an object

id

JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

limitToList

If "true", then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"

330

Chapter 6. The RichFaces Components

Attribute Name Description

attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called
before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

ondragend The client-side script method to be called when
the dragging operation is finished

ondragstart The client-side script method to be called when
the dragging operation is started

ondropout The client-side script method to be called when
the draggable object is moved away from the
drop zone

ondropover The client-side script method to be called when

the draggable object is over the drop zone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

similarityGroupingld If there are any component requests with
identical IDs then these requests will be
grouped.

status ID (in format of call

UlComponent.findComponent()) of Request
status component

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

value JSF: The current value for this component

331

Chapter 6. The RichFaces Components

Table 6.123. Component identification parameters

Name Value

component-type org.richfaces.DragSupport

component-class org.richfaces.component.html.HtmIDragSupport
component-family org.richfaces.DragSupport

renderer-type org.richfaces.DragSupportRenderer

tag-class org.richfaces.taglib.DragSupportTag

6.7.2.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<h:panelGrid id="drag1">
<rich:dragSupport dragType="item"/>
<l--Some content to be dragged-->
</h:panelGrid>

6.7.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDragSupport;

HtmIDragSupport myDragZone = new HtmIDragSupport();

6.7.2.5. Details of Usage

The dragSupport tag inside a component completely specifies the events and JavaScript required
to use the component and it's children for dragging as part of a drag-and-drop operation. In order
to work, though, dragSupport must be placed inside a wrapper component that outputs child
components and that has the right events defined on it. Thus, this example won't work, because
the <h:column> tag doesn't provide the necessary properties for redefining events on the client:

Example:

332

Chapter 6. The RichFaces Components

<h:column>
<rich:dragSupport dragIndicator=":form:iii* dragType="text">
<adj:actionparam value="#{caps.name}"' name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</h:column>

However, using a4j.outputPanel as a wrapper inside <h:column> , the following code could be
used successfully:

Example:

<h:column>
<adj.outputPanel>
<rich:dragSupport dragIndicator=":form:iii" dragType="text">
<adj.actionparam value="#{caps.name}"' name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</adj:outputPanel>
</h:column>

This code makes all rows of this column draggable.

One of the main attributes for dragSupport is "dragType" , which associates a hame with the
drag zone. Only drop zones with this name as an acceptable type can be used in drag-and-drop
operations. Here is an example:

Example:

<h:panelGrid id="drag1">
<rich:dragSupport dragType="singleltems" .../>
<!--Some content to be dragged-->
</h:panelGrid>

<h:panelGrid id="drag2">
<rich:dragSupport dragType="groups" .../>
<!--Some content to be dragged-->
</h:panelGrid>

333

Chapter 6. The RichFaces Components

<h:panelGrid id="drop1">
<rich:dropSupport accepted Types="singleltems" .../>
<!--Drop zone content-->

</h:panelGrid>

In this example, the dropl panel grid is a drop zone that invokes drag-and-drop for drops of
items from the first dr agl panel grid, but not the second dr ag2 panel grid. In the section about
dropSupport , you will find an example that shows more detailed information about moving data
between tables with drag and drop.

The dragSupport component also has a "value" attribute for passing data into the processing
after a drop event.

One more important attribute for <rich:dragSupport> is the "dragindicator" attribute that point
to the component id of the <rich:draglindicator> component to be used for dragged items from
this drag zone. If it isn't defined, a default indicator for drag operations is used.

Finally, the component has the following extra attributes for event processing on the client:

e "ondragstart”
* "ondragend"

You can use your own custom JavaScript functions to handle these events.

Note:

If you define width for a outputPanel, in Internet Explorer 6 you can perform a drag
and drop operation, placing the mouse cursor on the text in the outputPanel only.

6.7.2.6. Look-and-Feel Customization

<rich:dragSupport> has no skin parameters and custom style classes , as the component isn't
visual.

6.7.2.7. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dragSupport.jsf?c=dragSupport] you can see the example of <rich:dragSupport> usage and
sources for the given example.

6.7.3. <rich:dragListener > 2valablesince 3.1.0

3.1.0

334

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport

Chapter 6. The RichFaces Components

6.7.3.1. Description

The <rich:dragListener> represents an action listener method that is notified after a drag
operation.

6.7.3.2. Key Features

« Allows to define some drag listeners for the components with "Drag and Drop" support

Table 6.124. rich : dragListener attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

type HTML: The fully qualified Java class name for
the listener

6.7.4. <rich:dropListener > 2valablesince3.1.0

3.1.0

6.7.4.1. Description

The <rich:dropListener> represents an action listener method that is notified after a drop
operation.

6.7.4.2. Key Features

« Allows to define some drop listeners for the components with "Drag and Drop" support

Table 6.125. rich : dropListener attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

type HTML: The fully qualified Java class name for
the listener

available since 3.0.0

6.7.5. <rich:dropSupport >

6.7.5.1. Description

This component transforms a parent component into a target zone for drag-and-drop operations.
When a draggable element is moved and dropped onto the area of the parent component, Ajax
request processing for this event is started.

335

Chapter 6. The RichFaces Components

ke

LA

DropZone

Ll

Py
i

\;_.

‘-’ [0
Dra%]ged
element

Figure 6.77. <rich:dropSupport> component

6.7.5.2. Key Features

Encodes all necessary JavaScript to perform drop actions

« Can be used within any component type that provides the required properties for drop operations

Built-in Ajax processing

Supports drag-and-drop between different forms

Table 6.126. rich : dropSupport attributes

Attribute Name Description

acceptCursors List of comma separated cursors that indicates
when acceptable draggable over dropzone

acceptedTypes A list of drag zones types, which elements are
accepted by a drop zone

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

336

Chapter 6. The RichFaces Components

Attribute Name Description

ajaxSingle Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

cursorTypeMapping Mapping between drop types and acceptable
cursors
data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disableDefault Disable default action for target event (append
"return false;" to JavaScript)

dropListener MethodBinding representing an action listener
method that will be notified after drop
operation.

dropValue Data to be processed after a drop event

eventsQueue Name of requests queue to avoid send next

request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus ID of an element to set focus after request is
completed on client side

id JSF: Every component may have a unique id
that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar' request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

