
Errai

Errai Reference Guide

iii

Preface .. vii

1. Document Conventions ... vii

2. Feedback ... vii

1. Introduction ... 1

1.1. What is it? .. 1

1.2. Required software ... 1

2. Messaging ... 3

2.1. Messaging Overview ... 3

2.2. Messaging API Basics .. 3

2.2.1. Sending Messages with the Client Bus .. 3

2.2.2. Recieving Messages on the Server Bus / Server Services 5

2.2.3. Sending Messages with the Server Bus .. 5

2.2.4. Receiving Messages on the Client Bus/ Client Services 6

2.3. Conversations ... 7

2.4. Handling Errors .. 7

2.5. Single-Response Conversations & Psuedo-Synchronous Messaging 9

2.6. Broadcasting .. 9

2.7. Client-to-Client Communication .. 10

2.7.1. Relay Services ... 10

2.8. Asynchronous Message Tasks .. 10

2.9. Repeating Tasks ... 11

2.10. Sender Inferred Subjects ... 12

2.11. Message Routing Information .. 12

2.12. Queue Sessions .. 13

2.12.1. Lifecycle .. 14

2.12.2. Scopes .. 14

2.13. Client Logging and Error Handling ... 15

2.14. Wire Protocol (J.REP) ... 15

2.14.1. Payload Structure ... 15

2.14.2. Message Routing ... 17

2.14.3. Bus Management and Handshaking Protocols .. 18

3. Dependency Injection .. 21

3.1. Container Wiring ... 22

3.2. Wiring server side components .. 24

3.3. Scopes ... 24

3.3.1. Dependent Scope .. 24

3.4. Built-in Extensions .. 25

3.4.1. Bus Services .. 25

3.4.2. Client Components ... 26

3.4.3. Lifecycle Tools ... 27

3.5. Client-Side Bean Manager ... 29

3.5.1. Looking up beans .. 29

3.5.2. Availability of beans ... 30

3.6. Alternatives and Mocks ... 30

Errai

iv

3.6.1. Alternatives .. 30

3.6.2. Test Mocks .. 31

3.7. Bean Lifecycle .. 33

3.7.1. Destruction of Beans .. 33

4. Marshalling .. 37

4.1. Mapping Your Domain .. 37

4.1.1. @Portable and @NonPortable .. 37

4.1.2. Manual Mapping .. 41

4.1.3. Manual Class Mapping ... 43

4.1.4. Custom Marshallers .. 45

5. Remote Procedure Calls (RPC) .. 47

5.1. Making calls ... 47

5.1.1. Proxy Injection ... 48

5.2. Handling exceptions .. 48

5.3. Session and request objects in RPC endpoints ... 49

6. Errai CDI .. 51

6.1. Features and Limitations ... 51

6.1.1. Other features .. 52

6.2. Events .. 52

6.2.1. Conversational events .. 53

6.2.2. Client-Server Event Example .. 54

6.3. Producers ... 57

6.4. Deploying Errai CDI .. 58

6.4.1. Deployment in Development Mode .. 58

6.4.2. Deployment to a Servlet Engine .. 59

6.4.3. Deployment to an Application Server ... 60

7. Errai JAX-RS .. 61

7.1. Creating Requests .. 61

7.1.1. Proxy Injection ... 62

7.2. Handling Responses ... 62

7.3. Wire Format ... 63

7.4. Errai JAX-RS Configuration ... 63

8. Configuration ... 65

8.1. Appserver Configuration .. 65

8.2. Client Configuration ... 66

8.3. ErraiApp.properties ... 66

8.3.1. As a Marker File .. 66

8.3.2. As a Configuration File ... 66

8.4. ErraiService.properties .. 67

8.4.1. Configuration Properties ... 67

8.4.2. Example Configuration .. 68

8.5. Dispatcher Implementations ... 69

8.5.1. SimpleDispatcher ... 69

8.5.2. AsyncDispatcher .. 70

v

8.6. Servlet Implementations .. 70

8.6.1. DefaultBlockingServlet .. 70

8.6.2. JBossCometServlet .. 70

8.6.3. JettyContinuationsServlet .. 70

8.6.4. StandardAsyncServlet ... 70

9. Debugging Errai Applications .. 71

10. Troubleshooting & FAQ ... 73

10.1. Why does it seem that Errai can't see my class at compile time? 73

11. Upgrade Guide ... 75

11.1. Upgrading from 1.* to 2.0 .. 75

11.2. Upgrading from 2.0.Beta to 2.0.*.Final .. 76

12. Downloads ... 77

13. Sources .. 79

14. Reporting problems ... 81

15. Errai License .. 83

A. Revision History .. 85

vi

vii

Preface

1. Document Conventions

2. Feedback

viii

Chapter 1.

1

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web

technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC

infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the

examples, and for leveraging the quickstart utilities.

• JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

• Apache Maven: http://maven.apache.org/download.html

Launching maven the first time

Please note, that when launching maven the first time on your machine, it will

fetch all dependencies from a central repository. This may take a while, because it

includes downloading large binaries like GWT SDK. However, subsequent builds

are not required to go through this step and will be much faster.

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

2

Chapter 2.

3

Messaging
This section covers the core messaging concepts of the ErraiBus messaging framework.

ErraiBus forms the backbone of the Errai framework's approach to application design. Most

importantly, it provides a straight-forward approach to a complex problem space. Providing

common APIs across the client and server, developers will have no trouble working with

complex messaging scenarios from building instant messaging clients, stock tickers, to monitoring

instruments. There's no more messing with RPC APIs, or unweildy AJAX or COMET frameworks.

We've built it all in to one, consice messaging framework. It's single-paradigm, and it's fun to work

with.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

2.2. Messaging API Basics

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the MessageBuilder .

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let look at some use cases first.

2.2.1. Sending Messages with the Client Bus

In order to send a message from a client you need to create a Message and send it through an

instance of MessageBus . In this simple example we send it to the subject 'HelloWorldService'.

Chapter 2. Messaging

4

public class HelloWorld implements EntryPoint {

 // Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Note

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. See the section on Errai IOC and Errai CDI for using

ErraiBus from a client-side container.

Recieving Messages on the Server Bus / Server Services

5

2.2.2. Recieving Messages on the Server Bus / Server Services

Every message has a sender and at least one receiver. A receiver is as it sounds--it receives the

message and does something with it. Implementing a receiver (also referred to as a service) is

as simple as implementing our standard MessageCallback interface, which is used pervasively

across, both client and server code. Let's begin with server side component that receives

messages:

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

2.2.3. Sending Messages with the Server Bus

In the following example we extend our server side component to reply with a message

when the callback method is invoked. It will create a message and address it to the subject '

HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher dispatcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

}

Chapter 2. Messaging

6

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

5. We transmit the message by providing an instance of the RequestDispatcher .

2.2.4. Receiving Messages on the Client Bus/ Client Services

Messages can be received asynchronously and arbitriraily by declaring callback services within

the client bus. As ErraiBus maintains an open COMET channel at all times, these messages are

delivered in real time to the client as they are sent. This provides built-in push messaging for all

client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /**

 * Declare a local service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /**

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

 });

 [...]

 }

}

Conversations

7

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

2.3. Conversations

Conversations are message exchanges which are between a single client and a service. They

are a fundmentally important concept in ErraiBus, since by default, a message will be broadcast

to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@Service

public class HelloWorldService implements MessageCallback {

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section and this is the use of

the createConversation() method with MessageBuilder .

2.4. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support

for handling errors is built directly into the MessageBuilder API, utilizing the ErrorCallback

interface. In the examples shown in previous exceptions, error handing has been glossed over

with aubiquitous usage of the noErrorHandling() method while building messaging. We chose to

require the explicit use of such a method to remind developers of the fact that they are responsible

for their own error handling, requiring you to explicitly make the decision to forego handling

potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker

identification of problems with your applications if you have error handlers, and generally help you

build more robust code.

Chapter 2. Messaging

8

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 })

 .sendNowWith(dispatcher);

The addition of error handling at first may put off developers as it makes code more verbose and

less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where

the same error handler can appropriately be shared between multiple different calls.

ErrorCallback error = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

}

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(error)

 .sendNowWith(dispatcher);

The error handler is required to return a boolean value. This is to indicate whether or not Errai

should perform the default error handling actions it would normally take during a failure. You

will almost always want to return true here, unless you are trying to explicitly surpress some

undesirably activity by Errai, such as automatic subject-termination in conversations. But this is

almost never the case.

Errai further provides a subject to subscribe to for handling global errors on the client (such as

a disconnected server bus or an invalid response code) that occur outside a regular application

message exchange. Subscribing to this subject is useful to detect errors early (e.g. due to failing

heartbeat requests). A use case that comes to mind here is activating your application's offline

mode.

bus.subscribe(DefaultErrorCallback.CLIENT_ERROR_SUBJECT, new MessageCallback() {

 @Override

Single-Response Conversations & Psuedo-Synchronous Messaging

9

 public void callback(Message message) {

 try {

 caught = message.get(Throwable.class, MessageParts.Throwable);

 throw caught;

 }

 catch(TransportIOException e) {

 // thrown in case the server can't be reached or an unexpected status

 code was returned

 }

 catch (Throwable throwable) {

 // handle system errors (e.g response marshalling errors) - that of course

 should never happen :)

 }

 }

});

2.5. Single-Response Conversations & Psuedo-

Synchronous Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

See the next section on how to build conversational services that can respond to such messages.

2.6. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

Chapter 2. Messaging

10

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

2.7. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

2.7.1. Relay Services

The essential architectural thing you'll need to do is create a relay service that runs on the server.

Since a service advertised on the server is visible to all clients and all clients are visible to the

server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 2.11, “Message Routing Information”

2.8. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually

stream data to a remote client or group of clients (or from a client to the server). In cases

like this, you can utilize the replyRepeating() , replyDelayed() , sendRepeating() and

sendDelayed() methods in the MessageBuilder .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate

method (either replyDelayed() or sendDelayed()).

MessageBuilder.createConversation(msg)

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

Repeating Tasks

11

 .replyDelayed(TimeUnit.SECONDS, 5); // sends the message after 5 seconds.

or

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .sendDelayed(requestDispatcher, TimeUnit.SECONDS, 5); /

/ sends the message after 5 seconds.

2.9. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's repeatXXX() methods. The task will

repeat indefinitely until cancelled (see next section).

