
jBPM Documentation
Version 6.0.0-redhat-10

by The JBoss jBPM team [http://www.jboss.org/jbpm]

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm




iii

........................................................................................................................................  xi

I. .......................................................................................................................................  1

1. Introduction .........................................................................................................  3

1.1. Introduction ................................................................................................  3

1.2. Getting Involved .......................................................................................... 3

1.2.1. Sign up to jboss.org .........................................................................  4

1.2.2. Sign the Contributor Agreement ........................................................  4

1.2.3. Submitting issues via JIRA ...............................................................  5

1.2.4. Fork Github .....................................................................................  6

1.2.5. Writing Tests ...................................................................................  6

1.2.6. Commit with Correct Conventions .....................................................  8

1.2.7. Submit Pull Requests .......................................................................  9

1.3. Installation and Setup (Core and IDE) ........................................................  11

1.3.1. Installing and using ........................................................................  11

1.3.2. Building from source ....................................................................... 21

1.3.3. Eclipse ........................................................................................... 22

2. Release Notes ....................................................................................................  29

2.1. New and Noteworthy in KIE API 6.0.0 ........................................................  29

2.1.1. New KIE name ............................................................................... 29

2.1.2. Maven aligned projects and modules and Maven Deployment ............ 29

2.1.3. Configuration and convention based projects ...................................  30

2.1.4. KieBase Inclusion ........................................................................... 30

2.1.5. KieModules, KieContainer and KIE-CI .............................................. 31

2.1.6. KieScanner ....................................................................................  31

2.1.7. Hierarchical ClassLoader ................................................................  32

2.1.8. Legacy API Adapter .......................................................................  32

2.1.9. KIE Documentation ........................................................................  32

2.2. New and Noteworthy in jBPM 6.0.0 ............................................................ 33

2.2.1. KIE api ..........................................................................................  33

2.2.2. jBPM Core Engine .........................................................................  33

2.2.3. jBPM Designer ...............................................................................  34

2.2.4. jBPM Data Modeler ........................................................................  35

2.2.5. Form Modeler ................................................................................  35

2.2.6. jBPM Console ................................................................................  35

2.2.7. BAM / Reporting ............................................................................  35

2.2.8. Workbench ....................................................................................  36

2.2.9. Remote API ...................................................................................  36

2.3. New and Noteworthy in KIE Workbench 6.0.0 .............................................  36

2.4. New and Noteworthy in Integration 6.0.0 ....................................................  39

2.4.1. CDI ...............................................................................................  39

2.4.2. Spring ............................................................................................ 40

2.4.3. Aries Blueprints ..............................................................................  40

2.4.4. OSGi Ready ..................................................................................  40

II. Getting Started ............................................................................................................  41



jBPM Documentation

iv

3. Overview ............................................................................................................  43

3.1. What is jBPM? .......................................................................................... 43

3.2. Overview ..................................................................................................  45

3.3. Core Engine .............................................................................................  46

3.4. Process Designer ...................................................................................... 47

3.5. Data Modeler ............................................................................................  47

3.6. Form Modeler ...........................................................................................  48

3.7. Process Instance and Task Management ...................................................  49

3.8. Business Activity Monitoring ......................................................................  49

3.9. Workbench ...............................................................................................  51

3.10. Eclipse Developer Tools ..........................................................................  51

4. Getting Started ..................................................................................................  53

4.1. Downloads ................................................................................................ 53

4.2. Getting Started .........................................................................................  53

4.3. Community ...............................................................................................  53

4.4. Sources ....................................................................................................  54

4.4.1. License ..........................................................................................  54

4.4.2. Source code ..................................................................................  54

4.4.3. Building from source ....................................................................... 55

4.5. What to do if I encounter problems or have questions? ................................  55

5. jBPM Installer ....................................................................................................  57

5.1. Prerequisites ............................................................................................. 57

5.2. Downloading the Installer ..........................................................................  57

5.3. Demo Setup .............................................................................................  57

5.4. 10-Minute Tutorial using the Workbench ..................................................... 59

5.5. 10-Minute Tutorial using Eclipse ................................................................  62

5.6. Configuration ............................................................................................  63

5.6.1. Playgrounds ...................................................................................  63

5.6.2. Workbench Authentication ..............................................................  63

5.6.3. Using your own database ...............................................................  64

5.6.4. jBPM data base schema scripts (DDL scripts) ..................................  70

5.6.5. jBPM installer script ........................................................................ 71

5.7. Frequently Asked Questions ......................................................................  72

6. Examples ...........................................................................................................  75

6.1. Introduction ............................................................................................... 75

6.2. Human Resources Example ......................................................................  75

6.2.1. The KIE Project: human-resources ..................................................  77

6.2.2. Building the Human Resources Example .........................................  78

6.2.3. Create a new Process Instance ....................................................... 80

6.3. Examples zip ............................................................................................  81

III. jBPM Core .................................................................................................................  83

7. Core Engine API ................................................................................................  85

7.1. Overview ..................................................................................................  85

7.2. KieBase .................................................................................................... 86



v

7.3. KieSession ...............................................................................................  87

7.3.1. ProcessRuntime .............................................................................  87

7.3.2. Event Listeners ..............................................................................  89

7.3.3. Correlation Keys ............................................................................  91

7.3.4. Threads .........................................................................................  92

7.4. RuntimeManager ....................................................................................... 93

7.4.1. Overview .......................................................................................  93

7.4.2. Strategies ......................................................................................  96

7.4.3. Usage ............................................................................................ 97

7.4.4. Configuration .................................................................................. 99

7.5. Configuration ..........................................................................................  108

8. Processes ........................................................................................................  113

8.1. What is BPMN 2.0 ..................................................................................  113

8.2. Process ..................................................................................................  118

8.2.1. Creating a process .......................................................................  118

8.3. Activities .................................................................................................  124

8.3.1. Script task .................................................................................... 124

8.3.2. Service task .................................................................................  126

8.3.3. User task .....................................................................................  127

8.3.4. Reusable sub-process ..................................................................  129

8.3.5. Business rule task ........................................................................  130

8.3.6. Embedded sub-process ................................................................  131

8.3.7. Multi-instance sub-process ............................................................  132

8.4. Events ....................................................................................................  133

8.4.1. Start event ...................................................................................  133

8.4.2. End events ..................................................................................  134

8.4.3. Intermediate events ......................................................................  136

8.5. Gateways ...............................................................................................  139

8.5.1. Diverging gateway ........................................................................  139

8.5.2. Converging gateway .....................................................................  141

8.6. Others ....................................................................................................  142

8.6.1. Variables ...................................................................................... 142

8.6.2. Scripts .........................................................................................  144

8.6.3. Constraints ................................................................................... 145

8.6.4. Timers .........................................................................................  146

8.7. Process Fluent API .................................................................................  147

8.7.1. Example ......................................................................................  147

8.8. Testing ...................................................................................................  149

8.8.1. Unit testing ..................................................................................  149

9. Human Tasks ...................................................................................................  157

9.1. Introduction .............................................................................................  157

9.2. Using User Tasks in our Processes .......................................................... 157

9.3. Data Mappings ........................................................................................ 159

9.4. Task Lifecycle .........................................................................................  161



jBPM Documentation

vi

9.5. Task Service and The Process Engine .....................................................  163

9.6. Task Service API ....................................................................................  163

9.7. Interacting with the Task Service .............................................................. 165

10. Persistence and Transactions ........................................................................  167

10.1. Process Instance State ..........................................................................  167

10.1.1. Runtime State ............................................................................  167

10.2. Audit Log ..............................................................................................  172

10.2.1. The jBPM Audit data model ........................................................  172

10.2.2. Storing Process Events in a Database .........................................  175

10.2.3. Storing Process Events in a JMS queue for further processing .......  177

10.3. Transactions .........................................................................................  177

10.3.1. Container managed transaction ...................................................  179

10.4. Configuration ......................................................................................... 180

10.4.1. Adding dependencies .................................................................. 180

10.4.2. Manually configuring the engine to use persistence .......................  181

10.4.3. Configuring the engine to use persistence using JBPMHelper - for

tests only ............................................................................................... 184

IV. Workbench ...............................................................................................................  187

11. Workbench .....................................................................................................  189

11.1. Installation ............................................................................................  189

11.1.1. War installation ........................................................................... 189

11.1.2. Workbench data .........................................................................  189

11.1.3. System properties ....................................................................... 189

11.2. Quick Start ............................................................................................ 191

11.2.1. Add repository ............................................................................  191

11.2.2. Add project ................................................................................  192

11.2.3. Define Data Model ...................................................................... 196

11.2.4. Define Rule ................................................................................  200

11.2.5. Build and Deploy ........................................................................  202

11.3. Configuration ......................................................................................... 203

11.3.1. User management ......................................................................  203

11.3.2. Roles .........................................................................................  204

11.3.3. Command line config tool ............................................................ 205

11.4. Administration .......................................................................................  206

11.4.1. Administration overview ..............................................................  206

11.4.2. Organizational unit ......................................................................  207

11.4.3. VFS repository ...........................................................................  208

11.5. Introduction ...........................................................................................  208

11.5.1. Log in and log out ......................................................................  208

11.5.2. Home screen .............................................................................. 208

11.5.3. Workbench concepts ..................................................................  209

11.5.4. Initial layout ................................................................................  209

11.6. Changing the layout ..............................................................................  210

11.6.1. Resizing .....................................................................................  211



vii

11.6.2. Repositioning .............................................................................. 211

11.7. Authoring ..............................................................................................  213

11.7.1. Artifact Repository ......................................................................  213

11.7.2. Asset Editor ...............................................................................  215

11.7.3. Project Explorer ..........................................................................  218

11.7.4. Project Editor .............................................................................  224

11.7.5. Validation ...................................................................................  228

11.7.6. Data Modeller ............................................................................. 230

11.7.7. Categories Editor ........................................................................  258

12. Workbench Integration ...................................................................................  261

12.1. REST ...................................................................................................  261

12.1.1. Job calls ....................................................................................  261

12.1.2. Repository calls ..........................................................................  262

12.1.3. Organizational unit calls ..............................................................  264

12.1.4. Maven calls ................................................................................  265

13. Workbench High Availability ..........................................................................  267

13.1. .............................................................................................................. 267

13.1.1. VFS clustering ............................................................................  267

13.1.2. jBPM clustering ..........................................................................  271

14. Designer .........................................................................................................  273

14.1. Designer UI Explained ...........................................................................  274

14.2. Getting started with Modelling ................................................................  275

14.3. Designer Toolbar ................................................................................... 279

15. Form Modeler .................................................................................................  301

15.1. Configure process and human tasks ....................................................... 303

15.2. Generate forms from task definitions ......................................................  305

15.3. Edit forms .............................................................................................  308

15.3.1. Form generated description .........................................................  308

15.3.2. Customizing form ........................................................................ 308

15.3.3. Field types .................................................................................  336

16. Runtime Management ....................................................................................  347

16.1. Deployments .........................................................................................  347

16.1.1. Deployment Units List .................................................................  347

16.2. Jobs .....................................................................................................  348

17. Process and Task Management .....................................................................  349

17.1. Process Management ............................................................................  349

17.1.1. Process Definitions .....................................................................  349

17.2. Tasks ...................................................................................................  352

17.2.1. Task List ....................................................................................  352

17.2.2. New Task (Ad-Hoc Task) ............................................................  362

18. Business Activity Monitoring .........................................................................  365

18.1. Overview ..............................................................................................  365

18.2. Business Dashboards ............................................................................  366

18.3. Process Dashboard ...............................................................................  368



jBPM Documentation

viii

19. Remote API ....................................................................................................  373

19.1. REST ...................................................................................................  373

19.1.1. Additional Information .................................................................  373

19.1.2. Runtime calls .............................................................................  376

19.1.3. History calls ...............................................................................  379

19.1.4. Task calls ..................................................................................  382

19.1.5. Execute calls ..............................................................................  386

19.2. JMS ...................................................................................................... 386

19.2.1. JMS Queue setup ....................................................................... 386

19.2.2. Example JMS usage ...................................................................  387

19.3. Remote Java API ..................................................................................  391

19.3.1. Using the Remote Java RuntimeEngine API .................................  391

V. Eclipse ......................................................................................................................  393

20. jBPM Eclipse Plugin ....................................................................................... 395

20.1. jBPM Eclipse Plugin ..............................................................................  395

20.1.1. Installation ..................................................................................  395

20.1.2. jBPM Project Wizard ...................................................................  397

20.1.3. New BPMN2 Process Wizard ......................................................  400

20.1.4. jBPM Runtime ............................................................................  400

20.1.5. Drools Eclipse plugin ..................................................................  404

20.2. Debugging ............................................................................................  404

20.2.1. The Process Instances View .......................................................  405

20.2.2. The Audit View ...........................................................................  406

21. Eclipse BPMN 2.0 Modeler .............................................................................  409

21.1. Overview ..............................................................................................  409

21.2. Installation ............................................................................................  409

21.3. Documentation ......................................................................................  410

VI. Integration ................................................................................................................  413

22. Integration ......................................................................................................  415

22.1. Maven ..................................................................................................  415

22.1.1. Maven artifacts as deployment units ............................................  415

22.1.2. Use maven for dependency management ..................................... 417

22.2. CDI ....................................................................................................... 420

22.2.1. Overview ....................................................................................  420

22.2.2. Configuring CDI integration .........................................................  423

22.2.3. RuntimeManager as CDI bean ....................................................  426

22.2.4. ...................................................................................................  429

22.3. OSGi ....................................................................................................  429

VII. Advanced Topics .....................................................................................................  431

23. Domain-specific Processes ............................................................................  433

23.1. Introduction ...........................................................................................  433

23.2. Overview ..............................................................................................  434

23.2.1. Work Item Definitions .................................................................. 434

23.2.2. Work Item Handlers ....................................................................  434



ix

23.3. Example: Notifications ...........................................................................  436

23.3.1. The Notification Work Item Definition ...........................................  436

23.3.2. The NotificationWorkItemHandler .................................................  441

23.4. Service Repository ................................................................................  443

23.4.1. Public jBPM service repository ....................................................  445

23.4.2. Setting up your own service repository .........................................  445

24. Exception Management ..................................................................................  449

24.1. Overview ..............................................................................................  449

24.2. Introduction ...........................................................................................  449

24.3. .............................................................................................................. 449

24.3.1. Technical Exceptions ..................................................................  449

24.3.2. Technical Exception Examples ....................................................  452

24.4. .............................................................................................................. 461

24.4.1. Business Exceptions ...................................................................  461

25. Flexible Processes .........................................................................................  465

26. Concurrency and asynchronous execution .................................................... 469

26.1. Concurrency .......................................................................................... 469

26.1.1. Engine execution ........................................................................  469

26.1.2. Multiple knowledge sessions and persistence ...............................  470

26.2. Asynchronous execution ........................................................................  471

26.2.1. Asynchronous handlers ...............................................................  471

26.2.2. jbpm executor ............................................................................  471



x



xi



xii



Welcome and Release Notes





Chapter 1.

3

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodolgy for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.

A big focus for 6.0 was streamling the build, deploy and loading(utilization) aspects of the

system. Building and deploying now align with Maven and the utilization is now convention and

configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible

and better integrated solution; with panels and perspectives via plugins. The base workbench

has been spun off into a standalone project called UberFire, so that anyone now can build high

quality web based workbenches. In the longer term it will facilitate user customised Drools and

jBPM installations.

GIT replaces JCR as the content repository, offering a fast and scalable back-end storage for

content that has strong tooling support. There has been a refocus on simplicity away from

databases with an aim of storing everythign as as text file, even meta data is just a file. The

database is just there to provide fast indexing and search via Lucene. This will allow repositories

now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form

builders, class modellers, execution servers and runtime management. All fully integrated into the

new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related

technologies together under one roof. It also acts as the core shared around for our projects. So

expect to see it a lot.

1.2. Getting Involved

We are often asked "How do I get involved". Luckily the answer is simple, just write some code

and submit it :) There are no hoops you have to jump through or secret handshakes. We have

a very minimal "overhead" that we do request to allow for scalable project development. Below

we provide a general overview of the tools and "workflow" we request, along with some general

advice.

If you contribute some good work, don't forget to blog about it :)



Chapter 1. Introduction

4

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and Jira. Go to http://

www.jboss.org/ and click "Register".

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.

As the image below says "This establishes the terms and conditions for your contributions and

ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/


Submitting issues via JIRA

5

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.

This ensures that all requests are logged and allocated to a release schedule and all discussions

captured in one place. Bug reports, bug fixes, feature requests and feature submissions should

all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue

created.

https://issues.jboss.org/browse/JBRULES  [???](Drools)

https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR


Chapter 1. Introduction

6

1.2.4. Fork Github

With the contributor agreement signed and your requests submitted to jira you should now be

ready to code :) Create a github account and fork any of the drools, jbpm or guvnor sub modules.

The fork will create a copy in your own github space which you can work on at your own pace. If

you make a mistake, don't worry blow it away and fork again. Note each github repository provides

you the clone (checkout) URL, github will provide you URLs specific to your fork.

https://github.com/droolsjbpm

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the drl

fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm


Writing Tests

7

then using a String is not practical so then by all means place them in separate drl files instead

to be loaded from the classpath. If your tests need to use a model, please try to use those that

already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have

the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/

integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm


Chapter 1. Introduction

8

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the

JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,

so we can see all commits for a given issue in the same place. After the id the title of the issue

should come next. Then use a newline, indented with a dash, to provide additional information



Submit Pull Requests

9

related to this commit. Use an additional new line and dash for each separate point you wish to

make. You may add additional JIRA cross references to the same commit, if it's appropriate. In

general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back

to your fork.

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal github area, you can

now submit your work as a pull request. If you look at the top of the page in github for your work

area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the

submission of your pull request.



Chapter 1. Introduction

10

The pull request then goes into a queue for everyone to see and comment on. Below you can see

a typical pull request. The pull requests allow for discussions and it shows all associated commits

and the diffs for each commit. The discussions typically involve code reviews which provide helpful

suggestions for improvements, and allows for us to leave inline comments on specific parts of the

code. Don't be disheartened if we don't merge straight away, it can often take several revisions

before we accept a pull request. Luckily github makes it very trivial to go back to your code, do

some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted

tests that come with a fix will generally be applied quite quickly, where as just tests will often way

until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request

from time to time, otherwise over time it will have merge conflicts and core developers will general

ignore those.



Installation and Setup (Core and IDE)

11

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)

is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the

Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will

provide you with all the dependencies you need to get going: you can simply create a new rule

project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE

for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping

a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the

case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People

have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant jars in your

projects classpath.

1.3.1.1. Dependencies and jars

Drools is broken down into a few modules, some are required during rule development/compiling,

and some are required at runtime. In many cases, people will simply want to include all the

dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some

may prefer to have their "runtime" stripped down to the bare minimum, as they will be deploying

rules in binary form - this is also possible. The core runtime engine can be quite compact, and

only requires a few 100 kilobytes across 3 jar files.

The following is a description of the important libraries that make up JBoss Drools

• knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is

intended as a user api and what is just an engine api.

• knowledge-internal-api.jar - this provides internal interfaces and factories.

• drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine

and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and

deploying via Package or RuleBase objects).

• drools-compiler.jar - this contains the compiler/builder components to take rule source, and build

executable rule bases. This is often a runtime dependency of your application, but it need not

be if you are pre-compiling your rules. This depends on drools-core.

• drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over

the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all

features are easily exposed via this interface. In some cases, it will be easier to go direct to the

Drools API, but in some environments the JSR-94 is mandated.



Chapter 1. Introduction

12

• drools-decisiontables.jar - this is the decision tables 'compiler' component, which uses the

drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which

are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note

are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing

for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues

with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":

For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released poms, which can be found

on the maven repository.

1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or ANT

The jars are also available in the central maven repository [http://search.maven.org/#search|

ga|1|org.drools] (and also in the JBoss maven repository [https://repository.jboss.org/nexus/

index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom.xml like this:

  <dependencyManagement>

    <dependencies>

      <dependency>

        <groupId>org.drools</groupId>

        <artifactId>drools-bom</artifactId>

        <type>pom</type>

        <version>...</version>

        <scope>import</scope>

      </dependency>

      ...

    </dependencies>

  </dependencyManagement>

  <dependencies>

    <dependency>

      <groupId>org.kie</groupId>

      <artifactId>kie-api</artifactId>

    </dependency>

    <dependency>

      <groupId>org.drools</groupId>

      <artifactId>drools-compiler</artifactId>

      <scope>runtime</scope>

    </dependency>

    ...

  <dependencies>

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~


Installing and using

13

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the maven repository.

If you're still using ANT (without Ivy), copy all the jars from the download zip's binaries directory

and manually verify that your classpath doesn't contain duplicate jars.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form

(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature

that allows you to keep your runtime very light. You may use drools-compiler to produce rule

packages "out of process", and then deploy them to a runtime system. This runtime system only

requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,

and many people do not need to "trim" their application this much, but it is an ideal option for

certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse

GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre

packaged, as well as a choice of other tools separate to rules. You can choose just to install rules

from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (a required dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components

in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or

downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,

as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.

Location is:

http://download.eclipse.org/tools/gef/updates/releases/

Next you choose the GEF plug-in:



Chapter 1. Introduction

14

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is

completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in directory,

and the plug-in jar itself. You place the plug-in jar into your Eclipse applications plug-in directory,

and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your

main eclipse folder (do not just copy the file there, extract it so that the feature and plugin jars end

up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the

'Open Perspective' button in the top right corner of your Eclipse window, select 'Other...' and

pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

http://www.jboss.org/drools/downloads.html


Installing and using

15

perspectives, the installation probably was unsuccessful. Check whether you executed each of

the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have

Eclipse GEF installed (check whether the org.eclipse.gef_3.4.*.jar exists in the plugins directory

in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the

org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot

find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found

no our homepage here:

http://www.jboss.org/drools/

1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of jars on your file system that represent one specific release of

the Drools project jars. To create a runtime, you must point the IDE to the release of your choice.

If you want to create a new runtime based on the latest Drools project jars included in the plugin

itself, you can also easily do that. You are required to specify a default Drools runtime for your

Eclipse workspace, but each individual project can override the default and select the appropriate

runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.

To open up your preferences, in the menu Window select the Preferences menu item. A new

preferences dialog should show all your preferences. On the left side of this dialog, under the

Drools category, select "Installed Drools runtimes". The panel on the right should then show the

currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something

like the figure below.

http://www.jboss.org/drools/


Chapter 1. Introduction

16

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,

requiring the name for your runtime and the location on your file system where it can be found.



Installing and using

17

In general, you have two options:

1. If you simply want to use the default jars as included in the Drools Eclipse plugin, you can create

a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..." button. A

file browser will show up, asking you to select the folder on your file system where you want this

runtime to be created. The plugin will then automatically copy all required dependencies to the

specified folder. After selecting this folder, the dialog should look like the figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on

your file system that contains all the necessary Drools libraries and dependencies. Instead of

creating a new Drools runtime as explained above, give your runtime a name and select the

location of this folder containing all the required jars.



Chapter 1. Introduction

18

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,

as shown below. Click on checkbox in front of the newly created runtime to make it the default

Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project

that have not selected a project-specific runtime.

You can add as many Drools runtimes as you need. For example, the screenshot below shows

a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0



Installing and using

19

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.

Note that you will need to restart Eclipse if you changed the default runtime and you want to make

sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an

existing Java project to a Drools project using the "Convert to Drools Project" action that is shown

when you are in the Drools perspective and you right-click an existing Java project), the plugin

will automatically add all the required jars to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for

that project, unless you specify a project-specific one. You can do this in the final step of the New

Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox

and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace

settings ..." link, the workspace preferences showing the currently installed Drools runtimes will

be opened, so you can add new runtimes there.



Chapter 1. Introduction

20

You can change the runtime of a Drools project at any time by opening the project properties

(right-click the project and select Properties) and selecting the Drools category, as shown below.

Check the "Enable project specific settings" checkbox and select the appropriate runtime from the

drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences

showing the currently installed Drools runtimes will be opened, so you can add new runtimes

there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime

as defined in your global preferences.



Building from source

21

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each maven artifact is available in the JBoss maven repository as a source

jar. The same source jars are also included in the download zips. However, if you want to build

from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are

hosted on Github [https://github.com]:

• https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our

latest changes regularly and optionally share your changes with us. To learn more about git, read

the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/


Chapter 1. Introduction

22

$ git clone git@github.com:droolsjbpm/guvnor.git

...

$ cd guvnor

$ mvn clean install -DskipTests -Dfull

...

However, there are a lot potential pitfalls, so if you're serious about building from source and

possibly contributing to the project, follow the instructions in the README file in droolsjbpm-

build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/

README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting

Eclipse open the workspace in the root of your subversion checkout.

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md


Eclipse

23



Chapter 1. Introduction

24



Eclipse

25

When calling mvn install all the project dependencies were downloaded and added to the local

Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository

is. To do this setup an M2_REPO classpath variable.



Chapter 1. Introduction

26



Eclipse

27



Chapter 1. Introduction

28



Chapter 2.

29

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE API 6.0.0

2.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues

to grow. KIE is also used for the generic parts of unified API; such as building, deploying and

loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

Figure 2.1. KIE Anatomy

2.1.2. Maven aligned projects and modules and Maven

Deployment

One of the biggest complaints during the 5.x series was the lack of defined methodolgy for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A

big focus for 6.0 was streamling the build, deploy and loading(utilization) aspects of the system.



Chapter 2. Release Notes

30

Building and deploying now align with Maven and Maven repositories. The utilization for loadng

rules and processess is now convention and configuration oriented, instead of programmatic, with

sane default to minimise the configuration.

Projects can be built with Maven and installed ot the local M2_REPO or remote Maven

repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to

access.

2.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults

ar used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

  <kbase name="kbase1" packages="org.mypaackges>

    <ksession name="ksession1"/>

  </kbase>

</kmodule>

Example 2.2. Utilize the KieSession

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

2.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This

means that the second KieBase beyond all the rules, function and processes directly defined into

it will also contain the ones created in the included KieBase. This inclusion can be done both

declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">

  <kbase name="kbase2" includes="kbase1">

    <ksession name="ksession2"/>

  </kbase>



KieModules, KieContainer and KIE-CI

31

</kmodule>

or programmatically using the KieModuleModel.

Example 2.4. Including a KieBase into another programmatically

KieModuleModel kmodule = KieServices.Factory.get().newKieModuleModel();

KieBaseModel kieBaseModel1 = kmodule.newKieBaseModel("KBase2").addInclude("KBase1");

2.1.5. KieModules, KieContainer and KIE-CI

Any Maven produce JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loade

from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency

is on the classpath it embeds maven and all resolving is done automatically using Maven and can

access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,

via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies

for the artefact being loaded. Maven LATEST, SNAPSHOT, RELEASE an version ranges are

supported.

Example 2.5. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.newKieContainer(ks.newReleaseId("org.mygroup", "myartefact", "1.0"));

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

KieContainers can be dynamically updated to a specifc verison, all resolved through Maven if KIE-

CI is on the classpath. For stateful KieSessions the existing sessions are incrementally updated.

Example 2.6. Dynamically Update- Java

KieContainer kContainer.updateToVersion( ks.newReleaseId("org.mygroup", "myartefact", "1.1") );

2.1.6. KieScanner

The KieScanner is a maven-oriented replacement of the KnowledgeAgent present in Drools 5. In

fact it allows to continously monitoring your maven repository to check if a new release of a Kie



Chapter 2. Release Notes

32

project has been installed and if so deploying it in the KieContainer wrapping that project. The

use of the KieScanner requires kie-ci.jar to be on the classpath.

In more detail a KieScanner can be registered on a KieContainer as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "myartifact", "1.0-

SNAPSHOT" );

KieContainer kContainer = kieServices.newKieContainer( releaseId );

KieScanner kScanner = kieServices.newKieScanner( kContainer );

// Start the KieScanner polling the maven repository every 10 seconds

kScanner.start( 10000L );

In this example the KieScanner is configured to run with a fixed time interval, but it is also possible

to run it on demand by invoking the scanNow() method on it. If the KieScanner finds in the

maven repository an updated version of the Kie project used by that KieContainer it automatically

downloads the new version and triggers an incremental build of the new project. From this moment

all the new KieBases and KieSessions created from that KieContainer will use the new project

version.

2.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance

problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at

the KieContext level, there is then one child ClassLoader per namespace. This makes it cleaner

to add and remove rules, but there can now be no referencing betwen namespaces in DRL files;

i.e. functions can only be used by the namespaces that declared them. The recommendation is to

use static java methods in your project, which is visible to all namespaces; but those cannot (like

other classes on the root KieContainer ClassLoader). be dynamiccally updated.

2.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through

maven dependency "knowledge-api-legacy5-adapter". Because the nature of deployment has

significantly changed in 6.0, it was not possible to provide an adapter bridge for the

KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll

fix for 6.1

2.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE api, the entire

documentation has not yet been brought up to date. For this reason there will be continued



New and Noteworthy in jBPM 6.0.0

33

references to old terminologies. Apologies in adanced, and thank you for your patience. We hope

those in the community will work with us to get the documentation updated throughout, for 6.1

2.2. New and Noteworthy in jBPM 6.0.0

2.2.1. KIE api

A new public API has been created for interacting with the core engine (shared between jBPM and

Drools). This not only handles runtime operations to start processes, etc. but also instantiating

sessions, registering listeners, configuration, etc.

New APIs were added in various areas, like for example the TaskService interface was moved

to the public API, the new RuntimeManager was introduced and a lot of related interfaces and

classes were added as well.

For backwards compatibility with v5, a knowledge-api jar has been constructed, that implements

the old v5 knowledge-api interfaces on top of the v6 engine. Make sure to include this jar in your

classpath if you want to keep using the v5 api.

2.2.2. jBPM Core Engine

The execution engine itself has (mostly) remained the same, although we've done various

improvements in the following areas:

• RuntimeManager: instantiating a ksession (and an associated task service) has been simplified

significantly, by introducing a runtime manager where you can simply ask for a reference

to a ksession whenever you need it. The Runtime manager is responsible for initialization,

configuration and disposal of the ksession (and task service), and three predefined strategies

are available:

• Singleton: the RuntimeManager reused the same ksession for all requests (and executes the

requests in sequence, one at a time)

• Session per request: the RuntimeManager instantiates a new ksession per request that will

be used for executing that request and disposed at the end. Each request will receive it's own

ksession and they can all be executed in parallel.

• Session per process instance: the RuntimeManager reuses the same ksession for all requests

related to one specific process instance. This might be necessary if you are storing data

inside your session (for example for rule evaluations) that you need to be available later in

the process as well. Note that the session is disposed after each command but stored in the

database so it can be restored whenever necessary.

• jBPM Services (CDI): To simplify integration of jBPM inside CDI-based applications, the jbpm-

services module contains various CDI services that you can configure and use inside your

application simply by injecting the necessary services (like a RuntimeManager or TaskService

for example) inside your application, making integration easier than ever.



Chapter 2. Release Notes

34

• Timer service: a Quartz-based timer service is now available, that allows you to dispose your

session at any point in time, and the timer service will be responsible for rehydrating a ksession

whenever a timer should be fired. This timer service also works in a clustered environment,

where multiple nodes can work together on sharing the work load but timers will only be fired

once by one of the nodes.

• Exception and compensation management: various improvements in this area allow you to

use more BPMN2 constructs related to exception and compensation management in your

processes, and various strategies have been extended and documented to better handle

exceptions in different ways.

• Asynchronous handlers: asynchronous execution of interaction with external services can now

be implemented by reusing the asynchronous job executor.

• Asynchronous auditing using JMS: audit logging can now also be done asynchronously by

sending the events to a JMS queue rather than persisting them as part of the engine transaction.

The task service has been refactored significantly as well, and the TaskService APIs have been

moved to the public kie-api. Although the TaskService interfaces themselves haven't changed

a lot, the internal implementation has been simplified. Auditing for the task-related operations

(similar to the runtime engine auditing) has been added.

By default, a local task service will always be used by a ksession to perform various task-related

operations (creating a task, being notified when a task is completed). Setting up a remote singleton

task service and connecting multiple ksessions to this (using Mina or HornetQ) as was possible

in jBPM5 is no longer possible, as it introduces more challenges that it brings advantages. Since

the jBPM execution service now also provides a remote API for all task-related operations, we

believe this setup is no longer necessary, and has been replaced by the use of a local task service

in all use cases.

2.2.3. jBPM Designer

jBPM designer has been reimplemented and is fully integrated into the workbench. It easly now

integrates with many of the workbench services available. In addition following features were

added/improved on:

• Improvement of jBPM Simulation engine and the UI. Added ability to specify simulation

properties on more node type and added more results graphs such as the the Total Cost graph.

• Many updates to the Designer Toolbar for usability purposes.

• Visual Validation update - it now is a real-time visualization of issues done during process

modeling.

• Ability to generate task forms for specific task node.

• Integration with the jBPM Form Modeler for both task and process forms.



jBPM Data Modeler

35

• Update to process properties - added grouping of properties into sections making it more user

friendly to find properties.

• Update to Object Library - added type specific tasks to pallete (rather than having to morph to

a certain type after adding a task to the canvas).

• Save/Remove/CopyDelete feature have been added directly into Designer and integrate with

the workbench services for those operations.

• Autosave - option for users to enable auto-saving of their business process during modelling.

• Two new default Service Tasks (Rest and WebServices)

2.2.4. jBPM Data Modeler

A new web-based data modeler is integrated in the workbench, which allows non-technical users

to create data models (to be used in your processes and rules) in a user-friendly manner. These

models are saved as Java classes (with the necessary annotations) in the project and added to

the kjar upon build and deploy. Check the chapter on Data Modeler in the Workbench Part for

all the details.

2.2.5. Form Modeler

A new web-based form modeler is integrated in the workbench, which allows non-technical users

to create forms (for starting processes and/or completing human task). The form modeler is a

WYSIWIG editor where you can drag and drop form elements (text boxes, labels, etc.), link it to

data that is expected as input or output of the form, customize properties of each element and the

layout, etc. These forms are then shown when starting the process or completing a task, integrated

into the appropriate runtime views. Check the chapter on Form Modeler in the Workbench Part

for all the details.

2.2.6. jBPM Console

The jBPM console has been reimplemented and is integrated into the workbench as well. It

provides similar features as jBPM5 (starting process instances, inspecting current state and

variables, looking at task lists) but is now much more powerful and exposes a lot more features.

Check the chapter on Process and Task Management in the Workbench Part for all the details.

2.2.7. BAM / Reporting

A new web-based monitoring and reporting tool has been integrated in the workbench. This

displays charts, tables, etc. about the current status of your application(s). It comes with some

process and task dashboards out-of-the-box (showing for example the number of running process

instances, the number of tasks completed per time frame, etc.). These dashboards however

can be fully customized to show the data that is relevant to you, including for example your

own data sources, making domain-specific charts (for example showing your key performance

indicators (KPIs) instead of generic process-related charts). Check the chapter on Business

Activity Monitoring in the Workbench Part for all the details.



Chapter 2. Release Notes

36

2.2.8. Workbench

A workbench application, based on the UberFire framework, now unifies all web-based editors

and tools into one large, configurable web application. It has many features, including:

• Configurable workspace where you layout your own views by dragging and dropping

• Unified login and role-based authentication, where what features you see depends on your role

(admin, analyst, developer, user, manager, etc.).

• A new home screen that will guide you through the life cycle of your business processes

(authoring, deployment, execution, tasks and reporting).

• Git-based repository that supports versioning and collaboration.

• New project structure where artifacts (processes, rules, etc.) are combined into kjars (we

removed the custom binary packages and replaced them with a normal jar, containing the

source artifacts) when a project is built. These kjars now also include not only processes and

rules, but also forms, configuration files, data models (Java classes), etc. Kjars are maven

artefacts themselves (they have a group, id and version) and exposed as a Maven repository.

When creating a ksession, Maven can be used to download the necessary kjars for your project

from this Maven repository.

• Sample playground repositories are (optionally) installed when starting up the workbench the

first time, to get you started quickly with some predefined examples.

Check the Workbench Part for all the details.

2.2.9. Remote API

The remote API has been redesigned and allows users to remotely connect to a running execution

server and pass commands. The remote runtime API exposes (almost) the entire KieSession and

TaskService API using REST or JMS, so commands can be sent to the remote execution server

for processing and the results are returned. See the chapter on Business Activity Monitoring for

all the details.

Guvnor also provides a REST api to access the various repositories, projects and artifacts inside

these projects and manage and build them.

2.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is

inspired by Eclipse and provides a clean, extensible and flexible framework for the workebench.

The end result is not only a richer experience for our end users, but we can now develop more

rapidly with a clean component based architecture. If you like he Workbench experience you can

use UberFire today to build your own web based dashboard and console efforts.



New and Noteworthy in KIE Workbench 6.0.0

37

As well as the move to a UberFire the other biggest change is the move from JCR to GIT; there

is an utility project to help with migration. GIT is the most scalable and powerful source repository

bar none. JGIT provides a solid OSS implementation for GIT. This addresses the continued

performance problems with the various JCR implementations, which would slow down once the

number of files and number of versions become too high. There has been a big "low tech" drive,

to remove complexity. Everything is now stored as a file, including meta data. The database is

ony there to provide fast indexing and search. So importing and exporting is all standard GIT and

external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team

provider. This team provider was not full featured and not available outside eclipse. GIT enables

our repository to work any existing GIT tool or team provider. While not yet supported in the UI, this

will be added over time, it is possible to connect to the repo and tag and branch and restore things.

Figure 2.2. Workbench

The Guvnor brand leaked too much from it's intended role; such as the authoring metaphores,

like Decision Tables, being considered Guvnor components instead of Drools components. This

wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus

has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building

a web based IDE. Such as Maven integration for building and deploying, management of Maven



Chapter 2. Release Notes

38

repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions

using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own

plugins for things like decision tables, guided editors, bpm2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called

KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

plugins. The jBPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-

WB.

Figure 2.3. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project defintions,

Maven based Projects, Maven Artifact Repository. These common features are

described in more detail throughout this documentation.



New and Noteworthy in Integration 6.0.0

39

The two primary distributions consist of:

• KIE Drools Workbench

• Drools Editors, for rules and supporting assets.

• jBPM Designer, for Rule Flow and supporting assets.

• KIE Workbench

• Drools Editors, for rules and supporting assets.

• jBPM Designer, for BPMN2 and supporting assets.

• jBPM Console, runtime and Human Task support.

• jBPM Form Builder.

• BAM.

Workbench highlights:

• New flexible Workbench environment, with perspectives and panels.

• New packaging and build system following KIE API.

• Maven based projects.

• Maven Artifact Repository replaces Global Area, with full dependency support.

• New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java

classes to the authoring environment. Java classes are packaged into the project and can be

used within rules, processes etc and externally in your own applications.

• Virtual File System replaces JCR with a default GIT based implementation.

• Default GIT based implementation supports remote operations.

• External modifications appear within the Workbench.

• Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the

package definition to individual editors so you need only import types used for an asset and not

the package as a whole.

2.4. New and Noteworthy in Integration 6.0.0

2.4.1. CDI

CDI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and

KieBases.



Chapter 2. Release Notes

40

@Inject

@KSession("kbase1") 

@KReleaseId( groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieBase kbase1v10;

@Inject

@KBase("kbase1") 

@KReleaseId( groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieBase kbase1v10;

Figure 2.4. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession("ksession1") 

@KReleaseId( groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieSession ksessionv10;

@Inject

@KSession("ksession1") 

@KReleaseId( groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieSession ksessionv11;

Figure 2.5. Side by side version loading for 'jar1.KBase1' KieBase

2.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'

with a more powerful spring version. The aim is for consistency with kmodule.xml

2.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for

consistency with spring and kmodule.xml

2.4.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing

has been moved to PAX.



Part II. Getting Started
Introduction and getting started with jBPM





Chapter 3.

43

Chapter 3. Overview

3.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source

(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor

business processes throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need

to be executed to achieve those goals, and the order of those goals are depicted using a flow

chart. This process greatly improves the visibility and agility of your business logic. jBPM focuses

on executable business processes, which are business processes that contain enough detail

so they can actually be executed on a BPM engine. Executable business processes bridge the

gap between business users and developers as they are higher-level and use domain-specific

concepts that are understood by business users but can also be executed directly.

Business processes need to be supported throughout their entire life cycle: authoring, deployment,

process management and task lists, and dashboards and reporting.

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows you

to execute business processes using the latest BPMN 2.0 specification. It can run in any Java

environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes

throughout their entire life cycle:

• Pluggable human task service based on WS-HumanTask for including tasks that need to be

performed by human actors.

• Pluggable persistence and transactions (based on JPA / JTA).

• Web-based process designer to support the graphical creation and simulation of your business

processes (drag and drop).

• Web-based data modeler and form modeler to support the creation of data models and process

and task forms



Chapter 3. Overview

44

• Web-based, customizable dashboards and reporting

• All combined in one web-based workbench, supporting the complete BPM life cycle:

• Modeling and deployment - author your processes, rules, data models, forms and other assets

• Execution - execute processes, tasks, rules and events on the core runtime engine

• Runtime Management - work on assigned task, manage process instances, etc

• Reporting - keep track of the execution using Business Activity Monitoring capabilities

• Eclipse-based developer tools to support the modeling, testing and debugging of processes

• Remote API to process engine as a service (REST, JMS, Remote Java API)

• Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process

management features and tools in a way that both business users and developers like. Domain-

specific nodes can be plugged into the palette, making the processes more easily understood by

business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-

life situations that cannot easily be described using a rigid process. We bring control back to the

end users by allowing them to control which parts of the process should be executed; this allows

dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a

combination of business processes with business rules and complex event processing. jBPM can

be combined with the Drools project to support one unified environment that integrates these

paradigms where you model your business logic as a combination of processes, rules and events.



Overview

45

3.2. Overview

Figure 3.1.

This figure gives an overview of the different components of the jBPM project.

• The core engine is the heart of the project and allows you to execute business processes in

a flexible manner. It is a pure Java component that you can choose to embed as part of your

application or deploy it as a service and connect to it through the web-based UI or remote APIs.

• An optional core service is the human task service that will take care of the human task life

cycle if human actors participate in the process.

• Another optional core service is runtime persistence; this will persist the state of all your

process instances and log audit information about everything that is happening at runtime.

• Applications can connect to the core engine by through it's Java API or as a set of CDI

services, but also remotely through a REST and JMS API.

• Web-based tools allows you to model, simulate and deploy your processes and other related

artifacts (like data models, forms, rules, etc.):

• The process designer allows business users to design and simulate business processes in

a web-based environment.



Chapter 3. Overview

46

• The data modeler allows non-technical users to view, modify and create data models for use

in your processes.

• A web-based form modeler also allows you to create, generate or edit forms related to your

processes (to start the process or to complete one of the user tasks).

• Rule authoring allows you to specify different types of business rules (decision tables, guided

rules, etc.) for combination with your processes.

• All assets are stored and managed on the Guvnor repository (exposed through GIT) and can

be managed (versioning), built and deployed.

• The web-based management console allows business users to manage their runtime (manage

business processes like start new processes, inspect running instances, etc.), to manage their

task list and to perform Business Activity Monitoring (BAM) and see reports.

• The Eclipse-based developer tools are an extension to the Eclipse IDE, targeted towards

developers, and allows you to create business processes using drag and drop, test and debug

your processes, etc.

Each of the components are described in more detail below.

3.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes

your business processes. It can be embedded as part of your application or deployed as a service

(possibly on the cloud). Its most important features are the following:

• Solid, stable core engine for executing your process instances.

• Native support for the latest BPMN 2.0 specification for modeling and executing business

processes.

• Strong focus on performance and scalability.

• Light-weight (can be deployed on almost any device that supports a simple Java Runtime

Environment; does not require any web container at all).

• (Optional) pluggable persistence with a default JPA implementation.

• Pluggable transaction support with a default JTA implementation.

• Implemented as a generic process engine, so it can be extended to support new node types

or other process languages.

• Listeners to be notified of various events.

• Ability to migrate running process instances to a new version of their process definition



Process Designer

47

The core engine can also be integrated with a few other (independent) core services:

• The human task service can be used to manage human tasks when human actors need to

participate in the process. It is fully pluggable and the default implementation is based on the

WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,

and some more advanced features like escalation, delegation, rule-based assignments, etc.

• The history log can store all information about the execution of all the processes in the engine.

This is necessary if you need access to historic information as runtime persistence only stores

the current state of all active process instances. The history log can be used to store all current

and historic states of active and completed process instances. It can be used to query for any

information related to the execution of process instances, for monitoring, analysis, etc.

3.4. Process Designer

The web-based designer allows you to model your business processes in a web-based

environment. It is targeted towards business users and offers a graphical editor for viewing and

editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports

round-tripping between the Eclipse editor and the web-based designer. It also supports simulation

of processes.

Figure 3.2. Web-based designer for creating BPMN2 processes

3.5. Data Modeler

Processes almost always have some kind of data to work with. The data modeler allows non-

technical users to view, edit or create these data models.



Chapter 3. Overview

48

Typically, a business process analyst or data analyst will capture the requirements for a process or

application and turn these into a formal set of interrelated data structures. The new Data Modeler

tool provides an easy, straightforward and visual aid for building both logical and physical data

models, without the need for advanced development skills or explicit coding. The data modelers

is transparently integrate into the workbench. Its main goals are to make data models into first

class citizens in the process improvement cycle and allow for full process automation through the

integrated use of data structures (and the forms that will be used to interact with them).

3.6. Form Modeler

The jBPM Form Modeler is a form engine and editor that enables users to create forms to capture

and display information during process or task execution, without needing any coding or template

markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Figure 3.3. Form Modeler

Key features:

• Form Modeling WYSIWYG UI for forms

• Form autogeneration from data model / Java objects

• Data binding for Java objects



Process Instance and Task Management

49

• Formula and expressions

• Customized forms layouts

• Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building

and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior

and look&feel.

3.7. Process Instance and Task Management

Business processes can be managed through a web-based management console. It is targeted

towards business users and its main features are the following:

• Process instance management: the ability to start new process instances, get a list of running

process instances, visually inspect the state of a specific process instances.

• Human task management: being able to get a list of all your current tasks (either assigned to you

or that you might be able to claim), and completing tasks on your task list (using customizable

task forms).

Figure 3.4. Managing your process instances

3.8. Business Activity Monitoring

As of version 6.0, jBPM comes with a full-featured BAM tooling which allows non-technical users to

visually compose business dashboards. With this brand new module, to develop business activity

monitoring and reporting solutions on top of jBPM has never been so easy!



Chapter 3. Overview

50

Figure 3.5. Business Activity Monitoring

Key features:

• Visual configuration of dashboards (Drag'n'drop).

• Graphical representation of KPIs (Key Performance Indicators).

• Configuration of interactive report tables.

• Data export to Excel and CSV format.

• Filtering and search, both in-memory or SQL based.

• Data extraction from external systems, through different protocols.

• Granular access control for different user profiles.

• Look'n'feel customization tools.

• Pluggable chart library architecture.

• Chart libraries provided: NVD3 & OFC2.

Target users:

• Managers / Business owners. Consumer of dashboards and reports.

• IT / System architects. Connectivity and data extraction.

• Analysts. Dashboard composition & configuration.

To get further information about the new and noteworthy BAM capabilities of jBPM please read

the chapter Business Activity Monitoring.



Workbench

51

3.9. Workbench

The workbench is the web-based application that combines all of the above web-based tools into

one configurable solution.

It supports the following:

• A repository service to store your business processes and related artefacts, using a GIT

repository, which supports versioning, remote accessing (as a file system), and using REST

services.

• A web-based user interface to manage your business processes, targeted towards business

users; it also supports the visualization (and editing) of your artifacts (the web-based editors

like designer, data and form modeler are integrated here), but also categorisation, build and

deployment, etc..

• Collaboration features to have multiple actors (for example business users and developers)

work together on the same project.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

Figure 3.6. KIE workbench application

3.10. Eclipse Developer Tools

The Eclipse-based tools are a set of plugins to the Eclipse IDE and allow you to integrate your

business processes in your development environment. It is targeted towards developers and has

some wizards to get started, a graphical editor for creating your business processes (using drag

and drop) and a lot of advanced testing and debugging capabilities.



Chapter 3. Overview

52

Figure 3.7. Eclipse editor for creating BPMN2 processes

It includes the following features:

• Wizard for creating a new jBPM project

• A graphical editor for BPMN 2.0 processes

• The ability to plug in your own domain-specific nodes

• Validation

• Runtime support (so you can select which version of jBPM you would like to use)

• Graphical debugging to see all running process instances of a selected session, to visualize the

current state of one specific process instance, etc.



Chapter 4.

53

Chapter 4. Getting Started

4.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].

Select the version you want to download and then select which artifact you want:

• bin: all the jBPM binaries (jars) and their dependencies

• src: the sources of the core components

• docs: the documentation

• examples: some jBPM examples, can be imported into Eclipse

• installer: the jbpm-installer, downloads and installs a demo setup of jBPM

• installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains

a number of dependencies prepackages (so they don't need to be downloaded separately)

4.2. Getting Started

If you like to take a quick tutorial that will guide you through most of the components using a simple

example, take a look at the Installer chapter. This will teach you how to download and use the

installer to create a demo setup, including most of the components. It uses a simple example to

guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine

(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more

complex topics like domain-specific processes, flexible processes, etc. After reading the core

chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.

Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes

and integrate the engine with your application. These processes can be started from the installer

or be started from scratch.

4.3. Community

Here are a lot of useful links part of the jBPM community:

• A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to

jBPM

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm


Chapter 4. Getting Started

54

• The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

• A user forum [http://www.jboss.com/index.html?module=bb&amp;op=viewforum&amp;f=217]

for asking questions and giving answers

• A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests

and roadmap

• A continuous build server [https://hudson.jboss.org/hudson/job/jBPM/] for getting the

latest snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-

distribution/target/]

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most

of the real-time discussion about the project takes place and where you can find most of the

developers most of their time as well. Don't have an IRC client installed? Simply go to http://

webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join

the fun.

4.4. Sources

4.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

• The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

• The web-based designer is based on Oryx/Wapama and is MIT License

• The Drools project is Apache License v2.0.

4.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project

can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

• Other components related to the jBPM and Drools project can be found here [https://github.com/

droolsjbpm].

• The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-modeler/

org.eclipse.bpmn2-modeler.git].

• The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&amp;op=viewforum&amp;f=217
http://www.jboss.com/index.html?module=bb&amp;op=viewforum&amp;f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer


Building from source

55

• The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]

note this is an aggragate of other projects (drools-wb, jbpm-console-ng)

4.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this

README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

4.5. What to do if I encounter problems or have

questions?