337

Chapter 6. The RichFaces Components

Attribute Name Description

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

limitToList If "true”, then of all AJAX-rendered on the
page components only those will be updated,
which ID's are passed to the "reRender"
attribute of the describable component. "false"-
the default value-means that all components
with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called
before DOM is updated

oncomplete The client-side script method to be called after
the request is completed

ondragenter The client-side script method to be called when
a draggable object enters the zone

ondragexit The client-side script method to be called after
a draggable object leaves the zone

ondrop The client-side script method to be called when
a draggable object is dropped into the available
zone

ondropend The client-side script method to be called when

a draggable object is dropped into any zone

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-5
in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rejectCursors List of comma separated cursors that indicates
when rejectable draggable over dropzone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

338

Chapter 6. The RichFaces Components

Attribute Name Description

reRender

similarityGroupingld

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

If there are any component requests with
identical IDs then these requests will be
grouped.

status

ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout

Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

typeMapping

The attribute associates a type of dragable
zone (dragType) with <rich:dndParam>
defined for <rich:dropSupport> for passing
parameter value to <rich:dragindicator>.
It uses JSON format: (drag_type:
parameter_name).

value

JSF: The current value for this component

Table 6.127. Component identification parameters

INETTE Value

component-type

org.richfaces.DropSupport

component-class
component-family

renderer-type

org.richfaces.component.html.HtmIDropSuppor
org.richfaces.DropSupport

org.richfaces.DropSupportRenderer

tag-class

org.richfaces.taglib.DropSupportTag

6.7.5.3. Creating the Component with a Page Tag

This simple example shows how to make a panel component a potential drop target for drag-and-
drop operations using "text" elements as the dragged items.

Example:

<rich:panel>

339

Chapter 6. The RichFaces Components

<rich:dropSupport acceptedTypes="text"/>
</rich:panel>

6.7.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDropSupport;

HtmIDropSupport myDragZone = new HtmIDropSupport();

6.7.5.5. Details of Usage

The key attribute for <rich:dropSupport> is "acceptedTypes" . It defines, which types of
dragable items (zones) could be accepted by the current drop zone. Check the example below:

<rich:panel styleClass="dropTargetPanel">
<f:facet name="header">
<h:outputText value="PHP Frameworks" />
</f:facet>

<rich:dropSid=iptapted Ty pes=tiPb{iValue=tPt{i istener="#{eventBean.processia@p}ider="phptable,
src'>
</rich:dropSupport>

</rich:panel>

and here is what happens on the page:

340

Chapter 6. The RichFaces Components

Frameworks PHP Frameworks Frameworks
Flexil:	le Ajax		Flexil:	le Ajax						
&1axEngine	% GG	&1axEngine								
BjaxAc		Ajaxac								
M-:	n	:	Rai			M-:	n	:	Rai	
alax AGENT		alax AGENT								
FastF‘age		FastF‘age								
(PA1A]	(PA1A]									
Symfu:un3r		Symfu:un3r								
F'	:	werWEE-		F'	:	werWEE-				

Figure 6.78. Drop zone accepts dragable item with "PHP" type only

Using the "typeMapping" attribute. Previous example shows that a drop zone could accept a
dragable item or not. Special markers, which are placed at <rich:draglndicator> , inform user
about drop zone’s possible behaviors: "checkmark™ appears if drop is accepted and "No" symbol
if it is not. Moreover, some extra information (e.g. text message) could be put into the Indicator
to reinforce the signal about drop zone’s behavior or pass some other additional sense. This
reinforcement could be programmed and attributed to drop zone via "typeMapping" attribute
using JSON syntax. The type of dragged zone (dragType) should be passed as "key" and name
of <rich:dndParam> that gives needed message to Indicator as "value":

<rich:panel styleClass="dropTargetPanel">
<f:facet name="header">
<h:outputText value="PHP Frameworks" />
</f:facet>

<rich:dropSid=itmtgpted Ty pes=tPt{Value=tPb{R istener="#{eventBean.processi@p}ider="phptable,
src"
typeMapping="{PHP: text_for_accepting, DNET: text_for_rejecting}">
<rich:dndParam name="text_for_accepting" value="Drop accepted!" />
<rich:dndParam name="text_for_rejecting" value="Drop is not accepted!" />
</rich:dropSupport>

</rich:panel>

341

PHP Frameworks

E AJAXEngine

Chapter 6. The RichFaces Components

What happens on the page:

Frameworks PHP Frameworks Frameworks
|Flexi|:u|e Ajax | [ﬁ. |Fle><i|:u|e Ajax |
|.ﬁ.J.ﬁ.HEngine | Drop accepted! Flexible Ajax |.ﬁ.J.ﬁ.HEngine |
[AjaxAc | |AjaxAC |
M	:	nn:	RaiI		Mn:	n-:	RaiI
8Jax AGENT		aJax AGENT					
FastF‘age		FastF‘age					
\Pa1A]	(PA1A]						
Symfany		Symfony					
F'	:uwerWEE		F‘-:uwerWEE				
Figure 6.79. "typeMapping" helps to add some extra information to

<rich:draglIndicator>

In examples above dropping a dragable item triggers the use a parameter in the event processing;
Ajax request is sent and dropListener defined for the component is called.

Here is an example of moving records between tables. The example describes all the pieces
for drag-and-drop. (To get extra information on these components, read the sections for these
components.)

