
Errai

Errai Reference Guide

iii

Preface ... ix

1. Document Conventions ... ix

2. Feedback ... ix

1. Introduction ... 1

1.1. What is it? .. 1

1.2. Required software ... 1

2. Messaging ... 3

2.1. Messaging Overview ... 3

2.2. Messaging API Basics .. 3

2.2.1. Sending Messages with the Client Bus .. 3

2.2.2. Receiving Messages on the Server Bus / Server Services 5

2.2.3. Sending Messages with the Server Bus .. 5

2.2.4. Receiving Messages on the Client Bus/ Client Services 6

2.2.5. Local Services ... 7

2.3. Single-Response Conversations & Pseudo-Synchronous Messaging 8

2.4. Sender Inferred Subjects ... 8

2.5. Broadcasting .. 9

2.6. Client-to-Client Communication .. 9

2.6.1. Relay Services ... 9

2.7. Message Routing Information .. 10

2.8. Handling Errors ... 11

2.8.1. Handling global message transport errors .. 12

2.9. Asynchronous Message Tasks .. 12

2.10. Repeating Tasks ... 13

2.11. Queue Sessions .. 14

2.11.1. Lifecycle .. 14

2.11.2. Scopes .. 14

2.12. Client Logging and Error Handling ... 15

2.13. Wire Protocol (J.REP) ... 15

2.13.1. Payload Structure ... 15

2.13.2. Message Routing ... 18

2.13.3. Bus Management and Handshaking Protocols .. 18

2.14. Conversations ... 20

2.15. WebSockets .. 20

2.15.1. Configuring the sideband server .. 21

2.15.2. Deploying with JBoss AS 7 ... 21

2.16. Bus Lifecycle .. 22

2.16.1. Turning Server Communication On and Off .. 22

2.16.2. Observing Bus Lifecycle State and Communication Status 23

2.17. Shadow Services .. 24

2.18. Debugging Messaging Problems .. 24

3. Dependency Injection .. 27

3.1. Container Wiring ... 28

3.2. Wiring server side components .. 30

Errai

iv

3.3. Scopes ... 30

3.3.1. Dependent Scope .. 30

3.4. Built-in Extensions .. 31

3.4.1. Bus Services .. 31

3.4.2. Client Components ... 32

3.4.3. Lifecycle Tools ... 35

3.4.4. Timed Methods .. 36

3.5. Client-Side Bean Manager ... 36

3.5.1. Looking up beans .. 37

3.5.2. Availability of beans ... 38

3.6. Alternatives and Mocks ... 38

3.6.1. Alternatives .. 38

3.6.2. Test Mocks .. 40

3.7. Bean Lifecycle .. 41

3.7.1. Destruction of Beans .. 41

4. Errai CDI .. 45

4.1. Features and Limitations ... 45

4.1.1. Other features .. 46

4.2. Events .. 46

4.2.1. Conversational events .. 47

4.2.2. Client-Server Event Example .. 48

4.3. Producers ... 51

4.4. safe dynamic lookup ... 52

4.5. Deploying Errai CDI .. 52

4.5.1. Deployment in Development Mode .. 53

4.5.2. Deployment to a Servlet Engine .. 54

4.5.3. Deployment to an Application Server ... 54

5. Marshalling .. 55

5.1. Mapping Your Domain .. 55

5.1.1. @Portable and @NonPortable .. 55

5.1.2. Manual Mapping .. 59

5.1.3. Manual Class Mapping ... 61

5.1.4. Custom Marshallers .. 63

6. Remote Procedure Calls (RPC) .. 67

6.1. Making calls ... 68

6.1.1. Proxy Injection ... 69

6.2. Handling exceptions .. 69

6.2.1. Global RPC exception handler .. 70

6.3. Client-side Interceptors .. 70

6.4. Session and request objects in RPC endpoints ... 71

6.5. Batching remote calls .. 72

7. Errai JAX-RS .. 73

7.1. Getting Started ... 73

7.1.1. Dependencies .. 73

v

7.1.2. GWT Module ... 74

7.1.3. Server-Side JAX-RS Implementation ... 74

7.1.4. Shared JAX-RS Interface .. 75

7.2. Creating Requests .. 76

7.2.1. Proxy Injection ... 77

7.3. Handling Responses ... 78

7.4. Client-side Interceptors .. 79

7.5. Wire Format ... 80

7.6. Configuration .. 80

7.6.1. Configuring the default root path of JAX-RS endpoints 80

7.6.2. Enabling Jackson marshalling ... 81

8. Errai JPA ... 83

8.1. Getting Started ... 84

8.1.1. Compile-time dependency ... 84

8.1.2. GWT Module Descriptor ... 84

8.1.3. INF/persistence.xml .. 84

8.1.4. Declaring an Entity Class .. 85

8.1.5. Entity Lifecycle States .. 88

8.1.6. Obtaining an instance of EntityManager ... 89

8.1.7. Named Queries .. 91

8.1.8. Entity Lifecycle Events .. 92

8.1.9. JPA Metamodel .. 94

8.1.10. JPA Features Not Implemented in Errai 2.1 .. 94

8.1.11. Other Caveats for Errai 2.1 JPA .. 95

8.2. Errai JPA Data Sync ... 95

8.2.1. How To Use It ... 96

9. Data Binding .. 103

9.1. Getting Started .. 103

9.1.1. Compile-time dependency ... 103

9.1.2. GWT module descriptor .. 103

9.1.3. Bindable Objects .. 103

9.1.4. Initializing a DataBinder .. 104

9.2. Creating Bindings .. 105

9.3. Specifying Converters ... 106

9.3.1. Registering a global default converter .. 106

9.3.2. Providing a binding-specific converter .. 107

9.4. Property Change Handlers .. 107

9.5. Declarative Binding ... 108

9.5.1. Default, Simple, and Chained Property Bindings 109

9.5.2. Data Converters ... 110

9.5.3. Replacing a model object .. 110

9.6. Bean validation ... 111

9.6.1. Excluding Classes from Validation ... 112

10. Errai UI ... 115

Errai

vi

10.1. Get started .. 115

10.1.1. App.gwt.xml .. 115

10.1.2. pom.xml ... 115

10.1.3. Working Demo ... 116

10.2. Use Errai UI Composite components .. 116

10.2.1. Inject a single instance ... 116

10.2.2. Inject multiple instances (for iteration) .. 116

10.3. Create a @Templated Composite component ... 117

10.3.1. Basic component .. 117

10.3.2. Custom template names ... 117

10.4. Create an HTML template ... 118

10.4.1. Select a template from a larger HTML file .. 118

10.5. Use other Widgets in a composite component ... 120

