JBPM Documentation

Version 6.0.0-redhat-10

by The JBoss |BPM team [http://www.jboss.org/jbpm]

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

TSP 1
I 1 1 o To U o o1 I 3
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 3
1.2. Getting INVOIVEAcooiiiiiiiiii e e 3
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 4
1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 4
1.2.3. Submitting isSUEs Via JIRAcoiiii i 5
1.2.4. FOrK GItNUD oo e e 6
ST 1Y 11T T =) (= 6
1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 8
1.2.7. Submit PUll REQUESTEScvuiiiiciii e 9

1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 11
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 11
1.3.2. BUilding from SOUICEociiiiiieiiii et 21
1.3.3. ECIPSE i 22

2. REIEASE NOLES .oouiiii i et 29
2.1. New and Noteworthy in KIE APl 6.0.0cciviiiiieiiiei e 29
2.1.1. NeW KIE NAME ..o 29
2.1.2. Maven aligned projects and modules and Maven Deployment 29
2.1.3. Configuration and convention based projectscccceevveeeiiineeeens 30
2.1.4. KieBase INCIUSIONcoouuiiiiiiii e 30
2.1.5. KieModules, KieContainer and KIE-Clccocoiiiiiiiiiiiiiiiiccieen, 31
2.1.6. KIESCANNET ..oivtiiieeiii e e e e s 31
2.1.7. Hierarchical ClassLoadercoccuiviiiiiiiiiieiieecieeeee e 32
2.1.8. Legacy API AdApLercoouieiiiiiiiie e 32
2.1.9. KIE DOCUMENTALION ...uiiiviiiiieii e eees 32

2.2. New and Noteworthy in [BPM 6.0.0ccciiiiiiiiiiiiiii e 33
2 T (1 - o PP 33
2.2.2. [BPM COre ENQINE ..cuuiiiiiiiiiie e e e e e 33
2.2.3. JBPM DESIGNEL ...uiiiiiiiieiiii ettt 34
2.2.4. [BPM Data MOCEIETceiiiiiiiiie e 35
A T o 1 0 1Y/ (o To 1= 1 35
2.2.6. [BPM CONSOIEieiiiiiiii i 35
2.2.7. BAM [REPOITING ...vuiiiiiiiiieeiiii ettt 35
2.2.8. WOIKDENCN ..ot 36
2.2.9. REMOLE AP oo 36

2.3. New and Noteworthy in KIE Workbench 6.0.0c.ocoiiiiiiiiii i 36
2.4. New and Noteworthy in Integration 6.0.0ccooveiiiiiiiiiiiiiiie e 39
2 S O I | PP 39
24,2, SPIING et 40
2.4.3. ArieS BIUEPIINTS ...uiiiii i 40
24,4, OSGI REAAY ...ccoevviiieiiii e 40

LI =Y 1] o S = 5 (T 41

jBPM Documentation

B T O 1V YT 43
3.1 WhAL 0S JBPIM? ot 43

T O 1YY 4 11 P 45

TR T O] (= =1 o [1= TS 46

3.4, ProCeSS DESIGNEL ...ttt ettt 47

3.5, Data MOAEIETvvnieieiiie e 47

0 T T o 0 1 Y/ Yo [=T PP 48

3.7. Process Instance and Task Managementcccoccvveviiiieeiineciiieviin e, 49

3.8. Business ACtiVity MONITOIINGoooeuuiiiiiiiiecci e 49

3.9, WOTKDENCH .oei e 51
3.10. Eclipse Developer TOOISccouuuiiiiiiiiiee e 51

O =T o TS = L (=T o P 53
o O I o 111/] o T Vo £ P 53

N 1= 11 oo] = U (=0 S 53

4.3, COMMUINILY Leeiiiiiti ettt e et e e et e e e et e e e e eba s 53
Yo 11| (o] 1 SRS TTPTPN 54
O I o = 1S - 54

S o 11| o T oo Lo [U 54

4.4.3. BUildiNg frOM SOUICEccouuiiiiiiiiiieii e 55

4.5. What to do if | encounter problems or have quUestions?ccooevviveiinnennnn. 55

B, JBPM INSTAIIEE . 57
B.L. PrErEOUISITES ..vuiiiiiiiiiii et e e e e e e et e e e e e e e e e e e e eaes 57

5.2. Downloading the InStaller ... 57

5.3, DEIMO SEIUP 1ttt 57

5.4. 10-Minute Tutorial using the Workbench ..., 59

5.5. 10-Minute Tutorial using EClIPSEccvuiiiiiiiiiiiee e 62

5.6. CONFIQUIALIONiiiiiiiieiii e e aaens 63
5.6.1. PlaygroUNndsoiiuniiiiiieiiii e 63

5.6.2. Workbench Authenticationcooouiieiiiiiiiiieiin e 63

5.6.3. Using your own databasecccccuiiiiiiiiiiiiiiiiecie e 64

5.6.4. BPM data base schema scripts (DDL SCHPtS)ccovvvvieieiiiiieiiiiiieeees 70

5.6.5. [BPM installer SCrPLuueiiiiiiiiciie e 71

5.7. Frequently Asked QUESHIONScuuuuiiiiiiiieiiiii ettt 72

B. EXAMPIES it 75
{200 I 1o To 1Fod 1T o I S 75

6.2. Human Resources EXamplec.cooiiiiiiiiiiiiiii e 75
6.2.1. The KIE Project: NUMaN-re@SOUICEScceeuunereiiiieeeeiiieeeeiineeeneens 77

6.2.2. Building the Human Resources Examplecccocovieiiiiiiiiineciinennnnn. 78

6.2.3. Create a new ProCess INSTANCEcoeevviiiiiiiiiieiie e 80

6.3, EXAMPIES ZIP wvniiiiiii i 81

1= 1Y O o = PR 83
7. COre ENQING AP oo 85
0 O 1YY 4T 85

7.2, KIBBASE ..ot 86

AR T 13T =T (o] IR 87

7.3.1. ProCESSRUNIIMEuiiiiiiiiiiiiii e e e e aeaeens 87
7.3.2. EVENE LISIENEIS ...coniiiiii e 89
7.3.3. COrrelation KEYSccuuiiiiiiiiii e e 91
T.3.4. TRMBAUS ...oviiviii i e 92

0 = 18 11114 111V F= T = o = 93
TA.L. OVEIVIEW ..vniitiiiiii et e e e e e e e e et e e e e e et 93
S - L (=T [[96
T4.3. USBQOE ..ottt 97
T 4o 110 [0 - i o o [P 99

7.5, CONFIQUIALION ...ttt e e 108
B PrOC S S S et 113
8.1. What iS BPMN 2.0 ...uuiiiiiiiii i e e 113
B2, PrOCESS ..o 118
8.2.1. CreatiNg @ PrOCESSuiiiieii ettt ettt ettt e e e e e eaa e aeeees 118

8.3, ACHIVILIES ..ttt aaaan 124
8.3.1. SCHIPL TASK et 124
8.3.2. SEIVICE TASK .iiiiiiiiiiii i 126
8.3.3. USEI tASK ..otuiiiiiiiii it 127
8.3.4. Reusable SUD-PIrOCESSiiiiiiiiiiiciie e 129
8.3.5. BUSINESS FUIE taSK ...evuiiiiiiiiiieie e 130
8.3.6. Embedded SUD-ProCessccciiiiiiiiiiii e 131
8.3.7. Multi-inStance SUD-ProCESSccoovviiiiiiiiiieii e 132

BLh. EVENIS e e 133
8.4. L. SHAIT BVENT ..o 133
8.4.2. ENA BVENLS ...uuiiiiiiiii et 134
8.4.3. Intermediate EVENLSccoviiiiiiii e 136

8D, GaALBWAYS vttt 139
8.5.1. DIVErging QAEBWAYcccevuuieiiiiieeeiii et 139
8.5.2. CONVErgiNg QAtEWAYuoeivuiiiiiieiiiieeiiieeiieeeiie e e e e e et e e eaeeaanees 141

8.8, OIS oot 142
8.6.1. VAriabIES ...ciiiiiiiiic e 142
86,2, SCIIPLS ettt 144
8.6.3. CONSIIAINTS ..oivvviiiiiiii e e e e e e aa s 145
B.6.4. TIMEIS .otuiitiit ittt e e e e e e e e eas 146

8.7. Process FIUENT AP ... 147
8.7.1. EXAMPIE ..o 147

S8 T I =] o P 149
8.8.1. UNIt LESHING ovvueiiiiiiee e 149

LS T o 10 g - o N I 1S PP 157
Lo J5 I [a1 o o [¥ Tox i o) IS PRSP 157
9.2. Using User Tasks iN OUr PrOCESSESccvvueiiiiiiiiiieiiieeeie e e e e e eae e 157
9.3, Dat@ MAPPINGS ... eeieeineeeiiti ettt ettt 159
9.4, TASK LIfECYCIE ..niiitiiii e 161

jBPM Documentation

9.5. Task Service and The Process ENginecc.ooviiiiiiiiiiiiiinieiiiineeeciiee 163
9.6. TASK SEIVICE AP ..oueiiiii e 163
9.7. Interacting with the Task SEerviCeccoovviiiiiiiiiiii e 165
10. Persistence and TranSaCtiONSviiieuiiiieieiiie e e e et e e e e e eeaens 167
10.1. Process INStaNCe STALEccuiiiiiii i 167
10.1.1. RUNEME SEALE ...uiiiieiiiieiiii ettt e e et e e eeeens 167
0 B2 AN T 1) I Yo [P 172
10.2.1. The jBPM Audit data modelccooviiiiiiiii e 172
10.2.2. Storing Process Events in a Databaseccoovveivviiiiiiiiniiinnnns 175
10.2.3. Storing Process Events in a JMS queue for further processing 177
O R I - T 1S T 1o) o 1S P 177
10.3.1. Container managed transactionccccceveeiiiieeiieeeii e, 179
10.4. CONFIGUIALION .eiiiiiiii et 180
10.4.1. Adding dePeNdENCIESieiiiiiiiii i e e e 180
10.4.2. Manually configuring the engine to use persistence 181
10.4.3. Configuring the engine to use persistence using JBPMHelper - for
TESES ONIY o e 184
Y Vo T4 T o T= o o] o PP 187
B I VY oY o =T o Yo o P 189
5 O 1 13 7= 1= o T o PSP 189
11.1.2. War installationoooveiiiiiii e 189
11.1.2. WOrkbench datacc.uviiiiiiiiiiiii e 189
11.1.3. SYSLEM PrOPEILIES ..ovuueiiiii et 189
R @ 11| Tod Q] = 1 SRR 191
11.2.1. Add rEPOSITONY ..oeiiiiiieeeiii et e 191
5 2 Yo [o I] (0 = X A 192
11.2.3. Define Data MOdelooveuiiiiii e 196
11.2.4. DefiNe RUIE ..covuiiiei e 200
11.2.5. Build @nd DeplOycoeieuuiiiiiiiiiieiie e 202
5 T 0o 0o [¥] =1 (o] o N 203
11.3.1. USEr ManagemeNtccuuiiuuniieieierieee et e e e eees 203
11.3.2. ROIES ot 204
11.3.3. Command line config toolccouiiiiiiiiiiiii 205
114, ADMINISITALION .ievvtiieiiii e e et e e et e eeeate e eeeae 206
11.4.1. AdMINIStration OVEIVIEWviiiniiiiieiiie e e e 206
11.4.2. Organizational UNitc.couiiiiiiiiiiiin e e e 207
11.4.3. VFS FEPOSIIONY ...uueiiiiiieiiiiii ettt ettt et e et eeeai e eees 208
IO ST [g1 o T [o 1T o T PP 208
11.5.1. Log in @nd [0g OULcoovuiiiiiiiieeeii e 208
11.5.2. HOME SCIEEM ..euieiieiee ettt et e e e e eans 208
11.5.3. WOrkbench CONCEPLSccovvuiiiiiiiii e 209
11.5.4. Initial [ayOUL ...cconiiiic e 209
11.6. Changing the aYOULoiiiiiiiiii e 210
N T R = =14 oo [N 211

Vi

12.

13.

14.

15.

16.

17.

18.

11.6.2. REPOSILIONING .. oeviitieeeiiiiiee et 211

5 A 011 T o 213
11.7.1. Artifact REPOSIIONYoeeeeiiieiiiii ettt 213
11.7.2. ASSEE EAIIOr ..iiiiiiiiii e 215
11.7.3. Project EXPIOTErccoouuiiiiiiiii e 218
11.7.4. Project EditOrooiiiiiii et 224
11.7.5. Validationcooeniiiiiii e 228
11.7.6. Data MOEIIETcoveeiiiieie e 230
11.7.7. Categories EditOroooiiiiiiiiie e 258

WOrkbench INtegrationc.coiiiiiiii i e 261

12,0, REST i 261
12.0.1. 30D CallS covvieieiiiieee e 261
12.1.2. RePOSItOry CallSieiiiiiiiiiiii e 262
12.1.3. Organizational unit callsccooeviiiiiiiiiii e, 264
12.1.4. MAVEN CallS ...ceeniieiice e 265

Workbench High Availabilitycoooiiiiiiii e 267

5 700 PP 267
13.1.1. VFS CIUSIEIING ..ueiviiiiieei e e e e e e e e e e 267
13.1.2. JBPM CIUSEEING ..eeeetiieiiiii ettt e 271

1S Lo | o = 273

14.1. Designer Ul EXPlainedccoouiiiiiiiiiii e 274

14.2. Getting started with Modellingcoooiiiiiiiiii e 275

14.3. Designer TOOIDAIiiiiiiiiiii e 279

FOrmM MOGEIET ... e et e e e 301

15.1. Configure process and human tasksccooviuiiiiiiiiinieiiiie e, 303

15.2. Generate forms from task definitionsccoooiiiiiiiiiiiiii e, 305

15.3. Edit fOMMS oo e 308
15.3.1. Form generated desCriptionccoevviiieiiiieiiiieci e e 308
15.3.2. CUStOMIZING FOMM L.euniiiii e 308
15.3.3. FIeld tYPES .oviiiiiiei e 336

RUNtIME ManNageMENToouuiiiiiii e 347

T B =T o] [0 41T | £ P 347
16.1.1. Deployment UNitsS LIStcccuuuiiiiiiiiiiieiiiie e 347

G207 o o PP 348

Process and Task Managementoooouuiiiiiiiinieeiiie e 349

17.1. Process ManagemeNtouuiuuiiiii e 349
17.1.1. Process DefinitioNsc..ovviiiiiiiiiiiiee e 349

A I 1] PSP 352
17.2.1, TASK LIST wuuiiiiiiiiieeiii e e e e 352
17.2.2. New Task (Ad-HOC Task)ccoveiiiieiiiieiiiieeie e e 362

Business ACtiVity MONITOTINGoooiiiiiiiiii e 365

20 I @Y= V= PP 365

18.2. BUSINESS DAShDOAIAScivviieiiiiiii e 366

18.3. Process Dashboardooiiiiiiiiiiiiiiii e 368

Vii

jBPM Documentation

19, REMOTE AP e 373
10,0, REST it 373
19.1.1. Additional INformationcoeoveiiiiiiiie e 373

19.1.2. RUNEIME CAIIS ..oovvnieiiii e e e 376

19.2.3. HIiStOry CallS ...cooeviieiiiii e 379

19.0.4, TASK CAllS ..oevvnieiiiii i 382

19.1.5. EXECULE CallS ..ouuiiiiiiii e 386

TN 1Y PP 386
19.2.1. IMS QUEUE SEIUP ...uierieiiieiii ettt e r e e e 386

19.2.2. EXaMPIE JMS USAQEcovveiiiiiiii e ieee e e et e e e e aeas 387

19.3. ReMOte Java AP ..o 391
19.3.1. Using the Remote Java RuntimeEngine APlccooevviiiiii, 391

RV ol 1] o1 TSP PPT TR UPPPTINS 393
20. |BPM ECHPSE PIUGIN .oouiiiiii it e e e e e e e e 395
20.1. JBPM ECIPSE PIUGIN .oovtiiiiiiiii e 395
b0 0 O [153 7= | = oo PP 395

20.1.2. [BPM Project Wizardcoouueiieiiiiieiiii e 397

20.1.3. New BPMN2 Process Wizardccooceuuiiiiiiiiiiieiiiiieeeciiine e 400

20.1.4. IBPM RUNEIME ...vuiiiiiiiieee et e et e et e e et eeaaaa e eaens 400

20.1.5. Drools EClipSe PIUGINcovuiiiiiiiii e 404

20.2. DEDUGUING - eeeeiiieiiii ettt et 404
20.2.1. The Process INStances VIEWcovevviiiiieiiiiiiieeiiiieeeein e 405

20.2.2. The AUIt VIBW ..oeniiiiiee e e 406

21. Eclipse BPMN 2.0 MOAEIETcovuiiiiiiieii e 409
At S @ Y=Y V1 P 409
21.2. INSEAIIALION ..oeviiiii e 409
40 RS T I To Tor 0 4 1=T o = 4o | o [P PPPTN 410

RV T 01 0=To | = o] o 413
22, INTEYIALION L.uiiiii ettt ettt 415
22. 0. MIBVEIN ot 415
22.1.1. Maven artifacts as deployment Unitsccccoovieiiiiiiiiiiiiieiiiies 415

22.1.2. Use maven for dependency managementcoccceeeveiiieiinnennnnn. 417

22.2. CDl it 420
22.2.0. OVEIVIEW .vuiieiiiiiieee et e e ettt e e ettt e e ettt e e et e e e e e et e e e et neeeeatnaeeeenes 420

22.2.2. Configuring CDI iNtegrationcooeiiuiiiieiiiiiiieci e 423

22.2.3. RuntimeManager as CDI beanccccociiiiiiiiiiii e, 426

22.2. 4. 429

R T © 1]] P 429

VI AQVANCEA TOPICS ..iiitiieiiiii ettt ettt e et e et e e et eeeaa s 431
23. DOMaAIN-SPECITIC PrOCESSES ..covuiiiiiiiiii i e 433
b 70 I [011 o o [Tod 1T o IR 433
23.2. OVEIVIEBW ...iiiiiii et e et e e et e e e et e e e e et e e e et e e e eatn s 434
23.2.1. Work Item Definitionsoeiiuiiiiiiii e 434

23.2.2. Work Item HandIerscovviiiiiiiiiiiiii e 434

viii

23.3. Example: NOLIfICatioNSooeeuiiiiiiiie e 436

23.3.1. The Notification Work Item Definitioncccooevviiiiiiiiinieniiinnnn, 436

23.3.2. The NotificationWorkltemHandlercccooiiiiiiiiiiniiiieeeen, 441

23.4. SEIVICE REPOSIEONY ..ovuiiiiiieiiii et e e e e et e e e eanas 443
23.4.1. Public JBPM Service repoSitoryocoeuuireeieiiiieeiiiineeeiine e 445

23.4.2. Setting up your OWn SErvice repPoSIitorycceceuveiiiieeiiieeiiiieeieennnns 445

24, EXCeption ManagemENTuuiiiiiiiiiieiiii ettt et e e e e 449
b O YT V1= SRR 449
S | o1 1o o (1] 1o o I PR 449
R TSP 449
24.3.1. Technical EXCEPLIONSccuuuiiiiiiiieiieii e 449

24.3.2. Technical Exception Examplesccooeviiiiiiiiiiiin i 452

244, o 461
24.4.1. BUSINESS EXCEPLIONSciviiiiiiii e 461

25, FIEXibDIE PrOCESSES ..oiiiiiiiii et 465
26. Concurrency and asynchronous €XeCULIONcocvvuveiiiieiiiieciieeei e e 469
26.1. CONCUIMTEINCY .tueetieeti ettt et ettt e e e e et e e e e e e et et e e en e een s 469
26.1.1. ENQINE EXECULION ...vuuiiiiiiiii e e e e e e e e aae e 469

26.1.2. Multiple knowledge sessions and persistencec.cccoevveviveennnnns 470

26.2. ASYNCHIroNOUS EXECULIONiivuiiiiieiiieeei eaen 471
26.2.1. Asynchronous handlerscooooveiiiiiiiiiiniei e 471

26.2.2. JDPM EXECULOTiviniiii et e e e e e e e e e e e eeeen 471

Xii

Welcome and Release Notes

Chapter 1.

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodolgy for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamling the build, deploy and loading(utilization) aspects of the
system. Building and deploying now align with Maven and the utilization is now convention and
configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

GIT replaces JCR as the content repository, offering a fast and scalable back-end storage for
content that has strong tooling support. There has been a refocus on simplicity away from
databases with an aim of storing everythign as as text file, even meta data is just a file. The
database is just there to provide fast indexing and search via Lucene. This will allow repositories
now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Chapter 1. Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and Jira. Go to http:/
www.jboss.org/ and click "Register".

Log in | Register | Cool Stuff

Members Projects Products
Overview Lommunity UserLroups Events Elogs Articles Eooks
Choosing the right technology... stay connected: [(&) D
JBoss Community JBoss Enterprise
Community driven propects m Products Stable, supported products U‘IE’k out mg latest
featuring the latest innovations b cortified on multiple platforms \at? Asy audio podcasts
for cutting edge apps. Tor misshon critical apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills
JavaOne Tokyo 2012

Join Red Har at the JavaOne conference in

I '[0 Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

June ¥5-26 : Boston
(N] Tty T T B B = AT SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Submitting issues via JIRA

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [???](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Chapter 1. Introduction

Projects ! lssues -

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork Github

With the contributor agreement signed and your requests submitted to jira you should now be
ready to code :) Create a github account and fork any of the drools, jbpm or guvnor sub modules.
The fork will create a copy in your own github space which you can work on at your own pace. If
you make a mistake, don't worry blow it away and fork again. Note each github repository provides
you the clone (checkout) URL, github will provide you URLSs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the drl
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Writing Tests

then using a String is not practical so then by all means place them in separate drl files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Chapter 1. Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Submit Pull Requests

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &
...19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal github area, you can
now submit your work as a pull request. If you look at the top of the page in github for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Chapter 1. Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily github makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

10

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Installation and Setup (Core and IDE)

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant jars in your
projects classpath.

1.3.1.1. Dependencies and jars

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the
dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime"” stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 jar files.

The following is a description of the important libraries that make up JBoss Drools

« knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user api and what is just an engine api.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

« drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

* drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all
features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

11

Chapter 1. Introduction

 drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released poms, which can be found
on the maven repository.

1.3.1.2. Use with Maven, Gradle, vy, Buildr or ANT

The jars are also available in the central maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xmi like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bomx/artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-compiler</artifactld>
<scope>runti ne</ scope>
</ dependency>

<dependenci es>

12

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Installing and using

This is similar for Gradle, lvy and Buildr. To identify the latest version, check the maven repository.

If you're still using ANT (without Ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre
packaged, as well as a choice of other tools separate to rules. You can choose just to install rules
from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or
downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,
as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.
Location is:

http://downl oad. ecl i pse. org/tool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

13

Chapter 1. Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software
|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in directory,
and the plug-in jar itself. You place the plug-in jar into your Eclipse applications plug-in directory,
and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin jars end
up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the
'Open Perspective' button in the top right corner of your Eclipse window, select 'Other..." and
pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

14

http://www.jboss.org/drools/downloads.html

Installing and using

perspectives, the installation probably was unsuccessful. Check whether you executed each of
the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have
Eclipse GEF installed (check whether the org.eclipse.gef 3.4.*.jar exists in the plugins directory
in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the
org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot
find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found
no our homepage here:

http://www.jboss.org/drools/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of jars on your file system that represent one specific release of
the Drools project jars. To create a runtime, you must point the IDE to the release of your choice.
If you want to create a new runtime based on the latest Drools project jars included in the plugin
itself, you can also easily do that. You are required to specify a default Drools runtime for your
Eclipse workspace, but each individual project can override the default and select the appropriate
runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.
To open up your preferences, in the menu Window select the Preferences menu item. A new
preferences dialog should show all your preferences. On the left side of this dialog, under the
Drools category, select "Installed Drools runtimes". The panel on the right should then show the
currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something
like the figure below.

15

http://www.jboss.org/drools/

Chapter 1. Introduction

S

[opefiter texd l

[General

P Ant
=~ Drools
Drools Flow nodes
Drools Task
Guvnor
Help
Install/lUpdate
Java
Maven
Plug-in Development
Run/Debug
Team

XML

R e

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

16

Installing and using

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default jars as included in the Drools Eclipse plugin, you can create
a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..." button. A
file browser will show up, asking you to select the folder on your file system where you want this
runtime to be created. The plugin will then automatically copy all required dependencies to the
specified folder. After selecting this folder, the dialog should look like the figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required jars.

17

Chapter 1. Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

18

Installing and using

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required jars to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

19

Chapter 1. Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

20

Building from source

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

) [oK H Cancel l

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each maven artifact is available in the JBoss maven repository as a source
jar. The same source jars are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on Github [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

21

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Chapter 1. Introduction

$ git clone git@ithub.com drool sjbpnf guvnor. git

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from source and
possibly contributing to the project, follow the instructions in the README file in droolsjbpm-
build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/
README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a folder called a workspace,
Choose a workspace Folder ko use For this session,

Wiorkspace:

- j Erowse, .,

[Use this as the default and do not ask again

(] 4 Zancel

22

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Eclipse

& Java - Eclipse SDK

File Edit Source Refackor Mavigate Search Proj

I -EHE | %9 %-0-Q- |

e

Hierarchy g |

: Package Explorer X

TG
Mew »

2 Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

23

Chapter 1. Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

24

Eclipse

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling nvn i nstal | all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

25

Chapter 1. Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew \Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

26

Eclipse

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

27

Chapter 1. Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

28

Chapter 2.

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE API 6.0.0

2.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPIanner Drools UberFlre iBPM]

Guvnor

)
v [v
[Drools WBT jBPM-WB J
=)

[KIE-WB

Figure 2.1. KIE Anatomy

2.1.2. Maven aligned projects and modules and Maven
Deployment
One of the biggest complaints during the 5.x series was the lack of defined methodolgy for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamling the build, deploy and loading(utilization) aspects of the system.

29

Chapter 2. Release Notes

Building and deploying now align with Maven and Maven repositories. The utilization for loadng
rules and processess is now convention and configuration oriented, instead of programmatic, with
sane default to minimise the configuration.

Projects can be built with Maven and installed ot the local M2 _REPO or remote Maven
repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to
access.

2.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
ar used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<kmodul e xm ns="http://jboss. org/kie/6.0.0/knmodul e">
<kbase name="kbasel" packages="org. nypaackges>
<ksessi on nane="ksessi onl"/>
</ kbase>
</ kmodul e>

Example 2.2. Utilize the KieSession

Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

2.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase beyond all the rules, function and processes directly defined into
it will also contain the ones created in the included KieBase. This inclusion can be done both
declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<knodul e xm ns="http://]boss. org/ ki e/ 6.0. 0/ knodul e">
<kbase nane="kbase2" incl udes="kbasel">
<ksessi on nane="ksessi on2"/>
</ kbase>

30

KieModules, KieContainer and KIE-CI

</ knodul e>

or programmatically using the Ki eMbdul eMbdel .

Example 2.4. Including a KieBase into another programmatically

Ki eMbdul eMbdel knodul e = Ki eServi ces. Factory. get (). newki eModul eMbdel ();
Ki eBaseMbdel ki eBaseMbdel 1 = knodul e. newKi eBaseModdel (" KBase2"). addl ncl ude(" KBasel") ;

2.1.5. KieModules, KieContainer and KIE-CI

Any Maven produce JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loade
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artefact being loaded. Maven LATEST, SNAPSHOT, RELEASE an version ranges are
supported.

Example 2.5. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (ks. newRel easel d("org. nygroup", "nyartefact", "1.0"

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

KieContainers can be dynamically updated to a specifc verison, all resolved through Maven if KIE-
Cl is on the classpath. For stateful KieSessions the existing sessions are incrementally updated.

Example 2.6. Dynamically Update- Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(ks. newRel easel d("org. mygroup", "nyartefact”, "1.1"));

2.1.6. KieScanner

The Ki eScanner is a maven-oriented replacement of the KnowledgeAgent present in Drools 5. In
fact it allows to continously monitoring your maven repository to check if a new release of a Kie

31

Chapter 2. Release Notes

project has been installed and if so deploying it in the Ki eCont ai ner wrapping that project. The
use of the Ki eScanner requires kie-ci.jar to be on the classpath.

In more detail a Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/] Start the KieScanner polling the maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
maven repository an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

2.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance
problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at
the KieContext level, there is then one child ClassLoader per namespace. This makes it cleaner
to add and remove rules, but there can now be no referencing betwen namespaces in DRL files;
i.e. functions can only be used by the namespaces that declared them. The recommendation is to
use static java methods in your project, which is visible to all namespaces; but those cannot (like
other classes on the root KieContainer ClassLoader). be dynamiccally updated.

2.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through
maven dependency "knowledge-api-legacy5-adapter”. Because the nature of deployment has
significantly changed in 6.0, it was not possible to provide an adapter bridge for the
KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll
fix for 6.1

2.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE api, the entire
documentation has not yet been brought up to date. For this reason there will be continued

32

New and Noteworthy in jBPM 6.0.0

references to old terminologies. Apologies in adanced, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

2.2. New and Noteworthy in JBPM 6.0.0

2.2.1. KIE api

A new public API has been created for interacting with the core engine (shared between jBPM and
Drools). This not only handles runtime operations to start processes, etc. but also instantiating
sessions, registering listeners, configuration, etc.

New APIs were added in various areas, like for example the TaskService interface was moved
to the public API, the new RuntimeManager was introduced and a lot of related interfaces and
classes were added as well.

For backwards compatibility with v5, a knowledge-api jar has been constructed, that implements
the old v5 knowledge-api interfaces on top of the v6 engine. Make sure to include this jar in your
classpath if you want to keep using the v5 api.

2.2.2. 1BPM Core Engine

The execution engine itself has (mostly) remained the same, although we've done various
improvements in the following areas:

« RuntimeManager: instantiating a ksession (and an associated task service) has been simplified
significantly, by introducing a runtime manager where you can simply ask for a reference
to a ksession whenever you need it. The Runtime manager is responsible for initialization,
configuration and disposal of the ksession (and task service), and three predefined strategies
are available:

 Singleton: the RuntimeManager reused the same ksession for all requests (and executes the
requests in sequence, one at a time)

» Session per request: the RuntimeManager instantiates a new ksession per request that will
be used for executing that request and disposed at the end. Each request will receive it's own
ksession and they can all be executed in parallel.

» Session per process instance: the RuntimeManager reuses the same ksession for all requests
related to one specific process instance. This might be necessary if you are storing data
inside your session (for example for rule evaluations) that you need to be available later in
the process as well. Note that the session is disposed after each command but stored in the
database so it can be restored whenever necessary.

» jBPM Services (CDI): To simplify integration of jBPM inside CDI-based applications, the jbpm-
services module contains various CDI services that you can configure and use inside your
application simply by injecting the necessary services (like a RuntimeManager or TaskService
for example) inside your application, making integration easier than ever.

33

Chapter 2. Release Notes

« Timer service: a Quartz-based timer service is how available, that allows you to dispose your
session at any point in time, and the timer service will be responsible for rehydrating a ksession
whenever a timer should be fired. This timer service also works in a clustered environment,
where multiple nodes can work together on sharing the work load but timers will only be fired
once by one of the nodes.

» Exception and compensation management: various improvements in this area allow you to
use more BPMN2 constructs related to exception and compensation management in your
processes, and various strategies have been extended and documented to better handle
exceptions in different ways.

« Asynchronous handlers: asynchronous execution of interaction with external services can now
be implemented by reusing the asynchronous job executor.

« Asynchronous auditing using JMS: audit logging can now also be done asynchronously by
sending the events to a JMS queue rather than persisting them as part of the engine transaction.

The task service has been refactored significantly as well, and the TaskService APIs have been
moved to the public kie-api. Although the TaskService interfaces themselves haven't changed
a lot, the internal implementation has been simplified. Auditing for the task-related operations
(similar to the runtime engine auditing) has been added.

By default, a local task service will always be used by a ksession to perform various task-related
operations (creating a task, being notified when a task is completed). Setting up a remote singleton
task service and connecting multiple ksessions to this (using Mina or HornetQ) as was possible
in jBPM5 is no longer possible, as it introduces more challenges that it brings advantages. Since
the jBPM execution service now also provides a remote API for all task-related operations, we
believe this setup is no longer necessary, and has been replaced by the use of a local task service
in all use cases.

2.2.3. |BPM Designer

jBPM designer has been reimplemented and is fully integrated into the workbench. It easly now
integrates with many of the workbench services available. In addition following features were
added/improved on:

« Improvement of jBPM Simulation engine and the Ul. Added ability to specify simulation
properties on more node type and added more results graphs such as the the Total Cost graph.

« Many updates to the Designer Toolbar for usability purposes.

« Visual Validation update - it now is a real-time visualization of issues done during process
modeling.

« Ability to generate task forms for specific task node.

« Integration with the jJBPM Form Modeler for both task and process forms.

34

jBPM Data Modeler

» Update to process properties - added grouping of properties into sections making it more user
friendly to find properties.

« Update to Object Library - added type specific tasks to pallete (rather than having to morph to
a certain type after adding a task to the canvas).

» Save/Remove/CopyDelete feature have been added directly into Designer and integrate with
the workbench services for those operations.

« Autosave - option for users to enable auto-saving of their business process during modelling.

« Two new default Service Tasks (Rest and WebServices)

2.2.4. |BPM Data Modeler

A new web-based data modeler is integrated in the workbench, which allows non-technical users
to create data models (to be used in your processes and rules) in a user-friendly manner. These
models are saved as Java classes (with the necessary annotations) in the project and added to
the kjar upon build and deploy. Check the chapter on Data Modeler in the Workbench Part for
all the details.

2.2.5. Form Modeler

A new web-based form modeler is integrated in the workbench, which allows non-technical users
to create forms (for starting processes and/or completing human task). The form modeler is a
WYSIWIG editor where you can drag and drop form elements (text boxes, labels, etc.), link it to
data that is expected as input or output of the form, customize properties of each element and the
layout, etc. These forms are then shown when starting the process or completing a task, integrated
into the appropriate runtime views. Check the chapter on Form Modeler in the Workbench Part
for all the details.

2.2.6. JBPM Console

The jBPM console has been reimplemented and is integrated into the workbench as well. It
provides similar features as jBPM5 (starting process instances, inspecting current state and
variables, looking at task lists) but is now much more powerful and exposes a lot more features.
Check the chapter on Process and Task Management in the Workbench Part for all the details.

2.2.7. BAM / Reporting

A new web-based monitoring and reporting tool has been integrated in the workbench. This
displays charts, tables, etc. about the current status of your application(s). It comes with some
process and task dashboards out-of-the-box (showing for example the number of running process
instances, the number of tasks completed per time frame, etc.). These dashboards however
can be fully customized to show the data that is relevant to you, including for example your
own data sources, making domain-specific charts (for example showing your key performance
indicators (KPIs) instead of generic process-related charts). Check the chapter on Business
Activity Monitoring in the Workbench Part for all the details.

35

Chapter 2. Release Notes

2.2.8. Workbench

A workbench application, based on the UberFire framework, now unifies all web-based editors
and tools into one large, configurable web application. It has many features, including:

» Configurable workspace where you layout your own views by dragging and dropping

 Unified login and role-based authentication, where what features you see depends on your role
(admin, analyst, developer, user, manager, etc.).

« A new home screen that will guide you through the life cycle of your business processes
(authoring, deployment, execution, tasks and reporting).

» Git-based repository that supports versioning and collaboration.

* New project structure where artifacts (processes, rules, etc.) are combined into kjars (we
removed the custom binary packages and replaced them with a normal jar, containing the
source artifacts) when a project is built. These kjars now also include not only processes and
rules, but also forms, configuration files, data models (Java classes), etc. Kjars are maven
artefacts themselves (they have a group, id and version) and exposed as a Maven repository.
When creating a ksession, Maven can be used to download the necessary kjars for your project
from this Maven repository.

« Sample pl aygr ound repositories are (optionally) installed when starting up the workbench the
first time, to get you started quickly with some predefined examples.

Check the Workbench Part for all the details.

2.2.9. Remote API

The remote API has been redesigned and allows users to remotely connect to a running execution
server and pass commands. The remote runtime API exposes (almost) the entire KieSession and
TaskService API using REST or JMS, so commands can be sent to the remote execution server
for processing and the results are returned. See the chapter on Business Activity Monitoring for
all the details.

Guvnor also provides a REST api to access the various repositories, projects and artifacts inside
these projects and manage and build them.

2.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workebench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

36

New and Noteworthy in KIE Workbench 6.0.0

As well as the move to a UberFire the other biggest change is the move from JCR to GIT; there
is an utility project to help with migration. GIT is the most scalable and powerful source repository
bar none. JGIT provides a solid OSS implementation for GIT. This addresses the continued
performance problems with the various JCR implementations, which would slow down once the
number of files and number of versions become too high. There has been a big "low tech" drive,
to remove complexity. Everything is now stored as a file, including meta data. The database is
ony there to provide fast indexing and search. So importing and exporting is all standard GIT and
external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside eclipse. GIT enables
our repository to work any existing GIT tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

{J KIE Drools Workbench
& Q localhost MARE M Q @ - - }f

Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer o Guided Editor [Bankruptcy history] Save || Dekte | Rename | Copy | Valdate | X ||~
EXTENDS None selected o
demo ~ uf-playground ~ mortgages ~ =]
WHEN B
= <default> 1. Thereisa LoanApplication [a]
The following exists
& org There is a Bankruptcy with:
& morigages any of the following:
2. yearOfOccurence| greater than j 1990
amountOwed greater than j 10000
% DRL THEN

1. delete LoanApplication [a]

(® DOMAIN SPECIFIC LANGUAGE DEFINITION X s
Setvalue of LoanApplication [a] approved false j:

(5 ENUMERATION DEFINITION L

Edit Source Config Metadata
#/ GUIDED DECISION TABLE

® GUIDED RULE Problems x|~
Bankruptcy history Level Text File Column Line
No bad credit checks [ERR 102] Line
no NINJAs 7:0 mismatched
] . . Dummy rule.drl o 7
Underage input ‘then" in rule

"Dummy rule”

Figure 2.2. Workbench

The Guvnor brand leaked too much from it's intended role; such as the authoring metaphores,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven

37

Chapter 2. Release Notes

repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, bpm2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM
plugins. The jBPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

g ™
hitges it comJdrodtybgilisamion
Iy
g ™
* Maven Reposilory
Guvnor * Projact Service
[org guimorgunor * Inden
y * Warkflew
hifpea i githul, comddnomsks oy gumon [
Iy
' 2
. * Home page
kie-wb-common * Progact Explonar
[er obe: k- b-commicn | Diata Maocaller
* Meta Data
- * Search
e githut ik wi-Carmiman /ﬂ) e, _’..a"
o -
—— el
I — .
* DRL : : * JBPM Consohe
drools-whb * Guided Edilans i jbpm-wb y " FBPM Desigrer
[org droals:drools-wh] : ':;‘“l Scenarios : [org opmijbom-wh]
1
—— L4 T “
|ﬂ'|:‘.lﬂllllj}{l:lll'lklkllql‘l%lh\ -
'l‘"\-\. _-"-Il - - - - “\
. i T = 5
b
/T~ N
[
N I s s I
kie-drools-wb I kie-jopm-wb)
[erg o ki rools-wh] [org kiekie-wi] : [org kie:kig-lbpm-wh] :
N ?
s-wh-disinbuiors \ biizs:Vgthub comidrooisbpmitie-wh-disirtations.

S

Figure 2.3. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project defintions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

38

New and Noteworthy in Integration 6.0.0

The two primary distributions consist of:

KIE Drools Workbench

» Drools Editors, for rules and supporting assets.

» jBPM Designer, for Rule Flow and supporting assets.
KIE Workbench

» Drools Editors, for rules and supporting assets.

» jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.

jBPM Form Builder.

* BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

New packaging and build system following KIE API.

» Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java
classes to the authoring environment. Java classes are packaged into the project and can be
used within rules, processes etc and externally in your own applications.

Virtual File System replaces JCR with a default GIT based implementation.
» Default GIT based implementation supports remote operations.
» External modifications appear within the Workbench.

Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.4. New and Noteworthy in Integration 6.0.0

2.4.1. CDI

CDl is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

39

Chapter 2. Release Notes

@ nj ect

@KSessi on("kbasel")

@KRel easel d(groupld = "jar1", rtifactld
private Ki eBase kbaselv1O;

"artl1", version = "1.0")

@ nj ect

@KBase(" kbasel")

@XRel easel d(groupld = "jar1", rtifactld
private Ki eBase kbaselv10;

"artl", version "1.1")

Figure 2.4. Side by side version loading for 'jar1.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.0")
private Ki eSession ksessi onv10;

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.1")

private Ki eSession ksessionvll;

Figure 2.5. Side by side version loading for 'jar1.KBasel' KieBase

2.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for
consistency with spring and kmodule.xml

2.4.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

40

Part Il. Getting Started

Introduction and getting started with jBPM

Chapter 3.

Chapter 3. Overview

3.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor
business processes throughout their life cycle.

B

P
I—b{ “““'HF. Evaluation h
(- I' g _
O—D| “—Ealf Evaluation |—> —|— + —.@
= A
DI “—PM Evaluabion

A business process allows you to model your business goals by describing the steps that need
to be executed to achieve those goals, and the order of those goals are depicted using a flow
chart. This process greatly improves the visibility and agility of your business logic. jBPM focuses
on executable business processes, which are business processes that contain enough detail
so they can actually be executed on a BPM engine. Executable business processes bridge the
gap between business users and developers as they are higher-level and use domain-specific
concepts that are understood by business users but can also be executed directly.

Business processes need to be supported throughout their entire life cycle: authoring, deployment,
process management and task lists, and dashboards and reporting.

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

* Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors.

» Pluggable persistence and transactions (based on JPA / JTA).

« Web-based process designer to support the graphical creation and simulation of your business
processes (drag and drop).

» Web-based data modeler and form modeler to support the creation of data models and process
and task forms

43

Chapter 3. Overview

* Web-based, customizable dashboards and reporting

« All combined in one web-based workbench, supporting the complete BPM life cycle:
* Modeling and deployment - author your processes, rules, data models, forms and other assets
» Execution - execute processes, tasks, rules and events on the core runtime engine
» Runtime Management - work on assigned task, manage process instances, etc

* Reporting - keep track of the execution using Business Activity Monitoring capabilities

The Knowledge Life Cycle

Opathezrireg Deploy Proces s Manggemdant Tanas Dashi:nardy

o Aaftarryg Dy rasln Lk igre T Lot [T e & |

=

The Busness Knowledge to drve your company

» Eclipse-based developer tools to support the modeling, testing and debugging of processes
* Remote API to process engine as a service (REST, JMS, Remote Java API)
« Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process
management features and tools in a way that both business users and developers like. Domain-
specific nodes can be plugged into the palette, making the processes more easily understood by
business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-
life situations that cannot easily be described using a rigid process. We bring control back to the
end users by allowing them to control which parts of the process should be executed; this allows
dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a
combination of business processes with business rules and complex event processing. jBPM can
be combined with the Drools project to support one unified environment that integrates these
paradigms where you model your business logic as a combination of processes, rules and events.

44

Runtime
Management

Execution

Modeling
& Deployment

Overview

3.2. Overview

| Core

Engine

Figure 3.1.

Human Task

Service

Guvnor

Repository - |

&
Business
Analyst
™
-
End User -
b
Developer
[P
y
| |
| Eclipse |
Developer |
| Tools
|
N /

This figure gives an overview of the different components of the jBPM project.

« The core engine is the heart of the project and allows you to execute business processes in
a flexible manner. It is a pure Java component that you can choose to embed as part of your
application or deploy it as a service and connect to it through the web-based Ul or remote APIs.

« An optional core service is the human task service that will take care of the human task life
cycle if human actors participate in the process.

« Another optional core service is runtime persistence; this will persist the state of all your
process instances and log audit information about everything that is happening at runtime.

¢ Applications can connect to the core engine by through it's Java API or as a set of CDI
services, but also remotely through a REST and JMS API.

« Web-based tools allows you to model, simulate and deploy your processes and other related

artifacts (like data models, forms, rules, etc.):

¢ The process designer allows business users to design and simulate business processes in

a web-based environment.

45

Chapter 3. Overview

» The data modeler allows non-technical users to view, modify and create data models for use
in your processes.

» A web-based form modeler also allows you to create, generate or edit forms related to your
processes (to start the process or to complete one of the user tasks).

» Rule authoring allows you to specify different types of business rules (decision tables, guided
rules, etc.) for combination with your processes.

» All assets are stored and managed on the Guvnor repository (exposed through GIT) and can
be managed (versioning), built and deployed.

» The web-based management console allows business users to manage their runtime (manage
business processes like start new processes, inspect running instances, etc.), to manage their
task list and to perform Business Activity Monitoring (BAM) and see reports.

* The Eclipse-based developer tools are an extension to the Eclipse IDE, targeted towards
developers, and allows you to create business processes using drag and drop, test and debug
your processes, etc.

Each of the components are described in more detail below.

3.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). Its most important features are the following:

 Solid, stable core engine for executing your process instances.

« Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

» Strong focus on performance and scalability.

 Light-weight (can be deployed on almost any device that supports a simple Java Runtime
Environment; does not require any web container at all).

« (Optional) pluggable persistence with a default JPA implementation.
» Pluggable transaction support with a default JTA implementation.

« Implemented as a generic process engine, so it can be extended to support new node types
or other process languages.

» Listeners to be notified of various events.

« Ability to migrate running process instances to a new version of their process definition

46

Process Designer

The core engine can also be integrated with a few other (independent) core services:

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, rule-based assignments, etc.

» The history log can store all information about the execution of all the processes in the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic states of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

3.4. Process Designer

The web-based designer allows you to model your business processes in a web-based
environment. It is targeted towards business users and offers a graphical editor for viewing and
editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports
round-tripping between the Eclipse editor and the web-based designer. It also supports simulation
of processes.

e 0

= Project Explorer = - = Business Process [evaluation bpmn
e = = : e B o & -
S Ly s Mo g Ty
r ° - e e
[=] P—
rea ']
] - - =
= . = - - 4 —Hﬁ R

= Problems

Figure 3.2. Web-based designer for creating BPMN2 processes

3.5. Data Modeler

Processes almost always have some kind of data to work with. The data modeler allows non-
technical users to view, edit or create these data models.

47

Chapter 3. Overview

Typically, a business process analyst or data analyst will capture the requirements for a process or
application and turn these into a formal set of interrelated data structures. The new Data Modeler
tool provides an easy, straightforward and visual aid for building both logical and physical data
models, without the need for advanced development skills or explicit coding. The data modelers
is transparently integrate into the workbench. Its main goals are to make data models into first
class citizens in the process improvement cycle and allow for full process automation through the
integrated use of data structures (and the forms that will be used to interact with them).

3.6. Form Modeler

The jBPM Form Modeler is a form engine and editor that enables users to create forms to capture
and display information during process or task execution, without needing any coding or template
markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Form Modeler [PerformanceEvaluation-taskfiorm] Save | Deleee | w | <
B Form data ongin | &8 Add felds by orign | of] Add lelds by ppe . S Foirn propeies Show moce ¥ Bindings &1 Grd & Ruler =~
_ . __{.l = L m 2 i m |.l.-u L |-'.. |.w 4] |-..'. _I.'.-J o
E‘ || IIL'{__-‘ D T I e B R I L LT I I S B R B e LT I I O e L L LI e e e B R e LT L I U I PR}
..... - i
i paaral it
& Simple subfam '__ﬂg K
E Hushple subform 'i,
" [N Fman
O Ehor ket E
Lomg 1ext 4
. |

[Biginte ger
1:-| ‘- o =
3 Inleger I j

Riich fext

5l Timasiam I " -
] Tim = e

Figure 3.3. Form Modeler

Key features:

« Form Modeling WYSIWYG Ul for forms
« Form autogeneration from data model / Java objects

« Data binding for Java objects

48

Process Instance and Task Management

* Formula and expressions
e Customized forms layouts
* Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building
and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior
and look&feel.

3.7. Process Instance and Task Management

Business processes can be managed through a web-based management console. It is targeted
towards business users and its main features are the following:

» Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances.

* Human task management: being able to get a list of all your current tasks (either assigned to you
or that you might be able to claim), and completing tasks on your task list (using customizable
task forms).

a
m Dusiness Proces [hidng bamnd . = Indtance Detals A ™ | W |
Pt Bt By
Instance 1D 1
Defondtin 1 orive]
Dnitfitin Barms Heev i Dty
Deployment 6 oo HL 1D
TN T SN I - T T Sr—— S R— I —— —-.D Oolinition Verslon 1
Ansisre Siate ST

Curront Acthvities 18310 L1030 1 - HR Itervies

Irmtance Log 1

Figure 3.4. Managing your process instances

3.8. Business Activity Monitoring

As of version 6.0, jBPM comes with a full-featured BAM tooling which allows non-technical users to
visually compose business dashboards. With this brand new module, to develop business activity
monitoring and reporting solutions on top of jJBPM has never been so easy!

49

Chapter 3. Overview

Tl R

Tkl geimian s el g
el

- Rt

= P
R]
Abud

Er D omr w Re

[

[P
P vum:

= w0 FROES St - §
Pz Lner o rose-

= BT PROFE LT B §
Fmowns s

- e Prgoms venas &
T

- Saiwe Taxi 65 -
P 0

- Sainct Proces D -
Taik

- Baiwct Task -
Tiwh S b

- Baiwct Tanh Siaet datw 2
Taih Lol dats

- Saiwct Tank Enl ae - 0

Ta®

INSRERCES by PrOTELE ISLLERTEt SLErned by wber

W of LNk ssinpnran | Memiety of vkl pof witr | Tastd 118 ted By date | TRLAY diempieted by i | itk detamee | Firiks By Misbes

Humbser of Lagh IAELaAES

Figure 3.5. Business Activity Monitoring

Key features:

 Visual configuration of dashboards (Drag'n'drop).

» Graphical representation of KPIs (Key Performance Indicators).

» Configuration of interactive report tables.

» Data export to Excel and CSV format.

« Filtering and search, both in-memory or SQL based.

» Data extraction from external systems, through different protocols.

» Granular access control for different user profiles.

* Look'n'feel customization tools.

 Pluggable chart library architecture.
e Chart libraries provided: NVD3 & OFC2.

Target users:

« Managers / Business owners. Consumer of dashboards and reports.

» IT / System architects. Connectivity and data extraction.

* Analysts. Dashboard composition & configuration.

To get further information about the new and noteworthy BAM capabilities of jBPM please read
the chapter Business Activity Monitoring.

50

Workbench

3.9. Workbench

The workbench is the web-based application that combines all of the above web-based tools into
one configurable solution.

It supports the following:

* A repository service to store your business processes and related artefacts, using a GIT
repository, which supports versioning, remote accessing (as a file system), and using REST
services.

« A web-based user interface to manage your business processes, targeted towards business
users; it also supports the visualization (and editing) of your artifacts (the web-based editors
like designer, data and form modeler are integrated here), but also categorisation, build and
deployment, etc..

« Collaboration features to have multiple actors (for example business users and developers)
work together on the same project.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

The Knowledge Life Cycle

Brtheoring Deploy Process Manggemend Tashs Deshibpardy

@1 Al tareg Dl yr=usin Mo wnn Do T Lol Propconn & Tim LI NI

The Business Knowledge to drve your company

Figure 3.6. KIE workbench application

3.10. Eclipse Developer Tools

The Eclipse-based tools are a set of plugins to the Eclipse IDE and allow you to integrate your
business processes in your development environment. It is targeted towards developers and has
some wizards to get started, a graphical editor for creating your business processes (using drag
and drop) and a lot of advanced testing and debugging capabilities.

51

Chapter 3. Overview

- J-ai@h=ilio S e e de | e T ST 10 TR 0 Ot NN e i | a | o [Simtn] G0t s [e mepatory tepiorng
Progeat [agsore o R o Mawigair o L Feahsarimnd
T -
] + e el anmey | v
e 4@ o
i -'h"—h-. ST — | iy I . -:1--.-"----..

Figure 3.7. Eclipse editor for creating BPMN2 processes

It includes the following features:

« Wizard for creating a new jBPM project

» A graphical editor for BPMN 2.0 processes

* The ability to plug in your own domain-specific nodes

* Validation

* Runtime support (so you can select which version of jBPM you would like to use)

» Graphical debugging to see all running process instances of a selected session, to visualize the
current state of one specific process instance, etc.

52

Chapter 4.

Chapter 4. Getting Started

4.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artifact you want:

« bin: all the jBPM binaries (jars) and their dependencies

« src: the sources of the core components

 docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jbpme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

4.2. Getting Started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes
and integrate the engine with your application. These processes can be started from the installer
or be started from scratch.

4.3. Community

Here are a lot of useful links part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

53

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Chapter 4. Getting Started

* The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

e A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217]
for asking questions and giving answers

« A JIRA bug tracking system [https://jira.jpboss.org/jira/browse/JBPM] for bugs, feature requests
and roadmap

« A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the
latest snapshots [https://hudson.jboss.org/hudson/job/iBPM/lastSuccessfulBuild/artifact/jopm-
distribution/target/]

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most
of the real-time discussion about the project takes place and where you can find most of the
developers most of their time as well. Don't have an IRC client installed? Simply go to http://
webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join
the fun.

4.4. Sources

4.4.1. License

The jJBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

e The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.
» The web-based designer is based on Oryx/Wapama and is MIT License

» The Drools project is Apache License v2.0.

4.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the BPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jBPM and Drools project can be found here [https://github.com/
droolsjbpm].

« The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-modeler/
org.eclipse.bpmn2-modeler.git].

» The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

54

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer

Building from source

« The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]
note this is an aggragate of other projects (drools-wb, jbpm-console-ng)

4.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

4.5. What to do if | encounter problems or have
gquestions?

You can always contact the jJBPM community for assistance.
IRC: #jbpm at chat.freenode.net

JBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

55

https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

56

Chapter 5.

Chapter 5. |BPM Installer

5.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

Tip

To check whether Java and Ant are installed correctly, type the following
commands inside a command prompt:

java -version
ant -version

This should return information about which version of Java and Ant you are
currently using.

5.2. Downloading the Installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%206/] the
installer and unzip it to your local file system. There are two versions

« full installer - which already contains a lot of the dependencies that are necessary during the
installation

» minimal installer - which only contains the installer and will download all dependencies
In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/iBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

5.3. Demo Setup

The easiest way to get started is to simply run the installation script to install the demo setup.
The demo install will setup all the web tooling (on top of JBoss AS) and Eclipse tooling in a pre-

57

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 5. jBPM Installer

configured setup. Go into the jopm-installer folder where you unzipped the installer and (from a
command prompt) run:

ant install.deno

This will:

Download JBoss AS

 Configure and deploy the web tooling

Download Eclipse

Install the Drools and jBPM Eclipse plugin

Install the Eclipse BPMN 2.0 Modeler

Running this command could take a while (REALLY, not kidding, we are for example downloading
an Eclipse installation, even if you downloaded the full installer).

Tip

The script always shows which file it is downloading (you could for example check
whether it is still downloading by checking the whether the size of the file in question
in the jbpme-installer/lib folder is still increasing). If you want to avoid downloading
specific components (because you will not be using them or you already have them
installed somewhere else), check below for running only specific parts of the demo
or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.deno

This will:

« Start H2 database server
» Start the JBoss AS

 Start Eclipse

58

10-Minute Tutorial using the Workbench

Once everything is started, you can start playing with the Eclipse and web tooling, as explained
in the following sections.

If you only want to try out the web tooling and do not wish to download and install the Eclipse
tooling, you can use these alternative commands:

ant install.deno. noeclipse
ant start.deno. noecli pse

Similarly, if you only want to try out the Eclipse tooling and do not wish to download and install
the web tooling, you can use these alternative commands:

ant install.denp.eclipse
ant start.deno. eclipse

Now continue with the 10-minute tutorials. Once you're done playing and you want to shut down
the demo setup, you can use:

ant stop.deno

If at any point in time would like to start over with a clean demo setup - meaning all changes you did
inside the web tooling and/or saved in the database will be lost, you can run the following command
(after which you can run the installer again from scratch, note that this cannot be undone):

ant cl ean. deno

5.4. 10-Minute Tutorial using the Workbench

Open up the process management console:

http://localhost:8080/jbpm-console

@ Note
It could take a minute to start up the AS and web application. If the web page
doesn't show up after a while, make sure you don't have a firewall blocking that
port, or another application already using the port 8080. You can always take a
look at the server log jbpm-installer/jboss-as-7.1.1.Final/standalone/log/server.log

Log in, using krisv / krisv as username / password.

59

http://localhost:8080/jbpm-console

Chapter 5. jBPM Installer

Using a prebuilt Evaluation example, the following screencast [http://people.redhat.com/kverlaen/
jbpm6F-installer-console.swf] gives an overview of how to manage your process instances. It
shows you:

» How to build and deploy a process

» How to start a new process instance

« How to look up the current status of a running process instance

* How to look up your tasks

* How to complete a task

« How to generate reports to monitor your process execution

60

http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

10-Minute Tutorial using the Workbench

* In this screencast, the Evaluation project inside the jbpm-playground repository is used.
* The project explorer shows all available artefacts:

 evaluation: business process describing the evaluation process as a sequence of tasks

 evaluation-taskform: process form to start the evaluation process

» PerformanceEvaluation-taskform: task form to perform the evaluation tasks

« To make a process available for execution, you need to successfully build and deploy it first.
To do so, open up the Project Editor (from the Tools menu) and click Build & Deploy.

« To manage your process definitions and instances, click on the "Process Management" menu
option at the top menu bar an select one of available options depending on you interest:

» Process Definitions - lists all available process definitions

» Process Instances - lists all active process instances (allows to show completed, aborted as
well by changing filter criteria)

» Process definitions panel allow you to start a new process instance by clicking on the "Play”
button. The process form (as defined in the project) will be shown, where you need to fill in the
necessary information to start the process. In this case, you need to fill the user you want to
start an evaluation for (in this case use "krisv") and a reason for the request, after which you
can complete the form. Some details about the process instance that was just started will be
shown in the process instance details panel. From there you can access additional details:

» Process model - to visualize current state of the process

» Process variables - to see current values of process variables
The process instance that you just started is first requiring a self-evaluation of the user and is
waiting until the user has completed this task.

» To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top
bar and select "Task List" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation" task reserved for you. After starting the
task, you can complete the task, which will open up the task form related to this task. You can fill
in the necessary data and then complete the form and close the window. After completing the
task, you could check the "Process Instances" once more to check the progress of your process
instance. You should be able to see that the process is now waiting for your HR manager and
project manager to also perform an evaluation. You could log in as "john" / "john" and "mary" /
"mary" to complete these tasks.

 After starting and/or completing a few process instances and human tasks, you can generate a
report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".
This is a set of see predefined charts that allow users to spot what is going on in the system.
Charts can be fully customized as well, as explained in the Business Activity Monitoring chapter.

61

Chapter 5. jBPM Installer

5.5. 10-Minute Tutorial using Eclipse

The following screencast [http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf] gives
an overview of how to use the Eclipse tooling. It shows you:

« How to import and execute the evaluation sample project

Import the evaluation project (included in the jbpme-installer)
¢ Open the Evaluation.bpmn process

¢ Open the com.sample.ProcessTest Java class

« Execute the ProcessTest class to run the process

» How to create a new jBPM project (including sample process and JUnit test)

e the process instance.

62

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

Configuration

You could also create a new project using the jBPM project wizard. The sample projects contain
a process and an associated Java file to start the process. Select "File - New ... - Project ..."
and under the "jBPM" category, select "jBPM project” and click "Next". Give the project a name
and click "Next". You can choose from a simple HelloWorld example or a slightly more advanced
example using persistence and human tasks. If you select the latter and click Finish, you should
see a new project containing a "sample.bpmn" process and a "com.sample.ProcessTest" JUnit
test class. You can open the BPMN2 process by double-clicking it. To execute the process, right-
click on ProcessTest.java and select "Run As - Java Application”.

5.6. Configuration

5.6.1. Playgrounds

The workbench by default brings two sample playground repositories (by cloning the jopm-
playground repository hosted on github). In cases where this is not wanted (access to internet
might not be available or there might be a need to start with a completely clean installation of
the workbench) this default behavior can be turned off. To do so, change the following system
property in the start.jboss target to false in the build.xml:

- Dor g. ki e. deno=f al se

Note that this will create a completely empty version of the workbench. To be able to start modeling
processes, the following elements need to be created first:

» Organizational unit

» Repository (new or clone existing one)

* Project
5.6.2. Workbench Authentication

The workbench web application is using the "default” security domain for authenticating and
authorizing users (as specified in the WEB-INF/jboss-web.xml inside the wars).

The application server is configured by default to use properties files for specifying users. Note
that this is for demo purposes only (as passwords and roles are stored in simple property files).
The security domain is configured in the standalone.xml configuration file as follows:

<security-donmai n nane="ot her" cache-type="defaul t">
<aut henti cati on>
<l ogi n- nodul e code="User sRol es" fl ag="required">
<mpdul e- opti on nane="usersProperties" val ue="${j boss. server.config.dir}/
users. properties"/>

63

Chapter 5. jBPM Installer

<nmpdul e-opti on nane="rol esProperties" val ue="$%${j boss. server.config.dir}/
rol es. properties"/>
</ | ogi n- rodul e>
</ aut henti cati on>
</ security-donai n>

By default, these configuration files contain the following users:

Table 5.1. Default users

Password Workbench roles Task roles
admin admin admin,analyst
krisv krisv admin,analyst
john john analyst Accounting,PM
mary mary analyst HR
sales-rep sales-rep analyst sales
jack jack analyst IT
katy katy analyst HR
salaboy salaboy admin,analyst IT,HR,Accounting

Authentication can be customized by editing the authentication and configuration files in the jopm-
installer/auth folder and/or by changing the standalone-*.xml files in the jbpme-installer folder. Note
that you need to rerun the installer to make sure the modified files are copied and picked correctly.

