Errai

Erral Reference Guide

g (=] = o1 <Y Vii

1. DOCUMENT CONVENTIONSiiiiitiieeiiiieee ettt e e e et e e e eeit s e e eett e e e eete s eeeett e eeeettaeeeeneaaaees vii
A =T | o= Uod Vi
I a4 o To 1T o 10 Y o PSP 1
R VY g T S| U 1
I = To [T (=T B0 1 11V U= 1
2. MBS SAGING 1 ieittiet ittt ettt 3
N Y/ =YY Y= o T To @ A= V= 3
2.2. MeSSagiNg API BASICScouuuiiiiiiiie et 3
2.2.1. Sending Messages with the Client BUSccooeviiiiiiiiiiiincee e 3
2.2.2. Recieving Messages on the Server Bus / Server Servicescccoeeveeevnnnnn. 5
2.2.3. Sending Messages with the Server BUSccooevviiiiiiiiiiiieecie e, 5
2.2.4. Receiving Messages on the Client Bus/ Client Servicescccoovvveevvneeees 6

PR B O e g V=T 7= o] S PPUTRPIN 7
2.4, HaNAliNG EITOIS ..ot 7
2.5. Single-Response Conversations & Psuedo-Synchronous Messaging 9
2.6. BroadCastiNgccuuuieiiiiieieii et 9
2.7. Client-to-Client COMMUNICALIONuuiiiiiiiiieieii et e e e eeaenns 10
2.7.1. RElAY SEIVICES ...ttt e 10

2.8. Asynchronous MesSage TasKSccuiiiiiiiiiiiiiiii e e e e 10
2.9. REPEALING TASKS ...eiiiiiiieiiiii ettt 11
2.10. Sender Inferred SUDJECESuiiiiiiiii e 12
2.11. Message Routing INfOrmMAationoooeiiuiiiiiiii e 12
2.12. QUEBUE SESSIONS ..ovuiiiiieiiieeiii et e et e e et e e et e e e e e et e e et eeeaa e eat e e et e e et eeaneeaneenen 13
2.12.0. LIFECYCIE ..neieiiee e 14
2.02.2, SO PBS ittt ittt 14
2.13. Client Logging and Error HaNAliNgovoiiiiiiiiiiiee e 15
2.14. Wire ProtoCol (J.REP) ...couuiiiiiiii e e 15
2.14.1. Payload STUCIUIEccouuuiiiiiiiieee et 15
2.14.2. MeSSAQE ROULING ...uciviiiiiiiii e e e e e e e e e ees 17
2.14.3. Bus Management and Handshaking Protocolsccccoeoveviiinniiinnnnnn. 18

T B 1T oT=Ta Yo =T o on A 1 | 1=] f Lo o TR 21
N I O o1 = 11 o 1= gLV ¢ o o [PP PTTRPPPPPIS 22
3.2. Wiring server Side COMPONENTScouuiiiiieiiiiieiii e e e e e e e e e e e e eeeas 24
3.3 SO S ittt ettt e e 24
3.3.1. DEPENUENT SCOPE . cvvniiiiieii et e e e e e e e ean s 24

B]| I =] S (o] o £ 25
4.1, BUS SEIVICES .ievtiiiiiiiiii ettt e ettt e et e et e e et e e e et e e e et e e e et e e e eran s 25
3.4.2. ClieNt COMPONENESuiiiiiiieeeeii ettt e e e e et e e 26
3.4.3. LIifECYCIE TOOIS ...uiiiiiiiii e e e 27

3.5. Client-Side Bean MaNAQETcouuuuiiiiiiiiaieei ettt et et eaaanns 29
3.5.1. LOOKING UP BEANS ...covecii e 29
3.5.2. Availability of DEANSuiiiii i 30

3.6. Alternatives and MOCKSiiiiiiiiiiiii et 30

Errai

B TG A 1Y 1 (=1 = LY=o P 30

3.6.2. TESE IMOCKS ..uiiieii ettt e e e et e e e eaaans 31

3.7. BeAN LIfECYCIE ...eiiieiieee e 33
3.7.1. DESIrUCLION Of BEANS ...uuiiiiiiiiiiiiiii e e ettt e e e e e eaenns 33

A, MArSNAIIING oo s 37
2 I \V = o] o1 o BN 4o U1 gl 0T ¢ ¢ - 11 o [37
4.1.1. @Portable and @NONPOableccoeviiiiiii e, 37

4.1.2. Manual MappPingceceuieiiieiiie e e e e e e e e e e e e 41

4.1.3. Manual Class MapPiNgcccuuueiemiiieiiiiie ettt 43

4.1.4. CusStom Marshallersoieiiiiiiiiiii et 45

5. Remote Procedure Calls (RPC)uuiiiiiiiiiiii ettt 47
5.1, MaKING CallS ..oovniiiiiii e 47
5.1.1. ProXy INJECHONcieiiie ittt 48

5.2, HaNdliNg ©XCEPLIONS .. couuiiiiiiiiiie e e e e e e e e e e e e et e eaneeees 48

5.3. Session and request objects in RPC endpointscooeeiiviiiiiiineeii e 49

LS = o -V 1 L PP 51
6.1. Features and LimitationNsSooviuiiiiiieiiiei e e e e 51
6.1.1. Other fEAUMES ...ciiiii it e et e e e aees 52

B. 2. BVBINES oo e 52
6.2.1. CoNVErsational BVENESooiiiiiiiiiiiii e 53

6.2.2. Client-Server Event EXample ... 54

LS T o (0T [0 o T U 57

6.4. Deploying Errai CDIcooouuiiiiiii e 58
6.4.1. Deployment in Development MOdecccuveviiiiiiiiiciiiiccee e 58

6.4.2. Deployment to a Serviet ENGINecoveiiiiiiiiiii e 59

6.4.3. Deployment to an Application SEIVErccccciviiiiiiiiiiiciiee e 60

T EITAl JA X RS i e a e 61
7.1. Creating REQUESESciiiiiiii e e e e e e e e e e e e e et e e et e e e e e eeaes 61
7.1.1. ProxXy INJECHONeieiiiie et 62

7.2. HANAliNG RESPONSES ...vuiiiiiiiiiieiii et e e e e e e e e e e e et e e e e aeas 62

S T A1 (= o 1 T | P 63

7.4. Errai JAX-RS Configurationccocouiiiiiiiiii e e e e e e e e 63

8. CONTIGUIALION .ouuiiiiiii ettt e et e e et e eeeabe e eene 65
8.1. Appserver ConfigUrationuiiiiiiieiiiiei e e e e e e aaaas 65

8.2. Client CONfIGUIALIONuuiiiiii et 66

TR T 1 = V7Y o] o1 0] (0] o 1= (= 66
8.3.1. AS @ MarKer File ...uuiiieiiiiie e e 66

8.3.2. As a Configuration Filecooiiiiiiiii e 66

8.4, EITAISEIVICE.PIOPEITIESuuiiiiii ettt ettt ettt ettt e e e e eaa e e eneas 67
8.4.1. Configuration Properti€Sc.uiviiuiiiiiieiie e e 67

8.4.2. Example ConfiQUuIationiiiiiiiiiiiiiiii e 68

8.5. Dispatcher ImplemMENtationsoiiiiiiiiiii e 69
8.5.1. SIMPIEDISPALCRET ..ot 69

8.5.2. ASYNCDISPAICNEL ...ciiiiii i 70

8.6. Servlet IMpPIEMENTALIONSiiiiiiie e 70

8.6.1. DefaultBIoCKINGSEIVIEEccovviiiici e 70

8.6.2. JBOSSCOMELSEIVIETuiiiiiii e 70

8.6.3. JettyContinUatioNSSEIVIETccuuiiiiiiii e e 70

8.6.4. StandardASYNCSEIVIETiiiiiiii e 70

9. Debugging Errai APPliCAtIONSciiiniiiiiicii e 71
10. Troubleshooting & FAQ ... e e e e 73
10.1. Why does it seem that Errai can't see my class at compile time? 73

11, UPQGrade GUITE ...ouuiiiiii ettt ettt ettt e e et e e et e e e eba s 75
11.1. Upgrading from 1.*¥ t0 2.0 ..coouiiiiiiii e 75
11.2. Upgrading from 2.0.Beta to 2.0.*.Finalccoouuiiiiiiiiiiiii e 76

2 o),] [0 - Vo =S 77
G TS T U o = PPN 79
14. Reporting Problems ..o 81
T o - T oY o 1 = 83
y N =YY 1o I 13 (o] Y 85

Vi

Preface

1. Document Conventions

2. Feedback

Vii

viii

Chapter 1.

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web
technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC
infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the
examples, and for leveraging the quickstart utilities.

» JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

« Apache Maven: http://maven.apache.org/download.html

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

Chapter 2.

Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

ErraiBus forms the backbone of the Errai framework's approach to application design. Most
importantly, it provides a straight-forward approach to a complex problem space. Providing
common APIs across the client and server, developers will have no trouble working with
complex messaging scenarios from building instant messaging clients, stock tickers, to monitoring
instruments. There's no more messing with RPC APIs, or unweildy AJAX or COMET frameworks.
We've built it all in to one, consice messaging framework. It's single-paradigm, and it's fun to work
with.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

2.2. Messaging API Basics

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the MessageBui | der .

Components that want to receive messages need to implement the MessageCal | back interface.

But before we dive into the details, let look at some use cases first.

2.2.1. Sending Messages with the Client Bus

In order to send a message from a client you need to create a Message and send it through an
instance of MessageBus . In this simple example we send it to the subject 'HelloWorldService'.

Chapter 2. Messaging

public class HelloWwrld inplenments EntryPoint {

/1l Get an instance of the RequestDi spatcher
private Request Di spatcher di spatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {
Button button = new Button("Send nessage");

but t on. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
/1l Send a nessage to the 'Hell oWrl dService'.
MessageBui | der. cr eat eMessage()
.toSubj ect ("Hel | ovorl dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
.sendNowW t h(di spatcher); // (4)
1)

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:
1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dSer vi ce ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

4. We transmit the message by providing an instance to the Request Di spat cher

Recieving Messages on the Server Bus / Server Services

2.2.2. Recieving Messages on the Server Bus / Server Services

Every message has a sender and at least one receiver. A receiver is as it sounds--it receives the
message and does something with it. Implementing a receiver (also referred to as a service) is
as simple as implementing our standard MessageCallback interface, which is used pervasively
across, both client and server code. Let's begin with server side component that receives
messages:

@er vi ce
public class Hell oWwrl dService inplenments MessageCal | back {
public void call back(Message nmessage) {
Systemout.printin("Hello, Wrld!");

He we declare an extremely simple service. The @er vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

2.2.3. Sending Messages with the Server Bus

In the following example we extend our server side component to reply with a message
when the callback method is invoked. It will create a message and address it to the subject '
Hel | owor I dd i ent "

@bervi ce
public class Hell oWwrl dService inplenments MessageCal | back {

private Request D spatcher di spatcher;

@ nj ect
public Hel | oWorl dServi ce(Request Di spat cher di spatcher) {
di spatcher = di spatcher;

public void call back(CommandMessage nessage) {
/1l Send a nessage to the 'HellowrldCient'.
MessageBui | der . cr eat eMessage()
.toSubject("HelloWrlddient") // (1)

.signal ling() Il (2)
.Wwith("text", "H There") /1 (3)
. noError Handl i ng() Il (4)
. sendNowW t h(di spat cher); /'l (5)

1),

Chapter 2. Messaging

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | owor 1 dd i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .

2.2.4. Receiving Messages on the Client Bus/ Client Services

Messages can be received asynchronously and arbitriraily by declaring callback services within
the client bus. As ErraiBus maintains an open COMET channel at all times, these messages are
delivered in real time to the client as they are sent. This provides built-in push messaging for all
client services.

public class Hellowrld inplenments EntryPoint {
private MessageBus bus = Errai Bus.get();

public void onMbdul eLoad() {
[-..]