You can always contact the jBPM community for assistance.

IRC: #jbpm at chat.freenode.net

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions


56



Chapter 5.

57

Chapter 5. jBPM Installer

5.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you

don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

Tip

To check whether Java and Ant are installed correctly, type the following

commands inside a command prompt:

java -version

ant -version

This should return information about which version of Java and Ant you are

currently using.

5.2. Downloading the Installer

First of all, you need to  download [https://sourceforge.net/projects/jbpm/files/jBPM%206/] the

installer and unzip it to your local file system. There are two versions

• full installer - which already contains a lot of the dependencies that are necessary during the

installation

• minimal installer - which only contains the installer and will download all dependencies

In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/]

5.3. Demo Setup

The easiest way to get started is to simply run the installation script to install the demo setup.

The demo install will setup all the web tooling (on top of JBoss AS) and Eclipse tooling in a pre-

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/


Chapter 5. jBPM Installer

58

configured setup. Go into the jbpm-installer folder where you unzipped the installer and (from a

command prompt) run:

ant install.demo

This will:

• Download JBoss AS

• Configure and deploy the web tooling

• Download Eclipse

• Install the Drools and jBPM Eclipse plugin

• Install the Eclipse BPMN 2.0 Modeler

Running this command could take a while (REALLY, not kidding, we are for example downloading

an Eclipse installation, even if you downloaded the full installer).

Tip

The script always shows which file it is downloading (you could for example check

whether it is still downloading by checking the whether the size of the file in question

in the jbpm-installer/lib folder is still increasing). If you want to avoid downloading

specific components (because you will not be using them or you already have them

installed somewhere else), check below for running only specific parts of the demo

or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting

the demo setup:

ant start.demo

This will:

• Start H2 database server

• Start the JBoss AS

• Start Eclipse



10-Minute Tutorial using the Workbench

59

Once everything is started, you can start playing with the Eclipse and web tooling, as explained

in the following sections.

If you only want to try out the web tooling and do not wish to download and install the Eclipse

tooling, you can use these alternative commands:

ant install.demo.noeclipse

ant start.demo.noeclipse

Similarly, if you only want to try out the Eclipse tooling and do not wish to download and install

the web tooling, you can use these alternative commands:

ant install.demo.eclipse

ant start.demo.eclipse

Now continue with the 10-minute tutorials. Once you're done playing and you want to shut down

the demo setup, you can use:

ant stop.demo

If at any point in time would like to start over with a clean demo setup - meaning all changes you did

inside the web tooling and/or saved in the database will be lost, you can run the following command

(after which you can run the installer again from scratch, note that this cannot be undone):

ant clean.demo

5.4. 10-Minute Tutorial using the Workbench

Open up the process management console:

http://localhost:8080/jbpm-console

Note

It could take a minute to start up the AS and web application. If the web page

doesn't show up after a while, make sure you don't have a firewall blocking that

port, or another application already using the port 8080. You can always take a

look at the server log jbpm-installer/jboss-as-7.1.1.Final/standalone/log/server.log

Log in, using krisv / krisv as username / password.

http://localhost:8080/jbpm-console


Chapter 5. jBPM Installer

60

Using a prebuilt Evaluation example, the following screencast [http://people.redhat.com/kverlaen/

jbpm6F-installer-console.swf] gives an overview of how to manage your process instances. It

shows you:

• How to build and deploy a process

• How to start a new process instance

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

Figure 5.1.[http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf]

The workbench supports the entire life cycle of your business processes: authoring, deployment,

process management, tasks and dashboards.

• The project authoring perspective allows you to look at existing repositories, where each project

can contain business processes (but also business rules, data models, forms, etc.). By default,

the workbench will download two sample playground repositories, containing examples to look

at.

http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf


10-Minute Tutorial using the Workbench

61

• In this screencast, the Evaluation project inside the jbpm-playground repository is used.

• The project explorer shows all available artefacts:

• evaluation: business process describing the evaluation process as a sequence of tasks

• evaluation-taskform: process form to start the evaluation process

• PerformanceEvaluation-taskform: task form to perform the evaluation tasks

• To make a process available for execution, you need to successfully build and deploy it first.

To do so, open up the Project Editor (from the Tools menu) and click Build & Deploy.

• To manage your process definitions and instances, click on the "Process Management" menu

option at the top menu bar an select one of available options depending on you interest:

• Process Definitions - lists all available process definitions

• Process Instances - lists all active process instances (allows to show completed, aborted as

well by changing filter criteria)

• Process definitions panel allow you to start a new process instance by clicking on the "Play"

button. The process form (as defined in the project) will be shown, where you need to fill in the

necessary information to start the process. In this case, you need to fill the user you want to

start an evaluation for (in this case use "krisv") and a reason for the request, after which you

can complete the form. Some details about the process instance that was just started will be

shown in the process instance details panel. From there you can access additional details:

• Process model - to visualize current state of the process

• Process variables - to see current values of process variables

The process instance that you just started is first requiring a self-evaluation of the user and is

waiting until the user has completed this task.

• To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top

bar and select "Task List" (you may need to click refresh to update your task view). The personal

tasks table should show a "Performance Evaluation" task reserved for you. After starting the

task, you can complete the task, which will open up the task form related to this task. You can fill

in the necessary data and then complete the form and close the window. After completing the

task, you could check the "Process Instances" once more to check the progress of your process

instance. You should be able to see that the process is now waiting for your HR manager and

project manager to also perform an evaluation. You could log in as "john" / "john" and "mary" /

"mary" to complete these tasks.

• After starting and/or completing a few process instances and human tasks, you can generate a

report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".

This is a set of see predefined charts that allow users to spot what is going on in the system.

Charts can be fully customized as well, as explained in the Business Activity Monitoring chapter.



Chapter 5. jBPM Installer

62

5.5. 10-Minute Tutorial using Eclipse

The following screencast [http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf] gives

an overview of how to use the Eclipse tooling. It shows you:

• How to import and execute the evaluation sample project

• Import the evaluation project (included in the jbpm-installer)

• Open the Evaluation.bpmn process

• Open the com.sample.ProcessTest Java class

• Execute the ProcessTest class to run the process

• How to create a new jBPM project (including sample process and JUnit test)

Figure 5.2.[http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf]

You can import the evaluation project - a sample included in the jbpm-installer - by selecting "File

-> Import ...", select "Existing Projects into Workspace" and browse to the jbpm-installer/sample/

evaluation folder and click "Finish". You can open up the evaluation process and the ProcessTest

class. To execute the class, right-click on it and select "Run as ... - Java Application". The console

should show how the process was started and how the different actors in the process completed

the tasks assigned to them, to complete the process instance.

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf


Configuration

63

You could also create a new project using the jBPM project wizard. The sample projects contain

a process and an associated Java file to start the process. Select "File - New ... - Project ..."

and under the "jBPM" category, select "jBPM project" and click "Next". Give the project a name

and click "Next". You can choose from a simple HelloWorld example or a slightly more advanced

example using persistence and human tasks. If you select the latter and click Finish, you should

see a new project containing a "sample.bpmn" process and a "com.sample.ProcessTest" JUnit

test class. You can open the BPMN2 process by double-clicking it. To execute the process, right-

click on ProcessTest.java and select "Run As - Java Application".

5.6. Configuration

5.6.1. Playgrounds

The workbench by default brings two sample playground repositories (by cloning the jbpm-

playground repository hosted on github). In cases where this is not wanted (access to internet

might not be available or there might be a need to start with a completely clean installation of

the workbench) this default behavior can be turned off. To do so, change the following system

property in the start.jboss target to false in the build.xml:

-Dorg.kie.demo=false

Note that this will create a completely empty version of the workbench. To be able to start modeling

processes, the following elements need to be created first:

• Organizational unit

• Repository (new or clone existing one)

• Project

5.6.2. Workbench Authentication

The workbench web application is using the "default" security domain for authenticating and

authorizing users (as specified in the WEB-INF/jboss-web.xml inside the wars).

The application server is configured by default to use properties files for specifying users. Note

that this is for demo purposes only (as passwords and roles are stored in simple property files).

The security domain is configured in the standalone.xml configuration file as follows:

<security-domain name="other" cache-type="default">

  <authentication>

    <login-module code="UsersRoles" flag="required">

      <module-option name="usersProperties" value="${jboss.server.config.dir}/

users.properties"/>



Chapter 5. jBPM Installer

64

      <module-option name="rolesProperties" value="${jboss.server.config.dir}/

roles.properties"/>

    </login-module>

  </authentication>

</security-domain>

By default, these configuration files contain the following users:

Table 5.1. Default users

Name Password Workbench roles Task roles

admin admin admin,analyst

krisv krisv admin,analyst

john john analyst Accounting,PM

mary mary analyst HR

sales-rep sales-rep analyst sales

jack jack analyst IT

katy katy analyst HR

salaboy salaboy admin,analyst IT,HR,Accounting

Authentication can be customized by editing the authentication and configuration files in the jbpm-

installer/auth folder and/or by changing the standalone-*.xml files in the jbpm-installer folder. Note

that you need to rerun the installer to make sure the modified files are copied and picked correctly.

5.6.3. Using your own database

5.6.3.1. Introduction

By default, the jbpm-installer uses an H2 database for persisting runtime data. In this section we

will:

1. modify the persistence settings for runtime persistence of process instance state

2. test the startup with our new settings!

You will need a local instance of a database, in this case we will use MySQL.

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there

are following types of persistent entities used by jBPM:

• entities used for saving the actual session and process instance information - aka runtime data.

• entities used for logging and generating reports - aka audit log.

• entities used by the task service.



Using your own database

65

“persistent entities” in this context, are java classes that represent information in the database.

5.6.3.2. Database setup

In the MySQL database used in this quickstart, create a single user:

• user/schema "jbpm" with password "jbpm" (which will be used to persist all entities)

If you end up using different names for your user/schemas, please make a note of where we insert

"jbpm" in the configuation files.

If you want to try this quickstart with another database, a section at the end of this quickstart

describes what you may need to modify.

5.6.3.3. Configuration

The following files define the persistence settings for the jbpm-installer demo:

• jbpm-installer/db/jbpm-persistence-JPA2.xml

• Application server configuration

• standalone-*.xml

Tip

There are multiple standalone.xml files available (depending on whether you are

using JBoss AS 7.1.1 or JBoss EAP 6.1.1 and whether you are running the normal

or full profile). The full profile is required to use the JMS component for remote

integration. Best practice is to update all standalone.xml files to have consistent

setup but most important is to have standalone-full-as-7.1.1.Final.xml properly

configured as this is used by default by the installer.

Do the following:

• Disable H2 default data base and enable mysql data base in build.properties

# default is H2

# H2.version=1.3.168

# db.name=h2

# db.driver.jar.name=${db.name}.jar

# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/

${H2.version}/h2-${H2.version}.jar

#mysql



Chapter 5. jBPM Installer

66

db.name=mysql

db.driver.module.prefix=com/mysql

db.driver.jar.name=${db.name}-connector-java.jar

db.driver.download.url=https://repository.jboss.org/nexus/service/local/

repositories/central/content/mysql/mysql-connector-java/5.1.18/mysql-

connector-java-5.1.18.jar

        

• db/jbpm-persistence-JPA2.xml:

This is the JPA persistence file that defines the persistence settings used by jBPM for both the

process engine information, the logging/BAM information and task service.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

In the case of a MySql database, you need to change it to:

<property name="hibernate.dialect"

 value="org.hibernate.dialect.MySQLDialect"/>

For those of you who decided to use another database, a list of the available hibernate

dialect classes can be found  here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/

html/session-configuration.html#configuration-optional-dialects].

• standalone.xml:

This file is the configuration for the standalone JBoss application server. When the installer

installs the demo, it copies these files to the standalone/configuration directory in the jboss

server directory.

We need to change the datasource configuration in standalone.xml so that the jBPM process

engine can use our MySQL database

The original file contains the following lines:

<datasource jndi-name="java:jboss/datasources/jbpmDS" enabled="true" use-

java-context="true" pool-name="H2DS">

    <connection-url>jdbc:h2:tcp://localhost/runtime/jbpm-demo</connection-url>

    <driver>h2</driver>

    <pool></pool>

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects


Using your own database

67

    <security>

       <user-name>sa</user-name>

       <password></password>

    </security>

</datasource>

<drivers>

    <driver name="h2" module="com.h2database.h2">

        <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

    </driver>

</drivers>

            

Change the lines to the following:

<datasource jndi-name="java:jboss/datasources/jbpmDS" pool-name="MySQLDS"

 enabled="true" use-java-context="true">

    <connection-url>jdbc:mysql://localhost:3306/jbpm</connection-url>

    <driver>mysql</driver>

    <pool></pool>

    <security>

       <user-name>jbpm</user-name>

       <password>jbpm</password>

    </security>

</datasource>

<drivers>

    <driver name="mysql" module="com.mysql">

        <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</

xa-datasource-class>

    </driver>

</drivers>

           

• Starting the demo

We've modified all the necessary files at this point. Now would be a good time to make sure

your database is started up as well!

The installer script copies this file into the jbpm-console war before the war is installed on the

server. If you have already run the installer, it is recommended to stop the installer and clean

it first using

ant stop.demo

and



Chapter 5. jBPM Installer

68

ant clean.demo

before continuing.

Run

ant install.demo

to (re)install the wars and copy the necessary configuration files. Once you've done that, (re)start

the demo using

ant start.demo

.

• Problems?

If this isn't working for you, please try the following:

• Please double check the files you've modified: I wrote this, but still made mistakes when

changing files!

• Please make sure that you don't secretly have another (unmodified) instance of JBoss AS

running.

• If neither of those work (and you're using MySQL), please do then let us know.

5.6.3.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when

going through the steps above:

• Change the JDBC URLs, usernames and passwords, and Hibernate dialect lines to match your

database information in the configuration files mentioned above.

• In order to make sure your driver will be correctly installed in the JBoss AS 7 server, you

can do one of two things. Both ways are explained here [https://community.jboss.org/wiki/

DataSourceConfigurationinAS7].

• Install [https://community.jboss.org/wiki/

DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module] the driver jar as a

module, which is what the install script does.

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module


Using your own database

69

• Otherwise, you can modify and install [https://community.jboss.org/

wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the

downloaded jar as a deployment. In this case you will have to copy the jar yourself to the

standalone/deployments directory.

If you choose to install driver as JBoss module, please do the following:

• Disable default H2 driver properties

# default is H2

# H2.version=1.3.168

# db.name=h2

# db.driver.jar.name=${db.name}.jar

# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/

${H2.version}/h2-${H2.version}.jar

                

• Copy one of the example configs (mysql or postgresql)

#postresql

db.name=postresql

db.driver.module.prefix=org/postgresql

db.driver.jar.name=${db.name}-jdbc.jar

db.driver.download.url=https://repository.jboss.org/nexus/content/

repositories/thirdparty-uploads/postgresql/postgresql/9.1-902.jdbc4/

postgresql-9.1-902.jdbc4.jar

              

• Change the db.name property in build.properties to the name of the downloaded jdbc

driver jar you placed in db/drivers.

• Change the <driver> information in the <datasource> section of standalone.xml so that

it refers to the name of your driver module (see next step). For example:

<driver>postgresql</driver>

• Further on in standalone.xml is the <drivers> section of the <datasources> (note the

plural: drivers, datasources). We need to do the following with this file:

• Change the name of the driver to match the name in the last step,

• Give an appropriate name to the module,

https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment


Chapter 5. jBPM Installer

70

• And fill in the correct name of the XA datasource class to use.

For example:

<drivers>

  <driver name="postgresql" module="org.postgresql">

      <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-

class>

  </driver>

</drivers>

              

• Change the db.driver.module.prefix property in build.properties to the same

“value” you used for the module name in standalone.xml. In the example above, I

used “org.postgresql” which means that I should then use org/postgresql for the

db.driver.module.prefix property.

• Lastly, you'll have to create the db/${db.name}_module.xml file. As an example you can

use db/mysql_module.xml, so just make a copy of it and:

• Change the name of the module to match the db.driver.module.prefix property above

• Change the name of the module resource to the name of the JDBC driver jar that was

downloaded.

The top of the original file looks like this:

<module xmlns="urn:jboss:module:1.0" name="com.mysql">

   <resources>

     <resource-root path="mysql-connector-java.jar"/>

   </resources>

Change those lines to look like this, for example:

<module xmlns="urn:jboss:module:1.0" name="org.postgresql">

   <resources>

     <resource-root path="postgresql-9.1-902.jdbc4.jar"/>

   </resources>

5.6.4. jBPM data base schema scripts (DDL scripts)

By default the demo setup makes use of Hibernate auto ddl generation capabilities to build up

the complete data base schema, including all tables, sequences, etc. This might not always be



jBPM installer script

71

welcomed (by your database administrator) and thus the installer provides DDL scripts for most

popular databases.

Table 5.2. DDL scripts

Data base name Location

db2 jbpm-installer/db/ddl-scripts/db2

derby jbpm-installer/db/ddl-scripts/derby

h2 jbpm-installer/db/ddl-scripts/h2

hsqldb jbpm-installer/db/ddl-scripts/hsqldb

mysql5 jbpm-installer/db/ddl-scripts/mysql5

mysqlinnodb jbpm-installer/db/ddl-scripts/mysqlinnodb

oracle jbpm-installer/db/ddl-scripts/oracle

postgresql jbpm-installer/db/ddl-scripts/postgresql

sqlserver jbpm-installer/db/ddl-scripts/sqlserver

sqlserver2008 jbpm-installer/db/ddl-scripts/sqlserver2008

DDL scripts are provided for both jBPM and Quartz schemas although Quartz schema DDL script

is only required when the timer service should be configured with Quartz database job store. See

the section on timers for additional details.

This can be used to initially create the database schema, but it can also serve as the basis for

any\ optimization that needs to be applied - such as indexes, etc.

5.6.5. jBPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require

additional attention but in case it does, here is a list of available targets that might be needed to

perform some of the steps manually.

Table 5.3. jBPM installer available targets

Target Description

clean.db cleans up data base used by jBPM demo

(applies only to H2 data base)

clean.demo cleans up entire installation so new installation

can be performed

clean.demo.noeclipse same as clean.demo but does not remove

eclipse

clean.eclipse removes eclipse and its workspace

clean.generated.ddl removes DDL scripts generated if any

clean.jboss removes application server with all its

deployments



Chapter 5. jBPM Installer

72

Target Description

clean.jboss.repository removes repository content for demo setup

(guvnor maven repo, niogit, etc)

download.dashboard downloads jBPM dashboard component (BAM)

download.db.driver downloads db driver configured in

build.properties

download.ddl.dependencies downloads all dependencies required to run

DDL script generation tool

download.droolsjbpm.eclipse downloads drools and jbpm eclipse plugin

download.eclipse downloads eclipse distribution

download.jboss downloads Jboss Application Server

download.jBPM.bin downloads jBPM binary distribution (jBPM libs

and its dependencies)

download.jBPM.console downloads jBPM console for JBoss AS

install.dashboard.into.jboss installs jBPM dashboard into JBoss AS

install.db.files installs db driver as JBoss module

install.demo installs complete demo environment

install.demo.eclipse installs Eclipse with all jBPM plugins, no server

installation

install.demo.noeclipse similar to install.demo but skips eclipse

installation

install.dependencies installs custom libraries (such as work item

handlers, etc) into the jbpm console

install.droolsjbpm-eclipse.into.eclipse installs droolsjbpm eclipse plugin into eclipse

install.eclipse install eclipse IDE

install.jboss installs JBoss AS

install.jBPM-console.into.jboss installs jBPM console application into JBoss

AS

5.7. Frequently Asked Questions

Some common issues are explained below.

Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It

might be possible that one of the locations we're downloading the components from is temporarily

offline. Try downloading the components manually (possibly from alternate locations) and put

them in the jbpm-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?



Frequently Asked Questions

73

A: If your download failed while downloading a component, it is possible that the installer is trying

to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder

and reinstall, so it will be downloaded again.

Q: What if I have been changing my installation (and it no longer works) and I want to start over

again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a

fresh installation again.

Q: I sometimes see exceptions when trying to stop or restart certain services, what should I do?

A: If you see errors during shutdown, are you sure the services were still running? If you see

exceptions during restart, are you sure the service you started earlier was successfully shutdown?

Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but I have no idea what. What

can I do?

A: Always check the consoles for output like error messages or stack traces. You can also check

the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's

happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-

console. What can I do?

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/

standalone/log/server.log (for JBoss AS7).

For all other questions, try contacting the jBPM community as described in the Getting Started

chapter.



74



Chapter 6.

75

Chapter 6. Examples

6.1. Introduction

The web-based workbench by default will install two sample repositories that contain various

sample projects that help you getting started. This section shows different examples that can be

found in the jbpm-playground repository (also available here: https://github.com/droolsjbpm/jbpm-

playground). All these examples are high level and business oriented.

If you want to contribute with these examples please get in touch with any member of the jBPM/

Drools Team.

6.2. Human Resources Example

Let’s imagine for a second that you work for a Software company that works with several

projects and from time to time the company wants to hire new developers. So, which employees,

Departments and Systems are required to Hire a new Developer in your company? Trying to

answering these questions will help you to define your business process. The following figure,

represents how does this process works for Acme Inc. We can clearly see that three Departments

are involved: Human Resources, IT and Accounting teams are involved. Inside our company we

have Katy from the Human Resources Team, Jack on the IT team and John from the Accounting

team involved. Notice that there are other people inside each team, but we will be using Katy,

Jack and John to demonstrate how to execute the business process.

https://github.com/droolsjbpm/jbpm-playground
https://github.com/droolsjbpm/jbpm-playground


Chapter 6. Examples

76

Notice that there are 6 activities defined inside this business process, 4 of them are User Tasks,

which means that will be handled by people. The other two are Service Tasks, which means an

interaction with another system will be required.

The process diagram is self explanatory, but just in case and to avoid confusions this is what is

supposed to happen for each instance of the process that is started a particular candidate:

• The Human Resources Team perform the initial interview to the candidate to see if he/she fits

the profile that the company is looking for.

• The IT Department perform a technical interview to evaluate the candidate skills and experience.



The KIE Project: human-resources

77

• Based on output of the Human Resources and IT teams, the accounting team create a Job

Proposal which includes the yearly salary for the candidate. The proposal is created based on

the output of both of the interviews (Human Resources and Technical).

• As soon as the proposal has being created it is automatically sent to the candidate via email.

• If the candidate accept the proposal, a new meeting is created with someone from the Human

Resource team to sign the contract.

• If everything goes well, as soon as the process is notified that the candidate was hired, the

system will automatically post a tweet about the new Hire using the twitter service connector.

As you can see Jack, John and Katy will be performing the tasks for this example instance of the

business process, but any person inside the company that have those Roles will be able to claim

and interact with those tasks.

6.2.1. The KIE Project: human-resources

Let's take a look at the Project content in the Authoring Perspective:

As you can see it contains the hiring.bpmn2 process and a set of forms for each human task.

You can explore these knowledge assets by clicking on them. You will notice that different editors

will open for different types of assets. If you click on the Business Process file you will be able to

edit the process definition using the Process Designer:



Chapter 6. Examples

78

Feel free to inspect the forms as well. Notice that the Form Modeller will be opened and there you

can edit the forms to fit your requirements.

6.2.2. Building the Human Resources Example

In order to build the Project so it gets available in the Process Definitions List you need to go to

the Authoring Perspective and open the Project Editor panel:



Building the Human Resources Example

79

Once you open the Project Editor, you will see on the top right corner of the panel the button called

Build & Deploy. This button will allow you to create a new Jar artifact that will be deployed to the

Runtime environment as a new Deployment Unit.

Once you get the visual notification that the project was built and deployed successfully you can

go to the Deployments screen to verify that your artifact is there. In order to do that go to the top

level menu called Deploy -> Deployments

In the Deployments screen you will find all the deployed units. By default when you Build & Deploy

a project from the Project Editor, it will be automatically deployed using the default configurations.

That is Singleton Strategy, the default KIE Base and the default KIE Session will be used.

If you want a more advanced deployment, that is selecting a different strategy or using non defaults

KIE Base or KIE Session you will be able to undeploy and re-deploy your artifacts using their GAV

and selecting non default options.



Chapter 6. Examples

80

Once your artifact that contains the process definition is deployed, the Process Definition will be

available under Process Management -> Process Definitions.

6.2.3. Create a new Process Instance

In order to create new Process Instances you need to go to Process Management -> Process

Definitions.

Here you will find all the available process definitions in the runtime environment. If you want to

add new process definitions look at the previous sections where it is explained how to build and

deploy KIE Projects.



Examples zip

81

You can start process instances using any of the two options highlated in the previous screen.

In order to create a new process instance most of the processes will require you to fill in some

information and for that a form will be displayed. For this specific use case the name of the

candidate that we are interviewing is required:

If we hit the big Start button, the new process instance will be created and the first task of the

process will be create for the Human Resources Team. Depending on the assigned roles of the

user that you are using to create the process instance you will be able to see the created task or

not. In order to see the first task of the process we will need to logout tot he application and log

in as someone from the Human Resources team.

After starting the process you can go to the Task -> Tasks section to interact with the created

human tasks. Notice that in order to see the tasks in the task lists you will need to belong to some

specific user Groups. For example the HR Interview task will be visitable for any member of the

HR group, the Tech Interview will be visible by any member of the IT Group.

6.3. Examples zip

A zip file of examples can also be downloaded from the downloads page, containing various

examples that can be opened in the Eclipse-based Developers Tools. Simply download and unzip

the examples artefact and import into your Eclipse workspace.



82



Part III. jBPM Core
Using the jBPM Core Engine





Chapter 7.

85

Chapter 7. Core Engine API

7.1. Overview

This chapter introduces the API you need to load processes and execute them. For more detail

on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.

This session will be used to communicate with the process engine. A session needs to have a

reference to a knowledge base, which contains a reference to all the relevant process definitions.

This knowledge base is used to look up the process definitions whenever necessary. To create

a session, you first need to create a knowledge base, load all the necessary process definitions

(this can be from various sources, like from classpath, file system or process repository) and then

instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process

is started, a new process instance is created (for that process definition) that maintains the state

of that specific instance of the process.

For example, imagine you are writing an application to process sales orders. You could then define

one or more process definitions that define how the order should be processed. When starting up

your application, you first need to create a knowledge base that contains those process definitions.

You can then create a session based on this knowledge base so that, whenever a new sales order



Chapter 7. Core Engine API

86

comes in, a new process instance is started for that sales order. That process instance contains

the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of

the application (as creating a knowledge base can be rather heavy-weight as it involves parsing

and compiling the process definitions). Knowledge bases can be dynamically changed (so you

can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and

interact with the engine. You can create as many independent session as you need and creating

a session is considered relatively lightweight. How many sessions you create is up to you. In

general, most simple cases start out with creating one session that is then called from various

places in your application. You could decide to create multiple sessions if for example you want

to have multiple independent processing units (for example, if you want all processes from one

customer to be completely independent from processes for another customer, you could create an

independent session for each customer) or if you need multiple sessions for scalability reasons.

If you don't know what to do, simply start by having one knowledge base that contains all your

process definitions and create one session that you then use to execute all your processes.

The jBPM project has a clear separation between the API the users should be interacting with

and the actual implementation classes. The public API exposes most of the features we believe

"normal" users can safely use and should remain rather stable across releases. Expert users can

still access internal classes but should be aware that they should know what they are doing and

that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that

contains your process definitions, and to (2) create a session to start new process instances,

signal existing ones, register listeners, etc.

7.2. KieBase

The jBPM API allows you to first create a knowledge base. This knowledge base should include

all your process definitions that might need to be executed by that session. To create a knowledge

base, use a KieHelper to load processes from various resources (for example from the classpath

or from the file system), and then create a new knowledge base from that helper. The following

code snippet shows how to create a knowledge base consisting of only one process definition

(using in this case a resource from the classpath).

  KieHelper kieHelper = new KieHelper();

  KieBase kieBase = kieHelper

                    .addResource(ResourceFactory.newClassPathResource("MyProcess.bpmn"))

                    .build();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,

Reader, etc.



KieSession

87

This is considered manual creation of knowledge base and while it is simple it is not recommended

for real application development but more for try outs. Following you'll find recommended

and much more powerful way of building knowledge base, knowledge session and more -

RuntimeManager.

7.3. KieSession

Once you've loaded your knowledge base, you should create a session to interact with the engine.

This session can then be used to start new processes, signal events, etc. The following code

snippet shows how easy it is to create a session based on the previously created knowledge base,

and to start a process (by id).

KieSession ksession = kbase.newKieSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

7.3.1. ProcessRuntime

The ProcessRuntime interface defines all the session methods for interacting with processes, as

shown below.

  /**

     * Start a new process instance.  The process (definition) that should

     * be used is referenced by the given process id.

     * 

     * @param processId  The id of the process that should be started

     * @return the ProcessInstance that represents the instance of the process that was started

     */

    ProcessInstance startProcess(String processId);

    /**

     * Start a new process instance.  The process (definition) that should

     * be used is referenced by the given process id.  Parameters can be passed

     * to the process instance (as name-value pairs), and these will be set

     * as variables of the process instance. 

     * 

     * @param processId  the id of the process that should be started

     * @param parameters  the process variables that should be set when starting the process instance 

     * @return the ProcessInstance that represents the instance of the process that was started

     */

    ProcessInstance startProcess(String processId,

                                 Map<String, Object> parameters);

    /**

     * Signals the engine that an event has occurred. The type parameter defines



Chapter 7. Core Engine API

88

     * which type of event and the event parameter can contain additional information

     * related to the event.  All process instances that are listening to this type

     * of (external) event will be notified.  For performance reasons, this type of event

     * signaling should only be used if one process instance should be able to notify

     * other process instances. For internal event within one process instance, use the

     * signalEvent method that also include the processInstanceId of the process instance

     * in question. 

     * 

     * @param type the type of event

     * @param event the data associated with this event

     */

    void signalEvent(String type,

                     Object event);

    /**

     * Signals the process instance that an event has occurred. The type parameter defines

     * which type of event and the event parameter can contain additional information

     * related to the event.  All node instances inside the given process instance that

     * are listening to this type of (internal) event will be notified.  Note that the event

     * will only be processed inside the given process instance.  All other process instances

     * waiting for this type of event will not be notified.

     * 

     * @param type the type of event

     * @param event the data associated with this event

     * @param processInstanceId the id of the process instance that should be signaled

     */

    void signalEvent(String type,

                     Object event,

                     long processInstanceId);

    /**

     * Returns a collection of currently active process instances.  Note that only process

     * instances that are currently loaded and active inside the engine will be returned.

     * When using persistence, it is likely not all running process instances will be loaded

     * as their state will be stored persistently.  It is recommended not to use this

     * method to collect information about the state of your process instances but to use

     * a history log for that purpose.

     * 

     * @return a collection of process instances currently active in the session

     */

    Collection<ProcessInstance> getProcessInstances();

    /**

     * Returns the process instance with the given id.  Note that only active process instances

     * will be returned.  If a process instance has been completed already, this method will return

     * null.

     * 

     * @param id the id of the process instance

     * @return the process instance with the given id or null if it cannot be found



Event Listeners

89

     */

    ProcessInstance getProcessInstance(long processInstanceId);

    /**

     * Aborts the process instance with the given id.  If the process instance has been completed

     * (or aborted), or the process instance cannot be found, this method will throw an

     * IllegalArgumentException.

     * 

     * @param id the id of the process instance

     */

    void abortProcessInstance(long processInstanceId);

    /**

     * Returns the WorkItemManager related to this session.  This can be used to

     * register new WorkItemHandlers or to complete (or abort) WorkItems.

     * 

     * @return the WorkItemManager related to this session

     */

    WorkItemManager getWorkItemManager();

7.3.2. Event Listeners

The session provides methods for registering and removing listeners. A ProcessEventListener

can be used to listen to process-related events, like starting or completing a process, entering

and leaving a node, etc. Below, the different methods of the ProcessEventListener class are

shown. An event object provides access to related information, like the process instance and node

instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

  void beforeProcessStarted( ProcessStartedEvent event );

  void afterProcessStarted( ProcessStartedEvent event );

  void beforeProcessCompleted( ProcessCompletedEvent event );

  void afterProcessCompleted( ProcessCompletedEvent event );

  void beforeNodeTriggered( ProcessNodeTriggeredEvent event );

  void afterNodeTriggered( ProcessNodeTriggeredEvent event );

  void beforeNodeLeft( ProcessNodeLeftEvent event );

  void afterNodeLeft( ProcessNodeLeftEvent event );

  void beforeVariableChanged(ProcessVariableChangedEvent event);

  void afterVariableChanged(ProcessVariableChangedEvent event);

}

A note about before and after events: these events typically act like a stack, which means that any

events that occur as a direct result of the previous event, will occur between the before and the

after of that event. For example, if a subsequent node is triggered as result of leaving a node, the



Chapter 7. Core Engine API

90

node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodeLeftEvent

of the node that is left (as the triggering of the second node is a direct result of leaving the first

node). Doing that allows us to derive cause relationships between events more easily. Similarly,

all node triggered and node left events that are the direct result of starting a process will occur

between the beforeProcessStarted and afterProcessStarted events. In general, if you just want

to be notified when a particular event occurs, you should be looking at the before events only (as

they occur immediately before the event actually occurs). When only looking at the after events,

one might get the impression that the events are fired in the wrong order, but because the after

events are triggered as a stack (after events will only fire when all events that were triggered as

a result of this event have already fired). After events should only be used if you want to make

sure that all processing related to this has ended (for example, when you want to be notified when

starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending

on the type of node, some nodes might only generate node left events, others might only generate

node triggered events. Catching intermediate events for example are not generating triggered

events (they are only generating left events, as they are not really triggered by another node, rather

activated from outside). Similarly, throwing intermediate events are not generating left events

(they are only generating triggered events, as they are not really left, as they have no outgoing

connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the

console or the a file on the file system). This audit log contains all the different events that occurred

at runtime so it's easy to figure out what happened. Note that these loggers should only be used

for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This

log file might then be used in the IDE to generate a tree-based visualization of the events that

occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the

logger or when the number of events in the logger reaches a predefined level, it cannot be

used when debugging processes at runtime. A threaded file logger writes the events to a file

after a specified time interval, making it possible to use the logger to visualize the progress in

realtime, while debugging processes.

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown below.

When creating a console logger, the knowledge session for which the logger needs to be created

must be passed as an argument. The file logger also requires the name of the log file to be created,

and the threaded file logger requires the interval (in milliseconds) after which the events should

be saved. You should always close the logger at the end of your application.

  KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory.newFileLogger( ksession, "test" );



Correlation Keys

91

  // add invocations to the process engine here,

  // e.g. ksession.startProcess(processId);

  ...

  logger.close();

The log file that is created by the file-based loggers contains an XML-based overview of all the

events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools

Eclipse plugin, where the events are visualized as a tree. Events that occur between the before

and after event are shown as children of that event. The following screenshot shows a simple

example, where a process is started, resulting in the activation of the Start node, an Action node

and an End node, after which the process was completed.

7.3.3. Correlation Keys

Common requriement when working with processes is ability to assign given process instance

sort of business identifier that can be later on referenced without knowing the actual (generated)

id of the process instance. To provide such capabilities jBPM allows to use CorrelationKey that is

composed of CorrelationProperties. CorrelationKey can have either single property describing it

(which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface

CorrelationAwareProcessRuntime

that exposes following methods:

      /**

      * Start a new process instance.  The process (definition) that should

      * be used is referenced by the given process id.  Parameters can be passed

      * to the process instance (as name-value pairs), and these will be set

      * as variables of the process instance.

      *

      * @param processId  the id of the process that should be started

      * @param correlationKey custom correlation key that can be used to identify process instance

      * @param parameters  the process variables that should be set when starting the process instance



Chapter 7. Core Engine API

92

      * @return the ProcessInstance that represents the instance of the process that was started

      */

      ProcessInstance startProcess(String processId, CorrelationKey correlationKey, Map<String, Object> parameters);

      /**

      * Creates a new process instance (but does not yet start it).  The process

      * (definition) that should be used is referenced by the given process id.

      * Parameters can be passed to the process instance (as name-value pairs),

      * and these will be set as variables of the process instance.  You should only

      * use this method if you need a reference to the process instance before actually

      * starting it.  Otherwise, use startProcess.

      *

      * @param processId  the id of the process that should be started

      * @param correlationKey custom correlation key that can be used to identify process instance

      * @param parameters  the process variables that should be set when creating the process instance

      * @return the ProcessInstance that represents the instance of the process that was created (but not yet started)

      */

      ProcessInstance createProcessInstance(String processId, CorrelationKey correlationKey, Map<String, Object> parameters);

      /**

      * Returns the process instance with the given correlationKey.  Note that only active process instances

      * will be returned.  If a process instance has been completed already, this method will return

      * null.

      *

      * @param correlationKey the custom correlation key assigned when process instance was created

      * @return the process instance with the given id or null if it cannot be found

      */

      ProcessInstance getProcessInstance(CorrelationKey correlationKey);

    

Correlation is usually used with long running processes and thus require persistence to be enabled

to be able to permanently store correlation information.

7.3.4. Threads

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical

multi-threading is what happens when multiple threads or processes are started on a computer,

for example by a Java or C program. Logical multi-threading is what we see in a BPM process after

the process reaches a parallel gateway, for example. From a functional standpoint, the original

process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include

a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM

process that includes logical multi-threading will only be executed in one technical thread. The

main reason for doing this is that multiple (technical) threads need to be be able to communicate

state information with each other if they are working on the same process. This requirement

brings with it a number of complications. While it might seem that multi-threading would bring

performance benefits with it, the extra logic needed to make sure the different threads work



RuntimeManager

93

together well means that this is not guaranteed. There is also the extra overhead incurred because

we need to avoid race conditions and deadlocks.

In general, the jBPM engine executes actions in serial. For example, when the engine encounters

a script task in a process, it will synchronously execute that script and wait for it to complete before

continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially

trigger each of the outgoing branches, one after the other. This is possible since execution is

almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.

As a result, the user will usually not even notice this. Similarly, action scripts in a process are also

synchronously executed, and the engine will wait for them to finish before continuing the process.

For example, doing a Thread.sleep(...) as part of a script will not make the engine continue

execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the

engine will also invoke the handler of this service synchronously. The engine will wait for the

completeWorkItem(...) method to return before continuing execution. It is important that your

service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in

invoking this service remotely and waiting for the results might be too long, it might be a good idea

to invoke this service asynchronously. This means that the handler will only invoke the service and

will notify the engine later when the results are available. In the mean time, the process engine

then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we

don't want the engine to wait until a human actor has responded to the request. The human task

handler will only create a new task (on the task list of the assigned actor) when the human task

node is triggered. The engine will then be able to continue execution on the rest of the process (if

necessary) and the handler will notify the engine asynchronously when the user has completed

the task.

7.4. RuntimeManager

7.4.1. Overview

RuntimeManager has been introduced to simplify and empower usage of knowledge API

especially in context of processes. It provides configurable strategies that control actual runtime

execution (how KieSessions are provided) and by default provides following:

• Singleton - runtime manager maintains single KieSession regardless of number of processes

available

• Per Request - runtime manager delivers new KieSession for every request

• Per Process Instance - runtime manager maintains mapping between process instance and

KieSession and always provides same KieSession whenever working with given process

instance



Chapter 7. Core Engine API

94

Runtime Manager is primary responsible for mananging and delivering to the caller instances of

RuntimeEngine. In turn RuntimeEngine encapsulates two the most important elements of jBPM

engine:

• KieSession

• TaskService

Both of these components are already configured to work with each other smoothly without

additional configuration from end user. No more need to register human task handler or keeping

track if it's connected to the service or not.

public interface RuntimeManager {

    /**

     * Returns <code>RuntimeEngine</code> instance that is fully initialized:

     * <ul>

     *  <li>KiseSession is created or loaded depending on the strategy</li>

     *  <li>TaskService is initialized and attached to ksession (via listener)</li>

     *  <li>WorkItemHandlers are initialized and registered on ksession</li>

     *  <li>EventListeners (process, agenda, working memory) are initialized and added to ksession</

li>

     * </ul>

     * @param context the concrete implementation of the context that is supported by given <code>RuntimeManager</

code>

     * @return instance of the <code>RuntimeEngine</code>

     */

    RuntimeEngine getRuntimeEngine(Context<?> context);

    

    /**

     * Unique identifier of the <code>RuntimeManager</code>

     * @return

     */

    String getIdentifier();

   

    /**

     * Disposes <code>RuntimeEngine</

code> and notifies all listeners about that fact.

     * This method should always be used to dispose <code>RuntimeEngine</

code> that is not needed

     * anymore. <br/>

     * ksession.dispose() shall never be used with RuntimeManager as it will break the internal

     * mechanisms of the manager responsible for clear and efficient disposal.<br/>

     * Dispose is not needed if <code>RuntimeEngine</

code> was obtained within active JTA transaction, 

     * this means that when getRuntimeEngine method was invoked during active JTA transaction then dispose of

     * the runtime engine will happen automatically on transaction completion.

     * @param runtime

     */



Overview

95

    void disposeRuntimeEngine(RuntimeEngine runtime);

    

    /**

     * Closes <code>RuntimeManager</

code> and releases it's resources. Shall always be called when

     * runtime manager is not needed any more. Otherwise it will still be active and operational.

     */

    void close();

    

}

RuntimeEngine interface provides the most important methods to get access to engine

components:

public interface RuntimeEngine {

    /**

     * Returns <code>KieSession</code> configured for this <code>RuntimeEngine</

code>

     * @return

     */

    KieSession getKieSession();

    

    /**

     * Returns <code>TaskService</code> configured for this <code>RuntimeEngine</

code>

     * @return

     */

    TaskService getTaskService();   

}

RuntimeManager will ensure that regadless of the strategy it will provide same capabilities when

it comes to initialization and configuration of the RuntimeEngine. That means

• KieSession will be loaded with same factories (either in memory or JPA based)

• WorkItemHandlers will be registered on every KieSession (either loaded from db or newly

created)

• Event listeners (Process, Agenda, WorkingMemory) will be registered on every KieSession

(either loaded from db or newly created)

• TaskService will be configured with:

• JTA transaction mananger

• same entity manager factory as for the KieSession



Chapter 7. Core Engine API

96

• UserGroupCallback from environment

On the other hand RuntimeManager maintains the engine disposal as well by providing dedicated

methods to dispose RuntimeEngine when it's no more needed to release any resources it might

aquired.

7.4.2. Strategies

Singleton strategy - instructs RuntimeManager to maintain single instance of RuntimeEngine

(and in turn single instance of KieSession and TaskService). Access to the RuntimeEngine

is synchronized and by that thread safe although it comes with performance penelty due to

synchronization. This strategy is similar to what was available by default in jBPM version 5.x and

it's considered easiest strategy and recommended to start with.

It has following characteristics that are important to evaluate while considering it for given scenario:

• small memory footprint - single instance of runtime engine and task service

• simple and compact in design and usage

• good fit for low to medium load on process engine due to synchronized access

• due to single KieSession instance all state objects (such as facts) are directly visible to all

process instances and vice versa

• not contextual - meaning when retrieving instances of RuntimeEngine from singleton

RuntimeManager Context instance is not important and usually EmptyContext.get() is used

although null argument is acceptable as well

• keeps track of id of KieSession used between RuntimeManager restarts to ensure it will use

same session - this id is stored as serialized file on disc in temp location that depends on the

environment can be one of following:

• value given by jbpm.data.dir system property

• value given by jboss.server.data.dir system property

• value given by java.io.tmpdir system property

Per request strategy - instructs RuntimeManager to provide new instance of RuntimeEngine for

every request. As request RuntimeManager will consider one or more invocations within single

transaction. It must return same instance of RuntimeEngine within single transaction to ensure

correctness of state as otherwise operation done in one call would not be visible in the other. This

is sort of "stateless" strategy that provides only request scope state and once request is completed

RuntimeEngine will be permanently destroyed - KieSession information will be removed from data

base in case persistence was used.

It has following characteristics:

• completely isolated process engine and task service operations for every request



Usage

97

• completely stateless, storing facts makes sense only for the duration of the request

• good fit for high load, stateless processes (no facts or timers involved that shall be preserved

between requests)

• KieSession is only available during life time of request and at the end is destroyed

• not contextual - meaning when retrieving instances of RuntimeEngine from per request

RuntimeManager Context instance is not important and usually EmptyContext.get() is used

although null argument is acceptable as well

Per process instance strategy - instructs RuntimeManager to maintain strick relationship

between KieSession and ProcessInstance. That means that KieSession will be available as long

as ProcessInstance that it belongs to is active. This strategy provides most flexible approach

to secure advanced capabilities of the engine like rule evaluation in isolation (for given process

instance only), maximum performance and reduction of potential bottle necks intruduced by

synchronization and at the same time reduces number of KieSessions to the actual number of

process isntances rather than number of requests (in contrast to per request strategy).

It has following characteristics:

• most advanced strategy to provide isolation to given process instance only

• maintains strict relationship between KieSession and ProcessInstance to ensure it will always

deliver same KieSession for given ProcessInstance

• merges life cycle of KieSession with ProcessInstance making both to be disposed on process

instance completion (complete or abort)

• allows to maintain data (such as facts, timers) in scope of process instance - only process

instance will have access to that data

• introduces bit of overhead due to need to look up and load KieSession for process instance

• validates usage of KieSession so it cannot be (ab)used for other process instances, in such a

case exception is thrown

• is contextual - accepts following context instances:

• EmptyContext or null - when starting process instance as there is no process instance id

available yet

• ProcessInstanceIdContext - used after process instance was created

• CorrelationKeyContext - used as an alternative to ProcessInstanceIdContext to use custom

(business) key instead of process instance id

7.4.3. Usage

Regular usage scenario for RuntimeManager is:



Chapter 7. Core Engine API

98

• At application startup

• build RuntimeManager and keep it for entire life time of the application, it's thread safe and

can be (or even should be) accessed concurrently

• At request

• get RuntimeEngine from RuntimeManager using proper context instance dedicated to

strategy of RuntimeManager

• get KieSession and/or TaskService from RuntimeEngine

• perform operations on KieSession and/or TaskService such as startProcess, completeTask,

etc

• once done with processing dispose RuntimeEngine using

RuntimeManager.disposeRuntimeEngine method

• At application shutdown

• close RuntimeManager

Note

When RuntimeEngine is obtained from RuntimeManager within active JTA

transaction then there is no need to dispose RuntimeEngine at the end as

RuntimeManager will automatically dipose the RuntimeEngine on transaction

completion (regardless of the completion status commit or rollback)

7.4.3.1. Example

Here is how you can build RuntimeManager and get RuntimeEngine (that encapsulates

KieSession and TaskService) from it:

    // first configure environment that will be used by RuntimeManager

    RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

    .newDefaultInMemoryBuilder()

    .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

    .get();

    // next create RuntimeManager - in this case singleton strategy is chosen

    RuntimeManager manager = RuntimeManagerFactory.Factory.get().newSingletonRuntimeManager(environment);

    // then get RuntimeEngine out of manager - using empty context as singleton

 does not kep track



Configuration

99

    // of runtime engine as there is only one

    RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

    // get KieSession from runtime runtimeEngine - already initialized with all

 handlers, listeners, etc that were configured

    // on the environment

    KieSession ksession = runtimeEngine.getKieSession();

    // add invocations to the process engine here,

    // e.g. ksession.startProcess(processId);

    // and last dispose the runtime engine

    manager.disposeRuntimeEngine(runtimeEngine);

  

This example provides simplest (minimal) way of using RuntimeManager and RuntimeEngine

although it provides few quite valuable information:

• KieSession will be in memory only - by using newDefaultInMemoryBuilder

• there will be single process available for execution - by adding it as an asset

• TaskService will be configured and attached to KieSession via LocalHTWorkItemHandler to

support user task capabilities within processes

7.4.4. Configuration

The complexity of knowing when to create, dispose, register handlers, etc is taken away from the

end user and moved to the runtime manager that knows when/how to perform such operations

but still allows to have a fine grained control over this process by providing comprehensive

configuration of the RuntimeEnvironment.

  public interface RuntimeEnvironment {

    /**

     * Returns <code>KieBase</code> that shall be used by the manager

     * @return

     */

    KieBase getKieBase();

    

    /**

     * KieSession environment that shall be used to create instances of <code>KieSession</

code>

     * @return

     */



Chapter 7. Core Engine API

100

    Environment getEnvironment();

    

    /**

     * KieSession configuration that shall be used to create instances of <code>KieSession</

code>

     * @return

     */

    KieSessionConfiguration getConfiguration();

    

    /**

     * Indicates if persistence shall be used for the KieSession instances

     * @return

     */

    boolean usePersistence();

    

    /**

     * Delivers concrete implementation of <code>RegisterableItemsFactory</

code> to obtain handlers and listeners

     * that shall be registered on instances of <code>KieSession</code>

     * @return

     */

    RegisterableItemsFactory getRegisterableItemsFactory();

    

    /**

     * Delivers concrete implementation of <code>UserGroupCallback</

code> that shall be registered on instances 

     * of <code>TaskService</code> for managing users and groups.

     * @return

     */

    UserGroupCallback getUserGroupCallback();

    

    /**

     * Delivers custom class loader that shall be used by the process engine and task service instances

     * @return

     */

    ClassLoader getClassLoader();

    

    /**

     * Closes the environment allowing to close all depending components such as ksession factories, etc 

     */

    void close();

  

7.4.4.1. Building RuntimeEnvironment

While RuntimeEnvironment interface provides mostly access to data kept as part of the

environment and will be used by the RuntimeManager, users should take advantage of builder

style class that provides fluent API to configure RuntimeEnvironment with predefined settings.



Configuration

101

public interface RuntimeEnvironmentBuilder {

    public RuntimeEnvironmentBuilder persistence(boolean persistenceEnabled);

    public RuntimeEnvironmentBuilder entityManagerFactory(Object emf);

    public RuntimeEnvironmentBuilder addAsset(Resource asset, ResourceType type);

    public RuntimeEnvironmentBuilder addEnvironmentEntry(String name, Object value);

    public RuntimeEnvironmentBuilder addConfiguration(String name, String value);

    public RuntimeEnvironmentBuilder knowledgeBase(KieBase kbase);

    public RuntimeEnvironmentBuilder userGroupCallback(UserGroupCallback callback);

    public RuntimeEnvironmentBuilder registerableItemsFactory(RegisterableItemsFactory factory);

    public RuntimeEnvironment get();

    public RuntimeEnvironmentBuilder classLoader(ClassLoader cl);

    

    public RuntimeEnvironmentBuilder schedulerService(Object globalScheduler); 

    

  

Instances of the RuntimeEnvironmentBuilder can be obtained via

RuntimeEnvironmentBuilderFactory that provides preconfigured sets of builder to simplify and

help users to build the environment for the RuntimeManager.

public interface RuntimeEnvironmentBuilderFactory {

    /**

     * Provides completely empty <code>RuntimeEnvironmentBuilder</

code> instance that allows to manually

     * set all required components instead of relying on any defaults.