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .withProvided("time", new ResourceProvider<String>() {

 SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

 public String get() {

 return fmt.format(new Date(System.currentTimeMillis());

 }

 }

 .noErrorHandling()

 .sendRepeatingWith(requestDispatcher, TimeUnit.SECONDS, 1); //

sends a message every 1 second

The above example sends a message very 1 second with a message part called "time" ,

containing a formatted time string. Note the use of the withProvided() method; a provided

message part is calculated at the time of transmission as opposed to when the message is

constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the

cancel() method of the AsyncTask instance which is returned when creating a task. Reference

to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuilder.createConversation(message)

 .toSubject("TimeChannel").signalling()

 .withProvided(TimeServerParts.TimeString, new ResourceProvider<String>() {

 public String get() {

Chapter 2. Messaging

12

 return String.valueOf(System.currentTimeMillis());

 }

 }).defaultErrorHandling().replyRepeating(TimeUnit.MILLISECONDS, 100);

 ...

 // cancel the task and interrupt it's thread if necessary.

 task.cancel(true);

2.10. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

2.11. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

You can obtain the SessionID directly from a Message by getting the QueueSession resource:

Queue Sessions

13

QueueSession sess = message.getResource(QueueSession.class, Resources.Session.name());

 String sessionId = sess.getSessionId();

The utility class org.jboss.errai.bus.server.util.ServerBusUtils contains a utility method

for extracting the String-based SessionID which is used to identify the message queue associated

with any particular client. You may use this method to extract the SessionID from a message so

that you may use it for routing. For example:

...

 public void callback(Message message) {

 QueueSession sess = message.getResource(QueueSession.class, Resources.Session.name());

 String sessionId = sess.getSessionId();

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

It may be tempting however, to try and include destination SessionIDs at the client level, assuming

that this will make the infrastructure simpler. But this will not achieve the desired results, as the

bus treats SessionIDs as transient. Meaning, the SessionID information is not ever transmitted

from bus-to-bus, and therefore is only directly relevant to the proximate bus.

2.12. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP

session management. While the queue sessions are tied to, and dependant on HTTP sessions for

the most part (meaning they die when HTTP sessions die), they provide extra layers of session

tracking to make dealing with complex applications built on Errai easier.

Chapter 2. Messaging

14

2.12.1. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

2.12.2. Scopes

One of the things Errai offers is the concept of session and local scopes.

2.12.2.1. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

2.12.2.2. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

Client Logging and Error Handling

15

2.13. Client Logging and Error Handling

2.14. Wire Protocol (J.REP)

ErraiBus implements a JSON-based wire protocol which is used for the federated communication

between different buses. The protocol specification encompasses a standard JSON payload

structure, a set of verbs, and an object marshalling protocol. The protocol is named J.REP. Which

stands for JSON Rich Event Protocol.

2.14.1. Payload Structure

All wire messages sent across are assumed to be JSON arrays at the outermost element,

contained in which, there are 0..n messages. An empty array is considered a no-operation, but

should be counted as activity against any idle timeout limit between federated buses.

Example 2.1. Figure 1 - Example J.REP Payload

[

 {"ToSubject" : "SomeEndpoint", "Value" : "SomeValue" },

 {"ToSubject" : "SomeOtherEndpoint", "Value" : "SomeOtherValue"}

]

In Figure 1 , we see an example of a J.REP payload containing two messages. One bound for an

endpoint named "SomeEndpoint" and the other bound for the endpoint "SomeOtherEndpoint"

. They both include a payload element "Value" which contain strings. Let's take a look at the

anatomy of an individual message.

Example 2.2. Figure 2 - An J.REP Message

{

 "ToSubject" : "TopicSubscriber",

 "CommandType" : "Subscribe",

 "Value " : "happyTopic",

 "ReplyTo" : "MyTopicSubscriberReplyTo"

}

The message shown in Figure 2 shows a very vanilla J.REP message. The keys of the JSON

Object represent individual message parts , with the values representing their corresponding

values. The standard J.REP protocol encompasses a set of standard message parts and values,

which for the purposes of this specification we'll collectively refer to as the protocol verbs.

The following table describes all of the message parts that a J.REP capable client is expected

to understand:

Chapter 2. Messaging

16

Part Required JSON Type Description

ToSubject Yes String Specifies the subject

within the bus, and

its federation, which

the message should

be routed to.

CommandType No String Specifies a command

verb to be transmitted

to the receiving

subject. This is an

optional part of a

message contract, but

is required for using

management services

ReplyTo No String Specifies to the

receiver what subject

it should reply to

in response to this

message.

Value No Any A recommended but

not required standard

payload part for

sending data to

services

PriorityProcessing No Number A processing order

salience attribute.

Messages which

specify priority

processing will be

processed first if they

are competing for

resources with other

messages in flight.

Note: the current

version of ErraiBus

only supports two

salience levels (0 and

>1). Any non-zero

salience in ErraiBus

will be given the same

priority relative to 0

salience messages

Message Routing

17

Part Required JSON Type Description

ErrorMessage No String An accompanying

error message with

any serialized

exception

Throwable No Object If applicable, an

encoded object

representing any

remote exception

that was thrown

while dispatching the

specified service

2.14.1.1. Built-in Subjects

The table contains a list of reserved subject names used for facilitating things like bus management

and error handling. A bus should never allow clients to subscribe to these subjects directly.

Subject Description

ClientBus The self-hosted message bus endpoint on the

client

ServerBus The self-hosted message bus endpoint on the

server

ClientBusErrors The standard error receiving service for clients

As this table indicates, the bus management protocols in J.REP are accomplished using self-

hosted services. See the section on Bus Management and Handshaking Protocols for details.

2.14.2. Message Routing

There is no real distinction in the J.REP protocol between communication with the server, versus

communication with the client. In fact, it assumed from an architectural standpoint that there is

no real distinction between a client and a server. Each bus participates in a flat-namespaced

federation. Therefore, it is possible that a subject may be observed on both the server and the

client.

One in-built assumption of a J.REP-compliant bus however, is that messages are routed within

the auspices of session isolation. Consider the following diagram:

Figure 2.1. Figure 3 - Topology of a J.REP Messaging Federation

In Figure 3 , is is possible for Client A to send messages to the subjects ServiceA and ServiceB

. But it is not possible to address messages to ServiceC . Conversely, Client A can address

messages to ServiceC and ServiceB , but not ServiceA .

Chapter 2. Messaging

18

2.14.3. Bus Management and Handshaking Protocols

Federation between buses requires management traffic to negotiate connections and manage

visibility of services between buses. This is accomplished through services named ClientBus and

ServerBus which both implement the same protocol contracts which are defined in this section.

2.14.3.1. ServerBus and ClientBus commands

Both bus services share the same management protocols, by implementing verbs (or commands)

that perform different actions. These are specified in the protocol with the CommandType message

part. The following table describes these commands:

Table 2.1. Message Parts for Bus Commands:

Command / Verb Message Parts Description

ConnectToQueue N/A The first message sent by a

connecting client to begin the

handshaking process.

CapabilitiesNotice CapabilitiesFlags A message sent by one bus

to another to notify it of its

capabilities during handshake

(for instance long polling or

websockets)

FinishStateSync N/A A message sent from one

bus to another to indicate

that it has now provided all

necessary information to the

counter-party bus to establish

the federation. When both

buses have sent this message

to each other, the federation is

considered active.

RemoteSubscribe Subject or SubjectsList A message sent to the remote

bus to notify it of a service

or set of services which it is

capable of routing to.

RemoteUnsubscribe Subject A message sent to the remote

bus to notify it that a service is

no longer available.

Disconnect Reason A message sent to a server

bus from a client bus to

indicate that it wishes to

disconnect and defederate.

Or, when sent from the client

Bus Management and Handshaking Protocols

19

Command / Verb Message Parts Description

to server, indicates that the

session has been terminated.

SessionExpired N/A A message sent to a client bus

to indicate that its messages

are no longer being routed

because it no longer has an

active session

Heartbeat N/A A message sent from one

bus to another periodically to

indicate it is still active.

Part Required JSON Type Description

CapabilitiesFlags Yes String A comma delimited

string of capabilities

the bus is capable of

us

Subject Yes String The subject to

subscribe or

unsubscribe from

SubjectsList Yes Array An array of strings

representing a list of

subjects to subscribe

to

20

Chapter 3.

21

Dependency Injection
The core Errai IOC module implements the JSR-330 Dependency Injection [http://

download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for

in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the

implementation of decoupled and type-safe components. By using DI, components do not need

to be aware of the implementation of provided services. Instead, they merely declare a contract

with the container, which in turn provides instances of the services that component depends on.

Classpath Scanning and ErraiApp.properties

Errai only scans the contents of classpath locations (JARs and directories) that

have a file called ErraiApp.properties at their root. If dependency injection

is not working for you, double-check that you have an ErraiApp.properties in

every JAR and directory that contains classes Errai should know about.

A simple example:

public class MyLittleClass {

 private final TimeService timeService;

 @Inject

 public MyLittleClass(TimeService timeService) {

 this.timeService = timeService;

 }

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In this example, we create a simple class which declares a dependency using

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html] for

the interface TimeService . In this particular case, we use constructor injection to establish the

contract between the container and the component. We can similarly use field injection to the

same effect:

public class MyLittleClass {

 @Inject

 private TimeService timeService;

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 3. Dependency Injection

22

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In order to inject TimeService , you must annotate it with @ApplicationScoped or the Errai DI

container will not acknowledge the type as a bean.

@ApplicationScoped

public class TimeService {

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot

create immutable classes using the pattern, since the container must first call the

default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential – albeit remote – that the object could be left in an partially or

improperly initialized state. The advantage of constructor injection is that fields can

be immutable (final), and invariance rules applied at construction time, leading to

earlier failures, and the guarantee of consistent state.

3.1. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide

a programmatic way of creating and configuring injectors. Instead, container-level binding rules are

defined by implementing a Provider [http://download.oracle.com/javaee/6/api/javax/

inject/Provider.html] , which is scanned for an auto-discovered by the container.

A Provider is essentially a factory which produces dependent types in the container, which

defers instantiation responsibility for the provided type to the provider implementation. Top-level

providers use the standard javax.inject.Provider<T> interface.

Types made available as top-level providers will be available for injection in any managed

component within the container.

Out of the box, Errai IOC implements three default top-level providers:

• org.jboss.errai.ioc.client.api.builtin.MessageBusProvider : Makes an instance of

MessageBus available for injection.

• org.jboss.errai.ioc.client.api.builtin.RequestDispatchProvider : Makes an

instance of the RequestDispatcher available for injection.

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

23

• org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event

Consumer<?> objects available for injection.

Implementing a Provider is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TimeService {

 public String getTime();

}

TimeServiceProvider.java

@IOCProvider

@Singleton

public class TimeServiceProvider implements Provider<TimeService> {

 @Override

 public TimeService get() {

 return new TimeService() {

 public String getTime() {

 return "It's midnight somewhere!";

 }

 };

 }

}

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Guice.createInjector(new AbstractModule() {

 public void configure() {

 bind(TimeService.class).toProvider(TimeServiceProvider.class);

 }

 }).getInstance(MyApp.class);

As shown in the above example code, the annotation @IOCProvider is used to denote top-level

providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject

dependencies – particularly from other top-level providers – as necessary.