/**
* Declare a local service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be("Broadcast Recei ver", new MessageCal | back() {
public void cal | back(CommandMessage message) {
/**
* \When a nessage arrives, extract the "text" field and
* do sonething with it
*/
String nessageText = nmessage.get(String.class, "text");

1)

Conversations

In the above example, we declare a new client service called " Br oadcast Recei ver" which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

2.3. Conversations

Conversations are message exchanges which are between a single client and a service. They
are a fundmentally important concept in ErraiBus, since by default, a message will be broadcast
to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

@ervi ce
public class Hell oWwrl dService inplenents MessageCal | back {
public void call back(CommandMessage nessage) {
/1 Send a nmessage to the 'HelloWwrlddient' on the client that sent us the
/'l the nessage.
MessageBui | der. creat eConver sati on(nmessage)
.toSubject("Hel l oWorl ddient")
.signal ling()
.Wwith("text", "H There! We're having a reply!")
.noErrorHandling().reply();
B

Note that the only difference between the example in the previous section and this is the use of
the cr eat eConver sati on() method with MessageBui | der .

2.4. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicitty make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

Chapter 2. Messaging

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor | dServi ce")
.signal ling()
.wWth("nsg", "H there!")
.errorsHandl edBy(new ErrorCal | back() {
publi c bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt St ackTrace();
return true;

}

})
. sendNowW t h(di spat cher);

The addition of error handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCall back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt StackTrace();
return true;

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oVWr| dServi ce")
.signal ling()

.with("nmsg", "H therel™")
.errorsHandl edBy(error)
. sendNowW t h(di spat cher);

The error handler is required to return a bool ean value. This is to indicate whether or not Errai
should perform the default error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to explicitly surpress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

Errai further provides a subject to subscribe to for handling global errors on the client (such as
a disconnected server bus or an invalid response code) that occur outside a regular application
message exchange. Subscribing to this subject is useful to detect errors early (e.g. due to failing
heartbeat requests). A use case that comes to mind here is activating your application's offline
mode.

bus. subscri be(Def aul t Error Cal | back. CLI ENT_ERROR_SUBJECT, new MessageCal | back() {
@verride

Single-Response Conversations & Psuedo-Synchronous Messaging

public void call back(Message nmessage) {
try {
caught = nessage. get (Throwabl e. cl ass, MessageParts. Throwabl e) ;
t hrow caught ;
}
catch(Transport| OException e) {
/1 thrown in case the server can't be reached or an unexpected status
code was returned
}
catch (Throwabl e throwabl e) {
/1 handl e systemerrors (e.g response marshalling errors) - that of course
shoul d never happen :)
}
}
1

2.5. Single-Response Conversations & Psuedo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. 1t should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der . cr eat eMessage()

.toSubj ect (" Conver sati onal Service").signalling()

.w th("SoneFi el d*, soneVal ue)

. noErr or Handl i ng()

.repliesTo(new MessageCal | back() {
public void call back(Message nmessage) {

Systemout.println("l received a response");

}

b

See the next section on how to build conversational services that can respond to such messages.

2.6. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

Chapter 2. Messaging

MessageBui | der . cr eat eMessage() .
.toSubj ect (" Messageli stener")
.Wth("Text", "Hello, fromyour overlords in the cloud")
. noErrorHandl i ng().sendd obal Wt h(di spat cher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

2.7. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

2.7.1. Relay Services

The essential architectural thing you'll need to do is create a relay service that runs on the server.
Since a service advertised on the server is visible to all clients and all clients are visible to the
server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 2.11, “Message Routing Information”

2.8. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

MessageBui | der. creat eConver sati on(nmsg)
.t oSubj ect (" FunSubj ect ")
.signal l'ing()
. noEr r or Handl i ng()

10

Repeating Tasks

.repl yDel ayed(Ti neUni t. SECONDS, 5); // sends the nessage after 5 seconds.
or

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signal ling()

. noError Handl i ng()

. sendDel ayed(request Di spat cher, Ti meUni t . SECONDS, 5); /
/ sends the nessage after 5 seconds.

2.9. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's r epeat XXX() methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der. cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signal ling()
.W thProvi ded("ti me", new ResourceProvider<String>() {
Si npl eDat eFormat fmt = new Si npl eDat eFor mat (" hh: nm ss");

public String get() {
return fmt.format(new Date(SystemcurrentTimeM I 1lis());

}
. noError Handl i ng()

. sendRepeati ngWt h(request D spat cher, Ti meUni t . SECONDS, 1); /1
sends a nessage every 1 second

The above example sends a message very 1 second with a message part called "ti me" ,
containing a formatted time string. Note the use of the wi t hProvi ded() method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel () method of the AsyncTask instance which is returned when creating a task. Reference
to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBui |l der. creat eConversati on(nessage)
.toSubj ect (" Ti neChannel ") . si gnal | i ng()
.wWi t hProvi ded(Ti meServerParts. TineStri ng, new ResourceProvider<String>() {
public String get() {

11

Chapter 2. Messaging

return String.val ue (SystemcurrentTineMIIlis());

}
}) . defaul t ErrorHandl i ng().repl yRepeating(Ti neUnit.M LLI SECONDS, 100);

/1l cancel the task and interrupt it's thread if necessary.
t ask. cancel (true);

2.10. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.toSubj ect (" Ooj ect Service").signalling()
.W th(MessageParts. Repl yTo, "d ient Endpoint")
. noEr ror Handl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der. creat eConver sati on(nessage)
. subj ect Provi ded() . signal l'i ng()
.wWi th("Records", records)
. noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
bj ect Ser vi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

2.11. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
gqueues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

You can obtain the Sessi onl Ddirectly from a Message by getting the QueueSessi on resource:

12

Queue Sessions

QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Sessi on. name());
String sessionld = sess. get Sessionld();

The utility classorg. j boss. errai . bus. server. util. ServerBusUti | s contains a utility method
for extracting the String-based SessionID which is used to identify the message queue associated
with any particular client. You may use this method to extract the Sessi onl D from a message so
that you may use it for routing. For example:

public void call back(Message nessage) ({
QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Session. nane());
String sessionld = sess. get Sessionld();

/'l Record this sessionld sonewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent MessageLi stener™)

.signal l'ing()
.w t h(MessageParts. Sessi onl D, sessi onl d)
Wi th("Message", "W're relaying a nessage!")

. noErrorHandl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

It may be tempting however, to try and include destination Sessi onl Ds at the client level, assuming
that this will make the infrastructure simpler. But this will not achieve the desired results, as the
bus treats Sessi onl Ds as transient. Meaning, the Sessi onl D information is not ever transmitted
from bus-to-bus, and therefore is only directly relevant to the proximate bus.

2.12. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

13

Chapter 2. Messaging

2.12.1. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

2.12.2. Scopes

One of the things Errai offers is the concept of session and local scopes.
2.12.2.1. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) {
/1 obtain a reference to the session context by referencing the incom ng
nmessage.
Sessi onCont ext i njectionContext = SessionContext.get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute”, "Foo");

2.12.2.2. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/'l obtain areference tothe | ocal context by referencing the i ncom ng nessage.
Local Context injecti onContext = Local Context. get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

14

Client Logging and Error Handling

2.13. Client Logging and Error Handling

2.14. Wire Protocol (J.REP)

ErraiBus implements a JSON-based wire protocol which is used for the federated communication
between different buses. The protocol specification encompasses a standard JSON payload
structure, a set of verbs, and an object marshalling protocol. The protocol is named J.REP. Which
stands for JSON Rich Event Protocol.

2.14.1. Payload Structure

All wire messages sent across are assumed to be JSON arrays at the outermost element,
contained in which, there are 0..n messages. An empty array is considered a no-operation, but
should be counted as activity against any idle timeout limit between federated buses.

Example 2.1. Figure 1 - Example J.REP Payload

{"ToSubj ect” : "SoneEndpoint", "Value" : "SoneVal ue" },
{"ToSubj ect” : "SoneQt her Endpoi nt", "Value" : "SomeC herVal ue"}

In Figure 1, we see an example of a J.REP payload containing two messages. One bound for an
endpoint named " SomeEndpoi nt " and the other bound for the endpoint " SomeQ her Endpoi nt "
. They both include a payload element " Val ue" which contain strings. Let's take a look at the
anatomy of an individual message.

Example 2.2. Figure 2 - An J.REP Message

{
"ToSubject" : "Topi cSubscriber",
"CommandType" : "Subscribe",
"Value " : "happyTopic",
"Repl yTo" : "MTopi cSubscri ber Repl yTo"
}

The message shown in Figure 2 shows a very vanilla J.REP message. The keys of the JSON
Object represent individual message parts , with the values representing their corresponding
values. The standard J.REP protocol encompasses a set of standard message parts and values,
which for the purposes of this specification we'll collectively refer to as the protocol verbs.

The following table describes all of the message parts that a J.REP capable client is expected
to understand:

15

Chapter 2. Messaging

Part

ToSubj ect

ConmandType

Required

Yes

No

JSON Type
String

String

Description

Specifies the subject
within the bus, and
its federation, which
the message should
be routed to.

Specifies a command
verb to be transmitted
to the receiving
subject. This is an
optional part of a
message contract, but
is required for using
management services

Repl yTo

Val ue

PriorityProcessing

No

No

No

String

Any

Number

Specifies to the
receiver what subject
it should reply to
in response to this
message.

A recommended but
not required standard
payload part for
sending data to
services

A processing order

salience attribute.
Messages which
specify priority

processing will be
processed first if they
are competing for
resources with other
messages in flight.
Note: the current
version of ErraiBus
only supports two
salience levels (0 and
>1). Any non-zero
salience in ErraiBus
will be given the same
priority relative to 0
salience messages

16

Message Routing

Part Required JSON Type Description

Err or Message No String An accompanying
error message with
any serialized
exception

Thr owabl e No Object If applicable, an
encoded object
representing any
remote exception
that was thrown
while dispatching the
specified service

2.14.1.1. Built-in Subjects

The table contains a list of reserved subject names used for facilitating things like bus management
and error handling. A bus should never allow clients to subscribe to these subjects directly.

Subject Description

d i ent Bus The self-hosted message bus endpoint on the
client

Ser ver Bus The self-hosted message bus endpoint on the
server

ClientBusErrors The standard error receiving service for clients

As this table indicates, the bus management protocols in J.REP are accomplished using self-
hosted services. See the section on Bus Management and Handshaking Protocols for details.

2.14.2. Message Routing

There is no real distinction in the J.REP protocol between communication with the server, versus
communication with the client. In fact, it assumed from an architectural standpoint that there is
no real distinction between a client and a server. Each bus participates in a flat-namespaced
federation. Therefore, it is possible that a subject may be observed on both the server and the
client.

One in-built assumption of a J.REP-compliant bus however, is that messages are routed within
the auspices of session isolation. Consider the following diagram:

Figure 2.1. Figure 3 - Topology of a J.REP Messaging Federation

In Figure 3, is is possible for Client A to send messages to the subjects ServiceA and ServiceB
. But it is not possible to address messages to ServiceC . Conversely, Client A can address
messages to ServiceC and ServiceB , but not ServiceA .

17

Chapter 2. Messaging

2.14.3. Bus Management and Handshaking Protocols

Federation between buses requires management traffic to negotiate connections and manage
visibility of services between buses. This is accomplished through services named d i ent Bus and
Ser ver Bus which both implement the same protocol contracts which are defined in this section.

2.14.3.1. ServerBus and ClientBus commands

Both bus services share the same management protocols, by implementing verbs (or commands)
that perform different actions. These are specified in the protocol with the ConmandType message
part. The following table describes these commands:

Table 2.1. Message Parts for Bus Commands:

Command / Verb Message Parts Description

Connect ToQueue N/A The first message sent by a
connecting client to begin the
handshaking process.