     * @return new instance of <code>RuntimeEnvironmentBuilder</code>

     */

    public RuntimeEnvironmentBuilder newEmptyBuilder();

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>



Chapter 7. Core Engine API

102

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultBuilder();

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * but it does not have persistence for process engine configured so it will only store process instances in memory

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultInMemoryBuilder();

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

     * @param groupId group id of kjar

     * @param artifactId artifact id of kjar

     * @param version version number of kjar

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String version);

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

     * @param groupId group id of kjar

     * @param artifactId artifact id of kjar

     * @param version version number of kjar

     * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar



Configuration

103

     * @param ksessionName name of the ksession define in kmodule.xml stored in kjar

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String version, String kbaseName, String ksessionName);

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

     * @param releaseId <code>ReleaseId</code> that described the kjar

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId);

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

     * @param releaseId <code>ReleaseId</code> that described the kjar

     * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar

     * @param ksessionName name of the ksession define in kmodule.xml stored in kjar

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId, String kbaseName, String ksessionName);

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * It relies on KieClasspathContainer that requires to have kmodule.xml present in META-

INF folder which 

     * defines the kjar itself.



Chapter 7. Core Engine API

104

     * Expects to use default kbase and ksession from kmodule.

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder();

    

    /**

     * Provides default configuration of <code>RuntimeEnvironmentBuilder</

code> that is based on:

     * <ul>

     *  <li>DefaultRuntimeEnvironment</li>

     * </ul>

     * It relies on KieClasspathContainer that requires to have kmodule.xml present in META-

INF folder which 

     * defines the kjar itself.

     * @param kbaseName name of the kbase defined in kmodule.xml

     * @param ksessionName name of the ksession define in kmodule.xml   

     * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

     * 

     * @see DefaultRuntimeEnvironment

     */

    public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder(String kbaseName, String ksessionName);

Besides KieSession Runtime Manager provides access to TaskService too as integrated

component of a RuntimeEngine that will always be configured and ready for communication

between process engine and task service.

Since the default builder was used, it will already come with predefined set of elements that

consists of:

• Persistence unit name will be set to org.jbpm.persistence.jpa (for both process engine and task

service)

• Human Task handler will be automatically registered on KieSession

• JPA based history log event listener will be automatically registered on KieSession

• Event listener to trigger rule task evaluation (fireAllRules) will be automatically registered on

KieSession

7.4.4.2. Registering handlers and listeners

To extend it with your own handlers or listeners a dedicated mechanism is provided that comes

as implementation of RegisterableItemsFactory



Configuration

105

    /**

     * Returns new instances of <code>WorkItemHandler</

code> that will be registered on <code>RuntimeEngine</code>

     * @param runtime provides <code>RuntimeEngine</

code> in case handler need to make use of it internally

     * @return map of handlers to be registered - in case of no handlers empty map shall be returned.

     */

    Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime);

    

    /**

     * Returns new instances of <code>ProcessEventListener</

code> that will be registered on <code>RuntimeEngine</code>

     * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

     * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

     */

    List<ProcessEventListener> getProcessEventListeners(RuntimeEngine runtime);

    

    /**

     * Returns new instances of <code>AgendaEventListener</

code> that will be registered on <code>RuntimeEngine</code>

     * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

     * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

     */

    List<AgendaEventListener> getAgendaEventListeners(RuntimeEngine runtime);

    

    /**

     * Returns new instances of <code>WorkingMemoryEventListener</

code> that will be registered on <code>RuntimeEngine</code>

     * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

     * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

     */

    List<WorkingMemoryEventListener> getWorkingMemoryEventListeners(RuntimeEngine runtime);

A best practice is to just extend those that come out of the box and just add your own. Although

extanstions are not always needed as the default implementations of RegisterableItemsFactory

provides possibility to define custom handlers and listeners. Following is a list of available

implementations that might be useful (they are ordered in the hierarchy of inheritance):

• org.jbpm.runtime.manager.impl.SimpleRegisterableItemsFactory - simplest possible

implementations that comes empty and is based on reflection to produce instances of handlers

and listeners based on given class names



Chapter 7. Core Engine API

106

• org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory - extension of the Simple

implementation that introduces defaults described above and still provides same capabilities

as Simple implementation

• org.jbpm.runtime.manager.impl.KModuleRegisterableItemsFactory - exension of default

implementation that provides specific capabilities for kmodule and still provides same

capabilities as Simple implementation

• org.jbpm.runtime.manager.impl.cdi.InjectableRegisterableItemsFactory - extension of default

implementation that is tailored for CDI environments and provides CDI style approach to finding

handlers and listeners via producers

Alternatively, simple (stateless or requiring only KieSession) work item handlers might be

registered in the well known way - defined as part of CustomWorkItem.conf file that shall be placed

on class path. To use this approach do following:

• create file "drools.session.conf" inside META-INF of the root of the class path, for web

applications it will be WEB-INF/classes/META-INF

• add following line to drools.session.conf file "drools.workItemHandlers =

CustomWorkItemHandlers.conf"

• create file "CustomWorkItemHandlers.conf" inside META-INF of the root of the class path, for

web applications it will be WEB-INF/classes/META-INF

• define custom work item handlers in MVEL style inside CustomWorkItemHandlers.conf

[

  "Log": new org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler(),

  "WebService": new

 org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession),

  "Rest": new org.jbpm.process.workitem.rest.RESTWorkItemHandler(),

  "Service Task" : new

 org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession)

]

And that's it, now all these work item handlers will be registered for any KieSession created by

that application, regardless if it uses RuntimeManager or not.

7.4.4.2.1. Registering handlers and listeners in CDI environment

When using RuntimeManager in CDI environment there are dedicated interfaces that can be used

to provide custom WorkItemHandlers and EventListeners to the RuntimeEngine.

public interface WorkItemHandlerProducer {

    /**

     * Returns map of (key = work item name, value work item handler instance) of work items 



Configuration

107

     * to be registered on KieSession

     * <br/>

     * Parameters that might be given are as follows:

     * <ul>

     *  <li>ksession</li>

     *  <li>taskService</li>

     *  <li>runtimeManager</li>

     * </ul>

     * 

     * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

     * and provide valid instances for given owner

     * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

     * @return map of work item handler instances (recommendation is to always return new instances when this method is invoked)

     */

    Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object> params);

}

Event listener producer shall be annotated with proper qualifier to indicate what type of listeners

they provide, so pick one of following to indicate they type:

• @Process - for ProcessEventListener

• @Agenda - for AgendaEventListener

• @WorkingMemory - for WorkingMemoryEventListener

public interface EventListenerProducer<T> {

    /**

     * Returns list of instances for given (T) type of listeners

     * <br/>

     * Parameters that might be given are as follows:

     * <ul>

     *  <li>ksession</li>

     *  <li>taskService</li>

     *  <li>runtimeManager</li>

     * </ul>

     * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

     * and provide valid instances for given owner

     * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

     * @return list of listener instances (recommendation is to always return new instances when this method is invoked)

     */

    List<T> getEventListeners(String identifier, Map<String, Object>  params);

}

Implementations of these interfaces shall be packaged as bean archive (includes beans.xml inside

META-INF) and placed on application classpath (e.g. WEB-INF/lib for web application). THat is



Chapter 7. Core Engine API

108

enough for CDI based RuntimeManager to discover them and register on every KieSession that

is created or loaded from data store.

Some parameters are provided to the producers to allow handlers/listeners to eb more stateful

and be able to do more advanced things with the engine - like signal of the engine or process

instance in case of an error. Thus all components are provided:

• KieSession

• TaskService

• RuntimeManager

Note

Whenever there is a need to interact with the process engine/task service from

within handler or listener, recommended approach is to use RuntimeManager and

retrieve RuntimeEngine (and then KieSession and/or TaskService) from it as that

will ensure proper state managed according to strategy

In addition, some filtering can be applied based on identifier (that is given as argument to the

methods) to decide if given RuntimeManager shall recieve handlers/listeners or not.

7.5. Configuration

There are several control parameters available to alter engine default behavior. This allows to fine

tune the execution for the environment needs and actual requirements. All of these parameters

are set as JVM system properties, usually with -D when starting program e.g. application server.

Table 7.1. Control parameters

Name Possible values Default value Description

jbpm.ut.jndi.lookup String Alternative JNDI

name to be

used when there

is no access

to the default

one (java:comp/

UserTransaction)

jbpm.enable.multi.contrue|false false Enables multiple

incoming/

outgoing

sequence flows

support for

activities



Configuration

109

Name Possible values Default value Description

jbpm.business.calendar.propertiesString /

jbpm.business.calendar.properties

Allows to provide

alternative

classpath

location of

business

calendar

configuration file

jbpm.overdue.timer.delayLong 2000 Specifies delay

for overdue

timers to allow

proper

initialization, in

milliseconds

jbpm.process.name.comparatorString Allows to provide

alternative

comparator class

to empower start

process by name

feature, if not set

NumberVersionComparator

is used

jbpm.loop.level.disabledtrue|false true Allows to enable

or disable loop

iteration tracking,

to allow

advanced loop

support when

using XOR

gateways

org.kie.mail.sessionString mail/

jbpmMailSession

Allows to provide

alternative JNDI

name for mail

session used by

Task Deadlines

jbpm.usergroup.callback.propertiesString /

jbpm.usergroup.callback.properties

Allows to provide

alternative

classpath

location for user

group callback

implementation

(LDAP, DB)



Chapter 7. Core Engine API

110

Name Possible values Default value Description

jbpm.user.group.mappingString ${jboss.server.config.dir}/

roles.properties

Allows to provide

alternative

location of

roles.properties

for

JBossUserGroupCallbackImpl

jbpm.user.info.propertiesString /

jbpm.user.info.properties

Allows to provide

alternative

classpath

location of user

info configuration

(used by

LDAPUserInfoImpl)

org.jbpm.ht.user.separatorString , Allows to provide

alternative

separator of

actors and

groups for user

tasks, default is

comma (,)

org.quartz.propertiesString Allows to provide

location of the

quartz config

file to activate

quartz based

timer service

jbpm.data.dir String ${jboss.server.data.dir}

is available

otherwise

${java.io.tmpdir}

Allows to provide

location where

data files

produced by

jbpm should be

stored

org.kie.executor.pool.sizeInteger 1 Allows to provide

thread pool size

for jbpm executor

org.kie.executor.retry.countInteger 3 Allows to provide

number of retries

attempted in

case of error by

jbpm executor



Configuration

111

Name Possible values Default value Description

org.kie.executor.intervalInteger 3 Allows to provide

frequency used

to check for

pending jobs by

jbpm executor, in

seconds

org.kie.executor.disabledtrue|false true Enables or

disable jbpm

executor



112



Chapter 8.

113

Chapter 8. Processes

8.1. What is BPMN 2.0

Note

"The primary goal of BPMN is to provide a notation that is readily understandable

by all business users, from the business analysts that create the initial drafts

of the processes, to the technical developers responsible for implementing the

technology that will perform those processes, and finally, to the business people

who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that

not only defines a standard on how to graphically represent a business process (like BPMN 1.x),

but now also includes execution semantics for the elements defined, and an XML format on how

to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means

that you can use all the different jBPM6 tooling to model, execute, manage and monitor

your business processes using the BPMN 2.0 format for specifying your executable business

processes. Actually, the full BPMN 2.0 specification also includes details on how to represent

things like choreographies and collaboration. The jBPM project however focuses on that part of

the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each

other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

• Events: They are used to model the occurrence of a particular event. This could be a start event

(that is used to indicate the start of the process), end events (that define the end of the process,

or of that subflow) and intermediate events (that indicate events that might occur during the

execution of the process).

• Activities: These define the different actions that need to be performed during the execution of

the process. Different types of tasks exist, depending on the type of activity you are trying to

model (e.g. human task, service task, etc.) and activities could also be nested (using different

types of sub-processes).

• Gateways: Can be used to define multiple paths in the process. Depending on the type of

gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.

We do however support a significant subset, including the most common node types that can be

used inside executable processes. This includes (almost) all elements and attributes as defined in

the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional



Chapter 8. Processes

114

elements and attributes we believe are valuable in that context as well. The full set of elements

and attributes that are supported can be found below, but it includes elements like:

• Flow objects

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

• Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message,

Compensation)

• Activities

• Script Task

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Event Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive



What is BPMN 2.0

115

• Inclusive

• Parallel

• Event-Based

• Converging

• Exclusive

• Inclusive

• Parallel

• Lanes

• Data

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more

that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something

like this:

<?xml version="1.0" encoding="UTF-8"?> 

<definitions id="Definition"

             targetNamespace="http://www.example.org/MinimalExample"

             typeLanguage="http://www.java.com/javaTypes"

             expressionLanguage="http://www.mvel.org/2.0"

             xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

             xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

             xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

             xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

             xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

             xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

             xmlns:tns="http://www.jboss.org/drools">



Chapter 8. Processes

116

  <process processType="Private" isExecutable="true" id="com.sample.HelloWorld" name="Hello

 World" >

    <!-- nodes -->

    <startEvent id="_1" name="StartProcess" />

    <scriptTask id="_2" name="Hello" >

      <script>System.out.println("Hello World");</script>

    </scriptTask>

    <endEvent id="_3" name="EndProcess" >

        <terminateEventDefinition/>

    </endEvent>

    <!-- connections -->

    <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

    <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

  </process>

  <bpmndi:BPMNDiagram>

    <bpmndi:BPMNPlane bpmnElement="Minimal" >

      <bpmndi:BPMNShape bpmnElement="_1" >

        <dc:Bounds x="15" y="91" width="48" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNShape bpmnElement="_2" >

        <dc:Bounds x="95" y="88" width="83" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNShape bpmnElement="_3" >

        <dc:Bounds x="258" y="86" width="48" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNEdge bpmnElement="_1-_2" >

        <di:waypoint x="39" y="115" />

        <di:waypoint x="75" y="46" />

        <di:waypoint x="136" y="112" />

      </bpmndi:BPMNEdge>

      <bpmndi:BPMNEdge bpmnElement="_2-_3" >

        <di:waypoint x="136" y="112" />

        <di:waypoint x="240" y="240" />

        <di:waypoint x="282" y="110" />

      </bpmndi:BPMNEdge>

    </bpmndi:BPMNPlane>

  </bpmndi:BPMNDiagram>

</definitions>

To create your own process using BPMN 2.0 format, you can



What is BPMN 2.0

117

• The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.

We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You

could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes

and then export them to BPMN 2.0 format or save them into repository and import them so they

can be executed.

• A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

• You can always manually create your BPMN 2.0 process files by writing the XML directly. You

can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in

the Eclipse plugin to check both syntax and completeness of your model.

•

Note

Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler

for process modeling. It can still be used for limited number of supported

elements but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the

wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using

the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still

uses different attributes names etc. It does however save the process using valid BPMN 2.0

syntax. Also note that the editor does not support all node types and attributes that are already

supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge

base ...

private static KnowledgeBase createKnowledgeBase() throws Exception {

    KieHelper kieHelper = new KieHelper();

    KieBase kieBase = kieHelper

    .addResource(ResourceFactory.newClassPathResource("sample.bpmn2"))

    .build();

    return kieBase;

}

... and how to execute this process ...

KieBase kbase = createKnowledgeBase();

KieSession ksession = kbase.newKieSession();

ksession.startProcess("com.sample.HelloWorld");



Chapter 8. Processes

118

For more detail, check out the chapter on the API and the basics.

8.2. Process

Figure 8.1.

A business process is a graph that describes the order in which a series of steps need to be

executed, using a flow chart. A process consists of a collection of nodes that are linked to each

other using connections. Each of the nodes represents one step in the overall process while the

connections specify how to transition from one node to the other. A large selection of predefined

node types have been defined. This chapter describes how to define such processes and use

them in your application.

8.2.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition

in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

8.2.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging

and dropping different nodes on a canvas and editing the properties of these nodes. The

graphical BPMN2 modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/

bpmn2-modeler/] that provides number of contributors where one of them is jBPM project. Once

you have set up a jBPM project (see the installer for creating a working Eclipse environment where

you can start), you can start adding processes. When in a project, launch the "New" wizard (use

Ctrl+N) or right-click the directory you would like to put your process in and select "New", then

"File". Give the file a name and the extension bpmn (e.g. MyProcess.bpmn). This will open up

the process editor (you can safely ignore the warning that the file could not be read, this is just

because the file is still empty).

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/


Creating a process

119

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it

will be necessary to fill in the different properties of the elements in your process. If you cannot

see the properties view, open it using the menu "Window", then "Show View" and "Other...", and

under the "General" folder select the Properties View.

Figure 8.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to

the canvas, select the element you would like to create in the palette and then add them to the

canvas by clicking on the preferred location. For example, click on the "End Event" icon in the

palette of the GUI. Clicking on an element in your process allows you to set the properties of that

element. You can connect the nodes (as long as it is permitted by the different types of nodes)

by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic

that you want to specify.

8.2.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax

of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,

the following XML fragment shows a simple process that contains a sequence of a Start Event, a

Script Task that prints "Hello World" to the console, and an End Event.

<?xml version="1.0" encoding="UTF-8"?> 

<definitions id="Definition"

             targetNamespace="http://www.jboss.org/drools"

             typeLanguage="http://www.java.com/javaTypes"

             expressionLanguage="http://www.mvel.org/2.0"

             xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task

             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"



Chapter 8. Processes

120

             xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

             xmlns:g="http://www.jboss.org/drools/flow/gpd"

             xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

             xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

             xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

             xmlns:tns="http://www.jboss.org/drools">

  <process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello

 Process" >

    <!-- nodes -->

    <startEvent id="_1" name="Start" />

    <scriptTask id="_2" name="Hello" >

      <script>System.out.println("Hello World");</script>

    </scriptTask>

    <endEvent id="_3" name="End" >

        <terminateEventDefinition/>

    </endEvent>

    <!-- connections -->

    <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

    <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

  </process>

  <bpmndi:BPMNDiagram>

    <bpmndi:BPMNPlane bpmnElement="com.sample.hello" >

      <bpmndi:BPMNShape bpmnElement="_1" >

        <dc:Bounds x="16" y="16" width="48" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNShape bpmnElement="_2" >

        <dc:Bounds x="96" y="16" width="80" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNShape bpmnElement="_3" >

        <dc:Bounds x="208" y="16" width="48" height="48" />

      </bpmndi:BPMNShape>

      <bpmndi:BPMNEdge bpmnElement="_1-_2" >

        <di:waypoint x="40" y="40" />

        <di:waypoint x="136" y="40" />

      </bpmndi:BPMNEdge>

      <bpmndi:BPMNEdge bpmnElement="_2-_3" >

        <di:waypoint x="136" y="40" />

        <di:waypoint x="232" y="40" />

      </bpmndi:BPMNEdge>

    </bpmndi:BPMNPlane>

  </bpmndi:BPMNDiagram>



Creating a process

121

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the

definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)

contains all graphical information, like the location of the nodes. The process XML consist of

exactly one <process> element. This element contains parameters related to the process (its type,

name, id and package name), and consists of three subsections: a header section (where process-

level information like variables, globals, imports and lanes can be defined), a nodes section that

defines each of the nodes in the process, and a connections section that contains the connections

between all the nodes in the process. In the nodes section, there is a specific element for each

node, defining the various parameters and, possibly, sub-elements for that node type.



Chapter 8. Processes

122

Table 8.1. jBPM BPMN2 constructs

Figure 8.3. The different types of

BPMN2 events

Figure 8.4. The different types of

BPMN2 activities and gateways



Creating a process

123

8.2.1.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.

The process itself exposes the following properties:

• Id: The unique id of the process.

• Name: The display name of the process.

• Version: The version number of the process.

• Package: The package (namespace) the process is defined in.

Figure 8.5. BPMN2 process properties

In addition to that following can be defined as well:

• Variables: Variables can be defined to store data during the execution of your process. See

section “???” for details.

• Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter

“???” for details.



Chapter 8. Processes

124

Figure 8.6. BPMN2 process variables

8.3. Activities

8.3.1. Script task

Figure 8.7. Script task

Represents a script that should be executed in this process. A Script Task should have one

incoming connection and one outgoing connection. The associated action specifies what should

be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.

This code can access any variables and globals. There is also a predefined variable kcontext that

references the ProcessContext object (which can, for example, be used to access the current

ProcessInstance or NodeInstance, and to get and set variables, or get access to the ksession



Script task

125

using kcontext.getKnowledgeRuntime()). When a Script Task is reached in the process, it will

execute the action and then continue with the next node. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do

anything inside such a script node. There are some caveats however:

• When trying to create a higher-level business process, that should also be understood by

business users, it is probably wise to avoid low-level implementation details inside the process,

including inside these script tasks. A Script Task could still be used to quickly manipulate

variables etc. but other concepts like a Service Task could be used to model more complex

behaviour in a higher-level manner.

• Scripts should be immediate. They are using the engine thread to execute the script. Scripts

that could take some time to execute should probably be modeled as an asynchronous Service

Task.

• You should try to avoid contacting external services through a script node. Not only does this

usually violate the first two caveats, it is also interacting with external services without the

knowledge of the engine, which can be problematic, especially when using persistence and

transactions. In general, it is probably wiser to model communication with an external service

using a service task.

• Scripts should not throw exceptions. Runtime exceptions should be caught and for example

managed inside the script or transformed into signals or errors that can then be handled inside

the process.



Chapter 8. Processes

126

8.3.2. Service task

Figure 8.8. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is

executed outside the process engine should be represented (in a declarative way) using a Service

Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.

Users can define domain-specific services or work items, using a unique name and by defining

the parameters (input) and results (output) that are associated with this type of work. Check the

chapter on domain-specific processes for a detailed explanation and illustrative examples of how

to define and use work items in your processes. When a Service Task is reached in the process,

the associated work is executed. A Service Task should have one incoming connection and one

outgoing connection.

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Parameter mapping: Allows copying the value of process variables to parameters of the work

item. Upon creation of the work item, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the work item to a process

variable. Each type of work can define result parameters that will (potentially) be returned after

the work item has been completed. A result mapping can be used to copy the value of the given

result parameter to the given variable in this process. For example, the "FileFinder" work item

returns a list of files that match the given search criteria within the result parameter Files. This

list of files can then be bound to a process variable for use within the process. Upon completion

of the work item, the values will be copied.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.



User task

127

• Additional parameters: Each type of work item can define additional parameters that are relevant

for that type of work. For example, the "Email" work item defines additional parameters such as

From, To, Subject and Body. The user can either provide values for these parameters directly,

or define a parameter mapping that will copy the value of the given variable in this process to

the given parameter; if both are specified, the mapping will have precedence. Parameters of

type String can use #{expression} to embed a value in the string. The value will be retrieved

when creating the work item, and the substitution expression will be replaced by the result of

calling toString() on the variable. The expression could simply be the name of a variable (in

which case it resolves to the value of the variable), but more advanced MVEL expressions are

possible as well, e.g., #{person.name.firstname}.

8.3.3. User task

Figure 8.9. User task

Processes can also involve tasks that need to be executed by human actors. A User Task

represents an atomic task to be executed by a human actor. It should have one incoming

connection and one outgoing connection. User Tasks can be used in combination with Swimlanes

to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more

details. A User Task is actually nothing more than a specific type of service node (of type "Human

Task"). A User Task contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.



Chapter 8. Processes

128

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• GroupId: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See the human tasks chapter for more detail on how

to use swimlanes.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. A human task has

a result variable "Result" that contains the data returned by the human actor. The variable

"ActorId" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like

TaskName, Comment, etc.) and who needs to perform it (using either actorId or groupId). Note that

if there is data related to this specific process instance that the end user needs when performing

the task, this data should be passed as the content of the task. The task for example does not

have access to process variables. Check out the chapter on human tasks to get more detail on

how to pass data between human tasks and the process instance.



Reusable sub-process

129

8.3.4. Reusable sub-process

Figure 8.10. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should

have one incoming connection and one outgoing connection. When a Reusable Sub-Process

node is reached in the process, the engine will start the process with the given id. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• ProcessId: The id of the process that should be executed.

• Wait for completion (by default true): If this property is true, this sub-process node will only

continue if the child process that was started has terminated its execution (completed or

aborted); otherwise it will continue immediately after starting the subprocess (so it will not wait

for its completion).

• Independent (by default true): If this property is true, the child process is started as an

independent process, which means that the child process will not be terminated if this parent

process is completed (or this sub-process node is cancelled for some other reason); otherwise

the active sub-process will be cancelled on termination of the parent process (or cancellation

of the sub-process node). Note that you can only set independent to "false" only when "Wait

for completion" is set to true.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.



Chapter 8. Processes

130

• Parameter in/out mapping: A sub-process node can also define in- and out-mappings for

variables. The variables given in the "in" mapping will be used as parameters (with the

associated parameter name) when starting the process. The variables of the child process that

are defined for the "out" mappings will be copied to the variables of this process when the

child process has been completed. Note that you can use "out" mappings only when "Wait for

completion" is set to true.

8.3.5. Business rule task

Figure 8.11. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated

when the node is reached. A Rule Task should have one incoming connection and one outgoing

connection. Rules are defined in separate files using the Drools rule format. Rules can become

part of a specific ruleflow group using the ruleflow-group attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of

the corresponding ruleflow-group (if any). Execution will automatically continue to the next node

if there are no more active rules in this ruleflow group. As a result, during the execution of a

ruleflow group, new activations belonging to the currently active ruleflow group can be added

to the Agenda due to changes made to the facts by the other rules. Note that the process will

immediately continue with the next node if it encounters a ruleflow group where there are no active

rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will

only continue if all active rules of the ruleflow group has been completed. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).



Embedded sub-process

131

• Name: The display name of the node.

• RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this

RuleFlowGroup node.

8.3.6. Embedded sub-process

Figure 8.12. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This

allows not only the embedding of a part of the process within such a sub-process node, but also

the definition of additional variables that are accessible for all nodes inside this container. A sub-

process should have one incoming connection and one outgoing connection. It should also contain

one start node that defines where to start (inside the Sub-Process) when you reach the sub-

process. It should also contain one or more end events. Note that, if you use a terminating event

node inside a sub-process, you are terminating just that sub-process. A sub-process ends when

there are no more active nodes inside the sub-process. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Variables: Additional variables can be defined to store data during the execution of this node.

See section “???” for details.



Chapter 8. Processes

132

8.3.7. Multi-instance sub-process

Figure 8.13. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the

contained process segment multiple times, once for each element in a collection. A multiple

instance sub-process should have one incoming connection and one outgoing connection. It waits

until the embedded process fragment is completed for each of the elements in the given collection

before continuing. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• CollectionExpression: The name of a variable that represents the collection of elements

that should be iterated over. The collection variable should be an array or of type

java.util.Collection. If the collection expression evaluates to null or an empty collection,

the multiple instances sub-process will be completed immediately and follow its outgoing

connection.

• VariableName: The name of the variable to contain the current element from the collection. This

gives nodes within the composite node access to the selected element.



Events

133

8.4. Events

8.4.1. Start event

Figure 8.14. Start event

The start of the process. A process should have exactly one start node (none start node which

does not have event definitions), which cannot have incoming connections and should have

one outgoing connection. Whenever a process is started, execution will start at this node and

automatically continue to the first node linked to this start event, and so on. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.



Chapter 8. Processes

134

8.4.2. End events

8.4.2.1. End event

Figure 8.15. End event

The end of the process. A process should have one or more end events. The End Event

should have one incoming connection and cannot have any outgoing connections. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Terminate: An End Event can terminate the entire process or just the path. When a process

instance is terminated, it means its state is set to completed and all other nodes that might still

be active (on parallel paths) in this process instance are cancelled. Non-terminating end events

are simply end for this path (execution of this branch will end here), but other parallel paths can

still continue. A process instance will automatically complete if there are no more active paths

inside that process instance (for example, if a process instance reaches a non-terminating end

node but there are no more active branches inside the process instance, the process instance



End events

135

will be completed anyway). Terminating end events are visualized using a full circle inside the

event node, non-terminating event nodes are empty. Note that, if you use a terminating event

node inside a sub-process, you are terminating just that sub-process and top level continues.

8.4.2.2. Throwing error event

Figure 8.16. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have

one incoming connection and no outgoing connections. When an Error Event is reached in the

process, it will throw an error with the given name. The process will search for an appropriate

error handler that is capable of handling this kind of fault. If no error handler is found, the process

instance will be aborted. An Error Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• FaultName: The name of the fault. This name is used to search for appropriate exception

handlers that are capable of handling this kind of fault.

• FaultVariable: The name of the variable that contains the data associated with this fault. This

data is also passed on to the exception handler (if one is found).



Chapter 8. Processes

136

Error handlers can be specified using boundary events.

8.4.3. Intermediate events

8.4.3.1. Catching timer event

Figure 8.17. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event

should have one incoming connection and one outgoing connection. The timer delay specifies

how long the timer should wait before triggering the first time. When a Timer Event is reached in

the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled

(e.g., by completing or aborting the enclosing process instance). Consult the section “???” for

more information. The Timer Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Timer delay: The delay that the node should wait before triggering the first time. The expression

should be of the form [#d][#h][#m][#s][#[ms]]. This allows you to specify the number

of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify

anything). For example, the expression "1h" will wait one hour before triggering the timer. The

expression could also use #{expr} to dynamically derive the delay based on some process



Intermediate events

137

variable. Expr in this case could be a process variable, or a more complex expression based

on a process variable (e.g. myVariable.getValue()).

• Timer period: The period between two subsequent triggers. If the period is 0, the timer should

only be triggered once. The expression should be of the form [#d][#h][#m][#s][#[ms]]. You

can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if

you don't specify anything). For example, the expression "1h" will wait one hour before triggering

the timer again. The expression could also use #{expr} to dynamically derive the period based

on some process variable. Expr in this case could be a process variable, or a more complex

expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are

not automatic tasks like script task that have no wait state as timer will not have a change to fire

before task completion.

8.4.3.2. Catching signal event

Figure 8.18. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the

process. A Signal Event should have one incoming connections and one outgoing connection. It

specifies the type of event that is expected. Whenever that type of event is detected, the node

connected to this event node will be triggered. It contains the following properties:



Chapter 8. Processes

138

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• EventType: The type of event that is expected.

• VariableName: The name of the variable that will contain the data associated with this event

(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksession.signalEvent(eventType, data, processInstanceId)

This will trigger all (active) signal event nodes in the given process instance that are waiting for

that event type. Data related to the event can be passed using the data parameter. If the event

node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only

be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using

on entry or on exit actions) can use

kcontext.getKnowledgeRuntime().signalEvent(eventType, data,

 kcontext.getProcessInstance().getId());

        

A throwing signal event could also be used to model the signaling of an event.



Gateways

139

8.5. Gateways

8.5.1. Diverging gateway

Figure 8.19. Diverging gateway



Chapter 8. Processes

140

Allows you to create branches in your process. A Diverging Gateway should have one incoming

connection and two or more outgoing connections. There are three types of gateway nodes

currently supported:

• AND or parallel means that the control flow will continue in all outgoing connections

simultaneously.

• XOR or exclusive means that exactly one of the outgoing connections will be chosen. The

decision is made by evaluating the constraints that are linked to each of the outgoing

connections. The constraint with the lowest priority number that evaluates to true is selected.

Constraints can be specified using different dialects. Note that you should always make sure

that at least one of the outgoing connections will evaluate to true at runtime (the engine will

throw an exception at runtime if it cannot find at least one outgoing connection).

• OR or inclusive means that all outgoing connections whose condition evaluates to true are

selected. Conditions are similar to the exclusive gateway, except that no priorities are taken

into account. Note that you should make sure that at least one of the outgoing connections will

evaluate to true at runtime because the engine will throw an exception at runtime if it cannot

determine an outgoing connection.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the split node, i.e., AND, XOR or OR (see above).

• Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive

or inclusive gateway).



Converging gateway

141

8.5.2. Converging gateway

Figure 8.20. Converging gateway



Chapter 8. Processes

142

Allows you to synchronize multiple branches. A Converging Gateway should have two or more

incoming connections and one outgoing connection. There are three types of splits currently

supported:

• AND or parallel means that is will wait until all incoming branches are completed before

continuing.

• XOR or exclusive means that it continues as soon as one of its incoming branches has been

completed. If it is triggered from more than one incoming connection, it will trigger the next node

for each of those triggers.

• OR or inclusive means that it continues as soon as all direct active paths of its incoming

branches has been completed. This is complex merge behaviour that is described in BPMN2

specification but in most cases it means that OR join will wait for all active flows that started

in OR split. Some advanced cases (including other gateways in between or repeatable timers)

will be causing different "direct active path" calculation.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the Join node, i.e. AND, OR or XOR.

8.6. Others

8.6.1. Variables

While the flow chart focuses on specifying the control flow of the process, it is usually also

necessary to look at the process from a data perspective. Throughout the execution of a process,

data can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A

variable is defined by a name and a data type. This could be a basic data type, such as boolean,

int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables

can be defined inside a variable scope. The top-level scope is the variable scope of the process

itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope

are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that

defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable

in its parent container. If the variable cannot be found, it will look in that one's parent container,

and so on, until the process instance itself is reached. If the variable cannot be found, a read

access yields null, and a write access produces an error message, with the process continuing

its execution.

Variables can be used in various ways:



Variables

143

• Process-level variables can be set when starting a process by providing a map of parameters

to the invocation of the startProcess method. These parameters will be set as variables on

the process scope.

• Script actions can access variables directly, simply by using the name of the variable as

a local parameter in their script. For example, if the process defines a variable of type

"org.jbpm.Person" in the process, a script in the process could access this directly:

// call method on the process variable "person"

person.setAge(10);

        

Changing the value of a variable in a script can be done through the knowledge context:

kcontext.setVariable(variableName, value);

• Service tasks (and reusable sub-processes) can pass the value of process variables to the

outside world (or another process instance) by mapping the variable to an outgoing parameter.

For example, the parameter mapping of a service task could define that the value of the process

variable x should be mapped to a task parameter y right before the service is being invoked.

You can also inject the value of process variable into a hard-coded parameter String using

#{expression}. For example, the description of a human task could be defined as You need

to contact person #{person.getName()} (where person is a process variable), which will

replace this expression by the actual name of the person when the service needs to be invoked.

Similarly results of a service (or reusable sub-process) can also be copied back to a variable

using a result mapping.

• Various other nodes can also access data. Event nodes for example can store the data

associated to the event in a variable, etc. Check the properties of the different node types for

more information.

• Process variables can be accessed also from the Java code of your application. It is done by

casting of ProcessInstance to WorkflowProcessInstance. See the following example:

variable = ((WorkflowProcessInstance) processInstance).getVariable("variableName");

        

To list all the process variables see the following code snippet:



Chapter 8. Processes

144

org.jbpm.process.instance.ProcessInstance processInstance = ...;

VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

Map<String, Object> variables = variableScope.getVariables();

        

Note that when you use persistence then you have to use a command based approach to get

all process variables:

Map<String, Object> variables = ksession.execute(new GenericCommand<Map<String, Object>>() {

    public Map<String, Object> execute(Context context) {

        KieSession ksession = ((KnowledgeCommandContext) context).getStatefulKnowledgesession();

        org.jbpm.process.instance.ProcessInstance processInstance = (org.jbpm.process.instance.ProcessInstance) ksession.getProcessInstance(piId);

        VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

        Map<String, Object> variables = variableScope.getVariables();

        return variables;

    }

});

Finally, processes (and rules) all have access to globals, i.e. globally defined variables

and data in the Knowledge Session. Globals are directly accessible in actions just like

variables. Globals need to be defined as part of the process before they can be used. You

can for example define globals by clicking the globals button when specifying an action

script in the Eclipse action property editor. You can also set the value of a global from

the outside using ksession.setGlobal(name, value) or from inside process scripts using

kcontext.getKnowledgeRuntime().setGlobal(name,value);.

8.6.2. Scripts

Action scripts can be used in different ways:

• Within a Script Task,

• As entry or exit actions, with a number of nodes.

Actions have access to globals and the variables that are defined for

the process and the predefined variable kcontext. This variable is of type

org.kie.api.runtime.process.ProcessContext and can be used for several tasks:

• Getting the current node instance (if applicable). The node instance could be queried for data,

such as its name and type. You can also cancel the current node instance.

NodeInstance node = kcontext.getNodeInstance();



Constraints

145

String name = node.getNodeName();

• Getting the current process instance. A process instance can be queried for data (name, id,

processId, etc.), aborted or signaled an internal event.

ProcessInstance proc = kcontext.getProcessInstance();

proc.signalEvent( type, eventObject );

• Getting or setting the value of variables.

• Accessing the Knowledge Runtime allows you do things like starting a process, signaling

(external) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.

MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts

any valid Java code but additionally provides support for nested accesses of parameters (e.g.,

person.name instead of person.getName()), and many other scripting improvements. Thus,

MVEL expressions are more convenient for the business user. For example, an action that prints

out the name of the person in the "requester" variable of the process would look like this:

// Java dialect

System.out.println( person.getName() );

//  MVEL dialect

System.out.println( person.name );

    

8.6.3. Constraints

Constraints can be used in various locations in your processes, for example in a diverging

gateway. jBPM supports two types of constraints:

• Code constraints are boolean expressions, evaluated directly whenever they are reached. We

currently support two dialects for expressing these code constraints: Java and MVEL. Both

Java and MVEL code constraints have direct access to the globals and variables defined in

the process. Here is an example of a valid Java code constraint, person being a variable in

the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:



Chapter 8. Processes

146

return person.age > 20;

• Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule

Language syntax to express possibly complex constraints. These rules can, like any other rule,

refer to data in the Working Memory. They can also refer to globals directly. Here is an example

of a valid rule constraint:

Person( age > 20 )

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is

however possible to refer to the current process instance inside a rule constraint, by adding

the process instance to the Working Memory and matching for the process instance in your

rule constraint. We have added special logic to make sure that a variable processInstance of

type WorkflowProcessInstance will only match to the current process instance and not to other

process instances in the Working Memory. Note that you are however responsible yourself to

insert the process instance into the session and, possibly, to update it, for example, using Java

code or an on-entry or on-exit or explicit action in your process. The following example of a rule

constraint will search for a person with the same name as the value stored in the variable "name"

of the process:

processInstance : WorkflowProcessInstance()

Person( name == ( processInstance.getVariable("name") ) )

# add more constraints here ...

8.6.4. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be

used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

8.6.4.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait

after node activation before triggering the timer the first time. The period defines the time between

subsequent trigger activations. A period of 0 results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify

the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't

specify anything). For example, the expression "1h" will wait one hour before triggering the timer

(again).



Process Fluent API

147

8.6.4.2. Configure timer ISO-8601 date format

since version 6 timers can be configured with valid  ISO8601 [http://en.wikipedia.org/wiki/

ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can be

defined as data dn time representation, time duration or repeating intervals

• Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM

• Duration - PT1S - fires once after 1 second

• Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5

times every second

8.6.4.3. Configure timer with process variables
In addition to two configuration otpions above timers can be specified using process variable

that can consists of string representation of ether delay and period or ISO8601 date format.

By specifying #{variable} engine will dynamically extract process variable and use it as timer

expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.

Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

• A Timer Event may be added to the process flow. Its activation starts the timer, and when it

triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing

connection of a timer with a positive period is triggered multiple times. Cancelling a Timer node

also cancels the associated timer, after which no more triggers will occur.

• Timers can be associated with a Sub-Process or tasks as a boundary event.

8.7. Process Fluent API

While it is recommended to define processes using the graphical editor or the underlying

XML (to shield yourself from internal APIs), it is also possible to define a process using the

Process API directly. The most important process model elements are defined in the packages

org.jbpm.workflow.core and org.jbpm.workflow.core.node. A "fluent API" is provided that

allows you to easily construct processes in a readable manner using factories. At the end, you

can validate the process that you were constructing manually.

8.7.1. Example

This is a simple example of a basic process with a script task only:

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601


Chapter 8. Processes

148

RuleFlowProcessFactory factory =

    RuleFlowProcessFactory.createProcess("org.jbpm.HelloWorld");

factory

    // Header

    .name("HelloWorldProcess")

    .version("1.0")

    .packageName("org.jbpm")

    // Nodes

    .startNode(1).name("Start").done()

    .actionNode(2).name("Action")

        .action("java", "System.out.println(\"Hello World\");").done()

    .endNode(3).name("End").done()

    // Connections

    .connection(1, 2)

    .connection(2, 3);

RuleFlowProcess process = factory.validate().getProcess();

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newByteArrayResource(

    XmlBPMNProcessDumper.INSTANCE.dump(process).getBytes()), ResourceType.BPMN2);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("org.jbpm.HelloWorld");

You can see that we start by calling the static createProcess() method from the

RuleFlowProcessFactory class. This method creates a new process with the given id and returns

the RuleFlowProcessFactory that can be used to create the process. A typical process consists

of three parts. The header part comprises global elements like the name of the process, imports,

variables, etc. The nodes section contains all the different nodes that are part of the process. The

connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package

name. After that, you can start adding nodes to the current process. If you have auto-completion

you can see that you have different methods to create each of the supported node types at your

disposal.

When you start adding nodes to the process, in this example by calling the startNode(),

actionNode() and endNode() methods, you can see that these methods return a specific

NodeFactory, that allows you to set the properties of that node. Once you have

finished configuring that specific node, the done() method returns you to the current

RuleFlowProcessFactory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between

them. This can be done by calling the method connection, which will link previously created

nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve

the created RuleFlowProcess object.



Testing

149

8.8. Testing

Even though business processes aren't code (we even recommend you to make them as high-

level as possible and to avoid adding implementation details), they also have a life cycle like other

development artefacts. And since business processes can be updated dynamically, testing them

(so that you don't break any use cases when doing a modification) is really important as well.

8.8.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific

use cases, for example test the output based on the existing input. To simplify unit testing, jBPM

includes a helper class called JbpmJUnitBaseTestCase (in the jbpm-test module) that you can

use to greatly simplify your junit testing, by offering:

• helper methods to create a new RuntimeManager and RuntimeEngine for a given (set of)

process(es)

• you can select whether you want to use persistence or not

• assert statements to check

• the state of a process instance (active, completed, aborted)

• which node instances are currently active

• which nodes have been triggered (to check the path that has been followed)

• get the value of variables

For example, conside the following hello world process containing a start event, a script task and

an end event. The following junit test will create a new session, start the process and then verify

whether the process instance completed successfully and whether these three nodes have been

executed.

Figure 8.21.



Chapter 8. Processes

150

public class ProcessPersistenceTest extends JbpmJUnitBaseTestCase {

    public ProcessPersistenceTest() {

        // setup data source, enable persistence

        super(true, true);

    }

    @Test

    public void testProcess() {

        // create runtime manager with single process - hello.bpmn

        createRuntimeManager("hello.bpmn");

 

        // take RuntimeManager to work with process engine

        RuntimeEngine runtimeEngine = getRuntimeEngine();

        // get access to KieSession instance

        KieSession ksession = runtimeEngine.getKieSession();

        // start process

        ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

        // check whether the process instance has completed successfully

        assertProcessInstanceCompleted(processInstance.getId(), ksession);

        // check what nodes have been triggered

        assertNodeTriggered(processInstance.getId(), "StartProcess", "Hello", "EndProcess");

    }

}

JbpmJUnitBaseTestCase acts as base test case class that shall be used for jBPM related tests.

It provides four usage areas:

• JUnit life cycle methods

• setUp: executed @Before and configures data source and EntityManagerFactory, cleans up

Singleton's session id

• tearDown: executed @After and clears out history, closes EntityManagerFactory and data

source, disposes RuntimeEngines and RuntimeManager

• Knowledge Base and KnowledgeSession management methods

• createRuntimeManager creates RuntimeManager for given set of assets and selected

strategy

• disposeRuntimeManager disposes RuntimeManager currently active in the scope of test

• getRuntimeEngine creates new RuntimeEngine for given context



Unit testing

151

• Assertions

• assertProcessInstanceCompleted

• assertProcessInstanceAborted

• assertProcessInstanceActive

• assertNodeActive

• assertNodeTriggered

• assertProcessVarExists

• assertNodeExists

• assertVersionEquals

• assertProcessNameEquals

• Helper methods

• getDs - returns currently configured data source

• getEmf - returns currently configured EntityManagerFactory

• getTestWorkItemHandler - returns test work item handler that might be registered in addition

to what is registered by default

• clearHistory - clears history log

• setupPoolingDataSource - sets up data source

JbpmJUnitBaseTestCase supports all three predefined RuntimeManager strategies as part of

the unit testing. It's enough to specify which strategy shall be used whenever creating runtime

manager as part of single test:

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

    

    private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);

    public ProcessHumanTaskTest() {

        super(true, false);

    }

    

    @Test

    public void testProcessProcessInstanceStrategy() {

        RuntimeManager manager = createRuntimeManager(Strategy.PROCESS_INSTANCE, "manager", "humantask.bpmn");

        RuntimeEngine runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get());

        KieSession ksession = runtimeEngine.getKieSession();

        TaskService taskService = runtimeEngine.getTaskService();



Chapter 8. Processes

152

        

        int ksessionID = ksession.getId();

        ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

        assertProcessInstanceActive(processInstance.getId(), ksession);

        assertNodeTriggered(processInstance.getId(), "Start", "Task 1");

        

        manager.disposeRuntimeEngine(runtimeEngine);

        runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get(processInstance.getId()));

        

        ksession = runtimeEngine.getKieSession();

        taskService = runtimeEngine.getTaskService();

        

        assertEquals(ksessionID, ksession.getId());

        

        // let john execute Task 1

        List<TaskSummary> list = taskService.getTasksAssignedAsPotentialOwner("john", "en-

UK");

        TaskSummary task = list.get(0);

        logger.info("John is executing task {}", task.getName());

        taskService.start(task.getId(), "john");

        taskService.complete(task.getId(), "john", null);

        assertNodeTriggered(processInstance.getId(), "Task 2");

        

        // let mary execute Task 2

        list = taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");

        task = list.get(0);

        logger.info("Mary is executing task {}", task.getName());

        taskService.start(task.getId(), "mary");

        taskService.complete(task.getId(), "mary", null);

        assertNodeTriggered(processInstance.getId(), "End");

        assertProcessInstanceCompleted(processInstance.getId(), ksession);

    }

}

Above is more complete example that uses PerProcessInstance runtime manager strategy and

uses task service to deal with user tasks.

8.8.1.1. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example

a human task service, an email server or your own domain-specific services). One of the

advantages of our domain-specific process approach is that you can specify yourself how to

actually execute your own domain-specific nodes, by registering a handler. And this handler can

be different depending on your context, allowing you to use testing handlers for unit testing your

process. When you are unit testing your business process, you can register test handlers that



Unit testing

153

then verify whether specific services are requested correctly, and provide test responses for those

services. For example, imagine you have an email node or a human task as part of your process.

When unit testing, you don't want to send out an actual email but rather test whether the email

that is requested contains the correct information (for example the right to email, a personalized

body, etc.).

A TestWorkItemHandler is provided by default that can be registered to collect all work items (a

work item represents one unit of work, like for example sending one specific email or invoking one

specific service and contains all the data related to that task) for a given type. This test handler

can then be queried during unit testing to check whether specific work was actually requested

during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This

test case in particular will test whether an exception is raised when the email could not be sent

(which is simulated by notifying the engine that the sending the email could not be completed).

The test case uses a test handler that simply registers when an email was requested (and allows

you to test the data related to the email like from, to, etc.). Once the engine has been notified the

email could not be sent (using abortWorkItem(..)), the unit test verifies that the process handles

this case successfully by logging this and generating an error, which aborts the process instance

in this case.

Figure 8.22.

public void testProcess2() {

    // create runtime manager with single process - hello.bpmn

    createRuntimeManager("sample-process.bpmn");

    // take RuntimeManager to work with process engine

    RuntimeEngine runtimeEngine = getRuntimeEngine();

    // get access to KieSession instance

    KieSession ksession = runtimeEngine.getKieSession();

    // register a test handler for "Email"

    TestWorkItemHandler testHandler = getTestWorkItemHandler();



Chapter 8. Processes

154

    ksession.getWorkItemManager().registerWorkItemHandler("Email", testHandler);

    // start the process

    ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello2");

    assertProcessInstanceActive(processInstance.getId(), ksession);

    assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");

    // check whether the email has been requested

    WorkItem workItem = testHandler.getWorkItem();

    assertNotNull(workItem);

    assertEquals("Email", workItem.getName());

    assertEquals("me@mail.com", workItem.getParameter("From"));

    assertEquals("you@mail.com", workItem.getParameter("To"));

    // notify the engine the email has been sent

    ksession.getWorkItemManager().abortWorkItem(workItem.getId());

    assertProcessInstanceAborted(processInstance.getId(), ksession);

    assertNodeTriggered(processInstance.getId(), "Gateway", "Failed", "Error");

}

8.8.1.2. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,

the junit tests will use persistence, meaning that the state of all process instances will be stored

in a (in-memory H2) database (which is started by the junit test during setup) and a history log will

be used to check assertions related to execution history. When persistence is not used, process

instances will only live in memory and an in-memory logger is used for history assertions.

Persistence (and setup of data source) is controlled by the super constructor and allows following

• default, no arg constructor - the most simple test case configuration (does NOT initialize data

source and does NOT configure session persistence) - this is usually used for in memory

process management, without human task interaction

• super(boolean, boolean) - allows to explicitly configure persistence and data source. This is the

most common way of bootstrapping test cases for jBPM

• super(true, false) - to execute with in memory process management with human tasks

persistence

• super(true, true) - to execute with persistent process management with human tasks

persistence

• super(boolean, boolean, string) - same as super(boolean, boolean) but allows to use another

persistence unit name than default (org.jbpm.persistence.jpa)



Unit testing

155

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

    

    private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);

    public ProcessHumanTaskTest() {

        // configure this tests to not use persistence for process engine but

 still use it for human tasks

        super(true, false);

    }

}



156



Chapter 9.

157

Chapter 9. Human Tasks

9.1. Introduction

An important aspect of business processes is human task management. While some of the work

performed in a process can be executed automatically, some tasks need to be executed by human

actors.

jBPM supports a special human task node inside processes for modeling this interaction with

human users. This human task node allows process designers to define the properties related to

the task that the human actor needs to execute, like for example the type of task, the actor(s),

or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle

of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.