As draggable items, this table contains a list of such items designated as being of type "t ext " :

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="caps">
<f:facet name="caption">Capitals List</f:facet>
<h:column>
<adj.outputPanel>
<rich:dragSupport dragIndicator=":form:ind" drag Type="text">
<adj:actionparam value="#{caps.name}" name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</adj.outputPanel>
</h:column>
</rich:dataTable>

342

PHP Framewt

o

Chapter 6. The RichFaces Components

As a drop zone, this panel will accept draggable items of type t ext and then rerender an element
with the ID of box :

Example:

<rich:panel style="width:100px;height:100px;">
<f:facet name="header">Drop Zone</f:facet>
<rich:dropSupport acceptedTypes="text" reRender="box"
dropListener="#{capitalsBean.addCapital2}"/>
</rich:panel>

As a part of the page that can be updated in a partial page update, this table has an ID of box :

Example:

<rich:dataTable value="#{capitalsBean.capitals2}" var="cap2" id="box">
<f:facet name="caption">Capitals chosen</f:facet>
<h:column>
<h:outputText value="#{cap2.name}"/>
</h:column>
</rich:dataTable>

And finally, as a listener, this listener will implement the dropped element:

Example:

public void addCapital2(DropEvent event) {
FacesContext context = FacesContext.getCurrentinstance();
Capital cap = new Capital();
cap.setName(context.getExternalContext().getRequestParameterMap().get("name").toString());
capitals2.add(cap);

Here is the result after a few drops of items from the first table:

343

Chapter 6. The RichFaces Components

Capitals List Drop Zone Capitalz cho=en
hontgomery Little Rock
Juneau Denvver
Phioenix
Little Rock
Sacramernto
Derver
Hartford
Doveer
Tallahazses
Atlanta

Homolulu

Figure 6.80. Results of drop actions

In this example, items are dragged element-by-element from the rendered list in the first table and
dropped on a panel in the middle. After each drop, a drop event is generated and a common Ajax
request is performed that renders results in the third table.

As with every Ajax action component, <rich:dropSupport> has all the common attributes (
"timeout", "limitToList", "reRender", etc.) for Ajax request customization.

Finally, the component has the following extra attributes for event processing on the client:

+ "ondragenter”

+ "ondragexit"

« "ondrop"

« "ondropend"

Developers can use their own custom JavaScript functions to handle these events.

Information about the "process" attribute usage you can find in the "Decide what to process"
guide section .

6.7.5.6. Look-and-Feel Customization

<rich:dropSupport> has no skin parameters and custom style classes , as the component
isn't visual.

6.7.5.7. Relevant Resources Links

On the component Live Demo page [http:/livedemo.exadel.com/richfaces-demo/richfaces/
dragSupport.jsf?c=dropSupport] you can see the example of <rich:dropSupport> usage and
sources for the given example.

344

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport

Chapter 6. The RichFaces Components

6.7.6. <rich:dndParam > available since 3.0.0

6.7.6.1. Description

This component is used for passing parameters during drag-and-drop operations.

Table 6.128. rich : dndParam attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

id JSF: Every component may have a unique id
that is automatically created if omitted

name A name of this parameter
rendered JSF: If "false", this component is not rendered
type HTML: This attribute defines parameter

functionality. Possible values are "drag", "drop"
and "default". Default value is "default".

value JSF: The current value for this component

Table 6.129. Component identification parameters

Name Value

component-type org.richfaces.DndParam
component-class org.richfaces.component.html.HtmIDndParam
tag-class org.richfaces.taglib.DndParamTag

6.7.6.2. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page, nested in one of the drag-and-drop
components:

Example:

<rich:dragSupport dragType="file">
<rich:dndParam name="testDrag" value="testDragValue"
type="drag"/>
</rich:dragSupport>

345

Chapter 6. The RichFaces Components

6.7.6.3. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDndParam;

HtmIDndParam myDparam = new HtmlIDndParam();

6.7.6.4. Details of Usage

dndParam is used during drag-and-drop operations to pass parameters to an indicator. At first,
a parameter type is defined with the type attribute (to specify parameter functionality), then a
parameter name could be defined with the name and value attribute. Although, it's possible to use
nested content defined inside dndParam for value definition, instead of the attribute.

Variants of usage:

« Parameters passing for a drag icon when an indicator is in drag.
In this case, dndParam is of a drag type and is defined in the following way:

Example:

<rich:dragSupport ... >
<rich:dndParam type="drag" name="dragging">
<h:graphiclmage value="/img/productl_small.png"/>
</rich:dndParam>
<h:graphiclmage value="productl.png"/>
</rich:dragSupport>

Here dndParam defines an icon that is used by an indicator when a drag is on the place of a
default icon (e.g. a minimized image of a draggable element)

« Parameters passing for an indicator informational part during a drag.
In this case dndParam is of a drag type and is defined in the following way:

Example:

346

Chapter 6. The RichFaces Components

<rich:dragSupport ... >
<rich:dndParam type="drag" name="label" value="#{msg.subj}"/>

</rich:dragSupport>

The parameter is transmitted into an indicator for usage in an informational part of the
draglndicator component (inside an indicator a call to {label} happens)

« Parameters passing happens when dragged content is brought onto some zone with
dropSupport

In this case dndParam is of a drop type and is defined in the following way:

Example:

<rich:dropSupport ... >
<rich:dndParam type="drop" name="comp" >
<h:graphiclmage height="16" width="16" value="/images/comp.png"/>
</rich:dndParam>

</rich:dropSupport >

Here, dndParam passes icons into an indicator, if dragged content of a comp type is above the
given drop zone that processes it on the next drop event.

6.7.6.5. Look-and-Feel Customization

<rich:dndParam> has no skin parameters and custom style classes, as the component isn't
visual.

6.7.6.6. Relevan Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dragSupport.jsf?c=dndParam] you can see the example of <rich:dndParam> usage and sources
for the given example.

6.8. Rich Menu

This section tells how you can create menus on your page: either navigational ones or context.

347

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam

Chapter 6. The RichFaces Components

6.8.1. <rich:contextMenu > 2valablesince 3.0.0

6.8.1.1. Description

The <rich:contextMenu> component is used for creation of multilevelled context menus that
are activated after defined events like "onmouseover", "onclick" etc. The component could be
applied to any element on the page.