CapabilitiesNotice Capabi | i ti esFl ags A message sent by one bus
to another to notify it of its
capabilities during handshake
(for instance long polling or
websockets)

Fi ni shSt at eSync N/A A message sent from one
bus to another to indicate
that it has now provided all
necessary information to the
counter-party bus to establish
the federation. When both
buses have sent this message
to each other, the federation is
considered active.

Renot eSubscri be Subj ect or Subj ect sLi st A message sent to the remote
bus to notify it of a service
or set of services which it is
capable of routing to.

Renot eUnsubscri be Subj ect A message sent to the remote
bus to notify it that a service is
no longer available.

Di sconnect Reason A message sent to a server
bus from a client bus to
indicate that it wishes to
disconnect and defederate.
Or, when sent from the client

18

Bus Management and Handshaking Protocols

Command / Verb

Sessi onExpi red

Hear t beat

Message Parts

N/A

N/A

Description

to server, indicates that the
session has been terminated.

A message sent to a client bus
to indicate that its messages
are no longer being routed
because it no longer has an
active session

A message sent from one
bus to another periodically to
indicate it is still active.

Part

Capabi l i ti esFl ags

Subj ect

Subj ect sLi st

Required

Yes

Yes

JSON Type
String

String

Array

Description

A comma delimited
string of capabilities
the bus is capable of
us

The subject to
subscribe or
unsubscribe from

An array of strings
representing a list of
subjects to subscribe
to

20

Chapter 3.

Dependency Injection

The core Errai IOC module implements the JSR-330 Dependency Injection [http://
download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for
in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the
implementation of decoupled and type-safe components. By using DI, components do not need
to be aware of the implementation of provided services. Instead, they merely declare a contract
with the container, which in turn provides instances of the services that component depends on.

@ Classpath Scanning and ErraiApp.properties

Errai only scans the contents of classpath locations (JARs and directories) that
have at their root. If dependency injection
is not working for you, double-check that you have an Err ai App. properti es in
every JAR and directory that contains classes Errai should know about.

A simple example:

public class MyLittl ed ass {
private final TimeService tineService;

@ nj ect
public MyLittl el ass(Ti meService tineService) {
this.tinmeService = tinmeService;

public void printTinme() {
Systemout.println(this.timeService.getTine());

In this example, we create a simple class which declares a dependency using
@nject [http://downl oad. oracl e.con javaee/ 6/ api/javax/inject/Inject.htm] for
the interface Ti neSer vi ce . In this particular case, we use constructor injection to establish the
contract between the container and the component. We can similarly use field injection to the
same effect:

public class MyLittled ass {
@ nj ect
private TinmeService tinmeService;

21

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 3. Dependency Injection

public void printTinme() {
Systemout.println(this.tineService.getTine());

In order to inject Ti meSer vi ce , you must annotate it with @\ppl i cati onScoped or the Errai DI
container will not acknowledge the type as a bean.

@\ppl i cati onScoped
public class Ti meService {

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot
create immutable classes using the pattern, since the container must first call the
default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential — albeit remote — that the object could be left in an partially or
improperly initialized state. The advantage of constructor injection is that fields can
be immutable (final), and invariance rules applied at construction time, leading to
earlier failures, and the guarantee of consistent state.

3.1. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide
a programmatic way of creating and configuring injectors. Instead, container-level binding rules are
defined by implementing a Provi der [http://downl oad. oracl e. cont j avaee/ 6/ api / j avax/
inject/Provider.htm] ,which is scanned for an auto-discovered by the container.

A Provider is essentially a factory which produces dependent types in the container, which
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Provi der <T> interface.

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai IOC implements three default top-level providers:

e org.jboss.errai.ioc.client.api.builtin. MessageBusProvider : Makes an instance of
MessageBus available for injection.

e org.jboss.errai.ioc.client.api.builtin.RequestD spatchProvider . Makes an
instance of the Request Di spat cher available for injection.

22

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

* org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event
Consuner <?> objects available for injection.

Implementing a Provi der is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface Ti meService {
public String getTime();

TimeServiceProvider.java

@ COCPr ovi der
@i ngl et on
public class TineServiceProvider inplenments Provider<Ti meService> {

@verride
public TinmeService get() {
return new Ti neService() {
public String getTime() {
return "lIt's mdnight sonewhere!";

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Gui ce. creat el nj ect or (new Abstract Modul e() {
public void configure() {
bi nd(Ti meServi ce. cl ass).toProvi der (Ti meServi ceProvi der. cl ass);

}
}) . getlnstance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject
dependencies — particularly from other top-level providers — as necessary.

23

Chapter 3. Dependency Injection

3.2. Wiring server side components

By default, Errai uses Google Guice to wire components. When deploying services on the server-
side, it is currently possible to obtain references to the MessageBus , Request Di spat cher , the
Errai Servi ceConfigurator , and Errai Servi ce by declaring them as injection dependencies
in Service classes, extension components, and session providers.

Alternatively, supports CDI based wiring of server-side components. See the chapter on Errai CDI
for more information.

3.3. Scopes

Out of the box, the I0C container supports three bean scopes, @ependent , @i ngl et on and
@nt ryPoi nt . The singleton and entry-point scopes are roughly the same semantics.

3.3.1. Dependent Scope

In Errai CDI, all client types are valid bean types if they are default constructable or can have
construction dependencies satisfied. These unqualified beans belong the dependent pseudo-
scope. See: Dependent Psuedo-Scope from CDI Documentation [http://docs.jboss.org/weld/
reference/latest/en-US/html/scopescontexts.html#d0e1997]

Additionally, beans may be qualified as @ppl i cati onScoped , @i ngl et on or @nt ryPoi nt
. Although these three scopes are supported for completeness and conformance to the
specification, within the client they effectively result in behavior that is identical.

Example 3.1. Example dependent scoped bean
public voi d MyDependent ScopedBean {
private final Date createdDate;

publ i ¢ MyDependent ScopedBean {
createdDate = new Date();

Example 3.2. Example ApplicationScoped bean

@\ppl i cati onScoped
public void MyClientBean {
@ nj ect MyDependent ScopedBean bean;

Il

24

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997

Built-in Extensions

Availability of dependent beans in the client-side
BeanManager

As is mentioned in the bean manager documentation , only beans that are
explicitly scoped will be made available to the bean manager for lookup. So while
it is not necessary for regular injection, you must annotate your dependent scoped
beans with @ependent if you wish to dynamically lookup these beans at runtime.

3.4. Built-in Extensions

3.4.1. Bus Services

As Errai I0C provides a container-based approach to client development, support for Errai
services are exposed to the container so they may be injected and used throughout your
application where appropriate. This section covers those services.

3.4.1.1. @Service

The org.jboss.errai.bus.server.annotations. Service annotation is used for binding
service endpoints to the bus. Within the Errai IOC container you can annotate services and have
them published to the bus on the client (or on the server) in a very straight-forward manner:

Example 3.3. A simple message receiving service

@er vi ce
public class MyService inplenents MessageCal | back {
public void call back(Message nmessage) {
I

Or like so ...

Example 3.4. Mapping a callback from a field of a bean

@i ngl et on
public class M/AppBean {
@ervi ce("MyService")
private final MessageCall back nmyService = new MesageCal | back() {
public void cal |l back(Message nessage) {
Il

25

Chapter 3. Dependency Injection

As with server-side use of the annotation, if a service name is not explicitly specified, the underlying
class name or field name being annotated will be used as the service name.

3.4.1.2. @Local

The org.jboss.errai.bus. server. api.Local annotation is used in conjunction with the
@ser vi ce annotation to advertise a service only for visibility on the local bus and thus, cannot
receive messages across the wire for the service.

Example 3.5. A local only service

@ervice @ocal
public class MyLocal Service inplenments MessageCal | back {
public void call back(Message nmessage) {
Il

3.4.1.3. Lifecycle Impact of Services
Services which are registered with ErraiBus via the bean manager through use of the @er vi ce

annotation, have de-registration hooks tied implicitly to the destruction of the bean. Thus,
destruction of the bean implies that these associated services are to be dereferenced.

3.4.2. Client Components
The I0C container, by default, provides a set of default injectable bean types. They range from
basic services, to injectable proxies for RPC. This section covers the facilities available out-of-

the-box.

3.4.2.1. MessageBus

The type org. j boss. errai. bus. client.franmework. MessageBus is globally injectable into any
bean. Injecting this type will provide the instance of the active message bus running in the client.

Example 3.6. Injecting a MessageBus

@ nj ect MessageBus bus;

26

Lifecycle Tools

3.4.2.2. RequestDispatcher

The type org. j boss. errai . bus. cli ent.franework. Request Di spat cher is globally injectable
into any bean. Injecting this type will provide a Request Di spat cher instance capable of delivering
any messages provided to it, to the the MessageBus .

Example 3.7. Injecting a RequestDispatcher

@ nj ect Request Di spatcher di spatcher;

3.4.2.3. Caller<?>

The type org.jboss.errai.ioc.client.api.Caller<?>is a globally injectable RPC proxy.
RPC proxies may be provided by various components. For example, JAX-RS or Errai RPC.
The proxy itself is agnostic to the underlying RPC mechanism and is qualified by it's type
parameterization.

For example:

Example 3.8. An example Caller<?> proxy

public void MyClientBean {
@ nj ect
private Caller<MyRpclnterface> rpcCaller;

1.1

@Ji Handl er ("button")
public void onButtond ick(d ickHandl er handler) {
rpcCal |l er.call (new Renot eCal | back<Voi d>() {
public void callback(Void void) {

}
). cal | SoneMet hod();

The above code shows the injection of a proxy for the RPC remote interface, MyRpcl nter f ace
. For more information on defining RPC proxies see Chapter 5, Remote Procedure Calls (RPC)
and Section 7.1, “Creating Requests” in Errai JAX-RS.

3.4.3. Lifecycle Tools

A problem commonly associated with building large applications in the browser is ensuring that
things happen in the proper order when code starts executing. Errai I0C provides you tools

27

Chapter 3. Dependency Injection

which permit you to ensure things happen before initialization, and forcing things to happen after
initialization of all of the Errai services.

3.4.3.1. Controlling Startup

In order to prevent initialization of the the bus and it's services so that you can do
necessary configuration, especially if you are writing extensions to the Errai framework
itself, you can create an implicit startup dependency on your bean by injecting an
org.jboss.errai.ioc.client.api.lnitBallot<?>.

Example 3.9. Using an InitBallot to Control Startup

@i ngl et on
public class MydientBean {
@nject InitBallot<M/dientBean> ball ot;

@ost Const ruct
public void doStuff() {
/[l ... do sone work ...

bal | ot.voteForlnit();

3.4.3.2. Performing Tasks After Initialization

Sending RPC calls to the server from inside constructors and @ost Const r uct methods in Errai
is not always reliable due to the fact that the bus and RPC proxies initialize asynchronously with
the rest of the application. Therefore it is often desirable to have such things happen in a post-
initialization task, which is exposed in the A i ent MessageBus API. However, it is much cleaner to
use the @fterlnitialization annotation on one of your bean methods.

Example 3.10. Using @Afterinitialization to do something after startup

@i ngl et on
public class MyCientBean {
@fterlnitialization
public void doStuffAfterinit() {
[l ... do sone work ...

28

Client-Side Bean Manager

3.5. Client-Side Bean Manager

It may be necessary at times to obtain instances of beans managed by Errai I0C
from outside the container managed scope or creating a hard dependency from your
bean. Errai IOC provides a simple client-side bean manager for handling these scenarios:
org.jboss.errai.ioc.client.container.|OCBeanManager .

As you might expect, you can inject the bean manager into any of your managed beans.