Note however that this implementation is fully pluggable, meaning that users can integrate their

own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human

task nodes inside your process to model the interaction with human actors, (2) integrate a task

management component (like for example the WS-HumanTask based implementation provided

by jBPM) and (3) have end users interact with a human task client to request their task list and

claim and complete the tasks assigned to them. Each of these three elements will be discussed

in more detail in the next sections.

9.2. Using User Tasks in our Processes

jBPM supports the use of human tasks inside processes using a special User Task node defined

by the BPMN2 Specification(as shown in the figure above). A User Task node represents an

atomic task that needs to be executed by a human actor.

[Although jBPM has a special user task node for including human tasks inside a process, human

tasks are considered the same as any other kind of external service that needs to be invoked

and are therefore simply implemented as a domain-specific service. See the chapter on domain-

specific processes to learn more about this.]

A User Task node contains the following core properties:



Chapter 9. Human Tasks

158

• Actors: The actors that are responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• Group: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Name: The display name of the node.

• TaskName: The name of the human task. This name is used to link the task to a Form. It also

represent the internal name of the Task that can be used for other purposes.

• DataInputSet: all the input variables that the task will recieve to work on. Usually you will be

interested in copying variables from the scope of the process to the scope of the task. (Look at

the data mappings section for an example)

• DataOutputSet: all the output variables that will be generated by the execution of the task. Here

you specify all the name of the variables in the context of the task that you are interested to

copy to the context of the process. (Look at the data mappings section for an example)

• Assignments: here you specify which process variable will be linked to each Data Input and

Data Output mapping. (Look at the data mappings section for an example)

You can edit these variables in the properties view (see below) when selecting the User Task node.

A User Task node aslo contains the following extra properties:



Data Mappings

159

• Comment: A comment associated with the human task. Here you can use expressions.

• Content: The data associated with this task.

• Priority: An integer indicating the priority of the human task.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

9.3. Data Mappings

Human tasks typically present some data related to the task that needs to be performed to the

actor that is executing the task and usually also request the actor to provide some result data

related to the execution of the task. Task forms are typically used to present this data to the actor

and request results.

The data that will be used by the Task needs to be specified when we define the User Task in

our Process. In order to do that we need to define which data will be copied from the process

context to the task context. Notice that the data is copied, so it can be modified inside the Task

context but it will not affect the process variables unless we decide to copy back the value from

the task to the process context.

Most of the times Forms are used to display data to the end user. Allowing them to generate/create

new data that will be propagated to the process context to be used by future activities. In order



Chapter 9. Human Tasks

160

to decide how the information flow from the process to a particular task and from the task to the

process we need to define which pieces of information will be automatically copied by the process

engine. The following sections shows how to do these mappings by configuring the DataInputSet,

DataOutputSet and the Assignments properties of a User Task.

Let's start defining the Task DataInputSet:

Both GroupId and Comment are automatically generated, so you don't need to worry about that.

In this case the only user defined Data Input is called: in_name. This means that the task will be

recieving information from the process context and internally this variable will be called in_name.

The type is also specified here.

In the Data Outputs represent the data that will be generated by the tasks. In this case we have

two variables of type String called: out_name and out_mail and two Interger variables called:

out_age and out_score are defined. This means that inside the task context we will need to set

the value to these variables.

Finally all the connections with the process context needs to be done in the Data Assignments.

The main idea here is to define how Data Inputs and Data Outputs will be associated with process

variables.



Task Lifecycle

161

As shown in the previous screenshot, the assignments between the process variables (in this

case (name, age, mail and hr_score)) and the Data Inputs and Outputs are done in the Data

Assignments screen. Notice that the example uses a convetion that makes it easy to know which

is an internal Task variables (Data Input/Output) using the "in_" and "out_" prefix to the variable

names. Using this convention you can quickly understand the Assignments screen. The first row

maps the process variable called name to the data input called in_name. The second row maps

the data output called out_mail to the process variable called mail, and so on.

These mappings at runtime will automatically copy the variables content from one context (process

and task) to the other automatically for us.

9.4. Task Lifecycle

From the perspective of a process, when a user task node is encountered during the execution, a

human task is created. The process will then only leave the user task node when the associated

human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is

described below, please check out the WS-HumanTask specification. The following diagram is

from the WS-HumanTask specification and describes the human task life cycle.



Chapter 9. Human Tasks

162

A newly created task starts in the "Created" stage. Usually, it will then automatically become

"Ready", after which the task will show up on the task list of all the actors that are allowed to

execute the task. The task will stay "Ready" until one of these actors claims the task, indicating

that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a

task that only has one potential (specific) actor will automatically be assigned to that actor upon

creation of the task. When the user who has claimed the task starts executing it, the task status

will change from "Reserved" to "InProgress".

Lastly, once the user has performed and completed the task, the task status will change to

"Completed". In this step, the user can optionally specify the result data related to the task. If the

task could not be completed, the user could also indicate this by using a fault response, possibly

including fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a

number of other life cycle methods, including:

• Delegating or forwarding a task, so that the task is assigned to another actor

• Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all

actors allowed to take it



Task Service and The Process Engine

163

• Temporarly suspending and resuming a task

• Stopping a task in progress

• Skipping a task (if the task has been marked as skippable), in which case the task will not be

executed

9.5. Task Service and The Process Engine

As far as the jBPM engine is concerned, human tasks are similar to any other external service that

needs to be invoked and are implemented as a domain-specific service. (For more on domain-

specific services, see the chapter on them here.) Because a human task is an example of such

a domain-specific service, the process itself only contains a high-level, abstract description of the

human task to be executed and a work item handler that is responsible for binding this (abstract)

task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by

jBPM, or they may register their own implementation. In the next paragraphs, we will describe the

human task servcie implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the

WS-HumanTask specification. If you do not need to integrate jBPM with another existing

implementation of a human task service, you can use this service. The jBPM implementation

manages the life cycle of the tasks (creation, claiming, completion, etc.) and stores the state

of all the tasks, task lists, and other associated information. It also supports features like

internationalization, calendar integration, different types of assignments, delegation, escalation

and deadlines. The code for the implementation itself can be found in the jbpm-human-task

module.

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.

This specification defines (in detail) the model of the tasks, the life cycle, and many other features.

It is very comprehensive and the first version can be found here.

9.6. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients

to integrate (at a low level) with the human task service. Note that end users should probably

not interact with this low-level API directly, but use one of the more user-friendly task clients

(see below) instead. These clients offer a graphical user interface to request task lists, claim and

complete tasks, and manage tasks in general. The task clients listed below use the Java API to

internally interact with the human task service. Of course, the low-level API is also available so

that developers can use it in their code to interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods (among

others) for managing the life cycle of human tasks:



Chapter 9. Human Tasks

164

              ...

              

              void start( long taskId, String userId );

              void stop( long taskId, String userId );

              void release( long taskId, String userId );

              void suspend( long taskId, String userId );

              void resume( long taskId, String userId );

              void skip( long taskId, String userId );

              void delegate(long taskId, String userId, String targetUserId);

              void complete( long taskId, String userId, Map<String, Object>

 results );

              

              ...

              

       

If you take a look at the method signatures you will notice that almost all of these methods take

the following arguments:

• taskId: The id of the task that we are working with. This is usually extracted from the currently

selected task in the user task list in the user interface.

• userId: The id of the user that is executing the action. This is usually the id of the user that is

logged in into the application.

There is also an internal interface that you should check for more methods to interact with the

Task Service, this interface is internal until it gets tested. Future version of the External (public)

interface can include some of the methods proposed in the InternalTaskService interface. If

you want to make use of the methods provided by this interface you need to manually cast to

InternalTaskService. One method that can be useful from this interface is getTaskContent():

               Map<String, Object> getTaskContent( long taskId );

       

This method saves you from doing all the boiler plate of getting the ContentMarshallerContext

to unmarshall the serialized version of the task content. If you only want to use the stable/public

API's you can just copy what this method does:



Interacting with the Task Service

165

              Task taskById = taskQueryService.getTaskInstanceById(taskId);

              Content contentById =

 taskContentService.getContentById(taskById.getTaskData().getDocumentContentId());

              ContentMarshallerContext context = getMarshallerContext(taskById);

              Object unmarshalledObject =

 ContentMarshallerHelper.unmarshall(contentById.getContent(),

 context.getEnvironment(), context.getClassloader());

              if (!(unmarshalledObject instanceof Map)) {

                  throw new IllegalStateException(" The Task Content Needs to be

 a Map in order to use this method and it was: "+unmarshalledObject.getClass());

      

              }

              Map<String, Object> content = (Map<String, Object>) unmarshalledObject;

              return content;

       

Because the content of the Task can be any Object, the previous method assume that you

are storing a Map of objects to work. If you are storing other than a Map you should do the

correspondent checks.

9.7. Interacting with the Task Service

In order to get access to the Task Service API it is recommended to let the Runtime Manager

to make sure that everything is setup correctly. Look at the Runtime Manager section for more

inforamtion. From the API perspective you should be doing something like this:

              ...

              RuntimeEngine engine =

 runtimeManager.getRuntimeEngine(EmptyContext.get());

              KieSession kieSession = engine.getKieSession();

              // Start a process

              kieSession.startProcess("CustomersRelationship.customers", params);

              // Do Task Operations

              TaskService taskService = engine.getTaskService();

              List<TaskSummary> tasksAssignedAsPotentialOwner =

 taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");

              

              // Claim Task

              taskService.claim(taskSummary.getId(), "mary");

              // Start Task

              taskService.start(taskSummary.getId(), "mary");

              ...



Chapter 9. Human Tasks

166

       

If you use this approach, there is no need to register the Task Service with the Process Engine.

The Runtime Manager will do that for you automatically. If you don't use the Runtime Manager,

you will be responsible for setting the LocalHTWorkItemHandler in the session in order to get

the Task Service notifying the Process Engine when a task is completed, or the Process Engine

notifying that a task has been created.

In jBPM 6.x the Task Service runs locally to the Process and Rule Engine and for that reason

multiple light clients can be created for different Process and Rule Engine's instances. All the

clients will be sharing the same database (backend storage for the tasks).



Chapter 10.

167

Chapter 10. Persistence and

Transactions

10.1. Process Instance State

jBPM allows the persistent storage of certain information. This chapter describes these different

types of persistence, and how to configure them. An example of the information stored is the

process runtime state. Storing the process runtime state is necessary in order to be able to

continue execution of a process instance at any point, if something goes wrong. Also, the process

definitions themselves, and the history information (logs of current and previous process states

already) can also be persisted.

10.1.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution

of the process in that specific context. For example, when executing a process that specifies

how to process a sales order, one process instance is created for each sales request. The

process instance represents the current execution state in that specific context, and contains all

the information related to that process instance. Note that it only contains the (minimal) runtime

state that is needed to continue the execution of that process instance at some later time, but it

does not include information about the history of that process instance if that information is no

longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.

This allows to restore the state of execution of all running processes in case of unexpected failure,

or to temporarily remove running instances from memory and restore them at some later time.

jBPM allows you to plug in different persistence strategies. By default, if you do not configure the

process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the

database. You do not have to trigger persistence yourself, the engine will take care of this when

persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are

stored at the end of that invocation, at so-called safe points. Whenever something goes wrong

and you restore the engine from the database, you also should not reload the process instances

and trigger them manually to resume execution, as process instances will automatically resume

execution if they are triggered, like for example by a timer expiring, the completion of a task that

was requested by that process instance, or a signal being sent to the process instance. The engine

will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably

should not try to access these database tables directly and especially not try to modify these

directly (as changing the runtime state of process instances without the engine knowing might

have unexpected side-effects). In most cases where information about the current execution state



Chapter 10. Persistence and T...

168

of process instances is required, the use of a history log is mostly recommended (see below). In

some cases, it might still be useful to for example query the internal database tables directly, but

you should only do this if you know what you are doing.

10.1.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the

state of the process instance into a binary dataset. When you use persistence with jBPM, this

mechanism is used to save or retrieve the process instance state from the database. The same

mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

• First, the process instance information is transformed into a binary blob. For performance

reasons, a custom serialization mechanism is used and not normal Java serialization.

• This blob is then stored, alongside other metadata about this process instance. This metadata

includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the

state of timer jobs, or the session data that any business rules would be evaluated over. This

session state is stored separately as a binary blob, along with the id of the session and some

metadata. You can always restore session state by reloading the session with the given id. The

session id can be retrieved using ksession.getId().

Note that the process instance binary datasets are usually relatively small, as they only contain

the minimal execution state of the process instance. For a simple process instance, this usually

contains one or a few node instances, i.e., any node that is currently executing, and any existing

variable values.

As a result of jBPM using marshalling, the data model is both simple and small:



Runtime State

169

Figure 10.1. jBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessioninfo entity contains the state of the (knowledge) session in which the jBPM process

instance is running.

Table 10.1. SessionInfo

Field Description Nullable

id The primary key. NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

rulesbytearray The binary dataset containing

the state of the session

NOT NULL

startdate The start time of the session

optlock The version field that serves

as its optimistic lock value

The processinstanceinfo entity contains the state of the jBPM process instance.

Table 10.2. ProcessInstanceInfo

Field Description Nullable

instanceid The primary key NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

images/Chapter-Persistence/jbpm_schema.png


Chapter 10. Persistence and T...

170

Field Description Nullable

lastreaddate The last time that the entity

was retrieved (read) from the

database

processid The name (id) of the process

processinstancebytearray This is the binary dataset

containing the state of the

process instance

NOT NULL

startdate The start time of the process

state An integer representing the

state of the process instance

NOT NULL

optlock The version field that serves

as its optimistic lock value

The eventtypes entity contains information about events that a process instance will undergo

or has undergone.

Table 10.3. EventTypes

Field Description Nullable

instanceid This references the

processinstanceinfo

primary key and there is a

foreign key constraint on this

column.

NOT NULL

eventTypes A text field related to an

event that the process has

undergone.

The workiteminfo entity contains the state of a work item.

Table 10.4. WorkItemInfo

Field Description Nullable

workitemid The primary key NOT NULL

creationDate The name of the work item

name The name of the work item

processinstanceid The (primary key) id of the

process: there is no foreign

key constraint on this field.

NOT NULL

state An integer representing the

state of the work item

NOT NULL



Runtime State

171

Field Description Nullable

optlock The version field that serves

as its optimistic lock value

workitembytearay This is the binary dataset

containing the state of the

work item

NOT NULL

The CorrelationKeyInfo entity contains information about correlation keys assigned to given

process instance - loose relationship as this table is considered optional used only when

correlation capabilities are required.

Table 10.5. CorrelationKeyInfo

Field Description Nullable

keyid The primary key NOT NULL

name assigned name of the

correlation key

 

processinstanceid The id of the process instance

which is assigned to this

correlation key

NOT NULL

optlock The version field that serves

as its optimistic lock value

 

The CorrelationPropertyInfo entity contains information about correlation properties for given

correlation key that is assigned to given process instance.

Table 10.6. CorrelationPropertyInfo

Field Description Nullable

propertyid The primary key NOT NULL

name The name of the property  

value The value of the property NOT NULL

optlock The version field that serves

as its optimistic lock value

 

correlationKey-keyid Foregin key to map to

correlation key

NOT NULL

The ContextMappingInfo entity contains information about contextual information mapped to

ksession. This is an internal part of RuntimeManager and can be considered optional when

RuntimeManager is not used.



Chapter 10. Persistence and T...

172

Table 10.7. ContextMappingInfo

Field Description Nullable

mappingid The primary key NOT NULL

context_id Identifier of the context NOT NULL

ksession?id Identifier of the ksession

mapped to this context

NOT NULL

optlock The version field that serves

as its optimistic lock value

 

10.1.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of

the process engine. Whenever a process instance is executing (for example when it started or

continuing from a previous wait state, the engine executes the process instance until no more

actions can be performed (meaning that the process instance either has completed (or was

aborted), or that it has reached a wait state in all of its parallel paths). At that point, the engine has

reached the next safe state, and the state of the process instance (and all other process instances

that might have been affected) is stored persistently.

10.2. Audit Log

In many cases it will be useful (if not necessary) to store information about the execution of process

instances, so that this information can be used afterwards. For example, sometimes we want to

verify which actions have been executed for a particular process instance, or in general, we want

to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly

increasing in size, not to mention the fact that monitoring and analysis queries might influence

the performance of your runtime engine. This is why process execution history information can

be stored separately.

This history log of execution information is created based on events that the process engine

generates during execution. This is possible because the jBPM runtime engine provides a generic

mechanism to listen to events. The necessary information can easily be extracted from these

events and then persisted to a database. Filters can also be used to limit the scope of the logged

information.

10.2.1. The jBPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information

in a database using JPA. The data model itself contains three entities, one for process

instance information, one for node instance information, and one for (process) variable instance

information.



The jBPM Audit data model

173

Figure 10.2. jBPM Audit data model

The ProcessInstanceLog table contains the basic log information about a process instance.

Table 10.8. ProcessInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

duration Actual duration of this

process instance since its

start date

end_date When applicable, the end

date of the process instance

externalId Optional external identifier

used to correlate to some

elements - e.g. deployment id

user_identity Optional identifier of the user

who started the process

instance

outcome The outcome of the process

instance, for instance error

code in case of process

instance was finished with

error event

parentProcessInstanceId The process instance id of the

parent process instance if any



Chapter 10. Persistence and T...

174

Field Description Nullable

processid The id of the process

processinstanceid The process instance id NOT NULL

processname The name of the process

processversion The version of the process

start_date The start date of the process

instance

status The status of process

instance that maps to process

instance state

The NodeInstanceLog table contains more information about which nodes were actually executed

inside each process instance. Whenever a node instance is entered from one of its incoming

connections or is exited through one of its outgoing connections, that information is stored in this

table.

Table 10.9. NodeInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

connection Actual identifier of the

sequence flow that led to this

node instance

log_date The date of the event

externalId Optional external identifier

used to correlate to some

elements - e.g. deployment id

nodeid The node id of the

corresponding node in the

process definition

nodeinstanceid The node instance id

nodename The name of the node

nodetype The type of the node

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

type The type of the event (0 =

enter, 1 = exit)

NOT NULL



Storing Process Events in a Database

175

Field Description Nullable

workItemId Optional - only for certain

node types - The identifier of

work item

The VariableInstanceLog table contains information about changes in variable instances. The

default is to only generate log entries when (after) a variable changes. It's also possible to log

entries before the variable (value) changes.

Table 10.10. VariableInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

externalId Optional external identifier

used to correlate to some

elements - e.g. deployment id

log_date The date of the event

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

oldvalue The previous value of the

variable at the time that the

log is made

value The value of the variable at

the time that the log is made

variableid The variable id in the process

definition

variableinstanceid The id of the variable instance

10.2.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your

session like this:

EntityManagerFactory emf = ...;

StatefulKnowledgeSession ksession = ...;

AbstractAuditLogger auditLogger = AuditLoggerFactory.newJPAInstance(emf);

ksession.addProcessEventListener(auditLogger);

// invoke methods one your session here



Chapter 10. Persistence and T...

176

      

To specify the database where the information should be stored, modify the file persistence.xml

file to include the audit log classes as well (ProcessInstanceLog, NodeInstanceLog and

VariableInstanceLog), as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

  version="2.0"

  xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://

java.sun.com/xml/ns/persistence/persistence_2_0.xsd

  http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/

persistence/orm_2_0.xsd"

  xmlns="http://java.sun.com/xml/ns/persistence"

  xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance>

  <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">

    <provider>org.hibernate.ejb.HibernatePersistence</provider>

    <jta-data-source>jdbc/jbpm-ds</jta-data-source>

    <mapping-file>META-INF/JBPMorm.xml</mapping-file>

    <class>org.drools.persistence.info.SessionInfo</class>

    <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

    <class>org.drools.persistence.info.WorkItemInfo</class>

    <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>

    <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>

    <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

    <class>org.jbpm.process.audit.ProcessInstanceLog</class>

    <class>org.jbpm.process.audit.NodeInstanceLog</class>

    <class>org.jbpm.process.audit.VariableInstanceLog</class>

    <properties>

      <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

      <property name="hibernate.max_fetch_depth" value="3"/>

      <property name="hibernate.hbm2ddl.auto" value="update"/>

      <property name="hibernate.show_sql" value="true"/>

      <property name="hibernate.transaction.jta.platform"

      value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/>

    </properties>

  </persistence-unit>

</persistence>

    



Storing Process Events in a JMS queue for further processing

177

All this information can easily be queried and used in a lot of different use cases, ranging

from creating a history log for one specific process instance to analyzing the performance of all

instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information

you need to store for analysis afterwards, and for performance reasons it is recommended to only

store the relevant data. Depending on your use cases, you might define your own data model for

storing the information you need, and use the process event listeners to extract that information.

10.2.3. Storing Process Events in a JMS queue for further

processing

Process events are stored in data base synchronously and within the same transaction as actual

process instance execution. That obviously takes some time especially in highly loaded systems

and might have some impact on data base when both history log and runtime data are kept in the

same data base. To provide alternative option for storing process events a JMS based logger has

been provided. It allows to be configured to submit messages to JMS queue instead of directly

persisting them in data base. It can be configured to be transactional as well to avoid issues with

inconsistent data in case of process engine transaction is rolled back.

ConnectionFactory factory = ...;

Queue queue = ...;

StatefulKnowledgeSession ksession = ...;

Map<String, Object> jmsProps = new HashMap<String, Object>();

jmsProps.put("jbpm.audit.jms.transacted", true);

jmsProps.put("jbpm.audit.jms.connection.factory", factory);

jmsProps.put("jbpm.audit.jms.queue", queue);

AbstractAuditLogger auditLogger = AuditLoggerFactory.newInstance(Type.JMS, session, jmsProps);

ksession.addProcessEventListener(auditLogger);

// invoke methods one your session here

      

This is just one of possible ways to configure JMS audit logger, see javadocs for

AuditLoggerFactory for more details.

10.3. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using

Spring. It does not support pure local transactions at the moment. For more information about

using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will

automatically execute each method invocation on the engine in a separate transaction. If this



Chapter 10. Persistence and T...

178

behavior is acceptable, you don't need to do anything else. You can, however, also specify the

transaction boundaries yourself. This allows you, for example, to combine multiple commands

into one transaction.

You need to register a transaction manager at the environment before using user-defined

transactions. The following sample code uses the Bitronix transaction manager. Next, we use the

Java Transaction API (JTA) to specify transaction boundaries, as shown below:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf = Persistence.createEntityManagerFactory( "org.jbpm.persistence.jpa" );

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set( EnvironmentName.ENTITY_MANAGER_FACTORY, emf );

env.set( EnvironmentName.TRANSACTION_MANAGER, TransactionManagerServices.getTransactionManager() );

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession = JPAKnowledgeService.newStatefulKnowledgeSession( kbase, null, env );

// start the transaction

UserTransaction ut = (UserTransaction) new InitialContext().lookup( "java:comp/

UserTransaction" );

ut.begin();

// perform multiple commands inside one transaction

ksession.insert( new Person( "John Doe" ) );

ksession.startProcess( "MyProcess" );

// commit the transaction

ut.commit();

    

Note that, if you use Bitronix as the transaction manager, you should also add a simple

jndi.properties file in you root classpath to register the Bitronix transaction manager in JNDI. If

you are using the jbpm-test module, this is already included by default. If not, create a file named

jndi.properties with the following content:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

    

If you would like to use a different JTA transaction manager, you can change the

persistence.xml file to use your own transaction manager. For example, when running inside

JBoss Application Server v5.x or v7.x, you can use the JBoss transaction manager. You need to

change the transaction manager property in persistence.xml to:



Container managed transaction

179

<property name="hibernate.transaction.jta.platform"

 value="org.hibernate.transaction.JBossTransactionManagerLookup" />

    

10.3.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that executes

in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies

to application servers that does not allow accessing UserTransaction instance from JNDI when

being part of container managed transaction, e.g. WebSphere Application Server. Since default

implementation of transaction manager in jBPM is based on UserTransaction to get transaction

status which is used to decide if transaction should be started or not, in environments that prevent

accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a

dedicated transaction manager implementation is provided:

org.jbpm.persistence.jta.ContainerManagedTransactionManager

This transaction manager expects that transaction is active and thus will always return ACTIVE

when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as

transaction manager runs under managed transaction and can't affect it.

Note

To make sure that container is aware of any exceptions that happened during

process instance execution, user needs to ensure that exceptions thrown by the

engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

• Insert transaction manager and persistence context manager into environment prior to creating/

loading session

Environment env = EnvironmentFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

env.set(EnvironmentName.TRANSACTION_MANAGER, new

 ContainerManagedTransactionManager());

env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, new

 JpaProcessPersistenceContextManager(env));

        



Chapter 10. Persistence and T...

180

• configure JPA provider (example hibernate and WebSphere)

<property name="hibernate.transaction.factory_class"

 value="org.hibernate.transaction.CMTTransactionFactory"/>

<property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.WebSphereExtendedJTATransactionLookup"/>

        

With following configuration jBPM should run properly in CMT environment.

10.3.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession directly

will cause exceptions on transaction completion as there are some transaction

synchronization registered by jBPM to clean up the state after invocation is

finished. To overcome this problem specialized command has been provided

org.jbpm.persistence.jta.ContainerManagedTransactionDisposeCommand which allows to

simply execute this command instead of refular ksession.dispose which will ensure that

ksession will be disposed at the transaction completion.

10.4. Configuration

By default, the engine does not save runtime data persistently. This means you can use the engine

completely without persistence (so not even requiring an in memory database) if necessary, for

example for performance reasons, or when you would like to manage persistence yourself. It is,

however, possible to configure the engine to do use persistence by configuring it to do so. This

usually requires adding the necessary dependencies, configuring a datasource and creating the

engine with persistence configured.

10.4.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your

application if you want to user persistence. By default, persistence is based on the Java

Persistence API (JPA) and can thus work with several persistence mechanisms. We are using

Hibernate by default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary

jars are added to your jBPM runtime directory. You don't really need to do anything (as the

necessary dependencies should already be there) if you are using the jBPM runtime that is

configured by default when using the jBPM installer, or if you downloaded and unzipped the jBPM

runtime artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you

need the jar file jbpm-persistence-jpa.jar, as that contains code for saving the runtime

state whenever necessary. Next, you also need various other dependencies, depending on the



Manually configuring the engine to use persistence

181

persistence solution and database you are using. For the default combination with Hibernate as

the JPA persistence provider and using an H2 in-memory database and Bitronix for JTA-based

transaction management, the following list of additional dependencies is needed:

• jbpm-persistence-jpa (org.jbpm)

• drools-persistence-jpa (org.drools)

• persistence-api (javax.persistence)

• hibernate-entitymanager (org.hibernate)

• hibernate-annotations (org.hibernate)

• hibernate-commons-annotations (org.hibernate)

• hibernate-core (org.hibernate)

• commons-collections (commons-collections)

• dom4j (dom4j)

• jta (javax.transaction)

• btm (org.codehaus.btm)

• javassist (javassist)

• slf4j-api (org.slf4j)

• slf4j-jdk14 (org.slf4j)

• h2 (com.h2database)

• jbpm-test (org.jbpm) for testing only, do not include it in the actual application

10.4.2. Manually configuring the engine to use persistence

You can use the JPAKnowledgeService to create your knowledge session. This is slightly more

complex, but gives you full access to the underlying configurations. You can create a new

knowledge session using JPAKnowledgeService based on a knowledge base, a knowledge

session configuration (if necessary) and an environment. The environment needs to contain a

reference to your Entity Manager Factory. For example:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

    Persistence.createEntityManagerFactory( "org.jbpm.persistence.jpa" );

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set( EnvironmentName.ENTITY_MANAGER_FACTORY, emf );



Chapter 10. Persistence and T...

182

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession = JPAKnowledgeService.newStatefulKnowledgeSession( kbase, null, env );

int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess( "MyProcess" );

ksession.dispose();

You can also use the JPAKnowledgeService to recreate a session based on a specific session id:

// recreate the session from database using the sessionId

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env );

Note that we only save the minimal state that is needed to continue execution of the process

instance at some later point. This means, for example, that it does not contain information about

already executed nodes if that information is no longer relevant, or that process instances that

have been completed or aborted are removed from the database. If you want to search for history-

related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate

and the H2 database (or your own preference), called persistence.xml in the META-INF

directory, as shown below. For more details on how to change this for your own configuration, we

refer to the JPA and Hibernate documentation for more information.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

      version="2.0"

      xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://

java.sun.com/xml/ns/persistence/persistence_2_0.xsd

      http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/

persistence/orm_2_0.xsd"

      xmlns="http://java.sun.com/xml/ns/persistence"

      xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance>

  <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">

    <provider>org.hibernate.ejb.HibernatePersistence</provider>

    <jta-data-source>jdbc/jbpm-ds</jta-data-source>

    <mapping-file>META-INF/JBPMorm.xml</mapping-file>

    <class>org.drools.persistence.info.SessionInfo</class>

    <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

    <class>org.drools.persistence.info.WorkItemInfo</class>

    <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>



Manually configuring the engine to use persistence

183

    <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>

    <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

    <properties>

      <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/

>

      <property name="hibernate.max_fetch_depth" value="3"/>

      <property name="hibernate.hbm2ddl.auto" value="update"/>

      <property name="hibernate.show_sql" value="true"/>

      <property name="hibernate.transaction.jta.platform"

                value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/

>

    </properties>

  </persistence-unit>

</persistence>

    

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in

an application server (like for example JBoss AS), these containers typically allow you to easily set

up data sources using some configuration (like for example dropping a datasource configuration

file in the deploy directory). Please refer to your application server documentation to know how

to do this.

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource

by dropping a configuration file in the deploy directory, for example:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

  <local-tx-datasource>

    <jndi-name>jdbc/jbpm-ds</jndi-name>

    <connection-url>jdbc:h2:tcp://localhost/~/test</connection-url>

    <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

    <user-name>sa</user-name>

    <password></password>

  </local-tx-datasource>

</datasources>

If you are however executing in a simple Java environment, you can use the JBPMHelper class

to do this for you (see below for tests only) or the following code fragment could be used to set

up a data source (where we are using the H2 in-memory database in combination with Bitronix

in this case).

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/jbpm-ds");



Chapter 10. Persistence and T...

184

ds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:mem:jbpm-db");

ds.getDriverProperties().put("driverClassName", "org.h2.Driver");

ds.init();

10.4.3. Configuring the engine to use persistence using

JBPMHelper - for tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate

constructor when creating your session. There are various ways to create a session (as we have

tried to make this as easy as possible for you and have several utility classes for you, depending

for example if you are trying to write a process junit test).

The easiest way to do this is to use the jbpm-test module that allows you to easily create and test

your processes. The JBPMHelper class has a method to create a session, and uses a configuration

file to configure this session, like whether you want to use persistence, the datasource to use, etc.

The helper class will then do all the setup and configuration for you.

To configure persistence, create a jBPM.properties file and configure the following properties

(note that the example below are the default properties, using an H2 in-memory database with

persistence enabled, if you are fine with all of these properties, you don't need to add new

properties file, as it will then use these properties by default):

# for creating a datasource

persistence.datasource.name=jdbc/jbpm-ds

persistence.datasource.user=sa

persistence.datasource.password=

persistence.datasource.url=jdbc:h2:tcp://localhost/~/jbpm-db

persistence.datasource.driverClassName=org.h2.Driver

# for configuring persistence of the session

persistence.enabled=true

persistence.persistenceunit.name=org.jbpm.persistence.jpa

persistence.persistenceunit.dialect=org.hibernate.dialect.H2Dialect

# for configuring the human task service

taskservice.enabled=true

taskservice.datasource.name=org.jbpm.task

taskservice.usergroupcallback=org.jbpm.services.task.identity.JBossUserGroupCallbackImpl

taskservice.usergroupmapping=classpath:/usergroups.properties



Configuring the engine to use persistence using JBPMHelper - for tests only

185

      

If you want to use persistence, you must make sure that the datasource (that you specified in

the jBPM.properties file) is initialized correctly. This means that the database itself must be up

and running, and the datasource should be registered using the correct name. If you would like

to use an H2 in-memory database (which is usually very easy to do some testing), you can use

the JBPMHelper class to start up this database, using:

JBPMHelper.startH2Server();

      

To register the datasource (this is something you always need to do, even if you're not using H2

as your database, check below for more options on how to configure your datasource), use:

JBPMHelper.setupDataSource();

      

Next, you can use the JBPMHelper class to create your session (after creating your knowledge

base, which is identical to the case when you are not using persistence):

StatefulKnowledgeSession ksession = JBPMHelper.newStatefulKnowledgeSession(kbase);

      

Once you have done that, you can just call methods on this ksession (like startProcess) and the

engine will persist all runtime state in the created datasource.

You can also use the JBPMHelper class to recreate your session (by restoring its state from the

database, by passing in the session id (that you can retrieve using ksession.getId())):

StatefulKnowledgeSession ksession = JBPMHelper.loadStatefulKnowledgeSession(kbase, sessionId);

      



186



Part IV. Workbench
How to use the web-based Workbench





Chapter 11.

189

Chapter 11. Workbench

11.1. Installation

11.1.1. War installation

From the workbench distribution zip, take the kie-wb-*.war that corresponds to your application

server:

• jboss-as7: tailored for JBoss AS 7 (which is being renamed to WildFly in version 8)

• eap-6: tailored to JBoss EAP 6

• tomcat7: the generic war, works on Tomcat and Jetty

Note

The differences between these war files are superficial only, to allow out-of-the-box

deployment. For example, some jars might be excluded if the application server

already supplies them.

To use the workbench on a different application server (Websphere, Weblogic, ...), use the

tomcat7 war and tailor it to your application server's version.

11.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKING_DIRECTORY/.niogit, for

example wildfly-8.0.0.Final/bin/.gitnio, but it can be overridden with the system property

-Dorg.uberfire.nio.git.dir.

Note

In production, make sure to back up the workbench data directory.

11.1.3. System properties

Here's a list of all system properties:

• org.uberfire.nio.git.dir: Location of the directory .niogit. Default: working directory

• org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true

• org.uberfire.nio.git.daemon.host: If daemon enabled, uses this property as local host

identifier. Default: localhost



Chapter 11. Workbench

190

• org.uberfire.nio.git.daemon.port: If daemon enabled, uses this property as port number.

Default: 9418

• org.uberfire.nio.git.daemon.upload: If daemon enabled, uses this information to define if

it's possible to push (upload) data to git. Default: true

• org.uberfire.metadata.index.dir: Place where lucene .index folder will be stored.

Default: working directory

• org.uberfire.cluster.id: Name of the helix cluster, for example: kie-cluster

• org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form

host1:port1,host2:port2,host3:port3, for example: localhost:2188

• org.uberfire.cluster.local.id: Unique id of the helix cluster node, note that ':' is replaced

with '_', for example: node1_12345

• org.uberfire.cluster.vfs.lock: Name of the resource defined on helix cluster, for example:

kie-vfs

• org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully

initialized to avoid conflicts when all cluster members create local clones. Default: false

• org.uberfire.sys.repo.monitor.disabled: Disable configuration monitor (do not disable

unless you know what you're doing). Default: false

• org.uberfire.secure.key: Secret password used by password encryption. Default:

org.uberfire.admin

• org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:

PBEWithMD5AndDES

• org.guvnor.m2repo.dir: Place where maven repository folder will be stored. Default: working-

directory/repositories/kie

• org.kie.example.repositories: Folder from where demo repositories will be cloned. The

demo repositories need to have been obtained and placed in this folder. Demo repositories can

be obtained from the kie-wb-6.1.0-SNAPSHOT-example-repositories.zip artifact. This System

Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

• org.kie.demo: Enables external clone of a demo application from github. This System Property

takes precedence over org.kie.example. Default: true

• org.kie.example: Enables example structure composed by Repository, Organization Unit and

Project. Default: false

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

2. Locate the XML elements server that belong to the main-server-group and add a system

property, for example:



Quick Start

191

<system-properties>

  <property name="org.uberfire.nio.git.dir" value="..." boot-time="false"/>

  ...

</system-properties>

11.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

11.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Figure 11.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Figure 11.2. Creating new repository



Chapter 11. Workbench

192

Enter the required information.

Figure 11.3. Entering repository information

11.2.2. Add project

Select the Authoring Perspective to create a new project.



Add project

193

Figure 11.4. Selecting Authoring perspective

Select "Project" from the "New Item" menu.



Chapter 11. Workbench

194

Figure 11.5. Creating new project

Enter a project name first.



Add project

195

Figure 11.6. Entering project name

Enter the project details next.

• Group ID follows Maven conventions.

• Artifact ID is pre-populated from the project name.

• Version follows Maven conventions.



Chapter 11. Workbench

196

Figure 11.7. Entering project details

11.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Modeller" from the "Tools" menu.

Note

You can also use types contained in existing JARs.

Please consult the full documentation for details.



Define Data Model

197

Figure 11.8. Selecting "Data Modeller"

Click on "Create" to create a new type.

Figure 11.9. Selecting "Create" (type)

Enter the required details for the type.



Chapter 11. Workbench

198

Figure 11.10. Entering required details

Click on "Create" to create a field for the type.



Define Data Model

199

Figure 11.11. Selecting "Create" (field)

Click "Save" to create the model.

Figure 11.12. Clicking "Save"



Chapter 11. Workbench

200

11.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Figure 11.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.



Define Rule

201

Figure 11.14. Entering file name for rule

Enter a definition for the rule.

The definition process differs from asset type to asset type.

The full documentation has details about the different editors.



Chapter 11. Workbench

202

Figure 11.15. Defining a rule

Once the rule has been defined it will need to be saved.

Figure 11.16. Saving the rule

11.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the

Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Tools" menu.



Configuration

203

Figure 11.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Aftifact

Repository.

If there are errors during the build process they will be reported in the "Problems Panel".

Figure 11.18. Building and deploying a project

Now the project has been built and deployed; it can be referenced from your own projects as any

other Maven Artifact.

The full documentation contains details about integrating projects with your own aplications.

11.3. Configuration

11.3.1. User management

The workbench authenticates its users against the application server's authentication and

authorization (JAAS).



Chapter 11. Workbench

204

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOME/bin/add-user.sh (or .bat):

$ ./add-user.sh

// Type: Application User

// Realm: empty (defaults to ApplicationRealm)

// Role: admin

There is no need to restart the application server.

11.3.2. Roles

The following roles are available:

• admin

• analyst

• developer

• manager

• user

11.3.2.1. Admin

Administrates the BPMS system. Has full access rights to make any changes necessary. Also has

the ability to add and remove users from the system.

11.3.2.2. Analyst

Creates rules, models, process flows, forms, dashboards and handles process change requests.

11.3.2.3. Developer

Implements code required for process to work. Mostly uses the JBDS connection to view

processes, but may use the web tool occasionally.

11.3.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to

continue forward. Works primarily with the task lists.

11.3.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their

performance, business indicators, and other reporting of the system and people who interact with

the system.



Command line config tool

205

11.3.3. Command line config tool

Provides capabilites to manage the system repository from command line.

11.3.3.1. Modes

• Online (default and recommended) - Connects to the git repository on startup using GIT server

provided by the KIE Workbench. All changes are made locally and published to upstream when:

• "push-changes" command is explicitly executed

• "exit" command will publish all local changes and exit

• Offline - Creates and manipulates system repository directly on the server (no discard option)

11.3.3.2. Available Commands

Table 11.1. Available Commands

exit Publishes local changes, cleans up temporary

directories and quits the command line tool

discard Discards local changes without publishing

them, cleans up temporary directories and

quits this command line tool

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment List available deployments

create-org-unit Creates new organizational unit

remove-org-unit Removes existing organizational unit

add-deployment Adds new deployment unit

remove-deployment Removes existing deployment

create-repo Creates new git repository

remove-repo Removes existing repository ( only from

config )

add-repo-org-unit Adds repository to the organizational unit

remove-repo-org-unit Removes repository from the organizational

unit

add-role-repo Adds role(s) to repository

remove-role-repo Removes role(s) from repository

add-role-org-unit Adds role(s) to organizational unit



Chapter 11. Workbench

206

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only

in online mode)

11.3.3.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script

and by default it will start in online mode asking for a Git url to connect to ( the default value is

git://localhost/system ). To connect to a remote server, replace the host and port with appropiate

values e.g. git://kie-wb-host:9148/system.

./kie-config-cli.sh 

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This

will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit

does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

11.4. Administration

11.4.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:



Organizational unit

207

11.4.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.



Chapter 11. Workbench

208

11.4.3. VFS repository

A VFS repository is a Virtual File System repository. By default a VFS is a Git repository.

A repository can hold multiple projects and belongs to 1 organization unit.

A new repository can be created from scratch or cloned from an existing repository.

11.5. Introduction

11.5.1. Log in and log out

Create a user with the role admin and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to

review the roles of the current account.

11.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the

workbench variant (drools, jbpm, ...).



Workbench concepts

209

11.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

• Part

A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer", "Project Editor", "Guided Rule Editor" etc. Parts can be

repositioned.

• Panel

A Panel is a container for one or more Parts.

Panels can be resized.

• Perspective

A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such

as "Home", "Authoring", "Deploy" etc.

11.5.4. Initial layout

The Workbench consists of three main sections to begin; however it's layout and content can be

changed.



Chapter 11. Workbench

210

Figure 11.19. The Workbench

The initial Workbench shows the following components:-

• Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in

the above "example" is the Organizational Unit), Repositories (in the above "uf-playground" is

the Repository) and Project (in the above "mortgages" is the Project).

• Problems

This provides the user will real-time feedback about errors in the active Project.

• Empty space

This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

11.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or

repositoned.



Resizing

211

This, for example, could be useful when running tests; as the test defintion and rule can be

repositioned side-by-side.

11.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line inbetween panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the

left mouse button and drag the splitter to the required postion; then release the left mouse button.

Figure 11.20. Resizing

11.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this

example).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the

left mouse button. Drag the mouse to the required location. The target position is indicated with

a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.



Chapter 11. Workbench

212

Figure 11.21. Repositioning - dragging



Authoring

213

Figure 11.22. Repositioning - complete

11.7. Authoring

11.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain

model jars. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote

repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKING_DIRECTORY/repositories/kie, but it

can be overridden with the system property -Dorg.guvnor.m2repo.dir. There is only 1 Maven

repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:



Chapter 11. Workbench

214

To add a new artifact to that maven repository, either:

• Use the upload button and select a jar. If the jar contains a pom file under META-INF/maven

(which every jar build by Maven has), no further information is needed. Otherwise, a groupId,

artifactId and version need be given too.

• Using Maven, mvn deploy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.



Asset Editor

215

11.7.2. Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two main

views Edit and Metadata.

• The views

• A : The editing area - exactly what form the editor takes depends on the Asset type.

• B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy

etc.

• C : Different views for asset content or asset information.

• Edit shows the main editor for the asset

• Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can

be generated into DRL.

• Config contains the model imports used by the asset.

• Metadata contains the metadata view for this editor. Explained in more detail below.



Chapter 11. Workbench

216

Figure 11.23. The Asset Editor - Edit tab

• Metadata

• A : Meta data (from the "Dublin Core" standard):-

"Title:" Name of the asset

"Categories:" A deprecated feature for grouping the assets.

"Last modified:" The last modified date.

"By:" Who made the last change.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"Created on:" The date and time the Asset was created.



Asset Editor

217

"Created by:" Who initially authored the Asset.

"Format:" The short format name of the type of Asset.

"URI:" URI to the asset inside the Git repository.

• B : Other miscellaneous meta data for the Asset.

• C : Version history of the Asset.

• D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,

to record a description of the Asset before editing.

• E : Discussions regarding development of the Asset can be recorded here.

Figure 11.24. The Asset Editor - Attributes tab



Chapter 11. Workbench

218

Figure 11.25. The Asset Editor - Other meta data

Figure 11.26. The Asset Editor - Version history

Figure 11.27. The Asset Editor - Description

Figure 11.28. The Asset Editor - Discussion

11.7.3. Project Explorer

The Project Explorer provides the ability to browse diffeent Organizational Units, Repositories,

Projects and their files.



Project Explorer

219

11.7.3.1. Initial view

The initial view could be empty when first opened.

Figure 11.29. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.

Figure 11.30. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.



Chapter 11. Workbench

220

Figure 11.31. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been

selected the Project Explorer will show the contents. The exact combination of selections depends

wholey on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.



Project Explorer

221

Figure 11.32. Expanded asset group



Chapter 11. Workbench

222

11.7.3.2. Different views

Project Explorer supports multiple views.

• Project View

A simplified view of the underlying project structure. Certain system files are hidden from view.

• Repository View

A complete view of the underlying project structure including all files; either user-defined or

system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project View and Repository Views can be further refined by seleting either "Show as Folders"

or "Show as Links".

Figure 11.33. Switching view



Project Explorer

223

11.7.3.2.1. Project View examples

Figure 11.34. Project View - Folders

Figure 11.35. Project View - Links



Chapter 11. Workbench

224

11.7.3.2.2. Repository View examples

Figure 11.36. Repository View - Folders

Figure 11.37. Repository View - Links

11.7.4. Project Editor

The Project Editor screen can be accessed from the Project menu. Project menu shows the

settings for the currently active project.



Project Editor

225

Unlike most of the workbench editors, project editor edits more than one file. Showing everything

that is needed for configuring the KIE project in one place.

Figure 11.38. Project Screen and the different views

11.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

11.7.4.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

11.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV

values are used as indentifiers to differ projects and versions of the same project.

Figure 11.39. Project Settings



Chapter 11. Workbench

226

11.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a

project that has been built and deployed to a Maven repository. Internal dependencies are projects

build and deployed in the same workbench as the project. External dependencies are retrieved

from repositories outside of the current workbench. Each dependency uses the GAV-values to

specify the project name and version that is used by the project.

Figure 11.40. Dependencies

11.7.4.2.3. Metadata

Metadata for the pom.xml file.

11.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Figure 11.41. Knowledge Base Settings



Project Editor

227

Note

For more information about the Knowledge Base properties, check the Drools

Expert documentation for kmodule.xml.

11.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified

for the project.

11.7.4.3.1.1. Knowledge base list

Lists all the knowledge bases by name. Only one knowledge base can be set as default.

11.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in

the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are

included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.

Event processing mode is explained in the Drools Fusion part of the documentation.

11.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one

default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup

that shows more properties for the knowledge session.

11.7.4.3.2. Metadata

Metadata for the kmodule.xml

11.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Figure 11.42. Imports



Chapter 11. Workbench

228

11.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the

workbench has. Making it easier to work with the workbench, as there is no need to type each

import in each file that uses the import.

Note

Unlike in the previous version of Guvnor. The imports listed in the import

suggestions are not automatically added into the knowledge base or into the

packages of the workbench. Each import needs to be explicitly added into each file.

11.7.4.4.2. Metadata

Metadata for the project.imports file.

11.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files

authored within the environment are valid.

11.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation

results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either

new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.



Validation

229

Figure 11.43. The Problems Panel

11.7.5.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.



Chapter 11. Workbench

230

11.7.6. Data Modeller

11.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this

tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

Figure 11.44. Go to authoring perspective

2. If not open already, start the Project Explorer panel



Data Modeller

231

Figure 11.45. Open project explorer panel

3. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and

the project the data model has to be created for. For this tutorial's example, the values "Tutorial",

"Examples", and "Purchases" were respectively chosen

Figure 11.46. Choose project

4. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the

"Data Modeller" option from the drop-down menu



Chapter 11. Workbench

232

Figure 11.47. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Figure 11.48. Data modeller overview

The Data Modeller panel is divided into the following sections:

• The leftmost "model browser" section, which shows a list of already existing data entities (if any

are present, as in this example's case). Above the list the project's name and a button for new

object creation are shown. Note that as soon as any changes are applied to the project, an '*' will

be appended to the project's name to notify the user of the existence of non-persisted changes.



Data Modeller

233

Figure 11.49. The data model browser

• The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and

forth through the data model, when accessing properties that themselves are model entities. The

bread crumb trail shown in the image indicates that the object browser is currently visualizing

the properties of an entity called "Purchase Order Line", which we accessed through another

entity ("Purchase Order"), where it is defined as a field.

Figure 11.50. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Figure 11.51. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently

selected data object's (in the model browser) fields.



Chapter 11. Workbench

234

Figure 11.52. The entity field browser

• The "entity / field property editor". This is the rightmost section of the Data Modeller screen

which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of

the currently selected entity in the model browser, whilst the Field tab enables edition of the

properties of any of the currently selected object's fields.

Figure 11.53. The entity/field property editor

11.7.6.2. Entities

A data model consists of data entities which are a logical representation of some real-world data.

Such data entities have a fixed set of modeller (or application-owned) properties, such as its



Data Modeller

235

internal identifier, a label, description, package etc. Besides those, an entity also has a variable

set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser

section (see fig. "The data model browser" above), or by clicking the one in the top data modeller

menu:

Figure 11.54. Starting creation of an entity from the top menu

This will pop up the new object screen:

Figure 11.55. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

• The object's internal identifier (mandatory). The value of this field must be unique per package,

i.e. if the object's proposed identifier already exists in the selected package, an error message

will be displayed.



Chapter 11. Workbench

236

• A label (optional): this field allows the user to define a user-friendly label for the data entity about

to be created. This is purely conceptual info that has no further influence on how objects of this

entity will be treated. If a label is defined, then this is how the entity will be displayed throughout

the data modeller tool.

• A package (mandatory): a data entity must always be created within a package (or name space,

in which this entity will be unique at a platform level). By default, the option for selecting an

already existing package will be activated, in which case the corresponding drop-down shows

all the packages that are currently defined. If a new package needs to be defined for this entity,

then the "New package" option should be selected. In this case the new to be created package

should be input into the corresponding text-field. The format for defining new packages is the

same as the one for standard Java packages.

• A superclass (optional): this will indicate that this entity extends from another already existing

one. Since the data modeller entities are translated into standard Java classes, indicating a

superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the

bottom of the screen the new data entity will be created. It will be added to the model browser's

entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition

of the newly created entity, by completing the entity's properties in the Data Object Properties

browser, or by adding new fields.

Figure 11.56. New entity has been created

Note

As can be seen in the above figure, after performing changes to the data model, the

model name will appear with an '*' to alert the user of the existence of un-persisted

changes to the model.



Data Modeller

237

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'

icon to the right of each entity. If an entity is being referenced from within another entity (as a

field type), then the modeller tool will not allow it to be deleted, and an error message will appear

on the screen.