Zoam In

Zoorm Cut

Figure 6.81. <rich:contextMenu> component
6.8.1.2. Key Features

 Highly customizable look and feel

¢ "oncontextmenu" event support

» Disablement support

» Pop-up appearance event customization

» Usage of shared instance of a menu on a page

Table 6.130. rich : contextMenu attributes

Attribute Name Description

attached If the value of the "attached" attribute is true,
the component is attached to the component,
specified in the "attachTo" attribute or to the
parent component, if "attachTo" is not defined.
Default value is "true".

attachTiming Defines the timing when the menu is attached
to the target element. Possible values "onload",
"immediate”, "onavailable" (default). Default
value is "onavailable".

attachTo Client identifier of the component or id of
the existing DOM element that is a source
for a given event. If attachTo is defined, the
event is attached on the client according to
the AttachTiming attribute. If both attached and
attachTo attributes are defined, and attribute

348

Chapter 6. The RichFaces Components

Attribute Name Description

attached has value 'false’, it is considered to
have higher priority.

binding

JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

disableDefaultMenu

Forbids default handling for adjusted event.
Default value "false".

disabledltemClass

disableditemStyle

Assigns one or more space-separated CSS
class names to the component disabled item

CSS style rules to be applied to the component
disabled item

event Defines an event on the parent element
to display the menu. Default value is
"oncontextmenu".

hideDelay Delay between losing focus and menu closing.
Default value is "800".

id JSF: Every component may have a unique id
that is automatically created if omitted

itemClass Assigns one or more space-separated CSS
class names to the component item

itemStyle CSS style rules to be applied to the component
item

oncollapse The client-side script method to be called
before the menu is collapsed

onexpand The client-side script method to be called
before the menu is expanded

ongroupactivate The client-side script method to be called when

onitemselect

some context menu group is activated

The client-side script method to be called when
some item is selected

onmousemove

onmouseout

DHTML: The client-side script method to be
called when a pointer is moved within the
element

DHTML: The client-side script method to be
called when a pointer is moved away from the
element

349

Chapter 6. The RichFaces Components

Attribute Name Description

onmouseover DHTML: The client-side script method to be
called when a pointer is moved onto the
element

popupWidth Set minimal width for the all of the lists that will
appear

rendered JSF: If "false", this component is not rendered

selectltemClass

selectltemStyle

Assigns one or more space-separated CSS
class names to the component selected item

CSS style rules to be applied to the component
selected item

showDelay Delay between event and menu showing.
Default value is "50".

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

submitMode Sets the submission mode for all menu items

of the menu except those where this attribute

redefined. Possible value are "ajax","server",
"none". Default value is "server".

Table 6.131. Component identification parameters

INETE] Value

component-type
component-class

component-family

org.richfaces.ContextMenu
org.richfaces.component.html.ContextMenu

org.richfaces.ContextMenu

renderer-type

org.richfaces.DropDownMenuRenderer

tag-class

org.richfaces.taglib.ContextMenuTagHandler

6.8.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<rich:contextMenu />

350

Chapter 6. The RichFaces Components

6.8.1.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.ContextMenu;

html.ContextMenu myContextMenu = new html.ContextMenu();

6.8.1.5. Details of Usage

<rich:contextMenu> is a support-like component. Context menu itself is an invisible panel that
appears after a particular client-side event ("onmouseover", "onclick", etc.) occurred on a parent
component. The eventis defined with an "event" attribute. The component uses "oncontextmenu"

event by default to call a context menu by clicking on the right mouse button.

<rich:menuGroup> , <rich:menultem> and <rich:menuSeparator> components can be used as
nested elements for <rich:contextMenu> in the same way as for <rich:dropDownMenu> .

By default, the <rich:contextMenu> disables right mouse click on a page in the context menu
area only. But if you want to disable browser's context menu completely you should set the

"disableDefaultMenu" attribute value to "true”.

If "attached" value is "true" (default value), component is attached to the parent component or to

the component, which "id" is specified in the "attachTo" attribute:

<rich:contextMenu event="oncontextmenu" attachTo="pic1" submitMode="none">

<rich:menultem value="Zoom In" onclick="enlarge();" id="zin"/>
<rich:menultem value="Zoom Out" onclick="decrease();" id="zout"/>
</rich:contextMenu>
<h:panelGrid columns="1" columnClasses="cent">
<h:panelGroup id="picture">
<h:graphiclmage value="/richfaces/jQuery/images/picl.png" id="pic"/>
</h:panelGroup>
</h:panelGrid>
<h:panelGrid columns="1" columnClasses="cent">
<h:panelGroup id="picturel">
<h:graphiclmage value="/richfaces/jQuery/images/pic2.png" id="picl"/>
</h:panelGroup>
</h:panelGrid>

The "enl arge()" and "decrease()" functions definition is placed below.

<script type="text/javascript">

351

Chapter 6. The RichFaces Components

function enlarge(){
document.getElementByld('pic’).width=document.getElementByld('pic’).width*1.1;
document.getElementByld('pic").height=document.getElementByld('pic').height*1.1;

}

function decrease(){
document.getElementByld('pic").width=document.getElementByld('pic').width*0.9;
document.getElementByld('pic").height=document.getElementByld('pic').height*0.9;

}

</script>

In the example a picture zooming possibility with <rich:contextMenu> component usage was
shown. The picture is placed on the <h:panelGroup> component. The <rich:contextMenu>
component is not nested to <h:panelGroup> and has a value of the "attachTo" attribute defined
as "picl". Thus, the context menu is attached to the component, which "id" is "pi c1". The
context menu has two items to zoom in (zoom out) a picture by "onclick" event. For earch item
corresponding JavaScript function is defined to provide necessary action as a result of the clicking
on it. For the menu is defined an "oncontextmenu" event to call the context menu on a right
click mouse event.

In the example the context menu is defined for the parent <h:panelGroup> component with a
value of "id" attribute equal to "pi ct ure" You should be careful with such definition, because
a client context menu is looked for a DOM element with a client Id of a parent component
on a server. If a parent component doesn't encode an Id on a client, it can't be found by the
<rich:contextMenu> and it's attached to its closest parent in a DOM tree.

If the "attached" attribute has "false" value, component activates via JavaScript APl with
assistance of <rich:componentControl>. An example is placed below.