10.5.1. Annotate Widgets in the template with @DataField 120

10.5.2. Add corresponding attributes to the HTML template 121

10.6. How HTML templates are merged with Components .. 122

10.6.1. Example ... 122

10.6.2. Element attributes (template wins) ... 123

10.6.3. DOM Elements (component field wins) ... 123

10.6.4. Inner text and inner HTML (preserved when component implements

HasText or HasHTML) ... 124

10.7. Event handlers .. 124

10.7.1. Concepts .. 124

10.7.2. GWT events on Widgets ... 124

10.7.3. GWT events on DOM Elements .. 125

10.7.4. Native DOM events on Elements ... 125

10.8. Data Binding ... 127

10.8.1. Default, Simple, and Chained Property Bindings 128

10.8.2. Binding of Lists .. 129

10.8.3. Data Converters ... 131

10.9. Nest Composite components ... 131

10.10. Extend Composite components .. 131

10.10.1. Template .. 132

10.10.2. Parent component .. 132

10.10.3. Child component ... 133

10.11. Stylesheet binding ... 133

10.12. Internationalization (i18n) ... 134

10.13. Extended styling with LESS ... 137

11. Errai UI Navigation ... 139

11.1. Getting Started .. 139

11.1.1. Compile-time dependency ... 139

11.1.2. GWT Module Descriptor .. 140

11.2. How it Works .. 140

11.2.1. Declaring a Page .. 140

vii

11.2.2. Declaring a Link with TransitionAnchor ... 143

11.2.3. Declaring a Manual Link ... 144

11.2.4. Following a Manual Link ... 144

11.2.5. Installing the Navigation Panel into the User Interface 145

11.2.6. Overriding the default Nagivating Panel type .. 146

11.2.7. Viewing the Generated Navigation Graph ... 147

12. Errai Cordova (Mobile Support) ... 149

12.1. Get started .. 149

12.1.1. App.gwt.xml .. 149

12.2. Integrate with native hardware ... 149

12.3. Maven build .. 151

12.4. AeroGear Wrappers .. 152

12.4.1. Pipes ... 152

12.4.2. Stores .. 153

12.4.3. Authentication ... 153

13. Logging .. 155

13.1. What is slf4j? .. 155

13.2. Client-Side Setup .. 155

13.3. Server-Side Setup ... 155

13.4. Example Usage ... 155

13.5. Logger Names .. 156

14. Configuration ... 157

14.1. ErraiApp.properties .. 157

14.1.1. As a Marker File ... 157

14.1.2. As a Configuration File ... 157

14.1.3. ... 158

14.2. Messaging (Errai Bus) Configuration .. 158

14.2.1. Disabling remote communication ... 158

14.2.2. Configuring an alternative remote remote bus endpoint 159

14.2.3. ErraiService.properties .. 159

14.2.4. Servlet Configuration .. 162

15. Troubleshooting & FAQ ... 167

15.1. Why does it seem that Errai can't see my class at compile time? 167

15.2. Why am I getting "java.lang.ClassFormatError: Illegal method name "<init>$" in

class org/xyz/package/MyClass"? ... 167

15.3. I'm getting "java.lang.RuntimeException: There are no proxy providers registered

yet." in my @PostConstruct method! ... 168

16. Upgrade Guide ... 169

16.1. Upgrading from 1.* to 2.0 .. 169

16.2. Upgrading from 2.0.Beta to 2.0.*.Final .. 170

16.3. Upgrading from Errai 2.2.x to 2.4 or 3.0 .. 170

17. Downloads ... 173

18. Sources .. 175

19. Reporting problems ... 177

Errai

viii

20. Errai License .. 179

A. Revision History .. 181

ix

Preface

1. Document Conventions

2. Feedback

x

Chapter 1.

1

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web

technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC

infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the

examples, and for leveraging the quickstart utilities.

• JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

• Apache Maven: http://maven.apache.org/download.html

Launching maven the first time

Please note, that when launching maven the first time on your machine, it will

fetch all dependencies from a central repository. This may take a while, because it

includes downloading large binaries like GWT SDK. However, subsequent builds

are not required to go through this step and will be much faster.

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

2

Chapter 2.

3

Messaging
This section covers the core messaging concepts of the ErraiBus messaging framework.

ErraiBus provides a straight-forward approach to a complex problem space. Providing common

APIs across the client and server, developers will have no trouble working with complex messaging

scenarios from building instant messaging clients, stock tickers, to monitoring instruments. There's

no more messing with RPC APIs, or unweildy AJAX or COMET frameworks. We've built it all in

to one, consice messaging framework. It's single-paradigm, and it's fun to work with.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

2.2. Messaging API Basics

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the MessageBuilder .

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let's look at some use cases first.

2.2.1. Sending Messages with the Client Bus

In order to send a message from a client you need to create a Message and send it through an

instance of MessageBus . In this simple example we send it to the subject 'HelloWorldService'.

public class HelloWorld implements EntryPoint {

Chapter 2. Messaging

4

 // Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Important

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. See the section on Errai IOC and Errai CDI for using

ErraiBus from a client-side container.