11.7.6.3. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined

properties to its definition. This can be achieved by providing the required information in the

"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when

finished. The following fields can (or must) be filled out:

• The field's internal identifier (mandatory). The value of this field must be unique per data entity,

i.e. if the proposed identifier already exists within current entity, an error message will be

displayed.

• A label (optional): as with the entity definition, the user can define a user-friendly label for the

data entity field which is about to be created. This has no further implications on how fields

from objects of this entity will be treated. If a label is defined, then this is how the field will be

displayed throughout the data modeller tool.

• A field type (mandatory): each entity field needs to be assigned with a type.

This type can be either of the following:

1. A 'primitive' type: these include most of the object equivalents of the standard Java primitive

types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and BigInteger.

Figure 11.57. Primitive field types

2. An 'entity' type: any user defined entity automatically becomes a candidate to be defined as

a field type of another entity, thus enabling the creation of relationships between entities. As



Chapter 11. Workbench

238

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already

appears in the types list and can be used as a field type, even for a field of itself. An entity

type field can be created either in 'single' or in 'multiple' form, the latter implying that the field

will be defined as a collection of this type, which will be indicated by the extension '[0..N]'

in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the

'Purchase Order' entity, for example).

Figure 11.58. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the entity's fields table below:

Figure 11.59. New field has been created

The new field will also automatically be selected in the entity's field list, and its properties will be

shown in the Field tab of the Property editor. The latter facilitates completion of some additional

properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on

the corresponding 'x' icon in the entity's fields table.



Data Modeller

239

11.7.6.4. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be

set upon creation. These are by no means the only properties entities and fields have. Below we

will give a detailed description of the additional entity and field properties.

11.7.6.4.1. Additional entity properties ("Data object tab")

Figure 11.60. The entity's properties

• Description: this field allows the user to introduce some kind of description for the current entity,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited

from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity

that is designated with this value will be treated by the rules engine as an event type Fact (See

Drools Fusion for more information on this matter).



Chapter 11. Workbench

240

11.7.6.4.2. Additional field properties ("Field tab")

Figure 11.61. The entity's field properties

• Description: this field allows the user to introduce some kind of description for the current field,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Equals: checking this property for an entity field implies that it will be taken into account, at

the code generation level, for the creation of both the equals() and hashCode() methods in the

generated Java class. We will explain this in more detail in the following section.

• Position: this field requires a zero or positive integer. When set, this field will be interpreted

by the Drools engine as a positional argument (see the section below and also the Drools

documentation for more information on this subject).

11.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data

structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform

on the other. In order for this to become possible, these high-level visual structures have to be

transformed into low-level artifacts that can effectively be consumed by these platforms. These

artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data

model is saved, by pressing the "Save" button in the top Data Modeller Menu.



Data Modeller

241

Figure 11.62. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,

according to the following transformation rules:

• The entity's identifier property will become the Java class's name. It therefore needs to be a

valid Java identifier.

• The entity's package property becomes the Java class's package declaration.

• The entity's superclass property (if present) becomes the Java class's extension declaration.

• The entity's label and description properties will translate into the Java

annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and

"@org.kie.workbench.common.services.datamodeller.annotations.Description", respectively.

These annotations are merely a way of preserving the associated information, and as yet are

not processed any further.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter

constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-

defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own

getter and setter method, according to the following transformation rules:

• The entity field's identifier will become the Java field identifier. It therefore needs to be a valid

Java identifier.

• The entity field's type is directly translated into the Java class's field type. In case the entity field

was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

• The equals property: when it is set for a specific field, then this class property will be

annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the

Drools Engine, and it will 'participate' in the generated equals() method, which overwrites the

equals() method of the Object class. The latter implies that if the field is a 'primitive' type, the

equals method will simply compares its value with the value of the corresponding field in another



Chapter 11. Workbench

242

instance of the class. If the field is a sub-entity or a collection type, then the equals method will

make a method-call to the equals method of the corresponding entity's Java class, or of the

java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies

that in addition to the default generated constructors another constructor is generated, accepting

as parameters all of the fields that were marked with Equals. Furthermore, generation of the

equals() method also implies that also the Object class's hashCode() method is overwritten, in

such a manner that it will call the hashCode() methods of the corresponding Java class types

(be it 'primitive' or user-defined types) for all the fields that were marked with Equals in the Data

Model.

• The position property: this field property is automatically set for all user-defined fields, starting

from 0, and incrementing by 1 for each subsequent new field. However the user can freely

changes the position among the fields. At code generation time this property is translated into

the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools

Engine. Also, the established property order determines the order of the constructor parameters

in the generated Java class.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to

its definition as shown in the following figure purchase_example.jpg is visualized in the figure at

the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines' were

marked with Equals, and have been assigned with the positions 2 and 1, respectively).

Figure 11.63. Purchase Order configuration



Data Modeller

243

    package org.jbpm.examples.purchases;

    /**

    * This class was automatically generated by the data modeler tool.

    */

    @org.kie.api.definition.type.Role(value =

    org.kie.api.definition.type.Role.Type.EVENT)

    @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

    "Purchase Order")

    @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

    "This entity models the client purchase orders.")

    public class PurchaseOrder extends org.jbpm.examples.purchases.parent

    implements java.io.Serializable {

    static final long serialVersionUID = 1L;

    @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

    "Description")

    @org.kie.api.definition.type.Position(value = 0)

    @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

    "A description for this purchase order.")

    private java.lang.String description;

    @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

    "Lines")

    @org.kie.api.definition.type.Position(value = 1)

    @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

    "The purchase order items (collection of Purchase Order Line sub-entities).")

    @org.kie.api.definition.type.Key

    private java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

    @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

    "Header")

    @org.kie.api.definition.type.Position(value = 2)

    @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

    "The purchase order header (Purchase Order Header sub-entity).")

    @org.kie.api.definition.type.Key

    private org.jbpm.examples.purchases.PurchaseOrderHeader header;

    public PurchaseOrder() {}

    public PurchaseOrder(

    java.lang.String description,

    java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

    org.jbpm.examples.purchases.PurchaseOrderHeader header )

    {

    this.description = description;

    this.lines = lines;

    this.header = header;



Chapter 11. Workbench

244

    }

    public PurchaseOrder(

    java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

    org.jbpm.examples.purchases.PurchaseOrderHeader header )

    {

    this.lines = lines;

    this.header = header;

    }

    public java.lang.String getDescription() {

    return this.description;

    }

    public void setDescription( java.lang.String description ) {

    this.description = description;

    }

    public java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine>

    getLines()

    {

    return this.lines;

    }

    public void setLines(

    java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines )

    {

    this.lines = lines;

    }

    public org.jbpm.examples.purchases.PurchaseOrderHeader getHeader() {

    return this.header;

    }

    public void setHeader( org.jbpm.examples.purchases.PurchaseOrderHeader

    header )

    {

    this.header = header;

    }

    @Override

    public boolean equals(Object o) {

    if (this == o) return true;

    if (o == null || getClass() != o.getClass()) return false;

    org.jbpm.examples.purchases.PurchaseOrder that =

    (org.jbpm.examples.purchases.PurchaseOrder)o;

    if (lines != null ? !lines.equals(that.lines) : that.lines != null)

    return false;

    if (header != null ? !header.equals(that.header) : that.header != null)



Data Modeller

245

    return false;

    return true;

    }

    @Override

    public int hashCode() {

    int result = 17;

    result = 13 * result + (lines != null ? lines.hashCode() : 0);

    result = 13 * result + (header != null ? header.hashCode() : 0);

    return result;

    }

    }

  

11.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current

project context. In order to make those POJOs available a dependency to the given JAR should

be added. Once the dependency has been added the external POJOs can be referenced from

current project data model.

There are two ways to add a dependency to an external JAR file:

• Dependency to a JAR file already installed in current local M2 repository (typically associated

the the user home).

• Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2

repository". (internal to the application)

11.7.6.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.



Chapter 11. Workbench

246

11.7.6.6.1.1. Open the Project Editor for current project and select the

Dependencies view.

Figure 11.64. Project editor.

11.7.6.6.1.2. Click on the "Add" button to add a new dependency line.

Figure 11.65. New dependency line.



Data Modeller

247

11.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2

repository.

Figure 11.66. Dependency line edition.

11.7.6.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

Figure 11.67. Save project.

11.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.



Chapter 11. Workbench

248

11.7.6.6.2.1. Open the Maven Artifact Repository editor.

Figure 11.68. Guvnor M2 Repository editor.

11.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Figure 11.69. File browser.



Data Modeller

249

11.7.6.6.2.3. Upload the file using the Upload button.

Figure 11.70. File upload success.

11.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

Figure 11.71. Files list.

11.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid maven JAR (don't have a pom.xml file) the system will prompt

the user in order to provide a GAV for the file to be installed.



Chapter 11. Workbench

250

Figure 11.72. Not valid pom.

Figure 11.73. Enter GAV manually.

11.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR

selector to see all the installed JAR files in current "Guvnor M2 repository". When the desired file

is selected the project should be saved in order to make the new dependency available.



Data Modeller

251

Figure 11.74. Select JAR from "Maven Artifact Repository".

11.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the

context of current project data model in the following ways:

• External POJOs can be extended by current model data objects.

• External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order

to be quickly identified.



Chapter 11. Workbench

252

Figure 11.75. Identifying external objects.

11.7.6.7. External changes to models

It is possible to modify a project's assets externally, i.e. accessing them directly through the

project's repository. While NOT a recommended practice, it is important to be aware of the

implications this entails.

Caution

Performing changes to the data model outside of the context of the application is

NOT recommended, and could lead to loss of information!

From an application context's perspective, we can basically identify two different scenarios:

11.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,

without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user

tries to make any kind of change, such as add or remove data objects or properties, or change

any of the existing ones, the following pop-up will be shown:



Data Modeller

253

Figure 11.76. External changes warning

The user can choose to either:

• Re-open the data model, thus loading any external changes, and then perform the modification

he was about to undertake, or

• Ignore any external changes, and go ahead with the modification to the model. In this case,

when trying to persist these changes, another pop-up warning will be shown:



Chapter 11. Workbench

254

Figure 11.77. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

Warning

"Force Save" overwrites any external changes!

11.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user

simultaneously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset

repository, a warning is issued to the application user:



Data Modeller

255

Figure 11.78. External changes warning

As with the previous scenario, the user can choose to either:

• Re-open the data model, thus losing any modifications that where made through the application,

or

• Ignore any external changes, and continue working on the model.

One of the following possibilities can now occur:

• The user tries to persist the changes he made to the model by clicking the "Save" button in

the data modeller top level menu. This leads to the following warning message:



Chapter 11. Workbench

256

Figure 11.79. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

• The user switches to another project. In this case he will be warned of the existence of non-

persisted local changes through the following warning message:



Data Modeller

257

Figure 11.80. Project switch warning

If the user chooses to persist the local changes, then another pop-up message will point out

the existance of the changes that were made externally:



Chapter 11. Workbench

258

Figure 11.81. Project switch external changes warning

The "Yes, Force Save" option will effectively overwrite any external changes, while "No,

Discard my Changes" will switch to the other project, discarding any local changes.

11.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.

Assets can belong to any number of categories. In the below diagram, you can see this can in

effect create a folder/explorer like view of categories. The names can be anything you want, and

are defined by the Workbench administrator (you can also remove/add new categories).

Note

Categories do not have the same role in the current release of the Workbench

as they had in prior versions (up to and including 5.5). Projects can no longer be

built using a selector to include assets that are labelled with certain Categories.

Categories are therefore considered a deprecated feature.



Categories Editor

259

11.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Figure 11.82. Launching Categories Editor

11.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories

in the system by default. As the categories can be hierarchical you chose the "parent" category

that you want to create a sub-category for. From here categories can also be removed (but only

if they are not in use by any current versions of assets).

Figure 11.83. Managing categories



Chapter 11. Workbench

260

Generally categories are created with meaningful name that match the area of the business the

rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

11.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to

If you make a change (remove or add a category) you will need to save the asset - this will create

a new item in the version history. Changing the categories of a rule has no effect on its execution.

Figure 11.84. Adding Categories to an asset



Chapter 12.

261

Chapter 12. Workbench Integration

12.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and

manipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,

that is, they continue their execution after the call was performed as a job. The job ID is returned

by every calls to allow after the REST API call was performed to request the job status and verify

whether the job finished successfully. Parameters of these calls are provided in the form of JSON

entities.

When using Java code to interface with the REST API, the classes used in

POST operations or otherwise returned by various operations can be found in the

(org.kie.workbench.services:)kie-wb-common-services jar. All of the classes mentioned

below can be found in the org.kie.workbench.common.services.shared.rest package in that

jar.

12.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the

calls are asynchronous and you need to be able to reference the job to check its status as it goes

through its lifecycle. During its lifecycle, a job can have the following statuses:

• ACCEPTED: the job was accepted and is being processed

• BAD_REQUEST: the request was not accepted as it contained incorrect content

• RESOURCE_NOT_EXIST: the requested resource (path) does not exist

• DUPLICATE_RESOURCE: the resource already exists

• SERVER_ERROR: an error on the server occurred

• SUCCESS: the job finished successfully

• FAIL: the job failed

• DENIED: the job was denied

• GONE: the job ID could not be found

A job can be GONE in the following cases:

• The job was explicitly removed

• The job finished and has been deleted from the status cache (the job is removed from status

cache after the cache has reached its maximum capacity)



Chapter 12. Workbench Integration

262

• The job never existed

The following job calls are provided:

[GET] /jobs/{jobID}

Returns the job status

Returns a JobResult instance

Example 12.1. An example (formatted) response body to the get job call

on a repository clone request

"{

  "status":"SUCCESS",

  "jodId":"1377770574783-27",

  "result":"Alias: testInstallAndDeployProject, Scheme: git, Uri: git://

testInstallAndDeployProject",

  "lastModified":1377770578194,"detailedResult":null

}"

[DELETE] /jobs/{jobID}

Removes the job: If the job is not yet being processed, this will remove the job from the job

queue. However, this will not cancel or stop an ongoing job

Returns a JobResult instance

12.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and their projects.

The following repositories calls are provided:

[GET] /repositories

Gets information about the repositories in the Knowledge Store

Returns a Collection<Map<String, String>> or Collection<RepositoryRequest>

instance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the RepositoryRequest class

Example 12.2. An example (formatted) response body to the get

repositories call

[



Repository calls

263

  {

    "name":"wb-assets",

    "description":"generic assets",

    "userName":null,

    "password":null,

    "requestType":null,

    "gitURL":"git://bpms-assets"

 },

 {

   "name":"loanProject",

   "description":"Loan processes and rules",

   "userName":null,

   "password":null,

   "requestType":null,

   "gitURL":"git://loansProject"

 }

]

[POST] /repositories

Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a RepositoryRequest instance

Returns a CreateOrCloneRepositoryRequest instance

Example 12.3. An example (formatted) response body to the create

repositories call

{

  "name":"new-project-repo",

  "description":"repo for my new project",

  "userName":null,"password":null,

  "requestType":"new",

  "gitURL":null

}

[DELETE] /repositories/{repositoryName}

Removes the repository from the Knowledge Store

Returns a RemoveRepositoryRequest instance

[POST] /repositories/{repositoryName}/projects/

Creates a project in the repository

Consumes an Entity instance

Returns a CreateProjectRequest instance



Chapter 12. Workbench Integration

264

Example 12.4. An example (formatted) request body that defines the

project to be created

{

  "name":"myProject",

  "description": "my project"

}

12.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its

organizational units, so as to organize the connected Git repositories.

The following organizationalUnits calls are provided:

[POST] /organizationalunits

Creates an organizational unit in the Knowledge Store

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 12.5. An example (formatted) request body defining a new

organizational unit to be created

{

  "name":"testgroup",

  "description":"",

  "owner":"tester",

  "repositories":["testGroupRepository"]

}

[POST] /organizationalunits/{organizationalUnitName}/repositories/

{repositoryName}

Adds the repository to the organizational unit

Returns a AddRepositoryToOrganizationalUnitRequest instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/

{repositoryName}

Removes the repository from the organizational unit

Returns a RemoveRepositoryFromOrganizationalUnitRequest instance



Maven calls

265

12.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the

Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile

Compiles the project (equivalent to mvn compile)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a CompileProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install

Installs the project (equivalent to mvn install)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a InstallProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test

Compiles the project runs a test as part of compilation

Consumes a BuildConfig instance

Returns a TestProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy

Deploys the project (equivalent to mvn deploy)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the

operation and may be left blank.

Returns a DeployProjectRequest instance



266



Chapter 13.

267

Chapter 13. Workbench High

Availability

13.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,

process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in

sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is

the cluster management component that registers all cluster details (nodes, resources and the

cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide

VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/].

2. Install both:

a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).

b. In $ZOOKEEPER_HOME, copy zoo_sample.conf to zoo.conf

c. Edit zoo.conf. Adjust the settings if needed. Usually only these 2 properties are relevant:

# the directory where the snapshot is stored.

dataDir=/tmp/zookeeper

# the port at which the clients will connect

clientPort=2181

d. Unzip Helix into a directory ($HELIX_HOME).

3. Configure the cluster in Zookeeper:

a. Go to its bin directory:

$ cd $ZOOKEEPER_HOME/bin

b. Start the Zookeeper server:

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/


Chapter 13. Workbench High Av...

268

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dataDir (as specified in zoo.conf) is accessible.

c. To review Zookeeper's activities, open zookeeper.out:

$ cat $ZOOKEEPER_HOME/bin/zookeeper.out

4. Configure the cluster in Helix:

a. Go to its bin directory:

$ cd $HELIX_HOME/bin

b. Create the cluster:

$ ./helix-admin.sh --zkSvr localhost:2181 --addCluster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (kie-cluster)

can be changed as needed.

c. Add nodes to the cluster:

# Node 1

$ ./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster

 nodeOne:12345

# Node 2

$ ./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster

 nodeTwo:12346

...

Usually the number of nodes a in cluster equal the number of application servers in the

cluster. The node names (nodeOne:12345 , ...) can be changed as needed.



VFS clustering

269

Note

nodeOne:12345 is the unique identifier of the node, which will be referenced

later on when configuring application servers. It is not a host and port number,

but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

$ ./helix-admin.sh --zkSvr localhost:2181 --addResource kie-cluster vfs-

repo 1 LeaderStandby AUTO_REBALANCE

The resource name (vfs-repo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$ ./helix-admin.sh --zkSvr localhost:2181 --rebalance kie-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$  ./run-helix-controller.sh --zkSvr localhost:2181 --cluster kie-cluster

 2>&1 > /tmp/controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and

JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/domain.xml.

For simplicity sake, presume we use the default domain configuration which uses the profile

full that defines two server nodes as part of main-server-group.

b. Locate the profile full and add a new security domain by copying the other security domain

already defined there by default:

<security-domain name="kie-ide" cache-type="default">

    <authentication>

         <login-module code="Remoting" flag="optional">

             <module-option name="password-stacking" value="useFirstPass"/>

         </login-module>

         <login-module code="RealmDirect" flag="required">

             <module-option name="password-stacking" value="useFirstPass"/>

         </login-module>



Chapter 13. Workbench High Av...

270

    </authentication>

</security-domain>

Important

The security-domain name is a magic value.

6. Configure the system properties for the cluster on the application server. For example on

WildFly and JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

b. ocate the XML elements server that belong to the main-server-group and add the

necessary system property.

For example for nodeOne:

<system-properties>

  <property name="jboss.node.name" value="nodeOne" boot-time="false"/>

  <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodeone" boot-

time="false"/>

  <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/

nodeone" boot-time="false"/>

  <property name="org.uberfire.cluster.id" value="kie-cluster" boot-

time="false"/>

  <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-

time="false"/>

  <property name="org.uberfire.cluster.local.id" value="nodeOne_12345" boot-

time="false"/>

  <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-

time="false"/>

  <!-- If you're running both nodes on the same machine: -->

  <property name="org.uberfire.nio.git.daemon.port" value="9418" boot-

time="false"/>

</system-properties>

And for nodeTwo:

<system-properties>

  <property name="jboss.node.name" value="nodeTwo" boot-time="false"/>

  <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodetwo" boot-

time="false"/>

  <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/

nodetwo" boot-time="false"/>



jBPM clustering

271

  <property name="org.uberfire.cluster.id" value="kie-cluster" boot-

time="false"/>

  <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-

time="false"/>

  <property name="org.uberfire.cluster.local.id" value="nodeTwo_12346" boot-

time="false"/>

  <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-

time="false"/>

  <!-- If you're running both nodes on the same machine: -->

  <property name="org.uberfire.nio.git.daemon.port" value="9419" boot-

time="false"/>

</system-properties>

Make sure the cluster, node and resource names match those configured in Helix.

13.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this

blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the

database etc correctly.

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html


272



Chapter 14.

273

Chapter 14. Designer
Designer is a graphical web-based BPMN2 editor. It allows users to model and simulate

executable BPMN2 processes. The main goal of Designe is to provide intuitive means to both

technical and non-techical users to quickly create their executable business processes. This

chapter intends to describe all feature Designer offers currently.

Figure 14.1. Designer

Designer targets the following business process modelling scenarios:

• View and/or edit existing BPMN2 processes: Designer allows you to open existing BPMN2

processes (for example created using the BPMN2 Eclipse editor or any other tooling that exports

BPMN2 XML).

• Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the

Designer and use the editing capabilities (drag and drop and filling in properties in the properties

panel) to fill in the details. This for example allows business users to create complete business

processes all inside a a browser. The integration with Drools Guvnor allows for your business

processes as wells as other business assets such as business rules, process forms/images,

etc. to be stored and versioned inside a content repository.

• View and/or edit Human Task forms during process modelling (using the in-line form editor or

the Form Modeller).

• Simulate your business process models. Busines Process Simulation is based on the BPSIM

1.0 specification.



Chapter 14. Designer

274

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-

specific BPMN2 extension elements and attributes.

14.1. Designer UI Explained

Designer UI is composed of a number of sections as shown below:

Figure 14.2. Designer sections

• (1) Modelling Canvas - this is your process drawing board. After dropping different shapes onto

the canvas, you can move them around, connect them, etc. Clicking on a shape on the canvas

allows you to set its properties in the expandable Properties Window (3) (as well as create

connecting shapes and morph the shape into other shapes).

• (2) Toolbar - the toolbar contains a vaste number of functionality offered by Designer (described

later). These includes operations that can be performed on shapes present on the Canvas.

Individual operations are disabled or enabled depending on what is selected. For example, if

no shapes are selected, the Cut/Paste/Delete operations are disabled, and become enabled

once you select a shape. Hovering over the icons in the Toolbar displays the description text

of the operation.

• (3) Properties Panel - this expandable section on the right side of Designer allows you to set

both process and shape properties. It is divided in four sections, namely "Core properties", and

"Extra Properties, "Graphical Settings", and "Simulation Properties" are is expandable. When

clicking on a shape in the Canvas, this panel is reloaded to show properties specific to the

shape type. If you click on the canvas itself (not on a shape) the section shows your general

process properties.



Getting started with Modelling

275

• (4) Object Repository Panel - the expandable section on the left side of Designer shows the

jBPM BPMN2 (default) shape repository tree. It includes all shapes of the jBPM BPMN2 stencil

set which can be used to assemble your processes. If you expand each section sub-group you

can see the BPMN2 elements that can be placed onto the Designer Canvas (1) by dragging

and dropping the shape onto it.

• (5) View Tabs - currently Designer offers functionality tabs for Process Modelling and

Simulation. Process Modelling is the default tab. When users run process simulation, its results

are presented in the Simulation tab.

• (6) Info Tabls - On the bottom Designer shows two different Info tabs. The Business Process

tab includes the process modeling while the Metadata tab displays the process metadata such

as created by and last modified information.

14.2. Getting started with Modelling

The Object Repository panel provide means for users to select and drag/drop BPMN2 shapes

onto the modelling canvas. Shapes are divided into sections as shown below:



Chapter 14. Designer

276

Figure 14.3. Object Repository

Once a shape is dropped onto the canvas users have a much faster way of continuing modelling

without having to go back to the Object Repository panel. This is realized through the shape

morphing menu which is presented when a shape on the drawing canvas is clicked on. This menu



Getting started with Modelling

277

allows users to either select a connecting shape (next shape) or morph the selected node into

another node type. In addition this menu includes means to store the shape name as a dictionary

item (explained later), view the specific BPMN2 code of the selected shape, asd well as create/

edit the task form (in the case of user tasks only).

Figure 14.4. Morphing Menu for shapes

When connecting shapes Designer applies connection rules that follow the BPMN2 specification.

The connection shapes presented in the morphing menu only show shapes that are allowed to be

connections. Similarly same rules are applied when dropping a shape from the Object Library from

the canvas and trying to connect an existing shape to it. Additional connection rules for boundary

events are also available (explained later) and applied when for example moving an intermediate

event node onto the edge of a task node.

Users can give names to every shape on the drawing canvas. This is done by double-clicking

onto the shape as shown below.



Chapter 14. Designer

278

Figure 14.5. Naming a shape

The name of a shape can be pulled from the Process Dictionary. If terms are set up in the

dictionary, auto-complete can be used for the node names:

Figure 14.6. Name auto-completion from dictionary

Designer also shows three buttons ontop of a clicked shape as shown below.



Designer Toolbar

279

Figure 14.7. Extra in-line options

These include:

• (1) Add To Dictionary - this option allows users to add the name of the task to the Process

Dictionary (explained in more details later)

• (2) Edit Task Form - allows users to create/edit the Task Form. This option is only available

for User Tasks

• (3) View shape sources - shows the BPMN2 for this particular shape only.

The section should get you started with creating simple business process models by dragging/

dropping BPMN2 shapes onto the drawing canvas. Next sections will dive deeper into many other

aspects of Designer.

14.3. Designer Toolbar

The Designer toolbar contains many different functions which can be used during process

modelling.

Figure 14.8. Toolbar Buttons

We will now go through each of the buttons in the Designer Toolbar and give a brief overview

of what it does.

(1) Save - allows users to save, copy, rename and delete the business process model. In addition

users can turn on auto-save which will uatomatically save the business process within a defined

time inter.



Chapter 14. Designer

280

Figure 14.9. Save Button

(2) Cut - enabled when a portion of the model is selected.

(3) Copy - enabled when a portion of the model is selected.

(4) Paste - paste the copied portion of the model onto the drawing board.

(5) Delete - enabled when there is a portion of the model is selected and removes it.

(6, 7) Undo/Redo - undo the last performed operation on the drawing canvas.

(8) Local History - local history allows continuous storage of your business process onto your

browsers internal storage. Stored version of the business process can persist internet autages

or a browser crashes so your work will not be lost. This feature is disabled by default and must

be enabled by users. Once local history has been enabled users are able to view all previously

stored snapshots of their business model, clear local history, configure the snapshot internal, or

disable local history. Note that local history will only take a snapshot of your business process

on the set storing internval if there were some changes done in the model. If at the end of the

snapshot internval Designer detects that there were no changes since the last local history save,

no new snapshot will be created.



Designer Toolbar

281

Figure 14.10. Local History

The Local History results screen allows users to select a stored shanpshot of the model and view

its process image, and restory it back onto their drawing board.

Figure 14.11. Local History Sample Results

(9) Object positioning - allows users to position one or more nodes in the business. Note that at

last one shape must be selected first, otherwise these options are disable. Contains options "Bring

to Front", "Bring to back", "Bring forward", and "Bring Backward"

(10) Alignment: enabled when a portion of the model is selected. Includes options "Align Bottom",

"Align Middle", "Align Top", "Align Left", "Align Center", "Align Right", and "Align Same Size".

(11, 12) Group and Ungroup - allows grouping and ungrouping of selected shapes on the drawing

board.

(13, 14) Locking and Unlocking - allows parts of the business model to be locked and unlocked.

Locked parts of the model cannot be edited (visual display and properties are both locked). Locked

nodes are displayed in a light blue color. This feature fosters collaboration of process modelling

by allowing users to set parts of their model as "completed" and preventing any further changes

to that portion. Other parts of the model can contunue to be edited.



Chapter 14. Designer

282

Figure 14.12. Locked Nodes

(15, 16) Add/Remove Docker - this allows users to add or remove Dockers, or edge points, to

sequence flows in the model. Enables when a sequence flow (connector) is selected. It allows

users to create very customized connection poits from one shape to another. Users can add and

remove as many dockes as they would like on a single sequence flow.

Figure 14.13. Adding dockers to a sequence flow

(17) Color Themes - Colors are a big part or process modelling as they help with expressing intent

as well as help allowing visually impaired users to better view the model. Designer provides two

default color themes out of the box named "jBPM" and "High Contrast". The jBPM theme is the

default theme used for all new business processes created. Users can switch color themes and

the changes will be applied to all nodes that are currently on the model, as well as any new shapes

added. Users have the ability to add new custom color themes by adding theor own definitions in

the Designer themes.json file. Color theme selection is persisted over browser close or possible

crash/internet loss.



Designer Toolbar

283

Figure 14.14. Color Themes selection

Figure 14.15. Switching to High Contrast Color Theme

(18) Process and Task forms - here users have the ability to generate/edit process and task forms.

When no user task is selected the default enabled options are "Edit Process Form" and "Generate

all Forms". Generate all forms will apply the current model information such as process variables,

data objects, and the user tasks data input/output parameters and associations to generate default

executable input forms. Upon editing a process and task form, users have the choice between

two form editors, the jBPM Form Modeler, and the Designer in-line meta editor. The Designer

meta editor is targeted more to techical users as it is text based with the ability for live preview.

When the user selects an user task in the model, the "Edit Task Form" and "Generate Task Form"

options are enabled which allow users to edit the particular task form, or choose to apply the same

generation logic to create a task form for the selected task only. Users have the ability to extend

the default form generation templates in designer to create fully customized templates. Node that

in the case of the Designer meta editor for forms, generating forms will overwrite existing forms

for the process and user tasks. In the case of Form Modeler form generation, a merging algorithm

is applied when generating.



Chapter 14. Designer

284

Figure 14.16. Form generation selection

When selecting a task, users have the ability to edit the selected tasks form via the form button

shown above the user task node.

Figure 14.17. In-line task editing

When editing forms, users are asked to choose between the Form Modeler and the Designer in-

line meta editor. If the user selects Form Modeler the form is shown in a new asset tab separately

from Designer. Designer meta editor is in-line and part of the Designer application.

Figure 14.18. Form Editor Selection

The Designer in-line meta form editor is a powerful text-based editor with a live preview feature

as well as auto-completion on process variables and user task data inputs/outputs.



Designer Toolbar

285

Figure 14.19. Designer in-line form meta editor with live-preview

(19) Process Information Sharing - this section includes many fucntions that help with sharing

information of your model. These include:

• Share process image - generates a stand-alone html image tag which contains a 64-bit encoded

image source of the current model on the canvas. This link can be shared to team members or

other parties amd embedded in any html content or email that allows html content embedding.

• Share process PDF - generates a stand-alone html object tag which contains a 64-bit encoded

pdf source of the current model on the canvas. This can similarly be shared and embedded in

any html content.

• Download process PNG - generates a PNG image of the current process on the drawing board

which users can download and share.

• Download process PDF - generates a PDF of the current process on the drawing board which

can be downloaded and shared.

• View Process Sources - displays the current process sources in various formats, namely

BPMN2, JSON, SVG, and ERDF. Also has the option to download the BPMN2 sources.



Chapter 14. Designer

286

Figure 14.20. Process Sources View

(20) Extra tooling - this section allows users to import their existing BPMN2 processes into designer

as well as be able to migrate their old jPDL based processes to BPMN2. For BPMN2 or JSON

imports users can choose to add the import ontop of the existing model on the drawing board or

choose to replace the current one with the import.

Figure 14.21. Extra tooling section



Designer Toolbar

287

Figure 14.22. Import existing BPMN2 panel



Chapter 14. Designer

288

Figure 14.23. Process Migration panel

(21) Visual Validation - Designer includes over 100 validation checks and this list is growing. It

allows users to view validation issues in real-time as they are modelling their business process.

Users can enable visual validation, disable it, as well as view all validation issues at once. If Visual

Validation is turned on, Designer with set the shape border of shapes that do not pass validation

to red color. Users can then click on that particular shape to view the validation issues for that

particular shape only. Alternatively "View All Issues" present a cobined list of all validation errors

currently found. Note that you do not have to periodically save your business process in order

for validation to upate. It will so on its own short intervals during modelling. Users can extend

the list of validation issues to include their own types of validation on certain elements of their

business model.



Designer Toolbar

289

Figure 14.24. Visual Validation Toolbar

Figure 14.25. Shapes with validation errors displayed with red border

Figure 14.26. Single shape validation issues display



Chapter 14. Designer

290

Figure 14.27. View all issues validation display

(22) Process Simulation - Business Process Simulation deals with statistical analysis of process

models over time. It's main goals include

• Pre-execution and post-execution optimization

• Reducing the rist of change in business processes

• Predict business process performance

• Foster continuous improvements of performance, quality and resource utilization of business

processes

Designer includes a powerful simulation engine which is based on jBPM and Drools and a

graphical user interface to view and interpret simulation results. In addition users are able to

view all process paths included in their current model on the drawing board. Designer Process

Simulation is based on the BPSim 1.0 specification. Details of Process Simulation capabilities

in Designer are can be found in its Simulation documentation chapter. Here we just give a brief

overview of all features it contains.

Figure 14.28. Simulation tooling section

When selecting Process Paths, the simulation engine find all possible paths in the business model.

Users can choose cetain found paths and choose to display them. The chosen path is marked

with given colors as shown below.



Designer Toolbar

291

Figure 14.29. View all issues validation display

When selcting "Run Simulation" users have to enter in simulation runtime properties. These

include the number of instances of this business process to simulate and the interval time and

units. This interval is the time in-between consecutive simulation.



Chapter 14. Designer

292

Figure 14.30. Simulation runtime properties

Each shape on the drawing board includes Simulation properties (properties pannel) where users

can set numerous simulation properties for that particular shape. More info on each of these

properties can be found in the Simulation chapter of the documentation. Designer pre-sets some

defaults for new processes, which allows business processes to be simulated by default without

any modifications of these properties. Note however that the results of the default settings may

not be optimal or targeted for the users particular needs.

Figure 14.31. Simulation properties for shapes

Once the simulation runtime has completed, users are shown the simulation results in the

"Simulation Results" tab of Designer. The results default to the process results. Users can switch



Designer Toolbar

293

to results for each particular shape in their business process to see more specific detauls. In

addition the results contain process paths simualtion results for each path in the business process.

Figure 14.32. Sample simulation results

Designer simulation presents the users with many different chart types. These include:

• Process results: Execution times, Activity instances, Total cost

• Human Task results: Execution times, Resource Utilization, Resource Cost

• All other nodes: Execution times

• Process Paths: Path Execution

The below image shows a number of possible chart types users can view after process simulation

has completed.



Chapter 14. Designer

294

Figure 14.33. Types of simulation results charts

In addition to the chart results, Designer simulation also offers a full timeline display that includes

all details of what happened during simulation. This timeline allows users to navigate through each

event that happened during process simulation and select a particular node to display results at

that particular point in time.



Designer Toolbar

295

Figure 14.34. Simulation timeline

The simulation timeline can be switched to the Model view. This view displays the process model

with the currently selected node in the timeline highlighted. The highlighted node displays the sim

results at that particular point in time of the simulation.



Chapter 14. Designer

296

Figure 14.35. Simulation timeline model view

Path execution results shows a chart displaying the chosen path as well as path instance execution

details.



Designer Toolbar

297

Figure 14.36. Path execution detauls

(23) Service Repository - this feature allows users to connect to an existing service tasks repository

to install service tasks into their list of available shapes. Mode default of this can be found

in the Service Repository chapter of the documentation. Users have to enter the URL to the

existing service repository and then can install the available service nodes by double-clicking on

a particular results row.



Chapter 14. Designer

298

Figure 14.37. Service Repository installation view

(24) Full screen Modev - allows users to place the drawing board of Designer into full-screen

mode. This can help with better visualizing larger business processes without having to scroll.

Note that this feature is possible only if your browser has full screen mode capabilities. If it does

not designer will show a message stating this to the user.



Designer Toolbar

299

Figure 14.38. Full Screen Mode

(25) Process Dictionary - Designer Dictionary Editor allows users to create their own dictionary

entries or harvest from process documentation or business requirement documents. Process

Dictionary entries can be used as auto-completion for shape names. This will be expaded in the

future versions to allow mapping of node patters to specific dictionary entries as well. Users can

add entries to the dictionary in the Dictioanry Editor or from the selected shapes directly.



Chapter 14. Designer

300

Figure 14.39. Process Dictionary entry screen

Figure 14.40. Addint to process dictionary from selected shape

(26, 27, 28, 29) Zooming - zomming allows users to zoom in/out of the model, zoom in/out back

to the original setting as well as zoom the process model on the drawing board to fit the currently

dimentions of the drawing board.



Chapter 15.

301

Chapter 15. Form Modeler
This chapter intends to describe in a simple ways all the steps required to create a process with

human tasks, generate and modify the forms for these tasks and execute them. It will provide initial

guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from

process variables and task definitions. These forms can be later be modified by using the form

editor. In runtime, forms will receive data from process variables, display it to the user and capture

his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task

in the process below.

Figure 15.1. Process example

This form must look like the following in execution:



Chapter 15. Form Modeler

302

Figure 15.2. Process example



Configure process and human tasks

303

15.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a

simple type like 'String' or a complex type. These complex types can be defined by using the Data

Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder',

defined with the Data Modeler tool.

Figure 15.3. Process variable definition

This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which

ones will receive the response back from the form and establish the mappings. This is done by

setting the 'DataInputSet', 'DataOutputSet' and 'Assignments' properties for any human task. See

screenshots below for details.



Chapter 15. Form Modeler

304

Figure 15.4. Data input variable definition

Figure 15.5. Data output variable definition



Generate forms from task definitions

305

Figure 15.6. Variable mapping definition

15.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically

from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

Figure 15.7. Form automatic generation

You can also click on the icon on top of task to open the form directly.



Chapter 15. Form Modeler

306

Figure 15.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-

taskform is defined in the same package as the process, then this form is used by the human task

engine to display and capture information from user.

Also, if a form named ProcessId-task form is created, it will be used as the initial form when starting

this process.

For example, for our process the following forms would be generated.



Generate forms from task definitions

307

Figure 15.9. Access to form edition



Chapter 15. Form Modeler

308

15.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that

are generated in the previous process, but also can be created manually.

15.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data

origins. This allow bind form fields with them, this relation it’s linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is

validated and submitted, how the values will update the task outputs.

Figure 15.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are

automatically generated. You can have as many data origins as required, and can use a different

colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated

form have a field for each data origin bindable item (view FieldTypes) and this automatic fields

have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to

make easy view if the field is correctly bound and the data origin implied.

15.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different

levels of customization that will allow change it

15.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the

contextual menu of the field and select 'Move field'.



Customizing form

309

Figure 15.11. Move field option

This will display the different regions of the form where you can place it.

Figure 15.12. Destination areas to move the field

A field can be moved to the first or the last region with the contextual icons for that purpose.

15.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.



Chapter 15. Form Modeler

310

Figure 15.13. Form properties have been added by default, but are not still

configured

• Add fields by origin: this tab allows you to add fields to the form based on the data origins

defined. These fields will have the correct configuration on the "Input binding expression" and

"Output binding expression" properties so whe the form is submitted the fields values will be

stored in the corresponding Data Origin.



Customizing form

311

Figure 15.14. Add field by origin

• Add fields by type: this tab allows you to freely add fields to the form from the Field Types

palette on the Form Modeler. This fields won't be storing it's value on any Data Origin until they

have a correct configuration on the "Input binding expression" and "Output binding expression"

properties.

Figure 15.15. Add field by type



Chapter 15. Form Modeler

312

To see a complete list of the available field types go to Field types section.

Notice the data model 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder' is composed of

three properties.

• Simple : property of type text (description). We will adjust the view settings.

• Complex: property of type object (header).

• Complex: property of type array of objects (lines)

Now all these properties had to be configured.

15.3.2.3. Field configuration

Each field can be configured to enhance performance in the form. There are a group of common

properties, that we call ‘Generic field properties’ and a group of specific properties that depends

on the field type.

15.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 15.1.

Field type Can change the field type to other compatible

field types

Field Name Will be used as identifier in formulas

calculation

Label The text that will be shown as field label

Error message When something goes wrong with the

field, like validations,.. this message will be

displayed

Label ccs class Allows enter a class css to apply in label

visualization

Label css style to enter directly the style to apply to the label.

Help text The text introduced is displayed as

alt attribute to help to the user in data

introduction

Style class Allows enter a class css to apply in field

visualization

Css style to enter directly the style to apply to the label.

Read Only When this check is on, the field will be used

only for read



Customizing form

313

Input binding expression This expression defines the link between field

and process task input variable. It will be used

in runtime to set the field value with that task

input variable data.

Output binding expression This expression defines the link between

field and process task output variable. It will

be used in runtime to set that task output

variable.

15.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

• Short Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Show html: indicates whether the contents of the field is interpreted as html in show mode.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are descrived in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Long Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.



Chapter 15. Form Modeler

314

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Float (java.lang.Float)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify how the Float value has to be

displayed. The pattern allowed is show in section pattern in  http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html  [http://docs.oracle.com/javase/6/docs/

api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Decimal (java.lang.Double)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html


Customizing form

315

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the Double value has to be

displayed. The pattern allowed is show in section pattern in  http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html  [http://docs.oracle.com/javase/6/docs/

api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• BigDecimal (java.math.BigDecimal)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the BigDecimal value has

to be displayed. The pattern allowed is show in section pattern in  http://

docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html  [http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Big integer (java.math.BigInteger)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html


Chapter 15. Form Modeler

316

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Short (java.lang.Short)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Integer (java.lang.Integer)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Long Integer (java.lang.Long)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.



Customizing form

317

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• E-mail (java.lang.String)

• Compatible field type: Short text, Long text, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Checkbox (java.lang.Boolean)

• Specific properties

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Rich text: (java.lang.String)

• Compatible field type: Short text, Long text, E-mail

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Default Value formula. Expression to set the field default value.

• Timestamp (java.util.Date)

• Compatible field type: Short date



Chapter 15. Form Modeler

318

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Short date (java.util.Date)

• Compatible field type: Timestamp

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Simple subform (Object)

• For more details see sectionSimple Object (Subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object.

• Multiple subform (Multiple Object)

• For more details see sectionArrays of objects.( Multiple subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object when no other form is configured with an specific purpose.

• Preview form. If a form is specified, it will be used to show the item details

• Table form. If a form is specified, it will be used to show the table columns when the item

list is showed

• New item text. Text to show at New Item button

• Add item text. Text to show at Add Item button



Customizing form

319

• Cancel text. Text to show at Cancel button

• Allow remove Items. If this check is selected, the form allow remove items in table view.

• Allow edit items. If this check is selected, the form allow edit items in table view.

• Allow preview items. If this check is selected, the form allow preview items in table view.

• Hide creation button. Check to not show the creation button

• Expanded. If is checked, when a new item is being added, the field display the table with

the existing items and the creation form at same time

• Allow data enter in table mode. Allow modify data in table view directly.

15.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an

object array.

Once the field is added to the form, either automatically or manually, it must be configured so that

the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:

• The first thing to do is define how the contained object will be displayed. This is done creating

a form that represents the object.

• In case of the object array, you can define a form to show in preview(edition), or to show when

table is shown

Once the form to represent the object, the parent form has to be configured to use them in the

parent Subform or Multiple subform.

Below we will describe how the setup would be:

15.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and

embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create

a form to enter all the purchase order header data and link it from the parent task form.

We will follow the steps:

1. Create new form.



Chapter 15. Form Modeler

320

Figure 15.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.



Customizing form

321

Figure 15.17. Create new data origin

Figure 15.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.



Chapter 15. Form Modeler

322

Figure 15.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move

them around.

Figure 15.20. All data origin fields added

4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default

form'.



Customizing form

323

Figure 15.21. Configure the parent form

This will insert the subform inside the parent form, and will be shown as below:



Chapter 15. Form Modeler

324

Figure 15.22. Parent form visualization after subform configuration

15.3.2.3.3.2. Arrays of objects.( Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with

all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,

unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.



Customizing form

325

Figure 15.23. Create new form

2. Create new data origin.



Chapter 15. Form Modeler

326

Figure 15.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.

Figure 15.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization



Customizing form

327

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate

automatically the total field. This formulas and expressions are described in Formula &

expression section.

Figure 15.26. Configuring formulas

6. Finally, we save the lines form and go back to the parent form and configure all the lines

properties.



Chapter 15. Form Modeler

328

Figure 15.27. Configure the parent form

15.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.

That Formula engine supports Java and XPATH expressions to access the form fields values.

Let’s see some examples.

• Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by

default with the current date. To do that you should edit the field properties and set a Default

value formula like:

=new java.util.Date();



Customizing form

329

Figure 15.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first

time the field will have the specified value.

Figure 15.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported

for the field.

• Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using

XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,

%...) to operate with them or calls to Java Functions for more complex operations.

To start let’s see how you can create a formula to calculate the line_total of a Purchase Order

Line. Look at the image below and look at the formula on the line_total properties.



Chapter 15. Form Modeler

330

Figure 15.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_amount}

we’re forcing the Total of the line value to be the result of the the Unit price multiplied by the

Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount

field value is going to be calculated and filled with the operation result:

Figure 15.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/a_subform_field}

Look at the next image to see how it works:



Customizing form

331

Figure 15.32.

This form has a subform field called po_header that is showing a form with the fields

header_creationDate, header_customer and header_project. We want the Description field

on our parent form to show some information from the header. Look at the Description field

properties formula.

="Customer: " + {po_header/header_customer} + " Project: " + {po_header/

header_project}

This formula returns a text when the fields header_customer and header_projects are filled on

the child form, so from now the parent form will be filled like this:



Chapter 15. Form Modeler

332

Figure 15.33.

Ok, you’ve seen how to create formulas that access to a subform fields values, now we are

going to see how to work with values stored in Multiple Subforms. Imagine that we have a

Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we

want to calculate the total amount of the lines created. Look at the image below and how the

TOTAL field is configured.



Customizing form

333

Figure 15.34.

On the formula expression:

="

<b>" + {sum(po_lines/line_total)} + "</b>

"

        

we are using the XPATH function sum() that is going to sumarize the totals of all the lines. So

after creating some Lines the form will look like this:



Chapter 15. Form Modeler

334

Figure 15.35.

Note that the line_total child field corresponds with the field line_total field on then form selected

as a Default Form selected on the Lines field configuratio



Customizing form

335

On this sample we are using the sum() XPATH function to calculate the total of the Purchase

Order, but XPATH provides a lot of possibilities to select values from a set of children and also

a lot functions to summarize values (sum, count, avg...). For more information about XPATH

you can take a look at http://www.w3schools.com/xpath/

• Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an

specific field, showing it like a select box. It can be used on all simple types except Dates and

Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Figure 15.36. Setting default value formula

As you can see that field is being shown as a select box and it has a range formula that specifies

the values like this:

{approve,Approve order;reject,Reject order;modifications,Request

 Modifications}

This expression is defining 3 duos of value/”text to show” separated with the character ‘,’ and

each of this duos is separated from each other other with the ‘;’ character. So due this formula

the resulting select box will show:

http://www.w3schools.com/xpath/


Chapter 15. Form Modeler

336

Table 15.2.

Value stored in input Text shown on Select Box

approve Approve order

reject Reject order

modifications Request Modifications

15.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the html that is displayed.

The form modeler provides the ability to edit the html directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form

layout' option and save.

Now the form is displayed with the custom html. To access this html editing we click on the icon

'Edit'

The html editor is displayed, the html code will define how the form has to be shown. In this editor

the user can directly create the html i locate the fields and labels with the syntax described below:

$field{fieldName} for field identified fieldName

$label{fieldName} for field identified fieldName label

These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form html creation.

• 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text

is added to html. These selects only show the form fields haven’t been added yet.

• 'Generate template based on'

This functionality generates the html using all fields (default, alignment fields or Not aligned)

depending on the selected value and overwrite the html.

15.3.3. Field types

There are three types of field types that you can use to model your form:

• Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The

supported Field types are:



Field types

337

Table 15.3. Field types

Name Description Java Type Default on

generated forms

Short Text Simple input to enter

short texts.

java.lang.String yes

Long Text Text area to enter

long text.

java.lang.String no

Rich Text HTMLEditor to enter

formatted texts .

java.lang.String no

Email Simple input to enter

short text with email

pattern.

java.lang.String no

Float Input to enter short

decimals.

java.lang.Float yes

Decimal Input to enter number

with decimals.

java.lang.Double yes

BigDecimal Input to enter big

decimal numbers.

java.math.BigDecimal yes

BigInteger Input to enter big

integers.

java.math.BigInteger yes

Short Input to enter short

integers

java.lang.Short yes

Integer Input to enter

integers.

java.lang.Integer yes

Long Integer Input to enter long

integers

java.lang.Long yes

Checkbox Checkbox to enter

true/false values

java.lang.Boolean yes

Timestamp Input to enter date &

time values

java.util.Date yes

Short Date Input to enter date

values.

java.util.Date no

• Complex types

These field types are made to deal with properties that are Java Objects instead of basic types.

These field types need extra forms to be created in order to show and write values onto the

specified Java Object/s



Chapter 15. Form Modeler

338

Table 15.4. Complex types

Name Description Java Type Default on

generated forms

Simple subform Renders the a form,

it is used to deal with

1:1 relationships.

java.lang.Object yes

Multiple subform This field type is

used to deal with

1:N relationships. It

allows to create, edit

and delete a set child

Objects.Text area to

enter long text.

java.util.List yes

• Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They

can be used with aesthetic purpose

Table 15.5. Decorators

Name Description

HTML label Allows the user to  create HTML code that

will be rendered in the form

Separator Renders an HTML separator

15.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any

type) on the form to look and behave totally different than the standard platform fields. On this

section we will take a look on how to create them and how to configure them.

15.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the

org.jbpm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside

a jar file that is placed on the Application Server classpath or inside the application War.

Lets take a look atorg.jbpm.formModeler.core.fieldTypes.CustomFieldType:

      package org.jbpm.formModeler.core.fieldTypes;

      import java.util.Locale;



Field types

339

      import java.util.Map;

      /**

      * Definition interface for custom fields

      */

      public interface CustomFieldType {

      /**

      * This method returns a text definition for the custom type. This text will be shown on the UI to identify the CustomFieldType

      * @param locale The current user locale

      * @return A String that describes the field type on the specified locale.

      */

      public String getDescription(Locale locale);

      /**

      * This method returns a string that contains the HTML code that will be used to show the field value.