Chapter 3. Dependency Injection

24

3.2. Wiring server side components

By default, Errai uses Google Guice to wire components. When deploying services on the server-

side, it is currently possible to obtain references to the MessageBus , RequestDispatcher , the

ErraiServiceConfigurator , and ErraiService by declaring them as injection dependencies

in Service classes, extension components, and session providers.

Alternatively, supports CDI based wiring of server-side components. See the chapter on Errai CDI

for more information.

3.3. Scopes

Out of the box, the IOC container supports three bean scopes, @Dependent , @Singleton and

@EntryPoint . The singleton and entry-point scopes are roughly the same semantics.

3.3.1. Dependent Scope

In Errai CDI, all client types are valid bean types if they are default constructable or can have

construction dependencies satisfied. These unqualified beans belong the dependent pseudo-

scope. See: Dependent Psuedo-Scope from CDI Documentation [http://docs.jboss.org/weld/

reference/latest/en-US/html/scopescontexts.html#d0e1997]

Additionally, beans may be qualified as @ApplicationScoped , @Singleton or @EntryPoint

. Although these three scopes are supported for completeness and conformance to the

specification, within the client they effectively result in behavior that is identical.

Example 3.1. Example dependent scoped bean

public void MyDependentScopedBean {

 private final Date createdDate;

 public MyDependentScopedBean {

 createdDate = new Date();

 }

}

Example 3.2. Example ApplicationScoped bean

@ApplicationScoped

public void MyClientBean {

 @Inject MyDependentScopedBean bean;

 // ... //

}

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997

Built-in Extensions

25

Availability of dependent beans in the client-side

BeanManager

As is mentioned in the bean manager documentation [30] , only beans that are

explicitly scoped will be made available to the bean manager for lookup. So while

it is not necessary for regular injection, you must annotate your dependent scoped

beans with @Dependent if you wish to dynamically lookup these beans at runtime.

3.4. Built-in Extensions

3.4.1. Bus Services

As Errai IOC provides a container-based approach to client development, support for Errai

services are exposed to the container so they may be injected and used throughout your

application where appropriate. This section covers those services.

3.4.1.1. @Service

The org.jboss.errai.bus.server.annotations.Service annotation is used for binding

service endpoints to the bus. Within the Errai IOC container you can annotate services and have

them published to the bus on the client (or on the server) in a very straight-forward manner:

Example 3.3. A simple message receiving service

@Service

public class MyService implements MessageCallback {

 public void callback(Message message) {

 // ... //

 }

}

Or like so ...

Example 3.4. Mapping a callback from a field of a bean

@Singleton

public class MyAppBean {

 @Service("MyService")

 private final MessageCallback myService = new MesageCallback() {

 public void callback(Message message) {

 // ... //

 }

Chapter 3. Dependency Injection

26

 }

}

As with server-side use of the annotation, if a service name is not explicitly specified, the underlying

class name or field name being annotated will be used as the service name.

3.4.1.2. @Local

The org.jboss.errai.bus.server.api.Local annotation is used in conjunction with the

@Service annotation to advertise a service only for visibility on the local bus and thus, cannot

receive messages across the wire for the service.

Example 3.5. A local only service

@Service @Local

public class MyLocalService implements MessageCallback {

 public void callback(Message message) {

 // ... //

 }

}

3.4.1.3. Lifecycle Impact of Services

Services which are registered with ErraiBus via the bean manager through use of the @Service

annotation, have de-registration hooks tied implicitly to the destruction of the bean. Thus,

destruction of the bean implies that these associated services are to be dereferenced.

3.4.2. Client Components

The IOC container, by default, provides a set of default injectable bean types. They range from

basic services, to injectable proxies for RPC. This section covers the facilities available out-of-

the-box.

3.4.2.1. MessageBus

The type org.jboss.errai.bus.client.framework.MessageBus is globally injectable into any

bean. Injecting this type will provide the instance of the active message bus running in the client.

Example 3.6. Injecting a MessageBus

@Inject MessageBus bus;

Lifecycle Tools

27

3.4.2.2. RequestDispatcher

The type org.jboss.errai.bus.client.framework.RequestDispatcher is globally injectable

into any bean. Injecting this type will provide a RequestDispatcher instance capable of delivering

any messages provided to it, to the the MessageBus .

Example 3.7. Injecting a RequestDispatcher

@Inject RequestDispatcher dispatcher;

3.4.2.3. Caller<?>

The type org.jboss.errai.ioc.client.api.Caller<?> is a globally injectable RPC proxy.

RPC proxies may be provided by various components. For example, JAX-RS or Errai RPC.

The proxy itself is agnostic to the underlying RPC mechanism and is qualified by it's type

parameterization.

For example:

Example 3.8. An example Caller<?> proxy

public void MyClientBean {

 @Inject

 private Caller<MyRpcInterface> rpcCaller;

 // ... ///

 @UiHandler("button")

 public void onButtonClick(ClickHandler handler) {

 rpcCaller.call(new RemoteCallback<Void>() {

 public void callback(Void void) {

 }

).callSomeMethod();

 }

}

The above code shows the injection of a proxy for the RPC remote interface, MyRpcInterface

. For more information on defining RPC proxies see Chapter 5, Remote Procedure Calls (RPC)

and Section 7.1, “Creating Requests” in Errai JAX-RS.

3.4.3. Lifecycle Tools

A problem commonly associated with building large applications in the browser is ensuring that

things happen in the proper order when code starts executing. Errai IOC provides you tools

Chapter 3. Dependency Injection

28

which permit you to ensure things happen before initialization, and forcing things to happen after

initialization of all of the Errai services.

3.4.3.1. Controlling Startup

In order to prevent initialization of the the bus and it's services so that you can do

necessary configuration, especially if you are writing extensions to the Errai framework

itself, you can create an implicit startup dependency on your bean by injecting an

org.jboss.errai.ioc.client.api.InitBallot<?> .

Example 3.9. Using an InitBallot to Control Startup

@Singleton

public class MyClientBean {

 @Inject InitBallot<MyClientBean> ballot;

 @PostConstruct

 public void doStuff() {

 // ... do some work ...

 ballot.voteForInit();

 }

}

3.4.3.2. Performing Tasks After Initialization

Sending RPC calls to the server from inside constructors and @PostConstruct methods in Errai

is not always reliable due to the fact that the bus and RPC proxies initialize asynchronously with

the rest of the application. Therefore it is often desirable to have such things happen in a post-

initialization task, which is exposed in the ClientMessageBus API. However, it is much cleaner to

use the @AfterInitialization annotation on one of your bean methods.

Example 3.10. Using @AfterInitialization to do something after startup

@Singleton

public class MyClientBean {

 @AfterInitialization

 public void doStuffAfterInit() {

 // ... do some work ...

 }

}

Client-Side Bean Manager

29

3.5. Client-Side Bean Manager

It may be necessary at times to obtain instances of beans managed by Errai IOC

from outside the container managed scope or creating a hard dependency from your

bean. Errai IOC provides a simple client-side bean manager for handling these scenarios:

org.jboss.errai.ioc.client.container.IOCBeanManager .

As you might expect, you can inject the bean manager into any of your managed beans.

Example 3.11. Injecting the client-side bean manager

public MyManagedBean {

 @Inject IOCBeanManager manager;

 // class body

}

If you need to access the bean manager outside a managed bean, such as in a unit test, you can

access it by calling org.jboss.errai.ioc.client.container.IOC.getBeanManager()

3.5.1. Looking up beans

Looking up beans can be done through the use of the lookupBean() method in IOCBeanManager

. Here's a basic example:

Example 3.12. Example lookup of a bean

public MyManagedBean {

 @Inject IOCBeanManager manager;

 public void lookupBean() {

 IOCBean<SimpleBean> bean = manager.lookupBean(SimpleBean.class);

 // check to see if the bean exists

 if (bean != null) {

 // get the instance of the bean

 SimpleBean inst = bean.getInstance();

 }

 }

}

In this example we lookup a bean class named SimpleBean . This example will succeed assuming

that SimpleBean is unambiguous. If the bean is ambiguous and requires qualification, you can

do a qualified lookup like so:

Chapter 3. Dependency Injection

30

Example 3.13. Looking up beans with qualifiers

MyQualifier qual = new MyQualifier() {

 public annotationType() {

 return MyQualifier.class;

 }

}

MyOtherQualifier qual2 = new MyOtherQualifier() {

 public annotationType() {

 return MyOtherQualifier.class;

 }

}

// pass qualifiers to IOCBeanManager.lookupBean

IOCBean<SimpleInterface> bean = beanManager.lookupBean(SimpleBean.class, qual, qual2);

In this example we manually construct instances of qualifier annotations in order to pass it to the

bean manager for lookup. This is a necessary step since there's currently no support for annotation

literals in Errai client code.

3.5.2. Availability of beans

Not all beans that are available for injection are available for lookup from the bean manager

by default. Only beans which are explicitly scoped are available for dynamic lookup. This is an

intentional feature to keep the size of the generated code down in the browser.

3.6. Alternatives and Mocks

3.6.1. Alternatives

It may be desirable to have multiple matching dependencies for a given injection point with

the ability to specify which implementation to use at runtime. For instance, you may have

different versions of your application which target different browsers or capabilities of the browser.

Using alternatives allows you to share common interfaces among your beans, while still using

dependency injection, by exporting consideration of what implementation to use to the container's

configuration.

Consider the following example:

@Singleton @Alternative

public class MobileView implements View {

 // ... //

}

Test Mocks

31

and

@Singleton @Alternative

public class DesktopView implements View {

 // ... //

In our controller logic we in turn inject the View interface:

@EntryPoint

public class MyApp {

 @Inject

 View view;

 // ... //

}

This code is unaware of the implementation of View , which maintains good separation of

concerns. However, this of course creates an ambiguous dependency on the View interface as

it has two matching subtypes in this case. Thus, we must configure the container to specify

which alternative to use. Also note, that the beans in both cases have been annotated with

javax.enterprise.inject.Alternative .

In your ErraiApp.properties for the module, you can simply specify which active alternative

should be used:

errai.ioc.enabled.alternatives=org.foo.MobileView

You can specify multiple alternative classes by white space separating them:

errai.ioc.enabled.alternatives=org.foo.MobileView \

 org.foo.HTML5Orientation \

 org.foo.MobileStorage

You can only have one enabled alternative for matching set of alternatives, otherwise you will get

ambiguous resolution errors from the container.

3.6.2. Test Mocks

Similar to alternatives, but specifically designed for testing scenarios, you can replace beans with

mocks at runtime for the purposes of running unit tests. This is accomplished simply by annotating

Chapter 3. Dependency Injection

32

a bean with the org.jboss.errai.ioc.client.api.TestMock annotation. Doing so will prioritize

consideration of the bean over any other matching beans while running unit tests.