When using Errai IOC or CDI, you can also use the Sender<T> interface to send

messages.

Receiving Messages on the Server Bus / Server Services

5

2.2.2. Receiving Messages on the Server Bus / Server Services

Every message has a sender and at least one receiver. A receiver is as it sounds--it receives the

message and does something with it. Implementing a receiver (also referred to as a service) is

as simple as implementing our standard MessageCallback interface, which is used pervasively

across, both client and server code. Let's begin with server side component that receives

messages:

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

2.2.3. Sending Messages with the Server Bus

In the following example we extend our server side component to reply with a message

when the callback method is invoked. It will create a message and address it to the subject '

HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher dispatcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

Chapter 2. Messaging

6

}

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

5. We transmit the message by providing an instance of the RequestDispatcher .

2.2.4. Receiving Messages on the Client Bus/ Client Services

Messages can be received asynchronously and arbitriraily by declaring callback services within

the client bus. As ErraiBus maintains an open COMET channel at all times, these messages are

delivered in real time to the client as they are sent. This provides built-in push messaging for all

client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /*

 * Declare a service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /*

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

Local Services

7

 });

 [...]

 }

}

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

2.2.5. Local Services

On the client or the server, you can create a local receiver which only receives messages that

originated on the local bus. A local server-side service only receives messages that originate on

that server, and a local client-side service only receives messages that originated on that client.

To create a local receiver using the declarative API, use the @Local annotation in conjunction

with @Service :

@Local

@Service

 public class HelloIntrovertService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, me!");

 }

 }

To create a local receiver using through programmatic service registration, use the

subscribeLocal() method in place of subscribe() :

public void registerLocalService(MessageBus bus) {

 bus.subscribeLocal("LocalBroadcastReceiver", new MessageCallback() {

 public void callback(Message message) {

 String messageText = message.get(String.class, "text");

 }

 });

}

Both examples above work in client- and server-side code.

Chapter 2. Messaging

8

2.3. Single-Response Conversations & Pseudo-

Synchronous Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

See the next section on how to build conversational services that can respond to such messages.

2.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

 MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

 MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

Broadcasting

9

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

2.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

2.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

2.6.1. Relay Services

The essential architectural thing you'll need to do is create a relay service that runs on the server.

Since a service advertised on the server is visible to all clients and all clients are visible to the

server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 2.7, “Message Routing Information”

Chapter 2. Messaging

10

2.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

You can obtain the SessionID directly from a Message by getting the QueueSession resource:

 QueueSession sess = message.getResource(QueueSession.class, Resources.Session.name());

 String sessionId = sess.getSessionId();

You can extract the SessionID from a message so that you may use it for routing by obtaining

the QueueSession resource from the Message . For example:

...

 public void callback(Message message) {

 QueueSession sess = message.getResource(QueueSession.class, Resources.Session.name());

 String sessionId = sess.getSessionId();

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

 MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

Handling Errors

11

It may be tempting however, to try and include destination SessionIDs at the client level, assuming

that this will make the infrastructure simpler. But this will not achieve the desired results, as the

bus treats SessionIDs as transient. Meaning, the SessionID information is not ever transmitted

from bus-to-bus, and therefore is only directly relevant to the proximate bus.

2.8. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support

for handling errors is built directly into the MessageBuilder API, utilizing the ErrorCallback

interface. In the examples shown in previous exceptions, error handing has been glossed over

with aubiquitous usage of the noErrorHandling() method while building messaging. We chose to

require the explicit use of such a method to remind developers of the fact that they are responsible

for their own error handling, requiring you to explicitly make the decision to forego handling

potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker

identification of problems with your applications if you have error handlers, and generally help you

build more robust code.

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 })

 .sendNowWith(dispatcher);

The addition of error handling at first may put off developers as it makes code more verbose and

less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where

the same error handler can appropriately be shared between multiple different calls.

ErrorCallback error = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

}

MessageBuilder.createMessage()

Chapter 2. Messaging

12

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(error)

 .sendNowWith(dispatcher);

The error handler is required to return a boolean value. This is to indicate whether or not Errai

should perform the default error handling actions it would normally take during a failure. You

will almost always want to return true here, unless you are trying to explicitly surpress some

undesirably activity by Errai, such as automatic subject-termination in conversations. But this is

almost never the case.

2.8.1. Handling global message transport errors

You may need to detect problems which occur on the bus at runtime. The client bus API provides a

facility for doing this in the org.jboss.errai.bus.client.framework.ClientMessageBus using

the addTransportErrorHandler() method.

A TransportErrorHandler is an interface which you can use to define error handling behavior

in the event of a transport problem.

For example:

messageBus.addTransportErrorHandler(new TransportErrorHandler() {

 public void onError(TransportError error) {

 // error handling code.

 }

});

The TransportError interface represents the details of an an error from the bus. It contains a set

of methods which can be used for determining information on the initial request which triggered

the error, if the error occurred over HTTP or WebSockets, status code information, etc. See the

JavaDoc for more information.

2.9. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually

stream data to a remote client or group of clients (or from a client to the server). In cases

like this, you can utilize the replyRepeating() , replyDelayed() , sendRepeating() and

sendDelayed() methods in the MessageBuilder .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate

method (either replyDelayed() or sendDelayed()).

Repeating Tasks

13

 MessageBuilder.createConversation(msg)

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .replyDelayed(TimeUnit.SECONDS, 5); // sends the message after 5 seconds.

or

 MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .sendDelayed(requestDispatcher, TimeUnit.SECONDS, 5); // sends the message

 after 5 seconds.

2.10. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's repeatXXX() methods. The task will

repeat indefinitely until cancelled (see next section).

 MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .withProvided("time", new ResourceProvider<String>() {

 SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

 public String get() {

 return fmt.format(new Date(System.currentTimeMillis());

 }

 }

 .noErrorHandling()

 .sendRepeatingWith(requestDispatcher, TimeUnit.SECONDS, 1); //sends a message

 every 1 second

The above example sends a message very 1 second with a message part called "time" ,

containing a formatted time string. Note the use of the withProvided() method; a provided

message part is calculated at the time of transmission as opposed to when the message is

constructed.

Chapter 2. Messaging

14

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the

cancel() method of the AsyncTask instance which is returned when creating a task. Reference

to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuilder.createConversation(message)

 .toSubject("TimeChannel").signalling()

 .withProvided(TimeServerParts.TimeString, new ResourceProvider<String>() {

 public String get() {

 return String.valueOf(System.currentTimeMillis());

 }

 }).defaultErrorHandling().replyRepeating(TimeUnit.MILLISECONDS, 100);

 ...

 // cancel the task and interrupt it's thread if necessary.

 task.cancel(true);

2.11. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP

session management. While the queue sessions are tied to, and dependant on HTTP sessions for

the most part (meaning they die when HTTP sessions die), they provide extra layers of session

tracking to make dealing with complex applications built on Errai easier.

2.11.1. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

2.11.2. Scopes

One of the things Errai offers is the concept of session and local scopes.

2.11.2.1. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

Client Logging and Error Handling

15

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

2.11.2.2. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

2.12. Client Logging and Error Handling

2.13. Wire Protocol (J.REP)

ErraiBus implements a JSON-based wire protocol which is used for the federated communication

between different buses. The protocol specification encompasses a standard JSON payload

structure, a set of verbs, and an object marshalling protocol. The protocol is named J.REP. Which

stands for JSON Rich Event Protocol.

2.13.1. Payload Structure

All wire messages sent across are assumed to be JSON arrays at the outermost element,

contained in which, there are 0..n messages. An empty array is considered a no-operation, but

should be counted as activity against any idle timeout limit between federated buses.

Example 2.1. Figure 1 - Example J.REP Payload

[

Chapter 2. Messaging

16

 {"ToSubject" : "SomeEndpoint", "Value" : "SomeValue" },

 {"ToSubject" : "SomeOtherEndpoint", "Value" : "SomeOtherValue"}

]

In Figure 1 , we see an example of a J.REP payload containing two messages. One bound for an

endpoint named "SomeEndpoint" and the other bound for the endpoint "SomeOtherEndpoint"

. They both include a payload element "Value" which contain strings. Let's take a look at the

anatomy of an individual message.

Example 2.2. Figure 2 - An J.REP Message

{

 "ToSubject" : "TopicSubscriber",

 "CommandType" : "Subscribe",

 "Value " : "happyTopic",

 "ReplyTo" : "MyTopicSubscriberReplyTo"

}

The message shown in Figure 2 shows a very vanilla J.REP message. The keys of the JSON

Object represent individual message parts , with the values representing their corresponding

values. The standard J.REP protocol encompasses a set of standard message parts and values,

which for the purposes of this specification we'll collectively refer to as the protocol verbs.

The following table describes all of the message parts that a J.REP capable client is expected

to understand:

Part Required JSON Type Description

ToSubject Yes String Specifies the subject

within the bus, and

its federation, which

the message should

be routed to.

CommandType No String Specifies a command

verb to be transmitted

to the receiving

subject. This is an

optional part of a

message contract, but

is required for using

management services

ReplyTo No String Specifies to the

receiver what subject

it should reply to

Payload Structure

17

Part Required JSON Type Description

in response to this

message.

Value No Any A recommended but

not required standard

payload part for

sending data to

services

PriorityProcessing No Number A processing order

salience attribute.

Messages which

specify priority

processing will be

processed first if they

are competing for

resources with other

messages in flight.

Note: the current

version of ErraiBus

only supports two

salience levels (0 and

>1). Any non-zero

salience in ErraiBus

will be given the same

priority relative to 0

salience messages

ErrorMessage No String An accompanying

error message with

any serialized

exception

Throwable No Object If applicable, an

encoded object

representing any

remote exception

that was thrown

while dispatching the

specified service

2.13.1.1. Built-in Subjects

The table contains a list of reserved subject names used for facilitating things like bus management

and error handling. A bus should never allow clients to subscribe to these subjects directly.

Chapter 2. Messaging

18

Subject Description

ClientBus The self-hosted message bus endpoint on the

client

ServerBus The self-hosted message bus endpoint on the

server

ClientBusErrors The standard error receiving service for clients

As this table indicates, the bus management protocols in J.REP are accomplished using self-

hosted services. See the section on Bus Management and Handshaking Protocols for details.

2.13.2. Message Routing

There is no real distinction in the J.REP protocol between communication with the server, versus

communication with the client. In fact, it assumed from an architectural standpoint that there is

no real distinction between a client and a server. Each bus participates in a flat-namespaced

federation. Therefore, it is possible that a subject may be observed on both the server and the

client.

One in-built assumption of a J.REP-compliant bus however, is that messages are routed within

the auspices of session isolation. Consider the following diagram:

Figure 2.1. Figure 3 - Topology of a J.REP Messaging Federation

In Figure 3 , is is possible for Client A to send messages to the subjects ServiceA and ServiceB

. But it is not possible to address messages to ServiceC . Conversely, Client B can address

messages to ServiceC and ServiceB , but not ServiceA .

2.13.3. Bus Management and Handshaking Protocols

Federation between buses requires management traffic to negotiate connections and manage

visibility of services between buses. This is accomplished through services named ClientBus and

ServerBus which both implement the same protocol contracts which are defined in this section.

2.13.3.1. ServerBus and ClientBus commands

Both bus services share the same management protocols, by implementing verbs (or commands)

that perform different actions. These are specified in the protocol with the CommandType message

part. The following table describes these commands:

Table 2.1. Message Parts for Bus Commands:

Command / Verb Message Parts Description

ConnectToQueue N/A The first message sent by a

connecting client to begin the

handshaking process.