      * shown on screen

      * @param value The current field value

      * @param fieldName The field name

      * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

      * @param required Determines if the field is required or not

      * @param readonly Determines if the field must be shown on read only mode

      * @param params A list of configuration params that can be set on the field configuration screen

      * @return The HTML that will be used to show the field value

      */

      public String getShowHTML(Object value, String fieldName, String namespace, boolean required, boolean readonly, String... params);

      /**

      * This method returns a String that contains the HTML code that will show the input view of the field. That will be used to set the field value.

      * @param value The current field value

      * @param fieldName The field name

      * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

      * @param required Determines if the field is required or not

      * @param readonly Determines if the field must be shown on read only mode

      * @param params A list of configuration params that can be set on the field configuration screen

      * @return The HTML code that will be used to show the input view of the field.

      */

      public String getInputHTML(Object value, String fieldName, String namespace, boolean required, boolean readonly, String... params);

      /**

      * This method is used to obtain the field value from the submitted values.

      * @param requestParameters A Map containing the request parameters for the submitted form

      * @param requestFiles A Map containing the java.io.Files uploaded on the request

      * @param fieldName The field name

      * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

      * @param previousValue The previous value of the current field

      * @param required Determines if the field is required or not

      * @param readonly Determines if the field must be shown on read only mode

      * @param params A list of configuration params that can be set on the field configuration screen

      * @return The value of the field based on the submitted form values.



Chapter 15. Form Modeler

340

      */

      public Object getValue(Map requestParameters, Map requestFiles, String fieldName, String namespace, Object previousValue, boolean required, boolean readonly, String... params);

      }

    

As you can see this Interface defines the methods that determines how the field has to be

shown on the screen for when the form is shown on insert(getInputHTML(...)) or readonly

(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed

parameters from the request and to obtain the correct field value. Te returned value type must

match with the type of the field added on the form. So (for example) you can create a File input

that uploads a file to a server folder and saves a String with the storage path as the field value,

so on your forms you can turn all the text compatible fields (Short Text, Long Text, Rich Text and

Email) on Input File.

To see ho can it be done look at the example

on https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-

custom-types/jbpm-form-modeler-custom-file-type.

Please note that this is just a sample and it only should be used with learning purposes.

15.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on

the previous chapter, we have created a File Input type and we have it already installed on our

application. So now we are going to create a new form and add a Short Text property and turn it

into a File Input and edit the field properties changing the Field Type from Short text toCustom field.

Figure 15.37. Changing a field type toCustom field

https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type
https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type


Field types

341

After changing the field type a new set of properties will appear:



Chapter 15. Form Modeler

342

Figure 15.38. Custom field properties configuration form



Field types

343

Table 15.6. Custom field properties

Property Description

Field type Can change the field type to other compatible

field types

Field Name Will be used as identifier in formulas

calculation

Label The text that will be shown as field label

Custom field A list containing all the Custom Field Types

available on the platform

First parameter A String parameter that can be user to pass

custom configuration neede by the Custom

Field Type implementation

Second parameter A String parameter that can be user to pass

custom configuration neede by the Custom

Field Type implementation

Third parameter A String parameter that can be user to pass

custom configuration neede by the Custom

Field Type implementation

Fourth parameter A String parameter that can be user to pass

custom configuration neede by the Custom

Field Type implementation

Fifth parameter A String parameter that can be user to pass

custom configuration neede by the Custom

Field Type implementation

Required Indicates if it’s mandatory to fill this field.

Read Only When this check is on, the field will be used

only for read

Input binding expression This expression defines the link between field

and process task input variable. It will be used

in runtime to set the field value with that task

input variable data.

Output binding expression This expression defines the link between

field and process task output variable. It will

be used in runtime to set that task output

variable.

So opening the Custom field select box we'll be able to select the File Input from the available

custom types:



Chapter 15. Form Modeler

344

Figure 15.39. Available custom types



Field types

345

After selecting the File Input type on the list and saving the field properties the form will look like:

Figure 15.40. Custom type display in a form

If we build a simple process and configure a Short text to be shown as the sampleFile Input, if

we build the project on runtime the field will behave uploading the choosen files to the server and

allowing the user to download it like this:

Figure 15.41. Choosing the file to upload



Chapter 15. Form Modeler

346

Figure 15.42. File uploaded, showing the download link

If we take a look at what's the process variable value, we'll see that is storing a String with the

file path stored in server.

Figure 15.43. Process variable storing custom type results



Chapter 16.

347

Chapter 16. Runtime Management

16.1. Deployments

This chapter introduces the Deployment administration screen. Technical users will be able to

check which deployment units are deployed into the platform and available to use. You can find the

source code of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/

jbpm-console-ng-business-domain

16.1.1. Deployment Units List

You can access to the Deployment Units List under the Runtime menu (TODO: fix image and

menu name)

The Deployment Unit list shows all the Deployment Units deployed into the platform that are

already enabled to be used. Each deployment unit can contain multiple business processes and

business rules. By default the list is populated by Building and Deploying a KIE Module using the

Project Editor Screen. When you Build and Deploy a



Chapter 16. Runtime Management

348

You also have the option to deploy custom Deployment Units with other options different from the

defaults. When a KIE Project is deployed, by default the "DEFAULT" KIE Base and KIE Sessions

are used and the SINGLETON Strategy is used. You can select a different KIE Base and KIE

Session using the New Deployment Unit.

16.2. Jobs

TBD



Chapter 17.

349

Chapter 17. Process and Task

Management

17.1. Process Management

This chapter describes the screens related with the creation and management of process

definitions and process instances.

Once you have modelled and configured all the techncial details to run a process definition your

process definition will appear in the Process Definitions List. Once you have the process in the

Process Definition List, you can start new instances of it. The following sections describes the

features provided by each of these screens. You can find these screens under the Process

Management Menu, in the jBPM Console NG or in Kie Workbench.

You can find the source code for this module here: https://github.com/droolsjbpm/jbpm-console-

ng/tree/master/jbpm-console-ng-process-runtime

17.1.1. Process Definitions

The process definition section is composed by two main screens: the Process Definition Lists and

the Process Definition Details.

17.1.1.1. The Process Definition List

The process definition list shows all the available process definitions that were deployed into

the platform. Look at the Deployments section for more information about how to check all the

deployment units available.



Chapter 17. Process and Task ...

350

You can click in the list rows to access to the details of the process definition.

17.1.1.2. The Process Definition Details

The process definition details shows all the available information about the process definition. You

can consider this screen as a brief about the process model. You can quickly see if there is a

Sub Process associated with it, or how many users and groups are participating in the selected

definition.



Process Definitions

351

Notice that you can View the Process Model (Read Only mode) using the Options Menu in the

top bar. You can also look at all the process instances for the selected process definition goint

to Options -> View Process Instances.

17.1.1.3. Creating Process Instances

You can create new Process Instances from the Process Definition List or from the Process

Definition Detail view.



Chapter 17. Process and Task ...

352

When you want to create a Process Instance usually a Form will be presented to introduce the

information required by the process to be started. Once you complete the form and click into the

Start Process button, the instance will be created and the details of the Process Instance will be

displayed on top of the Process Definition Details.

17.2. Tasks

This chapter introduces the Task Management screens and the its integration with the Form

Modeller component to allow users to work on their assigned tasks. You can find the source code

of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-

ng-human-tasks  [https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-

human-tasks] . At the end of this section you will find a technical description about how to

customize these views.

17.2.1. Task List

Every user with access to the platform will have access to its personal task list where tasks

assigned to him/her will be displayed. Each user will be able to create its own personal tasks or

work on tasks that were create as a result of a business process execution.

You can access to the Task List under the Work main menu:

https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks


Task List

353

17.2.1.1. Task List (Personal and Group Tasks)

Pending tasks can be displayed using different methafors depending on what the user is interested

on. We are currently providing two different views explained in the sections below: Grid and

Calendar View.

17.2.1.1.1. Task List (Grid View)

If you are interested in having a tabular view of all the pending tasks for a specific person or

group you can use the Grid View. The list will show all the pending tasks ordered by the columns

presented. You can change the default ordering clicking on the column header. In future version

more advanced filters will be provided and the search mechanism will be improved to look for task

internal data. This view offer a more traditional BPM Task List view.

With this current version you can filter based on the tasks status:

• Active: all the Active tasks that user can work on. That means Personal and Group Tasks.

• Personal: all the personal tasks that already belong to the user.

• Group: all the group tasks that needs to be claimed by the user in order to start working on them.

• All: show all the tasks no matter the status. It will show completed tasks as well with the exception

of completed tasks that belongs to a process that is already finished. In such cases the tasks

are cleaned up after the process is completed and for that reason they will not be displayed.



Chapter 17. Process and Task ...

354

17.2.1.1.2. Task List (Calendar View)

If you want a more time oriented view of your pending tasks you can use the Calendar View.

This view arrange the tasks based on the Task Due Date. You can switch between three different

ranges: Day, Week or Month.

The Day view shows all the tasks that Due Today. Notice that you can change the selected date

using the calendar or using the Next and Previous button. The Today button will be enabled when

you are in a different day than today, and when you click it it will return the selection to the current

date.

The Week view shows all the tasks pending for the current week. You can change the selected

week using the calendar or the Next and Previous button. If you click on the Today button, you

will be moved to the week the current week.



Task List

355

The Month view shows all the tasks that due on the selected month. You can change the month

using the calendar or the Next and Previous button. If you click on the Today button the calendar

will show all the tasks that due in the current month.



Chapter 17. Process and Task ...

356

17.2.1.2. Task Details

You can access to the Task Details by clicking in a task row (in both Grid and Calendar Views).

The details associated with a task can be changed, like for example the Due Date, the Priority

or the task description.



Task List

357

You can also view the Process Context for a specific task. If the task was created by a Business

Process, you will have access to see the Process Instance status that has created it.



Chapter 17. Process and Task ...

358

Finally you can see the Task Log, which allows you to see all the operations that has been

executed on the task since its creation.



Task List

359

17.2.1.3. Work on a Task

Tasks can have associated a Form to store data. If tasks are part of a Business Process, usually

some data needs to be collected and propagated to the business process for further usage. For

that reason, tasks has to provide a way to gather and store data. Forms can be created for specific

tasks using the Form Modeller. If no form is provided a dynamic form will be created based on

the information that the task needs to handle. If a task is created as an ad-hoc task (not related

with any process) there will be no such information to generate a form and only basic actions will

be provided.



Chapter 17. Process and Task ...

360

17.2.1.4. Task Assignments

You can Delegate tasks to different people when you are not able to work on them.



Task List

361

17.2.1.5. Task Comments

You can add comments to your tasks to keep track of the progress or to keep information related

to the task. Notice that if you delegate the task other users can also add comments helping on

the collaboration to complete the task.



Chapter 17. Process and Task ...

362

17.2.2. New Task (Ad-Hoc Task)

As mentioned in the introduction a User can create their own tasks, which will not be associated

with any Business Process. These tasks can be used to keep track of your personal list of TO

DOs. You can also create tasks and assign them to different people in your team or group.



New Task (Ad-Hoc Task)

363



364



Chapter 18.

365

Chapter 18. Business Activity

Monitoring

18.1. Overview

Imagine you are developing a BPM solution which mixes process with business data. Imagine also

you need some forms to be used within processes in order to let the users enter data. Moreover,

you'll likely want to have some kind of dashboards to display metrics and key performance

indicators in order to quickly assess how your processes are doing. So far so good.

jBPM brings you all the ingredients you need to develop end-to-end business process solutions.

The jBPM's BAM module (also known as Dashboard Builder or just Dashbuilder) allows for

composing custom business dashboards mixing data coming from heterogeneous sources of

information. The module is now fully integrated into KIE workbench. A new specific section for

dealing with dashboards has been added and it can be accessed either from the home page or

from the menu bar, as shown in the next figure.

Figure 18.1. BAM menu options in the KIE Workbench home page

In the figure, Within the highlighted sections, there exists two options:

• Business Dashboards: This option is intended to give users access to the generic dashboard

tooling either to compose new dashboards or just to consume existing ones.



Chapter 18. Business Activity...

366

• Process & Task Dashboard: It opens up the Process Dashboard perspective which contains

several performance indicators related to the jBPM execution engine.

18.2. Business Dashboards

BPM solutions are not only made up with processes, rules or forms but also with data belonging

to the customer business domain. Such data is handled in the forms, the rules and, of course, the

dashboards that are part of the solution. Usually, dashboards feed with data coming from several

sources of information, from business domain entities persisted into relational databases to data

hold in legacy systems. In order to cope with this kind of scenarios a generic highly customizable

dashboard tooling is needed.

It's obviously expected that a customer building a BPM solution want to track how its processes are

performing. To do so the customer need a monitoring and reporting tool. This is the main reason

why the Dashbuilder project has been included as a core module of the jBPM echosystem. Notice

also that Dashbuilder, as an independent project, is not only used by jBPM but also by many other

projects like, for example, JBoss Teiid a data virtualization system that allows applications to use

data from multiple, heterogeneous data stores.

Note
Please, read the Dashbuilder book in order to get detailed information about how

to build custom dashboards.

An example of dashboard is the Sales Dashboard which comes built-in any installation of

Dashbuilder. Two screenshots below:



Business Dashboards

367

Figure 18.2. Sales opportunities by country



Chapter 18. Business Activity...

368

Figure 18.3. Sales opportunities report table

18.3. Process Dashboard

The jBPM Process Dashboard is an specific use case of a dashboard feed from data coming

from a relational database via SQL queries. In this case, the database tables consumed are:

processinstancelog and bamtasksummary both belonging to the jBPM engine.

From the data provider perspective there exists 3 data providers in charge of retrieving the

data needed by all the key performance indicators of the jBPM Process Dashboard. These data

provides are all defined in the Dashbuilder tooling data provider management screen.



Process Dashboard

369

Figure 18.4. jBPM Process Dashboard data providers

• jBPM Count Processes: Retrieves the total number of process instances grouped by status.

        select total.processname, ifnull(total.instances,0) total,

        ifnull(active.instances_act,0) active,

        ifnull(completed.instances_compl,0) completed,

        ifnull(pending.instances_pend,0) pending,

        ifnull(suspended.instances_susp,0) suspended,

        ifnull(aborted.instances_abrt,0) aborted

        from

        (select pi.processinstanceid as pId, pi.processname as processname,

 count(*) as instances

        from processinstancelog pi group by pi.processinstanceid,processname)

 as total

        left outer join

        (select pi.processinstanceid as pId, count(*) as instances_act

        from processinstancelog pi

        where pi.status=1 group by pi.processinstanceid) as active

        on (total.pId=active.pId)

        left outer join

        (select pi.processinstanceid as pId, count(*) as instances_compl

        from processinstancelog pi

        where pi.status=2 group by pi.processinstanceid) as completed

        on (total.pId=completed.pId)

        left outer join

        (select pi.processinstanceid as pId, count(*) as instances_pend

        from processinstancelog pi

        where pi.status=0 group by pi.processinstanceid) as pending

        on (total.pId=pending.pId)



Chapter 18. Business Activity...

370

        left outer join

        (select pi.processinstanceid as pId, count(*) as instances_susp

        from processinstancelog pi

        where pi.status=4 group by pi.processinstanceid) as suspended

        on (total.pId=suspended.pId)

        left outer join

        (select pi.processinstanceid as pId, count(*) as instances_abrt

        from processinstancelog pi

        where pi.status=3 group by pi.processinstanceid) as aborted

        on (total.pId=aborted.pId)

        where {sql_condition, optional, processname, processname}

        order by processname

      

• jBPM Process Summary: Retrieves data from all the process instances.

        select processinstanceid,

        processname,

        status,

        start_date,

        end_date,

        user_identity,

        processversion,

        duration

        from processinstancelog

      

• jBPM Task Summary: Retrieves data from all the process tasks.

        select ts.taskid,

        ts.processinstanceid,

        ps.processname,

        ps.processversion,

        ts.taskname,

        ts.createddate,

        ts.enddate,

        ts.userid,

        ts.duration,

        ts.status

        from bamtasksummary ts

        left join processinstancelog ps on

 (ts.processinstanceid=ps.processinstanceid)

      



Process Dashboard

371

From the end user perspective, the jBPM Process Dashboard has been designed to consume the

data from the data providers defined above. It has been also designed has a panel fully integrated

into the KIE Workbench environment as shown in the next figure:

Figure 18.5. jBPM Process Dashboard populated with data coming from

running process instances

The dashboard itself is composed by two views or pages:

• Global main view: containing metrics about all the processes.

Table 18.1. jBPM Process Dashboard: Global KPIs

Key Performance Indicator Data provider

Total number of instances by process jBPM Count Processes

Instances started by user jBPM Process Summary

Total number of tasks by user/group jBPM Task Summary

Number of tasks started by date jBPM Task Summary

Number of tasks completed by date jBPM Task Summary

Overall tasks duration (average, min. and

max.)

jBPM Task Summary



Chapter 18. Business Activity...

372

Key Performance Indicator Data provider

Number of tasks by task status jBPM Task Summary

Number of process instances by status jBPM Process Summary

Number of process instances started by date jBPM Process Summary

Number of process instances completed by

date

jBPM Process Summary

Overall process instances duration (average,

min. and max.)

jBPM Process Summary

• Process detailed view: containing metrics about an specific process. To get into this view a

process must be selected from the global view. Once a process is selected, a drill-down request

is carried out by the system and the process specific view is set as the current screen.

Table 18.2. jBPM Process Dashboard: Process specific KPIs

Key Performance Indicator Data provider

Total number of process instances by status jBPM Count Processes

Total number of tasks by process version jBPM Task Summary

Total number of tasks by user/group jBPM Task Summary

Number of process tasks started by date jBPM Task Summary

Number of process tasks completed by date jBPM Task Summary

Overall tasks duration (average, min. and

max.)

jBPM Task Summary

Number of tasks by task status jBPM Task Summary

Number of process instances by status jBPM Process Summary

Number of process instances started by date jBPM Process Summary

Number of process instances completed by

date

jBPM Process Summary

Overall process instances duration (average,

min. and max.)

jBPM Process Summary

Note
Notice, those are generic metrics not tied to any specific business process.

Nonetheless, it's worth to mention that it would be very easy for customers to

modify, extend or adapt this generic dashboard for custom needs. A customer

could take the jBPM Process Dashboard as the base template for building a custom

dashboard which mixes data coming from the jBPM engine plus data coming from

its own business domain.



Chapter 19.

373

Chapter 19. Remote API

19.1. REST

REST API calls to the execution server allow you to manage processes and tasks and retrieve

various dynamic information from the execution server. All calls are synchronous, that is, the call

will only complete, including the possible return of a result, once the requested operation has

succeeded.

When using Java code to interface with the REST API, the classes used in POST operations or

otherwise returned by various operations can be found in the (org.kie.remote:)kie-services-

client jar.

19.1.1. Additional Information

19.1.1.1. Serialization: JAXB or JSON

Serialization (json/jaxb)

Except for the Execute calls, all other REST calls described below can use either JAXB or JSON.

All REST calls, unless otherwise specified, will use JAXB serialization.

When using JSON, make sure to add the JSON media type ("application/json") to the ACCEPT

header of your REST call.

19.1.1.2. Pagination

Some of the REST calls below return lists of information. The results of these operations can be

paginated, which means that the lists can be split up and returned according to the parameters

sent by the user.

For example, if the REST call parameters indicate that page 2 with page size 10 should be returned

for the results, then results 10 to (and including) 19 will be returned.

The first page is always page 1 (as opposed to page "0").

Table 19.1. Pagination query parameter syntax

Parameter name Description

page This the page number requested. The default

value is 1.

p This is a synonym for the above page

parameter.

pageSize This is the number of elements per page to

return. The default value is 10.



Chapter 19. Remote API

374

Parameter name Description

s This is a synonym for the above pageSize

parameter.

If both a "long" pagination parameter and its synonym are used, then only the value from the "long"

variant is used. For example, if the page is given with a value of 11 and the p parameter is given

with a value of 37, then the value of the page parameter, 11, will be used and the p parameter

will be ignored.

For the following operations, pagination is always used. See above for the default values used.

Table 19.2. REST operations using pagination

REST call URL Short Description

/runtime/{deploymentId}/history/

instance

Returns a list of ProcessInstanceLog

instances

runtime/{deploymentId}/history/

instance/{procInstid}

Returns a list of ProcessInstanceLog

instances

/runtime/{deploymentId}/history/

instance/{procInstId}/child

Returns a list of ProcessInstanceLog

instances

/runtime/{deploymentId}/history/

instance/{procInstId}/node

Returns a list of NodeInstanceLog instances

/runtime/{deploymentId}/history/

instance/{procInstId}/node/{nodeId}

Returns a list of NodeInstanceLog instances

/runtime/{deploymentId}/history/

instance/{procInstId}/variable

Returns a list of VariableInstanceLog

instances

/runtime/{deploymentId}/history/

instance/{procInstId}/variable/

{varId}

Returns a list of VariableInstanceLog

instances

/runtime/{deploymentId}/history/

variable/{variableId}

Returns a list of VariableInstanceLog

instances

/runtime/{deploymentId}/history/

variable/{variableId}/instances

Returns a list of ProcessInstance instances

/runtime/{deploymentId}/history/

variable/{variableId}/value/{value}

Returns a list of VariableInstanceLog

instances

/runtime/{deploymentId}/history/

variable/{variableId}/value/{value}/

instances

Returns a list of ProcessInstance instances

/runtime/{deploymentId}/history/

process/{procDefId}

Returns a list of ProcessInstanceLog

instances

/task/query Returns a list of TaskSummaryImpl instances



Additional Information

375

19.1.1.3. Map query parameters

If you're triggering an operation with a REST API call that would normally (e.g. when interacting

the same operation on a local KieSession or TaskService instance) take an instance of a

java.util.Map as one of it's parameters, you can submit key-value pairs to the operation to

simulate this behaviour by passing a query parameter whose name starts with map_.

Example 19.1.

If you pass the query parameter map_kEy=vAlue in a REST call, then the Map that's passed to the

actual underlying KieSession or TaskService operation will contain this (String, String) key

value pair: "kEy" => "vAlue".You could pass this parameter like so:

http://localhost:8080/kie-wb/rest/runtime/myproject/process/

wonka.factory.loompa.hire/start?map_kEy=vAlue

Map query parameters also use the object query parameter syntax described below, so the

following query parameter, map_total=5000 will be translated into a key-value pair in a map where

the key is the String "total" and the value is a Long with the value of 5000. For example:

http://localhost:8080/kie-wb/rest/runtime/myproject/process/

wonka.factory.oompa.chocolate/start?map_total=5000

The following operations take query map parameters:

• /runtime/{deploymentId}/process/{processDefId}/start

• /runtime/{deploymentId}/workitem/{processItemId}/complete

• /runtime/{deploymentId}/withvars/process/{processDefId}/start

• /task/{taskId}/complete

• /task/{taskId}/fail

19.1.1.4. Number query parameters

While REST calls obviously only take strings as query parameters, using the following notation

for query parameters will mean that the string is translated into a different type of object when the

value of the string is used in the actual operation:

Table 19.3. Number query parameter syntax

Regex syntax Type

\d+ Long

\d+i Integer

\d+l Long



Chapter 19. Remote API

376

19.1.1.5. Runtime strategies

The REST calls allow access to the underlying deployments, regardless of whether these

deployments use the Singleton, Per-Process-Instance or Per-Request strategies.

While there's enough information in the URL in order to access deployments that use the

Singleton, or Per-Request strategies, that's not always the case with the Per-Process-

Instance runtimes because the REST operation will obviously need the process instance id in

order to identify the deployment.

Therefore, for REST calls for which the URL does not contain the process instance id, you'll need

to add the following parameter:

Table 19.4. Per-Process-Instance runtime query parameter

Parameter name Description

runtimeProcInstId Query parameter that may only have numbers

as it values: the value specify the process

instance id that identifies the underlying Per-

Process-Instance deployment

This parameter will have no effect if the

underlying deployment uses the Singleton or

Per-Request strategy.

19.1.2. Runtime calls

This section lists REST calls that interface with

The deploymentId component of the REST calls below must conform to the following regex:

• [a-zA-Z0-9-:\.]+

19.1.2.1. Process calls

[POST] /runtime/{deploymentId}/process/{processDefId}/start

• Starts a process.

• Returns a JaxbProcessInstanceResponse instance, that contains basic information about

the process instance.

• The prodessDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

• This operation takes map query parameters (see above), which will be used as parameters

for the process instance.



Runtime calls

377

[GET] /runtime/{deploymentId}/process/instance/{procInstId}

• Does a (read only) retrieval of the process instance. This operation will fail (code 400) if the

process instance has been completed.

• Returns a JaxbProcessInstanceResponse instance.

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/process/instance/{procInstId+}/abort

• Aborts the process instance.

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/process/instance/{procInstId}/signal

• Signals the process instance.

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• The procInstId component of the URL must conform to the following regex: [0-9]+

• This operation takes a signal and a event query parameter.

• The signal parameter value is used as the name of the signal. This parameter is

required.

• The event parameter value is used as the value of the event. This value may use the

number query parameter syntax described above.

[GET] /runtime/{deploymentId}/process/instance/{procInstId}/variables

• Gets the list of process variables in a process instance.

• Returns a JaxbVariablesResponse

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/signal

• Signals the KieSession

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• The procInstId component of the URL must conform to the following regex: [0-9]+

• This operation takes a signal and a event query parameter.

• The signal parameter value is used as the name of the signal. This parameter is

required.



Chapter 19. Remote API

378

• The event parameter value is used as the value of the event. This value may use the

number query parameter syntax described above.

[GET] /runtime/{deploymentId}/workitem/{workItemId}

• Gets a WorkItem instance

• Returns a JaxbWorkItem instance

• The workItemId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/workitem/{workItemId}/complete

• Completes a WorkItem

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded

• The workItemId component of the URL must conform to the following regex: [0-9]+

• This operation takes map query parameters, which are used as input to signify the results

for completion of the work item.

[POST] /runtime/{deploymentId}/workitem/{workItemId: [0-9-]+}/abort

• Aborts a WorkItem

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded

• The workItemId component of the URL must conform to the following regex: [0-9]+

19.1.2.2. Process calls "with variables"

[POST] /runtime/{deploymentId}/withvars/process/{processDefId}/start

• Starts a process and retrieves the list of variables associated with the process instance

• Returns a JaxbProcessInstanceWithVariablesResponse that contains:

• Information about the process instance (with the same fields and behaviour as the

JaxbProcessInstanceResponse

• A key-value list of the variables available in the process instance.

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

[POST] /runtime/{deploymentId}/withvars/process/instance/{procInstId}

• Starts a process and retrieves the list of variables associated with the process instance

• Returns a JaxbProcessInstanceWithVariablesResponse (see the above REST call)

• The processInstId component of the URL must conform to the following regex: [0-9]+



History calls

379

[POST] /runtime/{deploymentId}/withvars/process/instance/{procInstId}/signal

• Signals a process instance and retrieves the list of variables associated it

• Returns a JaxbProcessInstanceWithVariablesResponse (see above)

• The processInstId component of the URL must conform to the following regex: [0-9]+

19.1.3. History calls

Important

The information that is available via the History REST calls is not limited to the

deployment specfied by the deploymentId part of the URL used. This is because

the AuditLogService used by the REST calls is only dependent on the persistence

framework used by the deployment, but not on anything else.

[POST] /runtime/{deploymentId}/history/clean

• Cleans (deletes) all history logs

[GET] /runtime/{deploymentId}/history/instances

• Gets a list of ProcessInstanceLog instances

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog

instances

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/instance/{procInstId}

• Gets the ProcessInstanceLog instance associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a JaxbProcessInstanceLog

instance

• The processInstId component of the URL must conform to the following regex: [0-9]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/instance/{procInstId}/child

• Gets a list of ProcessInstanceLog instances associated with any child/sub-processes

associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog

instances

• The processInstId component of the URL must conform to the following regex: [0-9]+

• This operation responds to pagination parameters



Chapter 19. Remote API

380

[GET] /runtime/{deploymentId}/history/instance/{procInstId}/node

• Gets a list of NodeInstanceLog instances associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbNodeInstanceLog

instances

• The processInstId component of the URL must conform to the following regex: [0-9]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/instance/{procInstId}/variable

• Gets a list of VariableInstanceLog instances associated with the specified process

instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• The processInstId component of the URL must conform to the following regex: [0-9]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/instance/{procInstId}/node/{nodeId}

• Gets a list of NodeInstanceLog instances associated with the specified process instance

that have the given (node) id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbNodeInstanceLog

instances

• The processInstId component of the URL must conform to the following regex: [0-9]+

• The nodeId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/instance/{procInstId}/variable/{varId}

• Gets a list of VariableInstanceLog instances associated with the specified process

instance that have the given (variable) id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• The processInstId component of the URL must conform to the following regex: [0-9]+

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/process/{processDefId}

• Gets a list of ProcessInstanceLog instances associated with the specified process

definition



History calls

381

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog

instances

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

• This operation responds to pagination parameters

19.1.3.1. History calls that search by variable

[GET] /runtime/{deploymentId}/history/variable/{varId}

• Gets a list of VariableInstanceLog instances associated with the specified variable id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/value/{value}

• Gets a list of VariableInstanceLog instances associated with the specified variable id that

contain the value specified

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given

variable id.

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/value/{value}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given

variable id which contains the (variable) value specified

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances



Chapter 19. Remote API

382

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• This operation responds to pagination parameters

19.1.4. Task calls

19.1.4.1. Task operation calls

All of the task operation calls described in this section use the user (id) used in the REST basic

authorization as input for the user parameter in the specific call.

Some of the operations take an optional lanaguage query parameter. If this parameter is not

specified in the REST call, the default value of "en-UK" is used.

The taskId component of the REST calls below must conform to the following regex:

• [0-9]+

[POST] /task/{taskId}/activate

• Activates a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/claim

• Claims a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/claimnextavailable

• Claims the next available task

• Returns a JaxbGenericResponse with the status of the operation

• Takes an optional language query parameter.

[POST] /task/{taskId}/complete

• Completes a task

• Returns a JaxbGenericResponse with the status of the operation

• Takes map query parameters, which are the "results" input for the complete operation

[POST] /task/{taskId}/delegate

• Delegates a task

• Returns a JaxbGenericResponse with the status of the operation

• Requires a targetIdquery parameter, which identifies the user or group to which the task

is delegated



Task calls

383

[POST] /task/{taskId}/exit

• Exits a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/fail

• Fails a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/forward

• Delegates a task

• Returns a JaxbGenericResponse with the status of the operation

• Requires a targetIdquery parameter, which identifies the user or group to which the task

is forwarded

[POST] /task/{taskId}/nominate

• Nominates a task

• Returns a JaxbGenericResponse with the status of the operation

• Requires at least one of either the user or group query parameter, which identify the user(s)

or group(s) that are nominated for the task

[POST] /task/{taskId}/release

• Releases a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/resume

• Resumes a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/skip

• Skips a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/start

• Starts a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/stop

• Stops a task



Chapter 19. Remote API

384

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/suspend

• Suspends a task

• Returns a JaxbGenericResponse with the status of the operation

19.1.4.2. Task query call

[GET] /task/query

The /task/query operation..

• Queries the available (non-archived) tasks

• Returns a JaxbTaskSummaryListResponse with a list of TaskSummaryImpl instances.

• Takes the following (case-insensitive) query parameters listed below:

• businessAdministrator

• Specifies that the returned tasks should have the business administrator identified by

this parameter

• This parameter may be repeated

• potentialOwner

• Specifies that the returned tasks should have the potential owner identified by this

parameter

• This parameter may be repeated

• processInstanceId

• Specifies that the returned tasks should be associated with the process instance

identified by this parameter

• This parameter may be repeated

• status

• Specifies that the returned tasks should have the status identified by this parameter

• This parameter may be repeated

• taskId

• Specifies that the returned tasks should have the (task) id identified by this parameter

• This parameter may be repeated

• taskOwner



Task calls

385

• Specifies that the returned tasks should have the task owner (initiator) identified by

this parameter

• This parameter may be repeated

• workItemId

• Specifies that the returned tasks should be associated with the work item identified by

this parameter

• This parameter may be repeated

• union

• This specifies whether the query should query the union or intersection of the

parameters. See below for more info.

• This parameter must only be passed once

Except for the union parameter, if any of the other parameters are passed multiple times, this

operation will query tasks based on the union of all values specific parameter. This is always

true, regardless of the value of the union parameter.

For example, if multiple taskOwner parameters are passed, this operation will return all tasks

that have a task owner matching at least one of the passed values.

However, behaviour with regards to multiple (types of) parameters is governed by the union

parameter: if the unionparameter is passed as false, then the operation will query based on

the intersection of the two sets of values.

For example, if both a taskOwner and taskId parameter are passed as well as a union

parameter with a value of false, then the operation will query for tasks that have both the

specified task owner and task id.

However, if the union parameter in the above example is true, then the operation will query

for tasks that have either the specified task owner or the specified task id.

19.1.4.3. Other Task calls

[GET] /task/{taskId}/content

• Gets the task content from a task identified by the given task id

• Returns a JaxbContent with the content of the task

• The taskId component of the URL must conform to the following regex: [0-9]+

[GET] /task/content/{contentId}

• Gets the task content from a task identified by the given content id



Chapter 19. Remote API

386

• Returns a JaxbContent with the content of the task

• The contentId component of the URL must conform to the following regex: [0-9]+

19.1.5. Execute calls

While there is a /runtime/{id}/execute and a task/execute method, both will take all types

of commands. This is possible because execute takes a JaxbCommandsRequest object, which

contains a list of (org.kie.api.command.)Command objects. The JaxbCommandsRequest has

fields to store the proper deploymentId and processInstanceId information.

Of course, if you send a command that needs this information (deploymentId, for example) and

don't fill it in, this will fail.

19.1.5.1. Execution call details

[POST] /task/execute

• Executes a Command, assumed to be related to tasks.

• Returns a JaxbCommandResponse implementation with the result of the operation

[POST] /runtime/{deploymentId}/execute

• Executes a Command, assumed to be related to business processes or the knowledge

session.

• Returns a JaxbCommandResponse implementation with the result of the operation

19.2. JMS

19.2.1. JMS Queue setup

When the Workbench is deployed, it automatically creates 3 queues:

• jms/queue/KIE.SESSION

• jms/queue/KIE.TASK

• jms/queue/KIE.RESPONSE

The KIE.SESSION and KIE.TASK queues should be used to send command request messages to

the JMS API. Command response messages will be then placed on the KIE.RESPONSE. Command

request messages that involve starting and managing business processes should be sent to the

KIE.SESSION and command request messages that involve managing human tasks, should be

sent to the KIE.TASK queue.

Although there are 2 different input queues, KIE.SESSION and KIE.TASK, this is only in order

to provide multiple input queues so as to optimize processing: command request messages

will be processed in the same manner regardless of which queue they're sent to. However,

in some cases, users may send many more requests involving human tasks than requests



Example JMS usage

387

involving business processes, but then not want the processing of business process-related

request messages to be delayed by the human task messages. By sending the appropriate

command request messages to the appropriate queues, this problem can be avoided.

The term "command request message" used above refers to a JMS byte message that contains a

serialized JaxbCommandsRequest object. At the moment, only XML serialization (as opposed to,

JSON or protobuf, for example) is supported.

19.2.2. Example JMS usage

The following is a rather long example that shows how to use the JMS API. The numbers

("callouts") along the side of the example refer to notes below that explain particular parts of the

example. It's supplied for those advanced users that do not wish to use the jBPM Remote Java

API.

The jBPM Remote Java API, described here, will otherwise take care of all of the logic shown

below.

import java.util.List;

import java.util.UUID;

import javax.jms.*;

import javax.naming.*;

import javax.xml.bind.JAXBException;

import org.drools.core.command.runtime.process.StartProcessCommand;

import org.jbpm.services.task.commands.GetTaskAssignedAsPotentialOwnerCommand;

import org.kie.api.command.Command;

import org.kie.api.runtime.process.ProcessInstance;

import org.kie.api.task.model.TaskSummary;

import org.kie.services.client.serialization.jaxb.JaxbSerializationProvider; 

  

import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;

import org.kie.services.client.serialization.jaxb.impl.JaxbCommandsRequest;

import org.kie.services.client.serialization.jaxb.impl.JaxbCommandsResponse;

import org.kie.services.client.serialization.jaxb.impl.JaxbExceptionResponse;

// ...

  String USER = "charlie";

  String PASSWORD = "ch0c0licious";

  String DEPLOYMENT_ID = "test-project";

  String PROCESS_ID_1 = "oompa-processing";

  

  // Create command

  Command<?> cmd = new StartProcessCommand(PROCESS_ID_1);

  int oompaProcessingResultIndex = 0;                                          



Chapter 19. Remote API

388

  JaxbCommandsRequest req = new JaxbCommandsRequest(DEPLOYMENT_ID, cmd);       

  req.getCommands().add(new GetTaskAssignedAsPotentialOwnerCommand(USER, "en-

UK"));

  int loompaMonitoringResultIndex = 1;                                         

  // Setup queues

  

  InitialContext context;

  Queue sendQueue, responseQueue;

  try { 

      context = new InitialContext();

      sendQueue = (Queue) context.lookup("jms/queue/KIE.SESSION");

      responseQueue = (Queue) context.lookup("jms/queue/KIE.RESPONSE");

  } catch( NamingException ne ) { 

     throw new RuntimeException("Unable to lookup send or response queue", ne); 

  }

  Connection connection = null;

  Session session = null;

  JaxbCommandsResponse cmdResponse = null;

  String corrId = UUID.randomUUID().toString();

  String selector = "JMSCorrelationID = '" + corrId + "'";

  try {

      // Create JMS connection and session

      MessageProducer producer;

      MessageConsumer consumer;

      try {

          ConnectionFactory connectionFactory = (ConnectionFactory) context.lookup("jms/

RemoteConnectionFactory");

          connection = connectionFactory.createConnection(USER, PASSWORD);

          session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

          producer = session.createProducer(sendQueue);

          consumer = session.createConsumer(responseQueue, selector);

          connection.start();

      } catch (JMSException jmse) {

          throw new RuntimeException("Unable to setup a JMS connection.", jmse);

      } catch (NamingException ne) {

          throw new RuntimeException("Unable to lookup JMS connection

 factory.", ne);

      }

      // Create msg

      BytesMessage msg;

      try {



Example JMS usage

389

          msg = session.createBytesMessage();                                  

          msg.setJMSCorrelationID(corrId);                                     

          msg.setIntProperty("serialization", JaxbSerializationProvider.JMS_SER IALIZATION_TYPE);

          String xmlStr = JaxbSerializationProvider.convertJaxbObjectToString(r eq);

          msg.writeUTF(xmlStr);

      } catch (JMSException jmse) {

          throw new RuntimeException("Unable to create and fill a JMS

 message.", jmse);

      } catch (JAXBException jaxbe) {

          throw new RuntimeException("Unable to deserialze JMS message.", jaxbe);

      }

      // Send msg

      try {

          producer.send(msg);

      } catch (JMSException jmse) {

          throw new RuntimeException("Unable to send a JMS message.", jmse);

      }

      // receive

      Message response;

      try {

          long qualityOfServiceThresholdMilliSeconds = 5 * 1000;

          response = consumer.receive(qualityOfServiceThresholdMilliSeconds);

      } catch (JMSException jmse) {

          throw new RuntimeException("Unable to receive or retrieve the JMS

 response.", jmse);

      }

      // extract response

      assert response != null : "Response is empty.";

      try {

          String xmlStr = ((BytesMessage) response).readUTF();

          cmdResponse = (JaxbCommandsResponse) JaxbSerializationProvider.conver tStringToJaxbObject(xmlStr);

      } catch (JMSException jmse) {

          throw new RuntimeException("Unable to extract

 " + JaxbCommandsResponse.class.getSimpleName()

                  + " instance from JMS response.", jmse);

      } catch (JAXBException jaxbe) {

          throw new RuntimeException("Unable to extract

 " + JaxbCommandsResponse.class.getSimpleName()

                  + " instance from JMS response.", jaxbe);

      }

      assert cmdResponse != null : "Jaxb Cmd Response was null!";

  } finally {

      if (connection != null) {

          try {

              connection.close();



Chapter 19. Remote API

390

              session.close();

          } catch (JMSException jmse) {

              System.out.println("Unable to close connection or session!");

              jmse.printStackTrace();

          }

      }

  }

  ProcessInstance oompaProcInst = null;

  List<TaskSummary> charliesTasks = null;

  for (JaxbCommandResponse<?> response : cmdResponse.getResponses()) {

      if (response instanceof JaxbExceptionResponse) {                         

          JaxbExceptionResponse exceptionResponse = (JaxbExceptionResponse) response;

          throw new RuntimeException(exceptionResponse.getMessage());

      }

      if (response.getIndex() == oompaProcessingResultIndex) {                 

          oompaProcInst = (ProcessInstance) response.getResult();              

      } else if (response.getIndex() == loompaMonitoringResultIndex) {         

          charliesTasks = (List<TaskSummary>) response.getResult();            

      }

  }

These classes can all be found in the (org.kie.remote:)kie-services-client jar.

The JaxbCommandsRequest instance is the "holder" object in which you can place

all of the commands you want to execute in a particular request. By using the

JaxbCommandsRequest.getCommands() method, you can retrieve the list of commands in

order to add more commands to the request.

A deployment id is required for command request messages that deal with business

processes. Command request messages that only contain human task-related commands

do not require a deployment id.

Note that the JMS message sent to the remote JMS API must be constructed as follows:

• It must be a JMS byte message.

• It must have a filled JMS Correlation ID property.

• It must have an int property with the name of "serialization" set to an acceptable value

(only 0 at the moment).

• It must contain a serialized instance of a JaxbCommandsRequest, added to the message

as a UTF string

The same serialization mechanism used to serialize the request message will be used to

serialize the response message.



Remote Java API

391

In order to match the response to a command, to the initial command, use the index field

of the returned JaxbCommandResponse instances. This index field will match the index of

the initial command. Because not all commands will return a result, it's possible to send

3 commands with a command request message, and then receive a command response

message that only includes one JaxbCommandResponse message with an index value of 1.

That 1 then identifies it as the response to the second command.

Since many of the results returned by various commands are not serializable, the jBPM

JMS Remote API converts these results into JAXB equivalents, all of which implement the

JaxbCommandResponse interface. The JaxbCommandResponse.getResult() method then

returns the JAXB equivalent to the actual result, which will conform to the interface of the

result.

For example, in the code above, the StartProcessCommand returns a ProcessInstance.

In order to return this object to the requester, the ProcessInstance is converted to

a JaxbProcessInstanceResponse and then added as a JaxbCommandResponse to the

command response message. The same applies to the List<TaskSummary> that's returned

by the GetTaskAssignedAsPotentialOwnerCommand.

However, not all methods that can be called on a normal ProcessInstance can be called

on the JaxbProcessInstanceResponse because the JaxbProcessInstanceResponse is

simply a representation of a ProcessInstance object. This applies to various other command

response as well. In particular, methods which require an active (backing) KieSession, such

as ProcessInstance.getProess() or ProcessInstance.signalEvent(String type,

Object event) will throw an UnsupportedOperationException.

19.3. Remote Java API

19.3.1. Using the Remote Java RuntimeEngine API

By using the RemoteRestSessionFactory or RemoteJmsSessionFactory classes provided by

the kie-services-client jar, you can create remote instances of the RuntimeEngine and thus

also the KieSession and TaskService. These instances will allow you to interact with a remote

workbench instance (i.e. KIE workbench or the jBPM Console) without having to deal with the

underlying transport and serialization details.

19.3.1.1. The REST Remote Java RuntimeEngine

In order to interact via REST with the remote runtime, the RemoteRestSessionFactory can be

used. The following example illustrates how the remote session can be used.

  // Create REST session

  RemoteRestSessionFactory restSessionFactory 

    = new RemoteRestSessionFactory(deploymentId, deploymentUrl, user, password);

  RuntimeEngine engine = restSessionFactory.newRuntimeEngine();

  KieSession ksession = engine.getKieSession();

  ProcessInstance processInstance = ksession.startProcess("org.jbpm.humantask");



Chapter 19. Remote API

392

  

  TaskService taskService = engine.getTaskService();

  List<TaskSummary> tasks = taskService.getTasksAssignedAsPotentialOwner(taskUserId, "en-

UK");

  long taskId = findTaskId(processInstance.getId(), tasks);

  

  Task task = taskService.getTaskById(taskId);

  

  taskService.start(taskId, taskUserId);

  taskService.complete(taskId, taskUserId, null);

In the above example, the following variables were used when initalizing the

RemoteRestSessionFactory

Table 19.5. Pagination query parameter syntax

Variable Possible value Description

deploymentId myproject This is the name (id)

of the deployment the

RuntimeEngine should

interact with.

deploymentURL http://localhost:8080/

kie-wb/

This is the base URL that

should be used when

interacting with the remote

execution-server.

user homer This is the user needed for

authentication for all rest

calls.

password d0nutsd0nutsILUVDONUTS! This is the password for the

user specified in the user

parameter.

See the various constructors of the RemoteRestSessionFactory class for more possibilities.

19.3.1.2. The JMS Remote Java RuntimeEngine

The Remote JMS Java RuntimeEngine works precisely the same as the REST variant, except

that it takes different parameters for its constructor. See the RemoteJmsRuntimeEngineFactory

for more information.



Part V. Eclipse
How to use the Eclipse-based tooling





Chapter 20.

395

Chapter 20. jBPM Eclipse Plugin

20.1. jBPM Eclipse Plugin

The jBPM Eclipse plugin provides developers (and very technical users) with an environment to

edit and test processes, and integrate it deeply with their applications. It provides the following

features (on top of the Eclipse IDE):

• Wizards for creation of

• a jBPM project

• a BPMN2 process

• jBPM Perspective (showing the most commonly used views in a predefined layout)

20.1.1. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the

Drools and jBPM Eclipse plugin (with a full jBPM runtime preconfigured) and the Eclipse BPMN2

Modeler.

Tip

Using the jBPM installer is definitely the recommended starting point for most

users.

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you

need to:

• Download Eclipse (Kepler recommended, but older versions like Indigo or Juno should also

still work)

• Start Eclipse

• Select "Install New Software ..." from the Help menu. Add the Drools and jBPM

update site  http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/ [http://

downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/]. You should see the

plugins as shown below. Note that you can also download and unzip the Drools and jBPM

update site to your local file system and use that as local update site instead.

http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/
http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/
http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/


Chapter 20. jBPM Eclipse Plugin

396

Figure 20.1.

Select the JBoss jBPM Core and JBoss Drools Core plugins and click "Next >". Click "Next

>" again after reviewing your selecting, accept the terms of the license agreement and click

"Finish" to download and install the plugins. If you get a warning about installing software that

contains unsigned content, click OK. After successful installation, Eclipse should ask you to

restart, click Yes.

• The plugin should now be installed. To check, check if you can for example see the new jBPM

Project wizard: under the "File" menu, select "New Project ..." and there you should be able to

see "New jBPM Project" under the jBPM category.



jBPM Project Wizard

397

• Register a jBPM runtime to get started, see the section on jBPM runtimes in this chapter for

more information.

Note that, when doing a manual install, you still need to manually install the Eclipse BPMN 2.0

Modeler plugin as well. Check out the chapter on the Eclipse BPMN 2.0 Modeler on how to do that.

20.1.2. jBPM Project Wizard

The aim of the new project wizard is to set up an executable sample project to start using processes

immediately. This will set up a basic structure, the classpath, sample process and a test case to

get you started. To create a new jBPM project, in the "File" menu select "New" and then "Project ..."

and under the jBPM category, select "jBPM Project". A dialog as shown below should pop up.

Figure 20.2.

Fill in a name for your project and if necessary change the location where this project should be

located (by default Eclipse will generate it inside your Eclipse workspace folder) and click "Next >".



Chapter 20. jBPM Eclipse Plugin

398

Now you can optionally include a sample process in your project to get started. You can select

to either use a simple "Hello World" process, a slightly more advanced process including human

tasks and persistence or simply an empty project. You can also select to include a JUnit test

class that you can use to test your process. These can serve as a starting point, and will give you

something executable almost immediately, which you can then modify to your needs.

Figure 20.3.

Finally, the last page in the wizard allows you select a jBPM runtime, as shown below. You can

either use the default runtime (as configured for you workspace, in your workspace preferences),

or you can select a specific runtime for this project. For more information about runtimes and how

to create them, see the section on jBPM runtimes in this chapter.

You can also select which version of jBPM you want to generate sample code for. By default it

will generate an example using the latest jBPM 6.x API, but you could also generate examples

using the old jBPM 5.x API. Note that you yourself are responsible for making sure that the code

you generate can be understood by the runtime (for example, if you create an example using



jBPM Project Wizard

399

jBPM6 API but select a jBPM5 runtime, your sample will not compile). Also note that, if you want

to execute a jBPM5 example on jBPM6, you will need to have the knowledge-api jar inside your

jBPM6 runtime, as this is responsible for the backwards compatibility of the jBPM5 API in jBPM6.

Figure 20.4.

When you selected the simple 'hello world' example, the result is shown below. Feel free to

experiment with the plug-in at this point.



Chapter 20. jBPM Eclipse Plugin

400

Figure 20.5. New jBPM project artifacts

The newly created project contains an example process file (sample.bpmn) in the src/main/

resources directory and an example Java file (ProcessTest.java) that can be used to test the

process in a jBPM engine. You'll find this in the folder src/main/java, in the com.sample package.

All the other jars that are necessary during execution are also added to the classpath in a custom

classpath container called jBPM Library.

You can also convert an existing Java project to a jBPM project by selecting the "Convert to jBPM

Project" action. Right-click the project you want to convert and under the "Configure" category

(at the bottom) select "Convert to jBPM Project". This will add the jBPM Library to your project's

classpath.

20.1.3. New BPMN2 Process Wizard

You can create a new process simply as an empty text file with extension ".bpmn", or use the

"New BPMN2 Process" wizard to do so. To create a new process, in the "File" menu select "New"

and then "Other ..." and under the jBPM category, select "BPMN2 Process" and click "Next >". In

the next dialog, you should select the folder where the process should be created (for example

the src/main/resources folder of your project) and a name for the process. Clicking "Finish" should

create your new process (by default it should only contain one start node) and open it so you can

start editing it.

20.1.4. jBPM Runtime

A jBPM runtime is a collection of jar files that represent one specific release of the jBPM project

jars. To create a runtime, download the binary distribution of the version of jBPM you want to use



jBPM Runtime

401

and unzip on your local file system. You must then point the IDE to the release of your choice

by selecting the folder where these jars are located. If you want to create a new runtime based

on the latest jBPM project jars included in the plugin itself, you can also easily do that. You are

required to specify a default jBPM runtime for your Eclipse workspace, but each individual project

can override the default and select the appropriate runtime for that project specifically.