5.6.3. Using your own database

5.6.3.1. Introduction

By default, the jbpm-installer uses an H2 database for persisting runtime data. In this section we
will:

1. modify the persistence settings for runtime persistence of process instance state

2. test the startup with our new settings!

You will need a local instance of a database, in this case we will use MySQL.

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there
are following types of persistent entities used by jBPM:

« entities used for saving the actual session and process instance information - aka runtime data.
« entities used for logging and generating reports - aka audit log.

* entities used by the task service.

64

Using your own database

“persistent entities” in this context, are java classes that represent information in the database.

5.6.3.2. Database setup

In the MySQL database used in this quickstart, create a single user:

 user/schema "jbpm" with password "jbpm" (which will be used to persist all entities)

If you end up using different names for your user/schemas, please make a note of where we insert
"jopm" in the configuation files.

If you want to try this quickstart with another database, a section at the end of this quickstart
describes what you may need to modify.

5.6.3.3. Configuration

The following files define the persistence settings for the jbpm-installer demo:

* jbpme-installer/db/jbpm-persistence-JPA2.xml
 Application server configuration

+ standalone-*.xml

Tip

There are multiple standalone.xml files available (depending on whether you are
using JBoss AS 7.1.1 or JBoss EAP 6.1.1 and whether you are running the normal
or full profile). The full profile is required to use the JMS component for remote
integration. Best practice is to update all standalone.xml files to have consistent
setup but most important is to have standalone-full-as-7.1.1.Final.xml properly
configured as this is used by default by the installer.

Do the following:

» Disable H2 default data base and enable mysql data base in build.properties

default is H2

H2.version=1.3. 168

db. nane=h2

db. driver.jar.name=${db. nane}.j ar

db. driver.downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/
${H2. versi on}/ h2-${H2. version}.j ar

#nysql

65

Chapter 5. jBPM Installer

db. nanme=nysql

db. dri ver. nodul e. prefi x=com nysql

db. driver.jar.nanme=${db. nane} - connector-j ava.j ar

db. dri ver. downl oad. url =https://repository.jboss. org/ nexus/ service/l ocal /
repositories/central/content/ nmysql/nysql -connector-java/5.1. 18/ nysql -
connector-java-5.1.18.jar

e db/j bpm persi stence-JPA2. xm :

This is the JPA persistence file that defines the persistence settings used by jBPM for both the
process engine information, the logging/BAM information and task service.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property nanme="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/ >

In the case of a MySql database, you need to change it to:

<property nane="hi ber nat e. di al ect"
val ue="org. hi bernate. di al ect. \ySQLDi al ect"/ >

For those of you who decided to use another database, a list of the available hibernate
dialect classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/
html/session-configuration.html#configuration-optional-dialects].

e standal one. xni :

This file is the configuration for the standalone JBoss application server. When the installer
installs the demo, it copies these files to the st andal one/ confi gur at i on directory in the jboss
server directory.

We need to change the datasource configuration in st andal one. xm so that the jBPM process
engine can use our MySQL database

The original file contains the following lines:

<dat asource jndi-nane="j ava:jboss/datasources/jbpnDS' enabl ed="true" use-
j ava- cont ext ="t rue" pool - name="H2DS" >
<connection-url >jdbc: h2: tcp:/ /1 ocal host/runti ne/jbpm denp</ connecti on-url >
<driver>h2</driver>
<pool ></ pool >

66

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

Using your own database

<security>
<user - name>sa</ user - name>
<passwor d></ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver name="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>

Change the lines to the following:

<dat asource | ndi-nane="j ava:j boss/ dat asour ces/j bpnDS" pool - nane="M/SQLDS"
enabl ed="true" use-java-context="true">
<connection-url >j dbc: nysql : //1 ocal host : 3306/ j bpnk/ connecti on-url >
<driver>nysql </ driver>
<pool ></ pool >
<security>
<user - nanme>j bpnk/ user - nane>
<passwor d>j bpnk/ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver name="nysql" nodul e="com nysql ">
<xa- dat asour ce- cl ass>com nysql . j dbc. j dbc2. opti onal . Mysqgl XADat aSour ce</
xa- dat asour ce- cl ass>
</driver>
</drivers>

Starting the deno

We've modified all the necessary files at this point. Now would be a good time to make sure
your database is started up as well!

The installer script copies this file into the jopm-console war before the war is installed on the
server. If you have already run the installer, it is recommended to stop the installer and clean
it first using

ant stop.deno

and

67

Chapter 5. jBPM Installer

ant cl ean. deno

before continuing.

Run

ant install.denp

to (re)install the wars and copy the necessary configuration files. Once you've done that, (re)start
the demo using

ant start.deno

* Probl ens?
If this isn't working for you, please try the following:

» Please double check the files you've modified: | wrote this, but still made mistakes when
changing files!

» Please make sure that you don't secretly have another (unmodified) instance of JBoss AS
running.

« If neither of those work (and you're using MySQL), please do then let us know.
5.6.3.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when
going through the steps above:

« Change the JDBC URLSs, usernames and passwords, and Hibernate dialect lines to match your
database information in the configuration files mentioned above.

« In order to make sure your driver will be correctly installed in the JBoss AS 7 server, you
can do one of two things. Both ways are explained here [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7].

* Install [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7#Installing_a JDBC_driver_as_a_module] the driver jar as a
module, which is what the install script does.

68

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module

Using your own database

e Otherwise, you can modify and install [https://community.jboss.org/
wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the
downloaded jar as a deployment. In this case you will have to copy the jar yourself to the
st andal one/ depl oynent s directory.

If you choose to install driver as JBoss module, please do the following:

 Disable default H2 driver properties

default is H2

H2.version=1. 3. 168

db. name=h2

db.driver.jar.name=${db. nane}.j ar

db. driver.downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/
${H2. version}/ h2-${H2. versi on}.j ar

» Copy one of the example configs (mysql or postgresql)

#postresq

db. nane=postresq

db. dri ver. nodul e. prefix=or g/ post gresq

db. driver.jar.name=${db. nanme}-j dbc.jar

db. driver.downl oad. url =https://repository.jboss. org/ nexus/content/
reposi tories/thirdparty-upl oads/ post gresql/postgresqgl/9.1-902.j dbc4/
post gresql -9. 1-902. j dbc4. j ar

» Change the db. nane property in bui | d. properties to the name of the downloaded jdbc
driver jar you placed in db/ dri vers.

» Change the <dri ver > information in the <dat asour ce> section of st andal one. xm so that
it refers to the name of your driver module (see next step). For example:
<driver>postgresql </driver>

» Further on in st andal one. xm is the <dri ver s> section of the <dat asour ces> (note the
plural: drivers, datasources). We need to do the following with this file:
< Change the name of the driver to match the name in the last step,

« Give an appropriate name to the module,

69

https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment

Chapter 5. jBPM Installer

« And fill in the correct name of the XA datasource class to use.
For example:

<drivers>
<driver name="postgresql" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gresql . xa. PGXADat aSour ce</ xa- dat asour ce-
cl ass>
</driver>
</drivers>

Change the db.driver.nodul e. prefix property in build. properties to the same
“value” you used for the module name in standal one.xnl . In the example above, |
used “org. post gresql” which means that | should then use org/ postgresqgl for the
db. dri ver. nodul e. prefix property.

Lastly, you'll have to create the db/ ${ db. name} _nodul e. xn file. As an example you can
use db/mysqgl_module.xml, so just make a copy of it and:

¢ Change the name of the module to match the db. dri ver. nodul e. pref i x property above

¢ Change the name of the module resource to the name of the JDBC driver jar that was
downloaded.
The top of the original file looks like this:

<nodul e xm ns="urn:j boss: nodul e: 1. 0" nanme="com nysql ">
<resour ces>
<resource-root path="nysql-connector-java.jar"/>
</ resources>

Change those lines to look like this, for example:

<nodul e xm ns="urn:j boss: nodul e: 1. 0" nane="org. post gresql ">
<r esour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>
</resources>

5.6.4. |BPM data base schema scripts (DDL scripts)

By default the demo setup makes use of Hibernate auto ddl generation capabilities to build up
the complete data base schema, including all tables, sequences, etc. This might not always be

70

jBPM installer script

welcomed (by your database administrator) and thus the installer provides DDL scripts for most
popular databases.

Table 5.2. DDL scripts

Data base name Location

db2 jbpm-installer/db/ddI-scripts/db2

derby jbpm-installer/db/ddI-scripts/derby

h2 jbpm-installer/db/ddI-scripts/h2

hsqgldb jbpm-installer/db/ddl-scripts/hsqldb
mysql5 jbpm-installer/db/ddI-scripts/mysql5
mysgqlinnodb jbpm-installer/db/ddI-scripts/mysqglinnodb
oracle jbpm-installer/db/ddI-scripts/oracle
postgresq| jbpm-installer/db/ddI-scripts/postgresq|l
sqlserver jbpm-installer/db/ddI-scripts/sqlserver
sqlserver2008 jbpm-installer/db/ddI-scripts/sqlserver2008

DDL scripts are provided for both jBPM and Quartz schemas although Quartz schema DDL script
is only required when the timer service should be configured with Quartz database job store. See
the section on timers for additional details.

This can be used to initially create the database schema, but it can also serve as the basis for
any\ optimization that needs to be applied - such as indexes, etc.

5.6.5. |BPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require
additional attention but in case it does, here is a list of available targets that might be needed to
perform some of the steps manually.

Table 5.3. JBPM installer available targets

Target Description

clean.db cleans up data base used by jBPM demo
(applies only to H2 data base)

clean.demo cleans up entire installation so new installation
can be performed

clean.demo.noeclipse same as clean.demo but does not remove
eclipse

clean.eclipse removes eclipse and its workspace

clean.generated.dd| removes DDL scripts generated if any

clean.jboss removes application server with all its

deployments

71

Chapter 5. jBPM Installer

Target Description

clean.jboss.repository removes repository content for demo setup
(guvnor maven repo, niogit, etc)

download.dashboard downloads jBPM dashboard component (BAM)

download.db.driver downloads db driver configured in
build.properties

download.ddl.dependencies downloads all dependencies required to run
DDL script generation tool

download.droolsjbpm.eclipse downloads drools and jbpm eclipse plugin
download.eclipse downloads eclipse distribution
download.jboss downloads Jboss Application Server
download.jBPM.bin downloads jBPM binary distribution (jBPM libs
and its dependencies)
download.jBPM.console downloads jBPM console for JBoss AS
install.dashboard.into.jboss installs jBPM dashboard into JBoss AS
install.db.files installs db driver as JBoss module
install.demo installs complete demo environment
install.demo.eclipse installs Eclipse with all jBPM plugins, no server
installation
install.demo.noeclipse similar to install.demo but skips eclipse
installation
install.dependencies installs custom libraries (such as work item

handlers, etc) into the jbpm console

install.droolsjbpm-eclipse.into.eclipse installs droolsjbpm eclipse plugin into eclipse

install.eclipse install eclipse IDE

install.jpboss installs JBoss AS

install.jBPM-console.into.jboss installs jBPM console application into JBoss
AS

5.7. Frequently Asked Questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarily
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

72

Frequently Asked Questions

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console. What can | do?

A: You can check the server log for possible exceptions: jbpme-installer/jboss-as-{version}/
standalone/log/server.log (for JBoss AS7).

For all other questions, try contacting the jBPM community as described in the Getting Started
chapter.

73

74

Chapter 6.

Chapter 6. Examples

6.1. Introduction

The web-based workbench by default will install two sample repositories that contain various
sample projects that help you getting started. This section shows different examples that can be
found in the jbpm-playground repository (also available here: https://github.com/droolsjbpm/jbpm-
playground). All these examples are high level and business oriented.

If you want to contribute with these examples please get in touch with any member of the jBPM/
Drools Team.

6.2. Human Resources Example

Let's imagine for a second that you work for a Software company that works with several
projects and from time to time the company wants to hire new developers. So, which employees,
Departments and Systems are required to Hire a new Developer in your company? Trying to
answering these questions will help you to define your business process. The following figure,
represents how does this process works for Acme Inc. We can clearly see that three Departments
are involved: Human Resources, IT and Accounting teams are involved. Inside our company we
have Katy from the Human Resources Team, Jack on the IT team and John from the Accounting
team involved. Notice that there are other people inside each team, but we will be using Katy,
Jack and John to demonstrate how to execute the business process.

75

https://github.com/droolsjbpm/jbpm-playground
https://github.com/droolsjbpm/jbpm-playground

Chapter 6. Examples

Resources

~ Y o

™

;5— L
Initial HR
Interview

Lt f -

Notice that there are 6 activities defined inside this business process, 4 of them are User Tasks,
which means that will be handled by people. The other two are Service Tasks, which means an
interaction with another system will be required.

Technical z
Interview -' Job Proposal ’——>

Mail Job
Proposal

=) N _::“ N
Sign Contract }——» Twit new Hire ’——.
\ . .'\. -);

Ty #

The process diagram is self explanatory, but just in case and to avoid confusions this is what is
supposed to happen for each instance of the process that is started a particular candidate:

« The Human Resources Team perform the initial interview to the candidate to see if he/she fits
the profile that the company is looking for.

« TheIT Department perform a technical interview to evaluate the candidate skills and experience.

76

The KIE Project: human-resources

» Based on output of the Human Resources and IT teams, the accounting team create a Job
Proposal which includes the yearly salary for the candidate. The proposal is created based on
the output of both of the interviews (Human Resources and Technical).

» As soon as the proposal has being created it is automatically sent to the candidate via email.

« If the candidate accept the proposal, a new meeting is created with someone from the Human
Resource team to sign the contract.

« If everything goes well, as soon as the process is notified that the candidate was hired, the
system will automatically post a tweet about the new Hire using the twitter service connector.

As you can see Jack, John and Katy will be performing the tasks for this example instance of the
business process, but any person inside the company that have those Roles will be able to claim
and interact with those tasks.

6.2.1. The KIE Project: human-resources

Let's take a look at the Project content in the Authoring Perspective:

7 New [tem = Tools ~

lorer # Project: [human-resources:org.jbpm:1.0] Save | Build & D
jbpm ~ / human-resources ~ Project General Settings
Project Name Human Resources Example
\OCESSES Project
Description
TIONS

posal-taskform
cform
ew-taskform
act-taskform

view-taskform

Group artifact version

Group ID org.jbpm Example: com.myorganization.myprojects @
Artifact ID human-resources Example: MyProject @

JEFINITIONS Version ID 1.0 1.00 @

ritions

As you can see it contains the hiring.bpmn2 process and a set of forms for each human task.
You can explore these knowledge assets by clicking on them. You will notice that different editors
will open for different types of assets. If you click on the Business Process file you will be able to
edit the process definition using the Process Designer:

77

Chapter 6. Examples

s Process [hiring]

DX 9 O A& Wik ff Gk 5 H- (¢4 £~ 4 -H-0 < &

ess Modelling Simulation Results

=4

Send Proposal

&

HE Interview

&

Tech Interview

& &

Sign Contract

Create
Proposal

Feel free to inspect the forms as well. Notice that the Form Modeller will be opened and there you

can edit the forms to fit your requirements.

lorer & Form Modeler [HRInterview-taskform] Save || L
. = Form data origin = =5 Add fields by origin =% Add fields by type | %5 Form properties [_] Show mode @ Bindings |
jbpm ~ human-resources ~ i 50 100 150 E] =] 200 E=] 400 450 500 0

B HTML Iabel s
— ~ : ® Candidate Name
E Simple subform S ?
XOCESSES = 1 eage
5 Multiple subform -~ 3
O Short text I F
"3 eEmaill
TIONS D Long text [3
17
¥ 13
posal-taskform [Float ™ 31 escore
<form i E -
. O Decimal [; |

ew-taskform . [BigDecimal - 0]

act-taskform [Biginteger r~ =

o o

o

view-taskform = I 3

6.2.2. Building the Human Resources Example

In order to build the Project so it gets available in the Process Definitions List you need to go to
the Authoring Perspective and open the Project Editor panel:

78

Building the Human Resources Example

Explore + New Item ~ m
Project Explorer

Data Modeler
example ~ jbpm ~ human-resources -

Once you open the Project Editor, you will see on the top right corner of the panel the button called
Build & Deploy. This button will allow you to create a new Jar artifact that will be deployed to the
Runtime environment as a new Deployment Unit.

' [human-resources:org.jbpm:1.0] Save | Build & Deploy

ct General Settings

Name Human Resources Example

Description

Once you get the visual notification that the project was built and deployed successfully you can
go to the Deployments screen to verify that your artifact is there. In order to do that go to the top
level menu called Deploy -> Deployments

Deploy ~

Deployments

Jobs

In the Deployments screen you will find all the deployed units. By default when you Build & Deploy
a project from the Project Editor, it will be automatically deployed using the default configurations.
That is Singleton Strategy, the default KIE Base and the default KIE Session will be used.

If you want a more advanced deployment, that is selecting a different strategy or using non defaults
KIE Base or KIE Session you will be able to undeploy and re-deploy your artifacts using their GAV
and selecting non default options.

79

Chapter 6. Examples

Find Use

t Units New Deployment Unit Re
Group ID Artifact Version Kie Base Name Kie Session Name Runtime strategy

ation: 1.0 org.jppm evaluation 1.0 DEFAULT DEFAULT SINGLETON

n-resources:1.0 org.jobpm human-resources 1.0 DEFAULT DEFAULT SINGLETON

Once your artifact that contains the process definition is deployed, the Process Definition will be
available under Process Management -> Process Definitions.

6.2.3. Create a new Process Instance

In order to create new Process Instances you need to go to Process Management -> Process
Definitions.

Here you will find all the available process definitions in the runtime environment. If you want to
add new process definitions look at the previous sections where it is explained how to build and
deploy KIE Projects.

Find Use

finitions Refresh %= ~ Details Options' Re

Version Actions
Definition Id hiring
1 ®Q
Definition Name Hiring a Developer
per 1 @ Q

Deployment org.jbpm:human-resources:1.0

Human Tasks Sign Contract
Create Proposal
Tech Interview
HR Interview

Human Task Count 4

User and Groups HR - Sign Contract
Accounting - Create Proposal
IT - Tech Interview
HR - HR Interview

80

Examples zip

You can start process instances using any of the two options highlated in the previous screen.

In order to create a new process instance most of the processes will require you to fill in some
information and for that a form will be displayed. For this specific use case the name of the
candidate that we are interviewing is required:

Hiring a Developer

*Candidate Mame

salaboy|

If we hit the big Start button, the new process instance will be created and the first task of the
process will be create for the Human Resources Team. Depending on the assigned roles of the
user that you are using to create the process instance you will be able to see the created task or
not. In order to see the first task of the process we will need to logout tot he application and log
in as someone from the Human Resources team.

After starting the process you can go to the Task -> Tasks section to interact with the created
human tasks. Notice that in order to see the tasks in the task lists you will need to belong to some
specific user Groups. For example the HR Interview task will be visitable for any member of the
HR group, the Tech Interview will be visible by any member of the IT Group.

6.3. Examples zip

A zip file of examples can also be downloaded from the downloads page, containing various
examples that can be opened in the Eclipse-based Developers Tools. Simply download and unzip
the examples artefact and import into your Eclipse workspace.

81

82

Part Ill. JBPM Core

Using the jBPM Core Engine

Chapter 7.

Chapter 7. Core Engine API

7.1. Overview

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definitions
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

AT Ty
~

Stateful
Knowledge Knowledge
Base Session

Process

Process
Instance

Definition

For example, imagine you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order

85

Chapter 7. Core Engine API

comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and create one session that you then use to execute all your processes.

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

7.2. KieBase

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a KieHelper to load processes from various resources (for example from the classpath
or from the file system), and then create a new knowledge base from that helper. The following
code snippet shows how to create a knowledge base consisting of only one process definition
(using in this case a resource from the classpath).

Ki eHel per ki eHel per = new Ki eHel per();

Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce(" MyProcess. bpmm"))
.build();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

86

KieSession

This is considered manual creation of knowledge base and while it is simple it is not recommended
for real application development but more for try outs. Following you'll find recommended
and much more powerful way of building knowledge base, knowledge session and more -
RuntimeManager.

7.3. KieSession

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
snippet shows how easy it is to create a session based on the previously created knowledge base,
and to start a process (by id).

Ki eSessi on ksessi on = kbase. newKi eSessi on() ;
Processl nst ance processl nstance = ksession.startProcess("com sanpl e. M/Process");

7.3.1. ProcessRuntime

The ProcessRunt i ne interface defines all the session methods for interacting with processes, as
shown below.

/**

* Start a new process instance. The process (definition) that should
* be used is referenced by the given process id.

*

* processld The id of the process that should be started
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld);

/**

* Start a new process instance. The process (definition) that shoul d

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as name-val ue pairs), and these will be set

* as variabl es of the process instance.

* processld the id of the process that should be started

* paranmeters the process variables that should be set when starting the process it
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld,
Map<String, bject> paraneters);

/‘k*

* Signals the engine that an event has occurred. The type paraneter defines

87

Chapter 7. Core Engine API

* which type of event and the event paraneter can contain additional information
* related to the event. All process instances that are listening to this type
* of (external) event will be notified. For performance reasons, this type of event
* signaling should only be used i f one process i nstance shoul d be able to notify
* other process instances. For internal event within one process instance, use the
* signal Event nethod that also include the processlnstanceld of the process instance
* in question.
*
* @aramtype the type of event
* @param event the data associated with this event
*/
voi d signal Event (String type,
Cbj ect event);

/**

* Signals the process instance that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All node instances inside the given process instance that

* are listening to this type of (internal) event will be notified. Note that the event
* will only be processed inside the given process instance. All other process instances
* waiting for this type of event will not be notified.

* @paramtype the type of event
* @param event the data associated with this event
* @aram processlnstanceld the id of the process instance that shoul d be signal ed
*/
voi d signal Event (String type,
Cbj ect event,
I ong processlnstancel d);

/**
* Returns a collection of currently active process instances. Note that only process
* instances that are currently | oaded and active inside the engine will be returned.
* When using persistence, it is likely not all running process instances will be | oaded
*as their state will be stored persistently. It is reconmended not to use this
* method to collect information about the state of your process instances but to use
* a history log for that purpose.
*
* @eturn a collection of process instances currently active in the session
*/
Col | ecti on<Processl nst ance> get Processl nstances();

/**

* Returns the process instance with the given id. Note that only active process instance:s
* will be returned. |f a process instance has been conpl eted already, this nethod will re
* null.
*
* @aramid the id of the process instance

* @eturn the process instance with the givenidor null if it cannot be found

88

Event Listeners

]
Processl nst ance get Processl nstance(l ong processl nstancel d);

/**

* Aborts the process instance with the given id. |f the process instance has been conpl et
* (or aborted), or the process instance cannot be found, this nmethod will throw an

* | |1 egal Argunent Excepti on.

*

* id the id of the process instance

*/
voi d abort Processl nstance(l ong processl nstancel d);

/**

* Returns the Workltemvanager related to this session. This can be used to
* regi ster new WorkltenHandl ers or to conplete (or abort) Wrkltens.

*

* t he Workltemvanager related to this session
*/
Wor kI t emvanager get Wor ki t emVanager () ;

7.3.2. Event Listeners

The session provides methods for registering and removing listeners. A ProcessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event);

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl eted(ProcessConpl et edEvent event);

voi d bef oreNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d bef oreNodeLeft(ProcessNodelLeftEvent event);

voi d afterNodeLeft(ProcessNodelLeftEvent event);

voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVariabl eChanged(ProcessVari abl eChangedEvent event);

A note about before and after events: these events typically act like a stack, which means that any
events that occur as a direct result of the previous event, will occur between the before and the
after of that event. For example, if a subsequent node is triggered as result of leaving a node, the

89

Chapter 7. Core Engine API

node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodeLeftEvent
of the node that is left (as the triggering of the second node is a direct result of leaving the first
node). Doing that allows us to derive cause relationships between events more easily. Similarly,
all node triggered and node left events that are the direct result of starting a process will occur
between the beforeProcessStarted and afterProcessStarted events. In general, if you just want
to be notified when a particular event occurs, you should be looking at the before events only (as
they occur immediately before the event actually occurs). When only looking at the after events,
one might get the impression that the events are fired in the wrong order, but because the after
events are triggered as a stack (after events will only fire when all events that were triggered as
a result of this event have already fired). After events should only be used if you want to make
sure that all processing related to this has ended (for example, when you want to be notified when
starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending
on the type of node, some nodes might only generate node left events, others might only generate
node triggered events. Catching intermediate events for example are not generating triggered
events (they are only generating left events, as they are not really triggered by another node, rather
activated from outside). Similarly, throwing intermediate events are not generating left events
(they are only generating triggered events, as they are not really left, as they have no outgoing
connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Knowl edgeRunt i neLogger Fact ory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created
must be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

Knowl edgeRunti neLogger | ogger = Knowl edgeRunti neLogger Fact ory. newri | eLogger (ksession, "test"

90

Correlation Keys

/1 add invocations to the process engine here
/'l e.g. ksession.startProcess(processld)

| ogger. cl ose();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

= =, RuleFlow started: ruleflow[com.sample.ruleflow]
= #) RuleFlow node triggered: Start in process ruleflow[com.sample. ruleflow]
+ $] RuleFlow node triggered: Hello in process ruleflow[com sample ruleflow]
= $] RuleFlow node triggered: End in process ruleflow[com sample ruleflow]

=z RuleFlow completed: ruleflow[com.sample.ruleflow]

7.3.3. Correlation Keys

Common requriement when working with processes is ability to assign given process instance
sort of business identifier that can be later on referenced without knowing the actual (generated)
id of the process instance. To provide such capabilities jBPM allows to use CorrelationKey that is
composed of CorrelationProperties. CorrelationKey can have either single property describing it
(which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface
Correl ati onAwar ePr ocessRunt i me

that exposes following methods:

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as nane-val ue pairs), and these will be set

* as variables of the process instance

*

* processld the id of the process that should be started
* correl ati onKey custom correl ati on key that can be used to identify process inste
* paranmeters the process variables that shoul d be set when starting the process

91

Chapter 7. Core Engine API

*

*/

the Processlnstance that represents the instance of the process that was starte

Processl nstance startProcess(String processld, Correl ationKey correl ati onKey, Map<String,

/**

* Creates a new process instance (but does not yet start it). The process
* (definition) that should be used is referenced by the given process id.
* Parameters can be passed to the process instance (as nane-val ue pairs),
* and these wil | be set as vari abl es of the process i nstance. You should only
* use this nmethod if you need a reference to the process instance before actually
* starting it. Oherw se, use startProcess.

*
*
*
*

*

*/

processld the id of the process that should be started

correl ati onKey custom correl ati on key that can be used to identify process inste
paraneters the process variables that should be set when creating the process i
the Processlnstance that represents the instance of the process that was createé

Processl nst ance createProcesslnstance(String processld, Correl ati onKey correl ati onKey, M

/**

* Returns the process instance with the given correlationKey. Note that only active proc

* il
* null.

*

be returned. |If a process instance has been conpleted already, this nethod will r

* @aramcorrel ati onKey the custom correl ati on key assi gned when process instance was cCre
* @eturn the process instance with the givenidor null if it cannot be found

*/

Processl nst ance get Processl nstance(Correl ati onKey correl ati onKey);

Correlation is usually used with long running processes and thus require persistence to be enabled
to be able to permanently store correlation information.

7.3.4. Threads

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement
brings with it a number of complications. While it might seem that multi-threading would bring
performance benefits with it, the extra logic needed to make sure the different threads work

92

RuntimeManager

together well means that this is not guaranteed. There is also the extra overhead incurred because
we need to avoid race conditions and deadlocks.

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread. sl eep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
conpl et eWorkl ten(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

7.4. RuntimeManager

7.4.1. Overview

RuntimeManager has been introduced to simplify and empower usage of knowledge API
especially in context of processes. It provides configurable strategies that control actual runtime
execution (how KieSessions are provided) and by default provides following:

« Singleton - runtime manager maintains single KieSession regardless of number of processes
available

» Per Request - runtime manager delivers new KieSession for every request

« Per Process Instance - runtime manager maintains mapping between process instance and
KieSession and always provides same KieSession whenever working with given process
instance

93

Chapter 7. Core Engine API

Runtime Manager is primary responsible for mananging and delivering to the caller instances of
RuntimeEngine. In turn RuntimeEngine encapsulates two the most important elements of BPM
engine:

» KieSession

* TaskService

Both of these components are already configured to work with each other smoothly without
additional configuration from end user. No more need to register human task handler or keeping
track if it's connected to the service or not.

public interface RuntineManager {

/**
* Returns <code>Runti neEngi ne</ code> instance that is fully initialized:
*
* <|i>KiseSession is created or | oaded depending on the strategy</Ili>
* <|j>TaskServiceisinitialized and attached to ksession (vialistener)
* WrkltenHandl ers are initialized and regi stered on ksession
*<| i >Event Li st ener s(pr ocess, agenda,wor ki ngmenor y)ar e ni ti al i zedandaddedt oksessi on</
li>
* <ful >
tpar acont ext heoncr et @npl enent ati oot heont ext hai support ethgi vercode>Runt i neManager </
code>
* @eturn instance of the <code>Runti neEngi ne</code>
*/
Runt i meEngi ne get Runti neEngi ne(Cont ext <?> cont ext);

| **
* Unique identifier of the <code>Runti neManager </ code>
* @eturn
*/

String getldentifier();

/**
* Di sposes <code>Runt i neEngi ne</
code> and notifies all listeners about that fact.
* This nethod should always be used to dispose <code>Runti nmeEngi ne</
code> that is not needed
* anynore.

* ksession. di spose() shall never be used with Runti neManager as it will break the internal
* mechani sns of t he nmanager responsi bl e for clear and efficient di sposal.

* Di spose is not needed i f <code>Runt i mreEngi ne</
code> was obtained within active JTA transaction,
* this nmeans that when get Runti meEngi ne nethod was invoked during active JTA transaction t
* the runtime engine will happen automatically on transaction conpletion.
* @aramruntime
*/

94

Overview

voi d di sposeRunti neEngi ne(Runti neEngi ne runti ne);

/**

* Cl oses <code>Runt i mreManager </
code> and releases it's resources. Shall always be called when
* runtinme manager is not needed any nore. Otherwise it will still be active and operatione
*/
voi d cl ose();

RuntimeEngine interface provides the most important methods to get access to engine
components:

public interface RuntimeEngi ne {

/**

* Returns <code>Ki eSessi on</ code> configured for this <code>Runti nmeEngi ne</
code>

*/
Ki eSessi on get Ki eSessi on();

/‘k*

* Returns <code>TaskServi ce</code> configured for this <code>Runti neEngi ne</
code>

*
]
TaskServi ce get TaskService();

RuntimeManager will ensure that regadless of the strategy it will provide same capabilities when
it comes to initialization and configuration of the RuntimeEngine. That means

» KieSession will be loaded with same factories (either in memory or JPA based)

» WorkltemHandlers will be registered on every KieSession (either loaded from db or newly
created)

« Event listeners (Process, Agenda, WorkingMemory) will be registered on every KieSession
(either loaded from db or newly created)

» TaskService will be configured with:
» JTA transaction mananger

» same entity manager factory as for the KieSession

95

Chapter 7. Core Engine API

» UserGroupCallback from environment

On the other hand RuntimeManager maintains the engine disposal as well by providing dedicated
methods to dispose RuntimeEngine when it's no more needed to release any resources it might
aquired.

7.4.2. Strategies

Singleton strategy - instructs RuntimeManager to maintain single instance of RuntimeEngine
(and in turn single instance of KieSession and TaskService). Access to the RuntimeEngine
is synchronized and by that thread safe although it comes with performance penelty due to
synchronization. This strategy is similar to what was available by default in jBPM version 5.x and
it's considered easiest strategy and recommended to start with.

It has following characteristics that are important to evaluate while considering it for given scenario:

« small memory footprint - single instance of runtime engine and task service
» simple and compact in design and usage
 good fit for low to medium load on process engine due to synchronized access

« due to single KieSession instance all state objects (such as facts) are directly visible to all
process instances and vice versa

e not contextual - meaning when retrieving instances of RuntimeEngine from singleton
RuntimeManager Context instance is not important and usually EmptyContext.get() is used
although null argument is acceptable as well

» keeps track of id of KieSession used between RuntimeManager restarts to ensure it will use
same session - this id is stored as serialized file on disc in temp location that depends on the
environment can be one of following:

« value given by jopm.data.dir system property
 value given by jboss.server.data.dir system property
 value given by java.io.tmpdir system property

Per request strategy - instructs RuntimeManager to provide new instance of RuntimeEngine for
every request. As request RuntimeManager will consider one or more invocations within single
transaction. It must return same instance of RuntimeEngine within single transaction to ensure
correctness of state as otherwise operation done in one call would not be visible in the other. This
is sort of "stateless" strategy that provides only request scope state and once request is completed
RuntimeEngine will be permanently destroyed - KieSession information will be removed from data
base in case persistence was used.

It has following characteristics:

« completely isolated process engine and task service operations for every request

96

Usage

« completely stateless, storing facts makes sense only for the duration of the request

« good fit for high load, stateless processes (ho facts or timers involved that shall be preserved
between requests)

« KieSession is only available during life time of request and at the end is destroyed

e not contextual - meaning when retrieving instances of RuntimeEngine from per request
RuntimeManager Context instance is not important and usually EmptyContext.get() is used
although null argument is acceptable as well

Per process instance strategy - instructs RuntimeManager to maintain strick relationship
between KieSession and Processinstance. That means that KieSession will be available as long
as Processlinstance that it belongs to is active. This strategy provides most flexible approach
to secure advanced capabilities of the engine like rule evaluation in isolation (for given process
instance only), maximum performance and reduction of potential bottle necks intruduced by
synchronization and at the same time reduces number of KieSessions to the actual number of
process isntances rather than number of requests (in contrast to per request strategy).

It has following characteristics:

« most advanced strategy to provide isolation to given process instance only

* maintains strict relationship between KieSession and Processinstance to ensure it will always
deliver same KieSession for given Processinstance

« merges life cycle of KieSession with Processinstance making both to be disposed on process
instance completion (complete or abort)

« allows to maintain data (such as facts, timers) in scope of process instance - only process
instance will have access to that data

« introduces bit of overhead due to need to look up and load KieSession for process instance

- validates usage of KieSession so it cannot be (ab)used for other process instances, in such a
case exception is thrown

* is contextual - accepts following context instances:

* EmptyContext or null - when starting process instance as there is no process instance id
available yet

» ProcessinstanceldContext - used after process instance was created

» CorrelationKeyContext - used as an alternative to ProcessinstanceldContext to use custom
(business) key instead of process instance id

7.4.3. Usage

Regular usage scenario for RuntimeManager is:

97

Chapter 7. Core Engine API

» At application startup

 build RuntimeManager and keep it for entire life time of the application, it's thread safe and
can be (or even should be) accessed concurrently

e Atrequest

e get RuntimeEngine from RuntimeManager using proper context instance dedicated to
strategy of RuntimeManager

 get KieSession and/or TaskService from RuntimeEngine

» perform operations on KieSession and/or TaskService such as startProcess, completeTask,
etc

e once done with processing dispose RuntimeEngine using
RuntimeManager.disposeRuntimeEngine method

At application shutdown

 close RuntimeManager

@ Note
When RuntimeEngine is obtained from RuntimeManager within active JTA
transaction then there is no need to dispose RuntimeEngine at the end as
RuntimeManager will automatically dipose the RuntimeEngine on transaction
completion (regardless of the completion status commit or rollback)

7.4.3.1. Example

Here is how you can build RuntimeManager and get RuntimeEngine (that encapsulates
KieSession and TaskService) from it:

[l first configure environnent that will be used by Runti nmeManager
Runt i meEnvi ronnent envi ronment = Runti meEnvi ronment Bui | der. Fact ory. get ()
. newDef aul t | nMenor yBui | der ()
. addAsset (Resour ceFact ory. newC assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)

.get();

/1l next create RuntinmeManager - in this case singleton strategy is chosen
Runt i mreManager manager = Runti meManager Factory. Factory. get (). newSi ngl et onRunt i neManager (en\

/1 then get RuntinmeEngi ne out of nmanager - using enpty context as singleton
does not kep track

98

Configuration

/1 of runtine engine as there is only one
Runt i mreEngi ne runti ne = nmanager. get Runti meEngi ne(Enpt yCont ext. get ());

/'l get KieSession fromruntinme runtimeEngine - already initialized with all
handl ers, listeners, etc that were configured

/1 on the environment

Ki eSessi on ksession = runti meEngi ne. get Ki eSessi on();

/1 add invocations to the process engine here
/'l e.g. ksession.startProcess(processld)

/1 and | ast di spose the runtine engine
manager . di sposeRunt i neEngi ne(runti meEngi ne);

This example provides simplest (minimal) way of using RuntimeManager and RuntimeEngine
although it provides few quite valuable information:

» KieSession will be in memory only - by using newDefaultinMemoryBuilder
« there will be single process available for execution - by adding it as an asset

» TaskService will be configured and attached to KieSession via LocalHTWorkltemHandler to
support user task capabilities within processes

7.4.4. Configuration

The complexity of knowing when to create, dispose, register handlers, etc is taken away from the
end user and moved to the runtime manager that knows when/how to perform such operations
but still allows to have a fine grained control over this process by providing comprehensive
configuration of the RuntimeEnvironment.

public interface RuntimeEnvironment {

/**

* Returns <code>Ki eBase</code> that shall be used by the manager

*/
Ki eBase get Ki eBase();

/**

* Ki eSessi onenvi ronnment t hat shal | beusedtocreatei nstances of <code>Ki eSessi on</
code>

*

*/

99

Chapter 7. Core Engine API

Envi r onnent get Envi r onnment () ;

/**
* Ki eSessi onconfigurationthat shal | beusedt ocreat ei nst ances of <code>Ki eSessi on</
code>
* @eturn
*/
Ki eSessi onConfi guration get Configuration();

/**
* Indicates if persistence shall be used for the KieSession instances
* @eturn
*/

bool ean usePersi stence();

/**
* Delivers concrete inplenentation of <code>Regi sterableltensFactory</
code> to obtain handlers and |isteners
* that shall be registered on instances of <code>Ki eSessi on</code>
* @eturn
*/
Regi st erabl el tensFact ory get Regi sterabl el tensFactory();

/**
* Delivers concrete inplenmentation of <code>UserG oupCallback</
code> that shall be registered on instances
* of <code>TaskServi ce</code> for managi ng users and groups.
* @eturn
*/
User GroupCal | back get User GroupCal | back();

/**

* Delivers customclass | oader that shall be used by the process engi ne and task service i
* @eturn

*/

Cl assLoader get Cl assLoader();

/**

* Closes the environment allowing to close all dependi ng conponents such as ksession fact«
*/

voi d cl ose();

7.4.4.1. Building RuntimeEnvironment

While RuntimeEnvironment interface provides mostly access to data kept as part of the
environment and will be used by the RuntimeManager, users should take advantage of builder
style class that provides fluent API to configure RuntimeEnvironment with predefined settings.

100

Configuration

public interface RuntimeEnvironnentBuil der {
publi ¢ Runti nmeEnvironnent Bui | der persistence(bool ean persi stenceEnabl ed);
publ i c Runti meEnvironnent Bui | der entityManager Fact ory(Obj ect enf);
publ i ¢ Runti neEnvi ronment Bui | der addAsset (Resour ce asset, ResourceType type);
publ i ¢ Runti meEnvironnent Bui | der addEnvi ronment Entry(String nanme, Cbject val ue);
publ i ¢ Runti neEnvi ronnment Bui | der addConfi guration(String nane, String val ue);
publ i ¢ Runti meEnvironnent Bui | der know edgeBase(Ki eBase kbase);
publi ¢ Runti meEnvironnent Bui | der user GroupCal | back(User GroupCal | back cal | back);
publi ¢ Runti meEnvironnent Bui | der registerabl eltensFactory(Registerabl eltensFactory factory)
publi ¢ Runti nmeEnvironnent get();
publi ¢ Runti meEnvironnent Bui | der cl assLoader (Cl assLoader cl);

publ i ¢ Runti meEnvironnent Bui | der schedul er Servi ce(Cbj ect gl obal Schedul er) ;

Instances of the RuntimeEnvironmentBuilder can be obtained via
RuntimeEnvironmentBuilderFactory that provides preconfigured sets of builder to simplify and
help users to build the environment for the RuntimeManager.

public interface RuntineEnvironmentBuil derFactory {

/~k~k
* Provides conpletely enpty <code>RuntinmeEnvironnentBuil der</
code> instance that allows to manual |y
* set all required conponents instead of relying on any defaults.
* new i nstance of <code>Runti meEnvironnent Bui | der </ code>
*/
public Runti meEnvironnent Bui | der newEnpt yBui | der () ;

/**
* Provides default configuration of <code>RuntinmeEnvironnentBuil der</
code> that is based on:
*
* <|i>Defaul t Runti neEnvironment</Ii>
* <ful >

101

Chapter 7. Core Engine API

(s @eturn new instance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvir onnent
*/
public RuntinmeEnvironnent Bui | der newDef aul t Bui | der () ;

/**
* Provides default configuration of <code>RuntinmeEnvironnentBuil der</
code> that is based on:
*
* <|i>Defaul tRunti neEnvironment</Ii>
* <ful >
* but it does not have persistence for process engine configured so it will only store pr¢
& @eturn new instance of <code>Runt i neEnvi r onnment Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironment
*/
publ i ¢ Runti meEnvironnent Bui | der newDef aul t | nMenor yBui | der () ;

/**
* Provides default configuration of <code>RuntinmeEnvironnentBuil der</
code> that is based on:
*
* <|i>Defaul t Runti meEnvironment</1i>
* <ful >
* This one is tailored to works snoothly with kjars as the notion of kbase and ksessions
* @aram groupld group id of kjar
* @paramartifactld artifact id of kjar
* (@aram version version nunber of kjar
k @eturn new instance of <code>Runt i neEnvi r onnment Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
public Runti meEnvironnent Bui | der newDef aul t Buil der(String groupld, String artifactld, Strit

/**
* Provides default configuration of <code>RuntimeEnvironnentBuil der</
code> that is based on:
*
* <|i>Defaul t Runti neEnvironment</Ii>
*
* This one is tailored to works snoothly with kjars as the notion of kbase and ksessions
* @aram groupld group id of kjar
* @paramartifactld artifact id of kjar
* @aram version version nunber of kjar
* @aram kbaseNanme name of the kbase defined in knodule.xm stored in kjar

102

Configuration

* @aramksessi onNanme nane of the ksession define in knodul e.xml storedin kjar
* @eturn new instance of <code>Runti nmeEnvironnmentBuil der</
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironment
*/
public Runti meEnvironnent Bui | der newDef aul t Bui l der (String groupld, String artifactld, Strir

/**
* Provides default configuration of <code>RuntineEnvironnentBuil der</
code> that is based on:

*
* <l i>Defaul t Runti neEnvironnment</1i>
* <ful >

* This one is tailored to works snmoothly with kjars as the notion of kbase and ksessions
* @aramrel easel d <code>Rel easel d</ code> that described the kjar
(s @eturn new instance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvi r onnent
*/
public RuntinmeEnvironnent Bui | der newDef aul t Bui | der (Rel easel d rel easel d);

/**
* Provides default configuration of <code>RuntinmeEnvironnentBuil der</
code> that is based on:

*
* <l i>Defaul t Runti neEnvi ronnment</1i>
* <ful >

* This one is tailored to works snoothly with kjars as the notion of kbase and ksessions
* @aramrel easel d <code>Rel easel d</ code> t hat described the kjar
* @ar am kbaseNane nane of the kbase defined in knodul e.xm stored in kjar

* @aramksessi onNanme nane of the ksessi on define in knodul e.xml storedin kjar

* @eturn new instance of <code>Runti nmeEnvironnmentBuil der</
code> that is already preconfigured with defaults

*
* @ee Defaul t Runti neEnvi ronnent
*/

public Runti nmeEnvironnent Bui | der newDef aul t Bui | der (Rel easel d rel easeld, String kbaseNane,

/**
* Provides default configuration of <code>RuntineEnvironnentBuil der</
code> that is based on:

*
* <l i>Defaul t Runti neEnvironnment</1i>
* <ful >

*1treliesonKi eCl asspat hCont ai ner t hat requi rest ohaveknodul e. xm present i n META-
I NF fol der which
* defines the kjar itself.

103

Chapter 7. Core Engine API

* Expects to use default kbase and ksession from knodul e.
s @eturn new instance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults

*

* @ee Defaul t Runti neEnvi ronnent
*/
publ i ¢ Runti meEnvironnent Bui | der newCl asspat hKnodul eDef aul t Bui | der () ;

/**

* Provides default configuration of <code>RuntinmeEnvironnentBuil der</
code> that is based on:
*
* <|i>Defaul t Runti neEnvironment</I|i>
* <ful >
*1treliesonKi eCl asspat hCont ai ner t hat requi rest ohaveknodul e. xm present i n META-
I NF fol der which
* defines the kjar itself.
* @aram kbaseNanme nanme of the kbase defined in knodul e. xm
* @aram ksessi onNane nane of the ksession define in knodul e. xm
s @eturn new instance of <code>Runt i neEnvi r onnment Bui | der </
code> that is already preconfigured with defaults

*

* @ee Defaul t Runti neEnvi r onnent
*/
public Runti meEnvironnent Bui | der newd asspat hKnodul eDef aul t Bui | der (String kbaseName, Stri n

Besides KieSession Runtime Manager provides access to TaskService too as integrated
component of a RuntimeEngine that will always be configured and ready for communication
between process engine and task service.

Since the default builder was used, it will already come with predefined set of elements that

consists of:

» Persistence unit name will be set to org.jppm.persistence.jpa (for both process engine and task
service)

* Human Task handler will be automatically registered on KieSession

» JPA based history log event listener will be automatically registered on KieSession

« Event listener to trigger rule task evaluation (fireAllRules) will be automatically registered on
KieSession

7.4.4.2. Registering handlers and listeners

To extend it with your own handlers or listeners a dedicated mechanism is provided that comes
as implementation of RegisterableltemsFactory

104

Configuration

/**
* Ret ur ns new i nstances of <code>Wor kI t enHandl er </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtinme provi des <code>Runt i neEngi ne</

code> in case handl er need to nake use of it internally
* @eturn map of handlers to be registered - in case of no handlers enpty map shall be ret
*/
Map<String, WorkltenmHandl er> get Wor kl t enHandl er s(Runt i meEngi ne runti me);

/**
* Ret ur ns new instances of <code>Pr ocessEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtime provi des <code>Runt i mreEngi ne</

code> in case listeners need to make use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be
*/
Li st <ProcessEvent Li st ener > get ProcessEvent Li st ener s(Runti neEngi ne runti ne);

/**
* Ret ur ns new instances of <code>AgendaEvent Li st ener </
code> that will be registered on <code>Runti meEngi ne</ code>
* @ar am runtime provi des <code>Runt i mreEngi ne</
code> in case |listeners need to make use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be

*/
Li st <AgendaEvent Li st ener > get AgendaEvent Li st ener s(Runti meEngi ne runti ne);

/**
* Returns new instances of <code>Wrki ngMenoryEventLi stener</
code> that will be registered on <code>Runti meEngi ne</ code>
* @ar am runtime provi des <code>Runt i neEngi ne</
code> in case listeners need to nake use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be
*/

Li st <Wor ki ngMenor yEvent Li st ener > get Wor ki ngMenor yEvent Li st ener s(Runt i neEngi ne runti ne);

A best practice is to just extend those that come out of the box and just add your own. Although
extanstions are not always needed as the default implementations of RegisterableltemsFactory
provides possibility to define custom handlers and listeners. Following is a list of available
implementations that might be useful (they are ordered in the hierarchy of inheritance):

 org.jopm.runtime.manager.impl.SimpleRegisterableltemsFactory - simplest possible
implementations that comes empty and is based on reflection to produce instances of handlers
and listeners based on given class names

105

Chapter 7. Core Engine API

* org.jopm.runtime.manager.impl.DefaultRegisterableltemsFactory - extension of the Simple
implementation that introduces defaults described above and still provides same capabilities
as Simple implementation

 org.jopm.runtime.manager.impl.KModuleRegisterableltemsFactory - exension of default
implementation that provides specific capabilities for kmodule and still provides same
capabilities as Simple implementation

* org.jopm.runtime.manager.impl.cdi.lnjectableRegisterableltemsFactory - extension of default
implementation that is tailored for CDI environments and provides CDI style approach to finding
handlers and listeners via producers

Alternatively, simple (stateless or requiring only KieSession) work item handlers might be
registered in the well known way - defined as part of CustomWorkltem.conf file that shall be placed
on class path. To use this approach do following:

» create file "drools.session.conf' inside META-INF of the root of the class path, for web
applications it will be WEB-INF/classes/META-INF

« add following line to drools.session.conf file "drools.workltemHandlers =
CustomWorkltemHandlers.conf"

* create file "CustomWorkltemHandlers.conf" inside META-INF of the root of the class path, for
web applications it will be WEB-INF/classes/META-INF

* define custom work item handlers in MVEL style inside CustomWorkltemHandlers.conf

"Log": new org.jbpm process.instance.inpl.denmo. Syst enOut Wr kil t enHandl er (),
"WebServi ce": new
org.j bpm process. wor kit em webservi ce. WebSer vi ceWor kI t emHandl er (ksessi on),
"Rest": new org.jbpm process. workitemrest. RESTWrkl t enmHandl er (),
"Service Task" :
org.j bpm process. wor ki t em bpmm2. Ser vi ceTaskHand!| er (ksessi on)

]

new

And that's it, now all these work item handlers will be registered for any KieSession created by
that application, regardless if it uses RuntimeManager or not.

7.4.4.2.1. Registering handlers and listeners in CDI environment

When using RuntimeManager in CDI environment there are dedicated interfaces that can be used
to provide custom WorkltemHandlers and EventListeners to the RuntimeEngine.

public interface WrkltenHandl er Producer {

/‘k*k

* Returns map of (key = work item nane, value work item handl er instance) of work itens

106

Configuration

* to be registered on KieSession

*

* Parameters that mght be given are as follows:
*

* ksession

* taskService

* <|i>runtineManager

* <ful >

* @aramidentifier - identifier of the owner - usually Runti meManager that allows the pr¢
* and provide valid instances for given owner

* @aram parans - owner might provide sone paraneters, usually KieSession, TaskService, R
* @eturn map of work item handl er instances (recomendation is to always return new inste
*/

Map<String, WrkltenHandl er> get WrkltenHandl ers(String identifier, Mp<String, Object> par

Event listener producer shall be annotated with proper qualifier to indicate what type of listeners
they provide, so pick one of following to indicate they type:

* @Process - for ProcessEventListener
* @Agenda - for AgendaEventListener

* @WorkingMemory - for WorkingMemoryEventListener

public interface EventListenerProducer<T> {

/**
* Returns list of instances for given (T) type of listeners
*

* Parameters that mght be given are as foll ows:
*
* ksession
* taskService
* <|i>runtineManager
* <ful >
* @aramidentifier - identifier of the owner - usually Runti meManager that allows the pr¢
* and provide valid instances for given owner
* @aram parans - owner mght provide sone paraneters, usually KieSession, TaskService, R
* @eturn list of listener instances (recomrendation is to always return new instances whe
*/
Li st <T> get Event Li steners(String identifier, Map<String, Object> parans);

Implementations of these interfaces shall be packaged as bean archive (includes beans.xml inside
META-INF) and placed on application classpath (e.g. WEB-INF/lib for web application). THat is

107

Chapter 7. Core Engine API

enough for CDI based RuntimeManager to discover them and register on every KieSession that
is created or loaded from data store.

Some parameters are provided to the producers to allow handlers/listeners to eb more stateful
and be able to do more advanced things with the engine - like signal of the engine or process
instance in case of an error. Thus all components are provided:

+ KieSession
» TaskService

* RuntimeManager

@ Note
Whenever there is a need to interact with the process engine/task service from
within handler or listener, recommended approach is to use RuntimeManager and
retrieve RuntimeEngine (and then KieSession and/or TaskService) from it as that
will ensure proper state managed according to strategy

In addition, some filtering can be applied based on identifier (that is given as argument to the
methods) to decide if given RuntimeManager shall recieve handlers/listeners or not.

7.5. Configuration

There are several control parameters available to alter engine default behavior. This allows to fine
tune the execution for the environment needs and actual requirements. All of these parameters
are set as JVM system properties, usually with -D when starting program e.g. application server.

Table 7.1. Control parameters

Name Possible values Default value Description

jbpm.ut.jndi.lookup String Alternative JNDI
name to be
used when there
iS no access
to the default
one (java:comp/

UserTransaction)
jopm.enable.multi.cione|false false Enables multiple
incoming/
outgoing
sequence flows
support for
activities

108

Configuration

NET[E]

jbpm.business.cal

jbpm.overdue.time

jbpm.process.nam

jbpm.loop.level.dis

org.kie.mail.sessiad

jbpm.usergroup.ca

Possible values Default value

eStamgroperties

rlabeigy

estongparator

ahleffalse

rString

|Baicigproperties

/

Description

Allows to provide

jbpm.business.caleatarraibgerties

2000

true

mail/
jbpmMailSession

/

classpath
location of
business
calendar
configuration file

Specifies
for
timers to allow
proper
initialization, in
milliseconds

delay
overdue

Allows to provide
alternative
comparator class
to empower start
process by name
feature, if not set
NumberVersionCao
is used

Allows to enable

or disable loop
iteration tracking,
to allow
advanced loop
support when
using XOR
gateways

Allows to provide
alternative JNDI
name for mail
session used by
Task Deadlines

Allows to provide

jbpm.usergroup.caliiterkatioperties

classpath
location for user
group callback
implementation
(LDAP, DB)

mparator

109

Chapter 7. Core Engine API

NET[E]

jbpm.user.group.n%empmgg

jbpm.user.info.pro

org.jopm.ht.user.s

org.quartz.propert

jbpm.data.dir

org.kie.executor.p

org.kie.executor.re

Possible values Default value

pBitiag

epaiatpr

€String

String

obiteger

thytegant

Description

${jboss.server.configlidinis to provide

roles.properties

/

alternative
location of
roles.properties
for
JBossUserGroupd

Allows to provide

jbpm.user.info.propaltiesative

classpath

location of user
info configuration
(used by
LDAPUserInfolmp

Allows to provide

alternative
separator of
actors and

groups for user
tasks, default is
comma (,)

Allows to provide
location of the

quartz config
file to activate
quartz based

timer service

${jboss.server.dataAligws to provide

is available
otherwise
${java.io.tmpdir}

location where
data files
produced by
jobpm should be
stored

Allows to provide
thread pool size
for jopm executor

Allows to provide
number of retries
attempted in
case of error by
jbpm executor

Callbacklimpl

1)

110

Configuration

NET[E]

Possible values Default value

org.kie.executor.intémteger

org.kie.executor.d

daidghise

3

true

Description

Allows to provide
frequency used
to check for
pending jobs by
jbpm executor, in
seconds

Enables or
disable jbpm
executor

111

112

Chapter 8.

Chapter 8. Processes

8.1. What is BPMN 2.0

@ Note
"The primary goal of BPMN is to provide a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts
of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people
who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means
that you can use all the different jBPM6 tooling to model, execute, manage and monitor
your business processes using the BPMN 2.0 format for specifying your executable business
processes. Actually, the full BPMN 2.0 specification also includes details on how to represent
things like choreographies and collaboration. The jBPM project however focuses on that part of
the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be
used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

113

Chapter 8. Processes

elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:

» Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
< End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
< Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

 Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message,
Compensation)

* Activities
e Script Task
e Task
» Service Task
» User Task
* Business Rule Task
e Manual Task
e Send Task
* Receive Task
¢ Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
» Event Sub-Process
* Ad-Hoc Sub-Process
« Data-Object
» Gateways
« Diverging

* Exclusive

114

What is BPMN 2.0

* Inclusive
» Parallel
+ Event-Based
e Converging
» Exclusive
* Inclusive
o Parallel
* Lanes
» Data
 Java type language
* Process properties
» Embedded Sub-Process properties
* Activity properties
« Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
t ar get Nanespace="htt p: // ww. exanpl e. or g/ M ni mal Exanpl e"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL
BPMN20. xsd"
xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPMN 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]j boss. org/drool s">

115

Chapter 8. Processes

<procegw ocessType="Pri vat @'sExecut abl e="t r ua"d="com sanpl e. Hel | oWor | dfane="Hel | o
Worl d" >

<!-- nodes -->
<startEvent id="_1" name="Start Process" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello World"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t erm nat eEvent Definiti on/>
</ endEvent >

<!-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmmdi : BPM\Di agr an>
<bpmdi : BPMNPI ane bpmmEl enent ="M ni mal " >
<bpmmdi : BPMNShape bpmeEl enrent =" _1" >
<dc: Bounds x="15" y="91" w dt h="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="95" y="88" wi dth="83" height="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="258" y="86" w dth="48" height="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNEdge bpmEl enent =" _1-_ 2" >
<di : waypoi nt x="39" y="115" />
<di : waypoi nt x="75" y="46" />
<di : waypoi nt x="136" y="112" />
</ bpmdi : BPM\Edge>
<bpmmdi : BPMNEdge bpmEl enent =" _2- 3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bpmrmdi : BPM\Edge>
</ bpmdi : BPMNPI ane>
</ bprdi : BPMNDi agr an®

</definitions>

To create your own process using BPMN 2.0 format, you can

116

What is BPMN 2.0

« The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.
We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You
could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes
and then export them to BPMN 2.0 format or save them into repository and import them so they
can be executed.

« A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

« You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

@ Note
Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler
for process modeling. It can still be used for limited number of supported
elements but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the
wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using
the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Ki eHel per ki eHel per = new Ki eHel per();
Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce(" sanpl e. bprm2"))
Lbuild();

return ki eBase;

... and how to execute this process ...

Ki eBase kbase = creat eKnow edgeBase();
Ki eSessi on ksessi on = kbase. newKi eSessi on() ;
ksession. start Process("com sanpl e. Hel | oWworl d");

117

Chapter 8. Processes

For more detail, check out the chapter on the API and the basics.

8.2. Process

If—b{ HR Evaluation }—-’
5]
P2 e
Self Evaluation
Start Galdwax‘ » PM Evaluation Gai.'ay End

Figure 8.1.

=

(i

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

8.2.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

8.2.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging
and dropping different nodes on a canvas and editing the properties of these nodes. The
graphical BPMN2 modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/
bpmn2-modeler/] that provides number of contributors where one of them is jBPM project. Once
you have set up a jBPM project (see the installer for creating a working Eclipse environment where
you can start), you can start adding processes. When in a project, launch the "New" wizard (use
Ctrl+N) or right-click the directory you would like to put your process in and select "New", then
"File". Give the file a name and the extension bpmn (e.g. MyProcess.bpmn). This will open up
the process editor (you can safely ignore the warning that the file could not be read, this is just
because the file is still empty).

118

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/

Creating a process

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

Figure 8.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
palette of the GUI. Clicking on an element in your process allows you to set the properties of that
element. You can connect the nodes (as long as it is permitted by the different types of nodes)
by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

8.2.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions id="Definition"
t ar get Nanespace="htt p: // ww. j boss. or g/ dr ool s"
typeLanguage="http://ww. j ava. com j avaTypes"
expressi onLanguage="htt p://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL" Rul e Task
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

119

Chapter 8. Processes

xsi : schenaLocati on="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL
BPMN20. xsd"
xm ns: g="http://ww. jboss. org/drool s/fl ow gpd"
xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\ 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]j boss. org/drool s">

<processrocessType="Privat e"i sExecut abl e="true"i d="com sanpl e. hel | o"nane="Hel | o
Process" >

<l-- nodes -->
<startEvent id="_1" nanme="Start" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello Wirld"); </script>
</ scri pt Task>
<endEvent id="_3" name="End" >
<t erm nat eEvent Defi ni ti on/ >
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmmdi : BPM\Di agr an®
<bpmmdi : BPMNPI ane bpmmEl enent =" com sanpl e. hel | 0" >
<bpmdi : BPMNShape bpmmEl enent ="_1" >
<dc: Bounds x="16" y="16" wi dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bprmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="96" y="16" wi dth="80" hei ght="48" />
</ bpmmdi : BPMNShape>
<bpmmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="208" y="16" wi dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNEdge bpmEl enent =" _1- 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bprmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2- 3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bprmdi : BPMNEdge>
</ bprmdi : BPMNPI ane>
</ bpmdi : BPMNDi agr an®

120

Creating a process

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

121

= End Events =~ Activities

@ Cancel " | Ad-Hoc Sub-Process
&) Compensation " 1 Sub-Process
() End Event L call Activity
(8 Error | Task
@A) Escalation W Manual Task
&) Message _'.'—"_ User Task
@ signal & Script Task
{2\ Torminate - 54 Business Rule Task
= Gateways . Service Task
= Intermediate Catch Events Send Task
Conditional EA Receive Task
@ Error = Artifacts
i Escalation = Connections
@ Message Association {undirected}
@ Signal Association {one-way)
@ Timer —+ Sequence Flow

= Data Objects
[Y Data Object

[Intermediate Throw Events

@ Escalation

{1 Throw Event (= End Events
&l Message (= Gateways
{ Signal {39- Exclusive Gateway

s . 2 Event-Based Gateway
tart Events

) o Inclusive Gateway
@ Compensation
Conditional

@ Error

@ Escalation

@ Parallel Gateway

Start Event
@ Message

@ Signal

€Ty Timer -

Figure 8.3. The different types of Figure 8.4. The different types of
BPMN2 events BPMNZ2 activities and gateways

122

Creating a process

8.2.1.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

Id: The unique id of the process.

* Name: The display name of the process.

Version: The version number of the process.

Package: The package (namespace) the process is defined in.

{7 humanTaskSample

Description + QAttributes
Process
Id | org.jbpm.writedocument
Interfaces
Mame |humanTaskSample
Definitions P
Data ltems Wersion | 1

Package Name | defaultPackage
Ad Hoc
Is Executable @I

Figure 8.5. BPMN2 process properties

In addition to that following can be defined as well:

» Variables: Variables can be defined to store data during the execution of your process. See
section “??7?” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“?2?2?" for detalils.