Consider the following:

@ApplicationScoped

public class UserManagementImpl implements UserManagement {

 public List<User> listUsers() {

 // do user listy things!

 }

}

You can specify a mock implementation of this class by implementing its common parent type

(UserManagement) and annotating that class with the @TestMock annotation inside your test

package like so:

@TestMock @ApplicationScoped

public class MockUserManagementImpl implements UserManagement {

 public List<User> listUsers() {

 // return only a test user.

 return Collections.singletonList(TestUser.INSTANCE);

 }

}

In this case, the container will replace the UserManagementImpl with the

MockUserManagementImpl automatically when running the unit tests.

The @TestMock annotation can also be used to specify alternative providers during test execution.

For example, it can be used to mock a Caller<T> . Callers are used to invoke RPC or JAX-RS

endpoints. During tests you might want to replace theses callers with mock implementations. For

details on providers see Section 3.1, “Container Wiring” .

@TestMock @IOCProvider

public class MockedHappyServiceCallerProvider implements ContextualTypeProvider<Caller<HappyService>> {

 @Override

 public Caller<HappyService> provide(Class<?>[] typeargs, Annotation[] qualifiers) {

 return new Caller<HappyService>() {

 ...

 }

}

Bean Lifecycle

33

3.7. Bean Lifecycle

All beans managed by the Errai IOC container support the @PostConstruct and @PreDestroy

annotations.

Beans which have methods annotated with @PostConstruct are guaranteed to have those

methods called before the bean is put into service, and only after all dependencies within its graph

has been satisfied.

Beans are also guaranteed to have their @PreDestroy annotated methods called before they are

destroyed by the bean manager.

Important

This cannot be guaranteed when the browser DOM is destroyed prematurely due

to: closing the browser window; closing a tab; refreshing the page, etc.

3.7.1. Destruction of Beans

Beans under management of Errai IOC, of any scope, can be explicitly destroyed through the

client bean manager. Destruction of a managed bean is accomplished by passing a reference to

the destroyBean() method of the bean manager.

Example 3.14. Destruction of bean

public MyManagedBean {

 @Inject IOCBeanManager manager;

 public void createABeanThenDestroyIt() {

 // get a new bean.

 SimpleBean bean = manager.lookupBean(SimpleBean.class).getInstance();

 bean.sendMessage("Sorry, I need to dispose of you now");

 // destroy the bean!

 manager.destroyBean(bean);

 }

}

When the bean manager "destroys" the bean, any pre-destroy methods the bean declares are

called, it is taken out of service and no longer tracked by the bean manager. If there are references

on the bean by other objects, the bean will continue to be accessible to those objects.

Chapter 3. Dependency Injection

34

Important

Container managed resources that are dependent on the bean such as bus service

endpoints or CDI event observers will also be automatically destroyed when the

bean is destroyed.

Another important consideration is the rule, "all beans created together are destroyed together."

Consider the following example:

Example 3.15. SimpleBean.class

@Dependent

public class SimpleBean {

 @Inject @New AnotherBean anotherBean;

 public AnotherBean getAnotherBean() {

 return anotherBean;

 }

 @PreDestroy

 private void cleanUp() {

 // do some cleanup tasks

 }

}

Example 3.16. Destroying bean from subgraph

public MyManagedBean {

 @Inject IOCBeanManager manager;

 public void createABeanThenDestroyIt() {

 // get a new bean.

 SimpleBean bean = manager.lookupBean(SimpleBean.class).getInstance();

 // destroy the AnotherBean reference from inside the bean

 manager.destroyBean(bean.getAnotherBean());

 }

}

In this example we pass the instance of AnotherBean, created as a dependency of SimpleBean,

to the bean manager for destruction. Because this bean was created at the same time as its

parent, its destruction will also result in the destruction of SimpleBean ; thus, this action will result

in the @PreDestroy cleanUp() method of SimpleBean being invoked.

Destruction of Beans

35

3.7.1.1. Disposers

Another way which beans can be destroyed is through the use of the injectable

org.jboss.errai.ioc.client.api.Disposer<T> class. The class provides a straight forward

way of disposing of bean type.

For instance:

Example 3.17. Destroying bean with disposer

public MyManagedBean {

 @Inject @New SimpleBean myNewSimpleBean;

 @Inject Disposer<SimpleBean> simpleBeanDisposer;

 public void destroyMyBean() {

 simpleBeanDisposer.dispose(myNewSimpleBean);

 }

}

36

Chapter 4.

37

Marshalling
Errai includes a comprehensive marshalling framework which permits the serialization of domain

objects between the browser and the server. From the perspective of GWT, this is a complete

replacement for the provided GWT serialization facilities and offers a great deal more flexibility.

You are be able to map both application-specific domain model, as well as preexisting model,

including model from third-party libraries using the custom definitions API.

4.1. Mapping Your Domain

All classes that you intend to be marshalled between the client and the server must be exposed

to the marshalling framework. There are several ways you can do it and this section will take you

through the different approaches you can take to fit your needs.

4.1.1. @Portable and @NonPortable

To make a Java class eligible for serialization with Errai Marshalling, mark it with

the org.jboss.errai.common.client.api.annotations.Portable annotation. This tells the

marshalling system to generate marshalling and demarshalling code for the annotated class and

all of its nested classes.

The mapping strategy that will be used depends on how much information you provide about

your model up-front. If you simply annotate a domain type with @Portable and do nothing else,

the marshalling system will use and exhaustive strategy to determine how to construct and

deconstruct instances of that type and its nested types.

The Errai marshalling system works by enumerating all of the Portable types it can find (by any

of the three methods discussed in this section of the reference guide), eliminating all the non-

portable types it can find (via @NonPortable annotations and entries in ErraiApp.properties),

then enumerating the marshallable properties that make up each remaining portable entity type.

The rules that Errai uses for enumerating the properties of a portable entity type are as follows:

• If an entity type has a field called foo , then that entity has a property called foo unless the

field is marked static or transient .

Note that the existence of methods called getFoo() , setFoo() , or both, does not mean that

the entity has a property called foo . Errai Marshalling always works from fields when discovering

properties.

When reading a field foo , Errai Marshalling will call the method getFoo() in preference to direct

field access if the getFoo() method exists.

Similarly, when writing a field foo , Errai Marshalling will call the method setFoo() in preference

to direct field access if the setFoo() method exists.

Chapter 4. Marshalling

38

The above rules are sufficient for marshalling an existing entity to a JSON representation, but for

de-marshalling, Errai must also know how to obtain an instance of a type. The rules that Errai

uses for deciding how to create an instance of a @Portable type are as follows:

• If the entity has a public constructor where every argument is annotated with @MapsTo , and

those parameters cover all properties of the entity type, then Errai uses this constructor to create

the object, passing in all of the property values.

• Otherwise, if the entity has a public static method where every argument is annotated with

@MapsTo , and those parameters cover all properties of the entity type, then Errai uses this

method to create the object. Note that when using this mechanism you are free to create and

return a subtype of the marshalled type, or resolve one from a cache.

• If the entity has a public no-arguments constructor (or no explicit constructors at all), it will be

created via that constructor, and the properties will be written to the new object one at a time.

Each property will be written by its setter method, or by direct field access if a setter method

is not available.

Now let's take a look at some common examples of how this works.

4.1.1.1. Example: A Simple Entity

@Portable

public class Person {

 private String name;

 private int age;

 public Person() {

 }

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

This is a pretty vanilla domain object. Note the default, public, no-argument constructor. In this

case, it will be necessary to have one explicitly declared. But notice we have no setters. In

@Portable and @NonPortable

39

this case, the marshaler will rely on private field access to write the values on each side of the

marshalling transaction. For simple domain objects, this is both nice and convenient. But you

may want to make the class immutable and have a constructor enforce invariance. See the next

section for that.

4.1.1.2. Example: An Immutable Entity with a Public Constructor

Immutability is almost always a good practice, and the marshalling system provides you a straight

forward way to tell it how to marshal and de-marshal objects which enforce an immutable contract.

Let's modify our example from the previous section.

@Portable

public class Person {

 private final String name;

 private final int age;

 public Person(@MapsTo("name") String name, @MapsTo("age") int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

Here we have set both of the class fields final. By doing so, we had to remove our default

constructor. But that's okay, because we have annotated the remaining constructor's parameters

using the org.jboss.errai.marshalling.client.api.annotations.MapsTo annotation.

By doing this, we have told the marshaling system, for instance, that the first parameter of

the constructor maps to the property name . Which in this case, defaults to the name of the

corresponding field. This may not always be the case – as will be explored in the section on custom

definitions. But for now that's a safe assumption.

4.1.1.3. Example: An Immutable Entity with a Factory Method

Another good practice is to use a factory pattern to enforce invariance. Once again, let's modify

our example.

@Portable

public class Person {

Chapter 4. Marshalling

40

 private final String name;

 private final int age;

 private Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public static Person createPerson(@MapsTo("name") String name, @MapsTo("age") int age) {

 return new Person(name, age);

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

Here we have made our only declared constructor private, and created a static factory method.

Notice that we've simply used the same @MapsTo annotation in the same way we did on the

constructor from our previous example. The marshaller will see this method and know that it should

use it to construct the object.

4.1.1.4. Example: An Immutable Entity with a Builder

For types with a large number of optional attributes, a builder is often the best approach.

@Portable

public class Person {

 private final String name;

 private final int age;

 private Person(@MapsTo("name") String name, @MapsTo("age") int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

Manual Mapping

41

 @NonPortable

 public static class Builder {

 private String name;

 private int age;

 public Builder name(String name) {

 this.name = name;

 return this;

 }

 public Builder age(int age) {

 this.age = age;

 return this;

 }

 public BuilderEntity build() {

 return new Person(name, age);

 }

 }

}

In this example, we have a nested Builder class that implements the Builder Pattern and calls

the private Person constructor. Hand-written code will always use the builder to create Person

instances, but the @MapsTo annotations on the private Person constructor tell Errai Marshalling to

bypass the builder and construct instances of Person directly.

One final note: as a nested type of Person (which is marked @Portable), the builder itself would

normally be portable. However, we do not intend to move instances of Person.Builder across

the network, so we mark Person.Builder as @NonPortable .

4.1.2. Manual Mapping

Some classes may be out of your control, making it impossible to annotate them for auto-discovery

by the marshalling framework. For cases such as this, there are two approaches which can be

undertaken to include these classes in your application.

The first approach is the easiest, but is contingent on whether or not the class is directly exposed

to the GWT compiler. That means, the classes must be part of a GWT module and within the

GWT client packages. See the GWT documentation on Client-Side Code [http://code.google.com/

webtoolkit/doc/latest/DevGuideCodingBasicsClient.html] for information on this.