20.1.4.1. Defining a jBPM Runtime

To define one or more jBPM runtimes using the Eclipse preferences view you open up your

Preferences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences"

dialog should show all your settings. On the left side of this dialog, under the jBPM category, select

"Installed jBPM runtimes". The panel on the right should then show the currently defined jBPM

runtimes. For example, if you used the jBPM Installer, it should look like the figure below.

To define a new jBPM runtime, click on the "Add" button. A dialog such as the one shown below

should pop up, asking for the name of your runtime and the location on your file system where

it can be found.



Chapter 20. jBPM Eclipse Plugin

402

In general, you have two options:

1. If you simply want to use the default jar files as included in the jBPM Eclipse plugin, you can

create a new jBPM runtime automatically by clicking the "Create a new jBPM Runtime ..."

button. A file browser will show up, asking you to select the folder on your file system where

you want this runtime to be created. The plugin will then automatically copy all required

dependencies to the specified folder. Make sure to select a unique name for the newly created

runtime and click "OK" to register this runtime.

Tip

Note that creating a jBPM runtime from the default jar files as included in the

jBPM Eclipse plugin is only recommended to get you started the first time and

for very simple use cases. The runtime that is created this way only contains the

minimal set of jars, and therefore doesn't support a significant set of features,

including for example persistence. Make sure to create a full runtime (using the

second approach) for real development.

2. If you want to use one specific release of the jBPM project, you should create a folder on

your file system that contains all the necessary jBPM libraries and dependencies (for example

by downloading the binary distribution and unzipping it on your local file system). Instead of

creating a new jBPM runtime as explained above, give your runtime a unique name and click

the "Browse ..." button to select the location of this folder containing all the required jars. Click

"OK" to register this runtime.

After clicking the OK button, the runtime should show up in your table of installed jBPM runtimes,

as shown below. Click on the checkbox in front of one of the installed runtimes to make it the



jBPM Runtime

403

default jBPM runtime. The default jBPM runtime will be used as the runtime of all your new jBPM

projects (in case you didn't select a project-specific runtime).

You can add as many jBPM runtimes as you need. Note that you will need to restart Eclipse if

you changed the default runtime and you want to make sure that all the projects that are using

the default runtime update their classpath accordingly.

20.1.4.2. Selecting a runtime for your jBPM project

Whenever you create a jBPM project (using the New jBPM Project wizard or by converting an

existing Java project to a jBPM project), the plugin will automatically add all the required jars to

the classpath of your project.

When creating a new jBPM project, the plugin will automatically use the default Drools runtime for

that project, unless you specify a project-specific one. You can do this in the final step of the New

jBPM Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox

and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace

settings ..." link, the workspace preferences showing the currently installed jBPM runtimes will be

opened, so you can add new runtimes there.

You can change the runtime of a jBPM project at any time by opening the project properties

and selecting the jBPM category, as shown below. Mark the "Enable project specific settings"

checkbox and select the appropriate runtime from the drop-down box. If you click the "Configure

workspace settings ..." link, the workspace preferences showing the currently installed jBPM

runtimes will be opened, so you can add new runtimes there. If you deselect the "Enable project

specific settings" checkbox, it will use the default runtime as defined in your global workspace

preferences.



Chapter 20. jBPM Eclipse Plugin

404

20.1.5. Drools Eclipse plugin

The Drools Eclipse Plugin, which is bundled as part of the same Eclipse Update Site as the jBPM

Eclipse Plugin, provides similar features for creating and editing business rules, and execute

them using the Drools engine. This for example allows you to create and edit .drl files containing

business rules. You can combine your processes and rules inside one project and execute them

together on the same KieSession.

20.2. Debugging

This section describes how to debug processes using the jBPM Eclipse plugin. This means that

the current state of your running processes can be inspected and visualized during the execution.

Note that we currently don't allow you to put breakpoints on the nodes within a process directly.

You can however put breakpoints inside any Java code you might have (i.e. your application code

that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be

evaluated in the context of a process). At these breakpoints, you can then inspect the internal

state of all your process instances.

When debugging the application, you can use the following debug views to track the execution

of the process:



The Process Instances View

405

1. The process instances view, showing all running process instances (and their state). When

double-clicking a process instance, the process instance view visually shows the current state

of that process instance at that point in time.

2. The audit view, showing the audit log (note that you should probably use a threaded file logger

if you want to session to save the audit event to the file system on regular intervals, so the audit

view can be update to show the latest state).

3. The global data view, showing the globals.

4. Other views related to rule execution like the working memory view (showing the contents (data)

in the working memory related to rule execution), the agenda view (showing all activated rules),

etc.

20.2.1. The Process Instances View

The process instances view shows the process instances currently running in the selected

ksession. To be able to use the process instances view, first open the Process Instances view

(Window - Show View - Other ... and under the Drools category select Process Instances and

Process Instance). Tip: it might be useful to drag the Process Instance view to the Outline View and

slightly enlarge it, as shown in the screenshot below, so you can see both the Process Instances

and Process Instance views at the same time.

Next, use a (regular) Java breakpoint to stop your application at a specific point (for example

right after starting a new process instance). In the Debug perspective, select the ksession you

would like to inspect, and the Process Instances view should show the process instances that

are currently active inside that ksession. For example, the screenshot below shows one running

process instance (with id "1"). When double-clicking a process instance, the process instance

viewer will graphically show the progress of that process instance. An example where the process

instance is waiting for a human actor to perform "Task 1" is shown below.

Note

The process instances view shows the process instances currently active inside

the selected ksession. Note that, when using persistence, process instances are

not kept in memory inside the ksession, as they are stored in the database as soon

as the command completes. Therefore, you will not be able to use the Process

Instances view when using persistence. For example, when executing a JUnit test

using the JbpmJUnitBaseTestCase, make sure to call "super(true, false);" in the

constructor to create a runtime manager that is not using persistence.



Chapter 20. jBPM Eclipse Plugin

406

Tip

When you double-click a process instance in the process instances view and the

process instance view complains that it cannot find the process, this means that the

plugin wasn't able to find the process definition of the selected process instance in

the cache of parsed process definitions. To solve this, simply change the process

definition in question and save again (so it will be parsed) or rebuild the project that

contains the process definition in question.

20.2.2. The Audit View

The audit view can be used to show the all the events inside an audit log in a tree-based manner.

An audit log is an XML-based log file which contains a log of all the events that occurred while

executing a specific ksession. To create a logger, use KieServices to create a new logger and

attach it to a ksession. Be sure to close the logger after usage.

KieRuntimeLogger logger = KieServices.Factory.get().getLoggers()

    .newThreadedFileLogger(ksession, "mylogfile", 1000);

// do something with the ksession here

logger.close();

      

To be able to use the Audit View, first open it (Window - Show View - Other ... and under the

Drools category select Audit). To open up a log file in the audit view, open the selected log file in

the audit view (using the "Open Log" action in the top right corner), or simply drag and drop the



The Audit View

407

log file from the Package Explorer or Navigator into the audit view. A tree-based view is generated

based on the data inside the audit log. An event is shown as a subnode of another event if the

child event is caused by (a direct consequence of) the parent event. An example is shown below.

Tip

Note that the file-based logger will only save the events on close (or when a certain

threshhold is reached). If you want to make sure the events are saved on a regular

interval (for example during debugging), make sure to use a threaded file logger,

so the audit view can be update to show the latest state. When creating a threaded

file logger, you can specify the interval after which events should be saved to the

file (in milliseconds).



408



Chapter 21.

409

Chapter 21. Eclipse BPMN 2.0

Modeler

21.1. Overview

The Eclipse BPMN 2.0 Modeler allows you to specify business processes, choreographies, etc.

using the BPMN 2.0 XML syntax (including BPMNDI for the graphical information). The editor

itself is based on the Eclipse Graphiti framework and the Eclipse BPMN 2.0 EMF meta-model.

Features:

• It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,

annotations and all the BPMN2 node types).

• Added additional support for the few custom attributes that jBPM introduces using a special

jBPM Target Runtime.

• Allows you to configure which elements and attributes you want use when modeling processes

(so we can limit the constructs for example to the subset currently supported by jBPM, which

is a profile supported by default, or even more if you like).

The BPMN2 Modeler project is being developed at eclipse.org, sponsored by Red Hat/JBoss.

Red Hat understands the benefits of developing software in the community, and therefore, the

Eclipse BPMN 2.0 Modeler was developed not just for the jBPM project only, but it can be used

in a much broader context and is fully spec compliant. jBPM-specific features are developed as

part of a separate jBPM Target Runtime. We welcome other organizations in contributing to this

modeler as well and (re)using the generic functionality and/or defining their own target runtime if

necessary. Not only is this a good thing for the community, but it also leaves the path open for the

jBPM suite to evolve as new features are requested by customers.

Many thanks go out to the people at Codehoop that did a great job in creating a first version of

this editor.

21.2. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including

the Eclipse BPMN2 Modeler and the Drools and jBPM Eclipse plugin (with a full jBPM runtime

preconfigured).

Tip

Using the jBPM installer is definitely the recommended starting point for most

users.



Chapter 21. Eclipse BPMN 2.0 ...

410

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you

need Eclipse 3.6.2 (Helios) or newer. To install, startup Eclipse and install the Eclipse BPMN 2.0

Modeler from the following update site (from menu Help -> Install new software and then add the

update site in question by clicking the Add button, filling in a name and the correct URL as shown

below). It will automatically download all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/updates/helios

Eclipse 3.7 - 4.2.1 (Indigo - Juno): http://download.eclipse.org/bpmn2-modeler/updates/juno

Eclipse 4.3 (Kepler): http://download.eclipse.org/bpmn2-modeler/updates/kepler

The project is hosted at eclipse.org and open for anyone to contribute. The project home page

can he found here:

http://http://eclipse.org/bpmn2-modeler/

Sources are available here (using Eclipse Public License v1.0):

https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

A community forum for posting questions and exchanging ideas is also available here:

http://www.eclipse.org/forums/

A Bugzilla bug tracking system is available for reporting new bugs, or checking the status of

existing bugs, here:

https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler

21.3. Documentation

The Eclipse BPMN 2.0 Modeler documentation is available at:

http://eclipse.org/bpmn2-modeler/documentation.php

It contains various screencasts but also a full user guide, describing all it's features in detail:

http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Here are some screenshots of the editor in action.

http://download.eclipse.org/bpmn2-modeler/updates/helios
http://download.eclipse.org/bpmn2-modeler/updates/juno
http://download.eclipse.org/bpmn2-modeler/updates/kepler
http://http://eclipse.org/bpmn2-modeler/
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://www.eclipse.org/forums/
https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler
http://eclipse.org/bpmn2-modeler/documentation.php
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf


Documentation

411

Figure 21.1.

Figure 21.2.



Chapter 21. Eclipse BPMN 2.0 ...

412

Figure 21.3.



Part VI. Integration
Integrating jBPM with other technologies, frameworks, etc.





Chapter 22.

415

Chapter 22. Integration

22.1. Maven

Apache Maven is used by jBPM for two main purposes:

• as deployment units that gets installed into runtime environment for execution

• as dependency management tool for building systems based on jBPM - embedding jBPM into

application

22.1.1. Maven artifacts as deployment units

Since version 6, jBPM provides simplified and complete deployment mechanism that is based

entirely on Apache Maven artifacts. These artifacts also known as kjars are simple jar files that

include a descriptor for KIE system to prodice KieBase and KieSession. Descriptor of the kjar is

represented as xml file named kmodule.xml and it can be:

• empty to apply all defaults

• custom configuration of KieBase and KieSession

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://

jboss.org/kie/6.0.0/kmodule">

</kmodule>

Empty kmodule.xml that provides all defaults for the kjar:

• single default KieBase that

• contains all assets from all packages

• event processing mode set to - cloud

• equality behaviour set to - identity

• declarative agenda is disabled

• scope set to - ApplicationScope - valid for CDI integrations only

• single default stateless KieSession that

• is bound to above (single, default) KieBase



Chapter 22. Integration

416

• clock type is set to - real time

• scope set to - ApplicationScope - valid for CDI integrations only

• single default stateful KieSession that

• is bound to above (single, default) KieBase

• clock type is set to - real time

• scope set to - ApplicationScope - valid for CDI integrations only

All these and more can be configured manually via kmodule.xml when

defaults are not enough. The complete set of elements can be found in

xsd schema [https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/

resources/org/kie/api/kmodule.xsd] of kmodule.xml.

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

         xmlns="http://jboss.org/kie/6.0.0/kmodule">

  <kbase name="defaultKieBase" default="true" eventProcessingMode="cloud" equalsBehavior="identity" declarativeAgenda="disabled" scope="javax.enterprise.context.ApplicationScoped" packages="*">

  

  <ksession name="defaultKieSession" type="stateful" default="true" clockType="realtime" scope="javax.enterprise.context.ApplicationScoped">

        <workItemHandlers>

            <workItemHandler name="CustomTask" type="FQCN_OF_HANDLER" />

        </workItemHandlers>

        <listeners>

            <listener type="FQCN_OF_EVENT_LISTENER" />

        </listeners>

    </ksession>

  

  <ksession name="defaultStatelessKieSession" type="stateless" default="true" clockType="realtime" scope="javax.enterprise.context.ApplicationScoped"/

>

  </kbase>

</kmodule>

As illustrated on the listining above the kmodule.xml provides fliexible way of instructing the

runtime engine on what and how should be configured. The example above does not present all

available option but these that are most common when working with processes.

Note

Important to note is that when using RuntimeManager, KieSession instances are

created by the RuntimeManager instead of by KieContainer but kmodule.xml (or

model in general) is aways used as a base of the construction process. KieBase

although is always taken from KieContainer.

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd


Use maven for dependency management

417

Kjars are represented same way as any other Maven artifact - by Group Artifact Version which

is then represented as ReleaseId in KIE API. This the the only thing required to deploy kjar into

runtime environment such as KIE Workbeanch.

22.1.2. Use maven for dependency management

When building systems that embed jBPM as wrokflow engine the simplest way is to configure all

dependencies required by jBPM via Apache Maven. jBPM provides set of BOMs (Bill Of Material)

to simplify what artifacts needs to be declared. Common way to start with integration of custom

application and jBPM is to define dependency management:

  <properties>

    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

    <drools.version>6.0.0.Final</drools.version>

    <jbpm.version>6.0.0.Final</jbpm.version>

    <hibernate.version>4.2.0.Final</hibernate.version>

    <hibernate.core.version>4.2.0.Final</hibernate.core.version>

    <slf4j.version>1.6.4</slf4j.version>

    <jboss.javaee.version>1.0.0.Final</jboss.javaee.version>

    <logback.version>1.0.9</logback.version>

    <h2.version>1.3.161</h2.version>

    <btm.version>2.1.4</btm.version>

    <junit.version>4.8.1</junit.version>

  </properties>

  <dependencyManagement>

    <dependencies>

      <!-- define drools BOM -->

      <dependency>

        <groupId>org.drools</groupId>

        <artifactId>drools-bom</artifactId>

        <type>pom</type>

        <version>${drools.version}</version>

        <scope>import</scope>

      </dependency>

      <!-- define drools BOM -->

      <dependency>

        <groupId>org.jbpm</groupId>

        <artifactId>jbpm-bom</artifactId>

        <type>pom</type>

        <version>${jbpm.version}</version>

        <scope>import</scope>

      </dependency>

    </dependencies>

  </dependencyManagement>

Above should be declared in top level pom.xml so all modules that need to use KIE (drools and

jBPM) API can access it.



Chapter 22. Integration

418

Next, module(s) that would operate on KIE API should declare following dependencies:

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-flow</artifactId>

    </dependency>

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-flow-builder</artifactId>

    </dependency>

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-bpmn2</artifactId>

    </dependency>

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-persistence-jpa</artifactId>

    </dependency>

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-human-task-core</artifactId>

    </dependency>

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-runtime-manager</artifactId>

    </dependency>

    <dependency>

      <groupId>org.slf4j</groupId>

      <artifactId>slf4j-api</artifactId>

      <version>${slf4j.version}</version>

    </dependency>

Above are the main runtime dependencies, reagrdless of where the application is deployed

(application server, servlet container, standalone app). A good practice is to test the workflow

components to ensure they work properly before actual deployment and thus following test

dependencies should be defined:

    <!-- test dependencies -->

    <dependency>

      <groupId>org.jbpm</groupId>

      <artifactId>jbpm-shared-services</artifactId>

      <classifier>btm</classifier>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>ch.qos.logback</groupId>



Use maven for dependency management

419

      <artifactId>logback-classic</artifactId>

      <version>${logback.version}</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>junit</groupId>

      <artifactId>junit</artifactId>

      <version>${junit.version}</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>org.hibernate</groupId>

      <artifactId>hibernate-entitymanager</artifactId>

      <version>${hibernate.version}</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>org.hibernate</groupId>

      <artifactId>hibernate-core</artifactId>

      <version>${hibernate.core.version}</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>com.h2database</groupId>

      <artifactId>h2</artifactId>

      <version>${h2.version}</version>

      <scope>test</scope>

    </dependency>

    <dependency>

      <groupId>org.codehaus.btm</groupId>

      <artifactId>btm</artifactId>

      <version>${btm.version}</version>

      <scope>test</scope>

    </dependency>

Last but not least, define the JBoss Maven repository for artifacts resuolution:

  <repositories>

    <repository>

      <id>jboss-public-repository-group</id>

      <name>JBoss Public Repository Group</name>

      <url>http://repository.jboss.org/nexus/content/groups/public/</url>

      <releases>

        <updatePolicy>never</updatePolicy>

      </releases>

      <snapshots>

        <updatePolicy>daily</updatePolicy>



Chapter 22. Integration

420

      </snapshots>

    </repository>

  </repositories>

That should allow to configure jBPM in your application and provide access to KIE API to operate

on processes, rules, events.

22.2. CDI

22.2.1. Overview

jBPM 6 comes with out of the box integration with CDI (Contexts and Dependency Injection).

Although most of the API can be used in CDI world there are some dedicated modules that

are designed especially for CDI containers. The most important one is jbpm-kie-services that

provides high level services that shall be used in most of the cases were CDI is available for jBPM

integration. It provides following set of services:

• DeploymentService

• FormProviderService

• RuntimeDataService

• BPMN2DataService

These services are first class citizens for CDI world so they are available for injection in any other

CDI bean.

22.2.1.1. DeploymentService

Service responsible for deploying DeploymentUnits into runtime environment. By deploying

given deployment unit becomes ready for execution and has RuntimeManager created for

it.DeploymentService can next be used to retrieve:

• RuntimeManager instance for given deployment id

• DeployedUnit that represents complete deployment process for given deployment id

• list of all deployed units known to the deployment service

Deployment service stores the deployed units only in memory and thus in case of a need to

restore all previously deployed units, component that uses deployment service needs to store that

information itself. Common places for such store is data base, file system, repository of some sort

etc. Deployment service will fire CDI events on deployment and undeployment to allow application

components to react real time to these events to be able to store deployments or remove them

from the store when they are undeployed.

• DeploymentEvent with qualifier @Deploy will be fired on deployment

• DeploymentEvent with qualifier @Undeploy will be fired on undeployment



Overview

421

use CDI observer mechanism to get notification on above events. First to save deployments in

the store of your choice:

    public void saveDeployment(@Observes @Deploy DeploymentEvent event) {

        // store deployed unit info for further needs 

        DeployedUnit deployedUnit = event.getDeployedUnit();

    }

next to remove it when it was undeployed

    public void removeDeployment(@Observes @Undeploy DeploymentEvent event) {

        // remove deployment with id event.getDeploymentId()

    }

Due to the fact that there might be several implementation of DeploymentService use of qualifiers

is needed to instruct CDI container which one shall be injected. jBPM comes with two out of the

box:

• @Kjar - KmoduleDeploymentService that is tailored to work with KmoduleDeploymentUnits that

are small descriptor on top of a kjar - recommended to use in most of the cases

• @Vfs - VFSDeploymentDService that allows to deploy assets directly from VFS (Virtual File

System) that is provided by UberFire framework [http://droolsjbpm.github.io/uberfire/]. Due to

that fact VFSDeploymentService and VFSDeploymentUnit are not bundled with jbpm core

modules but with jbpm-console-ng modules.

The general practice is that every implementation of DeploymentService should come with

dedicated implementation of DeploymentUnit as these two provided out of the box.

22.2.1.2. FormProviderService

FormProviderService provides access to form representations usually displayed on UI for both

process forms and user task forms. It is built on concept of isolated FormProviders that can provide

different capabilities and be backed by different technologies. FormProvider interface describes

contract for the implementations

public interface FormProvider {

    int getPriority();

    String render(String name, ProcessDesc process, Map<String, Object> renderContext);

    String render(String name, Task task, ProcessDesc process, Map<String, Object> renderContext);

}

http://droolsjbpm.github.io/uberfire/
http://droolsjbpm.github.io/uberfire/


Chapter 22. Integration

422

Implementations of FormProvider interface should always define priority as this is the main

driver for the FormProviderService to ask for the content of the form of a given provider.

FormProviderService will collect all available providers and iterate over them asking for the

form content (rendered) in their priority order. The lower the number the higher priority it gets

during evaluation, e.g. provider with priority 5 will be evalauted before provider with priority 10.

FormProviderService will irerate over available providers as long as one delivers the content. In

worse case scenario simple text based forms will be returned.

jBPM comes with following FormProviders out of the box:

• Fremarker based implementation to support jbpm version 5 process and task forms - priority 3

• Default forms provider, considered last resort if none of the other providers deliver content this

one will always provide simplest possible forms - lowest priority (1000)

• when form modeler is used there is additional FormProvider available to deliver forms modeled

in that tool - priority 2

22.2.1.3. RuntimeDataService

RuntimeDataService provides access to actual data that is availabe on runtime such as

• available processes to be executed - with various filters

• active process instances - with various filters

• process instance history

• process instance variables

• active and completed nodes of process instance

Default implementation of RuntimeDataService is observing deployment events and index all

deployed processes to expose them to the calling components. So whatever gets deployed

RuntimeDataService will be aware of that.

22.2.1.4. BPMN2DataService

Service that provides access to process details stored as part of BPMN2 xml.

Note

Before using any method that provides information, findProcessId must be

invoked to populate repository with process information taken from BPMN2

content.

BPMN2DataService provides access to following data:

• overall description of process for given process definition



Configuring CDI integration

423

• collection of all user tasks found in the process definition

• information about defined inputs for user task node

• information about defined outputs for user task node

• ids of reusable processes (call activity) defined within given process definition

• information about process variables defined within given process definition

• information about all organizational entities (users and groups) included in the process

definition. Depending on the actual process definition the returned values for users and groups

can contain

• actual user or group name

• process variable that will be used to get actual user or group name on runtime e.g. #{manager}

22.2.2. Configuring CDI integration

To make use of jbpm-kie-services in your system you'll need to provide some beans for the out

of the box services to satisfy all dependencies they have. There are several beans that depends

on actual scenario

• entity manager and entity manager factory

• user group callback for human tasks

• identity provider to pass autheticated user information to the services

When running in JEE environment like an JBoss Application Server following producer bean

should satisfy all requirements of the jbpm-kie-services

public class EnvironmentProducer { 

   

    @PersistenceUnit(unitName = "org.jbpm.domain")

    private EntityManagerFactory emf;

    @Inject

    @Selectable

    private UserGroupCallback userGroupCallback;

    @Produces

    public EntityManagerFactory getEntityManagerFactory() {

        return this.emf;

    }

    @Produces

    @RequestScoped

    public EntityManager getEntityManager() {

        EntityManager em = emf.createEntityManager();



Chapter 22. Integration

424

        return em;

    }

    public void close(@Disposes EntityManager em) {

        em.close();

    }

    @Produces

    public UserGroupCallback produceSelectedUserGroupCalback() {

        return userGroupCallback;

    }

    @Produces

    public IdentityProvider produceIdentityProvider {

        return new IdentityProvider() {

             // implement IdentityProvider

        };

    }

}

Then beans.xml for the application should enable proper alternative for user group callback (that

will be taken based on @Selectable qualifier)

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

  xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://docs.jboss.org/

cdi/beans_1_0.xsd">

  <alternatives>

    <class>org.jbpm.services.task.identity.JAASUserGroupCallbackImpl</class>

  </alternatives>

</beans>

Note

org.jbpm.services.task.identity.JAASUserGroupCallbackImpl is just an example

here which usually is the good fit for JBoss Application Server to reuse security

settings on application server regardless of what it actually is (LDAP, DB, etc).

Check Human Task section for more alternatives for UserGroupCallback.

Optionally there can be several other producers provided to deliver:

• WorkItemHandlers



Configuring CDI integration

425

• Process, Agenda, WorkingMemory event listeners

These components can be provided by implementing following interfaces

/**

 * Allows to provide custom implementations to deliver WorkItem name and WorkItemHandler instance pairs

 * for the runtime.

 * <br/>

 * It will be invoked by RegisterableItemsFactory implementation (especially InjectableRegisterableItemsFactory 

 * in CDI world) for every KieSession. Recommendation is to always produce new instances to avoid unexpected 

 * results. 

 *

 */

public interface WorkItemHandlerProducer {

    /**

     * Returns map of (key = work item name, value work item handler instance) of work items 

     * to be registered on KieSession

     * <br/>

     * Parameters that might be given are as follows:

     * <ul>

     *  <li>ksession</li>

     *  <li>taskService</li>

     *  <li>runtimeManager</li>

     * </ul>

     * 

     * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

     * and provide valid instances for given owner

     * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

     * @return map of work item handler instances (recommendation is to always return new instances when this method is invoked)

     */

    Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object> params);

}

and

/**

 * Allows do define custom producers for know EventListeners. Intention of this is that there might be several 

 * implementations that might provide different listener instance based on the context they are executed in. 

 * <br/>

 * It will be invoked by RegisterableItemsFactory implementation (especially InjectableRegisterableItemsFactory 

 * in CDI world) for every KieSession. Recommendation is to always produce new instances to avoid unexpected 

 * results.

 *

 * @param <T> type of the event listener - ProcessEventListener, AgendaEventListener, WorkingMemoryEventListener

 */

public interface EventListenerProducer<T> {



Chapter 22. Integration

426

    /**

     * Returns list of instances for given (T) type of listeners

     * <br/>

     * Parameters that might be given are as follows:

     * <ul>

     *  <li>ksession</li>

     *  <li>taskService</li>

     *  <li>runtimeManager</li>

     * </ul>

     * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

     * and provide valid instances for given owner

     * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

     * @return list of listener instances (recommendation is to always return new instances when this method is invoked)

     */

    List<T> getEventListeners(String identifier, Map<String, Object>  params);

}

Beans implementing these two interfaces will be collected on runtime and consulted when building

KieSession by RuntimeManager. See RuntimeManager section for more details on this.

22.2.3. RuntimeManager as CDI bean

RuntimeManager itself can be injected as CDI bean into any other CDI bean within the application.

It has then requirement to get RungimeEnvironment properly produces to allow RuntimeManager

to be correctly initialized. RuntimeManager comes with three predefined strategies and each of

them gets CDI qualifier so it can be referenced:

• @Singleton

• @PerRequest

• @PerProcessInstance

Producer that was defined in Configuration section should be now enhanced with producer

methods to provide RuntimeEnvironment

public class EnvironmentProducer { 

   

    @PersistenceUnit(unitName = "org.jbpm.domain")

    private EntityManagerFactory emf;

    @Inject

    @Selectable

    private UserGroupCallback userGroupCallback;

    @Inject

    private BeanManager beanManager;



RuntimeManager as CDI bean

427

    @Produces

    public EntityManagerFactory getEntityManagerFactory() {

        return this.emf;

    }

    @Produces

    @RequestScoped

    public EntityManager getEntityManager() {

        EntityManager em = emf.createEntityManager();

        return em;

    }

    public void close(@Disposes EntityManager em) {

        em.close();

    }

    @Produces

    public UserGroupCallback produceSelectedUserGroupCalback() {

        return userGroupCallback;

    }

    @Produces

    public IdentityProvider produceIdentityProvider {

        return new IdentityProvider() {

             // implement IdentityProvider

        };

    }

    @Produces

    @Singleton

    @PerRequest

    @PerProcessInstance

    public RuntimeEnvironment produceEnvironment(EntityManagerFactory emf) {

        

        RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

                .newDefaultBuilder()

                .entityManagerFactory(emf)

                .userGroupCallback(getUserGroupCallback())

                .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager, null))

                .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

                .addAsset(ResourceFactory.newClassPathResource("BPMN2-

UserTask.bpmn2"), ResourceType.BPMN2)

                .get();

        return environment;

    }

}



Chapter 22. Integration

428

In this example single producer method is capable of providing RuntimeEnvironment for all

strategies of RuntimeManager by specifying all qualifiers on the method level.

Once complete producer is available, RuntimeManager can be injected into application's CDi bean

public class ProcessEngine {

    @Inject

    @Singleton

    private RuntimeManager singletonManager;

    public void startProcess() {

        

        RuntimeEngine runtime = singletonManager.getRuntimeEngine(EmptyContext.get());

        KieSession ksession = runtime.getKieSession();

        

        ProcessInstance processInstance = ksession.startProcess("UserTask");

        

        singletonManager.disposeRuntimeEngine(runtime);     

    }

}

That's all what needs to be configured to make use of CDI power with jBPM.

Note

An obvious limitation of injecting directly RuntimeManager via CDI is that there

might be only one RuntimeManager in the application. That in some case can be

desired and that's why there is such option. In general recommended approach

is to make use of DeploymentService whenever there is a need to have many

RuntimeManagers active within application.

As an alternative to DeploymentService, RuntimeManagerFactory can be injected and then

RuntimeManager instance can be created manually by the application. In such case

EnvironmentProducer stays same as for DeploymentService and following is an example of simple

ProcessEngine bean

public class ProcessEngine {

    @Inject

    private RuntimeManagerFactory managerFactory;

    

    @Inject

    private EntityManagerFactory emf;

    



OSGi

429

    @Inject

    private BeanManager beanManager;

    public void startProcess() {

        RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

                .newDefaultBuilder()

                .entityManagerFactory(emf)

                .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

                .addAsset(ResourceFactory.newClassPathResource("BPMN2-

UserTask.bpmn2"), ResourceType.BPMN2)

                .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager, null))

                .get();

        

        RuntimeManager manager = managerFactory.newSingletonRuntimeManager(environment);

        RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

        KieSession ksession = runtime.getKieSession();

        

        ProcessInstance processInstance = ksession.startProcess("UserTask");

        

        manager.disposeRuntimeEngine(runtime);

        manager.close();     

    }

}

22.3. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain

MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These

manifest files are automatically generated by the build. You can plug these jars directly into an

OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar

in OSGi is called a bundle and has its own Classloader. Each bundle specifies the packages it

exports (makes publicly available) and which packages it imports (external dependencies). OSGi

will use this information to wire the classloaders of different bundles together; the key distinction is

you don't specify what bundle you depend on, or have a single monolithic classpath, instead you

specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed

and it'll wire up the correct one. Further to this Bundles can register services for other bundles to

use. These services need initialisation, which can cause ordering problems - how do you make

sure you don't consume a service before its registered? OSGi has a number of features to help

with service composition and ordering. The two main ones are the programmatic ServiceTracker



Chapter 22. Integration

430

and the xml based Declarative Services. There are also other projects that help with this; Spring

DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

• jbpm-flow

• jbpm-flow-builder

• jbpm-bpmn2



Part VII. Advanced Topics
Some more advanced topics





Chapter 23.

433

Chapter 23. Domain-specific

Processes

23.1. Introduction

jBPM provides the ability to create and use domain-specific task nodes in your business

processes. This simplifies development when you're creating business processes that contain

tasks dealing with other technical systems.

When using jBPM, we call these domain-specific task nodes "custom work items" or (custom)

"service nodes". There are two separate aspects to creating and using custom work items:

• Adding a node with a custom work item to a process definition using the eclipse editor or jBPM

designer.

• Creating a custom work item handler that the jBPM engine will use when executing the custom

work item in a running process.

With regards to a BPMN2 process, custom work items are certain types of <task> nodes. In

most cases, custom work items are <task> nodes in a BPMN2 process definition, although they

can also be used with certain other task type nodes such as, among others, <serviceTask> or

<sendTask> nodes.

Tip

When creating custom work items, it's important to separate the data associated

with the work item, from how the work item should be handled. In other words,

separate the what from the how. That means that custom work items should be:

• declarative (what, not how)

• high-level (no code)

On the other hand, custom work item handlers, which are java classes, should be:

• procedural (how, not what)

• low-level (because it's code!)

Work item handlers should almost never contain any data.

Users can thus easily define their own set of domain-specific service nodes and integrate them

with the process language. For example, the next figure shows an example of a healtchare-



Chapter 23. Domain-specific P...

434

related BPMN2 process. The process includes domain-specific service nodes for measuring blood

pressure, prescribing medication, notifying care providers and following-up on the patient.

23.2. Overview

Before moving on to an example, this section explains what custom work items and custom work

item handlers are.

23.2.1. Work Item Definitions

In short, we use the term custom work item when we're describing a node in your process that

represents a domain-specific task and as such, contains extra properties and is handled by a

WorkItemHandler implementation.

Because it's a domain-specific task, that means that a custom work item is equivalent to a <task>

or <task>-type node in BPMN2. However, a WorkItem is also Java class instance that's used

when a WorkItemHandler instance is called to complete the task or work item.

Depending on the BPMN2 editor you're using, you can create a custom work item definition in

one of two ways:

• If you're using Designer, then this means creating a MVEL based definition and adding the

definition in Designer itself. A description of this can be found in the ??? section in the ???

chapter. Once this is done, a new service node will appear on the BPMN 2.0 palette.

• If you're using the eclipse BPMN 2.0 modeler plugin (which can be found here [http://eclipse.org/

bpmn2-modeler/]), then you'll can modify the BPMN2 <task> or <task>-type element to work

with WorkItemHandler implementations. See the ??? section in the ??? chapter.

23.2.2. Work Item Handlers

A work item handler is a Java class used to execute (or abort) work items. That also means

that the class implements the org.kie.runtime.instance.WorkItemHandler interface. While

http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/


Work Item Handlers

435

jBPM provides some custom WorkItemHandler instances (listed below), a Java developer with a

minimal knowledge of jBPM can easily create a new work item handler class with it's own custom

business logic.

Among others, jBPM offers the following WorkItemHandler implementations:

• In the jbpm-bpmn2 module, org.jbpm.bpmn2.handler package:

• ReceiveTaskHandler (for use with BPMN element <receiveTask>)

• SendTaskHandler (for use with BPMN element <sendTask>)

• ServiceTaskHandler (for use with BPMN element <serviceTask>)

• In the jbpm-workitems module, in various packages under the org.jbpm.process.workitem

package:

• ArchiveWorkItemHandler

There are a many more WorkItemHandler implementations present in the jbpm-workitems

module. If you're looking for specific integration logic with Twitter, for example, we recommend

you take a look at the classes made available there.

In general, a WorkItemHandler's .executeWorkItem(...) and .abortWorkItem(...) methods

will do the following:

1. Extract information about the task being executed (or aborted) from the WorkItem instance

2. Execute the necessary business logic. This might be mean interacting with a web service,

database, or other technical component.

3. Inform the process engine that the work item has been completed (or aborted) by calling one

of the following two mtehods on the WorkItemManager instance passed to the method:

WorkItemManager.completeWorkItem(long workItemId, Map<String, Object> results)

WorkItemManager.abortWorkItem(long workItemId)

In order to make sure that your custom work item handler is used for a particular process instance,

it's necessary to register the work item handler before starting the process. This makes the engine

aware of your WorkItemHandler so that the engine can use it for the proper node. For example:

ksession.getWorkItemManager().registerWorkItemHandler("Notification",

    new NotificationWorkItemHandler());

The ksession variable above is a StatefulKnowledgeSession (and also a KieSession)

instance. The example code above comes from the example that we will go through in the next

session.



Chapter 23. Domain-specific P...

436

Tip

You can use different work item handlers for the same process depending on the

system on which it runs: by registering different work item handlers on different

systems, you can customize how a custom work item is processed on a particular

system. You can also substitute mock WorkItemHandler instances when testing.

23.3. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work item

is defined by a unique name and includes additional parameters that describe the work in more

detail. Work items can also return information after they have been executed, specified as results.

Our notification work item could be defined using a work definition with four parameters and no

results. For example:

• Name: "Notification"

• Parameters:

• From [String type]

• To [String type]

• Message [String type]

• Priority [String type]

23.3.1. The Notification Work Item Definition

23.3.1.1. Creating the work item definition

In our example we will create a MVEL work item definition that defines a "Notification" work item.

Using MVEL is the default way to This file will be placed in the project classpath in a directory

called META-INF. The work item configuration file for this example, MyWorkDefinitions.wid, will

look like this:

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

  // the Notification work item

  [

    "name" : "Notification",

    "parameters" : [



The Notification Work Item Definition

437

      "Message" : new StringDataType(),

      "From" : new StringDataType(),

      "To" : new StringDataType(),

      "Priority" : new StringDataType(),

    ],

    "displayName" : "Notification",

    "icon" : "icons/notification.gif"

  ]

]

The project directory structure could then look something like this:

project/src/main/resources/META-INF/MyWorkDefinitions.wid

We also want to add a specific icon to be used in the process editor with the work item. To add

this, you will need .gif or .png images with a pixel size of 16x16. We put them in a directory

outside of the META-INF directory, for example, here:

project/src/main/resources/icons/notification.gif

23.3.1.2. Registering the work definition

The jBPM eclipse editor uses the configuration mechanisms supplied by Drools to register

work item definition files. That means adding a drools.workDefinitions property to the

drools.rulebase.conf file in the META-INF.

The drools.workDefinitions property represents a list of files containing work item definitions,

separated usings spaces. If you want to exclude all other work item definitions and only use your

definition, you could use the following:

drools.workDefinitions = MyWorkDefinitions.wid

However, if you only want to add the newly created node definition to the existing palette nodes,

you can define the drools.workDefinitions property as follows:

drools.workDefinitions = MyWorkDefinitions.wid WorkDefinitions.conf

We recommended that you use the extension .wid for your own definitions of domain specific

nodes. The .conf extension used with the default definition file, WorkDefinitions.conf, for

backward compatibility reasons.



Chapter 23. Domain-specific P...

438

23.3.1.3. Using your new work item in your processes

We've created our work item definition and configured it, so now we can start using it in our

processes. The process editor contains a separate section in the palette where the different

service nodes that have been defined for the project appear.

Using drag and drop, a notification node can be created inside your process. The properties can

be filled in using the properties view.

Besides any custom properties, the following three properties are available for all work items:

1. Parameter Mapping: Allows you to map the value of a variable in the process to a parameter

of the work item. This allows you to customize the work item based on the current state of



The Notification Work Item Definition

439

the actual process instance (for example, the priority of the notification could be dependent of

some process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed)

to a variable of the process. This allows you to use results in the remainder of the process.

3. Wait for completion: By default, the process waits until the requested work item has

been completed before continuing with the process. It is also possible to continue immediately

after the work item has been requested (and not waiting for the results) by setting wait for

completion to false.

Here is an example that creates a domain specific node to execute Java, asking for the class and

method parameters. It includes a custom java.gif icon and consists of the following files and

resulting screenshot:

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

  // the Java Node work item located in:

  // project/src/main/resources/META-INF/JavaNodeDefinition.wid

  [

    "name" : "JavaNode",

    "parameters" : [

      "class" : new StringDataType(),

      "method" : new StringDataType(),

    ],

    "displayName" : "Java Node",

    "icon" : "icons/java.gif"

  ]

]

// located in: project/src/main/resources/META-INF/drools.rulebase.conf

drools.workDefinitions = JavaNodeDefinition.wid WorkDefinitions.conf

// icon for java.gif located in:

// project/src/main/resources/icons/java.gif



Chapter 23. Domain-specific P...

440



The NotificationWorkItemHandler

441

23.3.2. The NotificationWorkItemHandler

23.3.2.1. Creating a new work item handler

Once we've created our Notification work item definition (see the sections above), we can

then create a custom implementation of a work item handler that will contain the logic to send

the notification.

In order to execute our Notification work items, we first create a NotificationWorkItemHandler

that implements the WorkItemHandler interface:

package com.sample;

import org.kie.api.runtime.process.WorkItem;

import org.kie.api.runtime.process.WorkItemHandler;

import org.kie.api.runtime.process.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

  public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

    // extract parameters

    String from = (String) workItem.getParameter("From");

    String to = (String) workItem.getParameter("To");

    String message = (String) workItem.getParameter("Message");

    String priority = (String) workItem.getParameter("Priority");

    // send email

    EmailService service = ServiceRegistry.getInstance().getEmailService();    

    service.sendEmail(from, to, "Notification", message);

    // notify manager that work item has been completed

    manager.completeWorkItem(workItem.getId(), null);                          

  }

  public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

    // Do nothing, notifications cannot be aborted

  }

}

The ServiceRegistry class is simply a made-up class that we're using for this example.

In your own WorkItemHandler implementations, the code containing your domain-specific

logic would go here.

Notifying the WorkItemManager instance when your a work item has been

completed is crucial. For many synchronous actions, like sending an email in this



Chapter 23. Domain-specific P...

442

case, the WorkItemHandler implementation will notify the WorkItemManager in the

executeWorkItem(...) method.

This WorkItemHandler sends a notification as an email and then notifies the WorkItemManager

that the work item has been completed.

Note that not all work items can be completed directly. In cases where executing a work item takes

some time, execution can continue asynchronously and the work item manager can be notified

later.

In these situations, it might also be possible that a work item is aborted before it has been

completed. The WorkItemHandler.abortWorkItem(...) method can be used to specify how to

abort such work items.

Tip

Remember, if the WorkItemManager is not notified about the completion, the

process engine will never be notified that your service node has completed.

23.3.2.2. Registering the work item handler

WorkItemHandler instances need to be registered with the WorkItemManager in order to be used.

In this case, we need to register an instance of our NotificationWorkItemHandler in order to

use it with our process containing a Notification work item. We can do that like this:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.getWorkItemManager().registerWorkItemHandler(

  "Notification",                                                              

  new NotificationWorkItemHandler()                                            

);

  

This is the drools name of the <task> (or other task type) node. See below for an example.

This is the instance of our custom work item handler instance!

If we were to look at the BPMN2 syntax for our process with the Notification process, we

would see something like the following example. Note the use of the tns:taskName attribute

in the <task> node. This is necessary for the WorkItemManager to be able to see which

WorkItemHandler instance should be used with which task or work item.

<?xml version="1.0" encoding="UTF-8"?> 

<definitions id="Definition"



Service Repository

443

             xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

             xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

 BPMN20.xsd"

...

             xmlns:tns="http://www.jboss.org/drools">

...

  <process isExecutable="true" id="myCustomProcess" name="Domain-Specific

 Process" >

...

    <task id="_5" name="Notification Task" tns:taskName="Notification" >

...

Tip

Different work item handlers could be used depending on the context. For example,

during testing or simulation, it might not be necessary to actually execute the work

items. In this case specialized dummy work item handlers could be used during

testing.

23.4. Service Repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.

Think for example about integration with Twitter, doing file system operations or sending email.

Once such a domain-specific service has been created, you might want to make it available to

other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services

you might need and importing these services into your workspace. These will then automatically

be added to your palette and you can start using them in your processes. You can also import

additional artefacts like for example an icon, any dependencies you might need, a default handler

that will be used to execute the service (although you're always free to override the default, for

example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could

be to a directory in your file system but also a public or private URL) and select the services you

would like to import. For example, in Eclipse, right-click your project that contains your processes

and select "Configure ... -> Import jBPM services ...". This will open up a repository browser. In the

URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository

that hosts some common service implementations out-of-the-box), or use the "..." button to browse

to a folder on your file system. Click the Get button to retrieve the contents of that repository.



Chapter 23. Domain-specific P...

444

Select the service you would like to import and then click the Import button. Note that the Eclipse

wizard allows you to define whether you would like to automatically configure the service (so

it shows up in the palette of your processes), whether you would also like to download any

dependencies that might be needed for executing the service and/or whether you would like to

automatically register the default handler, so make sure to mark the right checkboxes before

importing your service (if you are unsure what to do, leaving all check boxes marked is probably

best).

After importing your service, (re)open your process diagram and the new service should show up

in your palette and you can start using it in your process. Note that most services also include

documentation on how to use them (e.g. what the different input and output parameters are) when

you select them browsing the service repository.

Click on the image below to see a screencast where we import the twitter service in a new

jBPM project and create a simple process with it that sends an actual tweet. Note that you need

the necessary twitter keys and secrets to be able to programatically send tweets to your twitter

account. How to create these is explained here [http://docs.jboss.org/jbpm/v6.0/repository/Twitter/

], but once you have these, you can just drop them in your project using a simple configuration file.

http://docs.jboss.org/jbpm/v6.0/repository/Twitter/
http://docs.jboss.org/jbpm/v6.0/repository/Twitter/


Public jBPM service repository

445

Figure 23.1.
[http://people.redhat.com/kverlaen/twitter-repository.swf]

23.4.1. Public jBPM service repository

We are building a public service repository that contains predefined services that people can use

out-of-the-box if they want to:

http://docs.jboss.org/jbpm/v6.0/repository/

This repository contains some integrations for common services like Twitter integration or file

system operations that you can import. Simply point the import wizard to this URL to start browsing

the repository.

If you have an implementation of a common service that you would like to contribute to the

community, do not hesitate to contact someone from the development team. We are always

looking for contributions to extend our repository.

23.4.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration

file that contains the necessary information (this is an extended version of the normal work

http://people.redhat.com/kverlaen/twitter-repository.swf
http://docs.jboss.org/jbpm/v6.0/repository/


Chapter 23. Domain-specific P...

446

definition configuration file as described earlier in this chapter) and putting the necessary files (like

an icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and

icon), with some additional ones. For example, the following extended configuration file describes

the Twitter integration service (as shown in the screencast above):

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

  [

    "name" : "Twitter",

    "description" : "Send a twitter message",

    "parameters" : [

      "Message" : new StringDataType()

    ],

    "displayName" : "Twitter",

    "eclipse:customEditor" :

 "org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor",

    "icon" : "twitter.gif",

    "category" : "Communication",

    "defaultHandler" : "org.jbpm.process.workitem.twitter.TwitterHandler",

    "documentation" : "index.html",

    "dependencies" : [

      "file:./lib/jbpm-twitter.jar",

      "file:./lib/twitter4j-core-2.2.2.jar"

    ]

  ]

]

• The icon property should refer to a file with the given file name in the same folder as the

extended configuration file (so it can be downloaded by the import wizard and used in the

process diagrams). Icons should be 16x16 GIF files.

• The category property defines the category this service should be placed under when browsing

the repository.

• The defaultHandler property defines the default handler implementation (i.e. the Java class that

implements the WorkItemHandler interface and can be used to execute the service). This can

automatically be registered as the handler for that service when importing the service from the

repository.

• The documentation property defines a documentation file that describes what the service does

and how it works. This property should refer to a HTML file with the given name in the same

folder as the extended configuration file (so it can be shown by the import wizard when browsing

the repository).



Setting up your own service repository

447

• The dependencies property defines additional dependencies that are necessary to execute this

service. This usually includes the handler implementation jar, but could also include additional

external dependencies. These dependencies should also be located on the repository on the

given location (relative to the folder where the extended configuration file is located), so they

can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an index.conf file that references all the folders

that should be processed when searching for services on the repository. Each of those folders

should then contain:

• An extended configuration file with the same name as the folder (e.g. Twitter.conf)

• The icon as references in the configuration file

• The documentation as references in the configuration file

• The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains

an index.conf file, that will be used to scan additional sub-folders. Note that the hierarchical

structure of the repository is not shown when browsing the repository using the import wizard, as

the category property in the configuration file is used for that.



448



Chapter 24.

449

Chapter 24. Exception Management

24.1. Overview

This chapter will describe how to deal with unexpected behavior in your business processes using

both BPMN2 and technical mechanisms.

The first section will explain Technical Exceptions: we'll go through an example that uses both

BPMN2 and WorkItemHandler implementations in order to isolate and handle exceptions caused

by a technical component. We will also explain how to modify the example to suit other use cases.

The second section will define and explain the types of (BPMN2) exceptions that can happen or

be used in a business process.

24.2. Introduction

What happens to a business process when something unexpected happens during the process?

Most of the time, when creating and designing a new process definition, the first step is to describe

the normative or desirable behaviour. However, a process definition that only describes all of the

normal tasks and their execution order is incomplete.

The next step is to think about what might go wrong when the business process is run. What would

happen if any of the human or technical actors in the process do not respond in unexpexected

ways? Will any of the technical systems that the process interacts with return unexpected results

-- or not return any results at all?

Deviations from the normative or "happy" flow of a business process are called exceptions. In

some cases, exceptions might not be that unusual, such as trying to debit an empty bank account.

However, some processes might contain many complex situations involving exceptions, all of

which must be handled correctly.

Note

The rest of chapter assumes that you know how to create custom <task> nodes

and how to implement and register WorkItemHandler implementations. More

information about these topics can be found in the Domain-specific Processes

chapter.

24.3.1. Technical Exceptions

Technical exceptions happen when a technical component of a business process acts in an

unexpected way. When using Java based systems, this often results in a literal Java Exception

being thrown by the system.



Chapter 24. Exception Management

450

Technical components used in a process can fail in a way that can not be described using BPMN2.

In this case, it's important to handle these exceptions in expected ways.

The following types of code might throw exceptions:

• Any code that is present in the process definition itself

• Any code that is executed during a process and is not part of jBPM

• Any code that interacts with a technical component outside of the process engine

However, those are somewhat abstract defintions. We can narrow down the places at which an

exception might be thrown. Technical exceptions can occur at the following points:

1. Code present in <scriptTask> nodes or in the jbpm-specific <onEntry> and <onExit>

elements

2. Code executed in WorkItemHandlers associated with <task> and task-type nodes

It is much easier to ensure correct exception handling for <task> and other task-type nodes that

use WorkItemHandler implementations, than for code executed directly in a <scriptTask>.

Exceptions thrown by <scriptTask> can cause the process to fail in an unrecoverable fashion.

While there are certain things that you can do to contain the damage, a process that has failed in

this way can not be restarted or otherwise recovered. This also applies for other nodes in a process

definition that contain script code in the node definition, such as the <onEntry> and <onExit>

elements.