123

Chapter 8. Processes

{7 humanTaskSample

Description b Global List for Process "humanTaskSample™

Process

Interfaces

— = Variable List for Process "humanTaskSample"

Definitions

Data ltems :
Name Dara Type
approval_document String
approval_translatedDocument String
approval_reviewComment String

Figure 8.6. BPMN2 process variables

8.3. Activities

8.3.1. Script task

=1

Script Task 1

Figure 8.7. Script task

Represents a script that should be executed in this process. A Script Task should have one
incoming connection and one outgoing connection. The associated action specifies what should
be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext that
references the ProcessCont ext object (which can, for example, be used to access the current
Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession

124

Script task

using kcont ext . get Know edgeRunt i me()). When a Script Task is reached in the process, it will
execute the action and then continue with the next node. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by
business users, it is probably wise to avoid low-level implementation details inside the process,
including inside these script tasks. A Script Task could still be used to quickly manipulate
variables etc. but other concepts like a Service Task could be used to model more complex
behaviour in a higher-level manner.

» Scripts should be immediate. They are using the engine thread to execute the script. Scripts
that could take some time to execute should probably be modeled as an asynchronous Service
Task.

« You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the
knowledge of the engine, which can be problematic, especially when using persistence and
transactions. In general, it is probably wiser to model communication with an external service
using a service task.

« Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

125

Chapter 8. Processes

8.3.2. Service task

Sarvice Task 1

Figure 8.8. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

* |d: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

« Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

e On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

126

User task

» Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oSt ri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

8.3.3. User task

I bser Task 1

Figure 8.9. User task

Processes can also involve tasks that need to be executed by human actors. A User Task
represents an atomic task to be executed by a human actor. It should have one incoming
connection and one outgoing connection. User Tasks can be used in combination with Swimlanes
to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more
details. A User Task is actually nothing more than a specific type of service node (of type "Human
Task"). A User Task contains the following properties:

 Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.
» TaskName: The name of the human task.

 Priority: An integer indicating the priority of the human task.

127

Chapter 8. Processes

« Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

« Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

+ Content: The data associated with this task.

* Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

« On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note that
if there is data related to this specific process instance that the end user needs when performing
the task, this data should be passed as the content of the task. The task for example does not
have access to process variables. Check out the chapter on human tasks to get more detail on
how to pass data between human tasks and the process instance.

128

Reusable sub-process

8.3.4. Reusable sub-process

Call Activity 1

Figure 8.10. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion (by default true): If this property is true, this sub-process node will only
continue if the child process that was started has terminated its execution (completed or
aborted); otherwise it will continue immediately after starting the subprocess (so it will not wait
for its completion).

Independent (by default true): If this property is true, the child process is started as an
independent process, which means that the child process will not be terminated if this parent
process is completed (or this sub-process node is cancelled for some other reason); otherwise
the active sub-process will be cancelled on termination of the parent process (or cancellation
of the sub-process node). Note that you can only set independent to "false" only when "Wait
for completion” is set to true.

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

129

Chapter 8. Processes

« Parameter infout mapping: A sub-process node can also define in- and out-mappings for
variables. The variables given in the "in" mapping will be used as parameters (with the
associated parameter name) when starting the process. The variables of the child process that
are defined for the "out" mappings will be copied to the variables of this process when the
child process has been completed. Note that you can use "out" mappings only when "Wait for
completion” is set to true.

8.3.5. Business rule task

=

Business Fule Task 1

Figure 8.11. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated
when the node is reached. A Rule Task should have one incoming connection and one outgoing
connection. Rules are defined in separate files using the Drools rule format. Rules can become
part of a specific ruleflow group using the r ul ef | ow gr oup attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of
the corresponding ruleflow-group (if any). Execution will automatically continue to the next node
if there are no more active rules in this ruleflow group. As a result, during the execution of a
ruleflow group, new activations belonging to the currently active ruleflow group can be added
to the Agenda due to changes made to the facts by the other rules. Note that the process will
immediately continue with the next node if it encounters a ruleflow group where there are no active
rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

 Id: The id of the node (which is unique within one node container).

130

Embedded sub-process

* Name: The display name of the node.

e RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

8.3.6. Embedded sub-process

Sub Process 1

Usar Task 2

Figure 8.12. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but also
the definition of additional variables that are accessible for all nodes inside this container. A sub-
process should have one incoming connection and one outgoing connection. It should also contain
one start node that defines where to start (inside the Sub-Process) when you reach the sub-
process. It should also contain one or more end events. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process. A sub-process ends when
there are no more active nodes inside the sub-process. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Variables: Additional variables can be defined to store data during the execution of this node.
See section “??7?” for details.

131

Chapter 8. Processes

8.3.7. Multi-instance sub-process

Sub Process 1

Usar Task 2

Figure 8.13. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple
instance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

« CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Coll ection. If the collection expression evaluates to null or an empty collection,
the multiple instances sub-process will be completed immediately and follow its outgoing
connection.

* VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

132

Events

8.4. Events

8.4.1. Start event

otart

Figure 8.14. Start event

The start of the process. A process should have exactly one start node (nhone start node which
does not have event definitions), which cannot have incoming connections and should have
one outgoing connection. Whenever a process is started, execution will start at this node and
automatically continue to the first node linked to this start event, and so on. It contains the following
properties:

* Id: The id of the node (which is unigque within one node container).

* Name: The display name of the node.

133

Chapter 8. Processes

8.4.2. End events

8.4.2.1. End event

End

Figure 8.15. End event

The end of the process. A process should have one or more end events. The End Event
should have one incoming connection and cannot have any outgoing connections. It contains the
following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are cancelled. Non-terminating end events
are simply end for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance

134

End events

will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process and top level continues.

8.4.2.2. Throwing error event

Figure 8.16. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

Id: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

FaultName: The name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

135

Chapter 8. Processes

Error handlers can be specified using boundary events.
8.4.3. Intermediate events

8.4.3.1. Catching timer event

Figure 8.17. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled
(e.g., by completing or aborting the enclosing process instance). Consult the section “???" for
more information. The Timer Event contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d][#h] [#n][#s][#[ns]]. This allows you to specify the number
of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify
anything). For example, the expression "1h" will wait one hour before triggering the timer. The
expression could also use #{expr} to dynamically derive the delay based on some process

136

Intermediate events

variable. Expr in this case could be a process variable, or a more complex expression based
on a process variable (e.g. myVariable.getValue()).

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]]. You
can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if
you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer again. The expression could also use #{expr} to dynamically derive the period based
on some process variable. Expr in this case could be a process variable, or a more complex
expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are
not automatic tasks like script task that have no wait state as timer will not have a change to fire
before task completion.

8.4.3.2. Catching signal event

Figure 8.18. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have one incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

137

Chapter 8. Processes

Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.

» EventType: The type of event that is expected.

VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

Itis also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Know edgeRunt i me() . si gnal Event (event Type, dat a,
kcont ext . get Processl nstance().getld());

A throwing signal event could also be used to model the signaling of an event.

138

Figure 8.19. Diverging gateway

Chapter 8. Processes

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes
currently supported:

« AND or parallel means that the control flow will continue in all outgoing connections
simultaneously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. The constraint with the lowest priority number that evaluates to true is selected.
Constraints can be specified using different dialects. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the engine will
throw an exception at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the engine will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

140

Figure 8.20. Converging gateway

Chapter 8. Processes

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are three types of splits currently
supported:

e AND or parallel means that is will wait until all incoming branches are completed before
continuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifitis triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

« OR or inclusive means that it continues as soon as all direct active paths of its incoming
branches has been completed. This is complex merge behaviour that is described in BPMN2
specification but in most cases it means that OR join will wait for all active flows that started
in OR split. Some advanced cases (including other gateways in between or repeatable timers)
will be causing different "direct active path" calculation.

It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Type: The type of the Join node, i.e. AND, OR or XOR.

8.6. Others

8.6.1. Variables

While the flow chart focuses on specifying the control flow of the process, it is usually also
necessary to look at the process from a data perspective. Throughout the execution of a process,
data can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables
can be defined inside a variable scope. The top-level scope is the variable scope of the process
itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:

142

Variables

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

e Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

/'l call nethod on the process variable "person"
person. set Age(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

« Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. get Name()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

« Various other nodes can also access data. Event nodes for example can store the data
associated to the event in a variable, etc. Check the properties of the different node types for
more information.

» Process variables can be accessed also from the Java code of your application. It is done by
casting of Processl nst ance to Wr kf | owPr ocessl nst ance. See the following example:

vari abl e = ((Workfl owProcessl nstance) processlnstance).getVariabl e("vari abl eNane");

To list all the process variables see the following code snippet:

143

Chapter 8. Processes

org.j bpm process. i nstance. Processl nstance processlnstance = ...;
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nste
Map<String, Object> variables = variabl eScope. getVari abl es();

Note that when you use persistence then you have to use a command based approach to get
all process variables:

Map<String, Object> variables = ksessi on. execut e(new Generi cCommand<Map<String, oject>>() {
public Map<String, Object> execute(Context context) {
Ki eSessi on ksession = ((Know edgeCommandCont ext) context). get St at ef ul Knowl edgesessi or
org.j bpm process. i nstance. Processl nstance processlnstance = (org.jbpm process. i nstanc
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nstance) processlnstance. get Cont
Map<String, Object> variables = variabl eScope. get Vari abl es();
return vari abl es;

1)

Finally, processes (and rules) all have access to globals, i.e. globally defined variables
and data in the Knowledge Session. Globals are directly accessible in actions just like
variables. Globals need to be defined as part of the process before they can be used. You
can for example define globals by clicking the globals button when specifying an action
script in the Eclipse action property editor. You can also set the value of a global from
the outside using ksessi on. set d obal (nane, val ue) or from inside process scripts using
kcont ext . get Know edgeRunti ne() . set d obal (name, val ue) ;.

8.6.2. Scripts

Action scripts can be used in different ways:

« Within a Script Task,
* As entry or exit actions, with a number of nodes.

Actions have access to globals and the \variables that are defined for
the process and the predefined variable kcontext. This variable is of type
org. ki e. api.runtime. process. ProcessCont ext and can be used for several tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodel nst ance node = kcont ext. get Nodel nst ance() ;

144

Constraints

String nane = node. get NodeName() ;

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processl nstance proc = kcontext.getProcessl nstance();
proc. signal Event (type, eventbject);

» Getting or setting the value of variables.

« Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. name instead of person. get Name()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints
out the name of the person in the "requester" variable of the process would look like this:

/1 Java dial ect
Systemout. println(person.getName());

/1 MEL dial ect
Systemout. println(person.nane);

8.6.3. Constraints

Constraints can be used in various locations in your processes, for example in a diverging
gateway. [BPM supports two types of constraints:

» Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in
the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

return person.get Age() > 20;

A similar example of a valid MVEL code constraint is:

145

Chapter 8. Processes

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the Working Memory and matching for the process instance in your
rule constraint. We have added special logic to make sure that a variable pr ocessl nst ance of
type Wor kf | owPr ocessl nst ance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to
insert the process instance into the session and, possibly, to update it, for example, using Java
code or an on-entry or on-exit or explicit action in your process. The following example of a rule
constraint will search for a person with the same name as the value stored in the variable "name"
of the process:

processl nstance : Workfl owPr ocessl nst ance()
Person(nane == (processlnstance. getVari abl e("nane")))
add nore constraints here ...

8.6.4. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

8.6.4.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of O results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify
the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't
specify anything). For example, the expression "1h" will wait one hour before triggering the timer
(again).

146

Process Fluent API

8.6.4.2. Configure timer 1ISO-8601 date format

since version 6 timers can be configured with valid [SO8601 [http://en.wikipedia.org/wiki/
ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can be
defined as data dn time representation, time duration or repeating intervals

« Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM
 Duration - PT1S - fires once after 1 second

» Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5
times every second

8.6.4.3. Configure timer with process variables

In addition to two configuration otpions above timers can be specified using process variable
that can consists of string representation of ether delay and period or 1ISO8601 date format.
By specifying #{variable} engine will dynamically extract process variable and use it as timer
expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

» A Timer Event may be added to the process flow. Its activation starts the timer, and when it
triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing
connection of a timer with a positive period is triggered multiple times. Cancelling a Timer node
also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process or tasks as a boundary event.

8.7. Process Fluent API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APISs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kf | ow. core and or g. | bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

8.7.1. Example

This is a simple example of a basic process with a script task only:

147

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Chapter 8. Processes

Rul eFl owPr ocessFactory factory =

Rul eFl owPr ocessFact ory. creat eProcess("org. j bpm Hel | oWorl d");
factory

/| Header

.name("Hel | oWor | dProcess")

.version("1.0")

. packageNane("org. j bpnt')

/1 Nodes

.startNode(1).nane("Start"). done()

.actionNode(2).name("Action")

.action("java", "Systemout.println(\"Hello Wrld\");").done()

. endNode(3) . nanme(" End") . done()

/'l Connecti ons

.connection(l, 2)

.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();
Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(Resour ceFact ory. newByt eArr ayResour ce(

Xm BPMNPr ocessDunper . | NSTANCE. dunp(pr ocess) . get Bytes()), ResourceType. BPM\2);
Knowl edgeBase kbase = kbui |l der. newKnow edgeBase();
St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. startProcess("org.jbpm Hel | oWorl d");

You can see that we start by calling the static createProcess() method from the
Rul eFl owPr ocessFact ory class. This method creates a new process with the given id and returns
the Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(),
acti onNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have
finished configuring that specific node, the done() method returns you to the current
Rul eFl owPr ocessFact ory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connect i on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

148

Testing

8.8. Testing

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

8.8.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific
use cases, for example test the output based on the existing input. To simplify unit testing, jBPM
includes a helper class called JbpmJUnitBaseTestCase (in the jopm-test module) that you can
use to greatly simplify your junit testing, by offering:

« helper methods to create a new RuntimeManager and RuntimeEngine for a given (set of)
process(es)

» you can select whether you want to use persistence or not

* assert statements to check
« the state of a process instance (active, completed, aborted)
» which node instances are currently active
» which nodes have been triggered (to check the path that has been followed)
» get the value of variables

For example, conside the following hello world process containing a start event, a script task and
an end event. The following junit test will create a new session, start the process and then verify
whether the process instance completed successfully and whether these three nodes have been

executed.
StarnProcess EndProcess
Figure 8.21.

149

Chapter 8. Processes

public class ProcessPersistenceTest extends JbpmJUni t BaseTest Case {

publi c ProcessPersistenceTest () {
/| setup data source, enabl e persistence
super (true, true);

@est

public void testProcess() {
[l create runtine nmanager with single process - hello. bpm
creat eRunti nreManager (" hel | 0. bpm") ;

/1 take RuntinmeManager to work with process engine
Runt i meEngi ne runti meEngi ne = get Runti neEngi ne();

/'l get access to KieSession instance
Ki eSessi on ksession = runti meEngi ne. get Ki eSessi on();

/| start process
Processl nst ance processlnstance = ksession.startProcess("com sanpl e. bprm. hel | 0");

/'l check whether the process instance has conpl eted successfully
assert Processl nst anceConpl et ed(processl nstance. getld(), ksession);

/1 check what nodes have been triggered
assert NodeTri gger ed(processl nstance.getld(), "StartProcess", "Hello", "EndProcess");

JbpmJUnitBaseTestCase acts as base test case class that shall be used for jBPM related tests.
It provides four usage areas:

« JUnit life cycle methods

» setUp: executed @Before and configures data source and EntityManagerFactory, cleans up
Singleton's session id

» tearDown: executed @After and clears out history, closes EntityManagerFactory and data
source, disposes RuntimeEngines and RuntimeManager

» Knowledge Base and KnowledgeSession management methods

» createRuntimeManager creates RuntimeManager for given set of assets and selected
strategy

 disposeRuntimeManager disposes RuntimeManager currently active in the scope of test

» getRuntimeEngine creates new RuntimeEngine for given context

150

Unit testing

» Assertions
» assertProcessinstanceCompleted
» assertProcessinstanceAborted
» assertProcessinstanceActive
» assertNodeActive
» assertNodeTriggered
» assertProcessVarExists
» assertNodeExists
« assertVersionEquals
» assertProcessNameEquals
» Helper methods
» getDs - returns currently configured data source
» getEmf - returns currently configured EntityManagerFactory

» getTestWorkltemHandler - returns test work item handler that might be registered in addition
to what is registered by default

« clearHistory - clears history log
 setupPoolingDataSource - sets up data source

JbpmJUnitBaseTestCase supports all three predefined RuntimeManager strategies as part of
the unit testing. It's enough to specify which strategy shall be used whenever creating runtime
manager as part of single test:

public class ProcessHumanTaskTest extends JbpmlUnit BaseTest Case {

private static final Logger |ogger = LoggerFactory. getlLogger (ProcessHumanTaskTest. cl ass);

publi ¢ ProcessHumanTaskTest () {
super (true, false);

@est

public void testProcessProcesslnstanceStrategy() {

Runt i mreManager manager = creat eRunti meManager (Strat egy. PROCESS | NSTANCE, "nmanager",

Runt i meEngi ne runti neEngi ne = get Runti neEngi ne(Processl nst ancel dCont ext. get());
Ki eSessi on ksessi on = runti meEngi ne. get Ki eSessi on();
TaskServi ce taskServi ce = runti meEngi ne. get TaskServi ce();

151

Chapter 8. Processes

i nt ksessionlD = ksession.getld();
Processl nst ance processl nstance = ksession.startProcess("com sanpl e. bpm. hel | 0");

assert Processl nst anceActi ve(processl nstance. getld(), ksession);
assert NodeTri gger ed(processl nstance. getld(), "Start", "Task 1");

manager . di sposeRunt i meEngi ne(runti meEngi ne) ;
runti meEngi ne = get Runti neEngi ne(Processl nst ancel dCont ext . get (processl nstance. getld()))

ksessi on = runti meEngi ne. get Ki eSessi on();
taskService = runti neEngi ne. get TaskServi ce();

assert Equal s(ksessi onl D, ksession.getld());

/1 let john execute Task 1
Li st <TaskSummary>| i st =t askSer vi ce. get TasksAssi gnedAsPot ent i al Oamer ("j ohn", "en-
UK");
TaskSummary task = |ist.get(0);
| ogger.info("John is executing task {}", task.getName());
taskService.start(task.getld(), "john");
taskServi ce. conpl ete(task.getld(), "john", null)

assert NodeTri gger ed(processl nstance. getld(), "Task 2");

/1l let mary execute Task 2

Iist = taskService. get TasksAssi gnedAsPot enti al Omer ("mary", "en-UK");
t ask list.get(0);

| ogger.info("Mary is executing task {}", task.getNanme());
taskService.start(task.getld(), "mary");
taskService. conpl ete(task.getld(), "mary", null);

assert NodeTri gger ed(processl nstance.getld(), "End");
assert Processl nst anceConpl et ed(processl nstance. getld(), ksession);

Above is more complete example that uses PerProcessinstance runtime manager strategy and
uses task service to deal with user tasks.

8.8.1.1. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the
advantages of our domain-specific process approach is that you can specify yourself how to
actually execute your own domain-specific nodes, by registering a handler. And this handler can
be different depending on your context, allowing you to use testing handlers for unit testing your
process. When you are unit testing your business process, you can register test handlers that

152

Unit testing

then verify whether specific services are requested correctly, and provide test responses for those
services. For example, imagine you have an email node or a human task as part of your process.
When unit testing, you don't want to send out an actual email but rather test whether the email
that is requested contains the correct information (for example the right to email, a personalized
body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

O;{ e]_.®5ent

failed

Failed

Figure 8.22.

public void testProcess2() {

/1 create runtine manager with single process - hello. bpm
creat eRunt i reManager (" sanpl e- process. bprm") ;

/1 take RuntinmeManager to work with process engi ne
Runt i meEngi ne runti meEngi ne = get Runti meEngi ne();

/'l get access to Ki eSession instance
Ki eSessi on ksessi on = runti nmeEngi ne. get Ki eSessi on();

/1 register a test handler for "Enmil"
Test Wor kl t enHandl er testHandl er = get Test Wor kl t enHandl er () ;

153

Chapter 8. Processes

ksessi on. get Wor kl t emvanager (). regi st er Wrkl tenHandl er ("Enmi | ", testHandl er);

[l start the process
Processl nstance processlnstance = ksession. startProcess("com sanpl e. bprm. hel | 02");

assert Processl nst anceActi ve(processl nstance. getld(), ksession);
assert NodeTri gger ed(processl nstance. getld(), "StartProcess", "Enmil");

/'l check whether the email has been requested

Wor kIt em wor kl tem = t est Handl er. get Wor kl t en() ;

assert Not Nul | (workltem;

assert Equal s("Emai | ", workltem get Narme());

assert Equal s("nme@rai | . cont', workltem get Paraneter (" Fron'));
assert Equal s("you@rai | . cont, wor kltem get Paraneter ("To"));

/1 notify the engine the enmail has been sent

ksessi on. get Wor kil t emveinager () . abort Wor kl t em{wor kl t em get1d());

assert Processl nst anceAbort ed(processl nstance. getld(), ksession);

assert NodeTri gger ed(processl nstance.getld(), "Gateway", "Failed", "Error");

8.8.1.2. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,
the junit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the junit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

Persistence (and setup of data source) is controlled by the super constructor and allows following

« default, no arg constructor - the most simple test case configuration (does NOT initialize data
source and does NOT configure session persistence) - this is usually used for in memory
process management, without human task interaction

 super(boolean, boolean) - allows to explicitly configure persistence and data source. This is the
most common way of bootstrapping test cases for jBPM

» super(true, false) - to execute with in memory process management with human tasks
persistence

e super(true, true) - to execute with persistent process management with human tasks
persistence

« super(boolean, boolean, string) - same as super(boolean, boolean) but allows to use another
persistence unit name than default (org.jopm.persistence.jpa)

154

Unit testing

public class ProcessHumanTaskTest extends JbpmlUni t BaseTest Case {

private static final Logger |ogger = LoggerFactory. get Logger (ProcessHumanTaskTest. cl ass);

public ProcessHumanTaskTest () {
/1 configure this tests to not use persistence for process engi ne but
still use it for human tasks
super (true, false);

155

156

Chapter 9.

Chapter 9. Human Tasks

9.1. Introduction

An important aspect of business processes is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed by human
actors.

jBPM supports a special human task node inside processes for modeling this interaction with
human users. This human task node allows process designers to define the properties related to
the task that the human actor needs to execute, like for example the type of task, the actor(s),
or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle
of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.
Note however that this implementation is fully pluggable, meaning that users can integrate their
own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human
task nodes inside your process to model the interaction with human actors, (2) integrate a task
management component (like for example the WS-HumanTask based implementation provided
by jBPM) and (3) have end users interact with a human task client to request their task list and
claim and complete the tasks assigned to them. Each of these three elements will be discussed
in more detail in the next sections.

9.2. Using User Tasks in our Processes

jBPM supports the use of human tasks inside processes using a special User Task node defined
by the BPMN2 Specification(as shown in the figure above). A User Task node represents an
atomic task that needs to be executed by a human actor.

S

HE Interview

[Although jBPM has a special user task node for including human tasks inside a process, human
tasks are considered the same as any other kind of external service that needs to be invoked
and are therefore simply implemented as a domain-specific service. See the chapter on domain-
specific processes to learn more about this.]

A User Task node contains the following core properties:

157

Chapter 9. Human Tasks

» Actors: The actors that are responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

» Group: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

* Name: The display name of the node.

« TaskName: The name of the human task. This name is used to link the task to a Form. It also
represent the internal name of the Task that can be used for other purposes.

« DatalnputSet: all the input variables that the task will recieve to work on. Usually you will be
interested in copying variables from the scope of the process to the scope of the task. (Look at
the data mappings section for an example)

» DataOutputSet: all the output variables that will be generated by the execution of the task. Here
you specify all the name of the variables in the context of the task that you are interested to
copy to the context of the process. (Look at the data mappings section for an example)

« Assignments: here you specify which process variable will be linked to each Data Input and
Data Output mapping. (Look at the data mappings section for an example)

You can edit these variables in the properties view (see below) when selecting the User Task node.
Properties (User) w

Mame Value

=l Core Properties

Actors

Assignments name=&giin_name,out_age->age,outl_mail->mail. ..
DatalnputSet Groupld:Object, Comment: Object,in_name:String

DataOutputSet out_name:3tringout_age:Integer,out_mail:String,out_s. ..

Groups HRE

Name HR Interview
Task Name HRInterview
TaskType & User

H Extra Properties
H Graphical Settings

4 Simulation Properties

A User Task node aslo contains the following extra properties:

158

Data Mappings

* Comment: A comment associated with the human task. Here you can use expressions.
« Content: The data associated with this task.
« Priority: An integer indicating the priority of the human task.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

< On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

= Extra Properties

Comment Candidate: #name}
Content

Created by

Documentation

Locale

Multiple Inst... falze

Motifications

On Entry Act...

On Exit Acti...

Priority

Reassignment An integer indicating the priority of the human

Script Langu... java task
Skippable

9.3. Data Mappings

Human tasks typically present some data related to the task that needs to be performed to the
actor that is executing the task and usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor
and request results.

The data that will be used by the Task needs to be specified when we define the User Task in
our Process. In order to do that we need to define which data will be copied from the process
context to the task context. Notice that the data is copied, so it can be modified inside the Task
context but it will not affect the process variables unless we decide to copy back the value from
the task to the process context.

Most of the times Forms are used to display data to the end user. Allowing them to generate/create
new data that will be propagated to the process context to be used by future activities. In order

159

Chapter 9. Human Tasks

to decide how the information flow from the process to a particular task and from the task to the
process we need to define which pieces of information will be automatically copied by the process
engine. The following sections shows how to do these mappings by configuring the DatalnputSet,
DataOutputSet and the Assignments properties of a User Task.

Let's start defining the Task DatalnputSet:

Editor for Data Input

Add Data Input

.1
2
3

Mame Standard Type Custom Type

Groupld Object @
Comment Object @
in_name String @

Both Groupld and Comment are automatically generated, so you don't need to worry about that.
In this case the only user defined Data Input is called: in_name. This means that the task will be
recieving information from the process context and internally this variable will be called in_name.
The type is also specified here.

In the Data Outputs represent the data that will be generated by the tasks. In this case we have
two variables of type String called: out_name and out_mail and two Interger variables called:
out_age and out_score are defined. This means that inside the task context we will need to set
the value to these variables.

Editor for Data Qutput

Add Data Output

Mame Standard Type Custom Type

out_name String @
out_age Integer @
out_mail String @
out_score Integer @

Finally all the connections with the process context needs to be done in the Data Assignments.
The main idea here is to define how Data Inputs and Data Outputs will be associated with process
variables.

160

Task Lifecycle

Editor for Data Assignments

Add Assignment
From Object Assignment Type To Object To Value
1 nmame is mapped 1o in_name
2 out_age is mapped o age
3 out_mail is mapped 1o mail
4 out_score is mapped o hr_score

As shown in the previous screenshot, the assignments between the process variables (in this
case (name, age, mail and hr_score)) and the Data Inputs and Outputs are done in the Data
Assignments screen. Notice that the example uses a convetion that makes it easy to know which
is an internal Task variables (Data Input/Output) using the "in_" and "out_" prefix to the variable
names. Using this convention you can quickly understand the Assignments screen. The first row
maps the process variable called name to the data input called in_name. The second row maps
the data output called out_mail to the process variable called mail, and so on.

These mappings at runtime will automatically copy the variables content from one context (process
and task) to the other automatically for us.

9.4. Task Lifecycle

From the perspective of a process, when a user task node is encountered during the execution, a
human task is created. The process will then only leave the user task node when the associated
human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is
described below, please check out the WS-HumanTask specification. The following diagram is
from the WS-HumanTask specification and describes the human task life cycle.

161

O8O

Chapter 9. Human Tasks

Created

Suspended
Ready
Resarvad | Reserved
InProgress InProgress
&mon) [WS-HT exi] | [Skip &8 ESKippabie]
yull” Exill fask Send WS-HT skippe
_F
A i N 'a
Completed Failed Error Exited 1 L Obsolete
| p. / b AN A

A newly created task starts in the "Created" stage. Usually, it will then automatically become
"Ready", after which the task will show up on the task list of all the actors that are allowed to
execute the task. The task will stay "Ready" until one of these actors claims the task, indicating
that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a
task that only has one potential (specific) actor will automatically be assigned to that actor upon
creation of the task. When the user who has claimed the task starts executing it, the task status
will change from "Reserved" to "InProgress".

Lastly, once the user has performed and completed the task, the task status will change to
"Completed". In this step, the user can optionally specify the result data related to the task. If the
task could not be completed, the user could also indicate this by using a fault response, possibly
including fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a
number of other life cycle methods, including:

» Delegating or forwarding a task, so that the task is assigned to another actor

» Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all
actors allowed to take it

162

Task Service and The Process Engine

» Temporarly suspending and resuming a task
» Stopping a task in progress

» Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

9.5. Task Service and The Process Engine

As far as the jBPM engine is concerned, human tasks are similar to any other external service that
needs to be invoked and are implemented as a domain-specific service. (For more on domain-
specific services, see the chapter on them here.) Because a human task is an example of such
a domain-specific service, the process itself only contains a high-level, abstract description of the
human task to be executed and a work item handler that is responsible for binding this (abstract)
task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by
jBPM, or they may register their own implementation. In the next paragraphs, we will describe the
human task servcie implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the
WS-HumanTask specification. If you do not need to integrate jBPM with another existing
implementation of a human task service, you can use this service. The jBPM implementation
manages the life cycle of the tasks (creation, claiming, completion, etc.) and stores the state
of all the tasks, task lists, and other associated information. It also supports features like
internationalization, calendar integration, different types of assignments, delegation, escalation
and deadlines. The code for the implementation itself can be found in the jppm-human-task
module.

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.
This specification defines (in detail) the model of the tasks, the life cycle, and many other features.
It is very comprehensive and the first version can be found here.

9.6. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients
to integrate (at a low level) with the human task service. Note that end users should probably
not interact with this low-level API directly, but use one of the more user-friendly task clients
(see below) instead. These clients offer a graphical user interface to request task lists, claim and
complete tasks, and manage tasks in general. The task clients listed below use the Java API to
internally interact with the human task service. Of course, the low-level API is also available so
that developers can use it in their code to interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods (among
others) for managing the life cycle of human tasks:

163

Chapter 9. Human Tasks

void start(long taskld, String userld);

void stop(long taskld, String userld);

void rel ease(long taskld, String userld);

voi d suspend(long taskld, String userld);

void resume(long taskld, String userld);

void skip(long taskld, String userld);

voi d del egate(long taskld, String userld, String targetUserld);

void conplete(long taskld, String userld, Mp<String, Object>
results);

If you take a look at the method signatures you will notice that almost all of these methods take
the following arguments:

« taskld: The id of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

 userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

There is also an internal interface that you should check for more methods to interact with the
Task Service, this interface is internal until it gets tested. Future version of the External (public)
interface can include some of the methods proposed in the InternalTaskService interface. If
you want to make use of the methods provided by this interface you need to manually cast to
InternalTaskService. One method that can be useful from this interface is getTaskContent():

Map<String, Object> getTaskContent(|ong taskld);

This method saves you from doing all the boiler plate of getting the ContentMarshallerContext
to unmarshall the serialized version of the task content. If you only want to use the stable/public
API's you can just copy what this method does:

164

Interacting with the Task Service

Task taskByld = taskQueryService. get Taskl nst anceByl d(t askl d);
Cont ent contentByld =
t askCont ent Ser vi ce. get Cont ent Byl d(t askByl d. get TaskDat a() . get Docunent Content 1 d());
Cont ent Mar shal | er Cont ext context = get Marshal | er Cont ext (t askByl d);
oj ect unmar shal | edQbj ect =

context.getEnvironment (), context.getd assl oader());
if (!(unmarshal |l edObj ect instanceof Map)) {
throw new || | egal St at eException(" The Task Content Needs to be
a Map in order to use this nethod and it was: "+unmarshal | edOoj ect. getd ass());

}
Map<String, Qbject> content = (Map<String, Obj ect>) unmarshal | edObj ect ;
return content;

Because the content of the Task can be any Object, the previous method assume that you
are storing a Map of objects to work. If you are storing other than a Map you should do the
correspondent checks.

9.7. Interacting with the Task Service

In order to get access to the Task Service API it is recommended to let the Runtime Manager
to make sure that everything is setup correctly. Look at the Runtime Manager section for more
inforamtion. From the API perspective you should be doing something like this:

Runt i meEngi ne engi ne =
runti neManager . get Runt i mneEngi ne(Enpt yCont ext . get ());
Ki eSessi on ki eSessi on = engi ne. get Ki eSessi on();
/1 Start a process
ki eSessi on. st art Process(" Cust oner sRel ati onshi p. cust oners", parans);
/1 Do Task Operations
TaskServi ce taskServi ce = engi ne. get TaskServi ce();
Li st <TaskSummary> tasksAssi gnedAsPotenti al Omer =
taskServi ce. get TasksAssi gnedAsPot enti al Owner ("mary", "en-UK");

/1 d ai m Task
taskService. cl ai n{taskSunmmary. getld(), "mary");
/] Start Task
taskService.start(taskSunmary. getld(), "mary");

165

Chapter 9. Human Tasks

If you use this approach, there is no need to register the Task Service with the Process Engine.
The Runtime Manager will do that for you automatically. If you don't use the Runtime Manager,
you will be responsible for setting the LocalHTWorkltemHandler in the session in order to get
the Task Service notifying the Process Engine when a task is completed, or the Process Engine
notifying that a task has been created.

In jBPM 6.x the Task Service runs locally to the Process and Rule Engine and for that reason
multiple light clients can be created for different Process and Rule Engine's instances. All the
clients will be sharing the same database (backend storage for the tasks).

166

Chapter 10.

Chapter 10. Persistence and
Transactions

10.1. Process Instance State

jBPM allows the persistent storage of certain information. This chapter describes these different
types of persistence, and how to configure them. An example of the information stored is the
process runtime state. Storing the process runtime state is necessary in order to be able to
continue execution of a process instance at any point, if something goes wrong. Also, the process
definitions themselves, and the history information (logs of current and previous process states
already) can also be persisted.

10.1.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution
of the process in that specific context. For example, when executing a process that specifies
how to process a sales order, one process instance is created for each sales request. The
process instance represents the current execution state in that specific context, and contains all
the information related to that process instance. Note that it only contains the (minimal) runtime
state that is needed to continue the execution of that process instance at some later time, but it
does not include information about the history of that process instance if that information is no
longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the
database. You do not have to trigger persistence yourself, the engine will take care of this when
persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are
stored at the end of that invocation, at so-called safe points. Whenever something goes wrong
and you restore the engine from the database, you also should not reload the process instances
and trigger them manually to resume execution, as process instances will automatically resume
execution if they are triggered, like for example by a timer expiring, the completion of a task that
was requested by that process instance, or a signal being sent to the process instance. The engine
will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably
should not try to access these database tables directly and especially not try to modify these
directly (as changing the runtime state of process instances without the engine knowing might
have unexpected side-effects). In most cases where information about the current execution state

167

Chapter 10. Persistence and T...

of process instances is required, the use of a history log is mostly recommended (see below). In
some cases, it might still be useful to for example query the internal database tables directly, but
you should only do this if you know what you are doing.

10.1.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the
state of the process instance into a binary dataset. When you use persistence with jBPM, this
mechanism is used to save or retrieve the process instance state from the database. The same
mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

 First, the process instance information is transformed into a binary blob. For performance
reasons, a custom serialization mechanism is used and not normal Java serialization.

« This blob is then stored, alongside other metadata about this process instance. This metadata
includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the
state of timer jobs, or the session data that any business rules would be evaluated over. This
session state is stored separately as a binary blob, along with the id of the session and some
metadata. You can always restore session state by reloading the session with the given id. The
session id can be retrieved using ksessi on. get 1 d() .

Note that the process instance binary datasets are usually relatively small, as they only contain
the minimal execution state of the process instance. For a simple process instance, this usually
contains one or a few node instances, i.e., any node that is currently executing, and any existing
variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

168

Runtime State

] Workiteminfo v] Sessioninfo v] Processinstancelnfo v "] EventTypes v
workltem|d BIGINT{20) id INT{11) InstanceId BIGINT{20) 4 Instanceld BIGINT{20)
> creationDate DATETIME > lastModificationDate DATETIME > lastModificationDate DATETIME O evenfTypes VARCHAR(255)
> name VARCHAR(255) > rulesByteArray LONGBLOB > lastReadDate DATETIME
 processinstanceld BIGINT(20) > startDate DATETIME > processld VARCHAR(255)
 state BIGINT(20) OPTLOCK INT{11) -, processinstanceByteArray LONGBLOB | T !
> OPTLOCK INT{11) » startDate DATETIME
» workltem ByteArray LONGBELOB o state INT(11)
> OPTLOCK INT(11)
> > > >
] correlationPropertyinfo ¥] CorrelationKeyinfo v "] ContextMappinginfo v
propertyld BIGINT(20) keyld BIGINT{20) mappingld BIGINT{20)
» name YARCHAR(255) > name YARCHAR(255) > GONTEXT_ID VARCHAR(255)
> value VARCHAR(255) LT * processInstanceld BIGINT(20) & KSESSION_ID INT{11)
> OPTLOCK INT{11) > OPTLOCK INT{11) > OPTLOCK INT{11)
< comelationKey_keyld BIGINT(20)
> > >

Figure 10.1. jBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessi oni nf o entity contains the state of the (knowledge) session in which the jBPM process
instance is running.

Table 10.1. Sessionlnfo

Field Description Nullable
id The primary key. NOT NULL
| ast nodi fi cati ondate The last time that the entity

was saved to the database

rul eshyt earray The binary dataset containing NOT NULL
the state of the session

startdate The start time of the session

opt | ock The version field that serves

as its optimistic lock value

The processi nst ancei nf o entity contains the state of the jBPM process instance.

Table 10.2. Processinstancelnfo

Field Description Nullable
‘ i nst ancei d ‘ The primary key NOT NULL ‘
| ast nodi fi cati ondate The last time that the entity

was saved to the database

169

images/Chapter-Persistence/jbpm_schema.png

Chapter 10. Persistence and T...

Field Description Nullable
| astreaddat e The last time that the entity
was retrieved (read) from the
database
processi d The name (id) of the process
processi nst ancebyt earray | This is the binary dataset NOT NULL

containing the state of the
process instance

startdate The start time of the process

state An integer representing the NOT NULL
state of the process instance

opt | ock The version field that serves
as its optimistic lock value

The event t ypes entity contains information about events that a process instance will undergo
or has undergone.

Table 10.3. EventTypes

Field Description Nullable

i nstancei d This references the NOT NULL
processi nstancei nfo

primary key and there is a

foreign key constraint on this

column.

event Types A text field related to an
event that the process has
undergone.

The wor ki t eni nf o entity contains the state of a work item.

Table 10.4. WorkltemInfo

Field Description Nullable
wor ki temni d The primary key NOT NULL
creationDate The name of the work item

nane The name of the work item

processi nstancei d The (primary key) id of the NOT NULL

process: there is no foreign
key constraint on this field.

state An integer representing the NOT NULL
state of the work item

Field Description Nullable
opt | ock The version field that serves

as its optimistic lock value
wor Ki t enbyt ear ay This is the binary dataset NOT NULL

containing the state of the
work item

The Correl ati onKeyl nf o entity contains information about correlation keys assigned to given
process instance - loose relationship as this table is considered optional used only when

correlation capabilities are required.

Table 10.5. CorrelationKeyInfo

Field Description Nullable
keyi d The primary key NOT NULL
nanme assigned name of the

correlation key

processi nst ancei d

opt | ock

The id of the process instance NOT NULL

which is assigned to this
correlation key

The version field that serves
as its optimistic lock value

Runtime State

The Correl ati onPropertyl nf o entity contains information about correlation properties for given
correlation key that is assigned to given process instance.

Table 10.6. CorrelationPropertyinfo

Field Description Nullable
propertyid The primary key NOT NULL
nane The name of the property
val ue The value of the property NOT NULL
opt | ock The version field that serves
as its optimistic lock value
correl ati onKey- keyi d Foregin key to map to NOT NULL
correlation key

The Cont ext Mappi ngl nf o entity contains information about contextual information mapped to
ksession. This is an internal part of RuntimeManager and can be considered optional when
RuntimeManager is not used.

171

Chapter 10. Persistence and T...

Table 10.7. ContextMappingInfo

Field Description Nullable

mappi ngi d The primary key NOT NULL
context_id Identifier of the context NOT NULL
ksessi on?id Identifier of the ksession NOT NULL

mapped to this context

opt | ock The version field that serves
as its optimistic lock value

10.1.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of
the process engine. Whenever a process instance is executing (for example when it started or
continuing from a previous wait state, the engine executes the process instance until no more
actions can be performed (meaning that the process instance either has completed (or was
aborted), or that it has reached a wait state in all of its parallel paths). At that point, the engine has
reached the next safe state, and the state of the process instance (and all other process instances
that might have been affected) is stored persistently.

10.2. Audit Log

In many cases it will be useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards. For example, sometimes we want to
verify which actions have been executed for a particular process instance, or in general, we want
to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size, not to mention the fact that monitoring and analysis queries might influence
the performance of your runtime engine. This is why process execution history information can
be stored separately.

This history log of execution information is created based on events that the process engine
generates during execution. This is possible because the jBPM runtime engine provides a generic
mechanism to listen to events. The necessary information can easily be extracted from these
events and then persisted to a database. Filters can also be used to limit the scope of the logged
information.

10.2.1. The jBPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information
in a database using JPA. The data model itself contains three entities, one for process
instance information, one for node instance information, and one for (process) variable instance
information.

172

The jBPM Audit data model

—| Processinstancel.og v
id BIGINT{20)

> duration BIGINT{20)

»end_date DATETIME

»extemalld VARCHAR(255)

> user_identity VARCHAR(255)

> outcome VARCHARI255)

» parentP rocessInstance ld BIGINT(20)

> processld VARCHAR(255)

» processinstanceld BIGINT(20)

» processMame VARCHAR(255)

s processVersion VARCHAR(255)

o start_date DATETIME

> status INT(11)

~] NodelnstanceLog v
id BIGINT{20)

» connection VARCHAR(255)

»log_date DATETIME

»extemalld VARCHAR(255)

» nodeld VARCHAR(255)

» nodelnstanceld VARCHAR(255)

» nodeName VARCHAR(255)

» nodeType VARCHAR(255)

» processld VARCHAR(255)

2 proce ssinstanceld BIGINT(20)

o type INT(11)

> workltemid BIGINT(20)

Figure 10.2. jBPM Audit data model

_| VvariableinstanceLog v
id BIGINT{20)

» log_date DATETIME

»axtemalld VARCHAR(255)

> oldValue VARCHAR(255)

» processld VARCHAR(255)

» processinstanceld BIGINT(20)

> value VARCHAR(255)

»vanableld VARCHAR(255)

»vanablelnstanceld VARCHAR|255)

The Processl nst ancelog table contains the basic log information about a process instance.

Table 10.8. ProcessinstancelLog

Field Description Nullable
id The primary key and id of the NOT NULL
log entity
duration Actual duration of this
process instance since its
start date
end_dat e When applicable, the end

date of the process instance

external I d Optional external identifier
used to correlate to some

elements - e.g. deployment id

user _identity Optional identifier of the user
who started the process

instance

out come The outcome of the process
instance, for instance error
code in case of process
instance was finished with

error event

par ent Processl nstancel d | The process instance id of the

parent process instance if any

173

Chapter 10. Persistence and T...

Field Description Nullable
processid The id of the process
processi nstancei d The process instance id NOT NULL
pr ocessnamne The name of the process
processversi on The version of the process
start_date The start date of the process
instance
st at us The status of process
instance that maps to process
instance state

The Nodel nst anceLog table contains more information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incoming
connections or is exited through one of its outgoing connections, that information is stored in this
table.

Table 10.9. NodelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

connection Actual identifier of the

sequence flow that led to this
node instance

| og_date The date of the event

external I d Optional external identifier
used to correlate to some
elements - e.g. deployment id

nodei d The node id of the
corresponding node in the
process definition

nodei nst ancei d The node instance id
nodenane The name of the node

nodet ype The type of the node
processid The id of the process that the

process instance is executing
processi nstancei d The process instance id NOT NULL

type The type of the event (0 = NOT NULL
enter, 1 = exit)

174

Storing Process Events in a Database

Field Description Nullable
wor kl tem d Optional - only for certain

node types - The identifier of

work item

The Vvari abl el nst anceLog table contains information about changes in variable instances. The
default is to only generate log entries when (after) a variable changes. It's also possible to log
entries before the variable (value) changes.

Table 10.10. VariablelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

external I d Optional external identifier

used to correlate to some
elements - e.g. deployment id

| og_date The date of the event

processi d The id of the process that the
process instance is executing

processi nstancei d The process instance id NOT NULL
ol dval ue The previous value of the

variable at the time that the

log is made
val ue The value of the variable at

the time that the log is made

vari abl ei d The variable id in the process
definition
vari abl ei nst ancei d The id of the variable instance

10.2.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your
session like this:

Entit yManager Factory enf = ...;

St at ef ul Know edgeSessi on ksession = ...;

Abstract Audi t Logger auditLogger = AuditLogger Fact ory. newJPAI nst ance(enf);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/1 1nvoke nmet hods one your session here

175

Chapter 10. Persistence and T...

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstanceLog, NodelnstanceLog and
VariablelnstancelLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<per si stence
versi on="2. 0"
xsi : schemalLocation="http://java. sun. conl xm / ns/ per si st ence http://
j ava. sun. conml xm / ns/ per si st ence/ persi stence_2_ 0. xsd
http://java. sun. conf xm / ns/ persi stence/orm http://java. sun. conf xm / ns/
persi stence/ orm 2_0. xsd"
xm ns="http://java. sun. coml xm / ns/ per si st ence"
xm ns:orm="http://java. sun. com xm / ns/ persi st ence/ or ni
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance>

<persi stence-unit nane="org.j bpm persi stence.jpa" transaction-type="JTA">
<provi der >or g. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</ | t a- dat a- sour ce>
<mappi ng- fi | e>META- 1 NF/ JBPMor m xm </ mappi ng-fil e>
<cl ass>org. drool s. persi st ence. i nf 0. Sessi onl nfo</cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi st ence. i nfo. Wrkl tem nfo</cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onKeyl nf o</ cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti nme. manager. i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<cl ass>org. j bpm process. audi t. Processl| nst anceLog</ cl ass>
<cl ass>org. j bpm process. audi t. Nodel nst ancelLog</ cl ass>
<cl ass>org.j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2dd| . aut 0" val ue="update"/ >
<property nane="hi bernate. show _sql" value="true"/>
<property nane="hi bernate.transaction.jta.platfornt
val ue="org. hi bernate. service.jta.platforminternal.Bitroni xJtaPl atforni/>
</ properties>
</ persi stence-unit>
</ per si st ence>

176

Storing Process Events in a JMS queue for further processing

All this information can easily be queried and used in a lot of different use cases, ranging
from creating a history log for one specific process instance to analyzing the performance of all
instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

10.2.3. Storing Process Events in a JMS queue for further
processing

Process events are stored in data base synchronously and within the same transaction as actual
process instance execution. That obviously takes some time especially in highly loaded systems
and might have some impact on data base when both history log and runtime data are kept in the
same data base. To provide alternative option for storing process events a JMS based logger has
been provided. It allows to be configured to submit messages to JMS queue instead of directly
persisting them in data base. It can be configured to be transactional as well to avoid issues with
inconsistent data in case of process engine transaction is rolled back.

ConnectionFactory factory = ...

Queue queue = ...

St at ef ul Knowl edgeSessi on ksession = .. .;

Map<String, Ooject> jnsProps = new HashMap<String, Object>();

j meProps. put ("jbpmaudit.jns.transacted", true);

jmsProps. put ("j bpm audit.jnms.connection.factory", factory)

j msProps. put ("j bpm audi t.jnms. queue", queue);

Abstract Audi t Logger auditLogger = AuditLogger Factory. newl nstance(Type.JMS, session, jnsProps);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/1 1nvoke nmet hods one your session here

This is just one of possible ways to configure JMS audit logger, see javadocs for
AuditLoggerFactory for more details.

10.3. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using
Spring. It does not support pure local transactions at the moment. For more information about
using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this

177

Chapter 10. Persistence and T...

behavior is acceptable, you don't need to do anything else. You can, however, also specify the
transaction boundaries yourself. This allows you, for example, to combine multiple commands
into one transaction.

You need to register a transaction manager at the environment before using user-defined
transactions. The following sample code uses the Bitronix transaction manager. Next, we use the
Java Transaction API (JTA) to specify transaction boundaries, as shown below:

/1 create the entity manager factory and register it in the environment

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpm persistence.jpa")
Envi ronnent env = Know edgeBaseFact ory. newEnvi r onnent () ;

env. set (Envi ronnent Nanme. ENTI TY_MANAGER _FACTCRY, enf);

env. set (Envi ronnment Name. TRANSACTI ON_MANAGER, Transacti onManager Servi ces. get Transact i onManager (

/'l create a new knowl edge session that uses JPA to store the runtinme state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newSt at ef ul Knowl edgeSessi on(kbase, nul

/] start the transaction

User Transaction ut = (UserTransaction) new Initial Context().|ookup("java: conp/
User Transaction");

ut . begi n();

[l performmultiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession. start Process("M/Process");

/1l conmmt the transaction
ut.commt();

Note that, if you use Bitronix as the transaction manager, you should also add a simple
j ndi . properti es file in you root classpath to register the Bitronix transaction manager in JINDI. If
you are using the jppm-test module, this is already included by default. If not, create a file named
j ndi . properti es with the following content:

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

If you would like to use a different JTA transaction manager, you can change the
persi stence. xm file to use your own transaction manager. For example, when running inside
JBoss Application Server v5.x or v7.X, you can use the JBoss transaction manager. You need to
change the transaction manager property in per si st ence. xn to:

178

Container managed transaction

<property name="hi bernate. transaction.jta.platforn
val ue="or g. hi bernate. transacti on. JBossTransact i onManager Lookup" />

10.3.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that executes
in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies
to application servers that does not allow accessing UserTransaction instance from JNDI when
being part of container managed transaction, e.g. WebSphere Application Server. Since default
implementation of transaction manager in jBPM is based on UserTransaction to get transaction
status which is used to decide if transaction should be started or not, in environments that prevent
accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a
dedicated transaction manager implementation is provided:

org.j bpm persi stence. jta. Cont ai ner ManagedTr ansact i onManager

This transaction manager expects that transaction is active and thus will always return ACTIVE
when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as
transaction manager runs under managed transaction and can't affect it.

@ Note
To make sure that container is aware of any exceptions that happened during
process instance execution, user needs to ensure that exceptions thrown by the
engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

« Insert transaction manager and persistence context manager into environment prior to creating/
loading session

Envi ronnent env = Environnent Fact ory. newEnvi r onment () ;
env. set (Envi ronment Nanme. ENTI TY_MANAGER_FACTORY, enf);

env. set (Envi ronment Name. TRANSACTI ON_MANAGER, new
Cont ai ner ManagedTr ansact i onManager ()) ;
env. set (Envi r onment Nanme. PERSI STENCE_CONTEXT_MANAGER, new

JpaPr ocessPer si st enceCont ext Manager (env)) ;

179

Chapter 10. Persistence and T...

 configure JPA provider (example hibernate and WebSphere)

<property nane="hi ber nat e. transaction. factory_cl ass"
val ue="org. hi bernate. transacti on. CMI'Tr ansact i onFact ory"/ >
<property nanme="hi ber nat e. t ransacti on. nanager _| ookup_cl ass"

val ue="or g. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookup"/ >

With following configuration jBPM should run properly in CMT environment.

10.3.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession directly
will cause exceptions on transaction completion as there are some transaction
synchronization registered by jBPM to clean up the state after invocation is
finished. To overcome this problem specialized command has been provided
org. j bpm persi stence. j ta. Cont ai ner ManagedTr ansact i onDi sposeCommand which allows to
simply execute this command instead of refular ksessi on. di spose which will ensure that
ksession will be disposed at the transaction completion.

10.4. Configuration

By default, the engine does not save runtime data persistently. This means you can use the engine
completely without persistence (so not even requiring an in memory database) if necessary, for
example for performance reasons, or when you would like to manage persistence yourself. It is,
however, possible to configure the engine to do use persistence by configuring it to do so. This
usually requires adding the necessary dependencies, configuring a datasource and creating the
engine with persistence configured.

10.4.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your
application if you want to user persistence. By default, persistence is based on the Java
Persistence APl (JPA) and can thus work with several persistence mechanisms. We are using
Hibernate by default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary
jars are added to your jBPM runtime directory. You don't really need to do anything (as the
necessary dependencies should already be there) if you are using the jBPM runtime that is
configured by default when using the jBPM installer, or if you downloaded and unzipped the jBPM
runtime artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you
need the jar file j bpm persi stence-jpa.jar, as that contains code for saving the runtime
state whenever necessary. Next, you also need various other dependencies, depending on the

180

Manually configuring the engine to use persistence

persistence solution and database you are using. For the default combination with Hibernate as
the JPA persistence provider and using an H2 in-memory database and Bitronix for JTA-based
transaction management, the following list of additional dependencies is heeded:
 jbpm-persistence-jpa (org.jopm)

- drools-persistence-jpa (org.drools)

 persistence-api (javax.persistence)

« hibernate-entitymanager (org.hibernate)

« hibernate-annotations (org.hibernate)

« hibernate-commons-annotations (org.hibernate)

« hibernate-core (org.hibernate)

« commons-collections (commons-collections)

e dom4j (dom4))

* jta (javax.transaction)

e btm (org.codehaus.btm)

* javassist (javassist)

* slf4j-api (org.slf4j)

* slf4j-jdk14 (org.slf4))

* h2 (com.h2database)

 jbpm-test (org.jopm) for testing only, do not include it in the actual application

10.4.2. Manually configuring the engine to use persistence

You can use the JPAKnow edgeSer vi ce to create your knowledge session. This is slightly more
complex, but gives you full access to the underlying configurations. You can create a new
knowledge session using JPAKnow edgeSer vi ce based on a knowledge base, a knowledge
session configuration (if necessary) and an environment. The environment needs to contain a
reference to your Entity Manager Factory. For example:

/] create the entity manager factory and register it in the environnent
EntityManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence.jpa");
Envi ronnent env = Know edgeBaseFact ory. newEnvi ronnent () ;
env. set (Envi ronnent Narme. ENTI TY_MANAGER_FACTCRY, enf);

181

Chapter 10. Persistence and T...

/'l create a new knowl edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newSt at ef ul Knowl edgeSessi on(kbase,
int sessionld = ksession.getld();

/1 invoke nethods on your nethod here
ksession. startProcess("MProcess");
ksessi on. di spose();

You can also use the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

/'l recreate the session from database using the sessionld
ksessi on = JPAKnow edgeServi ce. | oadSt at ef ul Knowl edgeSessi on(sessi onld, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process
instance at some later point. This means, for example, that it does not contain information about
already executed nodes if that information is no longer relevant, or that process instances that
have been completed or aborted are removed from the database. If you want to search for history-
related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate
and the H2 database (or your own preference), called persistence. xm in the META-INF
directory, as shown below. For more details on how to change this for your own configuration, we
refer to the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si st ence
versi on="2. 0"
xsi : schemaLocation="http://java. sun. conf xm / ns/ persi stence http://
j ava. sun. conf xm / ns/ per si st ence/ persi stence_2_0. xsd
http://java. sun. conl xm / ns/ persi stence/orm http://java. sun. com xm / ns/
persi stence/ orm 2_0. xsd"
xm ns="http://java. sun. com xm / ns/ per si st ence"
xm ns:orm="http://java. sun. com xm / ns/ per si st ence/ or ni'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance>

<persi stence-unit nane="org.j bpm persi stence.jpa" transaction-type="JTA">
<provi der >org. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j ta-dat a- source>j dbc/j bpm ds</ |t a- dat a- sour ce>
<mappi ng-fi | e>META- | NF/ JBPMor m xm </ mappi ng-fi |l e>
<cl ass>org. drool s. persi st ence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrklten nfo</cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onKeyl nf o</ cl ass>

182

nul

Manually configuring the engine to use persistence

<cl ass>org. j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti me. manager. i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<properties>
<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

>

<property nanme="hi bernate. max_fetch_depth" val ue="3"/>

<property nanme="hi bernate. hbn2ddl . aut 0" val ue="update"/>

<property nane="hi bernate.show sql" val ue="true"/>

<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate. service.jta.platforminternal.BitronixJtaPl atforni/
>

</ properties>
</ per si stence-uni t>
</ per si st ence>

This configuration file refers to a data source called "jdbc/jbpm-ds”. If you run your application in
an application server (like for example JBoss AS), these containers typically allow you to easily set
up data sources using some configuration (like for example dropping a datasource configuration
file in the deploy directory). Please refer to your application server documentation to know how
to do this.

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource
by dropping a configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - nane>j dbc/ j bpm ds</j ndi - nane>
<connection-url >jdbc: h2:tcp://| ocal host/~/test</connection-url>
<driver-cl ass>org. h2.jdbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nanme>sa</ user - nane>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

If you are however executing in a simple Java environment, you can use the JBPMHel per class
to do this for you (see below for tests only) or the following code fragment could be used to set
up a data source (where we are using the H2 in-memory database in combination with Bitronix
in this case).

Pool i ngDat aSource ds = new Pool i ngDat aSour ce()
ds. set Uni queNanme("j dbc/j bpm ds");

183

Chapter 10. Persistence and T...

ds. set O assNane("bitroni x.tmresource.jdbc.|rc.LrcXADat aSource");
ds. set MaxPool Si ze(3);

ds. set Al |l owLocal Transacti ons(true);
ds.getDriverProperties().put("user", "sa");

ds. getDriverProperties().put("passwrd", "sasa");

ds. getDriverProperties().put("URL", "jdbc:h2: nemjbpm db");
ds.getDriverProperties().put("driverC assNanme", "org.h2.Driver");
ds.init();

10.4.3. Configuring the engine to use persistence using
JBPMHel per - fOr tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate
constructor when creating your session. There are various ways to create a session (as we have
tried to make this as easy as possible for you and have several utility classes for you, depending
for example if you are trying to write a process junit test).

The easiest way to do this is to use the j bpm t est module that allows you to easily create and test
your processes. The JBPMHel per class has a method to create a session, and uses a configuration
file to configure this session, like whether you want to use persistence, the datasource to use, etc.
The helper class will then do all the setup and configuration for you.

To configure persistence, create a j BPM properti es file and configure the following properties
(note that the example below are the default properties, using an H2 in-memory database with
persistence enabled, if you are fine with all of these properties, you don't need to add new
properties file, as it will then use these properties by default):

for creating a datasource

persi st ence. dat asour ce. nane=j dbc/ j bpm ds

persi st ence. dat asour ce. user =sa

per si st ence. dat asour ce. passwor d=

persi st ence. dat asource. url =j dbc: h2: tcp:/ /1 ocal host/~/j bpm db
persi st ence. dat asour ce. dri ver Cl assNane=or g. h2. Dri ver

for configuring persistence of the session

persi st ence. enabl ed=true

per si st ence. per si st enceuni t. name=or g. j bpm per si st ence. j pa

per si st ence. persi st enceuni t. di al ect =org. hi bernat e. di al ect. H2Di al ect

for configuring the human task service

taskservi ce. enabl ed=t rue

t askservi ce. dat asour ce. nane=or g. j bpm t ask

t askservi ce. usergroupcal | back=org. j bpm servi ces. task.identity.JBossUser GroupCal | backl npl
t askservi ce. user gr ouprmappi ng=cl asspat h: / user gr oups. properti es

184

Configuring the engine to use persistence using JBPMHelper - for tests only

If you want to use persistence, you must make sure that the datasource (that you specified in
the j BPM properti es file) is initialized correctly. This means that the database itself must be up
and running, and the datasource should be registered using the correct name. If you would like
to use an H2 in-memory database (which is usually very easy to do some testing), you can use
the JBPMHel per class to start up this database, using:

JBPMHel per . start H2Ser ver () ;

To register the datasource (this is something you always need to do, even if you're not using H2
as your database, check below for more options on how to configure your datasource), use:

JBPMHel per . set upDat aSour ce() ;

Next, you can use the JBPMHel per class to create your session (after creating your knowledge
base, which is identical to the case when you are not using persistence):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. newsSt at ef ul Know edgeSessi on(kbase) ;

Once you have done that, you can just call methods on this ksession (like st ar t Pr ocess) and the
engine will persist all runtime state in the created datasource.

You can also use the JBPMHel per class to recreate your session (by restoring its state from the
database, by passing in the session id (that you can retrieve using ksessi on. get 1 d())):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. | oadSt at ef ul Knowl edgeSessi on(kbase,

185

sessionl d);

186

Part I\V. Workbench

How to use the web-based Workbench

Chapter 11.

Chapter 11. Workbench

11.1. Installation

11.1.1. War installation

From the workbench distribution zip, take the ki e- wh- *. war that corresponds to your application
server:

e j boss-as7: tailored for JBoss AS 7 (which is being renamed to WildFly in version 8)

e eap- 6: tailored to JBoss EAP 6

 tontat 7: the generic war, works on Tomcat and Jetty

To use the workbench on a different application server (Websphere, Weblogic, ...), use the
t ontat 7 war and tailor it to your application server's version.

11.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKI NG_DI RECTORY/ . ni ogi t, for
example wi | df | y-8. 0. 0. Fi nal / bi n/ . gi t ni o, but it can be overridden with the system property
-Dorg.uberfire.nio.git.dir.