4.1.2.1. Mapping Existing Client Classes

If you have client-exposed classes that cannot be annotated with the @Portable annotation, you

may manually map these classes so that the marshaller framework will comprehend and produce

marshallers for them and their nested types.

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html

Chapter 4. Marshalling

42

To do this, specify them in ErraiApp.properties , using the

errai.marshalling.serializableTypes attribute with a whitespace separated list of classes

to make portable.

Example 4.1. Example ErraiApp.properties defining portable classes.

errai.marshalling.serializableTypes=org.foo.client.UserEntity \

 org.foo.client.GroupEntity \

 org.abcinc.model.client.Profile

If any of the serializable types have nested classes that you wish to make non-portable, you can

specify them like this:

Example 4.2. Example ErraiApp.properties defining nonportable classes.

errai.marshalling.nonserializableTypes=org.foo.client.UserEntity$Builder \

 org.foo.client.GroupEntity$Builder

4.1.2.2. Aliased Mappings of Existing Interface Contracts

The marshalling framework supports and promotes the concept of marshalling by interface

contract, where possible. For instance, the framework ships with a marshaller which can marshall

data to and from the java.util.List interface. Instead of having custom marshallers for classes

such as ArrayList and LinkedList , by default, these implementations are merely aliased to

the java.util.List marshaller.

There are two distinct ways to go about doing this. The most straightforward is to specify which

marshaller to alias when declaring your class is @Portable .

package org.foo.client;

@Portable(aliasOf = java.util.List.class)

public MyListImpl extends ArrayList {

 // .. //

}

In the case of this example, the marshaller will not attempt to comprehend your class. Instead,

it will merely rely on the java.util.List marshaller to dematerialize and serialize instances of

this type onto the wire.

If for some reason it is not feasible to annotate the class, directly, you may specify the mapping

in the ErraiApp.properties file using the errai.marshalling.mappingAliases attribute.

Manual Class Mapping

43

errai.marshalling.mappingAliases=org.foo.client.MyListImpl->java.util.List \

 org.foo.client.MyMapImpl->java.util.Map

The list of classes is whitespace-separated so that it may be split across lines.

The example above shows the equivalent mapping for the MyListImpl class from the previous

example, as well as a mapping of a class to the java.util.Map marshaller.

The syntax of the mapping is as follows: <class_to_map> -> <contract_to_map_to> .

Aliases do not inherit functionality!

When you alias a class to another marshalling contract, extended functionality

of the aliased class will not be available upon deserialization. For this you must

provide custom marshallers for those classes.

4.1.3. Manual Class Mapping

Although the default marshalling strategies in Errai Marshalling will suit the vast majority of use

cases, there may be situations where it is necessary to manually map your classes into the

marshalling framework to teach it how to construct and deconstruct your objects.

This is accomplished by specifying MappingDefinition classes which inform the framework

exactly how to read and write state in the process of constructing and deconstructing objects.

4.1.3.1. MappingDefinition

All manual mappings should extend the

org.jboss.errai.marshalling.rebind.api.model.MappingDefinition class. This is base

metadata class which contains data on exactly how the marshaller can deconstruct and construct

objects.

Consider the following class:

public class MySuperCustomEntity {

 private final String mySuperName;

 private String mySuperNickname;

 public MySuperCustomEntity(String mySuperName) {

 this.mySuperName = mySuperName;;

 }

 public String getMySuperName() {

 return this.mySuperName;

 }

Chapter 4. Marshalling

44

 public void setMySuperNickname(String mySuperNickname) {

 this.mySuperNickname = mySuperNickname;

 }

 public String getMySuperNickname() {

 return this.mySuperNickname;

 }

}

Let us construct this object like so:

MySuperCustomEntity entity = new MySuperCustomEntity("Coolio");

 entity.setSuperNickname("coo");

It is clear that we may rely on this object's two getter methods to extract the totality of its state. But

due to the fact that the mySuperName field is final, the only way to properly construct this object is

to call its only public constructor and pass in the desired value of mySuperName .

Let us consider how we could go about telling the marshalling framework to pull this off:

@CustomMapping

public MySuperCustomEntityMapping extends MappingDefinition {

 public MySuperCustomEntityMapping() {

 super(MySuperCustomEntity.class); //

 (1)

 SimpleConstructorMapping cnsMapping = new SimpleConstructorMapping();

 cnsMapping.mapParmToIndex("mySuperName", 0, String.class); //

 (2)

 setInstantiationMapping(cnsMapping);

 addMemberMapping(new WriteMapping("mySuperNickname", String.class, "setMySuperNickname")); //

 (3)

 addMemberMapping(new ReadMapping("mySuperName", String.class, "getMySuperName")); //

 (4)

 addMemberMapping(new ReadMapping("mySuperNickname", String.class, "getMySuperNickname")); //

 (5)

 }

}

And that's it. This describes to the marshalling framework how it should go about constructing and

deconstructing MySuperCustomEntity .

Custom Marshallers

45

Paying attention to our annotating comments, let's describe what we've done here.

1. Call the constructor in MappingDefinition passing our reference to the class we are mapping.

2. Using the SimpleConstructorMapping class, we have indicated that a custom constructor

will be needed to instantiate this class. We have called the mapParmToIndex method with

three parameters. The first, "mySupername" describes the class field that we are targeting. The

second parameter, the integer 0 indicates the parameter index of the constructor arguments

that we'll be providing the value for the aforementioned field – in this case the first and only, and

the final parameter String.class tells the marshalling framework which marshalling contract

to use in order to de-marshall the value.

3. Using the WriteMapping class, we have indicated to the marshaller framework how to write the

"mySuperNickname" field, using the String.class marshaller, and using the setter method

setMySuperNickname .

4. Using the ReadMapping class, we have indicated to the marshaller framework how to read

the "mySuperName" field, using the String.class marshaller, and using the getter method

getMySuperName .

5. Using the ReadMapping class, we have indicated to the marshaller framework how to read the

"mySuperNickname" field, using the String.class marshaller, and using the getter method

getMySuperNickname .

4.1.4. Custom Marshallers

There is another approach to extending the marshalling functionality that doesn't involve mapping

rules, and that is to implement your own Marshaller class. This gives you complete control over

the parsing and emission of the JSON structure.

The implementation of marshallers is made relatively straight forward by the fact that both the

server and the client share the same JSON parsing API.

Consider the included java.util.Date marshaller that comes built-in to the marshalling

framework:

Example 4.3. DataMarshaller.java from the built-in marshallers

@ClientMarshaller @ServerMarshaller

public class DateMarshaller extends AbstractNullableMarshaller<Date> {

 @Override

 public Class<Date> getTypeHandled() {

 return Date.class;

 }

 @Override

 public Date demarshall(EJValue o, MarshallingSession ctx) {

Chapter 4. Marshalling

46

 // check if the JSON element is null

 if (o.isNull() != null) {

 // if the JSON element is null, so is our object!

 return null;

 }

 // instantiate our Date!

 return new Date(Long.parseLong(o.isObject().get(SerializationParts.QUALIFIED_VALUE).isString().stringValue()));

 }

 @Override

 public String marshall(Date o, MarshallingSession ctx) {

 // if the object is null, we encode "null"

 if (o == null) { return "null"; }

 // return the JSON representation of the object

 return "{\"" + SerializationParts.ENCODED_TYPE + "\":

\"" + Date.class.getName() + "\"," +

 "\"" + SerializationParts.OBJECT_ID + "\":\"" + o.hashCode() + "\"," +

 "\"" + SerializationParts.QUALIFIED_VALUE + "\":

\"" + o.getTime() + "\"}";

 }

}

The class is annotated with both @ClientMarshaller and @ServerMarshaller indicating that

this class should be used for both marshalling on the client and on the server.

The demarshall() method does what its name implies: it is responsible for demarshalling the

object from JSON and turning it back into a Java object.

The marshall() method does the opposite, and encodes the object into JSON for transmission

on the wire.

Chapter 5.

47

Remote Procedure Calls (RPC)
ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy

on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it

to be a more useful and concise approach to exposing services to the clients.

Please note that this API has changed since version 1.0. RPC services provide a way of creating

type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support

client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service

class which implements it. See the following:

@Remote

public interface MyRemoteService {

 public boolean isEveryoneHappy();

}

The @Remote annotation tells Errai that we'd like to use this interface as a remote interface. The

remote interface must be part of of the GWT client code. It cannot be part of the server-side code,

since the interface will need to be referenced from both the client and server side code. That said,

the implementation of a service is relatively simple to the point:

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 // blatently lie and say everyone's happy.

 return true;

 }

}

That's all there is to it. You use the same @Service annotation as described in Section 2.4. The

presence of the remote interface tips Errai off as to what you want to do with the class.

5.1. Making calls

Calling a remote service involves use of the MessageBuilder API. Since all messages are

asynchronous, the actual code for calling the remote service involves the use of a callback, which

we use to receive the response from the remote method. Let's see how it works:

MessageBuilder.createCall(new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

Chapter 5. Remote Procedure C...

48

 if (isHappy) Window.alert("Everyone is happy!");

 }

 }, MyRemoteService.class).isEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correspond to the

return value of the method on the server. We also reference the remote interface we are calling,

and directly call the method. However, don't be tempted to write code like this :

boolean bool = MessageBuilder.createCall(..., MyRemoteService.class).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0

depending on the type. This is due to the fact that the method is dispatched asynchronously, as

in, it does not wait for a server response before returning control. The reason we chose to do this,

as opposed to emulate the native GWT-approach, which requires the implementation of remote

and async interfaces, was purely a function of a tradeoff for simplicity.

5.1.1. Proxy Injection

An alternative to using the MessageBuilder API is to have a proxy of the service injected.

@Inject

private Caller<MyRemoteService> remoteService;

For calling the remote service, the callback objects need to be provided to the call method before

the corresponding interface method is invoked.

remoteService.call(callback).isEveryoneHappy();

5.2. Handling exceptions

Handling remote exceptions can be done by providing an ErrorCallback on the client:

MessageBuilder.createCall(

 new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

 },

 new ErrorCallback() {

 public boolean error(Message message, Throwable caught) {

 try {

Session and request objects in RPC endpoints

49

 throw caught;

 }

 catch (NobodyIsHappyException e) {

 Window.alert("OK, that's sad!");

 }

 catch (Throwable t) {

 GWT.log("An unexpected error has occurred", t);

 }

 return false;

 }

 },

 MyRemoteService.class).isEveryoneHappy();

As remote exceptions need to be serialized to be sent to the client, the @Portable annotation

needs to be present on the corresponding exception class (see Chapter 4, Marshalling). Further

the exception class needs to be part of the client-side code. For more details on ErrorCallbacks

see Section 2.4, “Handling Errors” .