Example:

<h:form id="form">
<rich:contextMenu attached="false" id="menu" submitMode="ajax">
<rich:menultem ajaxSingle="true">
{car} {model} details
<adj:actionparam name="det" assignTo="#{ddmenu.current}" value="{car} {model}
details"/>
</rich:menultem>
<rich:menuGroup value="Actions">
<rich:menultem ajaxSingle="true">
Put {car} {model} To Basket

<adj:actionparam name="bask" assignTo="#{ddmenu.current}" value="Put {car} {model} To
Basket"/>
</rich:menultem>

352

Chapter 6. The RichFaces Components

<rich:menultem value="Read Comments" ajaxSingle="true">
<adj:actionparam name="bask" assignTo="#{ddmenu.current}" value="Read
Comments"/>
</rich:menultem>
<rich:menultem ajaxSingle="true">
Go to {car} site
<adj:actionparam name="bask" assignTo="#{ddmenu.current}" value="Go
to {car} site"/>
</rich:menultem>
</rich:menuGroup>
</rich:contextMenu>

<h:panelGrid columns="2">

<rich:dataTable value="#{dataTableScrollerBean.tenRandomCars}" var="car" id="table" onRowMouseOver="this
<rich:column>
<f:facet name="header">Make</f:facet>
<h:outputText value="#{car.make}"/>
</rich:column>
<rich:column>
<f:facet name="header">Model</f:facet>
<h:outputText value="#{car.model}"/>
</rich:column>
<rich:column>
<f:facet name="header">Price</f:facet>
<h:outputText value="#{car.price}" />
</rich:column>
<rich:componentControl event="onRowClick" for="menu" operation="show">
<f:param value="#{car.model}" name="model"/>
<f:param value="#{car.make}" name="car"/>
</rich:componentControl>
</rich:dataTable>
<adj.outputPanel ajaxRendered="true">
<rich:panel>
<f:facet name="header">Last Menu Action</f:facet>
<h:outputText value="#{ddmenu.current}"></h:outputText>
</rich:panel>
</adj:outputPanel>
</h:panelGrid>
</h:form>

This is a result:

353

Chapter 6. The RichFaces Components

Make Model Price
i Sierra 18636
Chewrolet Ml 30412
GEhiZ Yukaon 397149
Ford Explorer 44995 La=t Menu Action
Infiriti 35 47579
Fead Commernts
iz Yukon 287
Tay GMC Yukon details P
. gctions » Put GMC Yukon To Baslket
arL. e ——

Read Cormments
Toyota Caimry Go to GMC site
Mis=an Maxima Sd5.45

Figure 6.82. The "attached" attribute usage

In the example the context menu is activated (by clicking on the left mouse button) on the table
via JavaScript API with assistance of <rich:componentControl>. The attribute "for" contains a
value of the <rich:contextMenu> Id. For menu appearance Java Script API function " show() "
is used. It is defined with "operation" attribute for the <rich:componentControl> component.
Context menu is recreated after the every call on a client and new {car} and {model} values are
inserted in it. In the example for a menu customization macrosubstitutions were used.

The <rich:contextMenu> component can be defined once on a page and can be used as
shared for different components (this is the main difference from the <rich:dropDownMenu>
component). It's necessary to define it once on a page (as it was shown in the example
above [352]) and activate it on required components via JavaScript APl with assistance of
<rich:componentControl> .

The <rich:contextMenu> "submitMode" attribute can be set to three possible parameters:
» Server — default value, uses regular form submition request;
* Aj ax — Ajax submission is used for switching;

* None — neither Server nor Aj ax is used.

The "action” and "actionListener" item's attributes are ignored. Menu items don't fire any submits
themselves. The behavior is fully defined by the components nested inside items.

354

Chapter 6. The RichFaces Components

Notes:

e When nesting <rich:contextMenu> into JSF <h:outputText>, specify ani d
for <h:outputText>, otherwise, do not nest the <rich:contextMenu> to make
it work properly.

* As the <rich:contextMenu> component doesn't provide its own form, use it
between <h:form> and </h:form> tags.

6.8.1.6. JavaScript API

Table 6.132. JavaScript API

Function Description Apply to
hide() Hides component or group Component, group
show(event, context) Shows component or group Component, group

6.8.1.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:contextMenu> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:contextMenu> component

6.8.1.8. Skin Parameters Redefinition

Table 6.133. Skin parameters redefinition for a border

Skin parameters CSS properties

panelBorderColor border-color

additionalBackgroundColor background-color

Table 6.134. Skin parameters redefinition for a background

Skin parameters CSS properties

additionalBackgroundColor border-top-color

additionalBackgroundColor border-left-color

355

Chapter 6. The RichFaces Components

Skin parameters CSS properties

additionalBackgroundColor border-right-color

6.8.1.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

B

rnch-menu-list-bg

rich-rmenu-list-strut

Figure 6.83. Style classes

Table 6.135. Classes names that define the contextMenu element

Class name Description

rich-menu-list-border Defines styles for borders

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for
a strut of a popup list

In order to redefine styles for all <rich:contextMenu> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

.rich-menu-item{

356

Chapter 6. The RichFaces Components

font-style:italic;

This is a result:

Zoom in

Zoorn Out

Figure 6.84. Redefinition styles with predefined classes

In the example the font style for row items was changed.

Also it's possible to change styles of particular <rich:contextMenu> component. In this case you
should create own style classes and use them in corresponding <rich:contextMenu> styleClass

attributes. An example is placed below:

.myClass{
font-weight:bold;

The "rowClasses" attribute for <h:panelGrid> is defined as it's shown in the example below:

<h:panelGrid ... rowClasses="myClass"/>

This is a result:

Figure 6.85. Redefinition styles with own classes and styleClass attributes

Chapter 6. The RichFaces Components

As it could be seen on the picture above, the font weight for row items was changed.
6.8.1.10. Relevant Resources Links

Visit the ContextMenu page [http://livedemo.exadel.com/richfaces-demo/richfaces/
contextMenu.jsf?c=contextMenu] at RichFaces LiveDemo for examples of component usage and
their sources.

6.8.2. <rich:dropDownMenuy > 2vaablesince 3.0.0

6.8.2.1. Description

The <rich:dropDownMenu> component is used for creating multilevel drop-down menus.

File Y Links
e
Open
Save As... L Text File
Close PDF File
Exit

Figure 6.86. <rich:dropDownMenu> component

6.8.2.2. Key Features

« Highly customizable look-and-feel

» Pop-up appearance event customization

+ Different submission modes

« Ability to define a complex representation for elements
» Support for disabling

* Smart user-defined positioning

Table 6.136. rich : dropDownMenu attributes

Attribute Name Description

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

direction Defines direction of the popup list to appear.
Possible values are "top-right”, "top-right",

"top-left”, "bottom-right", "bottom-left", "auto".
Default value is "auto".