Example 3.11. Injecting the client-side bean manager
publi c MyManagedBean {
@ nj ect | CCBeanManager manager;

/1 class body

If you need to access the bean manager outside a managed bean, such as in a unit test, you can
access it by calling org. j boss. errai .ioc. client.container.| CC. get BeanManager ()

3.5.1. Looking up beans

Looking up beans can be done through the use of the | ookupBean() method in | OCBeanManager
. Here's a basic example:

Example 3.12. Example lookup of a bean

public MyManagedBean {
@ nj ect | CCBeanManager mnanager;

public void | ookupBean() {
| OCBean<Si npl eBean> bean = nmanager .| ookupBean(Si npl eBean. cl ass) ;

/'l check to see if the bean exists
if (bean !'= null) {
/1 get the instance of the bean
Si npl eBean i nst = bean. getl nstance();

In this example we lookup a bean class hamed Si npl eBean . This example will succeed assuming
that Si npl eBean is unambiguous. If the bean is ambiguous and requires qualification, you can
do a qualified lookup like so:

29

Chapter 3. Dependency Injection

Example 3.13. Looking up beans with qualifiers

MyQualifier qual = new MyQualifier() {
publi c annotationType() {
return MyQualifier.class;

MO herQualifier qual2 = new MyOtherQualifier() {
public annotationType() {
return MyQtherQualifier.class;

/'l pass qualifiers to | OCBeanManager .| ookupBean
| OCBean<Si npl el nt erface> bean = beanManager. | ookupBean(Si npl eBean. cl ass, qual, qual 2);

In this example we manually construct instances of qualifier annotations in order to pass it to the
bean manager for lookup. This is a necessary step since there's currently no support for annotation
literals in Errai client code.

3.5.2. Availability of beans

Not all beans that are available for injection are available for lookup from the bean manager
by default. Only beans which are explicitly scoped are available for dynamic lookup. This is an
intentional feature to keep the size of the generated code down in the browser.

3.6. Alternatives and Mocks

3.6.1. Alternatives

It may be desirable to have multiple matching dependencies for a given injection point with
the ability to specify which implementation to use at runtime. For instance, you may have
different versions of your application which target different browsers or capabilities of the browser.
Using alternatives allows you to share common interfaces among your beans, while still using
dependency injection, by exporting consideration of what implementation to use to the container's
configuration.

Consider the following example:

@i ngl eton @\ ternative
public class MbileView inplenents View {
I ... 11

30

Test Mocks

and

@i ngl eton @\ ternative
public class DesktopView inplenents View {
[N

In our controller logic we in turn inject the Vi ew interface:

@nt r yPoi nt

public class MyApp {
@ nj ect
Vi ew vi ew,

Il

This code is unaware of the implementation of Vi ew , which maintains good separation of
concerns. However, this of course creates an ambiguous dependency on the Vi ew interface as
it has two matching subtypes in this case. Thus, we must configure the container to specify
which alternative to use. Also note, that the beans in both cases have been annotated with

javax.enterprise.inject.Alternative.

In your Errai App. properties for the module, you can simply specify which active alternative
should be used:

errai.ioc.enabl ed. alternati ves=org. f oo. Mobi |l eVi ew

You can specify multiple alternative classes by white space separating them:

errai.ioc.enabl ed. alternati ves=org. foo. MbileVi ew \
org. foo. HTM.5Ori entation \
org. f oo. Mobi | eSt or age

You can only have one enabled alternative for matching set of alternatives, otherwise you will get
ambiguous resolution errors from the container.

3.6.2. Test Mocks

Similar to alternatives, but specifically designed for testing scenarios, you can replace beans with
mocks at runtime for the purposes of running unit tests. This is accomplished simply by annotating

31

Chapter 3. Dependency Injection

abeanwiththeorg. j boss. errai.ioc.client.api.Test Mck annotation. Doing so will prioritize
consideration of the bean over any other matching beans while running unit tests.

Consider the following:

@\ppl i cati onScoped
public class User Managenent| npl inplenents User Managenent {
public List<User> listUsers() {
/1 do user listy things!

You can specify a mock implementation of this class by implementing its common parent type
(User Managenent) and annotating that class with the @rest Mock annotation inside your test
package like so:

@est Mock @\ppli cati onScoped
public class MdckUser Managenent | npl i npl ements User Managenent {
public List<User> listUsers() {
/1 return only a test user.
return Coll ections.singletonList(TestUser. | NSTANCE);

In this case, the container will replace the UserManagenentlnpl with the
MockUser Managenent | npl automatically when running the unit tests.

The @est Mock annotation can also be used to specify alternative providers during test execution.
For example, it can be used to mock a Cal | er <T>. Cal | er s are used to invoke RPC or JAX-RS
endpoints. During tests you might want to replace theses callers with mock implementations. For
details on providers see Section 3.1, “Container Wiring” .

@rest Mock @ OCPr ovi der
public class MdckedHappyServi ceCall er Provi der inplenents Contextual TypeProvi der <Cal | er <HappySet

@verride
public Cal | er<HappyServi ce> provi de(Cl ass<?>[] typeargs, Annotation[] qualifiers) {
return new Cal | er <HappyService>() {

32

Bean Lifecycle

3.7. Bean Lifecycle

All beans managed by the Errai IOC container support the @ost Const ruct and @r eDest r oy
annotations.

Beans which have methods annotated with @ost Construct are guaranteed to have those
methods called before the bean is put into service, and only after all dependencies within its graph
has been satisfied.

Beans are also guaranteed to have their @r eDest r oy annotated methods called before they are
destroyed by the bean manager.

Important

This cannot be guaranteed when the browser DOM is destroyed prematurely due
to: closing the browser window; closing a tab; refreshing the page, etc.

3.7.1. Destruction of Beans

Beans under management of Errai IOC, of any scope, can be explicitly destroyed through the
client bean manager. Destruction of a managed bean is accomplished by passing a reference to
the dest r oyBean() method of the bean manager.

Example 3.14. Destruction of bean

publi ¢ MyManagedBean {
@ nj ect | CCBeanManager manager;

public void createABeanThenDestroylt() {
/1 get a new bean.
Si npl eBean bean = nanager .| ookupBean(Si npl eBean. cl ass). get | nstance();

bean. sendMessage("Sorry, | need to di spose of you now');

/'l destroy the bean!
manager . dest r oyBean(bean) ;

When the bean manager "destroys" the bean, any pre-destroy methods the bean declares are
called, it is taken out of service and no longer tracked by the bean manager. If there are references
on the bean by other objects, the bean will continue to be accessible to those objects.

33

Chapter 3. Dependency Injection

Important

Container managed resources that are dependent on the bean such as bus service
endpoints or CDI event observers will also be automatically destroyed when the
bean is destroyed.

Another important consideration is the rule, "all beans created together are destroyed together."
Consider the following example:

Example 3.15. SimpleBean.class

@ependent
public class SinpleBean {
@ nj ect @\ew Anot her Bean anot her Bean;

publ i c Anot her Bean get Anot her Bean() {
return anot her Bean;

@°r eDest r oy
private void cleanUp() {
/1 do sonme cl eanup tasks

Example 3.16. Destroying bean from subgraph

publi c MyManagedBean {
@ nj ect | CCBeanManager manager;

public void createABeanThenDestroylt() {
/1 get a new bean.
Si npl eBean bean = manager .| ookupBean(Si npl eBean. cl ass) . get | nstance();

/1l destroy the AnotherBean reference frominside the bean
manager . dest r oyBean(bean. get Anot her Bean()) ;

In this example we pass the instance of Anot her Bean, created as a dependency of Si npl eBean,
to the bean manager for destruction. Because this bean was created at the same time as its
parent, its destruction will also result in the destruction of Si npl eBean ; thus, this action will result
in the @r eDest roy cl eanUp() method of Si npl eBean being invoked.

34

Destruction of Beans

3.7.1.1. Disposers

Another way which beans can be destroyed is through the use of the injectable
org.jboss.errai.ioc.client.api.D sposer<T> class. The class provides a straight forward
way of disposing of bean type.

For instance:

Example 3.17. Destroying bean with disposer

public MyManagedBean {
@nj ect @New Si npl eBean nmyNewSi npl eBean;
@ nj ect Di sposer <Si npl eBean> si npl eBeanDi sposer ;

public void destroyMyBean() {
si npl eBeanDi sposer . di spose(nmyNewSi npl eBean) ;

35

36

Chapter 4.

Marshalling

Errai includes a comprehensive marshalling framework which permits the serialization of domain
objects between the browser and the server. From the perspective of GWT, this is a complete
replacement for the provided GWT serialization facilities and offers a great deal more flexibility.
You are be able to map both application-specific domain model, as well as preexisting model,
including model from third-party libraries using the custom definitions API.

4.1. Mapping Your Domain

All classes that you intend to be marshalled between the client and the server must be exposed
to the marshalling framework. There are several ways you can do it and this section will take you
through the different approaches you can take to fit your needs.

4.1.1. @Portable and @NonPortable

To make a Java class eligible for serialization with Errai Marshalling, mark it with
the org.j boss. errai.common. client. api.annotations. Portabl e annotation. This tells the
marshalling system to generate marshalling and demarshalling code for the annotated class and
all of its nested classes.

The mapping strategy that will be used depends on how much information you provide about
your model up-front. If you simply annotate a domain type with @&ort abl e and do nothing else,
the marshalling system will use and exhaustive strategy to determine how to construct and
deconstruct instances of that type and its nested types.

The Errai marshalling system works by enumerating all of the Portable types it can find (by any
of the three methods discussed in this section of the reference guide), eliminating all the non-
portable types it can find (via @onPor t abl e annotations and entries in Er r ai App. properti es),
then enumerating the marshallable properties that make up each remaining portable entity type.
The rules that Errai uses for enumerating the properties of a portable entity type are as follows:

« If an entity type has a field called f oo , then that entity has a property called f oo unless the
field is marked static ortransient .

Note that the existence of methods called get Foo() , set Foo() , or both, does not mean that
the entity has a property called f oo . Errai Marshalling always works from fields when discovering
properties.

When reading a field f oo , Errai Marshalling will call the method get Foo() in preference to direct
field access if the get Foo() method exists.

Similarly, when writing a field f oo , Errai Marshalling will call the method set Foo() in preference
to direct field access if the set Foo() method exists.

37

Chapter 4. Marshalling

The above rules are sufficient for marshalling an existing entity to a JSON representation, but for
de-marshalling, Errai must also know how to obtain an instance of a type. The rules that Errai
uses for deciding how to create an instance of a @ort abl e type are as follows:

« If the entity has a public constructor where every argument is annotated with @wapsTo , and
those parameters cover all properties of the entity type, then Errai uses this constructor to create
the object, passing in all of the property values.

« Otherwise, if the entity has a public static method where every argument is annotated with
@mdpsTo , and those parameters cover all properties of the entity type, then Errai uses this
method to create the object. Note that when using this mechanism you are free to create and
return a subtype of the marshalled type, or resolve one from a cache.

« If the entity has a public no-arguments constructor (or no explicit constructors at all), it will be
created via that constructor, and the properties will be written to the new object one at a time.
Each property will be written by its setter method, or by direct field access if a setter method
is not available.

Now let's take a look at some common examples of how this works.

4.1.1.1. Example: A Simple Entity

@ort abl e

public class Person {
private String name;
private int age;

public Person() {
}

public Person(String name, int age) ({
thi s. nane = nane;
thi s. age = age;

public String getName() {
return name;

public int getAge() {

return age;

This is a pretty vanilla domain object. Note the default, public, no-argument constructor. In this
case, it will be necessary to have one explicitly declared. But notice we have no setters. In

38

@Portable and @NonPortable

this case, the marshaler will rely on private field access to write the values on each side of the
marshalling transaction. For simple domain objects, this is both nice and convenient. But you
may want to make the class immutable and have a constructor enforce invariance. See the next
section for that.

4.1.1.2. Example: An Immutable Entity with a Public Constructor

Immutability is almost always a good practice, and the marshalling system provides you a straight
forward way to tell it how to marshal and de-marshal objects which enforce an immutable contract.
Let's modify our example from the previous section.