Bus Management and Handshaking Protocols

19

Command / Verb Message Parts Description

CapabilitiesNotice CapabilitiesFlags A message sent by one bus

to another to notify it of its

capabilities during handshake

(for instance long polling or

websockets)

FinishStateSync N/A A message sent from one

bus to another to indicate

that it has now provided all

necessary information to the

counter-party bus to establish

the federation. When both

buses have sent this message

to each other, the federation is

considered active.

RemoteSubscribe Subject or SubjectsList A message sent to the remote

bus to notify it of a service

or set of services which it is

capable of routing to.

RemoteUnsubscribe Subject A message sent to the remote

bus to notify it that a service is

no longer available.

Disconnect Reason A message sent to a server

bus from a client bus to

indicate that it wishes to

disconnect and defederate.

Or, when sent from the client

to server, indicates that the

session has been terminated.

SessionExpired N/A A message sent to a client bus

to indicate that its messages

are no longer being routed

because it no longer has an

active session

Heartbeat N/A A message sent from one

bus to another periodically to

indicate it is still active.

Part Required JSON Type Description

CapabilitiesFlags Yes String A comma delimited

string of capabilities

Chapter 2. Messaging

20

Part Required JSON Type Description

the bus is capable of

us

Subject Yes String The subject to

subscribe or

unsubscribe from

SubjectsList Yes Array An array of strings

representing a list of

subjects to subscribe

to

2.14. Conversations

Conversations are message exchanges which are between a single client and a service. They

are a fundmentally important concept in ErraiBus, since by default, a message will be broadcast

to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@Service

public class HelloWorldService implements MessageCallback {

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section and this is the use of

the createConversation() method with MessageBuilder .

2.15. WebSockets

ErraiBus has support for WebSocket-based communication. When WebSockets are enabled,

capable web browsers will attempt to upgrade their COMET-based communication with the server-

side bus to use a WebSocket channel.

Configuring the sideband server

21

There are two different ways the bus can enable WebSockets. The first uses a sideband server,

which is a small, lightweight server which runs on a different port from the application server. The

second is native JBoss AS 7-based integration.

2.15.1. Configuring the sideband server

Activating the sideband server is as simple as adding the following to the

ErraiService.properties file:

errai.bus.enable_web_socket_server=true

The default port for the sideband server is 8085 . You can change this by specifying a port with

the errai.bus.web_socket_port property in the ErraiService.properties file.

2.15.2. Deploying with JBoss AS 7

It is currently necessary use the native connector in JBoss AS for WebSockets to work. So the first

step is to configure your JBoss AS instance to use the native connector by changing the domain/

configuration/domain.xml file, and change the line:

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-

host" native="false">

to:

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-

host" native="true">

You will then need to configure the servlet in your application's web.xml which will provide

WebSocket upgrade support within AS7.

Add the following to the web.xml :

<context-param>

 <param-name>websockets-enabled</param-name>

 <param-value>true</param-value>

</context-param>

<context-param>

Chapter 2. Messaging

22

 <param-name>websocket-path-element</param-name>

 <param-value>in.erraiBusWS</param-value>

</context-param>

This will tell the bus to enable web sockets support. The websocket-path-element specified

the path element within a URL which the client bus should request in order to negotiate a

websocket connection. For instance, specifying in.erraiBusWS as we have in the snippit above,

will result in attempted negotiation at http://<your_server>:<your_port>/<context_path>/

in.erraiBusWS . For this to have any meaningful result, we must add a servlet mapping that will

match this pattern:

<servlet>

 <servlet-name>ErraiWSServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.JBossAS7WebSocketServlet</

servlet-class>

 <init-param>

 <param-name>service-locator</param-name>

 <param-value>org.jboss.errai.cdi.server.CDIServiceLocator</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>ErraiWSServlet</servlet-name>

 <url-pattern>*.erraiBusWS</url-pattern>

</servlet-mapping>

Do not remove the regular ErraiBus servlet mappings!

When configuring ErraiBus to use WebSockets on JBoss AS, you do not remove

the existing servlet mappings for the bus. The WebSocket servlet is in addition to

your current bus servlet. This is because ErraiBus always negotiates WebSocket

sessions over the COMET channel.

2.16. Bus Lifecycle

2.16.1. Turning Server Communication On and Off

By default, Errai's client-side message bus attempts to connect to the server as soon as the

ErraiBus module has been loaded. The bus will stay connected until a lengthy (about 45 seconds)

communication failure occurs, or the web page is unloaded.

The application can affect bus communication through two mechanisms:

Observing Bus Lifecycle State and Communication Status

23

1. By setting a global JavaScript variable erraiBusRemoteCommunicationEnabled = false

before the GWT scripts load, bus communication with the server is permanently disabled

2. By calling ((ClientMessageBus) ErraiBus.get()).stop() , the bus disconnects from the

server

To resume server communication after a call to ClientMessageBus.stop() or after

communication with the server has exceeded the bus' retry timeout, call ((ClientMessageBus)

ErraiBus.get()).init() . You can use a BusLifecycleListener to monitor the success or

failure of this attempt. See the next section for details.

2.16.2. Observing Bus Lifecycle State and Communication

Status

In a perfect world, the client message bus would always be able to communicate with the server

message bus. But in the real world, there's a whole array of reasons why the communication link

between the server and the client might be interrupted.