358

http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu

Chapter 6. The RichFaces Components

Attribute Name Description

disabled

HTML.: Attribute 'disabled' provides possibility
to make the whole menu disabled if its value
equals to "true". Default value is "false"

disabledltemClass

Assigns one or more space-separated CSS
class names to the component disabled item

disabledltemStyle

disabledLabelClass

event

hideDelay

CSS style rules to be applied to the component
disabled item

Assigns one or more space-separated CSS
class names to the component label when it is
disabled

Defines the event on the representation
element that triggers the menu's appearance.

Delay between losing focus and menu closing.
Default value is "800".

horizontalOffset

Sets the horizontal offset between popup
list and label element. Default value is "0".
conjunction point

id JSF: Every component may have a unique id
that is automatically created if omitted

itemClass Assigns one or more space-separated CSS
class names to the component item

itemStyle CSS style rules to be applied to the component
item

jointPoint Sets the corner of the label for the pop-up to
be connected with. Possible values are "tr", "tl",
"bl", "br", "bottom-left”, "auto". Default value is
"auto". "tr" stands for top-right.

labelClass Assigns one or more space-separated CSS
class names to the component label

oncollapse The client-side script method to be called when
a menu is collapsed

onexpand The client-side script method to be called when
a menu is expanded

ongroupactivate The client-side script method to be called when

some menu group is activated

onitemselect

The client-side script method to be called when
a menu item is selected

359

Chapter 6. The RichFaces Components

Attribute Name Description

onmousemove

onmouseout

DHTML: The client-side script method to be
called when a pointer is moved within the menu

DHTML: The client-side script method to be
called when a pointer is moved away from the
menu

onmouseover

popupWidth

rendered

DHTML: The client-side script method to be
called when a pointer is moved onto the menu

Sets minimal width for all lists that will appear.

JSF: If "false", this component is not rendered

selectedLabelClass

Assigns one or more space-separated CSS
class names to the component label when it is
selected

selectltemClass

Assigns one or more space-separated CSS
class names to the component selected item

selectltemStyle

showDelay

CSS style rules to be applied to the component
selected item

Delay between event and menu showing.
Default value is "50".

style

HTML: CSS style rules to be applied to the
component

styleClass

JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

submitMode

Sets the submission mode for all menu
items of the menu except ones where
this attribute redefined. Possible values are

"ajax","server","none". Default value is "sever".

value

verticalOffset

JSF: Defines representation text for Label used
for menu calls.

Sets the vertical offset between popup list and
label element. Default value is "0". conjunction
point

Table 6.137. Component identification parameters

component-type

org.richfaces.DropDownMenu

‘ component-class org.richfaces.component.htmI.HtmIDropDownlv’enu

‘ component-family org.richfaces.DropDownMenu ‘

360

Chapter 6. The RichFaces Components

Name Value

renderer-type org.richfaces.DropDownMenuRenderer

tag-class org.richfaces.taglib.DropDownMenuTag

6.8.2.3. Creating the Component with a Page Tag
Here is a simple example as it could be used on a page:

Example:

<rich:dropDownMenu value="ltem1">
<!--Nested menu components-->
</rich:dropDownMenu>

6.8.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDropDownMenu;

HtmIDropDownMenu myDropDownMenu = new HtmIDropDownMenu();

6.8.2.5. Details of Usage

All attributes except "value" are optional. The "value" attribute defines text to be represented.
If you can use the "label" facet, you can even not use the "value" attribute.

Here is an example:

Example:

<f:facet name="label">
<h:graphiclmage value="/images/imgl.png"/>
</f:facet>

Use the "event" attribute to define an event for the represented element that triggers a menu
appearance. An example of a menu appearance on a click can be seen below.

361

Chapter 6. The RichFaces Components

Example:

<rich:dropDownMenu event="onclick" value="ltem1">
<!I--Nested menu components-->
</rich:dropDownMenu>

The <rich:dropDownMenu> "submitMode" attribute can be set to three possible parameters:

e Server (default)

Regular form submission request is used.
* A ax

Ajax submission is used for switching.

* None

The "action” and "actionListener" item's attributes are ignored. Menu items don't fire any submits
themselves. The behavior is fully defined by the components nested into items.

Note:

As the <rich:dropDownMenu> component doesn't provide its own form, use it
between <h:form> and </h:form> tags.

The "direction" and "jointPoint" attributes are used for defining aspects of menu appearance.

Possible values for the "direction" attribute are:

"top-left" - a menu drops to the top and left
 "top-right" - a menu drops to the top and right

» "bottom-left" - a menu drops to the bottom and left

« "bottom-right" - a menu drops to the bottom and right
« "auto" - smart positioning activation

Possible values for the "jointPoint" attribute are:

e "tr" - a menu is attached to the top-right point of the button element

« "tI"- a menu is attached to the top-left point of the button element

362

Chapter 6. The RichFaces Components

« "br" - a menu is attached to the bottom-right point of the button element
« "bI" - a menu is attached to the bottom-left point of the button element

» "auto" - smart positioning activation

By default, the "direction” and "jointPoint" attributes are set to "auto".
Here is an example:

Example:

<rich:dropDownMenu value="File" direction="bottom-right" jointPoint="bl">
<rich:menultem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>
<rich:menultem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>
<rich:menuGroup value="Save As...">
<rich:menultem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>
<rich:menultem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>
<rich:menuSeparator id="menuSeparatorl1"/>
<rich:menultem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>
</rich:dropDownMenu>

This is the result:

File Y Links
e
Open
Save As... L Text File
Close PDF File
Exit

Figure 6.87. Using the "direction” and "joinPoint" attributes

You can correct an offset of the pop-up list relative to the label using the following attributes:
"horizontalOffset" and "verticalOffset" .