5.3. Session and request objects in RPC endpoints

Before invoking an endpoint method Errai sets up an RpcContext that provides access to message

resources that are otherwise not visible to RPC endpoints.

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 HttpSession session = RpcContext.getHttpSession();

 ServletRequest request = RpcContext.getServletRequest();

 ...

 return true;

 }

}

50

Chapter 6.

51

Errai CDI
CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling

dependency injection. In addition to dependency injection, the standard encompasses component

lifecycle, application configuration, call-interception and a decoupled, type-safe eventing

specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side

applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These

deficiencies may be addressed in future versions.

Important

The Errai CDI extension itself is implemented on top of the Errai IOC Framework

(see Chapter 3, Dependency Injection), which itself implements the JSR-330

specification. Inclusion of the CDI module your GWT project will result in the

extensions automatically being loaded and made available to your application.

Classpath Scanning and ErraiApp.properties

Errai CDI only scans the contents of classpath locations (JARs and directories)

that have a file called ErraiApp.properties at their root. If CDI features such

as dependency injection, event observation, and @PostConstruct are not working

for your classes, double-check that you have an ErraiApp.properties in every

JAR and directory that contains classes Errai should know about.

6.1. Features and Limitations

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed

to your GWT client application. So, you can use Errai to communicate between your GWT client

components and your CDI backend beans.

Errai CDI based applications use the same annotation-driven programming model as server-side

CDI components, with some notable limitations. Many of these limitations will be addressed in

future releases.

1. There is no support for CDI interceptors in the client. Although this is planned in a future release.

2. Passivating scopes are not supported.

3. The JSR-299 SPI is not supported for client side code. Although writing extensions for the client

side container is possible via the Errai IOC Extensions API.

Chapter 6. Errai CDI

52

4. The @Typed annotation is unsupported.

5. The @Disposes annotation is unsupported.

6. The @Specializes annotation is unsupported.

7. Qualifier attributes are not currently supported. (eg. @MyQualifier(foo=BAR) and

@MyQualifier(foo=FOO) will be considered equivalent in the client).

8. The @Interceptor annotation is unsupported.

9. The @Decorator annotation is unsupported.

6.1.1. Other features

The CDI container in Errai is built around the Errai IOC module , and thus is a superset of

the existing functionality in Errai IOC. Thus, all features and APIs documented in Errai IOC are

accessible and usable with this Errai CDI programming model.

6.2. Events

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/

reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled

fashion. Beans consume events by registering for a particular event type and optional qualifiers.

The Errai CDI extension simply extends this concept into the client tier. A GWT client application

can simply register an Observer for a particular event type and thus receive events that are

produced on the server-side. Likewise and using the same API, GWT clients can produce events

that are consumed by a server-side observer.

Let's take a look at an example.

Example 6.1. FraudClient.java

public class FraudClient extends LayoutPanel {

 @Inject

 private Event<AccountActivity> event; (1)

 private HTML responsePanel;

 public FraudClient() {

 super(new BoxLayout(BoxLayout.Orientation.VERTICAL));

 }

 @PostConstruct

 public void buildUI() {

 Button button = new Button("Create activity", new ClickHandler() {

 public void onClick(ClickEvent clickEvent) {

 event.fire(new AccountActivity());

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Conversational events

53

 }

 });

 responsePanel = new HTML();

 add(button);

 add(responsePanel);

 }

 public void processFraud(@Observes @Detected Fraud fraudEvent) { (2)

 responsePanel.setText("Fraud detected: " + fraudEvent.getTimestamp());

 }

}

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy

2. Creation of an Observer method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-

side event subsystem (CDI container). This means any event that is fired through a dispatcher

will eventually be consumed by a CDI managed bean, if there is an corresponding Observer

registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side

observer method for a particular event type. In case an event is fired on the server this method

will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:

Example 6.2. AccountService.java

@ApplicationScoped

public class AccountService {

 @Inject @Detected

 private Event<Fraud> event;

 public void watchActivity(@Observes AccountActivity activity) {

 Fraud fraud = new Fraud(System.currentTimeMillis());

 event.fire(fraud);

 }

}

6.2.1. Conversational events

A server can address a single client in response to an event annotating event types as

@Conversational . Consider a service that responds to a subscription event.

Chapter 6. Errai CDI

54

Example 6.3. SubscriptionService.java

@ApplicationScoped

public class SubscriptionService {

 @Inject

 private Event<Documents> welcomeEvent;

 public void onSubscription(@Observes Subscription subscription) {

 Document docs = createWelcomePackage(subscription);

 welcomeEvent.fire(docs);

 }

}

And the Document class would be annotated like so:

Example 6.4. Document.java

@Conversational @Portable

public class Document {

 // code here

}

As such, when Document events are fired, they will be limited in scope to the initiating

conversational contents – which are implicitly inferred by the caller. So only the client which fired

the Subscription event will receive the fired Document event.

6.2.2. Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between

the client and the server. This permits the observation of server produced events on the client,

and vice-versa.

Example server code:

Example 6.5. MyServerBean.java

@ApplicationScoped

public class MyServerBean {

 @Inject

 Event<MyResponseEvent> myResponseEvent;

 public void myClientObserver(@Observes MyRequestEvent event) {

 MyResponseEvent response;

Client-Server Event Example

55

 if (event.isThankYou()) {

 // aww, that's nice!

 response = new MyResponseEvent("Well, you're welcome!");

 }

 else {

 // how rude!

 response = new MyResponseEvent("What? Nobody says 'thank you' anymore?");

 }

 myResponseEvent.fire(response);

 }

}

Domain-model:

Example 6.6. MyRequestEvent.java

@Portable

public class MyRequestEvent {

 private boolean thankYou;

 public MyRequestEvent(boolean thankYou) {

 setThankYou(thankYou);

 }

 public void setThankYou(boolean thankYou) {

 this.thankYou = thankYou;

 }

 public boolean isThankYou() {

 return thankYou;

 }

}

Example 6.7. MyResponseEvent.java

@Portable

public class MyResponseEvent {

 private String message;

 public MyRequestEvent(String message) {

 setMessage(message);

 }

Chapter 6. Errai CDI

56

 public void setMessage(String message) {

 this.message = message;

 }

 public String getMessage() {

 return message;

 }

}

Client application logic:

Example 6.8. MyClientBean.java

@EntryPoint

public class MyClientBean {

 @Inject

 Event<MyRequestEvent> requestEvent;

 public void myResponseObserver(@Observes MyResponseEvent event) {

 Window.alert("Server replied: " + event.getMessage());

 }

 @PostConstruct

 public void init() {

 Button thankYou = new Button("Say Thank You!");

 thankYou.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 requestEvent.fire(new MyRequestEvent(true));

 }

 }

 Button nothing = new Button("Say nothing!");

 nothing.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 requestEvent.fire(new MyRequestEvent(false));

 }

 }

 VerticalPanel vPanel = new VerticalPanel();

 vPanel.add(thankYou);

 vPanel.add(nothing);

 RootPanel.get().add(vPanel);

 }

}

Producers

57

6.3. Producers

Producer methods and fields act as sources of objects to be injected. They are useful when

additional control over object creation is needed before injections can take place e.g. when you

need to make a decision at runtime before an object can be created and injected.

Example 6.9. App.java

@EntryPoint

public class App {

 ...

 @Produces @Supported

 private MyBaseWidget createWidget() {

 return (Canvas.isSupported()) ? new MyHtml5Widget() : new MyDefaultWidget();

 }

}

Example 6.10. MyComposite.java

@ApplicationScoped

public class MyComposite extends Composite {

 @Inject @Supported

 private MyBaseWidget widget;

 ...

}

Producers can also be scoped themselves. By default, producer methods are dependent-scoped,

meaning they get called every time an injection for their provided type is requested. If a producer

method is scoped @Singleton for instance, the method will only be called once, and the bean

manager will inject the instance from the first invokation of the producer into every matching

injection point.

Example 6.11. Singleton producer

public class App {

 ...

 @Produces @Singleton

 private MyBean produceMyBean() {

 return new MyBean();

Chapter 6. Errai CDI

58

 }

}

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/

cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/

WeldDocumentation] .

6.4. Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started take a look at

the Quickstart Guide [https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096] .

The CDI integration is a plugin to the Errai core framework and represents a CDI portable

extension. Which means it is discovered automatically by both Errai and the CDI container. In

order to use it, you first need to understand the different runtime models involved when working

GWT, Errai and CDI.

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/

webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application

containing the GWT client code will be deployed to a target container (Servlet Engine, Application

Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In

GWT development mode and in a pure servlet environment you need to provide and bootstrap

the CDI environment on your own. While any Java EE 6 Application Server already provides a

preconfigured CDI container. To accomodate these differences, we need to do a little trickery

when executing the GWT Development Mode and packaging our application for deployment.

6.4.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai

and CDI available through JNDI (common denominator across all runtimes). Since GWT uses

Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a

custom one that will setup the JNDI bindings:

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>gwt-maven plugin</artifactId>

 <version>${gwt.maven}</version>

 <configuration>

 ...

 <server>org.jboss.errai.cdi.server.gwt.JettyLauncher</server>

 </configuration>

 <executions>

 ...

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Deployment to a Servlet Engine

59

 </executions>

</plugin>

Starting Development Mode from within your IDE

Consequently, when starting Development Mode from within your

IDE the following program argument has to be provided: -server

org.jboss.errai.cdi.server.gwt.JettyLauncher

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web-app>

 ...

 <listener>

 <listener-class>org.jboss.errai.container.CDIServletStateListener</listener-

class>

 </listener>

 <resource-env-ref>

 <description>Object factory for the CDI Bean Manager</description>

 <resource-env-ref-name>BeanManager</resource-env-ref-name>

 <resource-env-ref-type>javax.enterprise.inject.spi.BeanManager</resource-

env-ref-type>

 </resource-env-ref>

 ...

</web-app>

Errai-CDI maven archetype

Sounds terribly complicated, no? Don't worry we provide a maven archetype that

takes care of all these setup steps and configuration details.

6.4.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development

mode. You need to include the servlet listener that bootstraps the CDI container and make sure

both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we

ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat

Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html

Chapter 6. Errai CDI

60

6.4.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the

requirements are basically the same for other vendors. When running a GWT client app that

leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and

accessible through JNDI (java:/BeanManager).

http://jboss.org/jbossas
http://jboss.org/jbossas

Chapter 7.

61

Errai JAX-RS
JAX-RS (Java API for RESTful Web Services) is a Java EE standard (JSR-311) for implementing

REST-based Web services in Java. Errai JAX-RS brings this standard to the browser and

simplifies the integration of REST-based services in GWT client applications. Errai can generate

proxies based on JAX-RS interfaces which will handle all the underlying communication and

serialization logic. All that's left to do is to invoke a Java method. We have provided a Maven

archetype which will create a fully function CRUD application using JAX-RS. See the Quickstart

Guide [https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096] for details.