11.1.3. System properties

Here's a list of all system properties:

e org.uberfire.nio.git.dir:Location of the directory . ni ogi t . Default: working directory
e org.uberfire.nio.git.daenon. enabl ed: Enables/disables git daemon. Default: t r ue

e org.uberfire.nio.git.daenon. host: If daemon enabled, uses this property as local host
identifier. Default: | ocal host

189

Chapter 11. Workbench

e org.uberfire.nio.git.daenon. port:If daemon enabled, uses this property as port number.
Default: 9418

e org.uberfire.nio.git.daenon. upl oad: If daemon enabled, uses this information to define if
it's possible to push (upload) data to git. Default: t r ue

e org.uberfire. metadata.index.dir: Place where lucene .index folder will be stored.
Default: working directory

e org.uberfire.cluster.id: Name of the helix cluster, for example: ki e- cl ust er

e org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form
host 1: port 1, host 2: port 2, host 3: port 3, for example: | ocal host: 2188

e org.uberfire.cluster.!ocal.id:Unique id of the helix cluster node, note that ": ' is replaced
with ' ', for example: nodel_ 12345

e org.uberfire.cluster.vfs.|ock: Name of the resource defined on helix cluster, for example:
ki e-vfs

e org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully
initialized to avoid conflicts when all cluster members create local clones. Default: f al se

e org.uberfire. sys.repo. nonitor.disabl ed: Disable configuration monitor (do not disable
unless you know what you're doing). Default: f al se

e org.uberfire.secure. key: Secret password used by password encryption. Default:
org. uberfire.admn

e org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEW t hMD5ANdDES

e org. guvnor. n2repo. di r : Place where maven repository folder will be stored. Default: working-
directory/repositories/kie

e org. ki e. exanpl e. reposi tori es: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. Demo repositories can
be obtained from the kie-wb-6.1.0-SNAPSHOT-example-repositories.zip artifact. This System
Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

* org. ki e. denn: Enables external clone of a demo application from github. This System Property
takes precedence over org.kie.example. Default: t r ue

» org. ki e. exanpl e: Enables example structure composed by Repository, Organization Unit and
Project. Default: f al se

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/ domai n/ confi gur ati on/ host . xni .

2. Locate the XML elements server that belong to the nai n- server - group and add a system
property, for example:

190

Quick Start

<syst ent properties>
<property nane="org.uberfire.nio.git.dir" value="..." boot-tinme="false"/>

</ syst em properties>

11.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

11.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Authoring -

Project Authoring

Administration N

The Knowledge

Figure 11.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Organizational Units - -

File Explorer List isitorieskEditor
Clone repository

& Repositories |
New repository A

Figure 11.2. Creating new repository

191

Chapter 11. Workbench

Enter the required information.

Create Repository

Repository Infomation -« is required

* Repository Name

myExampleRepository

* Qrganizational Unit

demo =

Figure 11.3. Entering repository information

11.2.2. Add project

Select the Authoring Perspective to create a new project.

192

Add project

Authoring -

Organiz Project Authoring Wiories ~
Administration

File Explorer

& Repositories
&= myExampleRepository
& readme.md

Figure 11.4. Selecting Authoring perspective

Select "Project” from the "New ltem" menu.

193

Chapter 11. Workbench

Explore - m Tools ~ Repository -

Project Explol Business Process

L
L
0

|
i
[wh]
|
[

demo ~ ' Myl pELfie

- = |
- fa 't d el s
—_— A '-I
[= a a’ a’)

m - I I - - I N

- - - T -
[= & f & =] ==l
- s —_— ot L L
[= = - =
- — —_ .
[=) L fu}) HaTe
- e L L L
[=] ==
s r L
Y =T fa

LAk L=

Figure 11.5. Creating new project

Enter a project name first.

194

Add project

Create new Project

* Resource Name [myPrnjecd

Location default//master@myExampleRepository/

Figure 11.6. Entering project name

Enter the project details next.

« Group ID follows Maven conventions.
* Artifact ID is pre-populated from the project name.

» Version follows Maven conventions.

195

Chapter 11. Workbench

New Project Wizard Project General Settings

Project Name |In5ert a project name ...

Project Description | |nsert a project description for documentation purposes ...

Group artifact version

Group ID [| N] Example: com.myorganization.myprojects @
Artifact ID |.myPr0jeci | Example: MyProject @
Version 1D | | 100 @

<- Previous l Next = l Cancel l Finish l

Figure 11.7. Entering project details

11.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Modeller" from the "Tools" menu.

196

Define Data Model

Explore ~ New ltem ~ m Repository -

Project Explorer Project Editor ¢

demo ~ myExampleReposmory ~ myrroject ~ @

Figure 11.8. Selecting "Data Modeller"

Click on "Create" to create a new type.

Data modeler Create | Save | X
myProject
S Create
Create new field
Identifier
The model is empty *Id sert a valid Java identifier Label | Insert a labe

]

Position Identifier 4 Label Type

The data object is empty

Figure 11.9. Selecting "Create" (type)

Enter the required details for the type.

197

Chapter 11. Workbench

Create new data object

*Identifier

MyExampleType

Label

Package
New package @ Existing package

org.anstis.myproject -

Superclass

4

Figure 11.10. Entering required details

Click on "Create" to create a field for the type.

q Cancel

198

Define Data Model

Data modeler Create | Save | %

myProjec o MyExampleType
Create

Identifier

MyExampleType .

Create new field

Id figldl Label | Insert a label

L3

org.anstis.myproject. MyExampleType

Paosition Identifier 4 Label Type

The data object is empty

Figure 11.11. Selecting "Create" (field)

Click "Save" to create the model.

Data modeler Create || Save | (x| ~
myProjec o MyExampleType
Create
Identifier

Create new field

MyExampleType .

*Id nsert a valid Java identifier Label | |nsert a label

.

org.anstis.myproject. MyExampleType

Position Identifier & Label

Figure 11.12. Clicking "Save"

199

Chapter 11. Workbench

11.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Explore - m Tools ~ Repository =

Project Exploi Business Process o
Decision Table (Spreadsheet)

demo - My ct -

DSL definition

Enumeration
BT Global Variable(s)

Guided Decision Table

Guided Rule

Guided Rule Template

Guided Score Card

Package

Project

Score Card (Spreadsheet)

Test Scenario

Work Item definition

Figure 11.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

200

Define Rule

Create new DRL file

* Resource Name | myDrlFile

Location default/imaster@MyExampleRepository/myProject

fsrc/mainfresources

Cancel

Figure 11.14. Entering file name for rule
Enter a definition for the rule.
The definition process differs from asset type to asset type.

The full documentation has details about the different editors.

201

Chapter 11. Workbench

DRL Editor [my’Dl’lFl'E] Save | Delete || Rename @ Copy @ \Validate x|~
Fact types:(hide) [. . .
® org.anstis. myproject. MyExampieType import org.anstis.myproject. MyExampleType;
rule "one"
when
MyExampleType(field1 == "hello")
then
end

Figure 11.15. Defining a rule

Once the rule has been defined it will need to be saved.

DRL Editor [ITT)"DI"FI'E] SEWE['-L Delete = Rename

Fact types:(hide) . . . - .
® org.anstis. myproject MyExampleTyp import org.anstis.myproject. MyExample Type;

rule "one"

Figure 11.16. Saving the rule

11.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the
Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Tools" menu.

202

Configuration

Explore ~ New ltem ~ -~ Repository ~

Project Explorer Project Editor
Data Modeler
demo ~ MyExampleReposiory ~ = myrroject =

w# DRL

Figure 11.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Aftifact
Repository.

If there are errors during the build process they will be reported in the "Problems Panel".

Project: [myProject:org.anstis:0.1.1] Save Buid & Deploy

N

Project Settings: Project General Settings ~

Figure 11.18. Building and deploying a project

Now the project has been built and deployed; it can be referenced from your own projects as any
other Maven Artifact.

The full documentation contains details about integrating projects with your own aplications.
11.3. Configuration

11.3.1. User management

The workbench authenticates its users against the application server's authentication and
authorization (JAAS).

203

Chapter 11. Workbench

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOVE/ bi n/ add- user . sh (or. bat):

$./add-user.sh

/'l Type: Application User

// Realm enpty (defaults to Applicati onReal m
/] Role: admn

There is no need to restart the application server.

11.3.2. Roles

The following roles are available:

e admin

e analyst
 developer
* manager

e user

11.3.2.1. Admin

Administrates the BPMS system. Has full access rights to make any changes necessary. Also has
the ability to add and remove users from the system.

11.3.2.2. Analyst
Creates rules, models, process flows, forms, dashboards and handles process change requests.
11.3.2.3. Developer

Implements code required for process to work. Mostly uses the JBDS connection to view
processes, but may use the web tool occasionally.

11.3.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to
continue forward. Works primarily with the task lists.

11.3.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their
performance, business indicators, and other reporting of the system and people who interact with
the system.

204

Command line config tool

11.3.3. Command line config tool

Provides capabilites to manage the system repository from command line.

11.3.3.1. Modes

* Online (default and recommended) - Connects to the git repository on startup using GIT server
provided by the KIE Workbench. All changes are made locally and published to upstream when:

» "push-changes" command is explicitly executed

+ "exit" command will publish all local changes and exit

« Offline - Creates and manipulates system repository directly on the server (no discard option)

11.3.3.2. Available Commands

Table 11.1. Available Commands

exit Publishes local changes, cleans up temporary
directories and quits the command line tool

discard Discards local changes without publishing
them, cleans up temporary directories and
quits this command line tool

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment

List available deployments

create-org-unit

Creates new organizational unit

remove-org-unit
add-deployment

remove-deployment

Removes existing organizational unit
Adds new deployment unit

Removes existing deployment

create-repo

Creates new git repository

remove-repo

Removes existing repository (only from
config)

add-repo-org-unit

Adds repository to the organizational unit

remove-repo-org-unit

add-role-repo

Removes repository from the organizational
unit

Adds role(s) to repository

remove-role-repo

Removes role(s) from repository

add-role-org-unit

Adds role(s) to organizational unit

205

Chapter 11. Workbench

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only
in online mode)

11.3.3.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script
and by default it will start in online mode asking for a Git url to connect to (the default value is
git://localhost/system). To connect to a remote server, replace the host and port with appropiate
values e.g. git://kie-wb-host;:9148/system.

./l kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This
will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit
does not yet exist, the folder value can be left empty and a brand new setup is created.

.l kie-config-cli.sh offline

11.4. Administration

11.4.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

206

Organizational unit

Workbench structure overview

Car insurance

Home insurance

Car loans

11.4.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

Organizational Unit Manager

Organizational Units Associated repositories Available repositories
A unting department ? Insuran{es .. , ~No Repositories available - ,:
Business department Loans

Human Resources department

Y

YOl @ Edit

207

Chapter 11. Workbench

11.4.3. VFS repository

A VFS repository is a Virtual File System repository. By default a VFS is a Git repository.

A repository can hold multiple projects and belongs to 1 organization unit.

RepositoriesEditor

Loans

URI: git://Loans

Root: default://masten@Loans/

@ Delete

Insurances

URI: git://Insurances

Root: default://master@Insurances/

@ Delete

A new repository can be created from scratch or cloned from an existing repository.
11.5. Introduction

11.5.1. Log in and log out

Create a user with the role adni n and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to
review the roles of the current account.

11.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the
workbench variant (drools, jbpm, ...).

208

Workbench concepts

The Knowledge Life Cycle

Authoring Deploy Process Management Tasks Dashboards
Project Authoring Deployments Process Definitions Tasks List Process & Task Dashboard
Asset repository Jobs Process Instances Business Dashboards

R

Administration

The Business Knowledge to drive your company

11.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

e Part
A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer”, "Project Editor", "Guided Rule Editor" etc. Parts can be
repositioned.

e Panel
A Panel is a container for one or more Parts.
Panels can be resized.
» Perspective
A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such
as "Home", "Authoring", "Deploy" etc.

11.5.4. Initial layout

The Workbench consists of three main sections to begin; however it's layout and content can be
changed.

209

Chapter 11. Workbench

KIE Werkbench

Explore ~ Newltem ~ Tools = Q
Project Explorer & x |v
example ~ uf-playground ~ mortgages ~ @
&= <default>

= org
E morigages

% DRL

© DOMAIN SPECIFIC L ANGUAGE DEFINITION

3 ENUMERATION DEFINITION 1
/ GUIDED DECISION TABLE

@ GUIDED RULE

Bankruptcy history
Problems x | v
No bad credit checks

no NINJAs Level Text File Column Line

Underage
@ GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

Figure 11.19. The Workbench

The initial Workbench shows the following components:-

» Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in
the above "example" is the Organizational Unit), Repositories (in the above "uf-playground"” is
the Repository) and Project (in the above "mortgages” is the Project).

e Problems
This provides the user will real-time feedback about errors in the active Project.
» Empty space
This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

11.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or
repositoned.

210

Resizing

This, for example, could be useful when running tests; as the test defintion and rule can be
repositioned side-by-side.

11.6.1. Resizing

The following screenshot shows a Panel being resized.
Move the mouse pointer over the panel splitter (a grey horizontal or vertical line inbetween panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the
left mouse button and drag the splitter to the required postion; then release the left mouse button.

File Edit View History Bookmarks Tools Accessibility Help

& Inbox (1) - michael.anstis@gma...) KIE Workbench

& |9 loclhost - @| [~ Q= Y
KIE Workbench

Explore ~ Newltem ~ Tools ~ Q
Project Explorer o Guided Editor [Bankruptcy history]
EXTENDS None selected o
example ~ uf-playground ~ morigages ~&
WHEN &
B <default> 1. ThereisaLoanApplication [a] Bgl
The following exists:
& o There is a Bankruptcy with: =]
&= morigages any of the following.
2 yearOiOccurrence greater than j 1990 a5, gl
e
amountowed Oreater than j 10000 5,8
% DRL THEN &
1 Retract LoanApplication [a] Bl
© DOMAIN SPECIFIC LANGUAGE DEFINITION fal
% Set value of LoanApplication [a] approved alse j: =
2 LEErat]
{3 ENUMERATION DEFINITION 1 Set value of LoanApplication [a] explanation has been bankrupt = =
(show
/' GUIDED DECISION TABLE options...)
® GUIDED RULE Edit Source Config Metadata
Bankruptcy history
No bad credit checks -
Problems x|~
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

o

Figure 11.20. Resizing

11.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this
example).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the
left mouse button. Drag the mouse to the required location. The target position is indicated with
a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the
different blue arrows.

211

Chapter 11. Workbench

Explore ~ Newltem ~ Tools - Q

Project Explorer o Guided Editor [No bad credit checks]
example ~ uf-playground ¥ morigages ~ =
B <default>

& org
& mortgages

@
@ DRL @D
J&

© DOMAIN SPECIFIC LANGUAGE DEFINITION I
© ENUMERATION DEFINITION I
GUIDED DECISION TABLE

® GUIDED RULE

Bankruptcy history

. No bad credit checks -

t Problems x| v
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

Figure 11.21. Repositioning - dragging

212

Authoring

File Edit View History Bookmarks Tools Accessibility Help

& Inbox (1) - michael.anstis@ama... 43 KIE Workbench
& [D locathost @ - o fy = - X
KIE Workbench

Explore ~ Newliem -~ Tools ~ Q
Project Explorer @ Guided Editor [Bankruptcy history] Guided Editor [No bgd credit checks] Save || Delete || Rename || Copy Validate | % | ¥
EXTENDS None selected EXTENDS None selected
example ~ uf-playground ~ morigages ~=
WHEN WHEN
B <default> 1 There is a LoanApplication [a] 1 There is a LoanApplication [app]
B or The following exists: Any of the following are true:
4 There is a Bankruptcy with. There is an Applicant with
& mortgages any of the following: , crediRating equal to j OK j’”u
2 p reatd
yearotaccurrence 0 There is an Applicant with
amountOwed greats creditRating €qual to j Sub prime j:DE
$DRL N 'THEN
1 Retract LoanApplication [a] B Relract LoanApplication [app]
© DOMAIN SPECIFIC LANGUAGE DEFINITION Setvalue of LoanApplcaton] Setvalue of LoanApplication [app] approved | false j=
2
2 p icati Only AA
(B ENUMERATION DEFINITION | Setvalue of LoanApplication [a] Setvalue of LoanApplication [app] explanation Y =]
(show [Di;:jav\:s)
#/ GUIDED DECISION TABLE options...) - -
v D
® GUIDED RULE Edit Source Config Metadata Edit Source Config Metadata
Bankruptcy history
No bad credit checks -
Problems x|z
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

.

Figure 11.22. Repositioning - complete

11.7. Authoring

11.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain
model jars. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote
repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKI NG_DI RECTORY/ r eposi t ori es/ ki e, but it
can be overridden with the system property - Dor g. guvnor . n2r epo. di r. There is only 1 Maven
repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

213

Chapter 11. Workbench

Iploa Refres Q
Name Path LastModified Open Downlead
mortgages-0.0.1.jar jages/.0.1 2013 Nov 16 15:46:40 Open Diownioad
0.1.jar

example-1,0 jar ong s/example/ 1, (Vexample- 2013 Nov 16 15:08:26 pen iy

1.0
jboss-modules-1.1.1.GA jar orglibossimodulesiboss-modules 2013 Nov 16 15:07:18 en Diowrion

M.1.1.GAjjboss-modules-1.1.1.GA jar
async-examples-1.0 jar 2013 Nov 16 16:14:33 en Dawrion
HR-1.0.jar org/ibpm/HRM . WHR-1.0 jar 2013 Nov 16 16:14:13 Gpen i

M H M B 15of5

To add a new artifact to that maven repository, either:

» Use the upload button and select a jar. If the jar contains a pom file under META- | NF/ maven
(which every jar build by Maven has), no further information is needed. Otherwise, a groupld,

artifactld and version need be given too.

ane KIE Workbench
§ KIE Workbeneh Lt

o | & 127.0.0.1:8888 org kie.workbench. KIEWebapp KIEWebapp. htmifgwt

Artifact Upload

DataTypes jar Choose File..

Upload

« Using Maven, nvn depl oy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

214

Asset Editor

11.7.2. Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two main
views Edit and Metadata.

» The views
» A The editing area - exactly what form the editor takes depends on the Asset type.

« B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy
etc.

» C: Different views for asset content or asset information.

Edit shows the main editor for the asset

» Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can
be generated into DRL.

« Config contains the model imports used by the asset.

* Metadata contains the metadata view for this editor. Explained in more detail below.

215

Chapter 11. Workbench

Guided Editor [Bankruptey history] Save | Delete | Rename | Copy | Yaldate
EXTENDS Mone selected o
WHEN

1. There is aLoanApplication [a]

The following exisis
There is a Bankruptcy with:

. o
any of the following:
, o -
2 yearDiDccumence greater than v el a 5,8
=]
amountOwed greatar than ¥ | 10000 =r._h|=
THEN ‘
1 delete LoanApplicaton [a]
Setvalue of LoanApplication [a] approved false L =]
2
Setvalue of LozanApplication [a] explanatipn 1a5 been bankrupt a
(show
aptions..)

Eclit Source Coanfig Metadata

0

Figure 11.23. The Asset Editor - Edit tab

* Metadata
* A : Meta data (from the "Dublin Core" standard):-
"Title:" Name of the asset
"Categories:" A deprecated feature for grouping the assets.
"Last modified:" The last modified date.
"By:" Who made the last change.
"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"Created on:" The date and time the Asset was created.

216

Asset Editor

"Created by:" Who initially authored the Asset.
"Format:" The short format name of the type of Asset.
"URI:" URI to the asset inside the Git repository.

* B : Other miscellaneous meta data for the Asset.

» C: Version history of the Asset.

» D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,

to record a description of the Asset before editing.

» E : Discussions regarding development of the Asset can be recorded here.

Guided Editor [Bankruptcy history] Save Delete | Rename Copy | Validate

=] Metadata
Title:Bankruptcy history.rarl &
Categories: da
Last modified2013-11-07 13:07
by-admin
Fote:Some changes
Created on:2013-09-18 16:54
Created by:Walter Medvedeo
Format:guided rule
LRLgitfmaster@uf-playground/mortgages/sre/mainfresources/org/mortgage s/Bankruptey ¥ 20hisgdry.rdrl

Other meta data f

Version history '
Description '

Discussion A

Edit Source Confify Metadata

e B W

Figure 11.24. The Asset Editor - Attributes tab

217

x

Chapter 11. Workbench

[=| Other meta data

Subject:
Type:
External link:

Source:

Figure 11.25. The Asset Editor - Other meta data

[—] Wersion history

WVersion history Qéh
2 modified on: 2013-11-07 1.07 PM by admin (Some changes)
1 modified on: 2013-09-18 4:54 PM by Walter Medvedeo (project refactoring to use mortgages pac

Wiew
Figure 11.26. The Asset Editor - Version history

[=| Description

<documentation=

Figure 11.27. The Asset Editor - Description

[=] Discussion
Add a discussion comment | Erase all comments

Comment by admin on Thu Nowv 07 14:50:58 EET 2013:
This asset should be removed

Figure 11.28. The Asset Editor - Discussion

11.7.3. Project Explorer

The Project Explorer provides the ability to browse diffeent Organizational Units, Repositories,
Projects and their files.

218

Project Explorer

11.7.3.1. Initial view

The initial view could be empty when first opened.

Project Explorer &

example - uf-playground ~ mortgages -

=== Mo items found ===

Figure 11.29. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down
boxes.

Project Explorer &

example = ufplayground = morgages ~ &

jbpm
repositoryl

k= <default>

= org
et uf-playground

@ mypackagename

R

Figure 11.30. Selecting a repository
The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

219

Chapter 11. Workbench

Project Explorer o
example - uf-playground ~ mortgages ~ %

B <default>
&= org
& morigages
@ mypackagename

Figure 11.31. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been
selected the Project Explorer will show the contents. The exact combination of selections depends
wholey on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.

220

Project Explorer

Project Explorer o
example - uf-playground ~ mortgages ~ =
k& <default>

&= org

& mortgages
@ mypackagename

(2 DOMAIN SPECIFIC LANGUAGE DEFINITION

(9 ENUMERATION DEFINITION

It:ﬁ':"llilullIZ:I'EI:I' DECISION TABLE

® GUIDED RULE
Bankruptcy history
Mo bad credit checks L}
no NINJAs

Underage

® GUIDED RULE (WITH D5SL)

® GUIDED RULE TEMPLATE

Figure 11.32. Expanded asset group

221

Chapter 11. Workbench

11.7.3.2. Different views

Project Explorer supports multiple views.

* Project View
A simplified view of the underlying project structure. Certain system files are hidden from view.
* Repository View

A complete view of the underlying project structure including all files; either user-defined or
system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project View and Repository Views can be further refined by seleting either "Show as Folders"
or "Show as Links".

Project Explorer o

% Project View

demo ~ uf-playground ~

k= <default>
& org Show as Folders
Im mortgages ¥ Show as Links

Figure 11.33. Switching view

222

Project Explorer

11.7.3.2.1. Project View examples

Project Explorer

demo = uf-playground -
= <default>

k= org
& morigages

Figure 11.34. Project View - Folders

Project Explorer

demo ~ uf-playground ~

<default> org

= mortgages

Figure 11.35. Project View - Links

N

mortgages ~

mortgages ~

223

Chapter 11. Workbench

11.7.3.2.2. Repository View examples

Project Explorer &
demo =~ ufplayground = mortgages ~ =

& mortgages
& SIC
&= main
m java
BB resources h‘
4 pom.xmi
[project.imports

Figure 11.36. Repository View - Folders

Project Explorer &

demo -~ ufplayground =~ morgages ~ =

mortigages SrIc main resources h

= META-INF

| org

Figure 11.37. Repository View - Links

11.7.4. Project Editor

The Project Editor screen can be accessed from the Project menu. Project menu shows the
settings for the currently active project.

224

Project Editor

Unlike most of the workbench editors, project editor edits more than one file. Showing everything
that is needed for configuring the KIE project in one place.

Project: [mortgages:mortgages:0.0.1] Save | Buld&Deploy | % |~

Project Settings: Project General Settings ~

Project General Settings
Dependencies
Metadata
Prq tgages project
Pra sample project for KIE workbenc
Knowledge bases and sessions I & sample project for KIE workbench

Metadata

Import Suggestions

Metadata

Group artifact version

Group ID mortgages Example: com myorganization myprojects @
Artifact ID mortgages Example: MyProject @
Version ID 00.1 100 @

Figure 11.38. Project Screen and the different views

11.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven
repository.

11.7.4.2. Project Settings
Project Settings edits the pom.xml file used by Maven.
11.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV
values are used as indentifiers to differ projects and versions of the same project.

Project Settings: Project General Settings

Project General Settings

Froject Hame Mortgages project

Project Description Just a sample project for KIE workbench

Group artifact version

Group ID mortgages
Artifact ID mortgages
Version 1D 0.0.1

Figure 11.39. Project Settings

225

Chapter 11. Workbench

11.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a
project that has been built and deployed to a Maven repository. Internal dependencies are projects
build and deployed in the same workbench as the project. External dependencies are retrieved
from repositories outside of the current workbench. Each dependency uses the GAV-values to
specify the project name and version that is used by the project.

Dependencies: Dependancies list =

Add Add from

Dependencies
repository

Group ID Artifact ID Version ID

org project anotherProject 1.0 i

Figure 11.40. Dependencies

11.7.4.2.3. Metadata

Metadata for the pom.xml file.

11.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Add Rename Delete Make Default

This one is default

Include me

Included Knowledge Bases

Add Delete
Include me

Packages

Add = Delete

org.mortgages

Equals Behavior
@ Identity
Equality
Event Processing Mode
@ Stream

Knowledge Sessions

Add
Name Default State Clock

Session 1 v

Session 2

Session 3 Stateful v Realtime

Figure 11.41. Knowledge Base Settings

226

Project Editor

@ Note
For more information about the Knowledge Base properties, check the Drools
Expert documentation for kmodule.xml.

11.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified
for the project.

11.7.4.3.1.1. Knowledge base list
Lists all the knowledge bases by name. Only one knowledge base can be set as default.
11.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in
the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are
included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.
Event processing mode is explained in the Drools Fusion part of the documentation.
11.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one
default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup
that shows more properties for the knowledge session.

11.7.4.3.2. Metadata

Metadata for the kmodule.xml

11.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Imports: Import Suggestions +

Type Remove
org test.Person
java.util ArrayList

org.test.Address © Remove

Figure 11.42. Imports

227

Chapter 11. Workbench

11.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the
workbench has. Making it easier to work with the workbench, as there is no need to type each
import in each file that uses the import.

11.7.4.4.2. Metadata

Metadata for the project.imports file.

11.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files
authored within the environment are valid.

11.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation
results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either
new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

228

Validation

DRL Editor [Dummy rule] Save | Delete | Rename | Copy | Validate : R4
Show fact
owfactypes package org.mortgages
Some invalid DRL
DRL Metadata
Problems x|~
Level Text File Column Line
[ERR 107] Line 3:0
mismatched input 'Some’
expecting one of the
%] P) g Dummy rule.drl 0 3
following tokens: [package,
import, global, declare,
function, rule, query]'
Parser returned a null
%] Dummy rule.drl 0 0

Package

Figure 11.43. The Problems Panel

11.7.5.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

229

Chapter 11. Workbench

Validation errors

€@ [ERR 107] Line 3:0 mismatched input 'Some’ expecting one of the following
tokens: Tpackage, import, global, declare, function, rule, query]".

@ Parser retumed a null Package

11.7.6. Data Modeller

11.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this
tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

KIE Workbench

Authoring =

Project Authoring

Asset repository

Administration

Figure 11.44. Go to authoring perspective

2. If not open already, start the Project Explorer panel

230

Data Modeller

KIE Workbench

Mew Item - TC

Incoming changes

Recently edited

Recently opened

Figure 11.45. Open project explorer panel

. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and
the project the data model has to be created for. For this tutorial's example, the values "Tutorial",
"Examples”, and "Purchases" were respectively chosen

Business = Technical i

Organizational Unit: | % Tutorial =™
Repository: [[Examples ™
Project: CdPurchases ™

Package =N gepk=0

Figure 11.46. Choose project

. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the
"Data Modeller" option from the drop-down menu

231

Chapter 11. Workbench

KIE Workbench

Explore = Mew [tem =

Project Explorer

Business | Techricd -
Organizational Unit: & Tutorial ™
Repository: [[Examples =~
Project: [dPuchases =

Figure 11.47. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Purchase Order ’
Data object Field

Purchases

Identifier
Create new field
Purchase Order . ldentifier | qegaription
Purchase Qrder Header x "d | ns lid Jar Jentifier Label | |nsert al
Label Description
Purchase Order Line » *Type j @ Create
Description
|
Purchase Order (org.joppm.examples.purchases.PurchaseOrder)
Type String
Position Identifier & Label
Equals O
Fosition 0
header Header (@ Purchase Order Header
2 lines Lines @ Purchase Qrder Line [0 N] x

Figure 11.48. Data modeller overview

The Data Modeller panel is divided into the following sections:

« The leftmost "model browser" section, which shows a list of already existing data entities (if any
are present, as in this example's case). Above the list the project's name and a button for new
object creation are shown. Note that as soon as any changes are applied to the project, an "*' will
be appended to the project's name to notify the user of the existence of non-persisted changes.

232

Data Modeller

Purchases
Identifier
Purchas
Furchase Order Header x
FPurchase Order Line »

Figure 11.49. The data model browser

» The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and
forth through the data model, when accessing properties that themselves are model entities. The
bread crumb trail shown in the image indicates that the object browser is currently visualizing
the properties of an entity called "Purchase Order Line", which we accessed through another
entity ("Purchase Order"), where it is defined as a field.

Purchase Order - Purchase Order Line

Figure 11.50. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Create new field

"d |insert a valid Java identifiel AR

*Type j

Figure 11.51. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently
selected data object's (in the model browser) fields.

233

Chapter 11. Workbench

Purchase Order (org.jppm.examples.purchases.PurchaseOrder2)

Position ldentifier & Label
-ll
header Header (i) Purchase Order Header
2 lines Lines @ Purchase Order Line [0.M] b4

Figure 11.52. The entity field browser

e The "entity / field property editor". This is the rightmost section of the Data Modeller screen
which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of
the currently selected entity in the model browser, whilst the Field tab enables edition of the
properties of any of the currently selected object's fields.

Data object | Field

ldentifier pyrchaseOrder

Label Purchase Order

Deseription | This entity models the

client purchase orders.

Package org.jbpm.examples.purchases jg
Superclass Example Parent Class {c:nj

Role EVENT j ©

Figure 11.53. The entity/field property editor

11.7.6.2. Entities

A data model consists of data entities which are a logical representation of some real-world data.
Such data entities have a fixed set of modeller (or application-owned) properties, such as its

234

Data Modeller

internal identifier, a label, description, package etc. Besides those, an entity also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that
this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser
section (see fig. "The data model browser" above), or by clicking the one in the top data modeller
menu:

Create Save x X

Data object Field

Figure 11.54. Starting creation of an entity from the top menu

This will pop up the new object screen:

Create new data object

e i

Figure 11.55. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

» The object's internal identifier (mandatory). The value of this field must be unique per package,

i.e. if the object's proposed identifier already exists in the selected package, an error message
will be displayed.

235

Chapter 11. Workbench

» Alabel (optional): this field allows the user to define a user-friendly label for the data entity about
to be created. This is purely conceptual info that has no further influence on how objects of this
entity will be treated. If a label is defined, then this is how the entity will be displayed throughout
the data modeller tool.

» A package (mandatory): a data entity must always be created within a package (or name space,
in which this entity will be unique at a platform level). By default, the option for selecting an
already existing package will be activated, in which case the corresponding drop-down shows
all the packages that are currently defined. If a new package needs to be defined for this entity,
then the "New package" option should be selected. In this case the new to be created package
should be input into the corresponding text-field. The format for defining new packages is the
same as the one for standard Java packages.

« A superclass (optional): this will indicate that this entity extends from another already existing
one. Since the data modeller entities are translated into standard Java classes, indicating a
superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the
bottom of the screen the new data entity will be created. It will be added to the model browser's
entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition
of the newly created entity, by completing the entity's properties in the Data Object Properties
browser, or by adding new fields.

Purchases* © Create

Identifier
Create new field
Purchase Order o

Purchase Order Header »® *id 1 tif Label
Purchase Order Line x® “Type -
frutorial Exarmple Entity .

Tutorial Example Entity (org.jbpm.examples.Example)

Position Identifier 4 Label Type

The data of

Figure 11.56. New entity has been created

@ Note
As can be seen in the above figure, after performing changes to the data model, the
model name will appear with an ** to alert the user of the existence of un-persisted
changes to the model.

236

Data Modeller

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'
icon to the right of each entity. If an entity is being referenced from within another entity (as a
field type), then the modeller tool will not allow it to be deleted, and an error message will appear
on the screen.

11.7.6.3. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined
properties to its definition. This can be achieved by providing the required information in the
"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when
finished. The following fields can (or must) be filled out:

« The field's internal identifier (mandatory). The value of this field must be unique per data entity,
i.e. if the proposed identifier already exists within current entity, an error message will be
displayed.

« A label (optional): as with the entity definition, the user can define a user-friendly label for the
data entity field which is about to be created. This has no further implications on how fields
from objects of this entity will be treated. If a label is defined, then this is how the field will be
displayed throughout the data modeller tool.

« A field type (mandatory): each entity field needs to be assigned with a type.
This type can be either of the following:

1. A 'primitive’ type: these include most of the object equivalents of the standard Java primitive
types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and Biglnteger.

*Type - @ Create

BigDecimal
irchas Biginteger
Boolean
Date
Double

Float
. Integer

Lang

Short

String

‘osition

7]

Figure 11.57. Primitive field types

2. An 'entity’ type: any user defined entity automatically becomes a candidate to be defined as
a field type of another entity, thus enabling the creation of relationships between entities. As

237

Chapter 11. Workbench

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already
appears in the types list and can be used as a field type, even for a field of itself. An entity
type field can be created either in 'single’ or in 'multiple’ form, the latter implying that the field
will be defined as a collection of this type, which will be indicated by the extension '[0..N]'
in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the

'Purchase Order' entity, for example).

Example Parent Class (org.jbpm.examples. purchases. parent)

Example Parant Class (org.jbpm.examples. purchases parent) [0..N]

Purchase Order (org.jbpm.examples purchases. PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases PurchaseOrder) [0..N]
Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader)

Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader) [0..N]

Purchase Order Line (org.jbpm.examples. purchases.PurchaseOrderLing)
Purchase Order Line {org.jbpm.examples, purchases PurchaseOrderLing) [0..N]
Tutorial Example Entity (org.jbpm.examples. Example)

Tutorial Example Entity l{nrg.jbpm.examples.Exam ple) [0..M]

A

Figure 11.58. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the entity's fields table below:

. . Tutorial Example Entity
urchases

Identifier
Create new field

Purchase Order x
Purchase Order Header 3¢ Fe |insert a valid Java identifier Label ||nsert a label
Purchase Order Line *® *Type j

Tutorial Example Entity .

Tutorial Example Entity (org.jppm.examples.Example)

Position Identifier 4 Label T

vpe

Figure 11.59. New field has been created

Data ohject

Identifier

Lahel

Description

Type

Equals

Position

The new field will also automatically be selected in the entity's field list, and its properties will be
shown in the Field tab of the Property editor. The latter facilitates completion of some additional

properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on

the corresponding 'x' icon in the entity's fields table.

238

Field

title

Title

String j
O
4

Data Modeller

11.7.6.4. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be
set upon creation. These are by no means the only properties entities and fields have. Below we
will give a detailed description of the additional entity and field properties.

11.7.6.4.1. Additional entity properties ("Data object tab")

Data object | Field

...

ldentifier prchaseOrder

Lakel Purchase Order

Deseription | Thig entity models the

client purchase orders.
Package org.jbpm.examples.purchases jg
Superclass Example Parent Class |j-::-|j

Role EVENT j [}

Figure 11.60. The entity's properties

» Description: this field allows the user to introduce some kind of description for the current entity,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

» Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited
from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity
that is designated with this value will be treated by the rules engine as an event type Fact (See
Drools Fusion for more information on this matter).

239

Chapter 11. Workbench

11.7.6.4.2. Additional field properties ("Field tab")

Diata object Fiald

Identifier header

Labal

Description

Figure 11.61. The entity's field properties

 Description: this field allows the user to introduce some kind of description for the current field,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

« Equals: checking this property for an entity field implies that it will be taken into account, at
the code generation level, for the creation of both the equals() and hashCode() methods in the
generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

11.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data
structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform
on the other. In order for this to become possible, these high-level visual structures have to be
transformed into low-level artifacts that can effectively be consumed by these platforms. These
artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data
model is saved, by pressing the "Save" button in the top Data Modeller Menu.

240

Data Modeller

Create Save x

Data ohject Field

Figure 11.62. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,
according to the following transformation rules:

The entity's identifier property will become the Java class's name. It therefore needs to be a
valid Java identifier.

The entity's package property becomes the Java class's package declaration.
The entity's superclass property (if present) becomes the Java class's extension declaration.

The entity's label and description properties will translate into the Java
annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and
"@org.kie.workbench.common.services.datamodeller.annotations.Description”, respectively.
These annotations are merely a way of preserving the associated information, and as yet are
not processed any further.

The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-
defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own
getter and setter method, according to the following transformation rules:

The entity field's identifier will become the Java field identifier. It therefore needs to be a valid
Java identifier.

The entity field's type is directly translated into the Java class's field type. In case the entity field
was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

The equals property: when it is set for a specific field, then this class property will be
annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the
Drools Engine, and it will 'participate’ in the generated equals() method, which overwrites the
equals() method of the Object class. The latter implies that if the field is a 'primitive’ type, the
equals method will simply compares its value with the value of the corresponding field in another

241

Chapter 11. Workbench

instance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding entity's Java class, or of the
java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies
thatin addition to the default generated constructors another constructor is generated, accepting
as parameters all of the fields that were marked with Equals. Furthermore, generation of the
equals() method also implies that also the Object class's hashCode() method is overwritten, in
such a manner that it will call the hashCode() methods of the corresponding Java class types
(be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in the Data
Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
changes the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

e The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to
its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines’ were
marked with Equals, and have been assigned with the positions 2 and 1, respectively).

| Dataohject | Field

Create new field !
Identifier | pyrehaseOrder

“id: [inser Label

*Type j

L Purchase Order

Descriplion | This entity models the

client purchase orders.

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)
Package | org.jbpm.examples purchases j o

Position Identifier a Label Type
Superclass Example Parent Class njmj
description Description String
Rale EVENT -|e
O o
lines Lines (@ Purchase Order Ling [0..N]

Figure 11.63. Purchase Order configuration

242

Data Modeller

package org.j bpm exanpl es. pur chases;

/**

* This class was autonatically generated by the data nodel er tool.

*/

@rg. kie.api.definition.type. Rol e(val ue =

org. ki e. api . definition.type. Rol e. Type. EVENT)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Purchase Order")

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri ption(val ue =
"This entity nodels the client purchase orders.")

public class PurchaseOrder extends org.jbpm exanpl es. purchases. par ent

i mpl ements java.io. Serializable {

static final long serial VersionU D = 1L;

@r g. ki e. wor kbench. common. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Descri ption")

@rg. kie.api.definition.type.Position(value = 0)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"A description for this purchase order.")

private java.lang. String description;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Label (val ue =

"Li nes")

@rg. kie.api.definition.type. Position(value = 1)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"The purchase order itens (collection of Purchase Order Line sub-entities).")
@rg. ki e.api . definition.type. Key
private java.util.List<org.jbpm exanpl es. purchases. PurchaseO derLi ne> | i nes;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Label (val ue =
"Header")

@rg. kie.api.definition.type. Position(value = 2)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Descri ption(val ue =
"The purchase order header (Purchase Order Header sub-entity).")

@rg. ki e.api . definition.type. Key

private org.jbpm exanpl es. purchases. PurchaseO der Header header;

public PurchaseOrder() {}

publ i ¢ PurchaseOr der (

java.lang. String description,

java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{
thi s.description = description;
this.lines = |ines;

thi s. header = header;

243

Chapter 11. Workbench

publ i ¢ PurchaseOrder (
java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{

this.lines = |ines;

t hi s. header = header;
}

public java.lang. String getDescription() {
return this.description;

}

public void setDescription(java.lang.String description) {
thi s.description = description;

}

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne>
get Li nes()
{

return this.lines;

}

public void setLines(

java. util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines)
{

this.lines = |ines;

}

public org.jbpm exanpl es. purchases. PurchaseOr der Header get Header () {
return this. header;

}

public void set Header(org.jbpm exanpl es. purchases. PurchaseOr der Header
header)

{

thi s. header = header;

}

@verride

publi ¢ bool ean equal s(Obj ect 0) {

if (this == 0) return true;

if (o ==null || getdass() != o.getClass()) return fal se;

org. j bpm exanpl es. purchases. Pur chaseOrder that =

(org.j bpm exanpl es. pur chases. Pur chaseOr der) o;

if (lines !'= null ? Ilines.equals(that.lines) : that.lines !'= null)
return fal se;

if (header !'= null ? !header.equal s(that.header) : that.header != null)

244

Data Modeller

return fal se;
return true;

}

@verride
public int hashCode() {
int result = 17;

result = 13 * result + (lines !'=null ? lines.hashCode() : 0);
result = 13 * result + (header != null ? header.hashCode() : 0);
return result;

}

}

11.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

« Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

« Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

11.7.6.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

245

Chapter 11. Workbench

11.7.6.6.1.1. Open the Project Editor for current project and select the
Dependencies view.

File Edit View History Bookmarks Tools Help

| © KIE Warkbench ” + |
v @| |Bv coogle Q J\‘/L g

& localhost

KIE Workbench

Explore ~ NewItem ~ Tools v

Project Explorer x |~ Project Screen File™ || Build &Deploy | | % | ™

Business Technical <
Dependencies: Dependencies list v

Organizational Unit: 4 demo ~

Repository: [ke-eamples ¥ Dependencles Add Add from
Project: GdPurchases ~ n peposony
Package: & orgjbpm.examples.purchases ¥
Group ID Artifact ID Verslon ID
Figure 11.64. Project editor.
11.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
File Edit View History Bookmarks Tools Help
| @ KIE Workbench | #+]
S localhost v @| | Google (s} _\l‘/L o

KIE Workbench

Explore ~ NewItem ~ Tools

File” | Build&Deploy | x ¥

Project Explorer = |~ Project Screen

Business = Technical <

Dependencies: Dependencies list ~

Organizational Unit: i demo ™

Add from

Repository: []ke-examples ~ Dependencles Mﬂ
repository

Project: | (Jpurchases ~ "

Package: | & org;jbpm.examples purchases ¥
Group ID Artifact ID Verslon ID

w

javascripts;

Figure 11.65. New dependency line.

246

Data Modeller

11.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2
repository.

File Edit View History Bookmarks Tools Help

| © KIE Warkbench ” + |
v @| |Bv coogle Q J\‘/L g

& localhost

KIE Workbench

Explore ~ NewItem ~ Tools v

Project Explorer x |~ Project Screen File™ || Build &Deploy | | % | ™

Business Technical [+
Dependencies: Dependencies list v

Organizational Unit: 4 demo ~

Repository: [ke-eamples ¥ Dependencles Add Add from
Project: GdPurchases ~ n peposony
Package: & orgjbpm.examples.purchases ¥
Group ID Artifact ID Verslon ID
101 "Il
Figure 11.66. Dependency line edition.
11.7.6.6.1.4. Save the project to update its dependencies.
When project is saved the POJOs defined in the external file will be available.
File Edit View History Bookmarks Tools Help
| © KIE Workbench |+
@ @av Q J\‘/L &

& localhost

KIE Workbench

Explore -~ NewlItem - Tools ~
File ™ || Build & Deploy | x| ™

Project Explorer x |~ Project Screen

Business = Technical (s
Dependencies: Dependencies list ~

Organizational Unit: & demo ~
Repository: []kie-eamples ¥ Dependencles Add Add from
Project: | LJ Purchases ~ I Eeposhon,
Package: 8 orgjbpm.examplespurchases ¥

Group ID Artifact ID Verslon ID

ternal-mod termal-model 10 i

javascript:;

Figure 11.67. Save project.
11.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository"”.

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

247

Chapter 11. Workbench

11.7.6.6.2.1. Open the Maven Artifact Repository editor.

File Edit View History Bookmarks Tools Help

| @ KIE Workbench |+
G localhost v @| |Bv Google a & @
KIE Workbench
Authoring ~
Project Authoring Q

Explore
Asset repository
x|[*

File Explor administration % ~ Guvnor M2 REPOSITORY

Browse... | upload
Upload new Jar:

fiRepositories

Find items with a name matching:

Search
I

Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detall Download

M 4 0of0 » M

javascript:;

Figure 11.68. Guvnor M2 Repository editor.

11.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded
using the Browse button.

File Edit View History Bookmarks Tools Help

9 KIE Workbench | +]
g localhost v @ B Google Q J\‘/L &
A < wmedvede | development | projects | extemnal-model | target
Explore ~ Q
File Explorer x ~| Guvnor M2 REPOSITORY Places Name v | Size | Modified x|[~
FReposiories 1 Q Search [classes 10:29
Uplood nee Jary _|/ome/wmedvede/developmen| Browse... & Recently Used & maven-archiver 10:29
wmedvede B0 surefire 10:29

B Desktop B external-model jar 13kB 12:03

& File System

Find items with a name matching:
| Search
i All Files

Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detail Download

Cancel Open

M 4 000 » M

Figure 11.69. File browser.

248

Data Modeller

11.7.6.6.2.3. Upload the file using the Upload button.

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }

& | @ Localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench. KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Av Google a & @

Uploaded successfully

I oKk:ill

Figure 11.70. File upload success.

11.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }
& | @ Localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench. KIEWebapp/KIEWebapp.html 2#M2RepoE ditor v @| [Bv coogle a I @
Explore ~ search Q
File Explorer x ~ Guvnor M2 REPOSITORY x v

H3Repositories

Upload new Jar:

Find items with a name matching:
K Search
Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detall Download

M extemal-model-1.0.jar extemal-model/external-model/1.0/external-model-1.0.jar kgO‘\ﬂ Sep 27 12:17:39 | Open Download

K o« 10f1 » » M

Figure 11.71. Files list.

11.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

249

Chapter 11. Workbench

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }

@“ | @ tocalhost:8080/kie-wb-6 1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html ?#M2RepoEditor ~ @ 8- Google Q @ r_@]‘

The Jar does not contain a valid POM file. Please specify GAV info manually.

Figure 11.72. Not valid pom.

File Edit View History Bookmarks Tools Help

| Q KIE Workbench |[+ 1
& | @ Localhost:3080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Bv Google a 4 @
Explore ~ search Q
File Explorer x | ~ Guvnor M2 REPOSITORY x|~

HiRepositorles

fhome/wmedvede/developmen| Browse... | upioad

Groupp: External-model

Upload new Jar: p ooy, eXternal-model

versionmo] 101 L

Find items with a name matching:

Search

Refresh | Delete selected jar

Figure 11.73. Enter GAV manually.

11.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

250

Data Modeller

File Edit View History Bookmarks Tools Help

[@ KIE Workbench]@

@“ I@ localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html ?#projectScreen N @‘ IV Google Q} @ @

LastModified View Artifact Detail

Mo o4 1of1 > » M

Figure 11.74. Select JAR from "Maven Artifact Repository".

11.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

» External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

251

Chapter 11. Workbench

File Edit View History Bookmarks Tools Help
| @ KIE Workbench +
@“ ‘@Lo:alhost:&OBO/kle—wb—é.l.O—SNAPSHOT—eap—G_1/org.k\e.workbench.K\EWeDapp/’K\EWebapp.html?#org.kle.guvnor.TestResuLts V@‘ “’ Google Ql @]ﬁf
Explore ~ NewItem ~ Tools ~ search.. Q

Project Explorer x| v Data modeler AL AR A
Cierzs Pesils Bl . Purchase Order

— S

Identifier

Organizational Unit: & demo ~

= | Create new field
- Identifier
Repository: | [kie-examples |~ [z e . PurchaseQrder

Project: [Purchases |~ Purchase Order x Id | useExternalType Label | Insert a label]

cader -
Package: [org ppmeampics penases |~ “Type —e)ct—e)demalmudel.l’ruduc_.l
e L o

Purchase Order Line %

Purchase Order

BigDecimal
BigInteger
Purchas Bo

olean
JAVA SOURCE FILES I Date Package |org.jbpm.examples.purchases j [+

Positiol) ble
Superclass j

[¥EsT scenARIO Float
)
Integer Role j)

Long

! Short

String

2 Purchase Order (org.jppm.examples.purchases.PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder) [0..N]
Purchase Order Header (org.jopm.examples.purchases.PurchaseOrderHeader)
Purchase Order Header (org.joppm.examples.purchases.PurchaseOrderHeader) [0..N]
Purchase Order Line (org.jopm.examples.purchases.PurchaseOrderLine)
Purchase Order Line (org.jppm.examples.purchases.PurchaseOrderLine) [0..N]
- ext - externalmodel. Product

- ext - externalmodel.Product [0..N]

Figure 11.75. Identifying external objects.

11.7.6.7. External changes to models

It is possible to modify a project's assets externally, i.e. accessing them directly through the
project's repository. While NOT a recommended practice, it is important to be aware of the
implications this entails.

@

From an application context's perspective, we can basically identify two different scenarios:

11.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,
without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user
tries to make any kind of change, such as add or remove data objects or properties, or change
any of the existing ones, the following pop-up will be shown:

252

Data Modeller

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 11.76. External changes warning

The user can choose to either:

« Re-open the data model, thus loading any external changes, and then perform the modification
he was about to undertake, or

 Ignore any external changes, and go ahead with the modification to the model. In this case,
when trying to persist these changes, another pop-up warning will be shown:

253

Chapter 11. Workbench

_—— - - - - __________—_—_—_—_——3

Error

User =system > updated current project default: //master@uf-playground
/mortgages data model,

Force Save Re-open Cancel

Figure 11.77. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open™ will
discard any local changes and reload the model.

A Warning

"Force Save" overwrites any external changes!

11.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user
simultaneously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset
repository, a warning is issued to the application user:

254

Data Modeller

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 11.78. External changes warning

As with the previous scenario, the user can choose to either:

» Re-open the data model, thus losing any modifications that where made through the application,
or

« Ignore any external changes, and continue working on the model.
One of the following possibilities can now occur:

» The user tries to persist the changes he made to the model by clicking the "Save" button in
the data modeller top level menu. This leads to the following warning message:

255

Chapter 11. Workbench

—— - ______—_——3

Error

User <system= updated current project default: //master@uf-playground
/mortgages data model.

Force Save Re-open Cancel

Figure 11.79. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will
discard any local changes and reload the model.

» The user switches to another project. In this case he will be warned of the existence of non-
persisted local changes through the following warning message:

256

Data Modeller

Warning

Current project data model has been modiified, do you want your changes to
be saved before switching from:

project: default://master@uf-playground/mortgages

to

project: default://master@uf-playground/newproject ?

Figure 11.80. Project switch warning

If the user chooses to persist the local changes, then another pop-up message will point out
the existance of the changes that were made externally:

257

Chapter 11. Workbench

T
Error

User <system= updated current project default: //master@uf-playground
J/mortgages data model, lilkely in another session or editor,
Do you want to force wour changes to be saved before switching projects?

© Yes, Force Save Mo, Discard my Changes

Figure 11.81. Project switch external changes warning

The "Yes, Force Save" option will effectively overwrite any external changes, while "No,
Discard my Changes" will switch to the other project, discarding any local changes.

11.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.
Assets can belong to any number of categories. In the below diagram, you can see this can in
effect create a folder/explorer like view of categories. The names can be anything you want, and
are defined by the Workbench administrator (you can also remove/add new categories).

@ Note
Categories do not have the same role in the current release of the Workbench
as they had in prior versions (up to and including 5.5). Projects can no longer be
built using a selector to include assets that are labelled with certain Categories.
Categories are therefore considered a deprecated feature.

258

Categories Editor

11.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Project - category
Categoriqe: G0 A —

C Edit categories

Current categories: g+
@ = categoryl
= subcategoryl.1
—category2

Mew category | Rename selected | Delete selected

Figure 11.82. Launching Categories Editor

11.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

Categories Editor Save

Current categories: @i+

Edit categories

B = categoryl
= subcategoryl.1
= category2

Mew category | Rename selected | Delete selected

Figure 11.83. Managing categories

259

Chapter 11. Workbench

Generally categories are created with meaningful name that match the area of the business the
rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

11.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

Guided Editor [Bankruptcy history] save Delete Rename Copy \Vaidate @ % <

= Metadata
Title:Bankruptcy history.rdrl
Categoriesicategoryl/subcategoryl. 17| =

Last modified2013-11-07 11:46
by:admin
Mote:
Created on:2013-09-18 14:54
Created by:Walter Medvedeo
Formatguided rule
URLgit#/master@uf-playground/mortgages/src/main/resources/org/morgages/Bankruptcyde20history.rdrl

Other meta data
Version history
Description

Discussion

Edit Source Config Metadata

Figure 11.84. Adding Categories to an asset

260

Chapter 12.

Chapter 12. Workbench Integration

12.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and
manipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,
that is, they continue their execution after the call was performed as a job. The job ID is returned
by every calls to allow after the REST API call was performed to request the job status and verify
whether the job finished successfully. Parameters of these calls are provided in the form of JSON
entities.

When using Java code to interface with the REST API, the classes used in
POST operations or otherwise returned by various operations can be found in the
(org. ki e. wor kbench. servi ces:) ki e- wh- conmon- ser vi ces jar. All of the classes mentioned
below can be found in the or g. ki e. wor kbench. common. servi ces. shar ed. r est package in that
jar.

12.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the
calls are asynchronous and you need to be able to reference the job to check its status as it goes
through its lifecycle. During its lifecycle, a job can have the following statuses:
* ACCEPTED: the job was accepted and is being processed
* BAD_REQUEST: the request was not accepted as it contained incorrect content
e RESOURCE_NOT_EXI ST: the requested resource (path) does not exist
* DUPLI CATE_RESOURCE: the resource already exists
e SERVER ERROR: an error on the server occurred
* SUCCESS: the job finished successfully
e FAI L: the job failed
« DENI ED: the job was denied
e GONE: the job ID could not be found
A job can be GONE in the following cases:
» The job was explicitly removed

» The job finished and has been deleted from the status cache (the job is removed from status
cache after the cache has reached its maximum capacity)

261

Chapter 12. Workbench Integration

The

The job never existed

following j ob calls are provided:

[GET] /j obs/ {j obl D}

Returns the job status

Returns a JobResul t instance

Example 12.1. An example (formatted) response body to the get job call
on arepository clone request

{
"status":" SUCCESS",
"jodld":"1377770574783- 27",
"result":"Alias: testlnstall AndDepl oyProject, Scheme: git, Ui: git://
test | nstal | AndDepl oyProj ect ",
"l ast Modi fied": 1377770578194, "det ai | edResul t": nul |

[DELETE] /| obs/ {j obl D}

Removes the job: If the job is not yet being processed, this will remove the job from the job
queue. However, this will not cancel or stop an ongoing job

Returns a JobResul t instance

12.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and

The

[GE

their projects.

following r eposi t ori es calls are provided:

T]/repositories

Gets information about the repositories in the Knowledge Store

Returns a Col |l ecti on<Map<String, String>> or Coll ection<RepositoryRequest>
instance, depending on the JSON serialization library being used. The keys used in the
Map<St ri ng, String>instance match the fields in the Reposi t or yRequest class

Example 12.2. An example (formatted) response body to the get
repositories call

262

Repository calls

"name": "wb- assets",
"description":"generic assets",
"user Nane": nul |,
"password": nul |,
"request Type": nul |,
"gitURL":"qgit://bpns-assets”
b
{
"nanme":"| oanProj ect"”,
"description":"Loan processes and rul es",
"user Nane": nul | ,
"password": nul |,
"request Type": nul |,
"gitURL":"git://| oansProject"

[POST]/repositories
Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a Reposi t or yRequest instance

Returns a Cr eat eOr O oneReposi t or yRequest instance

Example 12.3. An example (formatted) response body to the create
repositories call

{
"name": " new proj ect-repo"”,
"description":"repo for ny new project",
"user Nanme": nul |, "password": nul |,
"request Type": " new',
"gi tURL": nul |

}

[DELETE] / reposi tori es/{repositoryNane}
Removes the repository from the Knowledge Store

Returns a RenoveReposi t or yRequest instance

[POST]/repositories/{repositoryNanme}/projects/
Creates a project in the repository

Consumes an Ent i ty instance

Returns a Cr eat ePr oj ect Request instance

263

Chapter 12. Workbench Integration

Example 12.4. An example (formatted) request body that defines the
project to be created

"name": " nmyProject",
"description": "ny project”

12.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its
organizational units, so as to organize the connected Git repositories.

The following or gani zat i onal Uni t s calls are provided:

[POST]/ organi zati onal units
Creates an organizational unit in the Knowledge Store

Consumes an Or gani zat i onal Uni t instance

Returns a Cr eat eOr gani zat i onal Uni t Request instance

Example 12.5. An example (formatted) request body defining a new
organizational unit to be created

{
"nane":"testgroup",
"description":"",
"owner":"tester",
"repositories":["test GoupRepository"]
}
[POST] / organi zati onal uni t s/ {organi zati onal Uni t Nane}/ reposi tori es/

{repositoryNane}
Adds the repository to the organizational unit

Returns a AddReposi t or yToOr gani zat i onal Uni t Request instance

[DELETE] / organi zat i onal uni t s/ {organi zati onal Uni t Nane}/ repositories/
{repositoryNane}
Removes the repository from the organizational unit

Returns a RenoveReposi t or yFr onOr gani zat i onal Uni t Request instance

264

Maven calls

12.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the
Project resources.

The following maven calls are provided:
[POST] /repositories/{repositoryNanme}/projects/{project Nane}/ maven/ conpi |l e
Compiles the project (equivalent to nvn conpi | e)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a Conpi | ePr oj ect Request instance

[POST]/repositories/{repositoryName}/projects/{projectNane}/ maven/inst al |
Installs the project (equivalent to nvn install)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a | nst al | Proj ect Request instance

[POST] /repositories/{repositoryNanme}/projects/{project Nane}/ maven/t est
Compiles the project runs a test as part of compilation

Consumes a Bui | dConf i g instance
Returns a Test Pr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectNane}/ maven/ depl oy
Deploys the project (equivalent to mvn depl oy)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a Depl oyPr oj ect Request instance

265

266

Chapter 13.

Chapter 13. Workbench High
Availability

13.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,
process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in
sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is
the cluster management component that registers all cluster details (nodes, resources and the
cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide
VFS clustering.

To create a VFS cluster:
1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/].
2. Install both:
a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).
b. In $ZOOKEEPER_HOME, copy zoo_sanpl e. conf to zoo. conf
c. Edit zoo. conf . Adjust the settings if needed. Usually only these 2 properties are relevant:
the directory where the snapshot is stored.
dat abi r =/ t np/ zookeeper
the port at which the clients will connect
clientPort=2181
d. Unzip Helix into a directory ($HELI X_HOVE).
3. Configure the cluster in Zookeeper:

a. Go to its bi n directory:
$ cd $ZOOKEEPER_HOVE/ bi n

b. Start the Zookeeper server:

267

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Chapter 13. Workbench High Av...

C.

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dat aDi r (as specified in zoo. conf) is accessible.

To review Zookeeper's activities, open zookeeper . out :

$ cat $ZOOKEEPER HOVE/ bi n/ zookeeper . out

4. Configure the cluster in Helix:

a. Go to its bi n directory:

$ cd $HELI X HOVE/ bi n

. Create the cluster:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --addd uster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (ki e- cl ust er)
can be changed as needed.

. Add nodes to the cluster:

Node 1

$./ helix-admi n.sh --zkSvr | ocal host: 2181 - - addNode ki e-cl uster
nodeOne: 12345

Node 2

$./ heli x-adm n. sh --zkSvr | ocal host: 2181 - - addNode ki e-cl uster

nodeTwo: 12346

Usually the number of nodes a in cluster equal the number of application servers in the
cluster. The node names (nodeOne: 12345 , ...) can be changed as needed.

268

VFES clustering

@ Note

nodeOne: 12345 is the unique identifier of the node, which will be referenced
later on when configuring application servers. It is not a host and port number,
but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

$./helix-adnmin.sh --zkSvr |ocal host: 2181 --addResource kie-cluster vfs-
repo 1 Leader St andby AUTO_REBALANCE

The resource name (vf s- r epo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-adm n.sh --zkSvr | ocal host: 2181 --rebal ance ki e-cl uster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr |ocal host:2181 --cluster Kkie-cluster
2>&1 > /tnp/controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and
JBoss EAP:

a. Edit the file $IBCSS_HOVE/ domai n/ confi gur ati on/ domai n. xni .

For simplicity sake, presume we use the default domain configuration which uses the profile
ful | that defines two server nodes as part of mai n- ser ver - gr oup.

b. Locate the profile f ul | and add a new security domain by copying the other security domain
already defined there by default:

<security-donmai n name="ki e-ide" cache-type="default">
<aut henti cati on>
<l ogi n- nodul e code="Renoti ng" flag="optional ">
<nmodul e- opti on nane="passwor d- st acki ng" val ue="useFi rst Pass"/>
</l ogi n- nodul e>
<l ogi n- modul e code="Real nDirect" flag="required">
<modul e- opti on nane="password- st acki ng" val ue="useFi r st Pass"/>
</l ogi n- modul e>

269

Chapter 13. Workbench High Av...

</ aut henti cati on>
</ security-domai n>

Important

The security-domain name is a magic value.

6. Configure the system properties for the cluster on the application server. For example on
WildFly and JBoss EAP:

a. Edit the file $JBOSS_HOME/ domai n/ confi gurati on/ host . xm .

b. ocate the XML elements server that belong to the nai n-server-group and add the

necessary system property.