On its own, the client message bus will attempt to reconnect with the server whenever

communication has been disrupted. Errai applications can monitor the status of the bus'

communication link (whether it is disconnected, attempting to connect, or fully connected) through

the BusLifecycleListener interface:

class BusStatusLogger implements BusLifecycleListener {

 @Override

 public void busAssociating(BusLifecycleEvent e) {

 GWT.log("Errai Bus trying to connect...");

 }

 @Override

 public void busOnline(BusLifecycleEvent e) {

 GWT.log("Errai Bus connected!");

 }

 @Override

 public void busOffline(BusLifecycleEvent e) {

 GWT.log("Errai Bus trying to connect...");

 }

 @Override

 public void busDisassociating(BusLifecycleEvent e) {

 GWT.log("Errai Bus going into local-only mode.");

 }

}

Chapter 2. Messaging

24

To attach such a listener to the bus, make the following call in client-side code:

ClientMessageBus bus = (ClientMessageBus) ErraiBus.get();

bus.addLifecycleListener(new BusStatusLogger());

2.17. Shadow Services

Shadow Services is a Service that will get invoked when there is no longer a connection with the

server. This is particular helpful when developing an application for mobile. To create a Shadow

Service for a specific Services all you have to do is annotate a new client side implementation

with the @ShadowService:

@ShadowService

public class SignupShadowService implements MessageCallback {

 @Override

 public void callback(Message message) {

 }

}

Also when you have a RPC based Service you can just add @ShadowService on a client side

implementation to configure it to be the service to get called when there is no network:

@ShadowService

public class SignupServiceShadow implements SignupService {

 @Override

 public User register(User newUserObject, String password) throws RegistrationException {

 }

}

In this shadow service we can create logic that will deal with the temporary connection loss. For

instance you could save the data that needs to get send to the server with JPA on the client and

then when the bus get online again sent the data to the server.

2.18. Debugging Messaging Problems

Errai includes a bus monitoring application, which allows you to monitor all of the message

exchange activity on the bus in order to help track down any potential problems It allows you to

inspect individual messages to examine their state and structure.

Debugging Messaging Problems

25

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your

application's dependencies. When you run your application in development mode, you will simply

need to add the following JVM options to your run configuration in order to launch the monitor: -

Derrai.tools.bus_monitor_attach=true

Figure 2.2. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side

of the main screen lists the services that are currently available, and the right side is the service-

explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the

service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 2.3. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus

since the monitor became active. You do not need to actually have each specific monitor window

open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a

message part will bring up the object inspector, which will allow you to explore the state of any

objects contained within the message, not unlike the object inspectors provided by debuggers in

your favorite IDE. This can be a powerful tool for looking under the covers of your application.

26

Chapter 3.

27

Dependency Injection
The core Errai IOC module implements the JSR-330 Dependency Injection [http://

download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for

in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the

implementation of decoupled and type-safe components. By using DI, components do not need

to be aware of the implementation of provided services. Instead, they merely declare a contract

with the container, which in turn provides instances of the services that component depends on.

Classpath Scanning and ErraiApp.properties

Errai only scans the contents of classpath locations (JARs and directories) that

have a file called ErraiApp.properties at their root. If dependency injection

is not working for you, double-check that you have an ErraiApp.properties in

every JAR and directory that contains classes Errai should know about.

A simple example:

public class MyLittleClass {

 private final TimeService timeService;

 @Inject

 public MyLittleClass(TimeService timeService) {

 this.timeService = timeService;

 }

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In this example, we create a simple class which declares a dependency using

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html] for

the interface TimeService . In this particular case, we use constructor injection to establish the

contract between the container and the component. We can similarly use field injection to the

same effect:

public class MyLittleClass {

 @Inject

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 3. Dependency Injection

28

 private TimeService timeService;

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In order to inject TimeService , you must annotate it with @ApplicationScoped or the Errai DI

container will not acknowledge the type as a bean.

@ApplicationScoped

public class TimeService {

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot

create immutable classes using the pattern, since the container must first call the

default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential – albeit remote – that the object could be left in an partially or

improperly initialized state. The advantage of constructor injection is that fields can

be immutable (final), and invariance rules applied at construction time, leading to

earlier failures, and the guarantee of consistent state.

3.1. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide

a programmatic way of creating and configuring injectors. Instead, container-level binding rules are

defined by implementing a Provider [http://download.oracle.com/javaee/6/api/javax/

inject/Provider.html] , which is scanned for and auto-discovered by the container.

A Provider is essentially a factory which produces type instances within in the container, and

defers instantiation responsibility for the provided type to the provider implementation. Top-level

providers use the standard javax.inject.Provider<T> interface.

Types made available as top-level providers will be available for injection in any managed

component within the container.

Out of the box, Errai IOC implements these default top-level providers, all defined in the

org.jboss.errai.ioc.client.api.builtin package:

• CallerProvider : Makes RPC Caller<T> objects available for injection.

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

29

• DisposerProvider : Makes Errai IoC Disposer<T> objects available for injection.

• InitBallotProvider : Makes instances of InitBallot available for injection.

• IOCBeanManagerProvider : Makes Errai's client-side bean manager, ClientBeanManager ,

available for injection.

• MessageBusProvider : Makes Errai's client-side MessageBus singleton available for injection.

• RequestDispatcherProvider : Makes an instance of the RequestDispatcher available for

injection.

• RootPanelProvider : Makes GWT's RootPanel singleton injectable.

• SenderProvider : Makes MessageBus Sender<T> objects available for injection.

Implementing a Provider is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TimeService {

 public String getTime();

}

TimeServiceProvider.java

@IOCProvider

@Singleton

public class TimeServiceProvider implements Provider<TimeService> {

 @Override

 public TimeService get() {

 return new TimeService() {

 public String getTime() {

 return "It's midnight somewhere!";

 }

 };

 }

}

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Guice.createInjector(new AbstractModule() {

 public void configure() {

Chapter 3. Dependency Injection

30

 bind(TimeService.class).toProvider(TimeServiceProvider.class);

 }

 }).getInstance(MyApp.class);

As shown in the above example code, the annotation @IOCProvider is used to denote top-level

providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are regular beans, so they can inject dependencies–

particularly from other top-level providers–as necessary.

3.2. Wiring server side components

By default, Errai uses Google Guice to wire server-side components. When deploying

services on the server-side, it is currently possible to obtain references to the MessageBus ,

RequestDispatcher , the ErraiServiceConfigurator , and ErraiService by declaring them

as injection dependencies in Service classes, extension components, and session providers.