@Port abl e

public class Person {
private final String nane;
private final int age;

publi c Person(@apsTo("nanme") String nane, @mapsTo("age") int age) {
thi s. name = nane;
thi s. age = age;

public String getName() {
return name;

public int getAge() {
return age;

Here we have set both of the class fields final. By doing so, we had to remove our default
constructor. But that's okay, because we have annotated the remaining constructor's parameters
using the org. j boss. errai . marshal | i ng. cl i ent. api . annot ati ons. MapsTo annotation.

By doing this, we have told the marshaling system, for instance, that the first parameter of
the constructor maps to the property nanme . Which in this case, defaults to the name of the
corresponding field. This may not always be the case — as will be explored in the section on custom
definitions. But for now that's a safe assumption.

4.1.1.3. Example: An Immutable Entity with a Factory Method
Another good practice is to use a factory pattern to enforce invariance. Once again, let's modify

our example.

@Port abl e
public class Person {

39

Chapter 4. Marshalling

private final String nane;
private final int age;

private Person(String nane, int age) {
t hi s. name = nane;
thi s. age = age;

public static Person createPerson(@hapsTo("nane") String name, @mapsTo("age") int age) {
return new Person(nane, age);

public String getName() {
return name;

public int getAge() {
return age;

Here we have made our only declared constructor private, and created a static factory method.
Notice that we've simply used the same @apsTo annotation in the same way we did on the
constructor from our previous example. The marshaller will see this method and know that it should
use it to construct the object.

4.1.1.4. Example: An Immutable Entity with a Builder

For types with a large number of optional attributes, a builder is often the best approach.

@ort abl e

public class Person {
private final String naneg;
private final int age;

private Person(@hpsTo("nane") String name, @MbpsTo("age") int age) {
thi s. name = nane;
thi s. age = age;

public String getName() {
return nane;

public int getAge() {
return age;

40

Manual Mapping

@onPor t abl e

public static class Builder {
private String nane;
private int age;

public Builder nane(String name) {
thi s. nane = nane;
return this;

public Builder age(int age) {
thi s. age = age;
return this;

public BuilderEntity build() {
return new Person(nane, age);

In this example, we have a nested Bui | der class that implements the Builder Pattern and calls
the private Per son constructor. Hand-written code will always use the builder to create Person
instances, but the @apsTo annotations on the private Per son constructor tell Errai Marshalling to
bypass the builder and construct instances of Person directly.

One final note: as a nested type of Per son (which is marked @or t abl e), the builder itself would
normally be portable. However, we do not intend to move instances of Per son. Bui | der across
the network, so we mark Per son. Bui | der as @onPort abl e .

4.1.2. Manual Mapping

Some classes may be out of your control, making it impossible to annotate them for auto-discovery
by the marshalling framework. For cases such as this, there are two approaches which can be
undertaken to include these classes in your application.

The first approach is the easiest, but is contingent on whether or not the class is directly exposed
to the GWT compiler. That means, the classes must be part of a GWT module and within the
GWT client packages. See the GWT documentation on Client-Side Code [http://code.google.com/
webtoolkit/doc/latest/DevGuideCodingBasicsClient.html] for information on this.

4.1.2.1. Mapping Existing Client Classes

If you have client-exposed classes that cannot be annotated with the @or t abl e annotation, you
may manually map these classes so that the marshaller framework will comprehend and produce
marshallers for them and their nested types.

41

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html

Chapter 4. Marshalling

To do this, specify them in ErraiApp.properties , using the
errai . marshal | i ng. seri al i zabl eTypes attribute with a whitespace separated list of classes
to make portable.

Example 4.1. Example ErraiApp.properties defining portable classes.

errai . marshal | i ng. seri ali zabl eTypes=org. foo.client.UserEntity \
org.foo.client. GoupEntity \
org. abci nc. nodel .client.Profile

If any of the serializable types have nested classes that you wish to make non-portable, you can
specify them like this:

Example 4.2. Example ErraiApp.properties defining nonportable classes.

errai . marshal | i ng. nonseri al i zabl eTypes=org. foo. client. UserEntity$Builder \
org. foo.client. G oupEntity$Buil der

4.1.2.2. Aliased Mappings of Existing Interface Contracts

The marshalling framework supports and promotes the concept of marshalling by interface
contract, where possible. For instance, the framework ships with a marshaller which can marshall
datato and fromthe j ava. util. Li st interface. Instead of having custom marshallers for classes
such as ArraylLi st and Li nkedLi st , by default, these implementations are merely aliased to
the j ava. util. Li st marshaller.

There are two distinct ways to go about doing this. The most straightforward is to specify which
marshaller to alias when declaring your class is @ort abl e .

package org.foo.client;

@ortable(aliasO = java.util.List.class)
public M/Listlnpl extends ArrayList {
I

In the case of this example, the marshaller will not attempt to comprehend your class. Instead,
it will merely rely on the j ava. uti |l . Li st marshaller to dematerialize and serialize instances of
this type onto the wire.

If for some reason it is not feasible to annotate the class, directly, you may specify the mapping
in the ErraiApp.properties file using the errai . mar shal | i ng. mappi ngAl i ases attribute.

42

Manual Class Mapping

errai . marshal | i ng. mappi ngAl i ases=org. foo.client. M/Listlnpl->ava.util.List \
org. foo. client. MyMapl npl ->j ava. util . Map

The list of classes is whitespace-separated so that it may be split across lines.

The example above shows the equivalent mapping for the MyLi st | npl class from the previous
example, as well as a mapping of a class to the j ava. uti | . Map marshaller.

The syntax of the mapping is as follows: <cl ass_t o_map> -> <contract _to_map_t 0> .

Aliases do not inherit functionality!

When you alias a class to another marshalling contract, extended functionality
of the aliased class will not be available upon deserialization. For this you must
provide custom marshallers for those classes.

4.1.3. Manual Class Mapping

Although the default marshalling strategies in Errai Marshalling will suit the vast majority of use
cases, there may be situations where it is necessary to manually map your classes into the
marshalling framework to teach it how to construct and deconstruct your objects.

This is accomplished by specifying Mappi ngDefi ni ti on classes which inform the framework
exactly how to read and write state in the process of constructing and deconstructing objects.

4.1.3.1. MappingDefinition

All manual mappings should extend the
org.jboss.errai.marshal | ing.rebind. api . nodel . Mappi ngDefi ni ti on class. This is base
metadata class which contains data on exactly how the marshaller can deconstruct and construct
objects.

Consider the following class:

public class MySuperCustonEntity {
private final String nySuper Nane;
private String mySuperN cknane;

publ i c MySuper CustonEntity(String nySuperNanme) {

t hi s. mySuper Name = nySuper Nane; ;

public String get MySuper Narme() ({
return this.nySuperNang;

43

Chapter 4. Marshalling

public void set MySuper Ni ckname(String nySuper N cknane) {
thi s. mySuper Ni cknane = nySuper Ni cknane;

public String get MySuper Ni cknanme() {
return this. mySuperN cknamne;

Let us construct this object like so:

MySuper Cust onmEnt ity entity = new MySuper CustonEntity("Coolio");
entity. set Super Ni ckname("coo");

Itis clear that we may rely on this object's two getter methods to extract the totality of its state. But
due to the fact that the nmySuper Nane field is final, the only way to properly construct this object is
to call its only public constructor and pass in the desired value of nmySuper Nane .

Let us consider how we could go about telling the marshalling framewaork to pull this off:

@Cust omVappi ng
publ i ¢ MySuper Cust onEnt i t yMappi ng ext ends Mappi ngDefinition {
publ i ¢ MySuper Cust onEntit yMappi ng() ({
super (MySuper Cust onEnti ty. cl ass); /1

(1)

Si npl eConst ruct or Mappi ng cnsMappi ng = new Si npl eConst ruct or Mappi ng() ;
cnsMappi ng. mapPar nifol ndex (" nySuper Nane", 0, String. cl ass); /1
(2)

set |l nstanti ati onMappi ng(cnsMappi ng) ;

addMenber Mappi ng(new i t eMappi ng(" mySuper Ni cknane"Stri ng. cl ass,set MySuper Ni cknange"))/;/
(3)

addMenber Mappi ng(newReadMappi ng(" mySuper Nane", Stri ng. cl ass, "get MySuper Nane")) J/
(4)
addMenber Mappi ng(neReadMappi ng(" mySuper Ni cknane" Stri ng. cl ass) get MySuper Ni cknane")) /

(5)
}

And that's it. This describes to the marshalling framework how it should go about constructing and
deconstructing MySuper Cust onEntity .

44

Custom Marshallers

Paying attention to our annotating comments, let's describe what we've done here.

1. Call the constructor in Mappi ngDef i ni t i on passing our reference to the class we are mapping.

2. Using the Si npl eConst r uct or Mappi ng class, we have indicated that a custom constructor
will be needed to instantiate this class. We have called the mapPar niTol ndex method with
three parameters. The first, " mySuper nane" describes the class field that we are targeting. The
second parameter, the integer 0 indicates the parameter index of the constructor arguments
that we'll be providing the value for the aforementioned field — in this case the first and only, and
the final parameter St ri ng. cl ass tells the marshalling framework which marshalling contract
to use in order to de-marshall the value.

3. Using the Wi t eMappi ng class, we have indicated to the marshaller framework how to write the
"nySuper Ni cknanme" field, using the Stri ng. cl ass marshaller, and using the setter method
set MySuper Ni cknane .

4. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read
the "nySuper Nare" field, using the String. cl ass marshaller, and using the getter method
get MySuper Nane .

5. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read the
"mySuper Ni cknanme" field, using the Stri ng. cl ass marshaller, and using the getter method
get MySuper Ni cknane .

4.1.4. Custom Marshallers

There is another approach to extending the marshalling functionality that doesn't involve mapping
rules, and that is to implement your own Mar shal | er class. This gives you complete control over
the parsing and emission of the JSON structure.

The implementation of marshallers is made relatively straight forward by the fact that both the
server and the client share the same JSON parsing API.

Consider the included java.util.Date marshaller that comes built-in to the marshalling
framework:

Example 4.3. DataMarshaller.java from the built-in marshallers

@ i ent Marshal | er @server Mar shal | er
public class DateMarshal |l er extends AbstractNul | abl eMar shal | er <Dat e> {

@verride
public d ass<Dat e> get TypeHandl ed() {
return Date. cl ass;

@erride
public Date demarshal | (EJVal ue o, MarshallingSession ctx) {

45

Chapter 4. Marshalling

/1 check if the JSON el enent is null

if (o.isNull() !'= null) {
[l if the JSON elenment is null, so is our object!
return null;

/'l instantiate our Date!
return new Dat e(Long. parseLong(o.isObject().get(SerializationParts. QUALI FI ED VALUE).isStrir

}
@erride
public String marshal | (Date o, MarshallingSession ctx) {
/1 if the object is null, we encode "null"
if (o =null) { return "null"; }
/1 return the JSON representation of the object
return AR + Seri al i zati onParts. ENCODED_TYPE + "\
\"" + Date.class.getNane() + "\"," +
"\"" + SerializationParts. OBJECT_ID + "\":\"" + 0. hashCode() + "\"," +
"\"" 4+ SerializationParts. QUALI FI ED_ VALUE + "\"

\"" + o.getTime() + "\"}";
}

The class is annotated with both @ i ent Marshal | er and @er ver Mar shal | er indicating that
this class should be used for both marshalling on the client and on the server.

The denar shal | () method does what its name implies: it is responsible for demarshalling the
object from JSON and turning it back into a Java object.

The mar shal | () method does the opposite, and encodes the object into JSON for transmission
on the wire.

46

Chapter 5.

Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach to exposing services to the clients.