7.1. Creating Requests

Assuming the following simple JAX-RS interface should be used:

Example 7.1. CustomerService.java

@Path("customers")

public interface CustomerService {

 @GET

 @Produces("application/json")

 public List<Customer> listAllCustomers();

 @POST

 @Consumes("application/json")

 @Produces("text/plain")

 public long createCustomer(Customer customer);

}

To create a request on the client, all that needs to be done is to invoke RestClient.create()

, thereby providing the JAX-RS interface, a response callback and to invoke the corresponding

interface method:

Example 7.2. App.java

...

Button create = new Button("Create", new ClickHandler() {

 public void onClick(ClickEvent clickEvent) {

 Customer customer = new Customer(firstName, lastName, postalCode);

 RestClient.create(CustomerService.class, callback).createCustomer(customer);

 }

});

...

https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096

Chapter 7. Errai JAX-RS

62

For details on the callback mechanism see Section 7.2, “Handling Responses” .

Note

The JAX-RS interfaces need to be visible to the GWT compiler and must therefore

reside within the client packages (e.g. client.shared).

7.1.1. Proxy Injection

Injectable proxies can be used as an alternative to calling RestClient.create() .

@Inject

private Caller<CustomerService> customerService;

To create a request, the callback objects need to be provided to the call method before the

corresponding interface method is invoked.

customerService.call(callback).listAllCustomers();

7.2. Handling Responses

An instance of Errai's RemoteCallback<T> has to be passed to the RestClient.create() call,

which will provide access to the JAX-RS resource method's result. T is the return type of the JAX-

RS resource method. In the example below it's just a Long representing a customer ID, but it can

be any serializable type (see Chapter 4, Marshalling).

RemoteCallback<Long> callback = new RemoteCallback<Long>() {

 public void callback(Long id) {

 Window.alert("Customer created with ID: " + id);

 }

};

A special case of this RemoteCallback is the ResponseCallback which provides access to the

Response object representing the underlying HTTP response. This is useful when more details of

the HTTP response are needed, such as headers, the status code, etc. This ResponseCallback

can be provided as an alternative to the RemoteCallback for the method result.

ResponseCallback callback = new ResponseCallback() {

 public void callback(Response response) {

 Window.alert("HTTP status code: " + response.getStatusCode());

Wire Format

63

 Window.alert("HTTP response body: " + response.getText());

 }

};

For handling errors, Errai's error callback mechanism can be reused and an instance of

ErrorCallback can optionally be passed to the RestClient.create() call. In case of an HTTP

error, the ResponseException provides access to the Response object. All other Throwables

indicate a communication problem.

ErrorCallback errorCallback = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 try {

 throw throwable;

 }

 catch (ResponseException e) {

 Response response = e.getResponse();

 // process unexpected response

 response.getStatusCode();

 }

 catch (Throwable t) {

 // process unexpected error (e.g. a network problem)

 }

 return false;

 }

};

7.3. Wire Format

Errai's JSON format will be used to serialize/deserialize your custom types. See Chapter 4,

Marshalling for details. A future extension to Errai's marshaller capabilities will support pluggable/

custom serializers. So in the near future you will have the flexibility to use your own wire format.

7.4. Errai JAX-RS Configuration

All paths specified using the @Path annotation on JAX-RS interfaces are by definition relative

paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified

paths relative to the GWT client application's context path.

To configure a relative or absolute root path, the following JavaScript variable can be set in either

the host HTML page

<script type="text/javascript">

 erraiJaxRsApplicationRoot = "/MyJaxRsEndpointPath";

Chapter 7. Errai JAX-RS

64

</script>

or by using a JSNI method:

private native void setMyJaxRsAppRoot(String path) /*-{

 $wnd.erraiJaxRsApplicationRoot = path;

}-*/;

or by simply invoking:

RestClient.setApplicationRoot("/MyJaxRsEndpointPath");

The root path will be prepended to all paths specified on the JAX-RS interfaces. It serves as the

base URL for all requests sent from the client.

Chapter 8.

65

Configuration
This section contains information on configuring Errai.

8.1. Appserver Configuration

Depending on what application server you are deploying on, you must provide an appropriate

servlet implementation if you wish to use true, asynchronous I/O. See Section 8.6, “Servlet

Implementations” for information on the available servlet implementations.

Here's a sample web.xml file:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 version="2.5">

 <servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>errai.properties</param-name>

 <param-value>/WEB-INF/errai.properties</param-value>

 </context-param>

 <context-param>

 <param-name>login.config</param-name>

 <param-value>/WEB-INF/login.config</param-value>

 </context-param>

 <context-param>

 <param-name>users.properties</param-name>

 <param-value>/WEB-INF/users.properties</param-value>

 </context-param>

</web-app>

Chapter 8. Configuration

66

8.2. Client Configuration

In some cases it might be desirable to prevent the client bus from communicating with the server.

One use case for this is when all communication with the server is handled using JAX-RS and the

constant long polling requests for message exchange are not needed.

To turn off remote communication in the client bus the following JavaScript variable can be set

in the HTML host page:

<script type="text/javascript">

 erraiBusRemoteCommunicationEnabled = false;

</script>

8.3. ErraiApp.properties

ErraiApp.properties acts both as a marker file for JARs that contain Errai-enabled GWT modules,

and as a place to put configuration settings for those modules in the rare case that non-default

configuration is necessary.

8.3.1. As a Marker File

An ErraiApp.properties file must appear at the root of each classpath location that

contains an Errai module. The contents of JAR and directory classpath entries that do not

contain an ErraiApp.properties are effectively invisible to Errai's classpath scanner.

8.3.2. As a Configuration File

ErraiApp.properties is usually left empty, but it can contain configuration settings for both the core

of Errai and any of its extensions. Configuration properties defined and used by Errai components

have keys that start with " errai. ". Third party extensions should each choose their own prefix

for keys in ErraiApp.properties.

8.3.2.1. Configuration Merging

In a non-trivial application, there will be several instances of ErraiApp.properties on the classpath

(one per JAR file that contains Errai modules, beans, or portable classes).

Before using the configuration information from ErraiApp.properties, Errai reads the contents of

every ErraiApp.properties on the classpath. The configuration information in all these files is

merged together to form one set of key=value pairs.

If the same key appears in more than one ErraiApp.properties file, only one of the values will be

associated with that key. The other values will be ignored. In future versions of Errai, this condition

may be made into an error. It's best to avoid specifying the same configuration key in multiple

ErraiApp.properties files.

ErraiService.properties

67

8.3.2.2. Errai Marshalling Configuration

Configuration properties related to marshalling are documented in the Errai Marshalling section

on Manual Mapping .

8.3.2.3. Errai IoC Configuration

• errai.ioc.QualifyingMetaDataFactory specifies the fully-qualified class name of the

QualifyingMetadataFactory implementation to use with Errai IoC.

• errai.ioc.enabled.alternatives specifies a whitespace-separated list of fully-qualified class

names for alternative beans . See Section 3.6, “Alternatives and Mocks” for details.

8.4. ErraiService.properties

The ErraiService.properties file contains basic configuration for the bus itself. Unlike

ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of

a deployed application. If you do not need to set any properties to their non-default values, this

file can be omitted from the deployment entirely.

8.4.1. Configuration Properties

8.4.1.1. Message Dispatching

• errai.dispatcher.implementation specifies the dispatcher implementation to be used by

the bus. There are two implementations which come with Errai out of the box: the

SimpleDispatcher and the AsyncDispatcher . See Section 8.5, “Dispatcher Implementations”

for more information about the differences between the two.

• errai.async_thread_pool_size specifies the total number of worker threads in the worker pool

for handling and delivering messages. Adjusting this value does not have any effect if you are

using the SimpleDispatcher.

• errai.async.worker_timeout specifies the total amount of time (in seconds) that a service is

given to finish processing an incoming message before the pool interrupts the thread and returns

an error. Adjusting this value has no effect if you are using the SimpleDispatcher.

• errai.bus.buffer_size The total size of the transmission buffer, in megabytes. If this

attribute is specified along with errai.bus.buffer_segment_count , then the segment

count is inferred by the calculation buffer_segment_count / buffer_size}. If

{{errai.bus.buffer_segment_count is also defined, it will be ignored in the presence of this

property. Default value: 32.

Chapter 8. Configuration

68

• errai.bus.buffer_segment_size The transmission buffer segment size in bytes. This is the

minimum amount of memory each message will consume while stored within the buffer. Defualt

value: 8.

• errai.bus.buffer_segment_count The number of segments in absolute terms. If this attribute

is specified in the absence of errai.bus.buffer_size , the buffer size is inferred by the

calculation buffer_segment_size / buffer_segment_count .

• errai.bus.buffer_allocation_mode Buffer allocation mode. Allowed values are direct and

heap . Direct allocation puts buffer memory outside of the JVM heap, while heap allocation

uses buffer memory inside the Java heap. For most situations, heap allocation is preferable.

However, if the application is data intensive and requires a substantially large buffer, it is

preferable to use a direct buffer. From a throughput perspective, current JVM implementations

pay about a 20% performance penalty for direct-allocated memory access. However, your

application may show better scaling characteristics with direct buffers. Benchmarking under real

load conditions is the only way to know the optimal setting for your use case and expected load.

Default value: direct .

8.4.1.2. Security

• errai.authentication_adapter specifies the authentication modelAdapter the bus should use

for determining whether calls should be serviced based on authentication and security

principals.

• errai.require_authentication_for_all indicates whether or not the bus should always require

the use of authentication for all requests inbound for the bus. If this is turned on, an

authentication model adapter must be defined, and any user must be authenticated before the

bus will deliver any messages from the client to any service.

8.4.1.3. Startup Configuration

• errai.auto_discover_services A boolean indicating whether or not the Errai bootstrapper

should automatically scan for services. This property must be set to true if and only if Errai

CDI is not on the classpath . The default value is false .

• errai.auto_load_extensions A boolean indicating whether or not the Errai bootstrapper should

automatically scan for extensions. The default value is true .

8.4.2. Example Configuration

##

Dispatcher Implementations

69

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

8.5. Dispatcher Implementations

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere

and seeing that they are delivered to where they need to go. There are two primary

implementations that are provided with Errai, depending on your needs.

8.5.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

Chapter 8. Configuration

70

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

8.5.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

8.6. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a

universally-compatible blocking implementation that provides fully synchronous communication

to/from the server-side bus. Where this introduces scalability problems, we have implemented

many webserver-specific implementations that take advantage of the various proprietary APIs to

provide true asynchrony.

These included implementations are packaged at: org.jboss.errai.bus.server.servlet .

8.6.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides

purely synchronous request handling and should work in virtually any servlet container, unless

there are restrictions on putting threads into sleep states.