Alternatively, supports CDI based wiring of server-side components. See the chapter on Errai CDI

for more information.

3.3. Scopes

Out of the box, the IOC container supports three bean scopes, @Dependent , @Singleton and

@EntryPoint . The singleton and entry-point scopes are roughly the same semantics.

3.3.1. Dependent Scope

In Errai IOC, all client types are valid bean types if they are default constructable or can

have construction dependencies satisfied. These unqualified beans belong to the dependent

pseudo-scope. See: Dependent Psuedo-Scope from CDI Documentation [http://docs.jboss.org/

weld/reference/latest/en-US/html/scopescontexts.html#d0e1997]

Additionally, beans may be qualified as @ApplicationScoped , @Singleton or @EntryPoint

. Although @ApplicationScoped and @Singleton are supported for completeness and

conformance, within the client they effectively result in behavior that is identical.

Example 3.1. Example dependent scoped bean

public void MyDependentScopedBean {

 private final Date createdDate;

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997

Built-in Extensions

31

 public MyDependentScopedBean {

 createdDate = new Date();

 }

}

Example 3.2. Example ApplicationScoped bean

@ApplicationScoped

public void MyClientBean {

 @Inject MyDependentScopedBean bean;

 // ... //

}

Availability of dependent beans in the client-side

BeanManager

As is mentioned in the bean manager documentation [38] , only beans that are

explicitly scoped will be made available to the bean manager for lookup. So while

it is not necessary for regular injection, you must annotate your dependent scoped

beans with @Dependent if you wish to dynamically lookup these beans at runtime.

3.4. Built-in Extensions

3.4.1. Bus Services

As Errai IOC provides a container-based approach to client development, support for Errai

services are exposed to the container so they may be injected and used throughout your

application where appropriate. This section covers those services.

3.4.1.1. @Service

The org.jboss.errai.bus.server.annotations.Service annotation is used for binding

service endpoints to the bus. Within the Errai IOC container you can annotate services and have

them published to the bus on the client (or on the server) in a very straight-forward manner:

Example 3.3. A simple message receiving service

@Service

Chapter 3. Dependency Injection

32

public class MyService implements MessageCallback {

 public void callback(Message message) {

 // ... //

 }

}

As with server-side use of the annotation, if a service name is not explicitly specified, the underlying

class name or field name being annotated will be used as the service name.

3.4.1.2. @Local

The org.jboss.errai.bus.server.api.Local annotation is used in conjunction with the

@Service annotation to advertise a service only for visibility on the local bus and thus, cannot

receive messages across the wire for the service.

Example 3.4. A local only service

@Service @Local

public class MyLocalService implements MessageCallback {

 public void callback(Message message) {

 // ... //

 }

}

3.4.1.3. Lifecycle Impact of Services

Services which are registered with ErraiBus via the bean manager through use of the @Service

annotation, have de-registration hooks tied implicitly to the destruction of the bean. Thus,

destruction of the bean implies that these associated services are to be dereferenced.

3.4.2. Client Components

The IOC container, by default, provides a set of default injectable bean types. They range from

basic services, to injectable proxies for RPC. This section covers the facilities available out-of-

the-box.

3.4.2.1. MessageBus

The type org.jboss.errai.bus.client.framework.MessageBus is globally injectable into any

bean. Injecting this type will provide the instance of the active message bus running in the client.

Example 3.5. Injecting a MessageBus

Client Components

33

@Inject MessageBus bus;

3.4.2.2. RequestDispatcher

The type org.jboss.errai.bus.client.framework.RequestDispatcher is globally injectable

into any bean. Injecting this type will provide a RequestDispatcher instance capable of delivering

any messages provided to it, to the the MessageBus .

Example 3.6. Injecting a RequestDispatcher

@Inject RequestDispatcher dispatcher;

3.4.2.3. Caller<?>

The type org.jboss.errai.common.client.api.Caller<?> is a globally injectable RPC proxy.

RPC proxies may be provided by various components. For example, JAX-RS or Errai RPC.

The proxy itself is agnostic to the underlying RPC mechanism and is qualified by it's type

parameterization.

For example:

Example 3.7. An example Caller<?> proxy

public void MyClientBean {

 @Inject

 private Caller<MyRpcInterface> rpcCaller;

 // ... ///

 @EventHandler("button")

 public void onButtonClick(ClickHandler handler) {

 rpcCaller.call(new RemoteCallback<Void>() {

 public void callback(Void void) {

 // put code here that should execute after RPC response arrives

 }

).callSomeMethod();

 }

}

The above code shows the injection of a proxy for the RPC remote interface, MyRpcInterface

. For more information on defining RPC proxies see Chapter 6, Remote Procedure Calls (RPC)

and Creating Requests in Errai JAX-RS.

Chapter 3. Dependency Injection

34

3.4.2.4. Sender<?>

The org.jboss.errai.ioc.support.bus.client.Sender<?> interface is the lower-level

counterpart to the Caller<?> interface described above. You can inject a Sender to send low-

level ErraiBus messages directly to subscribers on any subject.

For example:

 @Inject

 @ToSubject("ListCapitializationService")

 Sender<List<String>> listSender;

 // ... ///

 @EventHandler("button")

 public void onButtonClick(ClickHandler handler) {

 List<String> myListOfStrings = getSelectedCitiesFromForm();

 listSender.send(myListOfStrings, new MessageCallback() {

 public void callback(Message reply) {

 // do stuff with reply

 }

);

 }

The Sender.send() method is overloaded. The variant demonstrated above takes a value and a

MessageCallback to reply receive a reply (assuming the subscriber sends a conversational reply).