For example for nodeOne:

<system properties>
<property nane="j boss. node. nane" val ue="nodeOne" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/ki e/ nodeone" boot -
tine="fal se"/>
<property name="org.uberfire.netadata.index.dir" val ue="/tnp/ ki e/
nodeone" boot-tinme="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-
tine="fal se"/>
<property nane="org.uberfire.cluster.zk" value="local host:2181" boot-
time="fal se"/>
<property name="org. uberfire.cluster.local.id" val ue="nodeOne_12345" boot -
tine="fal se"/>
<property nane="org.uberfire.cluster.vfs.lock"” value="vfs-repo" boot-
time="fal se"/>
<l-- If you're running both nodes on the same machine: -->
<property nane="org.uberfire.nio.git.daenon.port" value="9418" boot-
tine="fal se"/>
</ system properties>

And for nodeTwo:

<syst em properties>
<property nane="j boss. node. nane" val ue="nodeTwo" boot-tine="fal se"/>
<property nane="org.uberfire.nio.git.dir" value="/tnp/kie/nodetw" boot -
tine="fal se"/>
<property nanme="org.uberfire. nmetadata.index.dir" val ue="/tnp/ ki e/
nodet wo" boot-time="fal se"/>

270

jBPM clustering

<property name="org.uberfire.cluster.id" value="kie-cluster" boot-

tine="fal se"/>
<property nane="org.uberfire.cluster.zk" value="I|ocal host:2181" boot -
time="fal se"/>
<property name="org. uberfire.cluster.local.id" val ue="nodeTwo_12346" boot -

tine="fal se"/>
<property nane="org.uberfire.cluster.vfs.lock"” value="vfs-repo" boot-
time="fal se"/>
<l-- |f you're running both nodes on the same machine: -->
<property nane="org.uberfire.nio.git.daenon.port" value="9419" boot-
time="fal se"/>
</ system properties>

Make sure the cluster, node and resource names match those configured in Helix.

13.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this
blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jopm-v6.html] to configure the
database etc correctly.

271

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

272

Chapter 14.

Chapter 14. Designer

Designer is a graphical web-based BPMN2 editor. It allows users to model and simulate
executable BPMN2 processes. The main goal of Designe is to provide intuitive means to both
technical and non-techical users to quickly create their executable business processes. This
chapter intends to describe all feature Designer offers currently.

U berFire New - Repositories ~

Project Explorer # x ~ Business Process [evaluation] x -
=H- 2 | O~ | - | & | fofe - B - £ A-EH- 0 <+ B x%

| | Process Modelling | Simulation Results «

&
“HR Evaluation
L
BUSINESS PROCESSES . sl Evaluation \.'.\ \.'.\—.(:)

evaluation -
“=pm Evaluation
FORM DEFINITIONS

'WORK ITEM DEFINITIONS

demo ~ = jbpm-playground ~
Evaluation ~

Business Process Metadata

Figure 14.1. Designer

Designer targets the following business process modelling scenarios:

« View and/or edit existing BPMN2 processes: Designer allows you to open existing BPMN2
processes (for example created using the BPMN2 Eclipse editor or any other tooling that exports
BPMN2 XML).

» Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the
Designer and use the editing capabilities (drag and drop and filling in properties in the properties
panel) to fill in the details. This for example allows business users to create complete business
processes all inside a a browser. The integration with Drools Guvnor allows for your business
processes as wells as other business assets such as business rules, process forms/images,
etc. to be stored and versioned inside a content repository.

» View and/or edit Human Task forms during process modelling (using the in-line form editor or
the Form Modeller).

« Simulate your business process models. Busines Process Simulation is based on the BPSIM
1.0 specification.

273

Chapter 14. Designer

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-
specific BPMN2 extension elements and attributes.

14.1. Designer Ul Explained

Designer Ul is composed of a number of sections as shown below:

Choose library set: Name Value

Business Process [evaluation] x|~
Object Library %«|| Process Mo @ ulation Results Properties (BPMN-Diagram) »
Ful ~ Pz
=] l " = Core Properties
= Fu
\ AdHoc false
\+ —.@ Exocutable true

Globals

4 Tasks 5935 N
. elf Evaluation +
= Subprocesses “\

4 start Events
 End Events PM Evaluation D evaluation
& catching Intermediate Events

2 Throwing Intermediate Events Package Evaluation.src.main. resources

2 Gateways Process Name Evaluation

+ Service Tasks Varlable Defi... employeesjava lang. String,reason;java lang String perf.
=

2 Connecting Objects Version 1

= Data Objects

4 Swimlanes 5 Extra Properties

Imports

4 Artifacts Documentati...

=) workflow Patterns Target Name... http:/'www.omg org/bpmn20

TypeLanguage hitp:ifwww java.com/javaTypes
o = Simulation Properties
Base Currency

Base time unit seconds

Business Froc@adata

Figure 14.2. Designer sections

* (1) Modelling Canvas - this is your process drawing board. After dropping different shapes onto
the canvas, you can move them around, connect them, etc. Clicking on a shape on the canvas
allows you to set its properties in the expandable Properties Window (3) (as well as create
connecting shapes and morph the shape into other shapes).

* (2) Toolbar - the toolbar contains a vaste number of functionality offered by Designer (described
later). These includes operations that can be performed on shapes present on the Canvas.
Individual operations are disabled or enabled depending on what is selected. For example, if
no shapes are selected, the Cut/Paste/Delete operations are disabled, and become enabled
once you select a shape. Hovering over the icons in the Toolbar displays the description text
of the operation.

« (3) Properties Panel - this expandable section on the right side of Designer allows you to set
both process and shape properties. It is divided in four sections, namely "Core properties”, and
"Extra Properties, "Graphical Settings", and "Simulation Properties" are is expandable. When
clicking on a shape in the Canvas, this panel is reloaded to show properties specific to the
shape type. If you click on the canvas itself (not on a shape) the section shows your general
process properties.

274

Getting started with Modelling

* (4) Object Repository Panel - the expandable section on the left side of Designer shows the
jBPM BPMN2 (default) shape repository tree. It includes all shapes of the jBPM BPMN2 stencil
set which can be used to assemble your processes. If you expand each section sub-group you
can see the BPMN2 elements that can be placed onto the Designer Canvas (1) by dragging
and dropping the shape onto it.

e (5) View Tabs - currently Designer offers functionality tabs for Process Modelling and
Simulation. Process Modelling is the default tab. When users run process simulation, its results
are presented in the Simulation tab.

« (6) Info Tabls - On the bottom Designer shows two different Info tabs. The Business Process
tab includes the process modeling while the Metadata tab displays the process metadata such
as created by and last modified information.

14.2. Getting started with Modelling

The Object Repository panel provide means for users to select and drag/drop BPMN2 shapes
onto the modelling canvas. Shapes are divided into sections as shown below:

275

Chapter 14. Designer

Object Library 4
Choose library set:
Full &

= Full

Tasks

.:ﬂn User

& send
Receive
Manual

SErVICE

|

O

&= Business Rule
g Script

C

Mone

t Subprocesses

+l Start Events

il End Events

+l Catching Intermediate Events
t Throwing Intermediate Events
H Gateways

t Service Tasks

+ Connecting Objects

t Data Objects

H Swimlanes

H Artifacts

Figure 14.3. Object Repository

Once a shape is dropped onto the canvas users have a much faster way of continuing modelling
without having to go back to the Object Repository panel. This is realized through the shape
morphing menu which is presented when a shape on the drawing canvas is clicked on. This menu

276

Getting started with Modelling

allows users to either select a connecting shape (next shape) or morph the selected node into
another node type. In addition this menu includes means to store the shape name as a dictionary
item (explained later), view the specific BPMN2 code of the selected shape, asd well as create/
edit the task form (in the case of user tasks only).

& Send Task

1 Receive Task

% Manual Task

'%'; Service Task

B Business Rule Task

& Script Task

Figure 14.4. Morphing Menu for shapes

When connecting shapes Designer applies connection rules that follow the BPMN2 specification.
The connection shapes presented in the morphing menu only show shapes that are allowed to be
connections. Similarly same rules are applied when dropping a shape from the Object Library from
the canvas and trying to connect an existing shape to it. Additional connection rules for boundary
events are also available (explained later) and applied when for example moving an intermediate
event node onto the edge of a task node.

Users can give names to every shape on the drawing canvas. This is done by double-clicking
onto the shape as shown below.

277

Chapter 14. Designer

___.H
MyTask S

MyTask|

Figure 14.5. Naming a shape

The name of a shape can be pulled from the Process Dictionary. If terms are set up in the

dictionary, auto-complete can be used for the node names:

___.‘x
MyOtherTask |: -

MyTask
My Task
MyOtherTask
My ThirdTask

Figure 14.6. Name auto-completion from dictionary

Designer also shows three buttons ontop of a clicked shape as shown below.

278

Designer Toolbar

Figure 14.7. Extra in-line options

These include:

* (1) Add To Dictionary - this option allows users to add the name of the task to the Process
Dictionary (explained in more details later)

e (2) Edit Task Form - allows users to create/edit the Task Form. This option is only available
for User Tasks

* (3) View shape sources - shows the BPMNZ2 for this particular shape only.

The section should get you started with creating simple business process models by dragging/
dropping BPMN2 shapes onto the drawing canvas. Next sections will dive deeper into many other
aspects of Designer.

14.3. Designer Toolbar

The Designer toolbar contains many different functions which can be used during process
modelling.

B dMDiX 9 O | o~ &~ W5k A ff B~ B (¢ F- 4 B0 < IR 23
Y Y W N W A W A A N \ oy b
1 23456 7 8 9 1o 41121314 1546 17 18 19 (200 21 22 (23 2425/ (26)27/28/29

Figure 14.8. Toolbar Buttons

We will now go through each of the buttons in the Designer Toolbar and give a brief overview
of what it does.

(1) Save - allows users to save, copy, rename and delete the business process model. In addition
users can turn on auto-save which will uatomatically save the business process within a defined
time inter.

279

Chapter 14. Designer

= s I SR W =)
BSE'-.-’E

Enable autosave

L | Copy
=I; Rename

'I_-D% Delete

+H Emd Ervvanto

Figure 14.9. Save Button

(2) Cut - enabled when a portion of the model is selected.

(3) Copy - enabled when a portion of the model is selected.

(4) Paste - paste the copied portion of the model onto the drawing board.

(5) Delete - enabled when there is a portion of the model is selected and removes it.
(6, 7) Undo/Redo - undo the last performed operation on the drawing canvas.

(8) Local History - local history allows continuous storage of your business process onto your
browsers internal storage. Stored version of the business process can persist internet autages
or a browser crashes so your work will not be lost. This feature is disabled by default and must
be enabled by users. Once local history has been enabled users are able to view all previously
stored snapshots of their business model, clear local history, configure the snapshot internal, or
disable local history. Note that local history will only take a snapshot of your business process
on the set storing internval if there were some changes done in the model. If at the end of the
snapshot internval Designer detects that there were no changes since the last local history save,
no new snapshot will be created.

280

Designer Toolbar

E';,'J Enable Local History

Figure 14.10. Local History

The Local History results screen allows users to select a stored shanpshot of the model and view
its process image, and restory it back onto their drawing board.

Local History View
Select Process Id and click "Restore” to restore.

Id Mame Package Vergion Time Stamp Process Image

1 evaluation Evaluation Evaluation.src.main.resou... 1 15.11.2013 06:37:40 0

Figure 14.11. Local History Sample Results

(9) Object positioning - allows users to position one or more nodes in the business. Note that at
last one shape must be selected first, otherwise these options are disable. Contains options "Bring
to Front", "Bring to back", "Bring forward", and "Bring Backward"

(10) Alignment: enabled when a portion of the model is selected. Includes options "Align Bottom",
"Align Middle", "Align Top", "Align Left", "Align Center", "Align Right", and "Align Same Size".

(11, 12) Group and Ungroup - allows grouping and ungrouping of selected shapes on the drawing
board.

(13, 14) Locking and Unlocking - allows parts of the business model to be locked and unlocked.
Locked parts of the model cannot be edited (visual display and properties are both locked). Locked
nodes are displayed in a light blue color. This feature fosters collaboration of process modelling
by allowing users to set parts of their model as "completed" and preventing any further changes
to that portion. Other parts of the model can contunue to be edited.

281

Chapter 14. Designer

4.[& HR Evaluation
£DSelt" Evaluation -I-\
"

S,
-
-
B PM Evaluation —

-@

Figure 14.12. Locked Nodes

(15, 16) Add/Remove Docker - this allows users to add or remove Dockers, or edge points, to
sequence flows in the model. Enables when a sequence flow (connector) is selected. It allows
users to create very customized connection poits from one shape to another. Users can add and
remove as many dockes as they would like on a single sequence flow.

| \ S |

b R
i& PM Evaluation 5

Figure 14.13. Adding dockers to a sequence flow

(17) Color Themes - Colors are a big part or process modelling as they help with expressing intent
as well as help allowing visually impaired users to better view the model. Designer provides two
default color themes out of the box named "jBPM" and "High Contrast". The jBPM theme is the
default theme used for all new business processes created. Users can switch color themes and
the changes will be applied to all nodes that are currently on the model, as well as any new shapes
added. Users have the ability to add new custom color themes by adding theor own definitions in
the Designer themes.json file. Color theme selection is persisted over browser close or possible
crash/internet loss.

282

Designer Toolbar

L2 I\:_I L 3 E} L
&9 iBrM
- €9 HighContrast
= |

Figure 14.14. Color Themes selection

4’[& HR Evaluation
%

&

O—.[&Self Evaluation 0

PM Evaluation

Figure 14.15. Switching to High Contrast Color Theme

(18) Process and Task forms - here users have the ability to generate/edit process and task forms.
When no user task is selected the default enabled options are "Edit Process Form" and "Generate
all Forms". Generate all forms will apply the current model information such as process variables,
data objects, and the user tasks data input/output parameters and associations to generate default
executable input forms. Upon editing a process and task form, users have the choice between
two form editors, the jBPM Form Modeler, and the Designer in-line meta editor. The Designer
meta editor is targeted more to techical users as it is text based with the ability for live preview.
When the user selects an user task in the model, the "Edit Task Form" and "Generate Task Form"
options are enabled which allow users to edit the particular task form, or choose to apply the same
generation logic to create a task form for the selected task only. Users have the ability to extend
the default form generation templates in designer to create fully customized templates. Node that
in the case of the Designer meta editor for forms, generating forms will overwrite existing forms
for the process and user tasks. In the case of Form Modeler form generation, a merging algorithm
is applied when generating.

283

Chapter 14. Designer

] [| Pl | A
=] Edit Process Form

=] Edit Task Form

-] Generate Task Form

o o

d Generate all Forms
EP o S W W 7 Y |

Figure 14.16. Form generation selection

When selecting a task, users have the ability to edit the selected tasks form via the form button
shown above the user task node.

(2)

o

&

FM Evaluation

Figure 14.17. In-line task editing

When editing forms, users are asked to choose between the Form Modeler and the Designer in-
line meta editor. If the user selects Form Modeler the form is shown in a new asset tab separately
from Designer. Designer meta editor is in-line and part of the Designer application.

Form Editor. x
» Select which Form Editor to use:

2

|Graphica| M-:u:Ieler| |Markup Edih:r| | Cancel

Figure 14.18. Form Editor Selection

The Designer in-line meta form editor is a powerful text-based editor with a live preview feature
as well as auto-completion on process variables and user task data inputs/outputs.

284

Designer Toolbar

Editing Form: PerformanceEvaluation - Press [Ctrl-Z] to activate auto-completion
Insert form widget.. hd

<div id="header">
User Task Form: Evaluation.PerformanceEvaluation
</div> =
<div_id="content'> User Task Form: Evaluation.PerformanceEvalua
<input type="hidden" name="taskId"
value="§{task.id}" />
<fieldset>
<legend>Task Info</legend>
<label for="name">0Owners</label>
<div class="div_checkbox">

</div>

<label for="name">Actor ID</label>

<div class= checkbox'></div> Owners ${employee}
<label for= e">Group</label>

<div clas heckbox"></div>

<label fo >Skippable</labal>

<div class= checkbox">false</div>

<label for= e">Priority</label> Actor ID

<div clas iv_checkbox"></div>

<label fo ame">Comment</labal>
“div class= checkbox"><| [CDATA[Please
perform a self-evalutation.]]></div> Gmup
<div class="clear"></div>
</fieldset>
; false
<fieldsets Slqppable
<legend>Task Inputs</legend>
<label
for="name">reason</label> L.
<div pnont!'l
class="div_checkbox">
${reason}
</div>
<label
for="name">performance</label> CDITII'I"IeI"Il
<div

class="div_checkbox">
${performance}
</div>

Figure 14.19. Designer in-line form meta editor with live-preview

(19) Process Information Sharing - this section includes many fucntions that help with sharing
information of your model. These include:

» Share process image - generates a stand-alone html image tag which contains a 64-bit encoded
image source of the current model on the canvas. This link can be shared to team members or
other parties amd embedded in any html content or email that allows html content embedding.

» Share process PDF - generates a stand-alone html object tag which contains a 64-bit encoded
pdf source of the current model on the canvas. This can similarly be shared and embedded in
any html content.

« Download process PNG - generates a PNG image of the current process on the drawing board
which users can download and share.

« Download process PDF - generates a PDF of the current process on the drawing board which
can be downloaded and shared.

« View Process Sources - displays the current process sources in various formats, namely
BPMN2, JSON, SVG, and ERDF. Also has the option to download the BPMN2 sources.

285

Chapter 14. Designer

J '] Process Sources *
r"'j Download BPMM2

BPMMN2 | 150N SVG ERDF

<?xml version="1.0" encoding="UTF-8"7>
<bpmnZ:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"”
xmlne="http:/ /www.omng.org/bpmn20" xxmlns:bpmn2="http://www.omg.org/epec/BPMN
f20100524/MOBEL" xmlns:bpmndi="http://wew.omg.org/spec/BPMN/20100524/DT"
at xmlne:bpsim="http://www.bpeim.org/schemas/1.0" xmlns:de="http:/ www.omg.org
fepec/DD/S20100524/DC" xmlns:di="http:/ www.omg.org/epec/DD/20100524/DT"
xmlne:drools="http: //www.jboss.org/drools” id="_ mkwvkU3I0Ee0Aa5-T5_ CV1w"
xsi:schemalocation="http:/ www.omg.org/spec/BPMN,/20100524 /MODEL BPMN20.xsd
http: /S fwww.jboss.org/drools drools.xsd http://www.bpsim.org/schemas/1.0
bpsim.xsd” expressionlanguage="http://www.mvel.org/2.0"
targetNamespace="http:/ www.omg.org/bpmn20" typeLanguage="http://www.java.com
fjavaTypes">
<bpmn2:itemDefinition id="_employeeltem" structureRef="java.lang.String"/=
<bpmn2:itemDefinition id="_reasonItem” structureRef="java.lang.String"/=
<bpmn2:itemDefinition id="_performanceltem” structureRef="java.lang.String"/>
<bpmn?:itemDefinition id="_ 6063D302-9DB1l-4CBE-920B-
E808A4537702 reasonInputItem” structureRef="Object"/=
<bpmn?:itembDefinition id="__EﬂE3D3ﬂ2—9D31—iC35—92ﬂB—
E808A45377C2_CommentInputItem” structureRef="Object"/>
<bpmn2:itembDefinition id="__ 6063D302-9081-4CEE-920B-
E808A45377C2_SkippableInputIitem" structureRef="Object'/ /=
<bpmn2:itemDefinition id="__ 6063D302-9081-4C86-920B-
EB08A45377C2_performancefutputItem” structureRef="0bject"/=
<bpmn2:itembDefinition id="__AEEEFGDC—BT2D—iFDE—
$499-5EDBID41FBLA reasonInputItem" structureRef="Object'/=
<bpmn?:itembDefinition id="__AEEEPGDC—BT2D—iFDE—
$499-5EDEID41FELA performancelnputltem” structureRef="Object"/>
<bpmn2:itembDefinition id="__AESBFODC-BT20-4FDE-
$499-SEDEID41FBlA CommentInputItem” structureRef="0Object"/=
<bpmn2:itemDefinition id="__ ARSBFODC-BT720-4FDE-
$499-5EDEID41FBlA SkippableInputItem" structureRef="Object" />
<bpmnl:itembDefinition id="__AEEEFGDC—BT2D—iFDE—
$499-SEDEID41FBLA GroupldInputItem” structureRef="0Object"/=
<bpmn?:itembDefinition id="__832337?9—3395—%33C—
BOB6-9EF4369B426C_reasconInputItem” structureRef="Object"/=
<hpmn?:itemDefinition id="__832337?9—3395—%33C—
ROBE-9EF4369B426C performanceInputItem" structureRef="Object"/>
<bpmn2:itemDefinition id="__ 8§233779-B395-4B8C-
ROB6-FEF4369B426C_CommentInputItem” structureRef="0Object"/=
<bpmnl:itembDefinition id="__832337?9—3395—%93C—
ROB6-9EF4369B426C_SkippableInputItem" structureRef="Object"/>
<bpmn?;itembDefinition id=" 88233779-B395-4B8C—

Figure 14.20. Process Sources View

(20) Extra tooling - this section allows users to import their existing BPMN2 processes into designer
as well as be able to migrate their old jPDL based processes to BPMN2. For BPMN2 or JSON
imports users can choose to add the import ontop of the existing model on the drawing board or
choose to replace the current one with the import.

e B 0
#| Import from BPMN2

#”| Import from JSON

“&2 Migrate jPDL 3.2 to BPMN2

Figure 14.21. Extra tooling section

286

Designer Toolbar

Import BPMN2
Select an BPMMZ file or type in the BPMN2 to import it!

File: Browse... | No file selected.

Import | | Close

Figure 14.22. Import existing BPMN2 panel

287

Chapter 14. Designer

Migrate to BPMN2
1. Select a jPDL processdefinition.xml file {or type it in)

Definition | Browse... | No file selected.
file:

2. Select a jPDL gpd.xmil file {or type it in)

GPD file: Browse... | Mo file selected.

Migrate | |

Close

Figure 14.23. Process Migration panel

(21) Visual Validation - Designer includes over 100 validation checks and this list is growing. It
allows users to view validation issues in real-time as they are modelling their business process.
Users can enable visual validation, disable it, as well as view all validation issues at once. If Visual
Validation is turned on, Designer with set the shape border of shapes that do not pass validation
to red color. Users can then click on that particular shape to view the validation issues for that
particular shape only. Alternatively "View All Issues" present a cobined list of all validation errors
currently found. Note that you do not have to periodically save your business process in order
for validation to upate. It will so on its own short intervals during modelling. Users can extend
the list of validation issues to include their own types of validation on certain elements of their
business model.

288

Designer Toolbar

|¢.T|gr |J a:r

Stop validating

View all issues

Figure 14.24. Visual Validation Toolbar

&

HR Evaluation

’E%elf Evaluation + \\-I:‘
&

FM Evaluation

Figure 14.25. Shapes with validation errors displayed with red border

I—P‘—"HR Evaluation —+
- ~ - -

PN
—P» “—Sealf Evaluation

- - " o
A |
P “— PM Evaluation

Validation Suggestions *
Iszue Type Description Shape ID
1 BPMN2 Mode has no oulgeoing connections _C1A3EZ28

Figure 14.26. Single shape validation issues display

289

Chapter 14. Designer

Validation Suggestions X
Issue Type Description Shape ID

1 BPMMNZ Process has no end node. evaluation

2 BPMMZ MNode has no outgoing connections _C1A3E26

Figure 14.27. View all issues validation display

(22) Process Simulation - Business Process Simulation deals with statistical analysis of process
models over time. It's main goals include

» Pre-execution and post-execution optimization

« Reducing the rist of change in business processes

Predict business process performance

« Foster continuous improvements of performance, quality and resource utilization of business
processes

Designer includes a powerful simulation engine which is based on jBPM and Drools and a
graphical user interface to view and interpret simulation results. In addition users are able to
view all process paths included in their current model on the drawing board. Designer Process
Simulation is based on the BPSim 1.0 specification. Details of Process Simulation capabilities
in Designer are can be found in its Simulation documentation chapter. Here we just give a brief
overview of all features it contains.

Bl 0 | IR

s Process Paths

k) Run Simulation

Figure 14.28. Simulation tooling section

When selecting Process Paths, the simulation engine find all possible paths in the business model.
Users can choose cetain found paths and choose to display them. The chosen path is marked
with given colors as shown below.

290

Designer Toolbar

-

)
“— HR Evaluation
L% A ;

-

Self Evaluation

PM Evaluation

Process Paths *

Select Process Paths and click "Show Path" to
display it

Display Color MNumber of Elements

1 L 11
2 1
| showPath || Close

Figure 14.29. View all issues validation display

When selcting "Run Simulation" users have to enter in simulation runtime properties. These
include the number of instances of this business process to simulate and the interval time and
units. This interval is the time in-between consecutive simulation.

291

Chapter 14. Designer

Run Process Simulation =
Mumber of instances: 100
Interval: 50
Interval units: minutes R
Run Simulation | | Close

Figure 14.30. Simulation runtime properties

Each shape on the drawing board includes Simulation properties (properties pannel) where users
can set numerous simulation properties for that particular shape. More info on each of these
properties can be found in the Simulation chapter of the documentation. Designer pre-sets some
defaults for new processes, which allows business processes to be simulated by default without
any modifications of these properties. Note however that the results of the default settings may
not be optimal or targeted for the users particular needs.

=l Simulation Properties
Cost per tim... 10
Distribution ... normal
Processing t... 100
Staff availabi... 4
Standard De... 1
Working Hours 8.0

Figure 14.31. Simulation properties for shapes

Once the simulation runtime has completed, users are shown the simulation results in the
"Simulation Results" tab of Designer. The results default to the process results. Users can switch

292

Designer Toolbar

to results for each particular shape in their business process to see more specific detauls. In
addition the results contain process paths simualtion results for each path in the business process.

Process Modelling || Simulation Results

Simulation Info
Process Simulation Results (Evaluation) Process Id: evaluation
Process name: Evaluation
Process version: 1
Execution Times Simulation start: Fri, 15 Nov 2013 09:42:18
Simulation end: Fri, 15 Now 2013 13:44:17
Num. of Executions: 50
1217 121.65 Interval 10 minutess
) 114.05 Simulation Graphs
110.0 106.28 = &9 Process
D Evaluation (evaluation)
100.0 T
=55 Process slements
90.0 T B HR Evaluation {_88233779-B395-4B8C-A086-9EF:
80.0 (‘ﬁn Self Evaluation (_8063D302-9D81-4C85-9208-E6C
(pn PM Evaluation (_AESBFODC-B720-4FDE-9499-5E/
® 100 . =& Paths
E 60.0 . 1, Path 1 (Path-285480076)
= 1, Path 2 (Path2080477741)
50.0 T
40.0 T
30.0 T
200 T
10.0 T
op Max Execution Time Avg. Execution Time

Min Execution Time

iiness Process Metadata

Figure 14.32. Sample simulation results

Designer simulation presents the users with many different chart types. These include:

» Process results: Execution times, Activity instances, Total cost

 Human Task results: Execution times, Resource Utilization, Resource Cost

All other nodes: Execution times

* Process Paths: Path Execution
The below image shows a number of possible chart types users can view after process simulation
has completed.

293

Chapter 14. Designer

Execution Times (min} Wax Times (min)
L Min Average Max Min Average

g 1008 1768 1142 0 r47

10.00 000 N
Tirme (Frin)

Frocess eneculion limes during Simulation

1]
ma Shiax @ @ Ageage
Qs
W
I LT H TO.00 |
! 1] - ! 80.00 |
ma S T
wa ! 40 00 |
T § 30.00 |
“-.lum_. g8 Ensitn T i 2000
[Iy e e Eesnes Teme ‘Dml
[N e)
"! 50 100 mn

"N T

Figure 14.33. Types of simulation results charts

In addition to the chart results, Designer simulation also offers a full timeline display that includes
all details of what happened during simulation. This timeline allows users to navigate through each
event that happened during process simulation and select a particular node to display results at
that particular point in time.

294

Designer Toolbar

A F @02
Procesas Simulation Results (Book Order Procesasa)

Chart | Modsal

PROCESS EXECUTION TIMES

T

Max Exscution Time Avg. Execution Time
Min Execution Time
h A;il:nulﬂnhl

C]l:hl-:lh.um &wm Ol:hl:l.lm-ﬂ.-h

|

s Ceae b ol bk iile - Fancal Mol e Roadlab

O]
a

Figure 14.34. Simulation timeline

The simulation timeline can be switched to the Model view. This view displays the process model
with the currently selected node in the timeline highlighted. The highlighted node displays the sim
results at that particular point in time of the simulation.

295

Chapter 14. Designer

Process Simulation Results (Book Order Process)

PROCESS EXECUTION TIMES

Approve Order Ship Order

avallable

not available

G-\ E| Che i A Laby rq]ﬁmomu I:l Check Avmiab

e, = Ml Beomnd badniile - el N Ml Seondinb

Figure 14.35. Simulation timeline model view

Path execution results shows a chart displaying the chosen path as well as path instance execution
details.

296

Designer Toolbar

Path Instance Execution

@ Path- 1585664004 @ Other Paths

Figure 14.36. Path execution detauls

(23) Service Repository - this feature allows users to connect to an existing service tasks repository
to install service tasks into their list of available shapes. Mode default of this can be found
in the Service Repository chapter of the documentation. Users have to enter the URL to the
existing service repository and then can install the available service nodes by double-clicking on

a particular results row.

297

Chapter 14. Designer

Service Repository Connection ®
http:fpecple.redhat.comfisurdile/repository Connect
Service Modes

Service Nodes. Double-click on a row to install.

ICOMN NAME EXPLANATION DOCUMENTAT... INPUT PARAMETERS RESULTS
u |PhoneSimulator link url

Q PircBot link message,sendio,channel

o

SwitchYard Ser...

: Microsoft Acade. .. link title results

=

ServiceMName, ServiceOperationMame

=

=

VideoUploader videctitle videocategory, video

=

amount,rewardtype, userid

W
ﬁ Rewardsystem

Close

Figure 14.37. Service Repository installation view

(24) Full screen Modev - allows users to place the drawing board of Designer into full-screen
mode. This can help with better visualizing larger business processes without having to scroll.
Note that this feature is possible only if your browser has full screen mode capabilities. If it does
not designer will show a message stating this to the user.

298

Designer Toolbar

Figure 14.38. Full Screen Mode

(25) Process Dictionary - Designer Dictionary Editor allows users to create their own dictionary
entries or harvest from process documentation or business requirement documents. Process
Dictionary entries can be used as auto-completion for shape names. This will be expaded in the
future versions to allow mapping of node patters to specific dictionary entries as well. Users can
add entries to the dictionary in the Dictioanry Editor or from the selected shapes directly.

299

Chapter 14. Designer

Process Dictionary Editor

Add New Entry Extract Dictionary entries
Name Aliases Description From Documentation From File
r
1 'Cuswmer @ Browse... | Nof
2 User @
3 7 Order @ Highlight text and click on "Add"
4 'En[ry @ Add
5 " Error @ This is the process documentation
& PM @

Figure 14.39. Process Dictionary entry screen

Receive Claim

Figure 14.40. Addint to process dictionary from selected shape

(26, 27, 28, 29) Zooming - zomming allows users to zoom in/out of the model, zoom in/out back
to the original setting as well as zoom the process model on the drawing board to fit the currently
dimentions of the drawing board.

300

Chapter 15.

Chapter 15. Form Modeler

This chapter intends to describe in a simple ways all the steps required to create a process with
human tasks, generate and modify the forms for these tasks and execute them. It will provide initial
guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from
process variables and task definitions. These forms can be later be modified by using the form
editor. In runtime, forms will receive data from process variables, display it to the user and capture
his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task
in the process below.

o Create order j{{‘

@

>

o

=4

E

w
a3
H
[+ F]
=
o
[+H]
.
x

= L

o

et

c R dministraes F/K

eview by administr

E bv LTTY

£

E ki

= =

< £
(=N
<

7

Figure 15.1. Process example

This form must look like the following in execution:

301

Chapter 15. Form Modeler

New Task Refresh x i Deta||5 ‘Work Details | Assignments | | Comments

37 - Create order

Actlons

ﬂ \/ O\ Flease, enter all the required information. The instructions to perform this

task can be found here
o v Q

Purchase Crder Header

*Creation date *Customer

00-23-08 D@ | Red Hat

*Project

JBPM

Lines

Actions Description Amount Unit Price Amount
|

M & irhone 10 500 5000

M ¢ Andoidphone 10 400 4000

M & Laptop 3 800 2400

Add purchase line

TOTAL:
11400.0
*Description

1-20f2 MW W M MW

Core rrmalata

Figure 15.2. Process example

302

Configure process and human tasks

15.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a
simple type like 'String' or a complex type. These complex types can be defined by using the Data
Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po’ of type 'org.jopm.examples.purchases.PurchaseOrder’,
defined with the Data Modeler tool.

AdHoo

Executable
158 ordepl—
Glabs
J + ID
Editar for Varlable Definitions » Imper:
5 Pac - T
fadd Variable
Pro = Mar
MAme Stanaard Type Cussam Type . :
D 0o
Oibjact arg bpm.asampks purchasss PurchaseOrdar (z
e 1
=1 2 | review_admin Eiring ,E
3 | review_coniroller Siring
e —
4 | review_clo Sliing G - §
B | roviow_mansger Eiring G pelanguage .
B il
Base time unit
O | Canes

an

2

Figure 15.3. Process variable definition
This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which
ones will receive the response back from the form and establish the mappings. This is done by
setting the 'DatalnputSet’, 'DataOutputSet' and 'Assignments' properties for any human task. See
screenshots below for detalils.

303

Chapter 15. Form Modeler

Figure 15.4. Data input variable definition

Figure 15.5. Data output variable definition

304

Generate forms from task definitions

Properties (User)

Name

= Core Properties
(™
(p‘\. Actors
Assignments po-8gt;po_in,po_out->po
Rix purchase ordeyi——
DatalnputSet
Editor for Data Assignments * DataQutputSet po
_~| Add Assignment Ces

Na
From Object Assignment Type To Object To Value ame

1 po is mapped to po_in @
2 | po_out is mapped to po @

Task Name

TaskType

= Extra Properties
I | Comment
Content
Created by
Documentati
Locale
Multiple Inst... false
Notifications
On Entry Act
On Exit Acti...

Priority
/ Reassignment

Figure 15.6. Variable mapping definition

15.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically
from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

Bl GG 5 B e 2 b @ 0
|:| Edit Process Form
-] Edit Task Ferm

|£| Generate all Forms

&

Fix purchase 5
order }}i

Figure 15.7. Form automatic generation

You can also click on the icon on top of task to open the form directly.

305

Chapter 15. Form Modeler

Figure 15.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-
taskform is defined in the same package as the process, then this form is used by the human task
engine to display and capture information from user.

Also, if a form named Processld-task form is created, it will be used as the initial form when starting
this process.

For example, for our process the following forms would be generated.

306

Generate forms from task definitions

Explore * NewlItem - Tools =

Project Explorer

Business = Technical ==

Organizational Unit: 4 demo ~
Repository: []Purchases ~
Project: LJPurchases ~

Package: & <default> ~

BUSINESS PROCESSES

FORM DEFINITIONS

CreateOrder-taskform
FixOrder-taskform
Purchases.Purchases-taskform

ReviewAdministration-taskform

D enrisn e BNt acl-fim e

OTHERS
EWIC:HH ITEM DEFINITIONS
Figure 15.9. Access to form edition

307

Chapter 15. Form Modeler

15.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that
are generated in the previous process, but also can be created manually.

15.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data
origins. This allow bind form fields with them, this relation it's linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is
validated and submitted, how the values will update the task outputs.

Form Modeler [CreateOrder-taskform.form]

E Form data origin_| =5 Add fields by origin =~ =51 Add fields by type | % Form properties

. Manage form data origins

Input Id:
List of data sources that will be bound to form fields.

Output Id:
Id Input Id Qutput Id Type Info

Render color: m po po_in po_out dataModelerEntry org.jopm.examples.purchases.PurchaseOrder
Dark Blue |

Type:
From data Model
From java Class
From Basic type
Info:

1
Add data holder

Figure 15.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are
automatically generated. You can have as many data origins as required, and can use a different
colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated
form have a field for each data origin bindable item (view FieldTypes) and this automatic fields
have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to
make easy view if the field is correctly bound and the data origin implied.

15.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different
levels of customization that will allow change it

15.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the
contextual menu of the field and select 'Move field'.

308

Save Delete x

Render color

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =57 Add fields by origin |~ =% Add fields by type = %5 Form properties

o e 100 1E0 200] O =20 400 450
gHTMLIabEl |' El""‘_lllllllll|I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I|
— Separator r 3 edescription(po)
= - =
£ Simple subform RE o
—_— , 3 ‘eheader (po)

Multiple subform E
o P } _q ‘There is no default farm
[Short text r é:ﬁ .@@%‘,{,.
D Long text r E '_'_I'_I]_e_[Mowve field form. :
R
[Float -~
[Decimal r r_

Figure 15.11. Move field option

This will display the different regions of the form where you can place it.

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =5 Add fields by origin = =5 Add fields by type | 2= Form properties

Lo 50 100 150 200 250 300 350 400 450 500 [
I® HTML label 5
== Separator » = A
3 @ description(pa)
= o £
= Simple subform [EE
& Multiple subform ~ 7
[Short text r 13 @ header (po)
[Long text r : There Is no default form. -
17
[Float ~ g
[Decimal [2_' :o ines (po)
i 'There is no defaultfarm
l—l BI{!DECIITIE| r |:|—_

Figure 15.12. Destination areas to move the field
A field can be moved to the first or the last region with the contextual icons for that purpose.

15.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.

309

Chapter 15. Form Modeler

Form Modeler [CreateOrder-taskform.form]

= Form data origin | =% Add fields by origin =% Add fields by type | = Form properties

I 1T abel et B 0 B B B B B P PR O PR R0 R P
= Separaor I : e description (po)
& simple subform r 3_:
5 Muliplo sublorm ! E ;:;erzcii::c:p;?afault form.
O Shertlext r E elines (po)
D Long text r : There is no default form.
O Float I é:
O Decimal [2_:
[BigDecimal) 3;
[Biginteger I E_:
O Short r UE

; O Integer I ?
O Long integer I UE
B E-mail [E
B CheckBox I _:
I® Rich text r §E
Timestamp r 4_'
Short date S
& Link I 3_:

"3

Figure 15.13. Form properties have been added by default, but are not still
configured

» Add fields by origin: this tab allows you to add fields to the form based on the data origins
defined. These fields will have the correct configuration on the "Input binding expression" and
"Output binding expression" properties so whe the form is submitted the fields values will be
stored in the corresponding Data Origin.

310

Customizing form

Form Modeler [HeaderForm.form]

=8 Add fields

100
Ll

= Form data origin | =] Add fields by origin

io 50
A B

=y
‘950
|

2 Form properties

250 200
L B

by type

1E0
P

200
Ll

250
P

400
Ll

4B
P

=
Ll

E0
P

E00
Ll

[EED
P

Fon
Ll

FE0
P

200
Ll

ER

B header

>
creationDate r
r
r

[customer
O project

o)

| =y ==u) =y =on) =ne| =on
TN TN TN AT IO T

EISFN

Figure 15.14. Add field by origin

» Add fields by type: this tab allows you

to freely add fields to the form from the Field Types

palette on the Form Modeler. This fields won't be storing it's value on any Data Origin until they
have a correct configuration on the "Input binding expression” and "Output binding expression"

properties.

Form Modeler [HeaderForm.form]

= Form data origin |~ =81 Add fields by origin

=51 Add fields by type

= Form properties

100

150

200

250 =00

250

400

SO0

S50

450 E00 =
TR A

I® HTML label [6--{°-|.|.....|5.°........
== Separator [:
& simple subform r 3_:
& Multiple subform r E
O Short text I E
[Long text r :
[Float r %:
O Decimal r 2_:
[BigDecimal I 3;
[Biginteger [g—:
O short I ”E
3 Integer) ?
" [Long integer [DE
&= E-mail o E
B CheckBox) _:
I® Rich text I §E
zz2| Timestamp) _‘

Figure 15.15. Add field by type

311

Chapter 15. Form Modeler

To see a complete list of the available field types go to Field types section.
Notice the data model 'po’ of type 'org.jbpm.examples.purchases.PurchaseOrder' is composed of
three properties.
« Simple : property of type text (description). We will adjust the view settings.
« Complex: property of type object (header).
« Complex: property of type array of objects (lines)

Now all these properties had to be configured.
15.3.2.3. Field configuration

Each field can be configured to enhance performance in the form. There are a group of common
properties, that we call ‘Generic field properties’ and a group of specific properties that depends
on the field type.

15.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 15.1.

Field type Can change the field type to other compatible
field types

Field Name Will be used as identifier in formulas
calculation

Label The text that will be shown as field label

Error message When something goes wrong with the
field, like validations,.. this message will be
displayed

Label ccs class Allows enter a class css to apply in label
visualization

Label css style to enter directly the style to apply to the label.

Help text The text introduced is displayed as
alt attribute to help to the user in data
introduction

Style class Allows enter a class css to apply in field
visualization

Css style to enter directly the style to apply to the label.

Read Only When this check is on, the field will be used
only for read

312

Customizing form

Input binding expression This expression defines the link between field
and process task input variable. It will be used
in runtime to set the field value with that task
input variable data.

Output binding expression This expression defines the link between
field and process task output variable. It will
be used in runtime to set that task output
variable.

15.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

e Short Text (java.lang.String)
« Compatible field type: Long text, E-malil, Rich text
» Specific properties
e Size: input text length.
« MaxLength: Maximum number of characters allowed.
« Required: Indicates if it's mandatory to fill this field.
¢ Show html: indicates whether the contents of the field is interpreted as html in show mode.

 Formula. to enter expressions that will be evaluated to set the field value. These
expressions are descrived in Formula & expression section .

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

« Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

« Default Value formula. Expression to set the field default value.
* Long Text (java.lang.String)
» Compatible field type: Long text, E-mail, Rich text
» Specific properties
 Size: input text length.

¢ MaxLength: Maximum number of characters allowed.

313

Chapter 15. Form Modeler

Required: Indicates if it's mandatory to fill this field.
Height: The number or rows to show at text area.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

Default Value formula. Expression to set the field default value.

 Float (java.lang.Float)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

Pattern. Allow introduce an expression to specify how the Float value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/javal/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/
api/java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

» Decimal (java.lang.Double)

 Specific properties

 Size: input text length.
« MaxLength: Maximum number of characters allowed.

* Required: Indicates if it's mandatory to fill this field.

314

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Customizing form

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the Double value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/
api/java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

» BigDecimal (java.math.BigDecimal)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the BigDecimal value has
to be displayed. The pattern allowed is show in section pattern in http://
docs.oracle.com/javase/6/docs/api/javal/text/DecimalFormat.html [http://docs.oracle.com/
javase/6/docs/api/java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

 Big integer (java.math.BigInteger)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

315

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Chapter 15. Form Modeler

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
 Short (java.lang.Short)
» Specific properties
« Size: input text length.
« MaxLength: Maximum number of characters allowed.
* Required: Indicates if it's mandatory to fill this field.

« Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

« Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
« Integer (java.lang.Integer)
» Specific properties
« Size: input text length.
« MaxLength: Maximum number of characters allowed.
* Required: Indicates if it's mandatory to fill this field.

« Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

* Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
« Long Integer (java.lang.Long)
» Specific properties
¢ Size: input text length.

« MaxLength: Maximum number of characters allowed.

316

Customizing form

* Required: Indicates if it's mandatory to fill this field.

e Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
* E-mail (java.lang.String)
» Compatible field type: Short text, Long text, Rich text
» Specific properties

 Size: input text length.

MaxLength: Maximum number of characters allowed.

Required: Indicates if it's mandatory to fill this field.

Default Value formula. Expression to set the field default value.
» Checkbox (java.lang.Boolean)
» Specific properties
* Required: Indicates if it's mandatory to fill this field.
« Default Value formula. Expression to set the field default value.
 Rich text: (java.lang.String)
» Compatible field type: Short text, Long text, E-mail
 Specific properties

« Size: input text length.

MaxLength: Maximum number of characters allowed.

L]

Required: Indicates if it's mandatory to fill this field.

Height: The number or rows to show at text area.

Default Value formula. Expression to set the field default value.
« Timestamp (java.util.Date)

» Compatible field type: Short date

317

Chapter 15. Form Modeler

» Specific properties

Size: input text length.
Required: Indicates if it's mandatory to fill this field.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Default Value formula. Expression to set the field default value.

« Short date (java.util.Date)

» Compatible field type: Timestamp

» Specific properties

Size: input text length.
Required: Indicates if it's mandatory to fill this field.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Default Value formula. Expression to set the field default value.

» Simple subform (Object)

» For more details see sectionSimple Object (Subform field Type).

Specific properties

Default form. Show the list of available forms to select what one will be displayed to show
the object.

e Multiple subform (Multiple Object)

» For more details see sectionArrays of objects.(Multiple subform field Type).

Specific properties

Default form. Show the list of available forms to select what one will be displayed to show
the object when no other form is configured with an specific purpose.

Preview form. If a form is specified, it will be used to show the item details

Table form. If a form is specified, it will be used to show the table columns when the item
list is showed

New item text. Text to show at New ltem button

Add item text. Text to show at Add Item button

318

Customizing form

» Cancel text. Text to show at Cancel button

« Allow remove Items. If this check is selected, the form allow remove items in table view.
» Allow edit items. If this check is selected, the form allow edit items in table view.

« Allow preview items. If this check is selected, the form allow preview items in table view.
 Hide creation button. Check to not show the creation button

« Expanded. If is checked, when a new item is being added, the field display the table with
the existing items and the creation form at same time

< Allow data enter in table mode. Allow modify data in table view directly.
15.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an
object array.

Once the field is added to the form, either automatically or manually, it must be configured so that
the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:

« The first thing to do is define how the contained object will be displayed. This is done creating
a form that represents the object.

* In case of the object array, you can define a form to show in preview(edition), or to show when
table is shown

Once the form to represent the object, the parent form has to be configured to use them in the
parent Subform or Multiple subform.

Below we will describe how the setup would be:
15.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and
embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create
a form to enter all the purchase order header data and link it from the parent task form.

We will follow the steps:

1. Create new form.

319

Chapter 15. Form Modeler

Create new

New resource

* Resource Name

[Heade rForm|

Guided Rule
Guided Rule Template
Guided Score Card

@ MNew Form

default://master@Purchases/Purchases/src/main/resources

© Ok

Figure 15.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.

320

Customizing form

Form Modeler [HeaderForm.form] Save | Delete |

= Form data origin_| =5 Add fields by origin =~ = Add fields by type = % Form properties

Id:

header Manage form data origins
Input id: . . .
List of dala sources that will be bound to form fields
header_in
Output Id:

header_out id Input Id Output id Type Infa Render color

Render color:
Dark Blue i

Ty
9 From data Model
From java Class
“From Basic type
Info:

org jopm p PurchaseOrder
org.joppm.examples.purchases.PurchaseOrderLine
org.jopm.examples purchases.PurchaseOrderHeader

Figure 15.17. Create new data origin

Form Modeler [HeaderFarm.form] Save || Delete | | %

= Form data origin_| =51 Add fields by origin = =¥ Add fields by type = % Form properties

Id:

Manage form data origins
Input Id:

List of dala sources that will be bound to form fields.
‘Qutput Id:

Id Input Id Output Id Type Info Render color
Render color: @ header header_in header_out dataModelerEntry org jopm.examples.purchases.PurchaseOrderHeader |]
Dark Blue |

Type:

: From data Model|
_'From java Class

From Basic type
Info:

Add data holder

Figure 15.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

321

Chapter 15. Form Modeler

Form Modeler [HeaderForm.form]

= Form data origin | 5] Add flelds by origin | =57 Add fields by type = %5 Form properties sk
o] [150 200 e 20 EE) 400 40 B =) 00 Bl 700 720 200 Jese
il B B B B B B B B B B G B P B B T B 1
creationDate [B
[customer - =
EE
O project I E
T4
[E
hE
IE
L
i
K
PE
IE
e
)
i
iE
[hE
EE
)
i
Fx
43

Figure 15.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move
them around.

Form Modeler [HeaderForm.form]

= Form data origin | S5 Add fields by origin_| =5 Add fields by type | 2= Form properties

0 |50 |100 |150 |200 |250 200 ZE0 400 4=0 a0 E0 E00 EED 700 750 200
v B B B B B s B e B e b e B B b B b bt B Bt e B e e 1 1 1

[

ecreationDate (header)

Dm

=)

wecustomer (header)

o

eproject (header)

s S|

=

Figure 15.20. All data origin fields added

4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default
form'.

322

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin

% HTML label

I~

= Separator

r

S simple subform

I~

5 Muttiple subform

3 Short text

[0 Long text

3 Float

[Decimal

O3 BigDecimal

[Biginteger

[short

| O Integer

O3 Long integer

B E-mail

B CheckBox

I® Rich text

Timestamp

Short date

& Link

=51 Add fields by origin =] Add fields by lype % Form properties
i] |08 150 220 50 [z
= Bt B B B B G BY

5

40
I

E:)
i

500

EE0 [
AT

sl e SRR ST 2SR S S ST

edescription (po)

@header (po)

There is no default form.
elines (po)

There is no defaultform

Figure 15.21. Configure the parent form

Save

€@ Properties (header (po))
Field type
Simple subform j
Field name:
po_header
Label:
header (po)
Errar message:

Label css class: Label css style:

Help text:
Style class: Css siyle:

"I Required "] Disabled [Read only [Group with previous
Default form:

g

‘ FixOrder-taskiorm form

HeaderForm.form

Purchases.Purchases-taskiorm.form
ReviewAdministration-taskform.form
ReviewCFO-taskform.form
ReviewController-taskform.form
ReviewManager-taskiorm.farm Cancel

{

This will insert the subform inside the parent form, and will be shown as below:

323

Delete

Chapter 15. Form Modeler

IE1LES U].f L:-rli:llrl =R MU TEUWD Dy Wy == IFLIITI pruperues
(o |5c| 100 150 200 2En 200 ZE0 400 450
ki IFH FE FE FE ' T T A T R A A T N N
0
4 edescription (po)
HE
......... l:l 7
1 weheaderpo)
--------- 1__ creationDate (header)
_________ E Dm
91 customer (header)
......... i
E]
0
1 project (header)
......... 7 3
0
0
""""" 1 welines (pao)
z .
......... EE There is no default form.
?
0
......... |:|—_

Figure 15.22. Parent form visualization after subform configuration
15.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with
all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,
unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.

324

Customizing form

Create new

New resource

* Resource Name

Purchaselines|

Guided Rule
Guided Rule Template
Guided Score Card

@ New Form

default://master@Purchases/Purchases/src/mainresources

© Ok

Figure 15.23. Create new form

2. Create new data origin.

325

Chapter 15. Form Modeler

Form Modeler [PurchaseLines.form] Save | Delete X

= Form data origin_| =5 Add fields by origin | =5 Add fields by type = % Form properties

Id:

Manage form data origins
Input kd: . . .

List of data sources that will be bound to form fields
Output Id:

Id Input Id Output kd Type Info Render color
Render color: M ines lines_in lines_out datahodelerEntry org jopm.examples.purchases.PurchaseOrderLine |]
Dark Blue i |

Type:

From data Model

From java Class

From Basic type
Info:

1l
Add data holder

Figure 15.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

Form Modeler [PurchaseLines.form]

= Form data origin | 251 Add fields by origin | =% Add fields by type = 5 Form properties
: 200

[amount [
[description [
O total [
[unitPrice [

Figure 15.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization

326

Customizing form

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate
automatically the total field. This formulas and expressions are described in Formula &
expression section.

Save Delete
=51 Add fields by type | £ Form properties € Properties (total (lines))
I|I|I||]:0IU|I|I|I||]:5IU|I|I|I||2|UIU|I|I|I||2|5IU|I|I|I||3:UIU|I|I|I||3:5IU|Inlnlnl‘?olonlnl|I||‘?5I0|I|I|I||5|UIU|I|I|I| 5|5I0|I|I|I||6|UIU|

Field type
on (lines) eunitPrice (linesmamount (linesetotal (lines)
Decimal j
Field name:
lines_total
Label:
total (lines)

Error message:

Label css class: Label css style:
Help text:
Style class: Css style:
Size:

5 (1]
Max length:

Required [Disabled [@#Read only
Formula:

=({lines_unitPrice}*{lines_amount}

Range value:

Figure 15.26. Configuring formulas

6. Finally, we save the lines form and go back to the parent form and configure all the lines
properties.

327

Chapter 15. Form Modeler

-taskform.form] Save | | Delete
5 by origin =51 Add fields by type | % Form properties %] Properties (lines (po))
o [|00 Jt=0 2 & 200 £ 400 450] [EE0 J0n
e B B B S S B B I P B B IS
Field type
edescription (po)
e P Multiple subform j
Field name:
eheader (po) .
po_lines
creationDate (header)
=m Label:
lines (po)

customer (header)
Error message:

project (header)

Label css class: Label css style:
elines (po)
There is no default form. Help text:

Style class: Css style:

Required [Disabled ("1 Read only [Group with previous
Default form:

Purchaselines.form j

Preview form:

Purchaselines.form j
Table form:
{ PurchaseLines form j

Figure 15.27. Configure the parent form

15.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.
That Formula engine supports Java and XPATH expressions to access the form fields values.
Let's see some examples.

» Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by
default with the current date. To do that you should edit the field properties and set a Default
value formula like:

=new j ava. util.Date();

328

Customizing form

Form Modeler [PurchaseHeader.form] save
= Formdata origin =~ ©& Add fields by origin _ =) Add fields by type | & Form properties @ Properiies (header creationDale)
E HTML 1abel T JU ‘,U 100 || 0 ‘ 00 ‘le |3u|] ‘:EH 400 450 |s00 S50 600 650 700
el B B B, < T O VA O TV T T T - T e
I ——— T E ®"Creation date ®*Customer Short date =]
B simple subform r~ = Fleld name:
I

Delete

S Mulliple subform ; #°Project header_creationDate
[Short text %: Label:
E Creation date
D Long text E|
I Default error message:
3 Float |
O pecimal —
Label css class: Label css style:
I
[BigDecimal 0] o
O Biginteger T Help text:
O short 3
O Integer ke Style class Css style:
3 [i]
3 Long integer k|
w7 Size:
B E-mail £
3
E 12 [i]
CheckBox E
B o @Required | Read only
2 Rich text LE Formula:
Timestamp 3
73 [i]
Short date 0
? Default value formula:
e —new java.util.Date() (i}
= Input bindi
HE!
3 header/creationDate [i]

Figure 15.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first
time the field will have the specified value.

*Creation date *Customer

00-04-13 =1

"Froject

Figure 15.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported
for the field.

Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using
XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,
%...) to operate with them or calls to Java Functions for more complex operations.

To start let's see how you can create a formula to calculate the line_total of a Purchase Order
Line. Look at the image below and look at the formula on the line_total properties.

329

Chapter 15. Form Modeler

Form Madeler [PurchaseLine.form] save | Delete
= Form data origin =~ S5 Add fields by origin = =5 Add fields by type = 2 Form properties o Properties (line_total)
e B 8 S B PR B B P T B B B P
LE Field type
9 e Description @ Amount @*Unit Price @ Total Amount
3 Decimal j
IE Field name:
line_total
14 Label:
bE|
Total Amount
| Default error message:
8
FE| Label css class: Label css style:
° [i]
bE Help text:
(1]
E Style class: Css style:
s 0
s Size: Max length
i 7 i)
— Required #Read only
E Formula:
' —{line_unitPrice}*{line_amount} -
53
L Range value:
= i}
3
E

Figure 15.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_amount}

we're forcing the Total of the line value to be the result of the the Unit price multiplied by the
Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount
field value is going to be calculated and filled with the operation result;

*Description *Amount “Unit Price Total Amount

3 1.45 4.35

Figure 15.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/ a_subformfield}

Look at the next image to see how it works:

330

Customizing form

Form Modeler [CreateOrder-taskform.form]

Delete x v

= Form dataorigin =~ ®& Add fields by origin _ =5 Add fields by type orm properties €@ Properties (po_description)
jﬂ ‘EG 100 |\5" ‘Zfﬂ ‘le ‘3“0 ‘ 50 [400 50 500 550 [s00 650 |F[IC'
I# HTUL label ot B P P RO B B B B B B B B IR P
E Fleld type
== Separator [3 Please, enter all the required information. The instructions to perform this ng text j
= 7 task can be found here
&3 Simple subform I 5 Field name:
B Mutiple subform r 3 po_description
ePurchase Order Header .
[Short text ¢ Lavel
03
| *Creation date *Customer Description
O Long text E A
LE| 00-04-13 . Default error message:
O Float 33 .
4 "Project You must enter a description
[pecimal —]
Label css class: Label css style:
8
BigDecimal 04
O 1 atres 0
O Biginteger P Help text:
£3 Add purchase line
O short 3
O Integer - TOTAL: Style class: Css style:
EE|
L Li]
[Long integer 4 .e"Description
x| Size:
B E-mail £
3 50 [i]
B CheckBox E . .
73 Height: Max length:
B Rich text 83 3 o
Timestamp = @Required | Read only
Short date i Formula:
ik ~"Customer: " + {po_header/header_customer} + * Project: " +
[{po_header/header_project) 0
Ix I
EE|
£3
1 -

Figure 15.32.

This form has a subform field called po_header that is showing a form with the fields
header_creationDate, header_customer and header_project. We want the Description field
on our parent form to show some information from the header. Look at the Description field
properties formula.

="Customer: " + {po_header/header_customer} +
header _proj ect}

Proj ect: + {po_header/

This formula returns a text when the fields header_customer and header_projects are filled on
the child form, so from now the parent form will be filled like this:

331

Chapter 15. Form Modeler

Please, enter all the reguired information. The instructions to perform this

task can be found here

Purchase Crder Header

*Creation date *Customer
00-04-13 Dm John R.
*Project

Form Modeler Documentation

Add purchase line

Lines

TOTAL:
0.0

*Description

Customer: John R. Project: Form Modeler Documentation

Figure 15.33.

Ok, you've seen how to create formulas that access to a subform fields values, now we are
going to see how to work with values stored in Multiple Subforms. Imagine that we have a
Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we
want to calculate the total amount of the lines created. Look at the image below and how the
TOTAL field is configured.

332

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin = ®E Add fields by origin |_ =1 Add fields by type Form propetties

HTML label r Please, enter all the required information. The instructions to perform this
= Separator [~ task can be found here
& simple subform r
B Multiple subform r Purchase Order Header
[Short text I *Creation date *Customer
-04- =o

D Long text r EoETiB

*Project
[Float T
O Decimal T

Lines
O Bigbecimal T
O Biginteger I Add pL line
[Short T TOTAL:
O Integer T

*Description

[Long integer I

B3 E-malil T

@ CheckBox T

Rich text r

Timestamp r

Short date r

Figure 15.34.

On the formula expression:

" + {sum(po_lines/line_total)} + "

Save | Delete

@ Properties (121118573)
Field type

Short text |
Field name:

121118573
Label:

TOTAL:

Default error message:

Label css class: Label css style:

pacding-left:300pxfont-weigntn | €3

Help text:
Style class: Css style:
padding-left:300px; [i]
Size: Max length
Li]

[Required ' Readonly @Show HTMI [Password

Formula:

—"" + {sum(po_lines/line_total]} + ""

Range value:

we are using the XPATH function sum() that is going to sumarize the totals of all the lines. So

after creating some Lines the form will look like this:

333

Chapter 15. Form Modeler

Please, enter all the required information. The instructions to perform this
task can be found here

Purchase Order Header

*Creation date *Customer

00-04-07 0

*Project

Lines

Actions Lines Lines Lines Lines
@ ¢ FormModeler guide 3 3575 107.25
M & Labtop 1 7855 7B5S5

Add purchase line

TOTAL:
892.75

*Description

Figure 15.35.

Note that the line_total child field corresponds with the field line_total field on then form selected
as a Default Form selected on the Lines field configuratio

334

Customizing form

On this sample we are using the sum() XPATH function to calculate the total of the Purchase
Order, but XPATH provides a lot of possibilities to select values from a set of children and also
a lot functions to summarize values (sum, count, avg...). For more information about XPATH
you can take a look at http://www.w3schools.com/xpath/

Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an
specific field, showing it like a select box. It can be used on all simple types except Dates and

Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Form Modeler [ReviewAdministration-taskform.form]

= Form dataorigin | 81 Add fields by origin _=5] Add flelds by type | % Form properties

2 HTML label

= Separator

S simple subform

& Multiple subform
[Shorttext

D Long text

[Float
O Decimal

O BigDecimal

O Biginteger
O short
O Integer

O Long integer

= E-mail

@ CheckBox

2 Rich text
Timestamp

Shortdate

r

)
r
r
T
r
r
r
r
r
r
r
r
r
r
r
r
T

i

e B I D B B B B T B B B R PR PR B B

Please, review and approve of reject order.

eHeader
*Creation date *Customer
00-04-13

*Praject

elines

@ Descripion

Review slatus

Please, enter any of the following options:
® Approve
® Reject
® Request modification

*Review status

|

Figure 15.36. Setting default value formula

Save | Delete

© Properties (review)

Field type
Short text A
Field name:
review
Label:
Review status

Defaulterror message:

Label ess class Label css style:

Help text:

Style class: Gss style:

Size: Max length:
Li]

¥ Required Read only Show HTML Password
Formula:

x

Range value:

(approve Approve orderreject Reject ordermodifications, Request
Modifications)

Paitern

As you can see that field is being shown as a select box and it has a range formula that specifies
the values like this:

{approve, Approve

order;reject, Rej ect

Modi fi cati ons}

order; nodi ficati ons, Request

This expression is defining 3 duos of value/"text to show” separated with the character ‘,” and
each of this duos is separated from each other other with the ‘;’ character. So due this formula
the resulting select box will show:

335

http://www.w3schools.com/xpath/

Chapter 15. Form Modeler

Table 15.2.
Value stored in input Text shown on Select Box
approve Approve order
reject Reject order
modifications Request Modifications

15.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the html that is displayed.
The form modeler provides the ability to edit the html directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form
layout' option and save.

Now the form is displayed with the custom html. To access this html editing we click on the icon
'Edit'

The html editor is displayed, the html code will define how the form has to be shown. In this editor
the user can directly create the html i locate the fields and labels with the syntax described below:

$field{fieldName} for field identified fieldName
$label{fieldName} for field identified fieldName label
These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form html creation.

* 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text
is added to html. These selects only show the form fields haven't been added yet.