Here is an example:

Example:

363

Chapter 6. The RichFaces Components

<rich:dropDownMenu value="File" direction="bottom-
right" jointPoint="tr* horizontalOffset="-15" verticalOffset="0">
<rich:menultem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>
<rich:menultem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>
<rich:menuGroup value="Save As...">
<rich:menultem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>
<rich:menultem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>
<rich:menuSeparator id="menuSeparator11"/>
<rich:menultem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>
</rich:dropDownMenu>

This is the result:

Fil New
Open
Save As... » Text File
Close PDF File
Exit

Figure 6.88. Using the "horizontalOffset" and "verticalOffset" attributes

The "disabled" attribute is used for disabling whole <rich:dropDownMenu> component. In this
case it is necessary to define "disabled" attribute as "true". An example is placed below.

Example:

<rich:dropDownMenu value="File" disabled="true">

</rich:dropDownMenu>

6.8.2.6. Facets

Table 6.138. Facets

Facet Description

‘ label Redefines the content set of label ‘

‘ labelDisabled Redefines the content set of disabled label ‘

364

Chapter 6. The RichFaces Components

6.8.2.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dropDownMenu> components at
once:
» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dropDownMenu> component

6.8.2.8. Skin Parameters Redefinition

Table 6.139. Skin parameters redefinition for a label <div> element

Skin parameters CSS properties

‘ generalFamilyFont font-family ‘

‘ generalSizeFont font-size ‘

Table 6.140. Skin parameters redefinition for a selected label

Skin parameters CSS properties

panelBorderColor border-color
‘ controlBackgroundColor background-color ‘
‘ generalTextColor background-colorcolor ‘

Table 6.141. Skin parameters redefinition for a border

Skin parameters CSS properties
panelBorderColor border-color
‘ additionalBackgroundColor background-color ‘

Table 6.142. Skin parameters redefinition for a background

Skin parameters CSS properties

additionalBackgroundColor border-top-color
additionalBackgroundColor border-left-color
additionalBackgroundColor border-right-color

6.8.2.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

365

Chapter 6. The RichFaces Components

tich-ddrmenu-label-select rich-ddmenu-label

File Y Links
e
rich-label-text-decor per rich-ddmenu-label-unselact
' Save As... g 1ext File
Close PDF File
Exit

Figure 6.89. Classes names

Table 6.143. Classes names that define a label

Class name Description

rich-label-text-decor Defines text style for a representation element

rich-ddmenu-label Defines styles for a wrapper <div> element of
a representation element

rich-ddmenu-label-select Defines styles for a wrapper <div> element of
a selected representation element

rich-ddmenu-label-unselect Defines styles for a wrapper <div> element of
an unselected representation element

rich-ddmenu-label-disabled Defines styles for a wrapper <div> element of
a disabled representation element

On the screenshot there are classes names that define styles for component elements.

g'Links tich-rmenu-list-horder

File
Mewr
Open
Save As... » Text File
Close PDF File
Exit

rich-rnenu-list-big
tich-menu-list-strut

Figure 6.90. Classes names

Table 6.144. Classes names that define a popup element

Class name Description

‘ rich-menu-list-border Defines styles for borders

366

Chapter 6. The RichFaces Components

Class name Description

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for
a strut of a popup list

In order to redefine styles for all <rich:dropDownMenu> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the table
above) and define necessary properties in them. An example is placed below:

Example:

.rich-ddmenu-label-select{
background-color: #fae6b0;
border-color: #e5973e;

This is a result:

File W'Links

Figure 6.91. Redefinition styles with predefined classes
In the example a label select background color and border color were changed.

Also it's possible to change styles of particular <rich:dropDownMenu> component. In this case
you should create own style classes and use them in corresponding <rich:dropDownMenu>
styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

The "itemClass" attribute for <rich:dropDownMenu> is defined as it's shown in the example
below:

Example:

367

Chapter 6. The RichFaces Components

<rich:dropDownMenu ... itemClass="myClass"/>

This is a result:

File Links
N New

S5ave As...]

Close

Exit

Figure 6.92. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for items was changed.

6.8.2.10. Relevant Resources Links

On the component LiveDemo page [http:/livedemo.exadel.com/richfaces-demo/richfaces/
dropDownMenu.jsf?c=dropDownMenu] you can see the example of <rich:dropDownMenu>
usage and sources for the given example.

6.8.3. <rich:menuGroup > 2valablesince 3.0.0

6.8.3.1. Description

The <rich:menuGroup> component is used to define an expandable group of items inside a
pop-up list or another group.

File J Links
e
Open
Save As... r Text File
Close PDF File
Exit

Figure 6.93. <rich:menuGroup> component

6.8.3.2. Key Features

* Highly customizable look-and-feel

368

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu

Chapter 6. The RichFaces Components

e Grouping of any menu's items
« Pop-up appearance event customization
« Support for disabling

« Smart user-defined positioning

Table 6.145. rich : menuGroup attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding
expression for a component property of a
backing bean

converter JSF: Id of Converter to be used or reference to
a Converter

direction Defines direction of the popup sublist to appear
("right", "left", "auto"(Default), "left-down", "left-
up", "right-down", "right-up")

disabled HTML: If "true" sets state of the item to disabled
state. Default value is "false".

event Defines the event on the representation
element that triggers the menu's appearance.
Default value is "onmouseover".

icon Path to the icon to be displayed for the enabled
item state

iconClass Assigns one or more space-separated CSS
class names to the component icon element

iconDisabled Path to the icon to be displayed for the disabled
item state

iconFolder Path to the folder icon to be displayed for the
enabled item state

iconFolderDisabled Path to the folder icon to be displayed for the
enabled item state

iconStyle CSS style rules to be applied to the component
icon element

id JSF: Every component may have a unique id
that is automatically created if omitted

labelClass Assigns one or more space-separated CSS
class names to the component label element

onclose The client-side script method to be called when
a group is closed

369

Chapter 6. The RichFaces Components

Attribute Name Description

onmousemove DHTML: The client-side script method to be
called when a pointer is moved within the menu
group

onmouseout DHTML: The client-side script method to be
called when a pointer is moved away from the
menu group

onmouseover DHTML: The client-side script method to be
called when a pointer is moved onto the menu
group

onopen The client-side script method to be called when
a group is opened

rendered JSF: If "false", this component is not rendered

selectClass Assigns one or more space-separated CSS
class names to the component selected items

selectStyle CSS style rules to be applied to the component
selected items

showDelay Delay between event and menu showing.
Default value is "300".

style HTML: CSS style rules to be applied to the
component

styleClass JSF: Assigns one or more CSS class names
to the component. Corresponds to the HTML
"class" attribute.

value JSF: Defines representation text for menultem

Table 6.146. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.MenuGroup
org.richfaces.component.html.HtmIMenuGroup

org.richfaces.DropDownMenu

renderer-type

org.richfaces.MenuGroupRenderer

tag-class

org.richfaces.taglib.MenuGroupTag

6.8.3.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

370

Chapter 6. The RichFaces Components

<rich:dropDownMenu value="Active">

<rich:menuGroup value="Active">
<l--Nested menu components-->
</rich:menuGroup>

</rich:dropDownMenu >

6.8.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIMenuGroup;

HtmIMenuGroup myMenuGroup = new HtmIMenuGroup();

6.8.3.5. Details of Usage

The "value" attribute defines the text representation of a group element in the page.