8.6.2. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve

scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use

of this implementation requires use of the APR (Apache Portable Runtime).

8.6.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

8.6.4. StandardAsyncServlet

This implementation leverages asynchronous support in Servlet 3.0 to allow for threadless pausing

of port connections. Note that <async-supported>true</async-supported> has to be added

to the servlet definition in web.xml .

Chapter 9.

71

Debugging Errai Applications
Errai includes a bus monitoring application, which allows you to monitor all of the message

exchange activity on the bus in order to help track down any potential problems It allows you to

inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your

application's dependencies. When you run your application in development mode, you will simply

need to add the following JVM options to your run configuration in order to launch the monitor: -

Derrai.tools.bus_monitor_attach=true

Figure 9.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side

of the main screen lists the services that are currently available, and the right side is the service-

explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the

service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 9.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus

since the monitor became active. You do not need to actually have each specific monitor window

open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a

message part will bring up the object inspector, which will allow you to explore the state of any

objects contained within the message, not unlike the object inspectors provided by debuggers in

your favorite IDE. This can be a powerful tool for looking under the covers of your application.

72

Chapter 10.

73

Troubleshooting & FAQ
This section explains the cause of and solution to some common problems that people encounter

when building applications with Errai.

Of course, when lots of people trip over the same problem, it's probably because there is a

deficiency in the framework! A FAQ list like this is just a band-aid solution. If you have suggestions

for permanent fixes to these problems, please get in touch with us: file an issue in our issue tracker,

chat with us on IRC, or post a suggestion on our forum.

But for now, on to the FAQ:

10.1. Why does it seem that Errai can't see my class at

compile time?

Possible symptoms:

• uncaught exception: java.lang.RuntimeException: No proxy provider found for type:

my.fully.qualified.ServiceName

Answer: Make sure the Section 8.3, “ErraiApp.properties” file is actually making it into your

runtime classpath.

One common cause of this problem is a <resources> section in pom.xml that includes src/main/

java (to expose .java sources to the GWT compiler) that does not also include src/main/resources

as a resource path. You must include both explicitly:

<resources>

 <resource>

 <directory>src/main/java</directory>

 </resource>

 <resource>

 <directory>src/main/resources</directory>

 </resource>

</resources>

74

Chapter 11.

75

Upgrade Guide
This chapter contains important information for migrating to newer versions of Errai. If you

experience any problems, don't hesitate to get in touch with us. See Chapter 14, Reporting

problems .

11.1. Upgrading from 1.* to 2.0

The first issues that will arise after replacing the jars or after changing the version numbers in

the pom.xml are unresolved package imports. This is due to refactorings that became necessary

when the project grew. Most of these import problems can be resolved automatically by modern

IDEs (Organize Imports). So, this should replace org.jboss.errai.bus.client.protocols.*

with org.jboss.errai.common.client.protocols.* for example.

The following is a list of manual steps that have to be carried out when upgrading:

• @ExposedEntity became @Portable (

org.jboss.errai.common.client.api.annotations.Portable). See Chapter 4,

Marshalling for details.

• Errai CDI projects must now use the SimpleDispatcher instead of the AsynDispatcher . This

has to be configured in Section 8.4, “ErraiService.properties” .

• The bootstrap listener (configured in WEB-INF/web.xml) for Errai CDI

has changed (org.jboss.errai.container.DevModeCDIBootstrap is now

org.jboss.errai.container.CDIServletStateListener).

• gwt 2.3.0 or newer must be used and replace older versions.

• mvel2 2.1.Beta8 or newer must be used and replace older versions.

• weld 1.1.5.Final or newer must be used and replace older versions.

• slf4j 1.6.1 or newer must be used and replace older versions.

• This step can be skipped if Maven is used to build the project. If the project is NOT built using

Maven, the following jar files have to be added manually to project's build/class path: errai-

common-2.x.jar, errai-marshalling-2.x.jar, errai-codegen-2.x.jar, netty-4.0.0.Alpha1.errai.r1.jar.

• If the project was built using an early version of an Errai archetype the configuration of

the maven-gwt-plugin has to be modified to contain the <hostedWebapp>path-to-your-

standard-webapp-folder</hostedWebapp> . This is usually either war or src/main/webapp .

Chapter 11. Upgrade Guide

76

11.2. Upgrading from 2.0.Beta to 2.0.*.Final

The following is a list of manual steps that have to be carried out when upgrading from a 2.0.Beta

version to 2.0.CR1 or 2.0.Final:

• Starting with 2.0.CR1 the default for automatic service discovery has been changed in

favour of CDI based applications. That means it has to be explicitly turned on for plain

bus applications (Errai applications that do not use Errai-CDI). Not doing so will result in

NoSubscribersToDeliverTo exceptions. The snippet below shows how to activate automatic

service discovery:

Example 11.1. web.xml

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <init-param>

 <param-name>auto-discover-services</param-name>

 <param-value>true</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

• The jboss7-support module was deleted and is no longer needed as a dependency.

Chapter 12.

77

Downloads
The distribution packages can be downloaded from jboss.org http://jboss.org/errai/

Downloads.html

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

78

Chapter 13.

79

Sources
Errai is currently managed using Github. You can clone our repositories from http://github.com/

errai .

http://github.com/errai
http://github.com/errai

80

Chapter 14.

81

Reporting problems
If you run into trouble don't hesitate to get in touch with us:

• JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

• User Forum: http://community.jboss.org/en/errai?view=discussions

• Mailing List: http://jboss.org/errai/MailingLists.html

• IRC: irc://irc.freenode.net/errai

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

82

Chapter 15.

83

Errai License
Errai is distributed under the terms of the Apache License, Version 2.0. See the full Apache license

text [http://www.apache.org/licenses/LICENSE-2.0] .

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

84

85

Appendix A. Revision History
Revision History

Revision <>

86

	Errai
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. Messaging API Basics
	2.2.1. Sending Messages with the Client Bus
	2.2.2. Recieving Messages on the Server Bus / Server Services
	2.2.3. Sending Messages with the Server Bus
	2.2.4. Receiving Messages on the Client Bus/ Client Services

	2.3. Conversations
	2.4. Handling Errors
	2.5. Single-Response Conversations & Psuedo-Synchronous Messaging
	2.6. Broadcasting
	2.7. Client-to-Client Communication
	2.7.1. Relay Services

	2.8. Asynchronous Message Tasks
	2.9. Repeating Tasks
	2.10. Sender Inferred Subjects
	2.11. Message Routing Information
	2.12. Queue Sessions
	2.12.1. Lifecycle
	2.12.2. Scopes
	2.12.2.1. Session Scope
	2.12.2.2. Local Scope

	2.13. Client Logging and Error Handling
	2.14. Wire Protocol (J.REP)
	2.14.1. Payload Structure
	2.14.1.1. Built-in Subjects

	2.14.2. Message Routing
	2.14.3. Bus Management and Handshaking Protocols
	2.14.3.1. ServerBus and ClientBus commands

	Chapter 3. Dependency Injection
	3.1. Container Wiring
	3.2. Wiring server side components
	3.3. Scopes
	3.3.1. Dependent Scope

	3.4. Built-in Extensions
	3.4.1. Bus Services
	3.4.1.1. @Service
	3.4.1.2. @Local
	3.4.1.3. Lifecycle Impact of Services

	3.4.2. Client Components
	3.4.2.1. MessageBus
	3.4.2.2. RequestDispatcher
	3.4.2.3. Caller<?>

	3.4.3. Lifecycle Tools
	3.4.3.1. Controlling Startup
	3.4.3.2. Performing Tasks After Initialization

	3.5. Client-Side Bean Manager
	3.5.1. Looking up beans
	3.5.2. Availability of beans

	3.6. Alternatives and Mocks
	3.6.1. Alternatives
	3.6.2. Test Mocks

	3.7. Bean Lifecycle
	3.7.1. Destruction of Beans
	3.7.1.1. Disposers

	Chapter 4. Marshalling
	4.1. Mapping Your Domain
	4.1.1. @Portable and @NonPortable
	4.1.1.1. Example: A Simple Entity
	4.1.1.2. Example: An Immutable Entity with a Public Constructor
	4.1.1.3. Example: An Immutable Entity with a Factory Method
	4.1.1.4. Example: An Immutable Entity with a Builder

	4.1.2. Manual Mapping
	4.1.2.1. Mapping Existing Client Classes
	4.1.2.2. Aliased Mappings of Existing Interface Contracts

	4.1.3. Manual Class Mapping
	4.1.3.1. MappingDefinition

	4.1.4. Custom Marshallers

	Chapter 5. Remote Procedure Calls (RPC)
	5.1. Making calls
	5.1.1. Proxy Injection

	5.2. Handling exceptions
	5.3. Session and request objects in RPC endpoints

	Chapter 6. Errai CDI
	6.1. Features and Limitations
	6.1.1. Other features

	6.2. Events
	6.2.1. Conversational events
	6.2.2. Client-Server Event Example

	6.3. Producers
	6.4. Deploying Errai CDI
	6.4.1. Deployment in Development Mode
	6.4.2. Deployment to a Servlet Engine
	6.4.3. Deployment to an Application Server

	Chapter 7. Errai JAX-RS
	7.1. Creating Requests
	7.1.1. Proxy Injection

	7.2. Handling Responses
	7.3. Wire Format
	7.4. Errai JAX-RS Configuration

	Chapter 8. Configuration
	8.1. Appserver Configuration
	8.2. Client Configuration
	8.3. ErraiApp.properties
	8.3.1. As a Marker File
	8.3.2. As a Configuration File
	8.3.2.1. Configuration Merging
	8.3.2.2. Errai Marshalling Configuration
	8.3.2.3. Errai IoC Configuration

	8.4. ErraiService.properties
	8.4.1. Configuration Properties
	8.4.1.1. Message Dispatching
	8.4.1.2. Security
	8.4.1.3. Startup Configuration

	8.4.2. Example Configuration

	8.5. Dispatcher Implementations
	8.5.1. SimpleDispatcher
	8.5.2. AsyncDispatcher

	8.6. Servlet Implementations
	8.6.1. DefaultBlockingServlet
	8.6.2. JBossCometServlet
	8.6.3. JettyContinuationsServlet
	8.6.4. StandardAsyncServlet

	Chapter 9. Debugging Errai Applications
	Chapter 10. Troubleshooting & FAQ
	10.1. Why does it seem that Errai can't see my class at compile time?

	Chapter 11. Upgrade Guide
	11.1. Upgrading from 1.* to 2.0
	11.2. Upgrading from 2.0.Beta to 2.0.*.Final

	Chapter 12. Downloads
	Chapter 13. Sources
	Chapter 14. Reporting problems
	Chapter 15. Errai License
	Appendix A. Revision History