» 'Generate template based on'

This functionality generates the html using all fields (default, alignment fields or Not aligned)
depending on the selected value and overwrite the html.

15.3.3. Field types

There are three types of field types that you can use to model your form:

« Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The
supported Field types are:

336

Field types

Table 15.3. Field types

Name Description Java Type Default on
generated forms

Short Text Simple input to enter | java.lang.String yes
short texts.

Long Text Text area to enter java.lang.String no
long text.

Rich Text HTMLEditor to enter | java.lang.String no
formatted texts .

Email Simple input to enter | java.lang.String no
short text with email
pattern.

Float Input to enter short java.lang.Float yes
decimals.

Decimal Input to enter number | java.lang.Double yes
with decimals.

BigDecimal Input to enter big java.math.BigDecimal | yes
decimal numbers.

Biginteger Input to enter big java.math.Biginteger |yes
integers.

Short Input to enter short java.lang.Short yes
integers

Integer Input to enter java.lang.Integer yes
integers.

Long Integer Input to enter long java.lang.Long yes
integers

Checkbox Checkbox to enter java.lang.Boolean yes
true/false values

Timestamp Input to enter date & | java.util.Date yes
time values

Short Date Input to enter date java.util.Date no
values.

e Complex types

These field types are made to deal with properties that are Java Objects instead of basic types.
These field types need extra forms to be created in order to show and write values onto the

specified Java Object/s

337

Chapter 15. Form Modeler

Table 15.4. Complex types

Name Description Java Type Default on
generated forms

Simple subform Renders the a form, | java.lang.Object yes
it is used to deal with
1:1 relationships.

Multiple subform This field type is java.util.List yes
used to deal with

1:N relationships. It
allows to create, edit
and delete a set child
Objects.Text area to
enter long text.

¢ Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They
can be used with aesthetic purpose

Table 15.5. Decorators

Description

HTML label Allows the user to create HTML code that
will be rendered in the form

Separator Renders an HTML separator

15.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any
type) on the form to look and behave totally different than the standard platform fields. On this
section we will take a look on how to create them and how to configure them.

15.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the
org.jopm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside
a jar file that is placed on the Application Server classpath or inside the application War.

Lets take a look atorg.jopm.formModeler.core.fieldTypes.CustomFieldType:

package org.j bpm fornvbdel er. core.fiel dTypes;

import java.util.Locale;

338

Field types

i mport java.util.Mp;

/**

* Definition interface for customfields

*/

public interface CustonFiel dType {

/**

* This method returns a text definition for the customtype. This text will be shown on t

* @aram | ocal e The current user |ocale

* @eturn A String that describes the field type on the specified |ocale.
*/

public String getDescription(Locale |ocale);

/**

* This method returns a string that contains the HTML code that will be used to show the
* shown on screen

* @aram val ue The current field val ue

* @aram fiel dNane The field name

* @ar am nanespace The unique id for the rendered form it should be used to generate ide
* @aramrequired Determines if the field is required or not

* @aramreadonly Determines if the field nust be shown on read only node

* @aram parans A |list of configuration parans that can be set on the field configuratior
* @eturn The HTML that will be used to show the field val ue

*/

public String get ShowHTM.((hj ect value, String fieldName, String nanespace, bool ean requi

/**

* This method returns a String that contains the HTML code that will show the input view
* @aram val ue The current field val ue

* @aram fiel dNane The field name

* @ar am nanespace The unique id for the rendered form it should be used to generate ide
* @aramrequired Deternmines if the field is required or not

* @aramreadonly Deternmines if the field nust be shown on read only node

* @aram parans A |list of configuration parans that can be set on the field configuratior
@eturn The HTML code that wi |l be used to showthe input viewof the field.

*/

public String getlnput HTM.(Cbj ect value, String fieldName, String namespace, bool ean reqt

/**

* This nethod is used to obtain the field value fromthe submtted val ues.

* @aram request Parameters A Map containing the request paraneters for the submtted forr
* @aramrequestFiles A Map containing the java.io.Files uploaded on the request

* @aram fiel dName The field nane

* @ar am nanespace The unique id for the rendered form it should be used to generate ide
* @aram previ ousVal ue The previous value of the current field

* @aramrequired Deternmines if the field is required or not

* @aramreadonly Determines if the field nust be shown on read only node

* @aram paranms A |list of configuration parans that can be set on the field configuratior
* @eturn The value of the field based on the submitted form val ues.

339

Chapter 15. Form Modeler

o/
publ i c Object getValue(Map requestParaneters, Map requestFiles, String fieldNane, String
}

As you can see this Interface defines the methods that determines how the field has to be
shown on the screen for when the form is shown on insert(getinputHTML(...)) or readonly
(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed
parameters from the request and to obtain the correct field value. Te returned value type must
match with the type of the field added on the form. So (for example) you can create a File input
that uploads a file to a server folder and saves a String with the storage path as the field value,
so on your forms you can turn all the text compatible fields (Short Text, Long Text, Rich Text and
Email) on Input File.

To see ho can it be done look at the example
on https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-
custom-types/jbpm-form-modeler-custom-file-type.

Please note that this is just a sample and it only should be used with learning purposes.
15.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on
the previous chapter, we have created a File Input type and we have it already installed on our
application. So now we are going to create a new form and add a Short Text property and turn it
into a File Input and edit the field properties changing the Field Type from Short text toCustom field.

Form Modeler [UsingCustomTypes-taskform]

= Form data origin = 2 Add fields by origin _=5] Add fields by type | %5 Form properties @ Properties (inputFile)
2 T tave e B T R B B B R

73 Field type

1 einpuiFile (inputFile)

= Separator Shorttext sl

X [short text
Long text

& simple subtorm

I
B Multiple subform r E-malil
i Rich text
Custom field
NpUtFile (IpUtFile)

3 Short text [RLE

D Long text
[Float r 33

Default eror message:

O Decimal
Label css class: Label css style:

[BigDecimal r~ o] i)

O Biginteger r = Help text

O shert

O Integer ™~ 74 Style class: Css style:

[Long integer

s Size: Max length

B3 E-mail ;: o

& CheckBox ;
Required [Read only] Show HTML [Password
2 Ricn text r 54 Formula:

Timestamp
Short date

wl
e

Range value:

Pattern:

Figure 15.37. Changing a field type toCustom field

340

https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type
https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type

Field types

After changing the field type a new set of properties will appear:

341

Chapter 15. Form Modeler

€ Properties (inputFile)

Field type
Custom field j

Field name:
inputFile
Label:
inputFile (inputFile)

Custom field

M
First Parameter
Second Parameter
Third Parameter
Fourth Parameter

Fifth Parameter

~'Required [| Read only
Input binding expression:

Output binding expression:
inputFile

Figure 15.38. Custom field pro figuration form

342

Field types

Table 15.6. Custom field properties

Property Description

First parameter

Field type Can change the field type to other compatible
field types

Field Name Will be used as identifier in formulas
calculation

Label The text that will be shown as field label

Custom field A list containing all the Custom Field Types

available on the platform

A String parameter that can be user to pass
custom configuration neede by the Custom
Field Type implementation

Second parameter

A String parameter that can be user to pass
custom configuration neede by the Custom
Field Type implementation

Third parameter

A String parameter that can be user to pass
custom configuration neede by the Custom
Field Type implementation

Fourth parameter

Fifth parameter

Required

A String parameter that can be user to pass
custom configuration neede by the Custom
Field Type implementation

A String parameter that can be user to pass
custom configuration neede by the Custom
Field Type implementation

Indicates if it's mandatory to fill this field.

Read Only

Input binding expression

Output binding expression

When this check is on, the field will be used
only for read

This expression defines the link between field
and process task input variable. It will be used
in runtime to set the field value with that task
input variable data.

This expression defines the link between
field and process task output variable. It will
be used in runtime to set that task output
variable.

So opening the Custom field select box we'll be able to select the File Input from the available

custom types:

343

Chapter 15. Form Modeler

€ Properties (inputFile)

Field type

Custom field j
Field name:

inputFile
Label:

inputFile (inputFile)

Custom field

Second Parameter
Third Parameter
Fourth Parameter
Fifth Parameter

"'Required | Read only
Input binding expression:

Output binding expression:
inputFile

. : Cancel
Figure 15.39. Available custom

344

Field types

After selecting the File Input type on the list and saving the field properties the form will look like:

AQQ TISIOS DY ONgin | ©$1 AQT NEIas DY lype FOrm properies

i E 100 150 200 250 300

r' I:|+-I|I|I|I|l el ol ol oy Do By BololulodolululodolyBaBolololalololululdsBsliluly
"""" . 1 einputFile (inputFile)
....... r —: Browse...
................... k

3

T
................... 0

™| -

Figure 15.40. Custom type display in a form

If we build a simple process and configure a Short text to be shown as the sampleFile Input, if
we build the project on runtime the field will behave uploading the choosen files to the server and
allowing the user to download it like this:

2 - EdIt File

in_inputFile (inputFile)

fhome/pefernan/Documents/| Browse...

Figure 15.41. Choosing the file to upload

345

Chapter 15. Form Modeler

2 - EdIt File

in_inputFile (inputFile)
; Planning - Jan 25.odt (209.18 Kb) [}

Browse...

Save @ Release Myl

Figure 15.42. File uploaded, showing the download link

If we take a look at what's the process variable value, we'll see that is storing a String with the
file path stored in server.

Process Variables

Instance ID 2
Definition Id UsingCustomTypes

Definition Name UsingCustomTypes

Refresh

x

Name Value Type Last Modification Actions
inputFile Idocsie3cab773/b14d/4e19 String 22/10/2013 15:18 ®
18cd0/e61c539a8c06/inputFile/Planning
- Jan 25.0dt

Figure 15.43. Process variable storing custom type results

346

Chapter 16.

Chapter 16. Runtime Management

16.1. Deployments

This chapter introduces the Deployment administration screen. Technical users will be able to
check which deployment units are deployed into the platform and available to use. You can find the
source code of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/
jbpm-console-ng-business-domain

16.1.1. Deployment Units List

You can access to the Deployment Units List under the Runtime menu (TODO: fix image and
menu name)

Deployments

Jobs

The Deployment Unit list shows all the Deployment Units deployed into the platform that are
already enabled to be used. Each deployment unit can contain multiple business processes and
business rules. By default the list is populated by Building and Deploying a KIE Module using the
Project Editor Screen. When you Build and Deploy a

Deployment Units New Deployment Unit | Refresh | | %

Deployment Group ID Artifact Version Kie Base Name Kie Session Name Runtime strategy Actiens

org jopm:Evaluation:1.0 org.jbpm Evaluation 10 DEFAULT DEFAULT SINGLETON @

org jbpm:HR:1.0 org jopm HR 1.0 DEFAULT DEFAULT SINGLETON (%)

1202 4 W M M

347

Chapter 16. Runtime Management

You also have the option to deploy custom Deployment Units with other options different from the
defaults. When a KIE Project is deployed, by default the "DEFAULT" KIE Base and KIE Sessions
are used and the SINGLETON Strategy is used. You can select a different KIE Base and KIE
Session using the New Deployment Unit.

Deploy a New Unit

Group ID
Artifact

Version
KIE Configurations
Runtime strategy | Singleton j

Kie Base Name

Kie Session Name

Deploy Unit

16.2. Jobs

TBD

348

Chapter 17.

Chapter 17. Process and Task
Management

17.1. Process Management

This chapter describes the screens related with the creation and management of process
definitions and process instances.

Once you have modelled and configured all the techncial details to run a process definition your
process definition will appear in the Process Definitions List. Once you have the process in the
Process Definition List, you can start new instances of it. The following sections describes the
features provided by each of these screens. You can find these screens under the Process
Management Menu, in the jBPM Console NG or in Kie Workbench.

You can find the source code for this module here: https://github.com/droolsjbpm/jbpm-console-
ng/tree/master/jbpm-console-ng-process-runtime

Process Management ~

Process Definitions

Process Instances

17.1.1. Process Definitions

The process definition section is composed by two main screens: the Process Definition Lists and
the Process Definition Details.

17.1.1.1. The Process Definition List

The process definition list shows all the available process definitions that were deployed into
the platform. Look at the Deployments section for more information about how to check all the
deployment units available.

349

finitions

Chapter 17. Process and Task ...

Re

Version

per

You can click in the list rows to access to the details of the process definition.

17.1.1.2. The Process Definition Details

The process definition details shows all the available information about the process definition. You
can consider this screen as a brief about the process model. You can quickly see if there is a
Sub Process associated with it, or how many users and groups are participating in the selected
definition.

350

1-20f 2

1

1

L

Process Definitions

finitions Refresh x| Details Mew Instance | Options ™ Re
Version Actions
Definition Id hiring
: ®Q
Definition Name Hiring a Developer
per 1 @ Q

Deployment org.jbpm:HR:1.0

Human Tasks Sign Contract
Create Proposal
Tech Interview
HR Interview

Human Task Count 4

User and Groups HR - Sign Contract
Accounting - Create Proposal
IT - Tech Interview
HR - HR Interview

Sub Processes Mo subproceses required by this

1-20f2 W4 H M M
Process Variables skills - String

twitter - String
mail - String

Notice that you can View the Process Model (Read Only mode) using the Options Menu in the

top bar. You can also look at all the process instances for the selected process definition goint
to Options -> View Process Instances.

17.1.1.3. Creating Process Instances

You can create new Process Instances from the Process Definition List or from the Process
Definition Detail view.

351

Chapter 17. Process and Task ...

Hiring a Developer

*Candidate Mame

When you want to create a Process Instance usually a Form will be presented to introduce the
information required by the process to be started. Once you complete the form and click into the
Start Process button, the instance will be created and the details of the Process Instance will be
displayed on top of the Process Definition Details.

17.2. Tasks

This chapter introduces the Task Management screens and the its integration with the Form
Modeller component to allow users to work on their assigned tasks. You can find the source code
of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-
ng-human-tasks [https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-
human-tasks] . At the end of this section you will find a technical description about how to
customize these views.

17.2.1. Task List

Every user with access to the platform will have access to its personal task list where tasks
assigned to him/her will be displayed. Each user will be able to create its own personal tasks or
work on tasks that were create as a result of a business process execution.

You can access to the Task List under the Work main menu:

Work ~ Dashboards

Tasks List

352

https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks

Task List

17.2.1.1. Task List (Personal and Group Tasks)

Pending tasks can be displayed using different methafors depending on what the user is interested
on. We are currently providing two different views explained in the sections below: Grid and

Calendar View.

17.2.1.1.1. Task List (Grid View)

If you are interested in having a tabular view of all the pending tasks for a specific person or
group you can use the Grid View. The list will show all the pending tasks ordered by the columns
presented. You can change the default ordering clicking on the column header. In future version
more advanced filters will be provided and the search mechanism will be improved to look for task
internal data. This view offer a more traditional BPM Task List view.

MNew Task

Re

“alendar Active Personal
Priority Status Created On Due On Ac
to important Meeting 0 InProgress 04/10/2013 13:15 05/10/2013 13:15 ﬁ
onth Report 0 InProgress 04/10/2013 13:15 05/10/2013 13:14 E
y Check Stock 0 InProgress 04/10/2013 13:13 05/10/2013 13:12 ﬁ
re Invoice 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬁ
Customer 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬁ

1-50f5 4

With this current version you can filter based on the tasks status:

« Active: all the Active tasks that user can work on. That means Personal and Group Tasks.
» Personal: all the personal tasks that already belong to the user.
» Group: all the group tasks that needs to be claimed by the user in order to start working on them.

 All: show all the tasks no matter the status. It will show completed tasks as well with the exception
of completed tasks that belongs to a process that is already finished. In such cases the tasks
are cleaned up after the process is completed and for that reason they will not be displayed.

Chapter 17. Process and Task ...

17.2.1.1.2. Task List (Calendar View)

If you want a more time oriented view of your pending tasks you can use the Calendar View.
This view arrange the tasks based on the Task Due Date. You can switch between three different
ranges: Day, Week or Month.

The Day view shows all the tasks that Due Today. Notice that you can change the selected date
using the calendar or using the Next and Previous button. The Today button will be enabled when
you are in a different day than today, and when you click it it will return the selection to the current
date.

MNew Task | Re

alendar Wed, 09 October E3 4 Day Week Manth Active Personal

Call Customer

Approve Invoice

Weekly Check Stock

Write Month Report

Attend to Important Meeting

The Week view shows all the tasks pending for the current week. You can change the selected
week using the calendar or the Next and Previous button. If you click on the Today button, you
will be moved to the week the current week.

354

Task List

| New Task | Re

alendar 07 Oct- 13 Oct 8 | ¢ | Today | » | Day
L ey es @

Week Month

I Call Customer

I Technical Interview

I After Office

06:00 PM ‘

I Approve Invoice

I Weekly Check Stock

I ‘Write Month Report

I Attend to Important...

The Month view shows all the tasks that due on the selected month. You can change the month
using the calendar or the Next and Previous button. If you click on the Today button the calendar

will show all the tasks that due in the current month.

355

| Adive Personal

Chapter 17. Process and Task ...

| New Task | Re
alendar October 13 @ | ¢ | Today | Day Week Month _ Adtive | Personal
% Mon 30 (0) ¥ Tue 1 (0) ¥ Wed 2 (0) % Thu 3 (0) % Fri 4 (0) % Sat 5 (D)
¥ Mon 7 (0) ¥ Today Tue 8 (0) I Call customer | A Wed () I Technical Interview A T 10/ (1) I After Office Sl ¥ Sat 12 (0)
I Approve [nvolce |
I Weekly Check Stock |
I Write Month Banorr |
¥ Mon 14 (0) ¥ Tue 15 (0) ¥ Wed 16 (0) ¥ Thu 17 (0) I Dog Tralning A Fri 18 (1) * Sat 19 (0)
¥ Mon 21 (0) ¥ Tue 22 (0) ¥ Wed 23 (0) ¥ Thu 24 (0) Fri 25 (0) ¥ Sat 26 (0)
¥ Mon 28 (0) ¥ Tue 29 (0) ¥ Wed 30 (0) ¥ Thu 31 (0) ¥ Fri 1 (0) ¥ Sat 2 (D)

17.2.1.2. Task Details

You can access to the Task Details by clicking in a task row (in both Grid and Calendar Views).
The details associated with a task can be changed, like for example the Due Date, the Priority
or the task description.

356

Task List

New Task = Refresh ®| T Details
alendar Active Personal Group All
Details
Priority Status Created On Due On Actions
toimportant 0 nProgress 04/101201313:15 0510120131315) W Q Description
g
Wonth Re : : Status
port O InProgress 04/10/201313:15 05/10/201313:14 @ v/ Q
y Check 0 InProgress 04/10/2013 13:13 05/10/201313:12 g v/ Q Due On
e Invaice 0 InProgress 04/10/201313:12 051020131312 @ & Q, Priority
Customer 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬂ v 4 Q User
Process Context
Logs
150f5 M W M MW

Work | Details Assignments

Room A - Floor 17

InProgress

2013/10/05 13:15

0 - High

katy

Update

You can also view the Process Context for a specific task. If the task was created by a Business
Process, you will have access to see the Process Instance status that has created it.

357

Comr

Chapter 17. Process and Task ...

Details Work Details Assignments | Comments % | 7

9 - HR Interview

Details

Process Context

Process Instance Id 1

Process Definition Id hiring

Process Instance Details Process Instance Details

Logs

Update

Finally you can see the Task Log, which allows you to see all the operations that has been
executed on the task since its creation.

358

Task List

Details Work Details Assignments = Comments ® T

.........................

5 - Call Customer

Details

Process Context
Logs

Task Log

08/10/2013 08:57: Task - ADDED (katy)
08/10/2013 08:57: Task - STARTED (katy)
08/10/2013 09:59: Task - RELEASED ()

08/10/2013 09:59: Task - CLAIMED (katy)
08/10/2013 09:59: Task - STARTED (katy)

Lipdate

17.2.1.3. Work on a Task

Tasks can have associated a Form to store data. If tasks are part of a Business Process, usually
some data needs to be collected and propagated to the business process for further usage. For
that reason, tasks has to provide a way to gather and store data. Forms can be created for specific
tasks using the Form Modeller. If no form is provided a dynamic form will be created based on
the information that the task needs to handle. If a task is created as an ad-hoc task (not related
with any process) there will be no such information to generate a form and only basic actions will
be provided.

359

Chapter 17. Process and Task ...

Details . Work | Details Assignments Comments

.....................

9 - HR Interview

Candidate Name
salaboy

Age
Ermail

Score

17.2.1.4. Task Assignments

You can Delegate tasks to different people when you are not able to work on them.

360

Task List

-

Details Work | Details Assignments | Comments »

5 - Call Customer

Details

Potential Owners [User:katy]

User or Group [salaboy{

Delegate

17.2.1.5. Task Comments

You can add comments to your tasks to keep track of the progress or to keep information related
to the task. Notice that if you delegate the task other users can also add comments helping on

the collaboration to complete the task.

361

Chapter 17. Process and Task ...

Details Work Details Assignments = Comments x | T

5 - Call Customer

Add Comment
Comment
Added By At Comment
katy 08/10/2013 09:56 Meed more @
information about
this customer
katy 08/10/2013 09:56 ask for product X @

17.2.2. New Task (Ad-Hoc Task)

As mentioned in the introduction a User can create their own tasks, which will not be associated
with any Business Process. These tasks can be used to keep track of your personal list of TO
DOs. You can also create tasks and assign them to different people in your team or group.

362

New Task (Ad-Hoc Task)

New Task

Task Name |Buy wife's Birthday Gift

Auto Assign ToMe [

Advanced
Due On 07M10/2013 10:10
Priority 0 - High
Add User Add Group
User | salaboy

363

364

Chapter 18.

Chapter 18. Business Activity
Monitoring

18.1. Overview

Imagine you are developing a BPM solution which mixes process with business data. Imagine also
you need some forms to be used within processes in order to let the users enter data. Moreover,
you'll likely want to have some kind of dashboards to display metrics and key performance
indicators in order to quickly assess how your processes are doing. So far so good.

jBPM brings you all the ingredients you need to develop end-to-end business process solutions.
The jBPM's BAM module (also known as Dashboard Builder or just Dashbuilder) allows for
composing custom business dashboards mixing data coming from heterogeneous sources of
information. The module is now fully integrated into KIE workbench. A new specific section for
dealing with dashboards has been added and it can be accessed either from the home page or
from the menu bar, as shown in the next figure.

KIE Workbench

Dashboards =

Process & Task Dashboard a
Business Dashboards
The Knowledge Life Cycle
Authoring Deploy Process Tasks Dashboards
Project Authoring Deployments Management Tasks List Process & Task
Asset repository Jobs Process Definitions Dashboard
Administration Process Instances Business Dashboards

e A
o

The Business Knowledge to drive your company

Figure 18.1. BAM menu options in the KIE Workbench home page

In the figure, Within the highlighted sections, there exists two options:

« Business Dashboards: This option is intended to give users access to the generic dashboard
tooling either to compose new dashboards or just to consume existing ones.

365

Chapter 18. Business Activity...

* Process & Task Dashboard: It opens up the Process Dashboard perspective which contains
several performance indicators related to the jBPM execution engine.

18.2. Business Dashbhoards

BPM solutions are not only made up with processes, rules or forms but also with data belonging
to the customer business domain. Such data is handled in the forms, the rules and, of course, the
dashboards that are part of the solution. Usually, dashboards feed with data coming from several
sources of information, from business domain entities persisted into relational databases to data
hold in legacy systems. In order to cope with this kind of scenarios a generic highly customizable
dashboard tooling is needed.

It's obviously expected that a customer building a BPM solution want to track how its processes are
performing. To do so the customer need a monitoring and reporting tool. This is the main reason
why the Dashbuilder project has been included as a core module of the jBPM echosystem. Notice
also that Dashbuilder, as an independent project, is not only used by jBPM but also by many other
projects like, for example, JBoss Teiid a data virtualization system that allows applications to use
data from multiple, heterogeneous data stores.

Note

Please, read the Dashbuilder book in order to get detailed information about how
to build custom dashboards.

An example of dashboard is the Sales Dashboard which comes built-in any installation of
Dashbuilder. Two screenshots below:

366

Business Dashboards

English Espanol Deutsch Franca

Conectado como demo

gués Hasali shir

Home

Sample dashboards

Sales opportunities

- Pipeline analysis

- Sales report

Expense reports

ro_activo

@ Country
Amount:
hasta

Closing date:

_ Seleccionar Closing date ¥
Pipeline:

- Seleccionar Ppeline - ¥
Status:

- Seleccionar Status - v
Customer:

- Seleccionar Customer - v

Product:
- Seleccionar Product - v

Sales person:
- Seleccionar Sales person ¥
Probability:

hasta

Source:
- Seleccionar Source - v

United Stat

YO®

By Country: United States

Sample dashboards > Sales opportunities > By country

By customer

Company 5
Company 1 Company &

Company
Company 8
Company 2
mpany 3

Company

Company 7

By sales person

Jamie Gilbeau
Roxie Foraker

Jerri Preb)
Neva Hunger
athrine Janas
o Burdge
Nita Marli

Darryl Innes

("Sales evolution [Amount by status | List of opportunities |

By product

135,371.78
120,000.00
100,000.00

£ 80,000.00

3
5 60,000.00
40,000.00
20,000.00
0.00 ‘%

47,701.83
40,000.00

+30,000.00
5

g
E0,000.00

Sales evolution

September 2014 : 39,446.19

© 2013 JBoss Inc. Licensed under the Apache License, Version 2.0

@5ales evolution

Figure 18.2. Sales opportunities by country

367

Chapter 18. Business Activity...

English Espaniol Deutsch Francais Portugués Hakl shic Conectado como demo

@ @ by Red Hat

Home By Country: United States

Sample dashboards > Sales opportunities > By country

Sample dashboards

Sales opportunities By customer By sales person By product

- Pipeline analysis

- Sales report

135,371.78

pany 5 Jamie Gilbeau
Expense reports Comparwl Company & Roxie Foraker 120,000.00
Fj_!__t;n ncttivu e Company Serri Prebl 100,000.00
I Country nite: al EBD,DO0.00 |
Company &
Amount: pany Neva Hunger EBB,DDD.DD
hasta Company 2 athrine Janas 20,000.00 |
Closing date:
- Seleccionar Closing date ¥ 20,000.00 T
o B EE .
Pipeline:
_ Scleccionar Pipeline- ¥ Nita Marli 2399 2%%%%9%
Company 7 Darry! Innes PN RSN
Status: LRI IS e
- Seleccionar Status - v
Customer: ("Sales evolution [Amount by status | List of opportunities |
- Seleccionar Customer - ¥
Product: Sales evolution
- Scleccionar Product - ¥ September 2014 : 39,446.19
Sales person: @5ales evolution

- Seleccionar Sales person ¥ 47,701.83

40,000.00
Probability:
hasta £30,000.00
@
Source: <%20,[)0[).0[)
- Seleccionar Source - v 10,000.00
YO® 0.00
)
¥

© 2013 JBoss Inc. Licensed under the Apache License, Version 2.0

Figure 18.3. Sales opportunities report table

18.3. Process Dashboard

The jBPM Process Dashboard is an specific use case of a dashboard feed from data coming
from a relational database via SQL queries. In this case, the database tables consumed are:
processinstancelog and bamtasksummary both belonging to the jBPM engine.

From the data provider perspective there exists 3 data providers in charge of retrieving the
data needed by all the key performance indicators of the jBPM Process Dashboard. These data
provides are all defined in the Dashbuilder tooling data provider management screen.

368

Process Dashboard

[B English Espafiol Deutsch Francais Portugués i s3] |

s B e

®
@ @ by red Hat

Sﬁmplc dashboards L Administration > Data providers
- = - R

|+ Create new data provider |

Administration

Data providers

External connections @ m Expense reports demo CSV File
.) 8 # M sales dashboard demo CSV File
Import and export =
8 & M jBPM Count Processes SQL Query
B ® [jBPM Process Summary SQL Query
M jBPM Task Summary SQL Query

Figure 18.4. jBPM Process Dashboard data providers

« jBPM Count Processes: Retrieves the total number of process instances grouped by status.

sel ect total.processnanme, ifnull(total.instances,0) total

i fnull (active.instances_act,0) active,

i fnull (conpl eted.instances_conpl, 0) conpl eted,

i fnul | (pendi ng. i nstances_pend, 0) pendi ng,

i fnul | (suspended. i nst ances_susp, 0) suspended,

ifnull (aborted.instances_abrt, 0) aborted

from

(sel ect pi.processinstanceid as pld, pi.processname as processnane,

count (*) as instances

from processi nstancel og pi group by pi.processinstanceid, processnane)
as total

left outer join

(sel ect pi.processinstanceid as pld, count(*) as instances_act

from processi nstancel og p

where pi.status=1 group by pi.processinstanceid) as active

on (total.pld=active. pld)

left outer join

(sel ect pi.processinstanceid as pld, count(*) as instances_conpl

from processi nstancel og pi

where pi.status=2 group by pi.processinstanceid) as conpl eted

on (total.pld=conpleted. pld)

left outer join

(sel ect pi.processinstanceid as pld, count(*) as instances_pend

from processi nstancel og p

where pi.status=0 group by pi.processinstancei d) as pending

on (total.pld=pending.pld)

369

Chapter 18. Business Activity...

left outer join

(sel ect pi.processinstanceid as pld, count(*) as instances_susp
from processi nstancel og p

where pi.status=4 group by pi.processinstancei d) as suspended
on (total.pld=suspended. pld)

left outer join

(sel ect pi.processinstanceid as pld, count(*) as instances_abrt
from processi nstancel og p

where pi.status=3 group by pi.processinstancei d) as aborted

on (total.pld=aborted. pld)

where {sql _condition, optional, processnanme, processnane}

order by processnane

* jBPM Process Summary: Retrieves data from all the process instances.

sel ect processinstancei d,
processnane,

st at us,

start _date,

end_dat e,

user __identity,
processversi on

duration

from processi nst ancel og

* jBPM Task Summary: Retrieves data from all the process tasks.

sel ect ts.taskid,

ts. processi nst ancei d,

ps. processnane,

ps. processversi on,

ts.tasknane,

ts. creat eddat e,

ts. enddat e,

ts.userid,

ts.duration,

ts.status

from bant asksunmary ts
| eft join processi nst ancel og ps

(ts. processi nstancei d=ps. processi nst ancei d)

on

370

Process Dashboard

From the end user perspective, the jBPM Process Dashboard has been designed to consume the
data from the data providers defined above. It has been also designed has a panel fully integrated
into the KIE Workbench environment as shown in the next figure:

Dashboard Panel

‘Summary Process Dashboard
Total tasks: 421 I e s dashbons

Total nstances: 421
18

i

Actve: 0
Fending. 22
Suspended: 15
Abored: 15

Process:

- Selgct Process -
Stanss

- Select Stmius -
‘St damm:

- Select Sian dats -

User or rose: I . ""\'.-%"wh\;,j",,“",x:sh;\%f@(. N, ﬂ,n“-.:"’»'
- Select User of role - v J ¥ b

Warsion:
 Eetect Versien - - Number of iask insiances | Number of tasks per user [Tasks siaried by daw | Tasks completed by date | Tasks urason |

=
Yo@

]
0
b

e weeshh B Y

L %%b‘m& %, ‘5“_ Ty, oy Ty S, x,,,’i%asw\h*suu

Process mstances by stanss || Process insated by dae | Process completed by daie | Process durason

Figure 18.5. BPM Process Dashboard populated with data coming from
running process instances

The dashboard itself is composed by two views or pages:

» Global main view: containing metrics about all the processes.

Table 18.1. JBPM Process Dashboard: Global KPIs

Key Performance Indicator Data provider

Total number of instances by process jBPM Count Processes
Instances started by user jBPM Process Summary
Total number of tasks by user/group jBPM Task Summary
Number of tasks started by date jBPM Task Summary
Number of tasks completed by date jBPM Task Summary
Overall tasks duration (average, min. and jBPM Task Summary
max.)

371

Chapter 18. Business Activity...

Key Performance Indicator Data provider

Number of tasks by task status jBPM Task Summary

Number of process instances by status jBPM Process Summary

Number of process instances started by date | jBPM Process Summary

Number of process instances completed by | jBPM Process Summary
date

Overall process instances duration (average, jBPM Process Summary
min. and max.)

» Process detailed view: containing metrics about an specific process. To get into this view a
process must be selected from the global view. Once a process is selected, a drill-down request
is carried out by the system and the process specific view is set as the current screen.

Table 18.2. jBPM Process Dashboard: Process specific KPIs

Key Performance Indicator Data provider

Total number of process instances by status | jBPM Count Processes

Total number of tasks by process version jBPM Task Summary
Total number of tasks by user/group jBPM Task Summary
Number of process tasks started by date jBPM Task Summary

Number of process tasks completed by date | jBPM Task Summary

Overall tasks duration (average, min. and jBPM Task Summary
max.)

Number of tasks by task status jBPM Task Summary
Number of process instances by status jBPM Process Summary

Number of process instances started by date | jBPM Process Summary

Number of process instances completed by | jBPM Process Summary
date

Overall process instances duration (average, jBPM Process Summary
min. and max.)

Note

@ Notice, those are generic metrics not tied to any specific business process.
Nonetheless, it's worth to mention that it would be very easy for customers to
modify, extend or adapt this generic dashboard for custom needs. A customer
could take the jBPM Process Dashboard as the base template for building a custom
dashboard which mixes data coming from the jBPM engine plus data coming from
its own business domain.

372

Chapter 19.

Chapter 19. Remote API

19.1. REST

REST API calls to the execution server allow you to manage processes and tasks and retrieve
various dynamic information from the execution server. All calls are synchronous, that is, the call
will only complete, including the possible return of a result, once the requested operation has
succeeded.

When using Java code to interface with the REST API, the classes used in POST operations or
otherwise returned by various operations can be found inthe (or g. ki e. renot e:) ki e- ser vi ces-
client jar.

19.1.1. Additional Information

19.1.1.1. Serialization: JAXB or JSON

Serialization (json/jaxb)
Except for the Execute calls, all other REST calls described below can use either JAXB or JSON.
All REST calls, unless otherwise specified, will use JAXB serialization.

When using JSON, make sure to add the JSON media type (" appl i cati on/j son") to the ACCEPT
header of your REST call.

19.1.1.2. Pagination

Some of the REST calls below return lists of information. The results of these operations can be
paginated, which means that the lists can be split up and returned according to the parameters
sent by the user.

For example, if the REST call parameters indicate that page 2 with page size 10 should be returned
for the results, then results 10 to (and including) 19 will be returned.

The first page is always page 1 (as opposed to page "0").

Table 19.1. Pagination query parameter syntax

Parameter name Description

page This the page number requested. The default
value is 1.

p This is a synonym for the above page
parameter.

pageSi ze This is the number of elements per page to
return. The default value is 10.

373

Chapter 19. Remote API

Parameter name Description

s This is a synonym for the above pageSi ze
parameter.

If both a "long" pagination parameter and its synonym are used, then only the value from the "long"
variant is used. For example, if the page is given with a value of 11 and the p parameter is given
with a value of 37, then the value of the page parameter, 11, will be used and the p parameter
will be ignored.

For the following operations, pagination is always used. See above for the default values used.

Table 19.2. REST operations using pagination

REST call URL Short Description

/runtime/{depl oynent 1 d}/ hi story/ Returns a list of Processl nst ancelLog

i nst ance instances

runti me/ {depl oynent | d}/ hi story/ Returns a list of Processl nst ancelLog

i nstance/ {proclnstid} instances

/runtime/{depl oyment 1 d}/ hi story/ Returns a list of Pr ocessl nst ancelog

i nstance/{proclnstld}/child instances

/runtime/ {depl oynent | d}/ hi st ory/ Returns a list of Nodel nst ancelLog instances

i nstance/ {proclnstld}/node

/runtime/{depl oynent 1 d}/ hi story/ Returns a list of Nodel nst ancelLog instances
i nst ance/ {procl nstld}/ node/ {nodel d}

/runtime/{depl oynment | d}/ hi story/ Returns a list of Vari abl el nst anceLog

i nstance/ {proclnstld}/variable instances

/runtime/{depl oyment |1 d}/ history/ Returns a list of Vari abl el nst ancelLog

i nstance/ {proclnstld}/variabl e/ instances

{varld}

/runtime/{depl oyment 1 d}/ hi story/ Returns a list of Vari abl el nst anceLog

vari abl e/ {vari abl el d} instances

/runtime/ {depl oyment | d}/ hi st ory/ Returns a list of Pr ocessl nst ance instances

vari abl e/ {vari abl el d}/i nstances

/runtime/{depl oynent | d}/ hi story/ Returns a list of vari abl el nst ancelLog
vari abl e/ {vari abl el d}/ val ue/ {val ue} instances
/runti me/{depl oynment | d}/ hi story/ Returns a list of Processl nst ance instances

vari abl e/ {vari abl el d}/ val ue/ {val ue}/

i nst ances

/runtime/ {depl oyment I d}/ hi st ory/ Returns a list of Processl nst ancelog
process/ {procDef|d} instances

/ task/ query Returns a list of TaskSunmar yl npl instances

Additional Information

19.1.1.3. Map query parameters

If you're triggering an operation with a REST API call that would normally (e.g. when interacting
the same operation on a local Ki eSessi on or TaskServi ce instance) take an instance of a
java.util.Mp as one of it's parameters, you can submit key-value pairs to the operation to
simulate this behaviour by passing a query parameter whose name starts with map_.

Example 19.1.

If you pass the query parameter map_kEy=vAl ue in a REST call, then the Map that's passed to the
actual underlying Ki eSessi on or TaskSer vi ce operation will contain this (Stri ng, String) key
value pair: "kEy" => "vAl ue".You could pass this parameter like so:

http://1 ocal host: 8080/ ki e-wb/rest/runti ne/ nyproject/process/
wonka. factory. | oonpa. hire/start ?map_kEy=vAl ue

Map query parameters also use the object query parameter syntax described below, so the
following query parameter, map_t ot al =5000 will be translated into a key-value pair in a map where
the key is the String "total" and the value is a Long with the value of 5000. For example:

http://1 ocal host: 8080/ ki e-wb/ rest/runti ne/ nyproject/process/
wonka. f act ory. oonpa. chocol at e/ st art ?map_t ot al =5000

The following operations take query map parameters:

e /runtinme/{depl oyment|d}/ process/{processDefld}/start
e /runtinme/{depl oyment|d}/workitem {processltem d}/conpl ete

e /runtine/{depl oynent|d}/ withvars/process/{processDefld}/start

/task/{taskl d}/conpl ete

/task/{taskld}/fail

19.1.1.4. Number query parameters

While REST calls obviously only take strings as query parameters, using the following notation
for query parameters will mean that the string is translated into a different type of object when the
value of the string is used in the actual operation:

Table 19.3. Number query parameter syntax

Regex syntax Type

\d+ Long
\ d+i I nt eger
\ d+l Long

375

Chapter 19. Remote API

19.1.1.5. Runtime strategies

The REST calls allow access to the underlying deployments, regardless of whether these
deployments use the Si ngl et on, Per - Pr ocess- | nst ance or Per - Request Strategies.

While there's enough information in the URL in order to access deployments that use the
Si ngl et on, or Per-Request strategies, that's not always the case with the Per- Process-
I nst ance runtimes because the REST operation will obviously need the process instance id in
order to identify the deployment.

Therefore, for REST calls for which the URL does not contain the process instance id, you'll need
to add the following parameter:

Table 19.4. Per-Process-Instance runtime query parameter

Parameter name Description

runti meProclnstld Query parameter that may only have numbers
as it values: the value specify the process
instance id that identifies the underlying Per -
Pr ocess- | nst ance deployment

This parameter will have no effect if the
underlying deployment uses the Si ngl et on or
Per - Request strategy.

19.1.2. Runtime calls

This section lists REST calls that interface with

The deploymentld component of the REST calls below must conform to the following regex:

e [a-zA-Z0-9-:\.]+

19.1.2.1. Process calls

[POST]/runtine/{depl oyment | d}/ process/{processDef|d}/start
« Starts a process.

» Returns a JaxbPr ocessl nst anceResponse instance, that contains basic information about
the process instance.

» The prodessDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

 This operation takes map query parameters (see above), which will be used as parameters
for the process instance.

376

Runtime calls

[GET]/ runti me/ {depl oynment | d}/ process/ i nst ance/ { procl nst | d}

« Does a (read only) retrieval of the process instance. This operation will fail (code 400) if the
process instance has been completed.

e Returns a JaxbPr ocessl nst anceResponse instance.

* The procinstld component of the URL must conform to the following regex: [0- 9] +
[POST]/runtine/{depl oyment | d}/ process/ i nst ance/ { pr ocl nst | d+}/ abort

« Aborts the process instance.

* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded.

« The proclnstld component of the URL must conform to the following regex: [0- 9] +
[POST]/runtine/{depl oyment | d}/ process/ i nst ance/ { procl nst | d}/si gnal

 Signals the process instance.

* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded.

« The procinstld component of the URL must conform to the following regex: [0- 9] +

» This operation takes a si gnal and a event query parameter.

e The signal parameter value is used as the name of the signal. This parameter is
required.

e The event parameter value is used as the value of the event. This value may use the
number query parameter syntax described above.

[GET]/ runti me/ {depl oynent | d}/ process/ i nstance/ { procl nst1d}/vari abl es

» Gets the list of process variables in a process instance.

¢ Returns a JaxbVari abl esResponse

* The procinstld component of the URL must conform to the following regex: [0- 9] +
[POST]/runtine/{depl oyrment | d}/ si gnal

 Signals the Ki eSessi on

* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded.

« The proclnstld component of the URL must conform to the following regex: [0- 9] +

» This operation takes a si gnal and a event query parameter.

e The signal parameter value is used as the name of the signal. This parameter is
required.

377

Chapter 19. Remote API

* The event parameter value is used as the value of the event. This value may use the
number query parameter syntax described above.

[GET]/ runti me/ {depl oyment | d}/ wor ki t emf { wor ki t eml d}

* Gets a Wr kl t eminstance

* Returns a JaxbWor kI t eminstance

e The workltemld component of the URL must conform to the following regex: [0- 9] +
[POST]/runtine/{depl oyment I d}/ wor ki t en {wor kl t em d}/ conpl ete

e Completes aWorkltem

* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded

e The workltemld component of the URL must conform to the following regex: [0- 9] +

» This operation takes map query parameters, which are used as input to signify the results
for completion of the work item.

[POST]/runtine/{depl oyment | d}/ wor ki temf {workltem d: [0-9-]+}/abort
* Aborts a Wrkl t em
* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded

« The workltemld component of the URL must conform to the following regex: [0- 9] +

19.1.2.2. Process calls "with variables"

[POST]/runtine/{depl oyment | d}/wi t hvar s/ process/ {processDef I d}/start
 Starts a process and retrieves the list of variables associated with the process instance
» Returns a JaxbPr ocessl nst anceW t hVvari abl esResponse that contains:

 Information about the process instance (with the same fields and behaviour as the
JaxbPr ocessl nst anceResponse

» A key-value list of the variables available in the process instance.

* The processDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

[POST]/runtine/{depl oyment | d}/wi t hvar s/ process/ i nst ance/ { procl nst | d}
» Starts a process and retrieves the list of variables associated with the process instance
» Returns a JaxbPr ocessl nst anceW t hVvari abl esResponse (see the above REST call)

« The processinstld component of the URL must conform to the following regex: [0- 9] +

378

History calls

[POST]/runtine/ {depl oyment | d}/wi t hvar s/ process/i nstance/ { procl nst|d}/si gnal
 Signals a process instance and retrieves the list of variables associated it
* Returns a JaxbPr ocessl nst anceW t hVari abl esResponse (see above)

» The processinstld component of the URL must conform to the following regex: [0- 9] +

19.1.3. History calls

Important

The information that is available via the History REST calls is not limited to the
deployment specfied by the deploymentld part of the URL used. This is because
the Audi t LogSer vi ce used by the REST calls is only dependent on the persistence
framework used by the deployment, but not on anything else.

[POST]/runtine/{depl oyment | d}/ hi st ory/ cl ean
* Cleans (deletes) all history logs

[GET]/ runti me/ {depl oynment | d}/ hi st ory/ i nst ances
» Gets a list of Processl nst ancelLog instances

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocessl nst ancelLog
instances

 This operation responds to pagination parameters
[GET] /runtine/ {depl oynment | d}/ hi st ory/i nst ance/ { procl nst | d}
» Gets the Processl nst ancelLog instance associated with the specified process instance

* Returns a JaxbHi storylLogLi st instance that contains a JaxbProcessl nstancelog
instance

« The processinstld component of the URL must conform to the following regex: [0- 9] +
 This operation responds to pagination parameters
[GET]/ runti me/ {depl oyment I d}/ hi st ory/i nstance/ {proclnstid}/child

» Gets a list of Processl nst ancelLog instances associated with any child/sub-processes
associated with the specified process instance

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocessl nst ancelog
instances

» The processinstld component of the URL must conform to the following regex: [0- 9] +

 This operation responds to pagination parameters

379

Chapter 19. Remote API

[GET]/ runti me/ {depl oyment | d}/ hi st ory/i nst ance/ { procl nst1d}/ node

Gets a list of Nodel nst ancelLog instances associated with the specified process instance

Returns a JaxbHi storyLogLi st instance that contains a list of JaxbNodel nst ancelog
instances

The processinstld component of the URL must conform to the following regex: [0- 9] +

This operation responds to pagination parameters

[GET]/ runtinme/ {depl oynment | d}/ hi st ory/i nstance/ {proclnstld}/variable

Gets a list of Vari abl el nst ancelLog instances associated with the specified process
instance

Returns a JaxbHi st or yLogLi st instance that contains alist of JaxbVari abl el nst ancelLog
instances

The processinstld component of the URL must conform to the following regex: [0- 9] +

This operation responds to pagination parameters

[GET]/ runti me/ {depl oyment | d}/ hi st ory/ i nst ance/ { procl nst | d}/ node/ { nodel d}

Gets a list of Nodel nst ancelLog instances associated with the specified process instance
that have the given (node) id

Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbNodel nst ancelLog
instances

The processinstld component of the URL must conform to the following regex: [0- 9] +
The nodeld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .] +

This operation responds to pagination parameters

[GET]/ runtime/ {depl oyment I d}/ hi st ory/instance/ { procl nst1d}/variabl e/ {varl d}

Gets a list of Vari abl el nst ancelLog instances associated with the specified process
instance that have the given (variable) id

Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst ancelLog
instances

The processinstld component of the URL must conform to the following regex: [0- 9] +
The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .] +

This operation responds to pagination parameters

[GET]/ runti nme/ {depl oyment | d}/ hi st ory/ process/ { pr ocessDef | d}

Gets a list of Processl nstancelLog instances associated with the specified process
definition

380

History calls

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocess| nst ancelog
instances

« The processDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

« This operation responds to pagination parameters

19.1.3.1. History calls that search by variable

[GET]/ runtime/ {depl oyment I d}/ hi st ory/ vari abl e/ { var | d}
« Gets a list of Vari abl el nst anceLog instances associated with the specified variable id

« Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst anceLog
instances

e The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\.]+
« This operation responds to pagination parameters
[GET]/runti nme/ {depl oynment | d}/ hi st ory/ vari abl e/ {var|d}/val ue/ {val ue}

« Getsalistof vari abl el nst anceLog instances associated with the specified variable id that
contain the value specified

« Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst anceLog
instances

» Both the varld and value components of the URL must conform to the following regex: [a-
ZA-Z0-9-:\.]+

« This operation responds to pagination parameters
[GET]/ runtinme/ {depl oyment | d}/ hi st ory/ vari abl e/ {var1d}/instances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id.

e Returns a JaxbProcesslnstanceli st Response instance that contains a list of
JaxbPr ocessl nst anceResponse instances

» The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\.] +
» This operation responds to pagination parameters
[GET]/ runtinme/ {depl oyment | d}/ hi st ory/ vari abl e/ {var|1d}/val ue/ {val ue}/i nst ances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id which contains the (variable) value specified

* Returns a JaxbProcesslnstanceli st Response instance that contains a list of

JaxbPr ocessl nst anceResponse instances

381

Chapter 19. Remote API

« Both the varld and value components of the URL must conform to the following regex: [a-
zZA-Z0-9-:\.]+

 This operation responds to pagination parameters
19.1.4. Task calls

19.1.4.1. Task operation calls

All of the task operation calls described in this section use the user (id) used in the REST basic
authorization as input for the user parameter in the specific call.

Some of the operations take an optional | anaguage query parameter. If this parameter is not
specified in the REST call, the default value of "en- UK" is used.

The taskld component of the REST calls below must conform to the following regex:
e [0-9]+
[POST]/task/{taskld}/activate

 Activates a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST]/task/{taskld}/claim

» Claims a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/ {taskl d}/cl ai mext avai | abl e

» Claims the next available task

* Returns a JaxbGener i cResponse with the status of the operation

« Takes an optional | anguage query parameter.
[POST] /task/ {taskl d}/conpl ete

» Completes a task

» Returns a JaxbGener i cResponse with the status of the operation

» Takes map query parameters, which are the "results" input for the complete operation
[POST] /task/ {taskl d}/del egat e

» Delegates a task

» Returns a JaxbGeneri cResponse with the status of the operation

* Requires a t ar get | dquery parameter, which identifies the user or group to which the task
is delegated

382

Task calls

[POST]/task/{taskld}/exit

» Exits a task

» Returns a JaxbGener i cResponse with the status of the operation
[POST]/task/{taskld}/fail

* Fails a task

* Returns a JaxbGeneri cResponse with the status of the operation
[POST]/task/{taskld}/forward

» Delegates a task

* Returns a JaxbGener i cResponse with the status of the operation

* Requires at ar get | dquery parameter, which identifies the user or group to which the task
is forwarded

[POST] / t ask/ {taskl d}/ nom nat e
* Nominates a task
* Returns a JaxbGeneri cResponse with the status of the operation

» Requires at least one of either the user or gr oup query parameter, which identify the user(s)
or group(s) that are nominated for the task

[POST]/task/{taskld}/rel ease

* Releases a task

* Returns a JaxbGeneri cResponse with the status of the operation
[POST] /task/ {taskl d}/resume

* Resumes a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/ {taskld}/skip

» Skips a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST]/task/{taskld}/start

 Starts a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST]/task/{taskld}/stop

» Stops a task

383

Chapter 19. Remote API

* Returns a JaxbGener i cResponse with the status of the operation
[POST]/task/ {taskl d}/suspend
* Suspends a task

* Returns a JaxbGener i cResponse with the status of the operation

19.1.4.2. Task query call

[GET] / t ask/ query
The / t ask/ quer y operation..

» Queries the available (non-archived) tasks
e Returns a JaxbTaskSunmar yLi st Response with a list of TaskSunmar yl npl instances.
» Takes the following (case-insensitive) query parameters listed below:

* busi nessAdmi ni st rator

« Specifies that the returned tasks should have the business administrator identified by
this parameter

e This parameter may be repeated
e potential Owner

« Specifies that the returned tasks should have the potential owner identified by this
parameter

« This parameter may be repeated
e processlnstancel d

« Specifies that the returned tasks should be associated with the process instance
identified by this parameter

e This parameter may be repeated
e status
« Specifies that the returned tasks should have the status identified by this parameter
« This parameter may be repeated
e taskld
» Specifies that the returned tasks should have the (task) id identified by this parameter
» This parameter may be repeated

* taskOmner

384

Task calls

¢ Specifies that the returned tasks should have the task owner (initiator) identified by
this parameter

e This parameter may be repeated
* workltem d

« Specifies that the returned tasks should be associated with the work item identified by
this parameter

e This parameter may be repeated
* union

e This specifies whether the query should query the union or intersection of the
parameters. See below for more info.

e This parameter must only be passed once

Except for the union parameter, if any of the other parameters are passed multiple times, this
operation will query tasks based on the union of all values specific parameter. This is always
true, regardless of the value of the uni on parameter.

For example, if multiple t askOaner parameters are passed, this operation will return all tasks
that have a task owner matching at least one of the passed values.

However, behaviour with regards to multiple (types of) parameters is governed by the uni on
parameter: if the uni onparameter is passed as f al se, then the operation will query based on
the intersection of the two sets of values.

For example, if both a t askOaner and t askl d parameter are passed as well as a uni on
parameter with a value of f al se, then the operation will query for tasks that have both the
specified task owner and task id.

However, if the uni on parameter in the above example is t r ue, then the operation will query
for tasks that have either the specified task owner or the specified task id.

19.1.4.3. Other Task calls

[GET] /t ask/ {t askl d}/ cont ent

» Gets the task content from a task identified by the given task id

* Returns a JaxbCont ent with the content of the task

» The taskld component of the URL must conform to the following regex: [0- 9] +
[GET]/task/ content/{contentld}

» Gets the task content from a task identified by the given content id

385

Chapter 19. Remote API

* Returns a JaxbCont ent with the content of the task

» The contentld component of the URL must conform to the following regex: [0- 9] +

19.1.5. Execute calls

While there is a/runtime/{i d}/execut e and a t ask/ execut e method, both will take all types
of commands. This is possible because execute takes a JaxbCommandsRequest object, which
contains a list of (org. ki e. api . conmand.) Command objects. The JaxbCommandsRequest has
fields to store the proper depl oyment | d and pr ocessl nst ancel d information.

Of course, if you send a command that needs this information (dep! oynent | d, for example) and
don't fill it in, this will fail.

19.1.5.1. Execution call details

[POST] / t ask/ execut e

» Executes a Conmand, assumed to be related to tasks.

* Returns a JaxbConmandResponse implementation with the result of the operation
[POST]/runtine/{depl oyment | d}/ execut e

« Executes a Command, assumed to be related to business processes or the knowledge
session.

« Returns a JaxbCommandResponse implementation with the result of the operation

19.2. IMS

19.2.1. IMS Queue setup

When the Workbench is deployed, it automatically creates 3 queues:

e j s/ queue/ Kl E. SESSI ON
e j s/ queue/ Kl E. TASK

e j ms/ queue/ Kl E. RESPONSE
The KI E. SESSI ONand Kl E. TASK queues should be used to send command request messages to
the JMS APIl. Command response messages will be then placed on the KI E. RESPONSE. Command
request messages that involve starting and managing business processes should be sent to the
KI E. SESSI ON and command request messages that involve managing human tasks, should be
sent to the Kl E. TASK queue.

Although there are 2 different input queues, Kl E. SESSI ON and KI E. TASK, this is only in order
to provide multiple input queues so as to optimize processing: command request messages
will be processed in the same manner regardless of which queue they're sent to. However,
in some cases, users may send many more requests involving human tasks than requests

386

Example JMS usage

involving business processes, but then not want the processing of business process-related
request messages to be delayed by the human task messages. By sending the appropriate
command request messages to the appropriate queues, this problem can be avoided.

The term "command request message" used above refers to a JMS byte message that contains a
serialized JaxbCommandsRequest object. At the moment, only XML serialization (as opposed to,
JSON or protobuf, for example) is supported.

19.2.2. Example JMS usage

The following is a rather long example that shows how to use the JMS API. The numbers
("callouts") along the side of the example refer to notes below that explain particular parts of the
example. It's supplied for those advanced users that do not wish to use the j[BPM Remote Java
API.

The jBPM Remote Java API, described here, will otherwise take care of all of the logic shown
below.

i mport java.util.List;
i mport java.util.UU D

i nport javax.jns.*;
i mport javax. nam ng. *;
i mport javax.xm . bi nd. JAXBExcepti on;

i nport org.drools.core.conmand. runti ne. process. St art ProcessConmand;

i mport org.jbpm services.task. conmands. Get TaskAssi gnedAsPot ent i al Omer Comrand;
i mport org.kie.api.conmand. Conmand;

i mport org.kie.api.runtime.process. Processl nstance;

i nport org. ki e.api.task.nodel. TaskSunmmary;

i mport org.kie.services.client.serialization.jaxb.JaxbSerializationProvider;

L1

i nport org.kie.services.client.serialization.jaxb.inpl.JaxbCommandResponse;

i mport org.kie.services.client.serialization.jaxb.inpl.JaxbCommandsRequest ;

i mport org.kie.services.client.serialization.jaxb.inpl.JaxbConmandsResponse;
i mport org.kie.services.client.serialization.jaxb.inpl.JaxbExcepti onResponse;

Il

String USER = "charlie";
String PASSWORD = "chOcOl i ci ous";

String DEPLOYMENT_ID = "test-project”;
String PROCESS ID 1 = "oonpa-processi ng";

/| Create conmand
Conmmand<?> cnd = new Start ProcessComand(PROCESS | D 1);

i nt oonpaProcessi ngResul tl ndex = 0; L5

387

Chapter 19. Remote API

JaxbCommandsRequest req = new JaxbConmandsRequest (DEPLOYMENT I D, cnd); 2
req. get Commands() . add(new Get TaskAssi gnedAsPot enti al Owmer Conmand(USER, "en-
UK"));

i nt | oonpaNbni tori ngResul t1ndex = 1; L5]
/1 Setup queues

I nitial Context context;
Queue sendQueue, responseQueue;
try {
context = new Initial Context();
sendQueue = (Queue) context. | ookup("jns/queue/ Kl E. SESSI ON") ;
responseQueue = (Queue) context.|lookup("jns/queue/ Kl E. RESPONSE") ;
} catch(Nam ngException ne) {
t hrow new Runti neException("Unabl e to | ookup send or response queue", ne);

Connecti on connection = null;
Session session = null;
JaxbCommandsResponse cndResponse = nul | ;

String corrld = UUID.randonJUl D().toString();
String selector = "JMsCorrelationlD ="'" + corrld + ""'";

try {

/'l Create JMS connection and session

MessagePr oducer producer;

MessageConsuner consumer;

try {

Connect i onFact ory connecti onFact ory =(Connect i onFact ory) cont ext . | ookup("j ns/
Renpt eConnecti onFactory");

connection = connectionFactory. createConnecti on(USER, PASSWORD) ;
sessi on = connection. creat eSession(fal se, Session. AUTO ACKNOALEDGE) ;

producer = session. createProducer (sendQueue);
consuner = session. createConsuner (responseQueue, selector);

connection.start();
} catch (JMSException jnse) {
t hrow new Runti neExcepti on("Unable to setup a JMS connection.", jnse);
} catch (Nam ngException ne) {
throw new RuntineException("Unable to |ookup JMS connection
factory.", ne);

}

/1l Create nsg
Byt esMessage nsg;

try {

388

Example JMS usage

nNBg = sessi on. creat eByt esMessage() ; 3
nsg. set JMsSCorrel ati onl D(corrld); 3
nsg. setl nt Property("serialization", JaxbSerializationProvider. JI\/B_SER“)I ALl ZATI ON_TYF

String xm Str = JaxbSerializationProvider.convertJaxbObject ToString(r Qeq);
meg. writeUTF(xm Str);
} catch (JMSException jnse) {

throw new RuntimeException("Unable to create and fill a JMS
nmessage. ", jnse);
} catch (JAXBException jaxbe) {
t hrow new Runti meException("Unabl e to deserial ze JM5 nessage. ", jaxbe);
}
/1l Send nsg
try {

producer. send(nsg) ;
} catch (JMSException jnse) {
t hrow new Runti neException("Unable to send a JMS nessage.", jnse);

/'l receive
Message response;
try {

I ong qual ityCf Servi ceThreshol dM | 1i Seconds = 5 * 1000;

response = consumer.receive(qualityCO ServiceThreshol dM |1 i Seconds);
} catch (JMSException jnse) {

t hrow new Runti meException("Unable to receive or retrieve the JMS
response.", jnse);

}

/'l extract response
assert response != null : "Response is enpty.";

try {
String xm Str = ((BytesMessage) response).readUTF();

cndResponse = (JaxbCommandsResponse) JaxbSeri al i zati onProvi der. conver Dtstri ngToJaxh(
} catch (JMSException jnse) {
throw new RuntimeException("Unable to extract
+ JaxbComandsResponse. cl ass. get Si npl eNane()
+ " instance from JMS response. ", jnse);
} catch (JAXBException jaxbe) {
throw new RuntimeException("Unable to extract
+ JaxbCommandsResponse. cl ass. get Si npl eNane()

"

"

+ " instance from JMS response.”, jaxbe);
}
assert cmdResponse != null : "Jaxb Cnmd Response was nul | !";
} finally {
if (connection !'= null) {

try {
connecti on. cl ose();

389

Chapter 19. Remote API

session. cl ose();

} catch (JMSException jnse) {
Systemout. println("Unable to close connection or session!");
jmse. print StackTrace();

Processl nst ance oonpaProclnst = nul|;
Li st <TaskSummary> charliesTasks = null;
for (JaxbCommandResponse<?> response : cndResponse. get Responses()) {

i f (response instanceof JaxbExcepti onResponse) { 5]
JaxbExcepti onResponse excepti onResponse = (JaxbExcepti onResponse) response;
t hrow new Runti neExcepti on(excepti onResponse. get Message());

}

i f (response. getlndex() == oonpaProcessi ngResul t | ndex) { L5
oonpaProcl nst = (Processl nstance) response. getResult(); 6

} else if (response.getlndex() == | oonpahMbnitoringResultlndex) { L5
charliesTasks = (List<TaskSummary>) response. get Result(); 6

}

£ These classes can all be found in the (org.kie.remote:)kie-services-client jar.

» The JaxbCommandsRequest instance is the "holder" object in which you can place
all of the commands you want to execute in a particular request. By using the
JaxbCommandsRequest . get Conmands() method, you can retrieve the list of commands in
order to add more commands to the request.

A deployment id is required for command request messages that deal with business
processes. Command request messages that only contain human task-related commands
do not require a deployment id.

© Note that the IMS message sent to the remote JMS API must be constructed as follows:

It must be a JMS byte message.

It must have a filled JIMS Correlation ID property.

It must have an int property with the name of "serialization" set to an acceptable value
(only 0 at the moment).

« It must contain a serialized instance of a JaxbCommandsRequest , added to the message
as a UTF string
f» The same serialization mechanism used to serialize the request message will be used to
serialize the response message.