When jBPM engine does throw an exception generated by the code in a <scriptTask> the

exception thrown is a special Java exception called the WorkflowRuntimeException that contains

information about the process.

Warning

Again, exceptions generated by a <scriptTask> node (and other nodes containing

script code) will leave the process unrecoverable. In fact, often, the code that starts

the process itself will end up throwing the exception generated by the business

process, without returning a reference to the process instance.

For this reason, it's important to limit the scope of the code in these nodes to

operations dealing with process variables. Using a <scriptTask> to interact with

a different technical component, such as a database or web service has significant

risks because any exceptions thrown will corrupt or abort the process.



Technical Exceptions

451

<task> nodes, <serviceTask> nodes and the rest of the task-type nodes are

explictly meant for interacting with other systems -- not <scriptTask> nodes! Use

<task>-type nodes to interact with other technical components.

24.3.1.1. Handling exceptions in WorkItemHandler instances

WorkItemHandler classes are used when your process interacts with other technical systems.

For an introduction to them and how to use them in processes, please see the Domain-specific

Processes chapter.

While you can build exception handling into your own WorkItemhandler implementations,

there are also two “handler decorator” classes that you can use to wrap a WorkItemhandler

implementation.

These two wrapper classes include logic that is executed when an exception is thrown during the

execution (or abortion) of a work item.

Table 24.1. Exception Handling WorkItemHandler wrapper classes

Decorator classes in the

org.jbpm.bpmn2.handler package

Description

SignallingTaskHandlerDecorator This class wraps an existing

WorkItemHandler implementation.

When the .executeWorkItem(...)

or .abortWorkItem(...) methods

of the original WorkItemHandler

instance throw an exception, the

SignallingTaskHandlerDecorator will

catch the exception and signal the process

instance using a configurable event type. The

exception thrown will be passed as part of the

event. This functionality can be used to signal

an Event SubProcess defined in the process

definition.

LoggingTaskHandlerDecorator This class reacts to all exceptions thrown

by the .executeWorkItem(...) or

.abortWorkItem(...) WorkItemHandler

methods by logging the errors. It also saves

any exceptions thrown so to an internal list so

that they can be retrieved later for inspection

or further logging. Lastly, the content and

format of the message logged upon an

exception are configurable.



Chapter 24. Exception Management

452

While the two classes described above should cover most cases involving exception handling, a

Java developer with some experience with jBPM should be able to create a WorkItemHandler

that executes custom code upon an exception.

If you do decide to write a custom WorkItemHandler that includes exception handling logic, keep

the following checklist in mind:

1. Are you catching all possible exceptions that you want to (and no more, or less)?

2. Are you making sure to either complete or abort the work item after an exception has been

caught? If not, are there mechanisms to retry the process later? Or are incomplete process

instances acceptable?

3. >

What other actions should be taken when an exception is caught? Do you want to simply log

the exception, or is it also important to interact with other technical systems? Do you want to

trigger a (BPMN2) subprocess that will handle the exception?

Important

When you use the WorkItemManager to signal that the work item

has been completed or aborted, make sure to do that after you've

sent any signals to the process instance. Depending on how you've

defined your process, calling WorkItemManager.completeWorkItem(...) or

WorkItemManager.abortWorkItem(...) will trigger the completion of the process

instance. This is because the these methods trigger the jBPM process engine to

continue the process flow.

In the next section, we'll describe an example that uses the SignallingTaskHandlerDecorator

to signal an event subprocess when a work item handler throws an exception.

24.3.2. Technical Exception Examples

24.3.2.1. Example: service task handlers

We'll go through one example in this section, and then look quickly at how you can change it to

get the behavior you want. The example involves an <error> event that's caught by an (Error)

Event SubProcess.

When an Error Event is thrown, the containing process will be interrupted. This means that after

the process flow attached to the error event has executed, the following will happen:

1. process execution will stop, and no other parts of the process will execute

2. the process instance will end up in an aborted state (instead of completed)

The example we'll go through contains an <error>, but at the end of the secion, we'll show how

you can change the process to use a <signal> instead.



Technical Exception Examples

453

Tip

The code and BPMN2 process definition shown in the next

section are available in the jbpm-examples module. See the

org.jbpm.examples.exceptions.ExceptionHandlingErrorExample class for

the java code. The BPMN2 process definition is available in the exceptions/

ExceptionHandlingWithError.bpmn2 file in the src/main/resources directory

of the jbpm-examples module.

24.3.2.1.1. BPMN2 configuration

Let's look at the BPMN2 process definition first. Besides the definition of the process, the BPMN2

elements defined before the actual process definition are also important. Here's an image of the

BPMN2 process that we'll be using in the example:

Figure 24.1.

The BPMN2 process fragment below is part of the process shown above, and contains some

notes on the different BPMN2 elements.

Note

If you're viewing this on a web browser, you may need to widen or narrow your

browser window in order to see the "callout" or note numbers on the righthand side

of the code.

  <itemDefinition id="_stringItem" structureRef="java.lang.String"/>           

  <message id="_message" itemRef="_stringItem"/>                               

  <interface id="_serviceInterface"

 name="org.jbpm.examples.exceptions.service.ExceptionService">

    <operation id="_serviceOperation" name="throwException">

      <inMessageRef>_message</inMessageRef>                                    

    </operation>

  </interface>



Chapter 24. Exception Management

454

  <error id="_exception" errorCode="code" structureRef="_exceptionItem"/>      

  <itemDefinition id="_exceptionItem"

 structureRef="org.kie.api.runtime.process .WorkItem"/>

  <message id="_exceptionMessage" itemRef="_exceptionItem"/>                   

  <interface id="_handlingServiceInterface"

 name="org.jbpm.examples.exceptions.service.ExceptionService">

    <operation id="_handlingServiceOperation" name="handleException">

      <inMessageRef>_exceptionMessage</inMessageRef>                           

    </operation>

  </interface>

  <process id="ProcessWithExceptionHandlingError" name="Service Process"

 isExecutable="true" processType="Private">

    <!-- properties -->

    <property id="serviceInputItem" itemSubjectRef="_stringItem"/>             

    <property id="exceptionInputItem" itemSubjectRef="_exceptionItem"/>        

    <!-- main process -->

    <startEvent id="_1" name="Start" />

    <serviceTask id="_2" name="Throw Exception" implementation="Other"

 operationRef="_serviceOperation">

    <!-- rest of the serviceTask element and process definition... -->

    <subProcess id="_X" name="Exception Handler" triggeredByEvent="true" >

      <startEvent id="_X-1" name="subStart">

        <dataOutput id="_X-1_Output" name="event"/>

        <dataOutputAssociation>

          <sourceRef>_X-1_Output</sourceRef>

          <targetRef>exceptionInputItem</targetRef>                            

        </dataOutputAssociation>

        <errorEventDefinition id="_X-1_ED_1" errorRef="_exception" />          

      </startEvent>

      <!-- rest of the subprocess definition... -->

    </subProcess>

  </process>

  

This <itemDefinition> element defines a data structure that we then use in the

serviceInputItem property in the process.



Technical Exception Examples

455

This <message> element (1rst reference) defines a message that has a String as its content

(as defined by the <itemDefintion> element on line above). The <interface> element

below it refers to it (2nd reference) in order to define what type of content the service (defined

by the <interface>) expects.

This <error> element (1rst reference) defines an error for use later in the process: an Event

SubProcess is defined that is triggered by this error (2nd reference). The content of the error

is defined by the <itemDefintion> element defined below the <error> element.

This <itemDefintion> element (1rst reference) defines an item that contains a WorkItem

instance. The <message> element (2nd reference) then defines a message that uses this item

definition to define its content. The <interface> element below that refers to the <message>

definition (3rd reference) in order to define the type of content that the service expects.

In the process itself, a <property> element (4th reference) is defined as having the content

defined by the initial <itemDefintion>. This is helpful because it means that the Event

SubProcess can then store the error it receives in that property (5th reference).

Caution

When you're using a <serviceTask> to call a Java class, make sure to double

check the class name in your BPMN2 definition! A small typo there can cost you

time later when you're trying to figure out what went wrong.

24.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration

Now that BPMN2 process definition is (hopefully) a little clearer, we can look at how to set up

jBPM to take advantage of the above BPMN2.

In the (BPMN2) process definition above, we define two different <serviceTask> activities.

The org.jbpm.bpmn2.handler.ServiceTaskHandler class is the default task handler class

used for <serviceTask> tasks. If you don't specify a WorkItemHandler implementation for a

<serviceTask>, the ServiceTaskHandler class will be used.

In the code below, you'll see that we actually wrap or decorate the ServiceTaskHandler class with

a SignallingTaskHandlerDecorator instance. We do this in order to define the what happens

when the ServiceTaskHandler throws an exception.

In this case, the ServiceTaskHandler will throw an exception because it's configured to

call the ExceptionService.throwException method, which throws an exception. (See the

_handlingServiceInterface <interface> element in the BPMN2.)

In the code below, we also configure which (error) event is sent to the process instance

by the SignallingTaskHandlerDecorator instance. The SignallingTaskHandlerDecorator

does this when an exception is thrown in a task. In this case, since we've defined an <error> with

the error code “code” in the BPMN2, we set the signal to Error-code.



Chapter 24. Exception Management

456

Important

When signalling the jBPM process engine with an event of some sort, you should

keep in mind the rules for signalling process events.

• Error events can be signalled by sending an "Error-" + <the errorCode attribute

value> value to the session.

• Signal events can be signalled by sending the name of the signal to the session.

import java.util.HashMap;

import java.util.Map;

import org.jbpm.bpmn2.handler.ServiceTaskHandler;

import org.jbpm.bpmn2.handler.SignallingTaskHandlerDecorator;

import org.jbpm.examples.exceptions.service.ExceptionService;

import org.kie.api.KieBase;

import org.kie.api.io.ResourceType;

import org.kie.api.runtime.KieSession;

import org.kie.api.runtime.process.ProcessInstance;

import org.kie.internal.builder.KnowledgeBuilder;

import org.kie.internal.builder.KnowledgeBuilderFactory;

import org.kie.internal.io.ResourceFactory;

public class ExceptionHandlingErrorExample {

    public static final void main(String[] args) {

        runExample();

    }

    public static ProcessInstance runExample() {

        KieSession ksession = createKieSession();

        String eventType = "Error-code";                                       

        SignallingTaskHandlerDecorator signallingTaskWrapper                   

            = new SignallingTaskHandlerDecorator(ServiceTaskHandler.class, eventType);

        signallingTaskWrapper.setWorkItemExceptionParameterName(ExceptionServic e.exceptionParameterName);

        ksession.getWorkItemManager().registerWorkItemHandler("Service

 Task", signallingTaskWrapper);

        Map<String, Object> params = new HashMap<String, Object>();

        params.put("serviceInputItem", "Input to Original Service");

        ProcessInstance processInstance = ksession.startProcess("ProcessWithExceptionHandlingError", params);

        



Technical Exception Examples

457

        return processInstance;

    }

    private static KieSession createKieSession() {

        KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

        kbuilder.add(ResourceFactory.newClassPathResource("exceptions/

ExceptionHandlingWithError.bpmn2"), ResourceType.BPMN2);

        KieBase kbase = kbuilder.newKnowledgeBase();

        return kbase.newKieSession();

    }

  

Here we define the name of the event that will be sent to the process instance if the wrapped

WorkItemHandler implementation throws an exception. The eventType string is used when

instantiating the SignallingTaskHandlerDecorator class.

Then we construct an instance of the SignallingTaskHandlerDecorator class. In this case,

we simply give it the class name of the WorkItemHandler implementation class to instantiate,

but another constructor is available that we can pass an instance of a WorkItemHandler

implementation to (necessary if the WorkItemHandler implementation does not have a no-

argument constructor).

When an exception is thrown by the wrapped WorkItemHandler, the

SignallingTaskHandlerDecorator saves it as a parameter in the WorkItem instance with

a parameter name that we configure the SignallingTaskHandlerDecorator to give it (see

the code below for the ExceptionService).

24.3.2.1.3. ExceptionService setup and configuration

In the BPMN2 process definition above, a service interface is defined that references the

ExceptionService class:

<interface id="_handlingServiceInterface" name="org.jbpm.examples.exceptions.service.ExceptionService">

    <operation id="_handlingServiceOperation" name="handleException">

In order to fill in the blanks a little bit, the code for the ExceptionService class has been included

below. In general, you can specify any Java class with the default or an other no-argument

constructor and have it executed during a <serviceTask>

public class ExceptionService {

    

  public static String exceptionParameterName = "my.exception.parameter.name";

    

  public void handleException(WorkItem workItem) {



Chapter 24. Exception Management

458

    System.out.println( "Handling exception caused by work item

 '" + workItem.getName() + "' (id: " + workItem.getId() + ")");

        

    Map<String, Object> params = workItem.getParameters();

    Throwable throwable = (Throwable) params.get(exceptionParameterName);

    throwable.printStackTrace();

  }

    

  public String throwException(String message) {

      throw new RuntimeException("Service failed with input: " + message );

  }

    

  public static void setExceptionParameterName(String exceptionParam) { 

      exceptionParameterName = exceptionParam;

  }

}

24.3.2.1.4. Changing the example to use a <signal>

In the example above, the thrown Error Event interrupts the process: no other flows or activities

are executed once the Error Event has been thrown.

However, when a Signal Event is processed, the process will continue after the Signal Event

SubProcess (or whatever other activities that the Signal Event triggers) has been executed.

Furthermore, this implies that the the process will not end up in an aborted state, unlike a process

that throws an Error Event.

In the process above, we use the <error> element in order to be able to use an Error Event:

  <error id="_exception" errorCode="code" structureRef="_exceptionItem"/>

When we want to use a Signal Event instead, we remove that line and use a <signal> element:

   <signal id="exception-signal" structureRef="_exceptionItem"/> 

However, we must also change all references to the "_exception" <error> so that they now refer

to the "exception-signal" <signal>.

That means that the <errorEventDefintion> element in the <startEvent>,

   <errorEventDefinition id="_X-1_ED_1" errorRef="_exception" /> 



Technical Exception Examples

459

must be changed to a <signalEventDefintion> which would like like this:

   <signalEventDefinition id="_X-1_ED_1" signalRef="exception-signal"/> 

In short, we have to make the following changes to the <startEvent> in the Event SubProcess:

1. It will now contain a <signalEventDefintion> instead of a <errorEventDefintion>

2. The errorRef attribute in the <erroEventDefintion> is now a signalRef attribute in the

<signalEventDefintion>.

3. The id attribute in the signalRef is of course now the id of the <signal> element. Before it

was id of <error> element.

4. Lastly, when we signal the process in the Java code, we do not signal "Error-code" but simply

"exception-signal", the id of the <signal> element.

24.3.2.2. Example: logging exceptions thrown by bad <scriptTask>

nodes

In this section, we'll briefly describe what's possible when dealing with <scriptTask> nodes that

throw exceptions, and then quickly go through an example (also available in the jbpm-examples

module) that illustrates this.

24.3.2.2.1. Introduction

If you're reading this, then you probably already have a problem: you're either expecting to run into

this problem because there are scripts in your process definition that might throw an exception,

or you're already running a process instance with scripts that are causing a problem.

Unfortunately, if you're running into this problem, then there is not much you can do. The only

thing that you can do is retrieve more information about exactly what's causing the problem.

Luckily, when a <scriptTask> node causes an exception, the exception is then wrapped in a

WorkflowRuntimeException.

What type of information is available? The WorkflowRuntimeException instance will contain the

information outlined in the following table. All of the fields listed are available via the normal get*

methods.

Table 24.2. Information contained in WorkflowRuntimeException instances.

Field name Type Description

processInstanceId long The id of the

ProcessInstance instance in



Chapter 24. Exception Management

460

Field name Type Description

which the exception occurred.

This ProcessInstance may

not exist anymore or be

available in the database if

using persistence!

processId String The id of the process

definition that was used

to start the process (i.e.

"ExceptionScriptTask" in

ksession.startProcess("ExceptionScriptTask"); 

)

nodeId long The value of the (BPMN2)

id attribute of the node that

threw the exception.

nodeName String The value of the (BPMN2)

name attribute of the node

that threw the exception.

variables Map<String, Object> The map containing the

variables in the process

instance (experimental).

message String The short message indicating

what went wrong.

cause Throwable The original exception that

was thrown.

24.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.

The following code illustrates how to extract extra information from a process instance that throws

a WorkflowRuntimeException exception instance.

import org.jbpm.workflow.instance.WorkflowRuntimeException;

import org.kie.api.KieBase;

import org.kie.api.io.ResourceType;

import org.kie.api.runtime.KieSession;

import org.kie.api.runtime.process.ProcessInstance;

import org.kie.internal.builder.KnowledgeBuilder;

import org.kie.internal.builder.KnowledgeBuilderFactory;

import org.kie.internal.io.ResourceFactory;



Business Exceptions

461

public class ScriptTaskExceptionExample {

    public static final void main(String[] args) {

        runExample();

    }

    public static void runExample() {

        KieSession ksession = createKieSession();

        Map<String, Object> params = new HashMap<String, Object>();

        String varName = "var1";

        params.put( varName , "valueOne" );

        try { 

            ProcessInstance processInstance = ksession.startProcess("ExceptionScriptTask", params);

        } catch( WorkflowRuntimeException wfre ) { 

            String msg = "An exception happened in "

                    + "process instance [" + wfre.getProcessInstanceId()

                    + "] of process [" + wfre.getProcessId()

                    + "] in node [id: " + wfre.getNodeId() 

                    + ", name: " + wfre.getNodeName()

                    + "] and variable " + varName + " had the value

 [" + wfre.getVariables().get(varName)

                    + "]";

            System.out.println(msg);

        }

    }

    

    private static KieSession createKieSession() {

        KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

        kbuilder.add(ResourceFactory.newClassPathResource("exceptions/

ScriptTaskException.bpmn2"), ResourceType.BPMN2);

        KieBase kbase = kbuilder.newKnowledgeBase();

        return kbase.newKieSession();

    }

 

}

24.4.1. Business Exceptions

Business Exceptions are exceptions that are designed and managed in the BPMN2 specification

of a business process. In other words, Business Exceptions are exceptions which happen at the

process or workflow level, and are not related to the technical components.

Many of the elements in BPMN2 related to Business Exceptions are related to Compensation and

Business Transactions. Compensation, in particular, is complexer than many other parts of the

BPMN2 specfication.



Chapter 24. Exception Management

462

Full support for compensation and business transactions is expected with the release of jBPM 6.1

or 6.2. Once that has been implemented, this section will contain more information about using

those BPMN2 features with jBPM.

24.4.1.1. Business Exceptions elements in BPMN2

The following attempts to briefly describe Compensation and Business Transaction related

elements in BPMN2. For more complete information about these elements and their uses, see the

BPMN2 specification, Bruce Silver's book BPMN Method and Style or any of the other available

books about the use of BPMN2.

Table 24.3. BPMN2 Exception Handling Elements

BPMN2 Element types Description

Errors Error Events can be used to signal when a

process has encountered an unexpected

situation: signalling an error is often called

throwing an error.

Boundary Error Events in a different part of

the process can then be used to catch the

error and initiate a sequence of activities to

handle the exception.

Errors themselves can be extended with extra

information that is passed from the throwing

to catching event. This is done with the use of

an Item Definition.

Compensation Exception handling activities associated with

the normal activies in a Business Transaction

are triggered by Compensation Events.

There are 3 types of compensation events:

Intermediate (a.k.a. Boundary) (catch) events,

Start (catch) events, and Intermediate or End

(throw) events.

Compensation Boundary (catch) events may

only be attached to activites (e.g. tasks) that

could cause an exception. These Boundary

events are then associated (not linked!) with

a Task that will be executed if the Boundary

event catches a (thrown) Compensation

signal.

Start (catch) events are used when defining

an Compensation Event SubProcess, which



Business Exceptions

463

BPMN2 Element types Description

requires them in order to be able to catch a

(thrown) Compensation signal.

Compensation Intermediate and End events

are used in order to throw Compensation

Events. These events often follow decision

nodes that determine whether the workflow

executed up to that point has succeeded.

If not, the path including the Intermediate

or End Event is chosen in order to trigger

Compensatoin for the activities that did not

succeed.

BPMN2 contains a number of constructs to model exceptions in business processes. There are

several advantages to doing exception handling at the business process level (as opposed to

handling it with code):

• Transparency

• Being able to quickly see what happens in exceptional situations means that the results and

performance of a process is more easily monitored and measured.

• It also increases how easily a process can be implemented as well as how maintainable a

process definition is.

• Business Logic Isolation

• Again, the idea behind using a business process is to isolate the business logic from the

technical code. This simplifies the complexity of the system and increases how quickly you

can create new business processes and change existing ones.

• Implementing exception handling at a technical level often takes more time because it's often

complexer and specific to a system.

24.4.1.2. Designing a workflow with Business Exceptions

Where are business exceptions likely to occur? There is academic research on this, but some

possible examples are:

• When an interaction with an external party or 3rd party system does not go as planned

• When you can not fully check the the input data in your process (like a client's address

information, for example)

• In general, if there are parts of your process that are particularly dependent on one of the

following, a business exception will be a good idea:



Chapter 24. Exception Management

464

• Company policy or policy governing certain (in-house) procedures

• Laws governing the business process (such as age requirements, for example)



Chapter 25.

465

Chapter 25. Flexible Processes
Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be

a growing need amongst end users for more flexible and adaptive business processes, without

ending up with overly complex solutions. Everyone seems to agree that using a process-centric

approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge

workers" no longer want to be locked into rigid processes but wants to have the power and flexibility

to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition

of what it might or might not mean, as this has been a hot topic for discussion, it refers to the

basic idea that many applications in the real world cannot really be described completely from

start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes

a different approach: instead of trying to model what should happen from start to finish, let's give

the end user the flexibility to decide what should happen at runtime. In its most extreme form for

example, case management doesn't even require any process definition at all. Whenever a new

case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where

care plans can be used to describe how patients should be treated in specific circumstances,

but people like general practitioners still need to have the flexibility to add additional steps and

deviate from the proposed plan, as each case is unique. And there are similar examples in claim

management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we

don't model any process up front), you still need a lot of the other features a BPM system (usually)

provides: there still is a clear need for audit logs, monitoring, coordinating various services,

human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are

somewhere in between, or might even evolve from case management to more structured business

process over time (when we for example try to extract common approaches from many cases).

If we can offer flexibility as part of our processes, can't we let the users decide how and where

they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your

processes. The first example shows a care plan that shows the tasks that should be performed

when a patient has high blood pressure. While a large part of the process is still well-structured,

the general practitioner can decide himself which tasks should be performed as part of the sub-

process. And he also has the ability to add new tasks during that period, tasks that were not

defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc

sub-process to model this kind of flexibility, possibly augmented with rules or event processing to

help in deciding which fragments to execute.



Chapter 25. Flexible Processes

466

Figure 25.1. Healthcare: high blood pressure

The second example actually goes a lot further than that. In this example, an internet provider

could define how cases about internet connectivity problems will be handled by the internet

provider. There are a number of actions the case worker can select from, but those are simply

small process fragments. The case worker is responsible for selecting what to do next and can

even add new tasks dynamically. As you can see, there is not process from start to finish anymore,

but the user is responsible for selecting which process fragments to execute.

Figure 25.2. Telecom: process fragments



467

And in its most extreme form, we even allow you to create case instances without a process

definition, where what needs to be performed is selected purely at runtime. This however doesn't

mean you can't figure out anymore what 's actually happening. For example, meetings can be

very adhoc and dynamic, but we usually want a log of what was actually discussed. The following

screenshot shows how our regular audit view can still be used in this case, and the end user

could then for example get a lot more info about what actually happened by looking at the data

associated with each of those steps. And maybe, over time, we can even automate part of that

by using a semi-structured process.

Figure 25.3. Audit log for dynamic case



468



Chapter 26.

469

Chapter 26. Concurrency and

asynchronous execution

26.1. Concurrency

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical

multi-threading is what happens when multiple threads or processes are started on a computer,

for example by a Java or C program. Logical multi-threading is what we see in a BPM process after

the process reaches a parallel gateway, for example. From a functional standpoint, the original

process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include

a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM

process that includes logical multi-threading will only be executed in one technical thread. The

main reason for doing this is that multiple (technical) threads need to be be able to communicate

state information with each other if they are working on the same process. This requirement

brings with it a number of complications. While it might seem that multi-threading would bring

performance benefits with it, the extra logic needed to make sure the different threads work

together well means that this is not guaranteed. There is also the extra overhead incurred because

we need to avoid race conditions and deadlocks.

26.1.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters

a script task in a process, it will synchronously execute that script and wait for it to complete before

continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially

trigger each of the outgoing branches, one after the other. This is possible since execution is

almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.

As a result, the user will usually not even notice this. Similarly, action scripts in a process are also

synchronously executed, and the engine will wait for them to finish before continuing the process.

For example, doing a Thread.sleep(...) as part of a script will not make the engine continue

execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the

engine will also invoke the handler of this service synchronously. The engine will wait for the

completeWorkItem(...) method to return before continuing execution. It is important that your

service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in

invoking this service remotely and waiting for the results might be too long, it might be a good idea

to invoke this service asynchronously. This means that the handler will only invoke the service and

will notify the engine later when the results are available. In the mean time, the process engine

then continues execution of the process.



Chapter 26. Concurrency and a...

470

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we

don't want the engine to wait until a human actor has responded to the request. The human task

handler will only create a new task (on the task list of the assigned actor) when the human task

node is triggered. The engine will then be able to continue execution on the rest of the process (if

necessary) and the handler will notify the engine asynchronously when the user has completed

the task.

26.1.2. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session.

However, there are cases in which it's necessary to run multiple processes in different knowledge

sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple

knowledge sessions (and processes), there is a guideline that users should be aware of. The

following paragraphs explain why this guideline is important to follow.

Tip

Please make sure to use a database that allows row-level locks as well as table-

level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each

with its own knowledge session instance. On each thread, jBPM processes are being started using

the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally

simultaneously finished a process. At this point, because persistence is being used, both thread

A and B will be commiting changes to the databse. If row-level locks are not possible, then the

following situation can occur:

• Thread A has a lock on the ProcessInstanceInfo table, having just committed a change to that

table.

• Thread A wants a lock on the SessionInfo table in order to commit a change there.

• Thread B has the opposite situation: it has a lock on the SessionInfo table, having just committed

a change there.

• Thread B wants a lock on the ProcessInstanceInfo table, even though Thread A already has

a lock on it.

This is a deadlock situation which the database and application will not be able to solve. However,

if row-level locks are posible (and enabled!!) in the database (and tables used), then this situation

will not occur.



Asynchronous execution

471

26.2. Asynchronous execution

26.2.1. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the

technology you're using. If you're only using Java, you could execute the actual service in a new

thread:

public class MyServiceTaskHandler implements WorkItemHandler {

        

  public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

    new Thread(new Runnable() {

      public void run() {

        // Do the heavy lifting here ...

      }

    }).start();

  }

  public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

  }

}

It's advisable to have your handler contact a service that executes the business operation, instead

of having it perform the actual work. If anything goes wrong with a business operation, it doesn't

affect your process. The loose coupling that this provides also gives you greater flexibility in

reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to

add a task there. To implement an asynchronous handler, you usually have to simply do an

asynchronous invocation of this service. This usually depends on the technology you use to do

the communication, but this might be as simple as asynchronously invoking a web service, or

sending a JMS message to the external service.

26.2.2. jbpm executor

In version 6, jBPM introduces new component called jbpm executor which provides quite

advanced features for asynchronous execution. It delivers generic environment for background

execution of commands. Commands are nothing more than business logic encapsulated within

simple interface. It does not have any process runtime related information, that means no need

to complete work items, or anything of that sort. It purely focuses on the business logic to

be executed. It receives data via CommandContext and returns results of the execution with

ExecutionResults.

Before looking into details on jBPM support for asynchronous execution let's look at what are the

common requirements for such execution:



Chapter 26. Concurrency and a...

472

• allows asynchronous execution of given piece of business logic

• allows to retry in case of resources are temporarily unavailable e.g. external system interaction

• allows to handle errors in case all retries have been attempted

• provides cancelation option

• provides history log of execution

When confronting these requirements with the "simple async handler" (exeucted as separate

thread) you can directly notice that all of these would need to be implemented all over again by

different systems. Due to that a common, generic component has been provided out of the box

to simplify and empower usage.

jBPM executor operates on commands, which are essential piece of code that is going to be

executed as background job.

/**

 * Executor's Command are dedicated to contain purely business logic that should be executed. 

 * It should not have any reference to underlying process engine and should not be concerned

 * with any process runtime related logic such us completing work item, sending signals, etc.

 * <br/>

 * Information that are taken from process will be delivered as part of data instance of 

 * <code>CommandContext</

code>. Depending on the execution context that data can vary but 

 * in most of the cases following will be given:

 * <ul>

 *  <li></li>

 *  <li>businessKey - usually unique identifier of the caller</li>

 *  <li>callbacks - FQCN of the <code>CommandCollback</

code> that shall be used on command completion</li>

 * </ul>

 * When executed as part of the process (work item handler) additional data can be expected:

 * <ul>

 *  <li>workItem - the actual work item that is being executed with all it's parameters</

li>

 *  <li>processInstanceId - id of the process instance that triggered this work</

li>

 *  <li>deploymentId - if given process instance is part of an active deployment</

li>

 * </ul>

 * Important note about implementations is that it shall always be possible to be initialized with default constructor

 * as executor service is an async component so it will initialize the command on demand using reflection.

 * In case there is a heavy logic on initialization it should be placed in another service implementation that 

 * can be looked up from within command.

 */

public interface Command {

    



jbpm executor

473

    /**

     * Executed this command's logic.

     * @param ctx - contextual data given by the executor service

     * @return returns any results in case of successful execution

     * @throws Exception in case execution failed and shall be retried if possible

     */

    public ExecutionResults execute(CommandContext ctx) throws Exception;

}

Looking at the interface above, there is no specific integration with the jBPM runtime engine, it's

decoupled from it to put main focus on the actual logic that shall be executed as part of that

command rather to worry about integration with process engine. This design promotes reuse of

already existing logic by simply wrapping it with Command implementation.

Input data is transferred from process engine to command via CommandContext. It acts purely

as data transfer object and puts single requirement on the data it holds - all objects must be

serializable.

/**

 * Data holder for any contextual data that shall be given to the command upon execution.

 * Important note that every object that is added to the data container must be serializable 

 * meaning it must implement <code>java.io.Seriazliable</code>

 *

 */

public class CommandContext implements Serializable {

    private static final long serialVersionUID = -1440017934399413860L;

    private Map<String, Object> data;

    public CommandContext() {

        data  = new HashMap<String, Object>();

    }

    public CommandContext(Map<String, Object> data) {

        this.data = data;

    }

    public void setData(Map<String, Object> data) {

        this.data = data;

    }

    public Map<String, Object> getData() {

        return data;

    }

    public Object getData(String key) {

        return data.get(key);



Chapter 26. Concurrency and a...

474

    }

    public void setData(String key, Object value) {

        data.put(key, value);

    }

    public Set<String> keySet() {

        return data.keySet();

    }

    @Override

    public String toString() {

        return "CommandContext{" + "data=" + data + '}';

    }

}

Next outcome is provided to process engine via ExecutionResults, which is very similar in nature

to the CommandContext and acts as data transfer object.

/**

 * Data holder for command's result data. Whatever command produces should be placed in

 * this results so they can be later on referenced by name by the requester - e.g. process instance.

 *

 */

public class ExecutionResults implements Serializable {

    private static final long serialVersionUID = -1738336024526084091L;

    private Map<String, Object> data = new HashMap<String, Object>();

    public ExecutionResults() {

    }

    public void setData(Map<String, Object> data) {

        this.data = data;

    }

    public Map<String, Object> getData() {

        return data;

    }

    public Object getData(String key) {

        return data.get(key);

    }

    public void setData(String key, Object value) {

        data.put(key, value);

    }



jbpm executor

475

    public Set<String> keySet() {

        return data.keySet();

    }

    @Override

    public String toString() {

        return "ExecutionResults{" + "data=" + data + '}';

    }

    

    

}

Executor covers all requirements listed above and provides user interface as part of jbpm console

and kie workbench (kie-wb) applications.

Figure 26.1.

Above screenshot illustrates history view of executor's job queue. As can be seen on it there are

several options available:

• view details of the job

• cancel given job

• create new job

26.2.2.1. WorkItemHandler backed with jbpm executor

jBPM (again in version 6) provides an out of the box async work item handler that is backed by the

jbpm executor. So by default all features that executor delivers will be available for background

execution within process instance. AsyncWorkItemHandler can be configured in two ways:

• as generic handler that expects to get the command name as part of work item parameters

• as specific handler for given type of work item - for example web service

Option 1 is by default configured for jbpm console and kie-wb web applications and is registered

under async name in every ksession that is bootstrapped within the applications. So whenever



Chapter 26. Concurrency and a...

476

there is a need to execute some logic asynchronously following needs to be done at modeling

time (using jbpm web designer):

• specify async as TaskName property

• create data input called CommandClass

• assign fully qualified class name for the CommandClass data input

Next follow regular way to complete process modeling. Note that all data inputs will be transferred

to executor so they must be serializable.

Second option allows to register different instances of AsyncWorkItemHandler for different work

items. Since it's registered for dedicated work item most likely the command will be dedicated

to that work item as well. If so CommandClass can be specified on registration time instead of

requiring it to be set as work item parameters. To register such handlers for jbpm console or kie-

wb additional class is required to inform what shall be registered. A CDI bean that implements

WorkItemHandlerProducer interface needs to be provided and placed on the application classpath

so CDI container will be able to find it. Then at modeling time TaskName property needs to be

aligned with those used at registration time.

26.2.2.2. Configuration

jbpm executor is configurable to allow fine tunning of its environment. In general jbpm executor

runs as a thread pool that periodically checks for waiting jobs and executes them when needed.

Configuration of jbpm executor is done via system properties:

• org.kie.executor.disabled = true|false - allows to completely disable executor component

• org.kie.executor.pool.size = Integer - allows to specify thread pool size where default it 1

• org.kie.executor.retry.count = Integer - allows to specify number of retries in case of errors while

running a job

• org.kie.executor.interval = Integer - allows to specify interval (in seconds) that executor will use

while checking for waiting jobs where default is 3 seconds


	jBPM Documentation
	Table of Contents
	
	Part I. 
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Getting Involved
	1.2.1. Sign up to jboss.org
	1.2.2. Sign the Contributor Agreement
	1.2.3. Submitting issues via JIRA
	1.2.4. Fork Github
	1.2.5. Writing Tests
	1.2.6. Commit with Correct Conventions
	1.2.7. Submit Pull Requests

	1.3. Installation and Setup (Core and IDE)
	1.3.1. Installing and using
	1.3.1.1. Dependencies and jars
	1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or ANT
	1.3.1.3. Runtime
	1.3.1.4. Installing IDE (Rule Workbench)
	1.3.1.4.1. Installing GEF (a required dependency)
	1.3.1.4.2. Installing GEF from zip file
	1.3.1.4.3. Installing Drools plug-in from zip file
	1.3.1.4.4. Drools Runtimes
	1.3.1.4.4.1. Defining a Drools runtime
	1.3.1.4.4.2. Selecting a runtime for your Drools project



	1.3.2. Building from source
	1.3.2.1. Getting the sources
	1.3.2.2. Building the sources

	1.3.3. Eclipse
	1.3.3.1. Importing Eclipse Projects



	Chapter 2. Release Notes
	2.1. New and Noteworthy in KIE API 6.0.0
	2.1.1. New KIE name
	2.1.2. Maven aligned projects and modules and Maven Deployment
	2.1.3. Configuration and convention based projects
	2.1.4. KieBase Inclusion
	2.1.5. KieModules, KieContainer and KIE-CI
	2.1.6. KieScanner
	2.1.7. Hierarchical ClassLoader
	2.1.8. Legacy API Adapter
	2.1.9. KIE Documentation

	2.2. New and Noteworthy in jBPM 6.0.0
	2.2.1. KIE api
	2.2.2. jBPM Core Engine
	2.2.3. jBPM Designer
	2.2.4. jBPM Data Modeler
	2.2.5. Form Modeler
	2.2.6. jBPM Console
	2.2.7. BAM / Reporting
	2.2.8. Workbench
	2.2.9. Remote API

	2.3. New and Noteworthy in KIE Workbench 6.0.0
	2.4. New and Noteworthy in Integration 6.0.0
	2.4.1. CDI
	2.4.2. Spring
	2.4.3. Aries Blueprints
	2.4.4. OSGi Ready



	Part II. Getting Started
	Chapter 3. Overview
	3.1. What is jBPM?
	3.2. Overview
	3.3. Core Engine
	3.4. Process Designer
	3.5. Data Modeler
	3.6. Form Modeler
	3.7. Process Instance and Task Management
	3.8. Business Activity Monitoring
	3.9. Workbench
	3.10. Eclipse Developer Tools

	Chapter 4. Getting Started
	4.1. Downloads
	4.2. Getting Started
	4.3. Community
	4.4. Sources
	4.4.1. License
	4.4.2. Source code
	4.4.3. Building from source

	4.5. What to do if I encounter problems or have questions?

	Chapter 5. jBPM Installer
	5.1. Prerequisites
	5.2. Downloading the Installer
	5.3. Demo Setup
	5.4. 10-Minute Tutorial using the Workbench
	5.5. 10-Minute Tutorial using Eclipse
	5.6. Configuration
	5.6.1. Playgrounds
	5.6.2. Workbench Authentication
	5.6.3. Using your own database
	5.6.3.1. Introduction
	5.6.3.2. Database setup
	5.6.3.3. Configuration
	5.6.3.4. Using a different database

	5.6.4. jBPM data base schema scripts (DDL scripts)
	5.6.5. jBPM installer script

	5.7. Frequently Asked Questions

	Chapter 6. Examples
	6.1. Introduction
	6.2. Human Resources Example
	6.2.1. The KIE Project: human-resources
	6.2.2. Building the Human Resources Example
	6.2.3. Create a new Process Instance

	6.3. Examples zip


	Part III. jBPM Core
	Chapter 7. Core Engine API
	7.1. Overview
	7.2. KieBase
	7.3. KieSession
	7.3.1. ProcessRuntime
	7.3.2. Event Listeners
	7.3.3. Correlation Keys
	7.3.4. Threads

	7.4. RuntimeManager
	7.4.1. Overview
	7.4.2. Strategies
	7.4.3. Usage
	7.4.3.1. Example

	7.4.4. Configuration
	7.4.4.1. Building RuntimeEnvironment
	7.4.4.2. Registering handlers and listeners
	7.4.4.2.1. Registering handlers and listeners in CDI environment



	7.5. Configuration

	Chapter 8. Processes
	8.1. What is BPMN 2.0
	8.2. Process
	8.2.1. Creating a process
	8.2.1.1. Using the graphical BPMN2 Editor
	8.2.1.2. Defining processes using XML
	8.2.1.3. Details: Process properties


	8.3. Activities
	8.3.1. Script task
	8.3.2. Service task
	8.3.3. User task
	8.3.4. Reusable sub-process
	8.3.5. Business rule task
	8.3.6. Embedded sub-process
	8.3.7. Multi-instance sub-process

	8.4. Events
	8.4.1. Start event
	8.4.2. End events
	8.4.2.1. End event
	8.4.2.2. Throwing error event

	8.4.3. Intermediate events
	8.4.3.1. Catching timer event
	8.4.3.2. Catching signal event


	8.5. Gateways
	8.5.1. Diverging gateway
	8.5.2. Converging gateway

	8.6. Others
	8.6.1. Variables
	8.6.2. Scripts
	8.6.3. Constraints
	8.6.4. Timers
	8.6.4.1. Configure timer with delay and period
	8.6.4.2. Configure timer ISO-8601 date format
	8.6.4.3. Configure timer with process variables


	8.7. Process Fluent API
	8.7.1. Example

	8.8. Testing
	8.8.1. Unit testing
	8.8.1.1. Testing integration with external services
	8.8.1.2. Configuring persistence



	Chapter 9. Human Tasks
	9.1. Introduction
	9.2. Using User Tasks in our Processes
	9.3. Data Mappings
	9.4. Task Lifecycle
	9.5. Task Service and The Process Engine
	9.6. Task Service API
	9.7. Interacting with the Task Service

	Chapter 10. Persistence and Transactions
	10.1. Process Instance State
	10.1.1. Runtime State
	10.1.1.1. Binary Persistence
	10.1.1.2. Safe Points


	10.2. Audit Log
	10.2.1. The jBPM Audit data model
	10.2.2. Storing Process Events in a Database
	10.2.3. Storing Process Events in a JMS queue for further processing

	10.3. Transactions
	10.3.1. Container managed transaction
	10.3.1.1. CMT dispose ksession command


	10.4. Configuration
	10.4.1. Adding dependencies
	10.4.2. Manually configuring the engine to use persistence
	10.4.3. Configuring the engine to use persistence using JBPMHelper - for tests only



	Part IV. Workbench
	Chapter 11. Workbench
	11.1. Installation
	11.1.1. War installation
	11.1.2. Workbench data
	11.1.3. System properties

	11.2. Quick Start
	11.2.1. Add repository
	11.2.2. Add project
	11.2.3. Define Data Model
	11.2.4. Define Rule
	11.2.5. Build and Deploy

	11.3. Configuration
	11.3.1. User management
	11.3.2. Roles
	11.3.2.1. Admin
	11.3.2.2. Analyst
	11.3.2.3. Developer
	11.3.2.4. Business user
	11.3.2.5. Manager/Viewer-only User

	11.3.3. Command line config tool
	11.3.3.1. Modes
	11.3.3.2. Available Commands
	11.3.3.3. How to use


	11.4. Administration
	11.4.1. Administration overview
	11.4.2. Organizational unit
	11.4.3. VFS repository

	11.5. Introduction
	11.5.1. Log in and log out
	11.5.2. Home screen
	11.5.3. Workbench concepts
	11.5.4. Initial layout

	11.6. Changing the layout
	11.6.1. Resizing
	11.6.2. Repositioning

	11.7. Authoring
	11.7.1. Artifact Repository
	11.7.2. Asset Editor
	11.7.3. Project Explorer
	11.7.3.1. Initial view
	11.7.3.2. Different views
	11.7.3.2.1. Project View examples
	11.7.3.2.2. Repository View examples


	11.7.4. Project Editor
	11.7.4.1. Build & Deploy
	11.7.4.2. Project Settings
	11.7.4.2.1. Project General Settings
	11.7.4.2.2. Dependencies
	11.7.4.2.3. Metadata

	11.7.4.3. Knowledge Base Settings
	11.7.4.3.1. Knowledge bases and sessions
	11.7.4.3.1.1. Knowledge base list
	11.7.4.3.1.2. Knowledge base properties
	11.7.4.3.1.3. Knowledge sessions

	11.7.4.3.2. Metadata

	11.7.4.4. Imports
	11.7.4.4.1. Import Suggestions
	11.7.4.4.2. Metadata


	11.7.5. Validation
	11.7.5.1. Problem Panel
	11.7.5.2. On demand validation

	11.7.6. Data Modeller
	11.7.6.1. First steps to create a data model
	11.7.6.2. Entities
	11.7.6.3. Properties & relationships
	11.7.6.4. Additional options
	11.7.6.4.1. Additional entity properties ("Data object tab")
	11.7.6.4.2. Additional field properties ("Field tab")

	11.7.6.5. Generate data model code.
	11.7.6.6. Using external models
	11.7.6.6.1. Dependency to a JAR file in local M2 repository
	11.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	11.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	11.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	11.7.6.6.1.4. Save the project to update its dependencies.

	11.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	11.7.6.6.2.1. Open the Maven Artifact Repository editor.
	11.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	11.7.6.6.2.3. Upload the file using the Upload button.
	11.7.6.6.2.4. Guvnor M2 repository files.
	11.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	11.7.6.6.2.6. Add dependency from repository.

	11.7.6.6.3. Using the external objects

	11.7.6.7. External changes to models
	11.7.6.7.1. No changes have been undertaken through the application
	11.7.6.7.2. Changes have been undertaken through the application


	11.7.7. Categories Editor
	11.7.7.1. Launching the Categories Editor
	11.7.7.2. Managing Categories
	11.7.7.3. Adding Categories to assets



	Chapter 12. Workbench Integration
	12.1. REST
	12.1.1. Job calls
	12.1.2. Repository calls
	12.1.3. Organizational unit calls
	12.1.4. Maven calls


	Chapter 13. Workbench High Availability
	13.1. 
	13.1.1. VFS clustering
	13.1.2. jBPM clustering


	Chapter 14. Designer
	14.1. Designer UI Explained
	14.2. Getting started with Modelling
	14.3. Designer Toolbar

	Chapter 15. Form Modeler
	15.1. Configure process and human tasks
	15.2. Generate forms from task definitions
	15.3. Edit forms
	15.3.1. Form generated description
	15.3.2. Customizing form
	15.3.2.1. Moving fields
	15.3.2.2. Adding new fields
	15.3.2.3. Field configuration
	15.3.2.3.1. Generic field properties
	15.3.2.3.2. Specific field properties
	15.3.2.3.3. Complex Fields Configuration
	15.3.2.3.3.1. Simple Object (Subform field Type)
	15.3.2.3.3.2. Arrays of objects.( Multiple subform field Type)

	15.3.2.3.4. Formulas

	15.3.2.4. Customizing form layout

	15.3.3. Field types
	15.3.3.1. Custom Field Types
	15.3.3.1.1. How to create Custom Field Types
	15.3.3.1.2. Configuring and using Custom Field Types




	Chapter 16. Runtime Management
	16.1. Deployments
	16.1.1. Deployment Units List

	16.2. Jobs

	Chapter 17. Process and Task Management
	17.1. Process Management
	17.1.1. Process Definitions
	17.1.1.1. The Process Definition List
	17.1.1.2. The Process Definition Details
	17.1.1.3. Creating Process Instances


	17.2. Tasks
	17.2.1. Task List
	17.2.1.1. Task List (Personal and Group Tasks)
	17.2.1.1.1. Task List (Grid View)
	17.2.1.1.2. Task List (Calendar View)

	17.2.1.2. Task Details
	17.2.1.3. Work on a Task
	17.2.1.4. Task Assignments
	17.2.1.5. Task Comments

	17.2.2. New Task (Ad-Hoc Task)


	Chapter 18. Business Activity Monitoring
	18.1. Overview
	18.2. Business Dashboards
	18.3. Process Dashboard

	Chapter 19. Remote API
	19.1. REST
	19.1.1. Additional Information
	19.1.1.1. Serialization: JAXB or JSON
	19.1.1.2. Pagination
	19.1.1.3. Map query parameters
	19.1.1.4. Number query parameters
	19.1.1.5. Runtime strategies

	19.1.2. Runtime calls
	19.1.2.1. Process calls
	19.1.2.2. Process calls "with variables"

	19.1.3. History calls
	19.1.3.1. History calls that search by variable

	19.1.4. Task calls
	19.1.4.1. Task operation calls
	19.1.4.2. Task query call
	19.1.4.3. Other Task calls

	19.1.5. Execute calls
	19.1.5.1. Execution call details


	19.2. JMS
	19.2.1. JMS Queue setup
	19.2.2. Example JMS usage

	19.3. Remote Java API
	19.3.1. Using the Remote Java RuntimeEngine API
	19.3.1.1. The REST Remote Java RuntimeEngine
	19.3.1.2. The JMS Remote Java RuntimeEngine




	Part V. Eclipse
	Chapter 20. jBPM Eclipse Plugin
	20.1. jBPM Eclipse Plugin
	20.1.1. Installation
	20.1.2. jBPM Project Wizard
	20.1.3. New BPMN2 Process Wizard
	20.1.4. jBPM Runtime
	20.1.4.1. Defining a jBPM Runtime
	20.1.4.2. Selecting a runtime for your jBPM project

	20.1.5. Drools Eclipse plugin

	20.2. Debugging
	20.2.1. The Process Instances View
	20.2.2. The Audit View


	Chapter 21. Eclipse BPMN 2.0 Modeler
	21.1. Overview
	21.2. Installation
	21.3. Documentation


	Part VI. Integration
	Chapter 22. Integration
	22.1. Maven
	22.1.1. Maven artifacts as deployment units
	22.1.1.1. 

	22.1.2. Use maven for dependency management

	22.2. CDI
	22.2.1. Overview
	22.2.1.1. DeploymentService
	22.2.1.1.1. 

	22.2.1.2. FormProviderService
	22.2.1.3. RuntimeDataService
	22.2.1.4. BPMN2DataService
	22.2.1.4.1. 
	22.2.1.4.2. 


	22.2.2. Configuring CDI integration
	22.2.2.1. 

	22.2.3. RuntimeManager as CDI bean
	22.2.3.1. 

	22.2.4. 

	22.3. OSGi


	Part VII. Advanced Topics
	Chapter 23. Domain-specific Processes
	23.1. Introduction
	23.2. Overview
	23.2.1. Work Item Definitions
	23.2.2. Work Item Handlers

	23.3. Example: Notifications
	23.3.1. The Notification Work Item Definition
	23.3.1.1. Creating the work item definition
	23.3.1.2. Registering the work definition
	23.3.1.3. Using your new work item in your processes

	23.3.2. The NotificationWorkItemHandler
	23.3.2.1. Creating a new work item handler
	23.3.2.2. Registering the work item handler


	23.4. Service Repository
	23.4.1. Public jBPM service repository
	23.4.2. Setting up your own service repository


	Chapter 24. Exception Management
	24.1. Overview
	24.2. Introduction
	24.3. 
	24.3.1. Technical Exceptions
	24.3.1.1. Handling exceptions in WorkItemHandler instances

	24.3.2. Technical Exception Examples
	24.3.2.1. Example: service task handlers
	24.3.2.1.1. BPMN2 configuration
	24.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration
	24.3.2.1.3. ExceptionService setup and configuration
	24.3.2.1.4. Changing the example to use a <signal>

	24.3.2.2. Example: logging exceptions thrown by bad <scriptTask> nodes
	24.3.2.2.1. Introduction
	24.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.



	24.4. 
	24.4.1. Business Exceptions
	24.4.1.1. Business Exceptions elements in BPMN2
	24.4.1.2. Designing a workflow with Business Exceptions



	Chapter 25. Flexible Processes
	Chapter 26. Concurrency and asynchronous execution
	26.1. Concurrency
	26.1.1. Engine execution
	26.1.2. Multiple knowledge sessions and persistence

	26.2. Asynchronous execution
	26.2.1. Asynchronous handlers
	26.2.2. jbpm executor
	26.2.2.1. WorkItemHandler backed with jbpm executor
	26.2.2.2. Configuration