Please note that this APl has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renvot e
public interface MyRenoteService {
publi ¢ bool ean i sEveryoneHappy();

The @renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively simple to the point;

@bervi ce
public class MyRenoteServicel npl inplenents My/RenoteService {

publi ¢ bool ean i sEveryoneHappy() {
/1 blatently lie and say everyone's happy.
return true;

That's all there is to it. You use the same @er vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

5.1. Making calls

Calling a remote service involves use of the MessageBui | der API. Since all messages are
asynchronous, the actual code for calling the remote service involves the use of a callback, which
we use to receive the response from the remote method. Let's see how it works:

MessageBui | der . creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {

47

Chapter 5. Remote Procedure C...

if (isHappy) Wndow. al ert("Everyone is happy!");

}
}, My/Renot eServi ce. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correspond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

bool ean bool = MessageBuil der.createCall (..., M/RenoteService.cl ass).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

5.1.1. Proxy Injection

An alternative to using the MessageBui | der APl is to have a proxy of the service injected.

@ nj ect
private Call er<M/Renot eServi ce> renoteService;

For calling the remote service, the callback objects need to be provided to the cal I method before
the corresponding interface method is invoked.

renot eServi ce. cal | (cal | back) . i sEveryoneHappy();

5.2. Handling exceptions

Handling remote exceptions can be done by providing an Er r or Cal | back on the client:

MessageBui | der. createCal | (
new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
if (isHappy) Wndow. al ert("Everyone is happy!");
}
|
new Error Cal | back() {
publi c bool ean error(Message nmessage, Throwabl e caught) {

try {

48

Session and request objects in RPC endpoints

t hr ow caught;

}
cat ch (Nobodyl sHappyException e) {
W ndow. al ert ("OK, that's sad!");

}
catch (Throwable t) {

GM. | og(" An unexpected error has occurred", t);

}

return fal se;
}

I
MyRenot eSer vi ce. cl ass) . i sEver yoneHappy() ;

As remote exceptions need to be serialized to be sent to the client, the @Port abl e annotation
needs to be present on the corresponding exception class (see Chapter 4, Marshalling). Further
the exception class needs to be part of the client-side code. For more details on Err or Cal | backs
see Section 2.4, “Handling Errors” .

5.3. Session and request objects in RPC endpoints

Before invoking an endpoint method Errai sets up an RpcCont ext that provides access to message
resources that are otherwise not visible to RPC endpoints.

@ver vi ce
public class MyRenot eServicel npl inplenments M/RenoteService {
publi ¢ bool ean i sEveryoneHappy() {
Ht t pSessi on sessi on = RpcContext. get Htt pSessi on();

Servl et Request request = RpcCont ext. get Servl et Request () ;

return true;

49

50

Chapter 6.

Erral CDI

CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling
dependency injection. In addition to dependency injection, the standard encompasses component
lifecycle, application configuration, call-interception and a decoupled, type-safe eventing
specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side
applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These
deficiencies may be addressed in future versions.

Important

The Errai CDI extension itself is implemented on top of the Errai IOC Framework
(see Chapter 3, Dependency Injection), which itself implements the JSR-330
specification. Inclusion of the CDI module your GWT project will result in the
extensions automatically being loaded and made available to your application.

E] Classpath Scanning and ErraiApp.properties

Errai CDI only scans the contents of classpath locations (JARs and directories)
that have at their root. If CDI features such
as dependency injection, event observation, and @ost Const r uct are not working
for your classes, double-check that you have an Err ai App. properti es in every
JAR and directory that contains classes Errai should know about.

6.1. Features and Limitations

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed
to your GWT client application. So, you can use Errai to communicate between your GWT client
components and your CDI backend beans.

Errai CDI based applications use the same annotation-driven programming model as server-side
CDI components, with some notable limitations. Many of these limitations will be addressed in
future releases.

1. There is no support for CDI interceptors in the client. Although this is planned in a future release.
2. Passivating scopes are not supported.

3. The JSR-299 SPI is not supported for client side code. Although writing extensions for the client
side container is possible via the Errai IOC Extensions API.

51

Chapter 6. Errai CDI

4. The @yped annotation is unsupported.
5. The @i sposes annotation is unsupported.
6. The @peci al i zes annotation is unsupported.

7. Qualifier attributes are not currently supported. (eg. @wQualifier(foo=BAR) and
@w¥yQualifier(foo=FO0) will be considered equivalent in the client).

8. The @ nt er cept or annotation is unsupported.

9. The @ecor at or annotation is unsupported.

6.1.1. Other features

The CDI container in Errai is built around the Errai IOC module , and thus is a superset of
the existing functionality in Errai IOC. Thus, all features and APIs documented in Errai IOC are
accessible and usable with this Errai CDI programming model.

6.2. Events

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/
reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled
fashion. Beans consume events by registering for a particular event type and optional qualifiers.
The Errai CDI extension simply extends this concept into the client tier. A GWT client application
can simply register an Observer for a particular event type and thus receive events that are
produced on the server-side. Likewise and using the same API, GWT clients can produce events
that are consumed by a server-side observer.

Let's take a look at an example.

Example 6.1. FraudClient.java

public class FraudCient extends LayoutPanel {

@ nj ect
private Event<AccountActivity> event; (1)

private HTM. responsePanel ;

public Frauddient() {
super (new BoxLayout (BoxLayout. Ori entati on. VERTI CAL));

@ost Const ruct
public void buildU () {
Button button = new Button("Create activity", new CickHandl er() {
public void onCick(dickEvent clickEvent) {
event.fire(new Account Activity());

52

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Conversational events

}
1)
responsePanel = new HTM.();
add(button);
add(responsePanel) ;

public void processFraud(@bserves @etected Fraud fraudEvent) { (2)
responsePanel . set Text ("Fraud detected: " + fraudEvent.getTi mestanp());

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy
2. Creation of an Qoser ver method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-
side event subsystem (CDI container). This means any event that is fired through a dispatcher
will eventually be consumed by a CDI managed bean, if there is an corresponding Qbser ver
registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side
observer method for a particular event type. In case an event is fired on the server this method
will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:
Example 6.2. AccountService.java

@\ppl i cati onScoped

public class Account Service {

@nject @etected
private Event <Fraud> event;

public void watchActivity(@bserves AccountActivity activity) {

Fraud fraud = new Fraud(SystemcurrentTimeMIlis());
event.fire(fraud);

6.2.1. Conversational events

A server can address a single client in response to an event annotating event types as
@onver sati onal . Consider a service that responds to a subscription event.

53

Chapter 6. Errai CDI

Example 6.3. SubscriptionService.java

@\ppl i cati onScoped
public class SubscriptionService {

@ nj ect
private Event <Docunent s> wel comeEvent ;

public void onSubscription(@bserves Subscription subscription) {
Docunment docs = creat eWel conePackage(subscri ption);
wel comeEvent . fire(docs);

And the Docunent class would be annotated like so:

Example 6.4. Document.java

@onver sati onal @pPortabl e
public class Docunent {
/!l code here

As such, when Docunent events are fired, they will be limited in scope to the initiating
conversational contents — which are implicitly inferred by the caller. So only the client which fired
the Subscri pti on event will receive the fired Docunent event.

6.2.2. Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between
the client and the server. This permits the observation of server produced events on the client,
and vice-versa.

Example server code:

Example 6.5. MyServerBean.java

@\ppl i cati onScoped
public class MyServerBean {
@ nj ect
Event <MyResponseEvent > nyResponseEvent ;

public void nmydient Cbserver(@bserves M/Request Event event) {
MyResponseEvent response;

54

Client-Server Event Example

if (event.isThankYou()) {
/'l aww, that's nice!
response = new MyResponseEvent ("Wl |, you're wel cone!");

}
el se {
/'l how rude!
response = new MyResponseEvent ("Wat ? Nobody says 'thank you'

nyResponseEvent . fire(response);

Domain-model:

Example 6.6. MyRequestEvent.java

@ortabl e
public class MyRequest Event ({
private bool ean thankYou;

publ i c MyRequest Event (bool ean t hankYou) {

set ThankYou(t hankYou) ;

public void set ThankYou(bool ean t hankYou) {
t hi s.thankYou = t hankYou;

publi ¢ bool ean i sThankYou() ({
return thankYou;

Example 6.7. MyResponseEvent.java

@ortabl e
public class MyResponseEvent {
private String nmessage;

publ i c MyRequest Event (String nmessage) {
set Message(nessage) ;

anynore?");

55

Chapter 6. Errai CDI

public void set Message(String nessage) {
thi s. nessage = nessage;

public String getMessage() {
return nessage;

Client application logic:

Example 6.8. MyClientBean.java

@nt r yPoi nt
public class MyClientBean {
@ nj ect
Event <MyRequest Event > request Event ;

public void myResponseCbserver (@bserves MyResponseEvent event) {
W ndow. al ert ("Server replied: " + event.getMessage());

@ost Const ruct
public void init() {
Button thankYou = new Button("Say Thank You!");
t hankYou. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
request Event. fire(new MyRequest Event (true));

Button nothing = new Button("Say nothing!");
not hi ng. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) ({
request Event . fire(new MyRequest Event (fal se));

Vertical Panel vPanel = new Verti cal Panel ();
vPanel . add(t hankYou) ;
vPanel . add(not hi ng) ;

Root Panel . get (). add(vPanel) ;

56

Producers

6.3. Producers

Producer methods and fields act as sources of objects to be injected. They are useful when
additional control over object creation is needed before injections can take place e.g. when you
need to make a decision at runtime before an object can be created and injected.

Example 6.9. App.java

@nt r yPoi nt
public class App {

@r oduces @support ed
private MyBaseW dget createWdget () ({
return (Canvas.isSupported()) ? new MyH ml 5Wdget () : new MyDef aul t Wdget () ;

}

Example 6.10. MyComposite.java

@\ppl i cati onScoped
public class MyConposite extends Conposite {

@ nj ect @dupported
private MyBaseW dget wi dget;

Producers can also be scoped themselves. By default, producer methods are dependent-scoped,
meaning they get called every time an injection for their provided type is requested. If a producer
method is scoped @i ngl et on for instance, the method will only be called once, and the bean
manager will inject the instance from the first invokation of the producer into every matching
injection point.

Example 6.11. Singleton producer

public class App {

@r oduces @i ngl et on
private MyBean produceMyBean() ({
return new MyBean();

57

Chapter 6. Errai CDI

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/
cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/
WeldDocumentation] .

6.4. Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started take a look at
the Quickstart Guide [https://docs.jboss.org/author/pages/viewpage.action?pageld=5833096] .

The CDI integration is a plugin to the Errai core framework and represents a CDI portable
extension. Which means it is discovered automatically by both Errai and the CDI container. In
order to use it, you first need to understand the different runtime models involved when working
GWT, Errai and CDI.

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/
webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application
containing the GWT client code will be deployed to a target container (Servlet Engine, Application
Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In
GWT development mode and in a pure servlet environment you need to provide and bootstrap
the CDI environment on your own. While any Java EE 6 Application Server already provides a
preconfigured CDI container. To accomodate these differences, we need to do a little trickery
when executing the GWT Development Mode and packaging our application for deployment.

6.4.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai
and CDI available through JNDI (common denominator across all runtimes). Since GWT uses
Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a
custom one that will setup the JNDI bindings:

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifact|d>gwt-maven plugin</artifactld>
<versi on>${gwt . maven} </ ver si on>

<configuration>
<server>org.jboss.errai.cdi.server.gw.JettylLauncher</server>

</ configuration>
<executi ons>

58

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Deployment to a Servlet Engine

</ executi ons>
</ pl ugi n>

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web- app>

<listener>

<l'i stener-class>org.jboss. errai.container.CDl Servl et StateListener</|istener-
cl ass>

</listener>

<resour ce- env-ref >
<description>0Obj ect factory for the CDI Bean Manager </ descri ption>
<resour ce- env-r ef - nane>BeanManager </ r esour ce- env-r ef - nane>
<resource-env-ref-type>javax. enterprise.inject.spi.BeanManager</resource-
env-ref-type>
</ resource-env-ref >

</ web- app>

6.4.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development
mode. You need to include the servlet listener that bootstraps the CDI container and make sure
both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we
ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat
Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

59

http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html

Chapter 6. Errai CDI

6.4.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the
requirements are basically the same for other vendors. When running a GWT client app that
leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and
accessible through JNDI (j ava: / BeanManager).