390

Remote Java API

B In order to match the response to a command, to the initial command, use the i ndex field
of the returned JaxbCommandResponse instances. This i ndex field will match the index of
the initial command. Because not all commands will return a result, it's possible to send
3 commands with a command request message, and then receive a command response
message that only includes one JaxbConmandResponse message with an i ndex value of 1.
That 1 then identifies it as the response to the second command.

M Since many of the results returned by various commands are not serializable, the jBPM
JMS Remote API converts these results into JAXB equivalents, all of which implement the
JaxbCommandResponse interface. The JaxbCommandResponse. get Resul t () method then
returns the JAXB equivalent to the actual result, which will conform to the interface of the
result.

For example, in the code above, the St art ProcessCommand returns a Processl nst ance.
In order to return this object to the requester, the Processl nstance is converted to
a JaxbProcessl nst anceResponse and then added as a JaxbCommandResponse to the
command response message. The same applies to the Li st <TaskSunmar y> that's returned
by the Get TaskAssi gnedAsPot ent i al Oaner Conmand.

However, not all methods that can be called on a normal Processl nst ance can be called
on the JaxbProcessl nst anceResponse because the JaxbProcessl nst anceResponse is
simply a representation of a Pr ocessl nst ance object. This applies to various other command
response as well. In particular, methods which require an active (backing) Ki eSessi on, such
as Processl nstance. get Proess() or Processlnstance. signal Event(String type,
bj ect event) will throw an Unsupport edOper at i onExcepti on.

19.3. Remote Java API

19.3.1. Using the Remote Java RuntimeEngine API

By using the Renpt eRest Sessi onFact ory or Renot eJnmsSessi onFact ory classes provided by
the ki e- servi ces-cl i ent jar, you can create remote instances of the Runt i neEngi ne and thus
also the Ki eSessi on and TaskSer vi ce. These instances will allow you to interact with a remote
workbench instance (i.e. KIE workbench or the jBPM Console) without having to deal with the
underlying transport and serialization details.

19.3.1.1. The REST Remote Java RuntimeEngine

In order to interact via REST with the remote runtime, the Renot eRest Sessi onFact ory can be
used. The following example illustrates how the remote session can be used.

/'l Create REST session
Renpt eRest Sessi onFactory rest Sessi onFactory
= new Renot eRest Sessi onFact or y(depl oynment 1 d, depl oyment Url, user, password);
Runt i meEngi ne engi ne = rest Sessi onFact ory. newRunt i neEngi ne() ;
Ki eSessi on ksessi on = engi ne. get Ki eSessi on();
Processl nst ance processl nstance = ksessi on. start Process("org.j bpm humant ask") ;

391

Chapter 19. Remote API

TaskServi ce taskServi ce = engi ne. get TaskServi ce();
Li st <TaskSummar y* askstaskSer vi ce. get TasksAssi gnedAsPot ent i al Omner (t askUser | d," en-
UK") ;
I ong taskld = findTaskl d(processlnstance. getld(), tasks);

Task task = taskService. get TaskByl d(t askl d);

taskService.start(taskld, taskUserld);
taskService. conpl ete(taskld, taskUserld, null);

In the above example, the following variables were used when initalizing the

Renpt eRest Sessi onFact ory

Table 19.5. Pagination query parameter syntax

Variable Possible value Description

depl oynment I d nypr oj ect This is the name (id)
of the deployment the
Runt i meEngi ne should
interact with.

depl oynment URL http://1 ocal host: 8080/ This is the base URL that

ki e- wb/ should be used when
interacting with the remote
execution-server.

user honer This is the user needed for
authentication for all rest
calls.

passwor d dOnut sdOnut s1 LUVDONUTS! This is the password for the
user specified in the user
parameter.

See the various constructors of the Renot eRest Sessi onFact ory class for more possibilities.
19.3.1.2. The JMS Remote Java RuntimeEngine

The Remote JMS Java RuntimeEngine works precisely the same as the REST variant, except
that it takes different parameters for its constructor. See the Renot eJnsRunt i meEngi neFact ory
for more information.

392

Part V. Eclipse

How to use the Eclipse-based tooling

Chapter 20.

Chapter 20. JBPM Eclipse Plugin

20.1. JBPM Eclipse Plugin

The jBPM Eclipse plugin provides developers (and very technical users) with an environment to
edit and test processes, and integrate it deeply with their applications. It provides the following
features (on top of the Eclipse IDE):

» Wizards for creation of
¢ ajBPM project
* a BPMN2 process

» jBPM Perspective (showing the most commonly used views in a predefined layout)

20.1.1. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the
Drools and jBPM Eclipse plugin (with a full jBPM runtime preconfigured) and the Eclipse BPMN2
Modeler.

Tip

Using the jBPM installer is definitely the recommended starting point for most
users.

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you
need to:

» Download Eclipse (Kepler recommended, but older versions like Indigo or Juno should also
still work)

 Start Eclipse

e Select "Install New Software ..." from the Help menu. Add the Drools and jBPM
update site http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/ [http://
downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/]. You should see the
plugins as shown below. Note that you can also download and unzip the Drools and jBPM
update site to your local file system and use that as local update site instead.

395

http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/
http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/
http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/

Chapter 20. jBPM Eclipse Plugin

[Install x
Available Software

Check the items that you wish to install. :).fj

Work with: |jBPM 6.0 Final - http://downloads.jboss.org/jbpm/release/6.0.0.Final/org.drools.updatesite/ | ~ | | Add... |

Find more software by working with the "Available Software Sites" preferences.

[4]
Name Version
=[] 000 Drools and jBPM
] & JBoss Drools Core 6.0.0.Final
O @jBoss Drools Guvnor 6.0.0.Final
] & JBoss jBPM Core 6.0.0.Final
[] 4* |Boss Runtime Drools Detector 6.0.0.Final
Select All | | Deselect all
Details
Show only the |atest versions of available software [] Hide items that are already installed
Group items by category What is already installed?

[] Show only software applicable to target environment

Contact all update sites during install to find required software

(‘3} Cancel

Figure 20.1.

Select the JBoss jBPM Core and JBoss Drools Core plugins and click "Next >". Click "Next
>" again after reviewing your selecting, accept the terms of the license agreement and click
"Finish" to download and install the plugins. If you get a warning about installing software that
contains unsigned content, click OK. After successful installation, Eclipse should ask you to
restart, click Yes.

« The plugin should now be installed. To check, check if you can for example see the new jBPM
Project wizard: under the "File" menu, select "New Project ..." and there you should be able to
see "New jBPM Project" under the jBPM category.

396

jBPM Project Wizard

» Register a jBPM runtime to get started, see the section on jBPM runtimes in this chapter for
more information.

Note that, when doing a manual install, you still need to manually install the Eclipse BPMN 2.0
Modeler plugin as well. Check out the chapter on the Eclipse BPMN 2.0 Modeler on how to do that.

20.1.2. JBPM Project Wizard

The aim of the new project wizard is to set up an executable sample project to start using processes
immediately. This will set up a basic structure, the classpath, sample process and a test case to
getyou started. To create a new jBPM project, in the "File" menu select "New" and then "Project ..."
and under the jBPM category, select "jBPM Project". A dialog as shown below should pop up.

New jBPM Project —

Create a new jBPM Project

Project name:

Use default location

A
(?) Cancel |

Figure 20.2.

Fill in a name for your project and if necessary change the location where this project should be
located (by default Eclipse will generate it inside your Eclipse workspace folder) and click "Next >".

397

Chapter 20. jBPM Eclipse Plugin

Now you can optionally include a sample process in your project to get started. You can select
to either use a simple "Hello World" process, a slightly more advanced process including human
tasks and persistence or simply an empty project. You can also select to include a JUnit test
class that you can use to test your process. These can serve as a starting point, and will give you
something executable almost immediately, which you can then modify to your needs.

New jBPM Project —

Create a new jBPM Project

I want to create:
@ a simple hello world process

(> a more advanced process including human tasks and persistence
) an empty project

Add a sample JUnit test for the HelloWorld process.

(?) < Back || Next = | | Cancel | | Finish

Figure 20.3.

Finally, the last page in the wizard allows you select a jBPM runtime, as shown below. You can
either use the default runtime (as configured for you workspace, in your workspace preferences),
or you can select a specific runtime for this project. For more information about runtimes and how
to create them, see the section on jBPM runtimes in this chapter.

You can also select which version of BPM you want to generate sample code for. By default it
will generate an example using the latest jBPM 6.x API, but you could also generate examples
using the old jBPM 5.x API. Note that you yourself are responsible for making sure that the code
you generate can be understood by the runtime (for example, if you create an example using

398

jBPM Project Wizard

jBPM6 API but select a jBPM5 runtime, your sample will not compile). Also note that, if you want
to execute a jBPM5 example on jBPMB6, you will need to have the knowledge-api jar inside your
jBPM6 runtime, as this is responsible for the backwards compatibility of the jBPM5 API in jBPM6.

jBPM Runtime —
Select a JBPM Runtime
Use default jBPM Runtime (currently jBPM runtime)
jBPM Runtime:
Configure Workspace Settings...
Generate code compatible with: | jBPM 6 or above <
k
@j < Back Cancel | | Finish
Figure 20.4.

When you selected the simple 'hello world' example, the result is shown below. Feel free to
experiment with the plug-in at this point.

399

Chapter 20. jBPM Eclipse Plugin

jBPM - jbpm-project/src/main/resources/sample.bpmn - Eclipse

File Edit View Navigate Search Project Diagram Run Window Help

PR gis-0-Q - w6 -d30 - . RS S [V]
= | @i (S

Package Explorer 88 Navigator
b ? i - B sample 52

= & s
- i* palette

3
= (= jbpm-project S Lello O [; select 4
- (# src/mainfjava i Marquee
~ f com.sample =
=

b [1) ProcessTest.java
~ (5 src/main/resources

(= Profiles
sample.bp ProcessTest.java
P =4)RE System Library [jdk1.7.0_03] package com.sample; @

b = jBPM Library #import org.jbpm.test.JbpmlunitBaseTestCase;[]
b =4)Unit4
b = sre /e

* This is a sample file to test a process.
b Etestjava w7 a e

public class ProcessTest extends JbpmlUnitBaseTestCase {

@rest

public void testProcess() {
RuntimeManager manager = createRuntimeManager("sample.bpmn"); k
RuntimeEngine engine = getRuntimeEngine(null);
KieSession ksession = engine.getKieSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");
// check whether the process instance has completed successfully
assertProcessInstanceCompleted(processInstance.getId(), ksession);
assertNodeTriggered(processInstance.getId(), "Hello");

manager.disposeRuntimeEngine (engine);
manager.close();

Figure 20.5. New jBPM project artifacts

The newly created project contains an example process file (sample.bpmn) in the src/main/
resources directory and an example Java file (ProcessTest.java) that can be used to test the
process in a jBPM engine. You'll find this in the folder src/main/java, in the com.sample package.
All the other jars that are necessary during execution are also added to the classpath in a custom
classpath container called jBPM Library.

You can also convert an existing Java project to a jBPM project by selecting the "Convert to jBPM
Project" action. Right-click the project you want to convert and under the "Configure" category
(at the bottom) select "Convert to jBPM Project". This will add the jBPM Library to your project's
classpath.

20.1.3. New BPMN2 Process Wizard

You can create a new process simply as an empty text file with extension ".bpmn", or use the
"New BPMN2 Process" wizard to do so. To create a hew process, in the "File" menu select "New"
and then "Other ..." and under the jBPM category, select "BPMN2 Process" and click "Next >". In
the next dialog, you should select the folder where the process should be created (for example
the src/main/resources folder of your project) and a name for the process. Clicking "Finish" should
create your new process (by default it should only contain one start node) and open it so you can
start editing it.

20.1.4. JBPM Runtime

A jBPM runtime is a collection of jar files that represent one specific release of the jBPM project
jars. To create a runtime, download the binary distribution of the version of jBPM you want to use

400

jBPM Runtime

and unzip on your local file system. You must then point the IDE to the release of your choice
by selecting the folder where these jars are located. If you want to create a new runtime based
on the latest jBPM project jars included in the plugin itself, you can also easily do that. You are
required to specify a default jBPM runtime for your Eclipse workspace, but each individual project
can override the default and select the appropriate runtime for that project specifically.

20.1.4.1. Defining a jBPM Runtime

To define one or more jBPM runtimes using the Eclipse preferences view you open up your
Preferences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences"
dialog should show all your settings. On the left side of this dialog, under the jBPM category, select
"Installed jBPM runtimes". The panel on the right should then show the currently defined jBPM
runtimes. For example, if you used the jBPM Installer, it should look like the figure below.

Preferences

[IQ-

Installed jBPM Runtimes s

g = = = A - A

R

- =

General Add, remove or edit jBPM Runtime definitions. By default, the

Ant checked jBPM Runtime is added to the build path of newly created

BPMN?Z]BPM pI'D'jE'CtS.

Code Recommenders Installed jBPM Runtimes

Drools Name Location Add...

Guvnor jBPM runtime Jruntime
Help |
Install/Update
Java k
jBPM

Maven

Mylyn
Run/Debug
Team
Validation
WindowBuilder

XML [| 1 | E|

| | I | E|

@:‘u Cancel | | oK

To define a new jBPM runtime, click on the "Add" button. A dialog such as the one shown below
should pop up, asking for the name of your runtime and the location on your file system where
it can be found.

401

Chapter 20. jBPM Eclipse Plugin

[= jBPM Runtime x

Either select an existing jBPM Runtime on your file system or create
a new one.

Name: |

|Create a new jBPM Runtime |

| Cancel | | OK |

In general, you have two options:

1. If you simply want to use the default jar files as included in the jBPM Eclipse plugin, you can
create a new jBPM runtime automatically by clicking the "Create a new jBPM Runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required
dependencies to the specified folder. Make sure to select a unique name for the newly created
runtime and click "OK" to register this runtime.

Tip

Note that creating a jBPM runtime from the default jar files as included in the
jBPM Eclipse plugin is only recommended to get you started the first time and
for very simple use cases. The runtime that is created this way only contains the
minimal set of jars, and therefore doesn't support a significant set of features,
including for example persistence. Make sure to create a full runtime (using the
second approach) for real development.

2. If you want to use one specific release of the jBPM project, you should create a folder on
your file system that contains all the necessary jBPM libraries and dependencies (for example
by downloading the binary distribution and unzipping it on your local file system). Instead of
creating a new jBPM runtime as explained above, give your runtime a uniqgue name and click
the "Browse ..." button to select the location of this folder containing all the required jars. Click
"OK" to register this runtime.

After clicking the OK button, the runtime should show up in your table of installed jBPM runtimes,
as shown below. Click on the checkbox in front of one of the installed runtimes to make it the

402

jBPM Runtime

default jBPM runtime. The default jBPM runtime will be used as the runtime of all your new jBPM
projects (in case you didn't select a project-specific runtime).

You can add as many jBPM runtimes as you need. Note that you will need to restart Eclipse if
you changed the default runtime and you want to make sure that all the projects that are using
the default runtime update their classpath accordingly.

20.1.4.2. Selecting a runtime for your |BPM project

Whenever you create a jBPM project (using the New jBPM Project wizard or by converting an
existing Java project to a jBPM project), the plugin will automatically add all the required jars to
the classpath of your project.

When creating a new jBPM project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
jBPM Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed jBPM runtimes will be
opened, so you can add new runtimes there.

You can change the runtime of a jBPM project at any time by opening the project properties
and selecting the jBPM category, as shown below. Mark the "Enable project specific settings"
checkbox and select the appropriate runtime from the drop-down box. If you click the "Configure
workspace settings ..." link, the workspace preferences showing the currently installed jBPM
runtimes will be opened, so you can add new runtimes there. If you deselect the "Enable project
specific settings" checkbox, it will use the default runtime as defined in your global workspace
preferences.

403

Chapter 20. jBPM Eclipse Plugin

Properties for jppm-project x

5?] jBPM & - -

I* Resource

[] Enable project specific settings Configure Workspace Settings...

b BPMNZ

Builders
Drools
Java Build Path

I Java Code Style
P Java Compiler
I» Java Editor

Javadoc Location

Project References
Run/Debug Settings
Task Repository
Task Tags
Validation

WikiText

| Restore Defaults| | Apply |

@ | cancel || OK |

20.1.5. Drools Eclipse plugin

The Drools Eclipse Plugin, which is bundled as part of the same Eclipse Update Site as the jBPM
Eclipse Plugin, provides similar features for creating and editing business rules, and execute
them using the Drools engine. This for example allows you to create and edit .drl files containing
business rules. You can combine your processes and rules inside one project and execute them
together on the same KieSession.

20.2. Debugging

This section describes how to debug processes using the jBPM Eclipse plugin. This means that
the current state of your running processes can be inspected and visualized during the execution.
Note that we currently don't allow you to put breakpoints on the nodes within a process directly.
You can however put breakpoints inside any Java code you might have (i.e. your application code
that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be
evaluated in the context of a process). At these breakpoints, you can then inspect the internal
state of all your process instances.

When debugging the application, you can use the following debug views to track the execution
of the process:

404

The Process Instances View

1. The process instances view, showing all running process instances (and their state). When
double-clicking a process instance, the process instance view visually shows the current state
of that process instance at that point in time.

2. The audit view, showing the audit log (note that you should probably use a threaded file logger
if you want to session to save the audit event to the file system on regular intervals, so the audit
view can be update to show the latest state).

3. The global data view, showing the globals.

4. Other views related to rule execution like the working memory view (showing the contents (data)
in the working memory related to rule execution), the agenda view (showing all activated rules),
etc.

20.2.1. The Process Instances View

The process instances view shows the process instances currently running in the selected
ksession. To be able to use the process instances view, first open the Process Instances view
(Window - Show View - Other ... and under the Drools category select Process Instances and
Process Instance). Tip: it might be useful to drag the Process Instance view to the Outline View and
slightly enlarge it, as shown in the screenshot below, so you can see both the Process Instances
and Process Instance views at the same time.

Next, use a (regular) Java breakpoint to stop your application at a specific point (for example
right after starting a new process instance). In the Debug perspective, select the ksession you
would like to inspect, and the Process Instances view should show the process instances that
are currently active inside that ksession. For example, the screenshot below shows one running
process instance (with id "1"). When double-clicking a process instance, the process instance
viewer will graphically show the progress of that process instance. An example where the process
instance is waiting for a human actor to perform "Task 1" is shown below.

@ Note

The process instances view shows the process instances currently active inside
the selected ksession. Note that, when using persistence, process instances are
not kept in memory inside the ksession, as they are stored in the database as soon
as the command completes. Therefore, you will not be able to use the Process
Instances view when using persistence. For example, when executing a JUnit test
using the JbpmJUnitBaseTestCase, make sure to call "super(true, false);" in the
constructor to create a runtime manager that is not using persistence.

405

Chapter 20. jBPM Eclipse Plugin

S Debug - jbpm-advanced/src/main/java/com/sample/ProcessTest.java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help

-l EoieD ®N2:e k(SR iRt -0 -Q -8 -1P d ¢ gl G- 3‘@ &' Java [Debug
%5 Debug 52 ¥ =0 ®=Variables 52 % Breakpoints e ¥ =0
< of? Thread [main] (Suspended) Name Value

PmessTesl.testh[ess() line: 28 b © manager singletonRuntimeManager (id=47)

b © engine synchronizedRuntimelmpl (id=52)

odAcc invol od, Object, Object[]) line: not available [native method]
NativeMethodAccessorimpl.invoke(Object, Object[]) line: 57
DelegatingMethodAccessorimpl.invoke(Object, Object(]) line: 43
= Method.invoke(Object, Object...) line: 601
= FrameworkMethod$1.runReflectiveCall() line: 47

v ® ksession StatefulknowledgeSessionimpl (id=57)
org.drools.core.impl.StatefulknowledgeSessionImpl@410e4786

= FrameworkMethodd$1(ReflectiveCallable). run() line: 12
[0 ProcessTest.java % = 0 S outline ¢ Process Instance X = B8
Ee Test A
= Sulﬂ.i.: void testProcess() { 1 = Hello World[com.sample.bpmn.hello] Sﬂ \

RuntimeManager manager = createRuntimeManager("sample.bpmn");
RuntimeEngine engine = getRuntimeEngine (null); N O

KieSession ksession = engine.getkieSession(); O @ Task1 & Task2 @
TaskService taskService = engine.getTaskService();

ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

‘assertProcessInstanceActive(processInstance.getId(), ksession);
assertNodeTriggered(processInstance.getId(), "Task 1");

El Console v Tasks ¢ Process Instances 52 | £ JUnit

- [1]= RuleFlowProcessinstance (id=5904)
a id=1
P a processName= "Hello World" (id=5908)
b & processid= "com.sample.bpmn.hello” (id=5907)
P a nodelnstances= Object[] (id=5917)

Tip

When you double-click a process instance in the process instances view and the
process instance view complains that it cannot find the process, this means that the

plugin wasn't able to find the process definition of the selected process instance in
the cache of parsed process definitions. To solve this, simply change the process
definition in question and save again (so it will be parsed) or rebuild the project that
contains the process definition in question.

20.2.2. The Audit View

The audit view can be used to show the all the events inside an audit log in a tree-based manner.
An audit log is an XML-based log file which contains a log of all the events that occurred while
executing a specific ksession. To create a logger, use KieServices to create a new logger and
attach it to a ksession. Be sure to close the logger after usage.

Ki eRunt i neLogger | ogger = Ki eServices. Factory. get().getLoggers()
. newThr eadedFi | eLogger (ksessi on, "nylogfile", 1000);

/1 do something with the ksession here

| ogger.cl ose();

To be able to use the Audit View, first open it (Window - Show View - Other ... and under the
Drools category select Audit). To open up a log file in the audit view, open the selected log file in
the audit view (using the "Open Log" action in the top right corner), or simply drag and drop the

406

The Audit View

log file from the Package Explorer or Navigator into the audit view. A tree-based view is generated
based on the data inside the audit log. An event is shown as a subnode of another event if the
child event is caused by (a direct consequence of) the parent event. An example is shown below.

= e, RuleFlow started: ruleflow[com.sample.ruleflow]
= #) RuleFlow node triggered: Start in process ruleflow[com.sample. ruleflow]
+ $] RuleFlow node triggered: Hello in process ruleflow[com sample ruleflow]
= $] RuleFlow node triggered: End in process ruleflow[com sample ruleflow]

=z RuleFlow completed: ruleflow[com.sample.ruleflow]

Tip

Note that the file-based logger will only save the events on close (or when a certain
threshhold is reached). If you want to make sure the events are saved on a regular
interval (for example during debugging), make sure to use a threaded file logger,
so the audit view can be update to show the latest state. When creating a threaded
file logger, you can specify the interval after which events should be saved to the
file (in milliseconds).

407

408

Chapter 21.

Chapter 21. Eclipse BPMN 2.0
Modeler

21.1. Overview

The Eclipse BPMN 2.0 Modeler allows you to specify business processes, choreographies, etc.
using the BPMN 2.0 XML syntax (including BPMNDI for the graphical information). The editor
itself is based on the Eclipse Graphiti framework and the Eclipse BPMN 2.0 EMF meta-model.

Features:

* It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,
annotations and all the BPMN2 node types).

« Added additional support for the few custom attributes that jBPM introduces using a special
jBPM Target Runtime.

« Allows you to configure which elements and attributes you want use when modeling processes
(so we can limit the constructs for example to the subset currently supported by jBPM, which
is a profile supported by default, or even more if you like).

The BPMN2 Modeler project is being developed at eclipse.org, sponsored by Red Hat/JBoss.
Red Hat understands the benefits of developing software in the community, and therefore, the
Eclipse BPMN 2.0 Modeler was developed not just for the jBPM project only, but it can be used
in a much broader context and is fully spec compliant. jJBPM-specific features are developed as
part of a separate jBPM Target Runtime. We welcome other organizations in contributing to this
modeler as well and (re)using the generic functionality and/or defining their own target runtime if
necessary. Not only is this a good thing for the community, but it also leaves the path open for the
jBPM suite to evolve as new features are requested by customers.

Many thanks go out to the people at Codehoop that did a great job in creating a first version of
this editor.

21.2. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including
the Eclipse BPMN2 Modeler and the Drools and jBPM Eclipse plugin (with a full jBPM runtime
preconfigured).

Tip

Using the jBPM installer is definitely the recommended starting point for most
users.

409

Chapter 21. Eclipse BPMN 2.0 ...

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you
need Eclipse 3.6.2 (Helios) or newer. To install, startup Eclipse and install the Eclipse BPMN 2.0
Modeler from the following update site (from menu Help -> Install new software and then add the
update site in question by clicking the Add button, filling in a name and the correct URL as shown
below). It will automatically download all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/updates/helios
Eclipse 3.7 - 4.2.1 (Indigo - Juno): http://download.eclipse.org/bpmn2-modeler/updates/juno
Eclipse 4.3 (Kepler): http://download.eclipse.org/bpmn2-modeler/updates/kepler

The project is hosted at eclipse.org and open for anyone to contribute. The project home page
can he found here:

http://http://eclipse.org/bpmn2-modeler/

Sources are available here (using Eclipse Public License v1.0):
https://qgit.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

A community forum for posting questions and exchanging ideas is also available here:
http://www.eclipse.org/forums/

A Bugzilla bug tracking system is available for reporting new bugs, or checking the status of
existing bugs, here:

https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler

21.3. Documentation

The Eclipse BPMN 2.0 Modeler documentation is available at:
http://eclipse.org/bpmn2-modeler/documentation.php

It contains various screencasts but also a full user guide, describing all it's features in detail:
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Here are some screenshots of the editor in action.

410

http://download.eclipse.org/bpmn2-modeler/updates/helios
http://download.eclipse.org/bpmn2-modeler/updates/juno
http://download.eclipse.org/bpmn2-modeler/updates/kepler
http://http://eclipse.org/bpmn2-modeler/
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://www.eclipse.org/forums/
https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler
http://eclipse.org/bpmn2-modeler/documentation.php
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Documentation

File Edit View MNavigate Search Project Run Window Help

s]|

CHES $ 0@ WG E® L v
| B2 @ B s f | oE | B | @ @ 100% ~
(1 Pockage . Novigtor 5= O (5 FimeoundnBecntOycel, £, =
; 2B~ 2 Palette b
= BPMN2Test B Hello Sub Process [+ Select
= bpmn -
= settings 'L_:-_ Marquee
= Store Task (= Connectors 0
g -bF”‘:‘J;(ECt | - — Sequence Flow
cokxXm
StatSubProcess + & Tasks &
[5] booksxsd
StartProcess EndProcess .
[&] choreography_1.bpmn =] Task
[&] collaboration_L.bpmn £, User Task
[S] CustomersOrders.xsd EscalationEvent | s |
[S] DataDefinitions.xsd (= Gateways <@
[&) drools.bpmn2 @Incluswe
B| email.png Gateway
email.wid | Chsbehvivess |
GenerateData.wid L - = Events @
AP Interfaces.wsdl 3 —~
[8] process_1.bpmn EndProcess () Start Event
[&] process_2.bpmn O End Event
3.b
[} process 3.6pmn (= Event Definitions
[&] process_4.bpmn
[2] techroadmap.bpmn &= Data lterns
testwid (= Other
[8] TimerBoundaryEventCyclel bpi [= Custom Task
= OASIS-Samples =
E_(Problems | @ Javadoc Declaration | =l Properties &3 S]
= Test
& Tetra) Timer Boundary Event Process
= .settings
) 1
%] project Description 3 5 I P - . :
[choreography_1.bprn A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out -
&) choreograph _2lb mn ||| Diagram work. A Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
B collabogratiin);.i)ptnn Interfaces Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -
[&] collaboration_2.bpmn Data Iterns + Attributes
[8] collaboration_3.bpmn Definitions -
[& collaboration_4.bprmn Id TimerBoundaryEvent
[8 collaboration_5.bpmn Mame Timer Boundary Event Process
[collaboration_6.bpmn
B amail ann S
< n 3
H D<>
Figure 21.1.
Ej Problems i o ¥ =8

-1 Hello Sub Process

Description * Attributes

Sub Process

Loop Characteristics

@ Maone

) Multi-Instance

Add |

Mame

|Id

Figure 21.2.

411

Chapter 21. Eclipse BPMN 2.0 ...

EasLl.

File Edit View MNavigate Search Project Run Window Help

CO-HE& F-O0-QUr HFE- EEF S e
G| BE|aded|Be R B0 Q& 0% -
(1 Pactagee [Nodgaror 5=) (O ipriounsnRenOIeiiin, =
r & ‘ g v ¥ Palette
=5 BPMM2Test 1= Hello Sub Process [}) o
= .bpmn -
(= settings (= Connectors @
= Store Task —
[project - (= Tasks m
¥ bookaml StartSubProcess + -
[S] books.xsd] =1
StartProcess EndProcess
% choreography_1.bpmn (= Gateways @
collaboration_1.bpmn ~
<
[S] CustomersOrders.xsd EscalationEvent - @ @
[5| DataDefinitionsxsd (= Events @
El droo.lls.bpmnz QO DD e
email.png B
emailwid (= Event Definitions <
GenerateData.wid Goodbye Lt L o2 AN @
AP Interfaces.wsdl = Data It P
[£] process_1.bpmn EndPracess & Data tems
[process_ 2.bpmn
[E] process 3.bpmn)
[process 4.bpmn = = [
[2 techroadmap.bpmn
testwid
[] TimerBoundaryEventCyclel bpi
1= OASIS-Samples
=% Test
& Tetro (= Custom Task
= .settings
[.project E_(Problems | = Properties &2 =7 =0

[E] choreography_L.bpmn
[choreography_2.bpmn
[E] collaboration_1.bpmn
[£] collaboration_2.bpmn
[collaboration_2.bpmn
[E] collaboration_4.bpmn
[£) collaboration_5.bpmn
[E] collaboration_6.bpmn
|Bs| email.png
< n |

Timer Boundary Event Process

I
Description A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out =+
Diagram work. & Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Interfaces Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -
Data Items ~ Attributes
Definitions Id TimerBoundaryEvent
Name Timer Boundarv Event Process

né

Figure 21.3.

412

Part VI. Integration

Integrating jBPM with other technologies, frameworks, etc.

Chapter 22.

Chapter 22. Integration

22.1. Maven

Apache Maven is used by jBPM for two main purposes:

 as deployment units that gets installed into runtime environment for execution

« as dependency management tool for building systems based on jBPM - embedding jBPM into
application

22.1.1. Maven artifacts as deployment units

Since version 6, jBPM provides simplified and complete deployment mechanism that is based
entirely on Apache Maven artifacts. These artifacts also known as kjars are simple jar files that
include a descriptor for KIE system to prodice KieBase and KieSession. Descriptor of the kjar is
represented as xml file named kmodule.xml and it can be:

* empty to apply all defaults

« custom configuration of KieBase and KieSession

<knmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance" xnm ns="http://
j boss. org/ ki e/6.0.0/ knodul e">
</ kmodul e>

Empty kmodule.xml that provides all defaults for the kjar:

* single default KieBase that

contains all assets from all packages

e event processing mode set to - cloud

equality behaviour set to - identity

declarative agenda is disabled
» scope set to - ApplicationScope - valid for CDI integrations only
 single default stateless KieSession that

* is bound to above (single, default) KieBase

415

Chapter 22. Integration

 clock type is set to - real time

» scope set to - ApplicationScope - valid for CDI integrations only
 single default stateful KieSession that

* is bound to above (single, default) KieBase

 clock type is set to - real time

» scope set to - ApplicationScope - valid for CDI integrations only

All these and more can be configured manually via kmodule.xml when
defaults are not enough. The complete set of elements can be found in
xsd schema [https://github.com/droolsjbpm/droolsjopm-knowledge/blob/6.0.x/kie-api/src/main/
resources/org/kie/api/lkmodule.xsd] of kmodule.xml.

<kmodul e xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://]jboss. org/kiel6.0.0/knodul e">
<kbase nane="def aul t Ki eBase" default="true" eventProcessi nghvbde="cl oud" equal sBehavi or ="i dent

<ksessi on nane="def aul t Ki eSessi on" type="stateful" default="true" clockType="realtinme" scope:
<wor kI t enHand| er s>
<wor kI t enHandl er nane="Cust onifask" type="FQCN OF HANDLER' />
</ wor kI t enHand| er s>
<l isteners>
<listener type="FQCN_OF_EVENT_L| STENER' />
</listeners>
</ ksessi on>

fanl t St at el essKypSetief abibcédy'bestopalt | aw'ax. ent er pri se. cont ext. Appl i cati onScoped"/
>

</ kbase>
</ knodul e>

As illustrated on the listining above the kmodule.xml provides fliexible way of instructing the
runtime engine on what and how should be configured. The example above does not present all
available option but these that are most common when working with processes.

@ Note
Important to note is that when using RuntimeManager, KieSession instances are
created by the RuntimeManager instead of by KieContainer but kmodule.xml (or
model in general) is aways used as a base of the construction process. KieBase
although is always taken from KieContainer.

416

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd

Use maven for dependency management

Kjars are represented same way as any other Maven artifact - by Group Artifact Version which
is then represented as Releaseld in KIE API. This the the only thing required to deploy kjar into
runtime environment such as KIE Workbeanch.

22.1.2. Use maven for dependency management

When building systems that embed jBPM as wrokflow engine the simplest way is to configure all
dependencies required by jBPM via Apache Maven. jBPM provides set of BOMs (Bill Of Material)
to simplify what artifacts needs to be declared. Common way to start with integration of custom
application and jBPM is to define dependency management;

<properties>
<pr oj ect . bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
<dr ool s. versi on>6. 0. 0. Fi nal </ drool s. versi on>
<j bpm versi on>6. 0. 0. Fi nal </ j bpm ver si on>
<hi ber nat e. ver si on>4. 2. 0. Fi nal </ hi ber nat e. ver si on>
<hi ber nat e. cor e. ver si on>4. 2. 0. Fi nal </ hi bernat e. cor e. versi on>
<sl f4j.version>1. 6. 4</ sl f4j . versi on>
<j boss. j avaee. versi on>1. 0. 0. Fi nal </ j boss. j avaee. ver si on>
<l ogback. ver si on>1. 0. 9</ | ogback. ver si on>
<h2. version>1. 3. 161</ h2. ver si on>
<bt m ver si on>2. 1. 4</ bt m ver si on>
<junit.version>4.8.1</junit.version>
</ properties>
<dependencyManagenent >
<dependenci es>
<!-- define drools BOM -->
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-bom</artifactld>
<t ype>ponx/type>
<versi on>${dr ool s. ver si on} </ ver si on>
<scope>i nport </ scope>
</ dependency>
<!-- define drools BOM -->
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifact!|d>j bpm bonx/artifactl!d>
<t ype>ponx/type>
<versi on>${j bpm ver si on} </ ver si on>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

Above should be declared in top level pom.xml so all modules that need to use KIE (drools and
jBPM) API can access it.

417

Chapter 22. Integration

Next, module(s) that would operate on KIE API should declare following dependencies:

Above are the main runtime dependencies, reagrdless of where the application is deployed
(application server, servlet container, standalone app). A good practice is to test the workflow
components to ensure they work properly before actual deployment and thus following test

<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld> bpmflow</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld>j bpmflow builder</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld> bpm bpm2</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld>j bpm persistence-jpa</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld>j bpm human-task-core</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld>j bpmrunti me- manager</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>${sl f4j.version}</version>
</ dependency>

dependencies should be defined:

<l-- test dependencies -->

<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld> bpm shared-services</artifact!d>
<cl assifier>btnc/classifier>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>

418

Use maven for dependency management

<artifactld>l ogback-classic</artifactld>
<ver si on>%${| ogback. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<version>${junit.version}</version>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-entitynmanager</artifactld>
<ver si on>%{ hi ber nat e. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-core</artifactld>
<ver si on>${ hi ber nat e. core. versi on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<ver si on>${ h2. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<groupl d>or g. codehaus. bt n</ gr oupl d>
<artifactld>btmc/artifactld>
<ver si on>${ bt m ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

Last but not least, define the JBoss Maven repository for artifacts resuolution:

<repositories>
<reposi tory>
<i d>j boss- publ i c-reposi tory-group</id>
<name>JBoss Public Repository G oup</nane>
<url >http://repository.jboss. org/ nexus/ content/groups/public/</url>
<rel eases>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<updat ePol i cy>dai | y</ updat ePol i cy>

419

Chapter 22. Integration

</ snapshot s>
</repository>
</repositories>

That should allow to configure jBPM in your application and provide access to KIE API to operate
on processes, rules, events.

22.2. CDI

22.2.1. Overview

jBPM 6 comes with out of the box integration with CDI (Contexts and Dependency Injection).
Although most of the API can be used in CDI world there are some dedicated modules that
are designed especially for CDI containers. The most important one is jopm-kie-services that
provides high level services that shall be used in most of the cases were CDI is available for jBPM
integration. It provides following set of services:

« DeploymentService

* FormProviderService

RuntimeDataService

BPMN2DataService

These services are first class citizens for CDI world so they are available for injection in any other
CDI bean.

22.2.1.1. DeploymentService

Service responsible for deploying DeploymentUnits into runtime environment. By deploying
given deployment unit becomes ready for execution and has RuntimeManager created for
it.DeploymentService can next be used to retrieve:

* RuntimeManager instance for given deployment id
» DeployedUnit that represents complete deployment process for given deployment id
« list of all deployed units known to the deployment service

Deployment service stores the deployed units only in memory and thus in case of a need to
restore all previously deployed units, component that uses deployment service needs to store that
information itself. Common places for such store is data base, file system, repository of some sort
etc. Deployment service will fire CDI events on deployment and undeployment to allow application
components to react real time to these events to be able to store deployments or remove them
from the store when they are undeployed.

« DeploymentEvent with qualifier @Deploy will be fired on deployment

» DeploymentEvent with qualifier @Undeploy will be fired on undeployment

420

Overview

use CDI observer mechanism to get notification on above events. First to save deployments in
the store of your choice:

public void saveDepl oynment (@bserves @epl oy Depl oynment Event event) {
[l store deployed unit info for further needs
Depl oyedUnit depl oyedUnit = event. get Depl oyedUnit();

next to remove it when it was undeployed

public void renoveDepl oynent (@bserves @hndepl oy Depl oyment Event event) {
/'l renove deploynent with id event. get Depl oynent | d()

Due to the fact that there might be several implementation of DeploymentService use of qualifiers
is needed to instruct CDI container which one shall be injected. jBPM comes with two out of the
box:

« @Kjar - KmoduleDeploymentService that is tailored to work with KmoduleDeploymentUnits that
are small descriptor on top of a kjar - recommended to use in most of the cases

* @Vfs - VFSDeploymentDService that allows to deploy assets directly from VFS (Virtual File
System) that is provided by UberFire framework [http://droolsjbpm.github.io/uberfire/]. Due to
that fact VFSDeploymentService and VFSDeploymentUnit are not bundled with jopm core
modules but with jopm-console-ng modules.

The general practice is that every implementation of DeploymentService should come with
dedicated implementation of DeploymentUnit as these two provided out of the box.

22.2.1.2. FormProviderService

FormProviderService provides access to form representations usually displayed on Ul for both
process forms and user task forms. It is built on concept of isolated FormProviders that can provide
different capabilities and be backed by different technologies. FormProvider interface describes
contract for the implementations
public interface FornmProvider {

int getPriority();

String render(String nane, ProcessDesc process, Mp<String, Object> renderContext);

String render(String nane, Task task, ProcessDesc process, Map<String, Object> renderConte)

421

http://droolsjbpm.github.io/uberfire/
http://droolsjbpm.github.io/uberfire/

Chapter 22. Integration

Implementations of FormProvider interface should always define priority as this is the main
driver for the FormProviderService to ask for the content of the form of a given provider.
FormProviderService will collect all available providers and iterate over them asking for the
form content (rendered) in their priority order. The lower the number the higher priority it gets
during evaluation, e.g. provider with priority 5 will be evalauted before provider with priority 10.
FormProviderService will irerate over available providers as long as one delivers the content. In
worse case scenario simple text based forms will be returned.

jBPM comes with following FormProviders out of the box:

* Fremarker based implementation to support jopm version 5 process and task forms - priority 3

» Default forms provider, considered last resort if none of the other providers deliver content this
one will always provide simplest possible forms - lowest priority (1000)

+ when form modeler is used there is additional FormProvider available to deliver forms modeled
in that tool - priority 2

22.2.1.3. RuntimeDataService

RuntimeDataService provides access to actual data that is availabe on runtime such as

available processes to be executed - with various filters
* active process instances - with various filters

* process instance history

* process instance variables

 active and completed nodes of process instance

Default implementation of RuntimeDataService is observing deployment events and index all
deployed processes to expose them to the calling components. So whatever gets deployed
RuntimeDataService will be aware of that.

22.2.1.4. BPMN2DataService

Service that provides access to process details stored as part of BPMN2 xml.

@ Note
Before using any method that provides information, findProcessld must be
invoked to populate repository with process information taken from BPMN2

content.

BPMN2DataService provides access to following data:

« overall description of process for given process definition

422

Configuring CDI integration

« collection of all user tasks found in the process definition

« information about defined inputs for user task node

« information about defined outputs for user task node

* ids of reusable processes (call activity) defined within given process definition
« information about process variables defined within given process definition

« information about all organizational entities (users and groups) included in the process
definition. Depending on the actual process definition the returned values for users and groups
can contain

« actual user or group name

» process variable that will be used to get actual user or group name on runtime e.g. #{manager}

22.2.2. Configuring CDI integration

To make use of jppm-kie-services in your system you'll need to provide some beans for the out
of the box services to satisfy all dependencies they have. There are several beans that depends
on actual scenario

 entity manager and entity manager factory
« user group callback for human tasks
« identity provider to pass autheticated user information to the services

When running in JEE environment like an JBoss Application Server following producer bean
should satisfy all requirements of the jbpm-kie-services

public class Environment Producer {

@er si stenceUni t (uni t Name = "org.j bpm donai n")
private EntityManagerFactory enf;

@ nj ect
@5el ect abl e
private User GroupCal | back user GroupCal | back;

@r oduces
public EntityManager Factory get EntityManager Factory() {
return this.enf;

@°r oduces

@Request Scoped

public EntityManager getEntityManager () {
EntityManager em = enf. createEntityManager();

423

Chapter 22. Integration

return em

public void cl ose(@i sposes EntityManager em {
em cl ose();

@r oduces
publ i c User GroupCal | back produceSel ect edUser GroupCal back() {
return user G oupCal | back;

@r oduces
public ldentityProvider produceldentityProvider {
return new I dentityProvider() {
/1 inplenent |dentityProvider

b

Then beans.xml for the application should enable proper alternative for user group callback (that
will be taken based on @Selectable qualifier)

<beans xm ns="http://java. sun. com xm / ns/j avaee" xm ns: xsi="http://
www. W3. or g/ 2001/ XMLSchena- i nst ance"

xsi : schemalLocati on="http://java. sun. com xm / ns/javaee http://docs.jboss. org/
cdi / beans_1_0. xsd" >

<al ternatives>
<cl ass>org. j bpm services. task.identity. JAASUser G oupCal | backl npl </ cl ass>

</ al ternatives>

</ beans>

Optionally there can be several other producers provided to deliver:

» WorkltemHandlers

424

Configuring CDI integration

» Process, Agenda, WorkingMemory event listeners

These components can be provided by implementing following interfaces

/**
*
*
*
*
*
*

*

*/

Allows to provide custominpl enmentations to deliver Workltem name and Workl t enHandl er i nstar

for the runtine.

It will be invoked by Registerabl eltensFactory inplenmentation (especially Injectabl eRegister
in CDI world) for every KieSession. Recormendation is to always produce new i nstances to avc
results.

public interface WorkltenHandl er Producer {

and

/**
*
*
*
*
*
*
*

*

*/

/**

*

*

*/

Returns map of (key = work item nanme, value work item handl er instance) of work itens
to be registered on Ki eSessi on

Paraneters that m ght be given are as foll ows:

<l i >ksession</I|i>
taskService
runti neManager</1Ii >
</ ul >

@aramidentifier - identifier of the owner - usually RuntinmeManager that allows the pre
and provide valid instances for given owner

@ar am parans - owner night provide sonme paraneters, usually KieSession, TaskService, R
@eturn map of work item handler instances (recomendation is to always return new instz

Map<String, WorkltenmHandl er> get WorkltenHandl ers(String identifier, Map<String, Object> par

Al'l ows do define custom producers for know EventListeners. Intention of this is that there r

i mpl enentations that might provide different |listener instance based on the context they are

It will be invoked by Regi sterabl eltensFactory inplenmentation (especially Injectabl eRegi ster
in CDI world) for every KieSession. Recormendation is to always produce new i nstances to avc
results.

@aram <T> type of the event l|istener - ProcessEventListener, AgendaEventListener, WrkingM

public interface EventlListenerProducer<T> {

425

Chapter 22. Integration

* Returns |ist of instances for given (T) type of |isteners
*

* Parameters that mght be given are as follows:

*

* <|i>ksession</I|i>

* taskService</Ili>

* runtineManager</Ii >

*

* identifier - identifier of the owner - usually RuntinmeManager that allows the pre
* and provide valid instances for given owner

* parans - owner m ght provide sone paraneters, usually KieSession, TaskService, R
* list of listener instances (reconmendation is to always return new instances whe

*/
Li st <T> get Event Li steners(String identifier, Map<String, Cbject> parans);

Beans implementing these two interfaces will be collected on runtime and consulted when building
KieSession by RuntimeManager. See RuntimeManager section for more details on this.

22.2.3. RuntimeManager as CDI bean

RuntimeManager itself can be injected as CDI bean into any other CDI bean within the application.
It has then requirement to get RungimeEnvironment properly produces to allow RuntimeManager
to be correctly initialized. RuntimeManager comes with three predefined strategies and each of
them gets CDI qualifier so it can be referenced:

+ @Singleton
+ @PerRequest
* @PerProcessinstance

Producer that was defined in Configuration section should be now enhanced with producer
methods to provide RuntimeEnvironment

public class Environment Producer {

@er si stenceUni t (uni t Name = "org.j bpm domai n")
private EntityManagerFactory enf;

@ nj ect
@el ect abl e
private User GroupCal | back user GroupCal | back;

@ nj ect
private BeanManager beanManager;

426

RuntimeManager as CDI bean

@°r oduces
public EntityManager Factory get EntityManager Factory() ({
return this.enf;

@°r oduces

@request Scoped

public EntityManager getEntityManager() {
EntityManager em = enf. createEntityManager();
return em

public void cl ose(@i sposes EntityManager en) ({
em cl ose();

@°r oduces
publ i c User G oupCal | back produceSel ect edUser GroupCal back() {
return user G oupCal | back;

@°r oduces
public ldentityProvider produceldentityProvider {
return new I dentityProvider() {
/1 inplenent |dentityProvider

be

@°r oduces

@i ngl et on

@er Request

@er Processl nst ance

publi ¢ Runti nmeEnvironnent produceEnvironnment (EntityManager Factory enf) {

Runt i meEnvi ronnent environment = Runti meEnvironnent Bui | der. Factory. get ()
. newDef aul t Bui | der ()
.entityManager Factory(enf)
. user G oupCal | back(get User G- oupCal | back())
.regi sterabl el tenmsFact ory(| nj ect abl eRegi st erabl el t emsFact ory. get Fact or y(beanMar
. addAsset (Resour ceFact ory. newC assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPMN2-
User Task. bprm2"), Resour ceType. BPM\2)
-get();
return environnent;

427

Chapter 22. Integration

In this example single producer method is capable of providing RuntimeEnvironment for all
strategies of RuntimeManager by specifying all qualifiers on the method level.

Once complete producer is available, RuntimeManager can be injected into application's CDi bean

public class ProcessEngi ne {

@ nj ect
@i ngl et on
private RuntineManager singl et onManager;

public void startProcess() {

Runt i meEngi ne runti me = singl et onManager . get Runt i neEngi ne(Enmpt yCont ext . get());
Ki eSessi on ksession = runtinme. get Ki eSessi on();

Processl nst ance processlnstance = ksession.startProcess("User Task");

si ngl et onManager . di sposeRunt i meEngi ne(runti ne);

That's all what needs to be configured to make use of CDI power with jBPM.

@ Note
An obvious limitation of injecting directly RuntimeManager via CDI is that there
might be only one RuntimeManager in the application. That in some case can be
desired and that's why there is such option. In general recommended approach
is to make use of DeploymentService whenever there is a need to have many
RuntimeManagers active within application.

As an alternative to DeploymentService, RuntimeManagerFactory can be injected and then
RuntimeManager instance can be created manually by the application. In such case
EnvironmentProducer stays same as for DeploymentService and following is an example of simple
ProcessEngine bean

public class ProcessEngine {

@ nj ect
private RuntineManager Factory manager Factory;

@ nj ect
private EntityManagerFactory enf;

428

OSGi

@ nj ect
private BeanManager beanManager;

public void startProcess() {
Runt i meEnvi ronnent environment = Runti nmeEnvironnent Bui | der. Factory. get ()
. newDef aul t Bui | der ()
.entityManager Factory(enf)
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPMN2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)
. addAsset (Resour ceFact ory. newC assPat hResour ce(" BPMN2-
User Task. bprm2"), Resour ceType. BPM\2)
.regi sterabl el tenmsFact ory(| nj ect abl eRegi st erabl el t emsFact ory. get Fact or y(beanMar

.get();

Runt i mreManager manager = manager Fact ory. newSi ngl et onRunt i meManager (envi ronnent) ;
Runt i meEngi ne runti me = nmanager. get Runti meEngi ne(Enpt yCont ext . get ());
Ki eSessi on ksession = runtine. getKi eSessi on();

Processl nst ance processlnstance = ksession.startProcess("User Task");

manager . di sposeRunt i meEngi ne(runti ne);
manager . cl ose();

22.3. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These
manifest files are automatically generated by the build. You can plug these jars directly into an
OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar
in OSGi is called a bundle and has its own Classloader. Each bundle specifies the packages it
exports (makes publicly available) and which packages it imports (external dependencies). OSGi
will use this information to wire the classloaders of different bundles together; the key distinction is
you don't specify what bundle you depend on, or have a single monolithic classpath, instead you
specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed
and it'll wire up the correct one. Further to this Bundles can register services for other bundles to
use. These services need initialisation, which can cause ordering problems - how do you make
sure you don't consume a service before its registered? OSGi has a number of features to help
with service composition and ordering. The two main ones are the programmatic ServiceTracker

429

Chapter 22. Integration

and the xml based Declarative Services. There are also other projects that help with this; Spring
DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

e jbpm-flow
 jbpm-flow-builder

* jbpm-bpmn2

430

Part VIl. Advanced Topics

Some more advanced topics

Chapter 23.

Chapter 23. Domain-specific
Processes

23.1. Introduction

jBPM provides the ability to create and use domain-specific task nodes in your business
processes. This simplifies development when you're creating business processes that contain
tasks dealing with other technical systems.

When using jBPM, we call these domain-specific task nodes "custom work items" or (custom)
"service nodes". There are two separate aspects to creating and using custom work items:

« Adding a node with a custom work item to a process definition using the eclipse editor or jBPM
designer.

 Creating a custom work item handler that the jBPM engine will use when executing the custom
work item in a running process.

With regards to a BPMN2 process, custom work items are certain types of <t ask> nodes. In
most cases, custom work items are <t ask> nodes in a BPMN2 process definition, although they
can also be used with certain other task type nodes such as, among others, <ser vi ceTask> or
<sendTask> nodes.

Tip

When creating custom work items, it's important to separate the data associated
with the work item, from how the work item should be handled. In other words,
separate the what from the how. That means that custom work items should be:

* declarative (what, not how)

« high-level (no code)
On the other hand, custom work item handlers, which are java classes, should be:

» procedural (how, not what)

* low-level (because it's code!)
Work item handlers should almost never contain any data.

Users can thus easily define their own set of domain-specific service nodes and integrate them
with the process language. For example, the next figure shows an example of a healtchare-

433

Chapter 23. Domain-specific P...

related BPMN2 process. The process includes domain-specific service nodes for measuring blood
pressure, prescribing medication, notifying care providers and following-up on the patient.

& BP Medication

Vs
O o= Blood Pressure @
=) N

g @{ g Notry G]—‘<">_"©
=

23.2. Overview

Before moving on to an example, this section explains what custom work items and custom work
item handlers are.

23.2.1. Work Item Definitions

In short, we use the term custom work item when we're describing a node in your process that
represents a domain-specific task and as such, contains extra properties and is handled by a
Wor ki t enHandl er implementation.

Because it's a domain-specific task, that means that a custom work item is equivalent to a <t ask>
or <t ask>-type node in BPMN2. However, a Wr kl t emis also Java class instance that's used
when a Wr ki t enHandl er instance is called to complete the task or work item.

Depending on the BPMN2 editor you're using, you can create a custom work item definition in
one of two ways:

« If you're using Designer, then this means creating a MVEL based definition and adding the
definition in Designer itself. A description of this can be found in the ??? section in the ???
chapter. Once this is done, a new service node will appear on the BPMN 2.0 palette.

« Ifyou're using the eclipse BPMN 2.0 modeler plugin (which can be found here [http://eclipse.org/
bpmn2-modeler/]), then you'll can modify the BPMN2 <t ask> or <t ask>-type element to work
with Wor ki t enHand| er implementations. See the ??7? section in the ??? chapter.

23.2.2. Work Item Handlers

A work item handler is a Java class used to execute (or abort) work items. That also means
that the class implements the or g. ki e. runti me. i nst ance. Wor kil t enHandl er interface. While

434

http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/

Work Item Handlers

jBPM provides some custom Wor ki t enHandl er instances (listed below), a Java developer with a
minimal knowledge of jBPM can easily create a new work item handler class with it's own custom
business logic.

Among others, jBPM offers the following Wor ki t enHandl| er implementations:

* Inthe j bpm bpm2 module, or g. j bpm bpm?2. handl er package:
» ReceiveTaskHandler (for use with BPMN element <r ecei veTask>)
» SendTaskHandler (for use with BPMN element <sendTask>)
» ServiceTaskHandler (for use with BPMN element <ser vi ceTask>)

* Inthe j bpm wor ki t ens module, in various packages under the or g. j bpm process. worki t em
package:

» ArchiveWorkltemHandler
There are a many more Wr ki t enHandl er implementations present in the j bpm wor ki t ens
module. If you're looking for specific integration logic with Twitter, for example, we recommend
you take a look at the classes made available there.

In general, a Wor ki t enHandl er's . execut eWorklten(...) and. abortWrklten(...) methods
will do the following:

1. Extract information about the task being executed (or aborted) from the Wor kI t eminstance

2. Execute the necessary business logic. This might be mean interacting with a web service,
database, or other technical component.

3. Inform the process engine that the work item has been completed (or aborted) by calling one
of the following two mtehods on the Wor ki t emvanager instance passed to the method:

Wor kI t emvanager . conpl et eWorkl tem(l ong workltem d, Map<String, Object> results)
Wor kI t emvlnager . abor t Wor kI t en(| ong wor ki t end d)

In order to make sure that your custom work item handler is used for a particular process instance,
it's necessary to register the work item handler before starting the process. This makes the engine
aware of your Wr kil t enHandl er so that the engine can use it for the proper node. For example:

ksessi on. get Wor kil t emvainager () . regi st er Wr kl t enHandl er ("Not i fi cati on",
new Noti ficati onWorkltenmHandl er());

The ksessi on variable above is a Statef ul Know edgeSessi on (and also a Ki eSessi on)
instance. The example code above comes from the example that we will go through in the next
session.

435

Chapter 23. Domain-specific P...

Tip

You can use different work item handlers for the same process depending on the
system on which it runs: by registering different work item handlers on different
systems, you can customize how a custom work item is processed on a particular
system. You can also substitute mock Wor ki t enHandl er instances when testing.

23.3. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work item
is defined by a unique name and includes additional parameters that describe the work in more
detail. Work items can also return information after they have been executed, specified as results.

Our notification work item could be defined using a work definition with four parameters and no
results. For example:

* Name: "Notification”
» Parameters:
¢ From [String type]
e To [String type]
* Message [String type]

¢ Priority [String type]
23.3.1. The Notification Work Item Definition

23.3.1.1. Creating the work item definition

In our example we will create a MVEL work item definition that defines a "Notification" work item.
Using MVEL is the default way to This file will be placed in the project classpath in a directory
called META- | NF. The work item configuration file for this example, MyWor kDef i ni ti ons. wi d, will
look like this:

i mport org.drool s.core. process. core.datatype.inpl.type. StringDataType;
[

// the Notification work item

[

"nanme" : "Notification",
"paraneters" : |

436

The Notification Work Item Definition

"Message" : new StringDataType(),
"From' : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),

1.
"di spl ayName" : "Notification",
"icon" : "icons/notification.gif"

The project directory structure could then look something like this:

proj ect/src/ mai n/ resour ces/ META- | NF/ MyWor kDef i ni tions. w d

We also want to add a specific icon to be used in the process editor with the work item. To add
this, you will need . gi f or . png images with a pixel size of 16x16. We put them in a directory
outside of the META- I NF directory, for example, here:

proj ect/src/ mai n/resources/icons/notification.gif

23.3.1.2. Registering the work definition

The jBPM eclipse editor uses the configuration mechanisms supplied by Drools to register
work item definition files. That means adding a drool s. wor kDef i ni ti ons property to the
dr ool s. rul ebase. conf file in the META- | NF.

The dr ool s. wor kDef i ni ti ons property represents a list of files containing work item definitions,
separated usings spaces. If you want to exclude all other work item definitions and only use your
definition, you could use the following:

drool s. workDefinitions = MyWorkDefinitions.wd

However, if you only want to add the newly created node definition to the existing palette nodes,
you can define the dr ool s. wor kDef i ni ti ons property as follows:

drool s. workDefinitions = MyWorkDefinitions.w d WrkDefinitions.conf

We recommended that you use the extension . wi d for your own definitions of domain specific
nodes. The . conf extension used with the default definition file, Wor kDef i ni ti ons. conf, for
backward compatibility reasons.

437

Chapter 23. Domain-specific P...

23.3.1.3. Using your new work item in your processes

We've created our work item definition and configured it, so now we can start using it in our
processes. The process editor contains a separate section in the palette where the different
service nodes that have been defined for the project appear.

[% Select

' Marquee

— Sequence Flow

== Components <0

Start Event

® End Event

Rule Task

@ Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

) Timer Event

®) Error Event

[Message Event

User Task

(=) Embedded Sub-Process

(w) Multiple Instances

= Service Tasks 40

§ Notification h

Using drag and drop, a notification node can be created inside your process. The properties can
be filled in using the properties view.

Besides any custom properties, the following three properties are available for all work items:

1. Paramet er Mappi ng: Allows you to map the value of a variable in the process to a parameter
of the work item. This allows you to customize the work item based on the current state of

438

The Notification Work Item Definition

the actual process instance (for example, the priority of the notification could be dependent of
some process-specific information).

2. Resul t Mappi ng: Allows you to map a result (returned once a work item has been executed)
to a variable of the process. This allows you to use results in the remainder of the process.

3. Wit for conpletion: By default, the process waits until the requested work item has
been completed before continuing with the process. It is also possible to continue immediately
after the work item has been requested (and not waiting for the results) by setting wait for
conpl eti on to false.

Here is an example that creates a domain specific node to execute Java, asking for the class and
method parameters. It includes a custom j ava. gi f icon and consists of the following files and
resulting screenshot:

i nport org.drools.core. process. core.datatype.inpl.type. StringDat aType;
[
/1 the Java Node work item |l ocated in:
/'l project/src/min/resources/ META- | NF/ JavaNodeDef i ni tion.w d
[
"nane" : "JavaNode",
"paraneters" : [
"class" : new StringDataType(),
"met hod" : new StringDataType(),
|
"di spl ayNanme" : "Java Node",
"icon" : "icons/java.gif"

/1 located in: project/src/min/resources/META-|I NF/ drool s. rul ebase. conf
drool s. workDefinitions = JavaNodeDefinition.w d WrkDefinitions. conf

I/ icon for java.gif located in:
/'l project/src/min/resources/icons/java.gif

439

Chapter 23. Domain-specific P...

[+ Select

' Marquee O

— Sequence

Flow l

= Components < r - N

N . ava Node =
() Start Event L@J J
@® End Event)

Rule Task

l
& Gateway O

[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task
) Timer Event
@ Error Event

Message
Event

User Task

(=) Embedded
Sub-Process

(w) Multiple

(= Service Ta... <«
= Log
= Email
% Java Node

440

The NotificationWorkltemHandler

23.3.2. The Noti ficati onwrkl t enHandl er

23.3.2.1. Creating a new work item handler

Once we've created our Noti fi cati on work item definition (see the sections above), we can
then create a custom implementation of a work item handler that will contain the logic to send
the notification.

In order to execute our Notification work items, we first create a Not i fi cati onWor ki t enHand! er
that implements the Wor ki t enHandl er interface:

package com sanpl €;

i mport org.kie.api.runtine.process. Wrkltem
i mport org.kie.api.runtine.process. WrKkltenHandl er;
i mport org. kie.api.runtine.process. WrKkltenVanager;

public class NotificationWrkltenHandl er inplenents WrkltenHandl er {

public void executeWrkltem(Wrkltem workltem WorkltemVanager manager) {
[l extract paraneters
String from= (String) workltem getParameter("Froni);
String to = (String) workltem getParaneter("To");
String nessage = (String) workltem getParaneter (" Mssage");
String priority = (String) workltem get Paraneter("Priority");

/1l send enail

Enai | Servi ce service = Servi ceRegi stry. getlnstance().get Enail Service(); L]
service.sendEmai |l (from to, "Notification", nessage);

/1 notify manager that work item has been conpl et ed

manager . conpl et eWorkl t em{workltem get 1 d(), null); 2

public void abortWorkltem Wrkltem workltem WorkltemnVanager manager) {
/1 Do nothing, notifications cannot be aborted

The ServiceRegi stry class is simply a made-up class that we're using for this example.
In your own Wor ki t enHandl er implementations, the code containing your domain-specific
logic would go here.

» Notifying the Workltemvanager instance when your a work item has been
completed is crucial. For many synchronous actions, like sending an email in this

441

Chapter 23. Domain-specific P...

case, the workltenHandl er implementation will notify the Workltenmvanager in the
executeWorklten(...) method.