The "icon" attribute defines an icon for the component. The "iconDisabled" attribute defines an
icon for when the group is disabled. Also you can use the "icon" and "iconDisabled" facets. If
the facets are defined, the corresponding "icon" and "iconDisabled" attributes are ignored and
the facets' contents are used as icons. This could be used for an item check box implementation.

Here is an example:

<f:facet name="icon">
<h:selectBooleanCheckbox value="#{bean.property}"/>
</f:facet>

The “iconFolder" and "iconFolderDisabled" attributes are defined for using icons as folder
icons. The “iconFolder" and "iconFolderDisabled"” facets use their contents as folder icon
representations in place of the attribute values.

The "direction” attribute is used to define which way to display the menu as shown in the example
below:

371

Chapter 6. The RichFaces Components

Possible values are:

» "left - down" - a submenu is attached to the left side of the menu and is dropping down

» "left - up" - a submenu is attached to the left side of the menu and is dropping up

» "right - down" - a submenu is attached to the right side of the menu and is dropping down
* "right - up" - a submenu is attached to the right side of the menu and is dropping up

« "auto - smart" positioning activation

By default, the "direction" attribute is set to "auto".

Here is an example:

<rich:menuGroup value="Save As..." direction="left-down">
<rich:menultem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>

This would be the result:

File W Links
e
Open
Text File Save As... 3 |
PDF File Close
Exit

Figure 6.94. Using the "direction" attribute

372

Chapter 6. The RichFaces Components

6.8.3.6. Facets

Table 6.147. Facets

Facet Description

icon Redefines the icon for the enabled item state.
Related attribute is "icon"

iconFolder Redefines the folder icon for the enabled item
state. Related attribute is "iconFolder"

6.8.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:menuGroup> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:menuGroup> component

6.8.3.8. Skin Parameters Redefinition

Table 6.148. Skin parameters redefinition for a group

Skin parameters CSS properties
‘ generalFamilyFont font-family ‘
‘ generalSizeFont font-size ‘

Table 6.149. Skin parameters redefinition for a disabled group

Skin parameters CSS properties

‘ tabDisabledTextColor color

Table 6.150. Skin parameters redefinition for a label

Skin parameters CSS properties

‘ generalTextColor color

6.8.3.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

373

Chapter 6. The RichFaces Components

File Y Links
tich-rmenu-iterm-folder

MNew
Open
Save As...

Close

tich-rnenu-itern-label g rich-menu-group

Figure 6.95. Classes names

Text File
PDF File

Table 6.151. Classes names that define an appearance of group elements

Class name Description

rich-menu-group

rich-menu-item-label

rich-menu-item-icon

Defines styles for a wrapper <div> element for
a group

Defines styles for a label of an item

Defines styles for the left icon of an item

rich-menu-item-folder

Defines styles for the right icon of an item

Table 6.152. Classes names that define different states

Class name Description

rich-menu-item-label-disabled
rich-menu-item-icon-disabled

rich-menu-item-folder-disabled

Defines styles for a label of a disabled item
Defines styles for the left icon of a disabled item

Defines styles for the right icon of a disabled
item

rich-menu-group-hover

Defines styles for a wrapper <div> element of
a hover group

rich-menu-item-icon-enabled

rich-menu-item-icon-selected

Defines styles for the left icon of an enabled
item

Defines styles for the left icon of a selected item

In order to redefine styles for all <rich:menuGroup> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

.rich-menu-item-label-disabled{
font-style: italic;

374

Chapter 6. The RichFaces Components

This is a result:

File Links
. Hew
Save A=... 3 Save
Close Save All
Exit

Figure 6.96. Redefinition styles with predefined classes
In the example a disabled label font style was changed.

Also it's possible to change styles of particular <rich:menuGroup> component. In this case you
should create own style classes and use them in corresponding <rich:menuGroup> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color: #acbece;
border: none;

The "selectClass" attribute for <rich:menuGroup> is defined as it's shown in the example below:

Example:
<rich:menuGroup value="Save As..." selectClass="myClass">

This is a result:

375

Chapter 6. The RichFaces Components

File Links
. Hew

Open
Save As... 3 Save

Close Save All
Exit

Figure 6.97. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for selected class was changed.
Also selected class has no border.

6.8.3.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/
dropDownMenu.jsf?c=menuGroup] you can see the example of <rich:menuGroup> usage and
sources for the given example.

6.8.4. <rich:menultem > available since 3.0.0

6.8.4.1. Description
The <rich:menultem> component is used for the definition of a single item inside a pop-up list.

This component can be used not only within <rich:dropDownMenu> and <rich:contextMenu>,
but also it can used as a standalone component. For example, you can use it as nested component
of the <rich:toolBar>.

File Y Links

MNew
Open
Save As... L Text File
Close PDF File
Exit

Figure 6.98. <rich:menultem> component
6.8.4.2. Key Features
 Highly customizable look-and-feel

« Different submission modes

« Support for disabling

376

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup

Chapter 6. The RichFaces Components

+ Custom content support

Table 6.153. rich : menultem attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,
conversion, validation and model updating)
only to a component that sends the request.
Boolean

binding JSF. The attribute takes a value-binding
expression for a component property of a
backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled HTML: If "true" sets state of the item to disabled
state. Default value is "false".

eventsQueue Name of requests queue to avoid send next
request before complete other from same
eve