60

http://jboss.org/jbossas
http://jboss.org/jbossas

Chapter 7.

Erral JAX-RS

JAX-RS (Java API for RESTful Web Services) is a Java EE standard (JSR-311) for implementing
REST-based Web services in Java. Errai JAX-RS brings this standard to the browser and
simplifies the integration of REST-based services in GWT client applications. Errai can generate
proxies based on JAX-RS interfaces which will handle all the underlying communication and
serialization logic. All that's left to do is to invoke a Java method. We have provided a Maven
archetype which will create a fully function CRUD application using JAX-RS. See the Quickstart
Guide [https://docs.jboss.org/author/pages/viewpage.action?pageld=5833096] for details.

7.1. Creating Requests
Assuming the following simple JAX-RS interface should be used:

Example 7.1. CustomerService.java

@rat h("cust onmers")
public interface CustonerService {
@ET
@°r oduces("application/json")
public List<Custoner> listAll Custoners();

@osT

@Consunes("application/json")

@r oduces("text/plain")

public | ong createCustomer(Custoner custoner);

To create a request on the client, all that needs to be done is to invoke Rest Cl i ent . creat e()
, thereby providing the JAX-RS interface, a response callback and to invoke the corresponding
interface method:

Example 7.2. App.java

Button create = new Button("Create", new CickHandler() {
public void ondick(dickEvent clickEvent) {
Cust oner customer = new Customner (firstName, |astNanme, postal Code);
Rest Cl i ent. creat e(Cust oner Servi ce. cl ass, cal | back). createCust oner (custoner);
}
1)

61

https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096
https://docs.jboss.org/author/pages/viewpage.action?pageId=5833096

Chapter 7. Errai JAX-RS

For details on the callback mechanism see Section 7.2, “Handling Responses” .

@ Note
The JAX-RS interfaces need to be visible to the GWT compiler and must therefore
reside within the client packages (e.qg. client.shared).

7.1.1. Proxy Injection

Injectable proxies can be used as an alternative to calling Rest Cl i ent. create() .

@ nj ect
private Call er<Custoner Servi ce> custoner Servi ce;

To create a request, the callback objects need to be provided to the cal I method before the
corresponding interface method is invoked.

cust oner Servi ce. cal | (cal | back).listAll Custonmers();

7.2. Handling Responses

An instance of Errai's Renpt eCal | back<T> has to be passed to the Rest Cli ent. creat e() call,
which will provide access to the JAX-RS resource method's result. T is the return type of the JAX-
RS resource method. In the example below it's just a Long representing a customer ID, but it can
be any serializable type (see Chapter 4, Marshalling).

Renot eCal | back<Long> cal | back = new Renot eCal | back<Long>() {
public void callback(Long id) {
W ndow. al ert ("Custonmer created with ID: " + id);

A special case of this Renot eCal | back is the ResponsecCal | back which provides access to the
Response object representing the underlying HTTP response. This is useful when more details of
the HTTP response are needed, such as headers, the status code, etc. This ResponseCal | back
can be provided as an alternative to the Rermot eCal | back for the method result.

ResponsecCal | back cal | back = new ResponseCal | back() {
public void cal |l back(Response response) {
W ndow. al ert ("HTTP status code: " + response. getStatusCode());

62

Wire Format

W ndow. al ert ("HTTP response body: " + response.getText());

For handling errors, Errai's error callback mechanism can be reused and an instance of
Error Cal | back can optionally be passed to the Rest d i ent. creat e() call. In case of an HTTP
error, the ResponseExcept i on provides access to the Response object. All other Thr owabl es
indicate a communication problem.

Error Cal | back errorCal |l back = new ErrorCal | back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwable) {

try {
t hrow t hr owabl e;

}

catch (ResponseException e) {
Response response = e. get Response();
/'l process unexpected response
response. get St at usCode() ;

}
catch (Throwable t) {

/'l process unexpected error (e.g. a network problem

}

return fal se;

7.3. Wire Format

Errai's JSON format will be used to serialize/deserialize your custom types. See Chapter 4,
Marshalling for details. A future extension to Errai's marshaller capabilities will support pluggable/
custom serializers. So in the near future you will have the flexibility to use your own wire format.

7.4. Errai JAX-RS Configuration

All paths specified using the @at h annotation on JAX-RS interfaces are by definition relative
paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified
paths relative to the GWT client application's context path.

To configure a relative or absolute root path, the following JavaScript variable can be set in either

the host HTML page

<script type="text/javascript">
errai JaxRsAppl i cati onRoot = "/ My/JaxRsEndpoi nt Pat h";

63

Chapter 7. Errai JAX-RS

</script>

or by using a JSNI method:

private native void set MyJaxRsAppRoot (String path) /*-{
$wnd. errai JaxRsAppl i cati onRoot = pat h;
}-r1

or by simply invoking:

Rest Cli ent. set Appl i cati onRoot ("/ MyJaxRsEndpoi nt Pat h") ;

The root path will be prepended to all paths specified on the JAX-RS interfaces. It serves as the
base URL for all requests sent from the client.

64

Chapter 8.

Configuration

This section contains information on configuring Errai.

8.1. Appserver Configuration

Depending on what application server you are deploying on, you must provide an appropriate
servlet implementation if you wish to use true, asynchronous I/O. See Section 8.6, “Servlet
Implementations” for information on the available servlet implementations.

Here's a sample web.xml file:

<web-app xm ns="http://java. sun.coni xm / ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://java. sun. con xm / ns/j avaee
http://java. sun. con xm / ns/j avaee/ web- app_2_5. xsd"
version="2.5">

<servl et >
<servl et - nanme>Err ai Servl et </ servl et - nane>
<servl et-class>org.jboss. errai.bus. server. servl et. Def aul t Bl ocki ngSer vl et </
servl et-cl ass>
<l oad- on- st artup>1</| oad- on- st art up>
</servl et>

<ser vl et - mappi ng>
<servl et - nane>Err ai Servl et </ ser vl et - nanme>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

<cont ext - par an»

<par am name>errai . properties</ param name>

<param val ue>/ WEB- | NF/ err ai . properti es</ param val ue>
</ cont ext - par anm>

<cont ext - par an>

<par am nane>| ogi n. confi g</ par am nane>

<par am val ue>/ VEEB- | NF/ | ogi n. confi g</ par am val ue>
</ cont ext - par an>

<cont ext - par an>

<par am nanme>users. properti es</ param nane>

<par am val ue>/ VEB- | NF/ users. properties</ param val ue>
</ cont ext - par an

</ web- app>

65

Chapter 8. Configuration

8.2. Client Configuration

In some cases it might be desirable to prevent the client bus from communicating with the server.
One use case for this is when all communication with the server is handled using JAX-RS and the
constant long polling requests for message exchange are not needed.

To turn off remote communication in the client bus the following JavaScript variable can be set
in the HTML host page:

<script type="text/javascript">
er r ai BusRenot eConmuni cati onEnabl ed = fal se;
</script>

8.3. ErralApp.properties

ErraiApp.properties acts both as a marker file for JARs that contain Errai-enabled GWT modules,
and as a place to put configuration settings for those modules in the rare case that non-default
configuration is necessary.

8.3.1. As a Marker File

An Errai App. properties file must appear at the root of each classpath location that
contains an Errai module. The contents of JAR and directory classpath entries that do not
contain an Err ai App. properti es are effectively invisible to Errai's classpath scanner.

8.3.2. As a Configuration File

ErraiApp.properties is usually left empty, but it can contain configuration settings for both the core
of Errai and any of its extensions. Configuration properties defined and used by Errai components
have keys that start with " errai . ". Third party extensions should each choose their own prefix
for keys in ErraiApp.properties.

8.3.2.1. Configuration Merging

In a non-trivial application, there will be several instances of ErraiApp.properties on the classpath
(one per JAR file that contains Errai modules, beans, or portable classes).

Before using the configuration information from ErraiApp.properties, Errai reads the contents of
every ErraiApp.properties on the classpath. The configuration information in all these files is
merged together to form one set of key=value pairs.

If the same key appears in more than one ErraiApp.properties file, only one of the values will be
associated with that key. The other values will be ignored. In future versions of Errai, this condition
may be made into an error. It's best to avoid specifying the same configuration key in multiple
ErraiApp.properties files.

66

ErraiService.properties

8.3.2.2. Errai Marshalling Configuration

Configuration properties related to marshalling are documented in the Errai Marshalling section
on Manual Mapping .

8.3.2.3. Errai loC Configuration

 errai.ioc.QualifyingMetaDataFactory specifies the fully-qualified class name of the
QualifyingMetadataFactory implementation to use with Errai loC.

 errai.ioc.enabled.alternatives specifies a whitespace-separated list of fully-qualified class
names for alternative beans . See Section 3.6, “Alternatives and Mocks” for details.

8.4. ErraiService.properties

The ErraiService.properties file contains basic configuration for the bus itself. Unlike
ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of
a deployed application. If you do not need to set any properties to their non-default values, this
file can be omitted from the deployment entirely.

8.4.1. Configuration Properties

8.4.1.1. Message Dispatching

« errai.dispatcher.implementation specifies the dispatcher implementation to be used by
the bus. There are two implementations which come with Errai out of the box: the
Si npl eDi spat cher and the AsyncDi spat cher . See Section 8.5, “Dispatcher Implementations”
for more information about the differences between the two.

« errai.async_thread_pool_size specifies the total number of worker threads in the worker pool
for handling and delivering messages. Adjusting this value does not have any effect if you are
using the SimpleDispatcher.

» errai.async.worker_timeout specifies the total amount of time (in seconds) that a service is
given to finish processing an incoming message before the pool interrupts the thread and returns
an error. Adjusting this value has no effect if you are using the SimpleDispatcher.

» errai.bus.buffer_size The total size of the transmission buffer, in megabytes. If this
attribute is specified along with errai . bus. buf fer _segment _count , then the segment
count is inferred by the calculation buffer_segment_count / buffer_size}. | f
{{errai.bus. buf fer_segment _count is also defined, it will be ignored in the presence of this
property. Default value: 32.

67

Chapter 8. Configuration

« errai.bus.buffer_segment_size The transmission buffer segment size in bytes. This is the
minimum amount of memory each message will consume while stored within the buffer. Defualt
value: 8.

 errai.bus.buffer_segment_count The number of segments in absolute terms. If this attribute
is specified in the absence of errai. bus. buf fer_si ze , the buffer size is inferred by the
calculation buf f er _segment _si ze / buffer_segnment _count .

 errai.bus.buffer_allocation_mode Buffer allocation mode. Allowed values are direct and
heap . Direct allocation puts buffer memory outside of the JVM heap, while heap allocation
uses buffer memory inside the Java heap. For most situations, heap allocation is preferable.
However, if the application is data intensive and requires a substantially large buffer, it is
preferable to use a direct buffer. From a throughput perspective, current JVM implementations
pay about a 20% performance penalty for direct-allocated memory access. However, your
application may show better scaling characteristics with direct buffers. Benchmarking under real
load conditions is the only way to know the optimal setting for your use case and expected load.
Default value: di rect .

8.4.1.2. Security

 errai.authentication_adapter specifies the authentication modelAdapter the bus should use
for determining whether calls should be serviced based on authentication and security
principals.

 errai.require_authentication_for_all indicates whether or not the bus should always require
the use of authentication for all requests inbound for the bus. If this is turned on, an
authentication model adapter must be defined, and any user must be authenticated before the
bus will deliver any messages from the client to any service.