This Wor kil t enHandl er sends a notification as an email and then notifies the WorkltemManager
that the work item has been completed.

Note that not all work items can be completed directly. In cases where executing a work item takes
some time, execution can continue asynchronously and the work item manager can be notified
later.

In these situations, it might also be possible that a work item is aborted before it has been
completed. The Wor ki t enHandl er . abort Wor ki tent(...) method can be used to specify how to
abort such work items.

Tip

Remember, if the Wor ki t emvanager is not notified about the completion, the
process engine will never be notified that your service node has completed.

23.3.2.2. Registering the work item handler

Wor kil t enHandl er instances need to be registered with the Wor ki t emvanager in order to be used.
In this case, we need to register an instance of our Noti fi cati onWor kI t enHandl er in order to
use it with our process containing a Not i fi cat i on work item. We can do that like this:

St at ef ul Know edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksessi on. get Wr ki t emvanager () . r egi st er Wor kI t enHandl er (

"Notification", 9
new Noti fi cati onWr ki t enHandl er () 2
)i

This is the drools name of the <t ask> (or other task type) node. See below for an example.

™ This is the instance of our custom work item handler instance!

If we were to look at the BPMN2 syntax for our process with the Noti fi cati on process, we
would see something like the following example. Note the use of the tns: taskNane attribute
in the <task> node. This is necessary for the Workltemvanager to be able to see which
Wor ki t entHand! er instance should be used with which task or work item.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"

442

Service Repository

xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL

BPIMN20. xsd"
xm ns:tns="http://ww.]jboss. org/drool s">
<process isExecutable="true" id="nyCustonProcess" nanme="Donai n-Specific
Process" >

<task id="_5" nane="Notification Task" tns:taskNane="Notification" >

Tip

Different work item handlers could be used depending on the context. For example,
during testing or simulation, it might not be necessary to actually execute the work
items. In this case specialized dummy work item handlers could be used during
testing.

23.4. Service Repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.
Think for example about integration with Twitter, doing file system operations or sending email.
Once such a domain-specific service has been created, you might want to make it available to
other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services
you might need and importing these services into your workspace. These will then automatically
be added to your palette and you can start using them in your processes. You can also import
additional artefacts like for example an icon, any dependencies you might need, a default handler
that will be used to execute the service (although you're always free to override the default, for
example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could
be to a directory in your file system but also a public or private URL) and select the services you
would like to import. For example, in Eclipse, right-click your project that contains your processes
and select "Configure ... -> Import jBPM services ...". This will open up a repository browser. In the
URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository
that hosts some common service implementations out-of-the-box), or use the "..." button to browse
to a folder on your file system. Click the Get button to retrieve the contents of that repository.

443

Chapter 23. Domain-specific P...

& Import services [‘$_<|

LRL: F:Yjbpm-service-repository E]

[=- Comrmunication
Jabber
Email
Twitter

Data

File System

Google

Java
% Java !':

Cther
Service

Automatically add to service configuration file
Automatically add libraries to project
Automatically register handlers

Select the service you would like to import and then click the Import button. Note that the Eclipse
wizard allows you to define whether you would like to automatically configure the service (so
it shows up in the palette of your processes), whether you would also like to download any
dependencies that might be needed for executing the service and/or whether you would like to
automatically register the default handler, so make sure to mark the right checkboxes before
importing your service (if you are unsure what to do, leaving all check boxes marked is probably
best).

After importing your service, (re)open your process diagram and the new service should show up
in your palette and you can start using it in your process. Note that most services also include
documentation on how to use them (e.g. what the different input and output parameters are) when
you select them browsing the service repository.

Click on the image below to see a screencast where we import the twitter service in a new
jBPM project and create a simple process with it that sends an actual tweet. Note that you need
the necessary twitter keys and secrets to be able to programatically send tweets to your twitter
account. How to create these is explained here [http://docs.jboss.org/jbpm/v6.0/repository/Twitter/
], but once you have these, you can just drop them in your project using a simple configuration file.

444

http://docs.jboss.org/jbpm/v6.0/repository/Twitter/
http://docs.jboss.org/jbpm/v6.0/repository/Twitter/

Public jBPM service repository

Allu S Rlad ey]
— - LRL: Fi'ghomr-seniceseposbary an (-4 ot o
- R R R wh o h [o] [t | T i
= Commurcebon - c
E = T MEagam] Tt 3= Cutine L
= E Cral -
2| — -
E 2 swither & Dot fn pufme &b A able,
B moinsn fava # FeSysien
= oomcampe # Gnoayie
F] FrocessTest = Caea
B M sroinai frasounces Xavea
&0 camcde born # Othar
£ B L Fpstem Lbrwry ol 0]| J Soreios
£ B 0P Liorsry
B
[Pl futenaizaly sdd o service configuraton fie
[+ Atomatdzaly add Branes b praject
[#lasmnsazaly eogpter hardem
s
Twitter 1
A servize for tRiRer ENCSSATES, NEHT twittes g, nE v =
|
Eummcim o
Message Stmng | The message that needs o bl:#zt as the taitier status
Resulis
Figure 23.1.

[http://people.redhat.com/kverlaen/twitter-repository.swf]

23.4.1. Public JBPM service repository

We are building a public service repository that contains predefined services that people can use
out-of-the-box if they want to:

http://docs.jboss.org/jbpm/v6.0/repository/

This repository contains some integrations for common services like Twitter integration or file
system operations that you can import. Simply point the import wizard to this URL to start browsing
the repository.

If you have an implementation of a common service that you would like to contribute to the
community, do not hesitate to contact someone from the development team. We are always
looking for contributions to extend our repository.

23.4.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration
file that contains the necessary information (this is an extended version of the normal work

445

http://people.redhat.com/kverlaen/twitter-repository.swf
http://docs.jboss.org/jbpm/v6.0/repository/

Chapter 23. Domain-specific P...

definition configuration file as described earlier in this chapter) and putting the necessary files (like
an icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and
icon), with some additional ones. For example, the following extended configuration file describes
the Twitter integration service (as shown in the screencast above):

i nport org.drools.core. process. core. datatype.inpl.type. StringDat aType;
[

"nane" : "Twitter",
"description" : "Send a twitter nmessage",
"paraneters” : |

"Message" : new StringDataType()
1,
"di spl ayName" : "Twitter",

"eclipse: custonEditor”
"org.drool s. eclipse.flow conmon. editor.editpart.work. Sanpl eCust onEdi t or ",

"icon" : "twitter.gif",
"category" : "Communication",
"defaul tHandl er” : "org.jbpm process.workitemtwitter. TwitterHandl er",
"docunentation" : "index.htm",
"dependenci es" : [

"file:./lib/jbpmtwitter.jar",

“file:./lib/twitter4j-core-2.2.2.jar"

» The icon property should refer to a file with the given file name in the same folder as the
extended configuration file (so it can be downloaded by the import wizard and used in the
process diagrams). lcons should be 16x16 GIF files.

« The category property defines the category this service should be placed under when browsing
the repository.

The defaultHandler property defines the default handler implementation (i.e. the Java class that
implements the Wor ki t enHandl er interface and can be used to execute the service). This can
automatically be registered as the handler for that service when importing the service from the
repository.

» The documentation property defines a documentation file that describes what the service does
and how it works. This property should refer to a HTML file with the given name in the same
folder as the extended configuration file (so it can be shown by the import wizard when browsing
the repository).

446

Setting up your own service repository

» The dependencies property defines additional dependencies that are necessary to execute this
service. This usually includes the handler implementation jar, but could also include additional
external dependencies. These dependencies should also be located on the repository on the
given location (relative to the folder where the extended configuration file is located), so they
can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an i ndex. conf file that references all the folders
that should be processed when searching for services on the repository. Each of those folders
should then contain:

« An extended configuration file with the same name as the folder (e.g. Twi tt er. conf)

« The icon as references in the configuration file

« The documentation as references in the configuration file

» The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains
an i ndex. conf file, that will be used to scan additional sub-folders. Note that the hierarchical
structure of the repository is not shown when browsing the repository using the import wizard, as
the category property in the configuration file is used for that.

447

448

Chapter 24.

Chapter 24. Exception Management

24.1. Overview

This chapter will describe how to deal with unexpected behavior in your business processes using
both BPMN2 and technical mechanisms.

The first section will explain Technical Exceptions: we'll go through an example that uses both
BPMN2 and wer ki t enHandl er implementations in order to isolate and handle exceptions caused
by a technical component. We will also explain how to modify the example to suit other use cases.

The second section will define and explain the types of (BPMN2) exceptions that can happen or
be used in a business process.

24.2. Introduction

What happens to a business process when something unexpected happens during the process?
Most of the time, when creating and designing a new process definition, the first step is to describe
the normative or desirable behaviour. However, a process definition that only describes all of the
normal tasks and their execution order is incomplete.

The next step is to think about what might go wrong when the business process is run. What would
happen if any of the human or technical actors in the process do not respond in unexpexected
ways? Will any of the technical systems that the process interacts with return unexpected results
-- or not return any results at all?

Deviations from the normative or "happy" flow of a business process are called exceptions. In
some cases, exceptions might not be that unusual, such as trying to debit an empty bank account.
However, some processes might contain many complex situations involving exceptions, all of
which must be handled correctly.

@ Note
The rest of chapter assumes that you know how to create custom <t ask> nodes
and how to implement and register Wor ki t enHandl er implementations. More
information about these topics can be found in the
chapter.

24.3.1. Technical Exceptions

Technical exceptions happen when a technical component of a business process acts in an
unexpected way. When using Java based systems, this often results in a literal Java Exception
being thrown by the system.

449

Chapter 24. Exception Management

Technical components used in a process can fail in a way that can not be described using BPMN2.
In this case, it's important to handle these exceptions in expected ways.

The following types of code might throw exceptions:

« Any code that is present in the process definition itself
« Any code that is executed during a process and is not part of jBPM

« Any code that interacts with a technical component outside of the process engine
However, those are somewhat abstract defintions. We can narrow down the places at which an
exception might be thrown. Technical exceptions can occur at the following points:

1. Code present in <script Task> nodes or in the jbpm-specific <onEntry> and <onExi t >
elements

2. Code executed in Wor ki t entHand| er s associated with <t ask> and task-type nodes
It is much easier to ensure correct exception handling for <t ask> and other task-type nodes that
use Wr ki t enHandl er implementations, than for code executed directly in a <scri pt Task>.

Exceptions thrown by <scri pt Task> can cause the process to fail in an unrecoverable fashion.
While there are certain things that you can do to contain the damage, a process that has failed in
this way can not be restarted or otherwise recovered. This also applies for other nodes in a process
definition that contain script code in the node definition, such as the <onEntry> and <onExi t >
elements.

When jBPM engine does throw an exception generated by the code in a <scri pt Task> the
exception thrown is a special Java exception called the Wor kf | owRunt i meExcept i on that contains
information about the process.

Warning

Again, exceptions generated by a <scr i pt Task> node (and other nodes containing
script code) will leave the process unrecoverable. In fact, often, the code that starts
the process itself will end up throwing the exception generated by the business
process, without returning a reference to the process instance.

For this reason, it's important to limit the scope of the code in these nodes to
operations dealing with process variables. Using a <scri pt Task> to interact with
a different technical component, such as a database or web service has significant
risks because any exceptions thrown will corrupt or abort the process.

450

Technical Exceptions

<t ask> nodes, <servi ceTask> nodes and the rest of the t ask-type nodes are
explictly meant for interacting with other systems -- not <scri pt Task> nodes! Use

<t ask>-type nodes to interact with other technical components.

24.3.1.1. Handling exceptions in wrki tenHandl er iInStances

Wor kil t enHandl er classes are used when your process interacts with other technical systems.
For an introduction to them and how to use them in processes, please see the Domain-specific
Processes chapter.

While you can build exception handling into your own Wr kil t emhandl er implementations,
there are also two “handler decorator” classes that you can use to wrap a Wor kil t emhandl er
implementation.

These two wrapper classes include logic that is executed when an exception is thrown during the
execution (or abortion) of a work item.

Table 24.1. Exception Handling werki t emHandl er wWrapper classes

Decorator classes in the Description

org. j bpm bpm2. handl er package

Si gnal | i ngTaskHandl er Decor at or This class wraps an existing
Wor kil t emHandl| er implementation.
When the . execut eWorklten(...)
or.abortWrklten(...) methods
of the original Wor k1 t enHandl er
instance throw an exception, the
Si gnal | i ngTaskHand! er Decor at or will
catch the exception and signal the process
instance using a configurable event type. The
exception thrown will be passed as part of the
event. This functionality can be used to signal
an Event SubProcess defined in the process
definition.

Loggi ngTaskHandl er Decor at or This class reacts to all exceptions thrown
by the . executeWorkliten(...) or
.abortWorklten(...) WrkltenHandl er
methods by logging the errors. It also saves
any exceptions thrown so to an internal list so
that they can be retrieved later for inspection
or further logging. Lastly, the content and
format of the message logged upon an
exception are configurable.

451

Chapter 24. Exception Management

While the two classes described above should cover most cases involving exception handling, a
Java developer with some experience with jBPM should be able to create a Wor ki t enHandl er
that executes custom code upon an exception.

If you do decide to write a custom Wor ki t enHandl er that includes exception handling logic, keep
the following checklist in mind:

1. Are you catching all possible exceptions that you want to (and no more, or less)?

2. Are you making sure to either complete or abort the work item after an exception has been
caught? If not, are there mechanisms to retry the process later? Or are incomplete process
instances acceptable?

3.>
What other actions should be taken when an exception is caught? Do you want to simply log
the exception, or is it also important to interact with other technical systems? Do you want to
trigger a (BPMN2) subprocess that will handle the exception?

Important

When you use the Workltenvanager to signal that the work item
has been completed or aborted, make sure to do that after you've
sent any signals to the process instance. Depending on how you've
defined your process, calling Workl t emvanager . conpl et eWorklten(...) or
Wor ki t emVanager . abor t Wor ki t en(. . .) will trigger the completion of the process
instance. This is because the these methods trigger the jBPM process engine to
continue the process flow.

In the next section, we'll describe an example that uses the Si gnal | i ngTaskHandl er Decor at or
to signal an event subprocess when a work item handler throws an exception.

24.3.2. Technical Exception Examples

24.3.2.1. Example: service task handlers

We'll go through one example in this section, and then look quickly at how you can change it to
get the behavior you want. The example involves an <err or > event that's caught by an (Error)
Event SubProcess.

When an Error Event is thrown, the containing process will be interrupted. This means that after
the process flow attached to the error event has executed, the following will happen:

1. process execution will stop, and no other parts of the process will execute
2. the process instance will end up in an aborted state (instead of completed)

The example we'll go through contains an <err or >, but at the end of the secion, we'll show how
you can change the process to use a <si gnal > instead.

452

Technical Exception Examples

Tip

The code and BPMN2 process definition shown in the next
section are available in the jbpmexanples module. See the
org. j bpm exanpl es. excepti ons. Excepti onHandl i ngEr r or Exanpl e class for
the java code. The BPMN2 process definition is available in the excepti ons/
Except i onHandl i ngW t hEr r or . bprm2 file in the src/ mai n/ r esour ces directory
of the j bpm exanpl es module.

24.3.2.1.1. BPMN2 configuration

Let's look at the BPMN2 process definition first. Besides the definition of the process, the BPMN2
elements defined before the actual process definition are also important. Here's an image of the
BPMN2 process that we'll be using in the example:

Excention Handler

T

Throw
Exception

Handle
Exception
subStart subEnd

Figure 24.1.

The BPMN2 process fragment below is part of the process shown above, and contains some
notes on the different BPMN2 elements.

<itenmDefinition id="_stringltent structureRef="java.lang.String"/> o
<nessage i d="_nessage" itenRef="_stringltent/> 2]
<interface i d="_servicelnterface"

nane="or g. j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_serviceOperation" nane="t hr owExcepti on">

<i nMessageRef >_nessage</ i nMessageRef > 2]
</ oper ati on>
</interface>

453

Chapter 24. Exception Management

<error id="_exception" errorCode="code" structureRef="_exceptionltent/> 3

<i temDefinition i d="_exceptionltent

structureRef ="org. ki e. api . runti me. process D vorkltent/>
<message i d="_excepti onMessage" itenRef="_exceptionltent/> 2
<interface i d="_handl i ngServi cel nterface"
nanme="or g. j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_handl i ngServi ceCperation" name="handl eException">
<i nMessageRef >_except i onMessage</ i nMessageRef >
</ operati on>
</interface>

<process id="ProcessWthExceptionHandlingError" name="Service Process"
i sExecut abl e="true" processType="Private">
<!-- properties -->

=

<property id="servicelnputltent itenSubjectRef="_stringltent/>

'.:

<property i d="exceptionlnputltent itenBubjectRef="_exceptionlteni/>

<!-- main process -->
<startEvent id="_1" name="Start" />
<serviceTask id="_2" nanme="Throw Exception" inplenmentation="Cher"

oper ati onRef =" _servi ceQperation">

<I-- rest of the serviceTask el enent and process definition... -->

<subProcess id="_X" name="Exception Handl er" triggeredByEvent="true" >
<startEvent id="_X-1" nane="subStart">
<dataQut put id="_X-1 Qutput" nane="event"/>
<dat aQut put Associ ati on>
<sour ceRef >_X-1_Qut put </ sour ceRef >

<t ar get Ref >excepti onl nput | t enx/ t ar get Ref >
</ dat aQut put Associ ati on>

<errorEventDefinition id="_X-1_ED 1" errorRef="_exception" />
</startEvent >

<I-- rest of the subprocess definition... -->
</ subPr ocess>

</ process>

f This <itenDefinition> element defines a data structure that we then use in the
servi cel nput | t emproperty in the process.

454

Technical Exception Examples

A This <message> element (1rst reference) defines a message that has a String as its content
(as defined by the <i t enDefi nti on> element on line above). The <i nt erface> element
below it refers to it (2nd reference) in order to define what type of content the service (defined
by the <i nt er f ace>) expects.

© This <error > element (1rst reference) defines an error for use later in the process: an Event
SubProcess is defined that is triggered by this error (2nd reference). The content of the error
is defined by the <i t enDef i nti on> element defined below the <er r or > element.

M This <i tenDefi nti on> element (1rst reference) defines an item that contains a Wr kil t em
instance. The <message> element (2nd reference) then defines a message that uses this item
definition to define its content. The <i nt er f ace> element below that refers to the <nessage>
definition (3rd reference) in order to define the type of content that the service expects.

In the process itself, a <pr opert y> element (4th reference) is defined as having the content
defined by the initial <i t enDefi nti on>. This is helpful because it means that the Event
SubProcess can then store the error it receives in that property (5th reference).

Caution

When you're using a <servi ceTask> to call a Java class, make sure to double
check the class name in your BPMN2 definition! A small typo there can cost you
time later when you're trying to figure out what went wrong.

24.3.2.1.2. si gnal | i ngTaskHandl er Decor at or and wr ki t emHandl er configuration

Now that BPMNZ2 process definition is (hopefully) a little clearer, we can look at how to set up
jBPM to take advantage of the above BPMN2.

In the (BPMNZ2) process definition above, we define two different <servi ceTask> activities.
The org. j bpm bpm2. handl er. Servi ceTaskHandl er class is the default task handler class
used for <servi ceTask> tasks. If you don't specify a Wor kl t enHandl er implementation for a
<servi ceTask>, the Ser vi ceTaskHand! er class will be used.

In the code below, you'll see that we actually wrap or decorate the Ser vi ceTaskHandl er class with
a Si gnal | i ngTaskHandl er Decor at or instance. We do this in order to define the what happens
when the Ser vi ceTaskHandl er throws an exception.

In this case, the ServiceTaskHandl er will throw an exception because it's configured to
call the ExceptionService.throwExcepti on method, which throws an exception. (See the
_handl i ngServi cel nterface <i nt er f ace> element in the BPMN2.)

In the code below, we also configure which (error) event is sent to the process instance
by the Si gnal | i ngTaskHandl er Decor at or instance. The Si gnal | i ngTaskHandl er Decor at or
does this when an exception is thrown in a task. In this case, since we've defined an <er r or > with
the error code “code” in the BPMN2, we set the signal to Err or - code.

455

Chapter 24. Exception Management

Important

When signalling the jBPM process engine with an event of some sort, you should
keep in mind the rules for signalling process events.

 Error events can be signalled by sending an "Error-" + <the er r or Code attribute
value> value to the session.

 Signal events can be signalled by sending the name of the signal to the session.

i mport java.util.HashMap;
i mport java.util.Mp;

i mport org.jbpm bpm2. handl er. Servi ceTaskHandl er;

i mport org.jbpm bpm2. handl er. Si gnal | i ngTaskHandl er Decor at or ;
i mport org.jbpm exanpl es. exceptions. servi ce. Excepti onServi ce;
i mport org. ki e. api . Ki eBase;

i mport org.Kkie.api.io.ResourceType;

i mport org.kie.api.runtinme.Ki eSessi on;

i mport org.kie.api.runtimnme.process. Processl nstance;

i mport org.kie.internal.buil der.Know edgeBui | der;

i mport org.kie.internal.buil der.Know edgeBui | der Fact ory;

i mport org.kie.internal.io.ResourceFactory;

public class ExceptionHandl i ngError Exanpl e {

public static final void main(String[] args) {
runExanpl e() ;

public static Processlnstance runExanple() {
Ki eSessi on ksession = createKi eSession();

String event Type = "Error-code"; o

Si gnal | i ngTaskHandl er Decor at or si gnal | i ngTaskW apper 2]
= new Si gnal | i ngTaskHandl er Decor at or (Ser vi ceTaskHandl| er. cl ass, event Type);

si gnal | i ngTaskW apper . set Wr kl t enExcept i onPar anet er Nane(Except i onSer vi cDe. except i onPar
ksessi on. get Wor kl t emvanager () . r egi st er Wor kl t enHandl er (" Servi ce
Task", signallingTaskW apper);

Map<String, Object> parans = new HashMap<String, Object>();
parans. put ("servicelnputltent, "lInput to Oiginal Service");
Processl nstance processlnstance = ksession. startProcess("ProcessWthExcepti onHandl i ngEr

456

Technical Exception Examples

return processlnstance;

private static Ki eSession createKieSession() {
Knowl edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce(" excepti ons/
Excepti onHandl i ngW t hError. bprm2"), ResourceType. BPM\2) ;
Ki eBase kbase = kbui |l der. newkKnow edgeBase() ;
return kbase. newKi eSessi on();

© Here we define the name of the event that will be sent to the process instance if the wrapped
Wor ki t emHandl er implementation throws an exception. The event Type string is used when
instantiating the Si gnal | i ngTaskHandl er Decor at or class.

» Thenwe construct aninstance of the Si gnal | i ngTaskHandl er Decor at or class. In this case,
we simply give it the class name of the Wor ki t enHandl er implementation class to instantiate,
but another constructor is available that we can pass an instance of a Wor k! t enHandl er
implementation to (necessary if the Wor ki t enHandl er implementation does not have a no-
argument constructor).

S When an exception is thrown by the wrapped WorkltenHandl er, the
Si gnal | i ngTaskHandl er Decor at or saves it as a parameter in the Wor kl t eminstance with
a parameter name that we configure the Si gnal | i ngTaskHandl er Decor at or to give it (see
the code below for the Except i onSer vi ce).

24.3.2.1.3. Excepti onServi ce Setup and configuration

In the BPMN2 process definition above, a service interface is defined that references the
Excepti onServi ce class:

<interface id="_handlingServicelnterface" nane="org.jbpm exanpl es. excepti ons. servi ce. Excepti on¢
<operation id="_handlingServi ceOperation" name="handl eException">

In order to fill in the blanks a little bit, the code for the Except i onSer vi ce class has been included
below. In general, you can specify any Java class with the default or an other no-argument
constructor and have it executed during a <ser vi ceTask>

public class ExceptionService {
public static String exceptionParaneterName = "ny. exception. paranet er. nane";

public void handl eExcepti on(Wrkltem workltem {

457

Chapter 24. Exception Management

Systemout.println("Handling exception caused by work item
+ workltemget Nane() + "' (id: " + workltemgetld() + ")");

Map<String, Object> parans = workltem get Paraneters();

Thr owabl e t hrowabl e = (Throwabl e) parans. get (excepti onPar anet er Nane) ;
t hrowabl e. pri nt St ackTrace() ;

public String throwException(String nessage) {
t hrow new Runti neException("Service failed with input: " + nmessage);

public static void set ExceptionParaneterNane(String excepti onParam {
excepti onPar anet er Nane = excepti onParam

24.3.2.1.4. Changing the example to use a <si gnal >

In the example above, the thrown Error Event interrupts the process: no other flows or activities
are executed once the Error Event has been thrown.

However, when a Signal Event is processed, the process will continue after the Signal Event
SubProcess (or whatever other activities that the Signal Event triggers) has been executed.
Furthermore, this implies that the the process will not end up in an aborted state, unlike a process
that throws an Error Event.

In the process above, we use the <err or > element in order to be able to use an Error Event:

<error id="_exception" errorCode="code" structureRef="_exceptionlteni/>

When we want to use a Signal Event instead, we remove that line and use a <si gnal > element:

<signal id="exception-signal" structureRef="_exceptionltent/>

However, we must also change all references to the "_excepti on" <er r or > so that they now refer
to the "except i on- si gnal " <si gnal >.

That means that the <er r or Event Def i nti on> element in the <st art Event >,

<errorEventDefinition id="_X-1_ED 1" errorRef="_exception" />

458

Technical Exception Examples

must be changed to a <si gnal Event Def i nti on> which would like like this:

<si gnal EventDefinition id="_X-1_ED 1" signal Ref ="excepti on-si gnal"/>

In short, we have to make the following changes to the <st art Event > in the Event SubProcess:

1. It will now contain a <si gnal Event Def i nti on> instead of a <err or Event Def i nti on>

2. The errorRef attribute in the <erroEvent Defi nti on> is now a si gnal Ref attribute in the

<si gnal Event Defi nti on>.

3. The i d attribute in the si gnal Ref is of course now the id of the <si gnal > element. Before it
was id of <err or > element.

4. Lastly, when we signal the process in the Java code, we do not signal "Er r or - code" but simply
"exception-si gnal ", the i d of the <si gnal > element.

24.3.2.2. Example: logging exceptions thrown by bad <scri pt Task>
nodes

In this section, we'll briefly describe what's possible when dealing with <scri pt Task> nodes that
throw exceptions, and then quickly go through an example (also available in the j bpm exanpl es
module) that illustrates this.

24.3.2.2.1. Introduction

If you're reading this, then you probably already have a problem: you're either expecting to run into
this problem because there are scripts in your process definition that might throw an exception,
or you're already running a process instance with scripts that are causing a problem.

Unfortunately, if you're running into this problem, then there is not much you can do. The only
thing that you can do is retrieve more information about exactly what's causing the problem.
Luckily, when a <scri pt Task> node causes an exception, the exception is then wrapped in a
Wor kf | owRunt i meExcepti on.

What type of information is available? The Wor kf | owRunt i neExcept i on instance will contain the
information outlined in the following table. All of the fields listed are available via the normal get *
methods.

Table 24.2. Information contained in wer kf | owRunt i neExcept i on instances.

Field name Description

processl nst ancel d | ong The id of the
Processl nst ance instance in

459

Chapter 24. Exception Management

Field name

Type Description
which the exception occurred.
This Processl nst ance may
not exist anymore or be
available in the database if
using persistence!

processld

nodel d

String The id of the process
definition that was used
to start the process (i.e.
"ExceptionScri pt Task" in

ksessi on. start Process("ExceptionScri pt Tasl

)

| ong The value of the (BPMN2)
id attribute of the node that
threw the exception.

nodeNanme

String The value of the (BPMN2)
name attribute of the node
that threw the exception.

vari abl es

nmessage

Map<String, oject> The map containing the
variables in the process
instance (experimental).

String The short message indicating
what went wrong.

cause

Thr owabl e The original exception that
was thrown.

24.3.2.2.2. Example: Exceptions thrown by a <scri pt Task>.

The following code illustrates how to extract extra information from a process instance that throws
a Wor kf | owRunt i meExcept i on exception instance.

i nport
i mport
i mport
i mport
i nport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.

j bpm wor kf | ow. i nst ance. Wor kf | owRunt i mneExcepti on;
e. api . Ki eBase;

ki
ki
ki
ki
ki
ki
ki

® ® ® ® ® @

.api .io. ResourceType;
.api .runtinme. Ki eSessi on;

api . runti ne. process. Processl nst ance;

.internal.buil der. Know edgeBui | der;
.internal.buil der. Know edgeBui | der Fact ory;
.internal.io.ResourceFactory;

460

Business Exceptions

public class ScriptTaskExcepti onExanpl e {

[

public static final void main(String[] args) {
runExanpl e();

public static void runExanpl e() {
Ki eSessi on ksession = createKi eSession();
Map<String, Object> parans = new HashMap<String, Object>();

String varNane = "varl";
par anms. put (varNane , "val ueOne");
try {

Processl nst ance processlnstance = ksession.startProcess("ExceptionScri pt Task",
} catch(Workfl owRunti neException wre) {
String msg = "An exception happened in "
+ "process instance [" + wre.getProcesslnstancel d()
+ "] of process [" + wfre.getProcessld()
+ "] in node [id: " + wfre.getNodeld()
+ ", name: " + wire.get NodeNane()
+ "] and variable " + varNanme + " had the value
+ wfre.getVariabl es(). get (var Nane)
L

System out . println(nsg);

private static Ki eSession createKieSession() {
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce(" excepti ons/

Scri pt TaskExcepti on. bprm2"), Resour ceType. BPM\2) ;

Ki eBase kbase = kbui |l der. newkKnow edgeBase() ;
return kbase. newKi eSessi on();

24.4.1. Business Exceptions

Business Exceptions are exceptions that are designed and managed in the BPMN2 specification
of a business process. In other words, Business Exceptions are exceptions which happen at the
process or workflow level, and are not related to the technical components.

Many of the elements in BPMN2 related to Business Exceptions are related to Compensation and
Business Transactions. Compensation, in particular, is complexer than many other parts of the
BPMN2 specfication.

461

par

Chapter 24. Exception Management

Full support for compensation and business transactions is expected with the release of jBPM 6.1
or 6.2. Once that has been implemented, this section will contain more information about using
those BPMN2 features with jBPM.

24.4.1.1. Business Exceptions elements in BPMN2

The following attempts to briefly describe Compensation and Business Transaction related
elements in BPMNZ2. For more complete information about these elements and their uses, see the
BPMN2 specification, Bruce Silver's book BPMN Met hod and Styl e or any of the other available
books about the use of BPMNZ2.

Table 24.3. BPMN2 Exception Handling Elements

BPMN2 Element types Description

Errors Error Events can be used to signal when a
process has encountered an unexpected
situation: signalling an error is often called
throwing an error.

Boundary Error Events in a different part of
the process can then be used to catch the
error and initiate a sequence of activities to
handle the exception.

Errors themselves can be extended with extra
information that is passed from the throwing
to catching event. This is done with the use of
an Item Definition.

Compensation Exception handling activities associated with
the normal activies in a Business Transaction
are triggered by Compensation Events.

There are 3 types of compensation events:
Intermediate (a.k.a. Boundary) (catch) events,
Start (catch) events, and Intermediate or End
(throw) events.

Compensation Boundary (catch) events may
only be attached to activites (e.g. tasks) that
could cause an exception. These Boundary
events are then associated (not linked!) with
a Task that will be executed if the Boundary
event catches a (thrown) Compensation
signal.

Start (catch) events are used when defining
an Compensation Event SubProcess, which

462

Business Exceptions

BPMN2 Element types Description

requires them in order to be able to catch a
(thrown) Compensation signal.

Compensation Intermediate and End events
are used in order to throw Compensation
Events. These events often follow decision
nodes that determine whether the workflow
executed up to that point has succeeded.

If not, the path including the Intermediate

or End Event is chosen in order to trigger
Compensatoin for the activities that did not
succeed.

BPMNZ2 contains a number of constructs to model exceptions in business processes. There are
several advantages to doing exception handling at the business process level (as opposed to
handling it with code):

e Transparency

» Being able to quickly see what happens in exceptional situations means that the results and
performance of a process is more easily monitored and measured.

« It also increases how easily a process can be implemented as well as how maintainable a
process definition is.

« Business Logic Isolation

» Again, the idea behind using a business process is to isolate the business logic from the
technical code. This simplifies the complexity of the system and increases how quickly you
can create new business processes and change existing ones.

» Implementing exception handling at a technical level often takes more time because it's often
complexer and specific to a system.

24.4.1.2. Designing a workflow with Business Exceptions

Where are business exceptions likely to occur? There is academic research on this, but some
possible examples are:

* When an interaction with an external party or 3rd party system does not go as planned

« When you can not fully check the the input data in your process (like a client's address
information, for example)

« In general, if there are parts of your process that are particularly dependent on one of the
following, a business exception will be a good idea:

463

Chapter 24. Exception Management

» Company policy or policy governing certain (in-house) procedures

» Laws governing the business process (such as age requirements, for example)

464

Chapter 25.

Chapter 25. Flexible Processes

Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be
a growing need amongst end users for more flexible and adaptive business processes, without
ending up with overly complex solutions. Everyone seems to agree that using a process-centric
approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge
workers" no longer want to be locked into rigid processes but wants to have the power and flexibility
to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition
of what it might or might not mean, as this has been a hot topic for discussion, it refers to the
basic idea that many applications in the real world cannot really be described completely from
start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes
a different approach: instead of trying to model what should happen from start to finish, let's give
the end user the flexibility to decide what should happen at runtime. In its most extreme form for
example, case management doesn't even require any process definition at all. Whenever a new
case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where
care plans can be used to describe how patients should be treated in specific circumstances,
but people like general practitioners still need to have the flexibility to add additional steps and
deviate from the proposed plan, as each case is unique. And there are similar examples in claim
management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we
don't model any process up front), you still need a lot of the other features a BPM system (usually)
provides: there still is a clear need for audit logs, monitoring, coordinating various services,
human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are
somewhere in between, or might even evolve from case management to more structured business
process over time (when we for example try to extract common approaches from many cases).
If we can offer flexibility as part of our processes, can't we let the users decide how and where
they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your
processes. The first example shows a care plan that shows the tasks that should be performed
when a patient has high blood pressure. While a large part of the process is still well-structured,
the general practitioner can decide himself which tasks should be performed as part of the sub-
process. And he also has the ability to add new tasks during that period, tasks that were not
defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc
sub-process to model this kind of flexibility, possibly augmented with rules or event processing to
help in deciding which fragments to execute.

465

Chapter 25. Flexible Processes

AR Sl PV

| B Moaors SP | |

.

| i Mt HFI]
R -6
[.';lﬂmbﬂ'hﬂ:l—{ mm_,-;g{—.@
i -\\‘ _{

@

'

®

Figure 25.1. Healthcare: high blood pressure

The second example actually goes a lot further than that. In this example, an internet provider
could define how cases about internet connectivity problems will be handled by the internet
provider. There are a number of actions the case worker can select from, but those are simply
small process fragments. The case worker is responsible for selecting what to do next and can
even add new tasks dynamically. As you can see, there is not process from start to finish anymore,
but the user is responsible for selecting which process fragments to execute.

O —{ Crieabe Probdem E.:ne]

I Update Probilem Descrp‘ﬂun]

[f}l Parfamm Systerm Chagrostics]—{Aﬂ.ﬂy’!ﬂ- DHagrastics Hﬁl Rledpnel ﬂlaqnnwr.s]

B Comtact Cursman

—@®
*\ Sokvid
[S Request Techaician J—-[I Technician Vs }—b®
: \—{ | Uipdate CaseJ—-[i Folow LlpJ
Chose Case @

O _..I % Escalate Case | @

Figure 25.2. Telecom: process fragments

466

And in its most extreme form, we even allow you to create case instances without a process
definition, where what needs to be performed is selected purely at runtime. This however doesn't
mean you can't figure out anymore what 's actually happening. For example, meetings can be
very adhoc and dynamic, but we usually want a log of what was actually discussed. The following
screenshot shows how our regular audit view can still be used in this case, and the end user
could then for example get a lot more info about what actually happened by looking at the data
associated with each of those steps. And maybe, over time, we can even automate part of that
by using a semi-structured process.

— = started: Company Meeting
= 4] List Attendees
#1 Agenda Overview

#] Agenda Topic: New Hires

+#] Agenda Topic: Customer Feedback
] Agenda Topic Moved to Next Meeting: Company Party

] Questions?

=] Question: Fix Problems with Coffee Machine?

=«_ completed: Company Meeting

Figure 25.3. Audit log for dynamic case

467

468

Chapter 26.

Chapter 26. Concurrency and
asynchronous execution

26.1. Concurrency

In the following text, we will refer to two types of "multi-threading”: logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement
brings with it a number of complications. While it might seem that multi-threading would bring
performance benefits with it, the extra logic needed to make sure the different threads work
together well means that this is not guaranteed. There is also the extra overhead incurred because
we need to avoid race conditions and deadlocks.

26.1.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread.sleep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
completeWorkltem(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

469

Chapter 26. Concurrency and a...

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

26.1.2. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session.
However, there are cases in which it's necessary to run multiple processes in different knowledge
sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple
knowledge sessions (and processes), there is a guideline that users should be aware of. The
following paragraphs explain why this guideline is important to follow.

Tip
@

Please make sure to use a database that allows row-level locks as well as table-
level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each
with its own knowledge session instance. On each thread, jBPM processes are being started using
the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally
simultaneously finished a process. At this point, because persistence is being used, both thread
A and B will be commiting changes to the databse. If row-level locks are not possible, then the
following situation can occur;

» Thread A has a lock on the Processinstancelnfo table, having just committed a change to that
table.

« Thread A wants a lock on the Sessioninfo table in order to commit a change there.

» Thread B has the opposite situation: it has a lock on the Sessioninfo table, having just committed
a change there.

« Thread B wants a lock on the Processinstancelnfo table, even though Thread A already has
alock on it.

This is a deadlock situation which the database and application will not be able to solve. However,
if row-level locks are posible (and enabled!) in the database (and tables used), then this situation
will not occur.

470

Asynchronous execution

26.2. Asynchronous execution

26.2.1. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the
technology you're using. If you're only using Java, you could execute the actual service in a new
thread:

public class MyServi ceTaskHandl er inplements WorkltenHandl er {

public void execut eWrkltem(Wrkltem workltem Wrkltenmvanager nanager) {
new Thr ead(new Runnabl e() {
public void run() {
/1l Do the heavy lifting here ...

}
}).start();

public void abortWrkltenm(Wrkltem workltem Wrkltemvanager manager) {
}

It's advisable to have your handler contact a service that executes the business operation, instead
of having it perform the actual work. If anything goes wrong with a business operation, it doesn't
affect your process. The loose coupling that this provides also gives you greater flexibility in
reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to
add a task there. To implement an asynchronous handler, you usually have to simply do an
asynchronous invocation of this service. This usually depends on the technology you use to do
the communication, but this might be as simple as asynchronously invoking a web service, or
sending a JMS message to the external service.

26.2.2. jbpm executor

In version 6, jBPM introduces new component called jbpm executor which provides quite
advanced features for asynchronous execution. It delivers generic environment for background
execution of commands. Commands are nothing more than business logic encapsulated within
simple interface. It does not have any process runtime related information, that means no need
to complete work items, or anything of that sort. It purely focuses on the business logic to
be executed. It receives data via CommandContext and returns results of the execution with
ExecutionResults.

Before looking into details on jBPM support for asynchronous execution let's look at what are the
common requirements for such execution:

471

Chapter 26. Concurrency and a...

« allows asynchronous execution of given piece of business logic

« allows to retry in case of resources are temporarily unavailable e.g. external system interaction
- allows to handle errors in case all retries have been attempted

* provides cancelation option

« provides history log of execution

When confronting these requirements with the "simple async handler" (exeucted as separate
thread) you can directly notice that all of these would need to be implemented all over again by
different systems. Due to that a common, generic component has been provided out of the box
to simplify and empower usage.

jBPM executor operates on commands, which are essential piece of code that is going to be
executed as background job.

/**

* Executor's Command are dedicated to contain purely business |ogic that should be executed.
* |t should not have any reference to underlying process engine and should not be concerned
* with any process runtinme related | ogic such us conpleting work item sending signals, etc.
*

* Information that are taken from process will be delivered as part of data instance of
* <code>CommandCont ext </
code>. Dependi ng on the execution context that data can vary but
* in nost of the cases following will be given:
*

*o</Ii>

* <|i>businessKey - usually unique identifier of the caller

* <l i >cal | backs - FQCN of t he <code>ConmandCol | back</
code> that shall be used on command conpl etion
* <ful >

* When executed as part of the process (work item handler) additional data can be expected:

*

* <|li>workltem- theactual workitemthat i sbeingexecutedwithall it'sparaneters</

li>

* <|i>processlnstanceld - id of the process instance that triggered this work</

li>

* deploynmentld - if given process instance is part of an active depl oynent </

li>

* <ful >

* | nportant note about inplenmentations is that it shall always be possible to be initialized \
* as executor service is an async conmponent so it will initialize the command on demand using
* In case there is a heavy logic on initialization it should be placed in another service inpl
* can be | ooked up fromw thin command.

*/

public interface Command {

472

jbpm executor

/**

* Executed this command' s | ogic.

* ctx - contextual data given by the executor service
* returns any results in case of successful execution
* Exception in case execution failed and shall be retried if possible

*
/
publ i c ExecutionResults execut e(CormandCont ext ctx) throws Exception;

Looking at the interface above, there is no specific integration with the jBPM runtime engine, it's
decoupled from it to put main focus on the actual logic that shall be executed as part of that
command rather to worry about integration with process engine. This design promotes reuse of
already existing logic by simply wrapping it with Command implementation.

Input data is transferred from process engine to command via CommandContext. It acts purely
as data transfer object and puts single requirement on the data it holds - all objects must be
serializable.

/**
* Data holder for any contextual data that shall be given to the command upon executi on.

* | nportant note that every object that is added to the data contai ner nust be serializable
* meaning it must inplenment <code>java.io. Seriazliabl e</code>

*
*/
public class CommandContext inplenents Serializable {

private static final |ong serial VersionU D = -1440017934399413860L;
private Map<String, OCbject> data;

publ i ¢ CommandContext () {

data = new HashMap<String, Object>();

publ i ¢ CommandCont ext (Map<String, Object> data) {
this.data = data;

public void set Data(Map<String, bject> data) {
this.data = data;

public Map<String, Object> getData() {
return data;

public Object getData(String key) {
return data. get (key);

473

Chapter 26. Concurrency and a...

public void setData(String key, Object value) {
dat a. put (key, val ue);

public Set<String> keySet () {
return data. keySet ();

@verride
public String toString() {
return "CommandContext{" + "data=" + data + '}';

Next outcome is provided to process engine via ExecutionResults, which is very similar in nature
to the CommandContext and acts as data transfer object.

/‘k*

* Data holder for command's result data. Watever command produces shoul d be placed in
* this results so they can be later on referenced by nanme by the requester - e.g. process inst

*
*/
public class Executi onResults inplenents Serializable {

private static final |ong serial VersionU D = -1738336024526084091L;
private Map<String, OCbject> data = new HashMap<String, Object>();

publ i ¢ ExecutionResul ts() {
}

public void setData(Mp<String, Object> data) {
this.data = data;

public Map<String, Object> getData() {
return data;

public Object getData(String key) {
return data. get (key);

public void setData(String key, Object value) {
dat a. put (key, val ue);

474

jbpm executor

public Set<String> keySet () {
return data. keySet ();

@verride
public String toString() {
return "ExecutionResults{" + "data=" + data + '}"';

Executor covers all requirements listed above and provides user interface as part of jopm console
and kie workbench (kie-wb) applications.

e bt aran Eoun oy BTt

Figure 26.1.

Above screenshot illustrates history view of executor's job queue. As can be seen on it there are
several options available:

 view details of the job

 cancel given job

 create new job

26.2.2.1. WorkltemHandler backed with jopm executor

jBPM (again in version 6) provides an out of the box async work item handler that is backed by the
jbpm executor. So by default all features that executor delivers will be available for background
execution within process instance. AsyncWorkltemHandler can be configured in two ways:

« as generic handler that expects to get the command name as part of work item parameters

« as specific handler for given type of work item - for example web service

Option 1 is by default configured for jopm console and kie-wb web applications and is registered
under async name in every ksession that is bootstrapped within the applications. So whenever

475

Chapter 26. Concurrency and a...

there is a need to execute some logic asynchronously following needs to be done at modeling
time (using jbpm web designer):

« specify async as TaskName property
 create data input called CommandClass
« assign fully qualified class name for the CommandClass data input

Next follow regular way to complete process modeling. Note that all data inputs will be transferred
to executor so they must be serializable.

Second option allows to register different instances of AsyncWorkltemHandler for different work
items. Since it's registered for dedicated work item most likely the command will be dedicated
to that work item as well. If so CommandClass can be specified on registration time instead of
requiring it to be set as work item parameters. To register such handlers for jopm console or kie-
wb additional class is required to inform what shall be registered. A CDI bean that implements
WorkltemHandlerProducer interface needs to be provided and placed on the application classpath
so CDI container will be able to find it. Then at modeling time TaskName property needs to be
aligned with those used at registration time.

26.2.2.2. Configuration

jbpm executor is configurable to allow fine tunning of its environment. In general jbpm executor
runs as a thread pool that periodically checks for waiting jobs and executes them when needed.
Configuration of jopm executor is done via system properties:

 org.kie.executor.disabled = true|false - allows to completely disable executor component

* org.kie.executor.pool.size = Integer - allows to specify thread pool size where default it 1

« org.kie.executor.retry.count = Integer - allows to specify number of retries in case of errors while
running a job

* org.kie.executor.interval = Integer - allows to specify interval (in seconds) that executor will use
while checking for waiting jobs where default is 3 seconds

476

	jBPM Documentation
	Table of Contents
	
	Part I.
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Getting Involved
	1.2.1. Sign up to jboss.org
	1.2.2. Sign the Contributor Agreement
	1.2.3. Submitting issues via JIRA
	1.2.4. Fork Github
	1.2.5. Writing Tests
	1.2.6. Commit with Correct Conventions
	1.2.7. Submit Pull Requests

	1.3. Installation and Setup (Core and IDE)
	1.3.1. Installing and using
	1.3.1.1. Dependencies and jars
	1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or ANT
	1.3.1.3. Runtime
	1.3.1.4. Installing IDE (Rule Workbench)
	1.3.1.4.1. Installing GEF (a required dependency)
	1.3.1.4.2. Installing GEF from zip file
	1.3.1.4.3. Installing Drools plug-in from zip file
	1.3.1.4.4. Drools Runtimes
	1.3.1.4.4.1. Defining a Drools runtime
	1.3.1.4.4.2. Selecting a runtime for your Drools project

	1.3.2. Building from source
	1.3.2.1. Getting the sources
	1.3.2.2. Building the sources

	1.3.3. Eclipse
	1.3.3.1. Importing Eclipse Projects

	Chapter 2. Release Notes
	2.1. New and Noteworthy in KIE API 6.0.0
	2.1.1. New KIE name
	2.1.2. Maven aligned projects and modules and Maven Deployment
	2.1.3. Configuration and convention based projects
	2.1.4. KieBase Inclusion
	2.1.5. KieModules, KieContainer and KIE-CI
	2.1.6. KieScanner
	2.1.7. Hierarchical ClassLoader
	2.1.8. Legacy API Adapter
	2.1.9. KIE Documentation

	2.2. New and Noteworthy in jBPM 6.0.0
	2.2.1. KIE api
	2.2.2. jBPM Core Engine
	2.2.3. jBPM Designer
	2.2.4. jBPM Data Modeler
	2.2.5. Form Modeler
	2.2.6. jBPM Console
	2.2.7. BAM / Reporting
	2.2.8. Workbench
	2.2.9. Remote API

	2.3. New and Noteworthy in KIE Workbench 6.0.0
	2.4. New and Noteworthy in Integration 6.0.0
	2.4.1. CDI
	2.4.2. Spring
	2.4.3. Aries Blueprints
	2.4.4. OSGi Ready

	Part II. Getting Started
	Chapter 3. Overview
	3.1. What is jBPM?
	3.2. Overview
	3.3. Core Engine
	3.4. Process Designer
	3.5. Data Modeler
	3.6. Form Modeler
	3.7. Process Instance and Task Management
	3.8. Business Activity Monitoring
	3.9. Workbench
	3.10. Eclipse Developer Tools

	Chapter 4. Getting Started
	4.1. Downloads
	4.2. Getting Started
	4.3. Community
	4.4. Sources
	4.4.1. License
	4.4.2. Source code
	4.4.3. Building from source

	4.5. What to do if I encounter problems or have questions?

	Chapter 5. jBPM Installer
	5.1. Prerequisites
	5.2. Downloading the Installer
	5.3. Demo Setup
	5.4. 10-Minute Tutorial using the Workbench
	5.5. 10-Minute Tutorial using Eclipse
	5.6. Configuration
	5.6.1. Playgrounds
	5.6.2. Workbench Authentication
	5.6.3. Using your own database
	5.6.3.1. Introduction
	5.6.3.2. Database setup
	5.6.3.3. Configuration
	5.6.3.4. Using a different database

	5.6.4. jBPM data base schema scripts (DDL scripts)
	5.6.5. jBPM installer script

	5.7. Frequently Asked Questions

	Chapter 6. Examples
	6.1. Introduction
	6.2. Human Resources Example
	6.2.1. The KIE Project: human-resources
	6.2.2. Building the Human Resources Example
	6.2.3. Create a new Process Instance

	6.3. Examples zip

	Part III. jBPM Core
	Chapter 7. Core Engine API
	7.1. Overview
	7.2. KieBase
	7.3. KieSession
	7.3.1. ProcessRuntime
	7.3.2. Event Listeners
	7.3.3. Correlation Keys
	7.3.4. Threads

	7.4. RuntimeManager
	7.4.1. Overview
	7.4.2. Strategies
	7.4.3. Usage
	7.4.3.1. Example

	7.4.4. Configuration
	7.4.4.1. Building RuntimeEnvironment
	7.4.4.2. Registering handlers and listeners
	7.4.4.2.1. Registering handlers and listeners in CDI environment

	7.5. Configuration

	Chapter 8. Processes
	8.1. What is BPMN 2.0
	8.2. Process
	8.2.1. Creating a process
	8.2.1.1. Using the graphical BPMN2 Editor
	8.2.1.2. Defining processes using XML
	8.2.1.3. Details: Process properties

	8.3. Activities
	8.3.1. Script task
	8.3.2. Service task
	8.3.3. User task
	8.3.4. Reusable sub-process
	8.3.5. Business rule task
	8.3.6. Embedded sub-process
	8.3.7. Multi-instance sub-process

	8.4. Events
	8.4.1. Start event
	8.4.2. End events
	8.4.2.1. End event
	8.4.2.2. Throwing error event

	8.4.3. Intermediate events
	8.4.3.1. Catching timer event
	8.4.3.2. Catching signal event

	8.5. Gateways
	8.5.1. Diverging gateway
	8.5.2. Converging gateway

	8.6. Others
	8.6.1. Variables
	8.6.2. Scripts
	8.6.3. Constraints
	8.6.4. Timers
	8.6.4.1. Configure timer with delay and period
	8.6.4.2. Configure timer ISO-8601 date format
	8.6.4.3. Configure timer with process variables

	8.7. Process Fluent API
	8.7.1. Example

	8.8. Testing
	8.8.1. Unit testing
	8.8.1.1. Testing integration with external services
	8.8.1.2. Configuring persistence

	Chapter 9. Human Tasks
	9.1. Introduction
	9.2. Using User Tasks in our Processes
	9.3. Data Mappings
	9.4. Task Lifecycle
	9.5. Task Service and The Process Engine
	9.6. Task Service API
	9.7. Interacting with the Task Service

	Chapter 10. Persistence and Transactions
	10.1. Process Instance State
	10.1.1. Runtime State
	10.1.1.1. Binary Persistence
	10.1.1.2. Safe Points

	10.2. Audit Log
	10.2.1. The jBPM Audit data model
	10.2.2. Storing Process Events in a Database
	10.2.3. Storing Process Events in a JMS queue for further processing

	10.3. Transactions
	10.3.1. Container managed transaction
	10.3.1.1. CMT dispose ksession command

	10.4. Configuration
	10.4.1. Adding dependencies
	10.4.2. Manually configuring the engine to use persistence
	10.4.3. Configuring the engine to use persistence using JBPMHelper - for tests only

	Part IV. Workbench
	Chapter 11. Workbench
	11.1. Installation
	11.1.1. War installation
	11.1.2. Workbench data
	11.1.3. System properties

	11.2. Quick Start
	11.2.1. Add repository
	11.2.2. Add project
	11.2.3. Define Data Model
	11.2.4. Define Rule
	11.2.5. Build and Deploy

	11.3. Configuration
	11.3.1. User management
	11.3.2. Roles
	11.3.2.1. Admin
	11.3.2.2. Analyst
	11.3.2.3. Developer
	11.3.2.4. Business user
	11.3.2.5. Manager/Viewer-only User

	11.3.3. Command line config tool
	11.3.3.1. Modes
	11.3.3.2. Available Commands
	11.3.3.3. How to use

	11.4. Administration
	11.4.1. Administration overview
	11.4.2. Organizational unit
	11.4.3. VFS repository

	11.5. Introduction
	11.5.1. Log in and log out
	11.5.2. Home screen
	11.5.3. Workbench concepts
	11.5.4. Initial layout

	11.6. Changing the layout
	11.6.1. Resizing
	11.6.2. Repositioning

	11.7. Authoring
	11.7.1. Artifact Repository
	11.7.2. Asset Editor
	11.7.3. Project Explorer
	11.7.3.1. Initial view
	11.7.3.2. Different views
	11.7.3.2.1. Project View examples
	11.7.3.2.2. Repository View examples

	11.7.4. Project Editor
	11.7.4.1. Build & Deploy
	11.7.4.2. Project Settings
	11.7.4.2.1. Project General Settings
	11.7.4.2.2. Dependencies
	11.7.4.2.3. Metadata

	11.7.4.3. Knowledge Base Settings
	11.7.4.3.1. Knowledge bases and sessions
	11.7.4.3.1.1. Knowledge base list
	11.7.4.3.1.2. Knowledge base properties
	11.7.4.3.1.3. Knowledge sessions

	11.7.4.3.2. Metadata

	11.7.4.4. Imports
	11.7.4.4.1. Import Suggestions
	11.7.4.4.2. Metadata

	11.7.5. Validation
	11.7.5.1. Problem Panel
	11.7.5.2. On demand validation

	11.7.6. Data Modeller
	11.7.6.1. First steps to create a data model
	11.7.6.2. Entities
	11.7.6.3. Properties & relationships
	11.7.6.4. Additional options
	11.7.6.4.1. Additional entity properties ("Data object tab")
	11.7.6.4.2. Additional field properties ("Field tab")

	11.7.6.5. Generate data model code.
	11.7.6.6. Using external models
	11.7.6.6.1. Dependency to a JAR file in local M2 repository
	11.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	11.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	11.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	11.7.6.6.1.4. Save the project to update its dependencies.

	11.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	11.7.6.6.2.1. Open the Maven Artifact Repository editor.
	11.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	11.7.6.6.2.3. Upload the file using the Upload button.
	11.7.6.6.2.4. Guvnor M2 repository files.
	11.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	11.7.6.6.2.6. Add dependency from repository.

	11.7.6.6.3. Using the external objects

	11.7.6.7. External changes to models
	11.7.6.7.1. No changes have been undertaken through the application
	11.7.6.7.2. Changes have been undertaken through the application

	11.7.7. Categories Editor
	11.7.7.1. Launching the Categories Editor
	11.7.7.2. Managing Categories
	11.7.7.3. Adding Categories to assets

	Chapter 12. Workbench Integration
	12.1. REST
	12.1.1. Job calls
	12.1.2. Repository calls
	12.1.3. Organizational unit calls
	12.1.4. Maven calls

	Chapter 13. Workbench High Availability
	13.1.
	13.1.1. VFS clustering
	13.1.2. jBPM clustering

	Chapter 14. Designer
	14.1. Designer UI Explained
	14.2. Getting started with Modelling
	14.3. Designer Toolbar

	Chapter 15. Form Modeler
	15.1. Configure process and human tasks
	15.2. Generate forms from task definitions
	15.3. Edit forms
	15.3.1. Form generated description
	15.3.2. Customizing form
	15.3.2.1. Moving fields
	15.3.2.2. Adding new fields
	15.3.2.3. Field configuration
	15.3.2.3.1. Generic field properties
	15.3.2.3.2. Specific field properties
	15.3.2.3.3. Complex Fields Configuration
	15.3.2.3.3.1. Simple Object (Subform field Type)
	15.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

	15.3.2.3.4. Formulas

	15.3.2.4. Customizing form layout

	15.3.3. Field types
	15.3.3.1. Custom Field Types
	15.3.3.1.1. How to create Custom Field Types
	15.3.3.1.2. Configuring and using Custom Field Types

	Chapter 16. Runtime Management
	16.1. Deployments
	16.1.1. Deployment Units List

	16.2. Jobs

	Chapter 17. Process and Task Management
	17.1. Process Management
	17.1.1. Process Definitions
	17.1.1.1. The Process Definition List
	17.1.1.2. The Process Definition Details
	17.1.1.3. Creating Process Instances

	17.2. Tasks
	17.2.1. Task List
	17.2.1.1. Task List (Personal and Group Tasks)
	17.2.1.1.1. Task List (Grid View)
	17.2.1.1.2. Task List (Calendar View)

	17.2.1.2. Task Details
	17.2.1.3. Work on a Task
	17.2.1.4. Task Assignments
	17.2.1.5. Task Comments

	17.2.2. New Task (Ad-Hoc Task)

	Chapter 18. Business Activity Monitoring
	18.1. Overview
	18.2. Business Dashboards
	18.3. Process Dashboard

	Chapter 19. Remote API
	19.1. REST
	19.1.1. Additional Information
	19.1.1.1. Serialization: JAXB or JSON
	19.1.1.2. Pagination
	19.1.1.3. Map query parameters
	19.1.1.4. Number query parameters
	19.1.1.5. Runtime strategies

	19.1.2. Runtime calls
	19.1.2.1. Process calls
	19.1.2.2. Process calls "with variables"

	19.1.3. History calls
	19.1.3.1. History calls that search by variable

	19.1.4. Task calls
	19.1.4.1. Task operation calls
	19.1.4.2. Task query call
	19.1.4.3. Other Task calls

	19.1.5. Execute calls
	19.1.5.1. Execution call details

	19.2. JMS
	19.2.1. JMS Queue setup
	19.2.2. Example JMS usage

	19.3. Remote Java API
	19.3.1. Using the Remote Java RuntimeEngine API
	19.3.1.1. The REST Remote Java RuntimeEngine
	19.3.1.2. The JMS Remote Java RuntimeEngine

	Part V. Eclipse
	Chapter 20. jBPM Eclipse Plugin
	20.1. jBPM Eclipse Plugin
	20.1.1. Installation
	20.1.2. jBPM Project Wizard
	20.1.3. New BPMN2 Process Wizard
	20.1.4. jBPM Runtime
	20.1.4.1. Defining a jBPM Runtime
	20.1.4.2. Selecting a runtime for your jBPM project

	20.1.5. Drools Eclipse plugin

	20.2. Debugging
	20.2.1. The Process Instances View
	20.2.2. The Audit View

	Chapter 21. Eclipse BPMN 2.0 Modeler
	21.1. Overview
	21.2. Installation
	21.3. Documentation

	Part VI. Integration
	Chapter 22. Integration
	22.1. Maven
	22.1.1. Maven artifacts as deployment units
	22.1.1.1.

	22.1.2. Use maven for dependency management

	22.2. CDI
	22.2.1. Overview
	22.2.1.1. DeploymentService
	22.2.1.1.1.

	22.2.1.2. FormProviderService
	22.2.1.3. RuntimeDataService
	22.2.1.4. BPMN2DataService
	22.2.1.4.1.
	22.2.1.4.2.

	22.2.2. Configuring CDI integration
	22.2.2.1.

	22.2.3. RuntimeManager as CDI bean
	22.2.3.1.

	22.2.4.

	22.3. OSGi

	Part VII. Advanced Topics
	Chapter 23. Domain-specific Processes
	23.1. Introduction
	23.2. Overview
	23.2.1. Work Item Definitions
	23.2.2. Work Item Handlers

	23.3. Example: Notifications
	23.3.1. The Notification Work Item Definition
	23.3.1.1. Creating the work item definition
	23.3.1.2. Registering the work definition
	23.3.1.3. Using your new work item in your processes

	23.3.2. The NotificationWorkItemHandler
	23.3.2.1. Creating a new work item handler
	23.3.2.2. Registering the work item handler

	23.4. Service Repository
	23.4.1. Public jBPM service repository
	23.4.2. Setting up your own service repository

	Chapter 24. Exception Management
	24.1. Overview
	24.2. Introduction
	24.3.
	24.3.1. Technical Exceptions
	24.3.1.1. Handling exceptions in WorkItemHandler instances

	24.3.2. Technical Exception Examples
	24.3.2.1. Example: service task handlers
	24.3.2.1.1. BPMN2 configuration
	24.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration
	24.3.2.1.3. ExceptionService setup and configuration
	24.3.2.1.4. Changing the example to use a <signal>

	24.3.2.2. Example: logging exceptions thrown by bad <scriptTask> nodes
	24.3.2.2.1. Introduction
	24.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.

	24.4.
	24.4.1. Business Exceptions
	24.4.1.1. Business Exceptions elements in BPMN2
	24.4.1.2. Designing a workflow with Business Exceptions

	Chapter 25. Flexible Processes
	Chapter 26. Concurrency and asynchronous execution
	26.1. Concurrency
	26.1.1. Engine execution
	26.1.2. Multiple knowledge sessions and persistence

	26.2. Asynchronous execution
	26.2.1. Asynchronous handlers
	26.2.2. jbpm executor
	26.2.2.1. WorkItemHandler backed with jbpm executor
	26.2.2.2. Configuration