8.4.1.3. Startup Configuration

 errai.auto_discover_services A boolean indicating whether or not the Errai bootstrapper
should automatically scan for services. This property must be setto true if and only if Errai
CDl is not on the classpath . The default value is f al se .

e errai.auto_load_extensions A boolean indicating whether or not the Errai bootstrapper should
automatically scan for extensions. The default value ist r ue .

8.4.2. Example Configuration

#H#

68

Dispatcher Implementations

Request dispatcher inplenmentation (default is SinpleD spatcher)

##t

#errai . di spat cher_i npl emrent ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement at i on=org. j boss. errai . bus. server. AsyncD spat cher

#

Worker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

##

errai.async. t hread_pool _si ze=5

##t

Worker tinmeout (in seconds). This defines the time that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
the AsyncDi spat cher

i mpl emrent ati on.

##t

errai.async. worker. ti meout =5

Hit

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henti cati on_adapt er=org.jboss. errai. persistence. server.security. H bernat eAut henticati
#errai . aut henti cati on_adapter=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##t

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application shoul d be secure.

##

#errai.require_authentication_for_all=true

8.5. Dispatcher Implementations

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

8.5.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their

69

Chapter 8. Configuration

endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

8.5.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.
This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

8.6. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These included implementations are packaged at: or g. j boss. errai . bus. server. servl et .

8.6.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides
purely synchronous request handling and should work in virtually any servlet container, unless
there are restrictions on putting threads into sleep states.

8.6.2. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve
scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use
of this implementation requires use of the APR (Apache Portable Runtime).

8.6.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

8.6.4. StandardAsyncServlet

This implementation leverages asynchronous supportin Servlet 3.0 to allow for threadless pausing
of port connections. Note that <async- support ed>t r ue</ async- suppor t ed> has to be added
to the servlet definition in web. xm .

70

Chapter 9.

Debugging Erral Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application's dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tools.bus_nonitor_attach=true

Figure 9.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 9.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

71

72

Chapter 10.

Troubleshooting & FAQ

This section explains the cause of and solution to some common problems that people encounter
when building applications with Errai.

Of course, when lots of people trip over the same problem, it's probably because there is a
deficiency in the framework! A FAQ list like this is just a band-aid solution. If you have suggestions
for permanent fixes to these problems, please get in touch with us: file an issue in our issue tracker,
chat with us on IRC, or post a suggestion on our forum.

But for now, on to the FAQ:

10.1. Why does it seem that Errai can't see my class at
compile time?

Possible symptoms:

e uncaught exception: java.lang.RuntimeException: No proxy provider found for type:
my.fully.qualified.ServiceName

Answer: Make sure the Section 8.3, “ErraiApp.properties” file is actually making it into your
runtime classpath.

One common cause of this problem is a <resources> section in pom.xml that includes src/main/
java (to expose .java sources to the GWT compiler) that does not also include src/main/resources
as a resource path. You must include both explicitly:

<resour ces>
<resour ce>
<di rectory>src/ mai n/java</directory>
</ resource>
<resour ce>
<di rect ory>src/ mai n/ resour ces</ di rect ory>
</ resource>
</ resources>

73

74

Chapter 11.

Upgrade Guide

This chapter contains important information for migrating to newer versions of Errai. If you
experience any problems, don't hesitate to get in touch with us. See Chapter 14, Reporting
problems .

11.1. Upgrading from 1.*to 2.0

The first issues that will arise after replacing the jars or after changing the version numbers in
the pom xm are unresolved package imports. This is due to refactorings that became necessary
when the project grew. Most of these import problems can be resolved automatically by modern
IDEs (Organize Imports). So, this should replace or g. j boss. errai . bus. cli ent. protocols. *
with or g. j boss. errai . common. cl i ent. protocol s. * for example.

The following is a list of manual steps that have to be carried out when upgrading:

* @ExposedEntity became @Portable (
org.j boss.errai.comon.client.api.annotations.Portable). See Chapter 4,
Marshalling for details.

 Errai CDI projects must now use the Si npl eDi spat cher instead of the AsynDi spat cher . This
has to be configured in Section 8.4, “ErraiService.properties” .

e The bootstrap listener (configured in VEB-INF/web.xml) for Errai CDI
has changed (org.jboss.errai.container. DevModeCDl Boot st rap is now
org.j boss. errai.container.CDl Servl et St at eLi st ener).

« gwt 2.3.0 or newer must be used and replace older versions.
« mvel2 2.1.Beta8 or newer must be used and replace older versions.
« weld 1.1.5.Final or newer must be used and replace older versions.
« slf4j 1.6.1 or newer must be used and replace older versions.

« This step can be skipped if Maven is used to build the project. If the project is NOT built using
Maven, the following jar files have to be added manually to project's build/class path: errai-
common-2.x.jar, errai-marshalling-2.x.jar, errai-codegen-2.x.jar, netty-4.0.0.Alphal.errai.rl.jar.

« If the project was built using an early version of an Errai archetype the configuration of
the maven-gwt-plugin has to be modified to contain the <host edWebapp>pat h-t o-your -
st andar d- webapp- f ol der </ host edWebapp> . This is usually either war or sr c/ mai n/ webapp .

75

Chapter 11. Upgrade Guide

11.2. Upgrading from 2.0.Beta to 2.0.*.Final

The following is a list of manual steps that have to be carried out when upgrading from a 2.0.Beta
version to 2.0.CR1 or 2.0.Final:

» Starting with 2.0.CR1 the default for automatic service discovery has been changed in
favour of CDI based applications. That means it has to be explicitly turned on for plain
bus applications (Errai applications that do not use Errai-CDI). Not doing so will result in
NoSubscri ber sToDel i ver To exceptions. The snippet below shows how to activate automatic
service discovery:

Example 11.1. web.xml

<servl et >
<servl et - nane>Errai Servl et </ servl et - nane>
<servl et-class>org.j boss. errai.bus. server. servl et. Def aul t Bl ocki ngServl et </
servl et -cl ass>
<i nit-paranp
<par am nane>aut o- di scover - servi ces</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paran>
<l oad-on-startup>1</| oad- on- st art up>
</servl et>

e Thej boss7-support module was deleted and is no longer needed as a dependency.

76

Chapter 12.

Downloads

The distribution packages can be downloaded from jboss.org http://jboss.org/errail
Downloads.html

77

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

78

Chapter 13.

Sources

Errai is currently managed using Github. You can clone our repositories from http://github.com/
errai .

79

http://github.com/errai
http://github.com/errai

80

Chapter 14.

Reporting problems

If you run into trouble don't hesitate to get in touch with us:

JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

e User Forum: http://community.jboss.org/en/errai?view=discussions

Mailing List: http://jposs.org/errai/MailingLists.html

IRC: irc:/lirc.freenode.net/errai

81

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

82

Chapter 15.

Erral License

Erraiis distributed under the terms of the Apache License, Version 2.0. See the full Apache license
text [http://www.apache.org/licenses/LICENSE-2.0] .

83

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

84

Appendix A. Revision History

Revision History
Revision <

85

86

	Errai
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. Messaging API Basics
	2.2.1. Sending Messages with the Client Bus
	2.2.2. Recieving Messages on the Server Bus / Server Services
	2.2.3. Sending Messages with the Server Bus
	2.2.4. Receiving Messages on the Client Bus/ Client Services

	2.3. Conversations
	2.4. Handling Errors
	2.5. Single-Response Conversations & Psuedo-Synchronous Messaging
	2.6. Broadcasting
	2.7. Client-to-Client Communication
	2.7.1. Relay Services

	2.8. Asynchronous Message Tasks
	2.9. Repeating Tasks
	2.10. Sender Inferred Subjects
	2.11. Message Routing Information
	2.12. Queue Sessions
	2.12.1. Lifecycle
	2.12.2. Scopes
	2.12.2.1. Session Scope
	2.12.2.2. Local Scope

	2.13. Client Logging and Error Handling
	2.14. Wire Protocol (J.REP)
	2.14.1. Payload Structure
	2.14.1.1. Built-in Subjects

	2.14.2. Message Routing
	2.14.3. Bus Management and Handshaking Protocols
	2.14.3.1. ServerBus and ClientBus commands

	Chapter 3. Dependency Injection
	3.1. Container Wiring
	3.2. Wiring server side components
	3.3. Scopes
	3.3.1. Dependent Scope

	3.4. Built-in Extensions
	3.4.1. Bus Services
	3.4.1.1. @Service
	3.4.1.2. @Local
	3.4.1.3. Lifecycle Impact of Services

	3.4.2. Client Components
	3.4.2.1. MessageBus
	3.4.2.2. RequestDispatcher
	3.4.2.3. Caller<?>

	3.4.3. Lifecycle Tools
	3.4.3.1. Controlling Startup
	3.4.3.2. Performing Tasks After Initialization

	3.5. Client-Side Bean Manager
	3.5.1. Looking up beans
	3.5.2. Availability of beans

	3.6. Alternatives and Mocks
	3.6.1. Alternatives
	3.6.2. Test Mocks

	3.7. Bean Lifecycle
	3.7.1. Destruction of Beans
	3.7.1.1. Disposers

	Chapter 4. Marshalling
	4.1. Mapping Your Domain
	4.1.1. @Portable and @NonPortable
	4.1.1.1. Example: A Simple Entity
	4.1.1.2. Example: An Immutable Entity with a Public Constructor
	4.1.1.3. Example: An Immutable Entity with a Factory Method
	4.1.1.4. Example: An Immutable Entity with a Builder

	4.1.2. Manual Mapping
	4.1.2.1. Mapping Existing Client Classes
	4.1.2.2. Aliased Mappings of Existing Interface Contracts

	4.1.3. Manual Class Mapping
	4.1.3.1. MappingDefinition

	4.1.4. Custom Marshallers

	Chapter 5. Remote Procedure Calls (RPC)
	5.1. Making calls
	5.1.1. Proxy Injection

	5.2. Handling exceptions
	5.3. Session and request objects in RPC endpoints

	Chapter 6. Errai CDI
	6.1. Features and Limitations
	6.1.1. Other features

	6.2. Events
	6.2.1. Conversational events
	6.2.2. Client-Server Event Example

	6.3. Producers
	6.4. Deploying Errai CDI
	6.4.1. Deployment in Development Mode
	6.4.2. Deployment to a Servlet Engine
	6.4.3. Deployment to an Application Server

	Chapter 7. Errai JAX-RS
	7.1. Creating Requests
	7.1.1. Proxy Injection

	7.2. Handling Responses
	7.3. Wire Format
	7.4. Errai JAX-RS Configuration

	Chapter 8. Configuration
	8.1. Appserver Configuration
	8.2. Client Configuration
	8.3. ErraiApp.properties
	8.3.1. As a Marker File
	8.3.2. As a Configuration File
	8.3.2.1. Configuration Merging
	8.3.2.2. Errai Marshalling Configuration
	8.3.2.3. Errai IoC Configuration

	8.4. ErraiService.properties
	8.4.1. Configuration Properties
	8.4.1.1. Message Dispatching
	8.4.1.2. Security
	8.4.1.3. Startup Configuration

	8.4.2. Example Configuration

	8.5. Dispatcher Implementations
	8.5.1. SimpleDispatcher
	8.5.2. AsyncDispatcher

	8.6. Servlet Implementations
	8.6.1. DefaultBlockingServlet
	8.6.2. JBossCometServlet
	8.6.3. JettyContinuationsServlet
	8.6.4. StandardAsyncServlet

	Chapter 9. Debugging Errai Applications
	Chapter 10. Troubleshooting & FAQ
	10.1. Why does it seem that Errai can't see my class at compile time?

	Chapter 11. Upgrade Guide
	11.1. Upgrading from 1.* to 2.0
	11.2. Upgrading from 2.0.Beta to 2.0.*.Final

	Chapter 12. Downloads
	Chapter 13. Sources
	Chapter 14. Reporting problems
	Chapter 15. Errai License
	Appendix A. Revision History