The following variants are available:

• send(T)

• send(T, ErrorCallback)

• send(T, MessageCallback)

• send(T, MessageCallback, ErrorCallback)

The reply-to service can also be specified declaratively using the @ReplyTo annotation. This allows

the app to receive conversational replies even when using the send() variants that do not take

a MessageCallback :

 @Inject

 @ToSubject("ListCapitializationService")

 @ReplyTo("ClientListService")

 Sender<List<String>> listSender;

Lifecycle Tools

35

 // ... ///

 @EventHandler("button")

 public void onButtonClick(ClickHandler handler) {

 List<String> myListOfStrings = getSelectedCitiesFromForm();

 listSender.send(myListOfStrings);

 }

 @Singleton

 @Service

 public static class ClientListService implements MessageCallback {

 @Override

 public void callback(Message message) {

 // do stuff with message

 }

 }

These Sender<?> features are just convenient wrappers around the full-featured programmatic

ErraiBus API. See Section 2.2, “Messaging API Basics” and Section 2.14, “Conversations” for full

information about low-level ErraiBus communication.

3.4.3. Lifecycle Tools

A problem commonly associated with building large applications in the browser is ensuring that

things happen in the proper order when code starts executing. Errai IOC provides you tools

which permit you to ensure things happen before initialization, and forcing things to happen after

initialization of all of the Errai services.

3.4.3.1. Controlling Startup

In order to prevent initialization of the the bus and it's services so that you can do

necessary configuration, especially if you are writing extensions to the Errai framework

itself, you can create an implicit startup dependency on your bean by injecting an

org.jboss.errai.ioc.client.api.InitBallot<?> .

Example 3.8. Using an InitBallot to Control Startup

@Singleton

public class MyClientBean {

 @Inject InitBallot<MyClientBean> ballot;

 @PostConstruct

 public void doStuff() {

 // ... do some work ...

Chapter 3. Dependency Injection

36

 ballot.voteForInit();

 }

}

3.4.3.2. Performing Tasks After Initialization

Sending RPC calls to the server from inside constructors and @PostConstruct methods in Errai

is not always reliable due to the fact that the bus and RPC proxies initialize asynchronously with

the rest of the application. Therefore it is often desirable to have such things happen in a post-

initialization task, which is exposed in the ClientMessageBus API. However, it is much cleaner to

use the @AfterInitialization annotation on one of your bean methods.

Example 3.9. Using @AfterInitialization to do something after startup

@Singleton

public class MyClientBean {

 @AfterInitialization

 public void doStuffAfterInit() {

 // ... do some work ...

 }

}

3.4.4. Timed Methods

The @Timed annotation allows scheduling method executions on managed client-side beans.

Timers are automatically scoped to the scope of the corresponding managed bean and participate

in the same lifecycle (see Section 3.7, “Bean Lifecycle” for details).

In the following example the updateTime method is invoked repeatedly every second.

@Timed(type = TimerType.REPEATING, interval = 1, timeUnit = TimeUnit.SECONDS)

private void updateTime() {

 timeWidget.setTime(System.currentTimeMillis);

}

For delayed one-time execution of methods type = TimerType.DELAYED can be used instead.

3.5. Client-Side Bean Manager

It may be necessary at times to manually obtain instances of beans managed by Errai

IOC from outside the container managed scope or creating a hard dependency from your

Looking up beans

37

bean. Errai IOC provides a simple client-side bean manager for handling these scenarios:

org.jboss.errai.ioc.client.container.ClientBeanManager .

As you might expect, you can inject a bean manager instance into any of your managed beans.

If you use Errai IOC in its default mode you will need to inject the synchronous bean manager (

org.jboss.errai.ioc.client.container.SyncBeanManager).

If you have asynchronous IOC mode enabled simply inject the asynchronous bean

manager (org.jboss.errai.ioc.client.container.async.AsyncBeanManager) instead.

Asynchronous IOC brings support for code splitting [http://www.gwtproject.org/doc/latest/

DevGuideCodeSplitting.html] . That means that any bean annotated with @LoadAsync can be

compiled into a separate JavaScript file that's downloaded when the bean is first needed on the

client.

Example 3.10. Injecting the client-side bean manager

public MyManagedBean {

 @Inject SyncBeanManager manager;

 // class body

}

If you need to access the bean manager outside a managed bean, such as in a unit test, you can

access it by calling org.jboss.errai.ioc.client.container.IOC.getBeanManager()

3.5.1. Looking up beans

Looking up beans can be done through the use of the lookupBeans() method. Here's a basic

example:

Example 3.11. Example lookup of a bean

public MyManagedBean {

 @Inject SyncBeanManager manager;

 public void lookupBean() {

 IOCBeanDef<SimpleBean> bean = manager.lookupBean(SimpleBean.class);

 if (bean != null) {

 // get the instance of the bean

 SimpleBean inst = bean.getInstance();

 }

 }

http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html

Chapter 3. Dependency Injection

38

}

In this example we lookup a bean class named SimpleBean . This example will succeed assuming

that SimpleBean is unambiguous. If the bean is ambiguous and requires qualification, you can

do a qualified lookup like so:

Example 3.12. Looking up beans with qualifiers

MyQualifier qual = new MyQualifier() {

 public annotationType() {

 return MyQualifier.class;

 }

}

MyOtherQualifier qual2 = new MyOtherQualifier() {

 public annotationType() {

 return MyOtherQualifier.class;

 }

}

// pass qualifiers to ClientBeanManager.lookupBeans

IOCBeanDef<SimpleBean> bean = beanManager.lookupBean(SimpleBean.class, qual, qual2);

In this example we manually construct instances of qualifier annotations in order to pass it to the

bean manager for lookup. This is a necessary step since there's currently no support for annotation

literals in Errai client code.

3.5.2. Availability of beans

Not all beans that are available for injection are available for lookup from the bean manager

by default. Only beans which are explicitly scoped are available for dynamic lookup. This is an

intentional feature to keep the size of the generated code down in the browser.

3.6. Alternatives and Mocks

3.6.1. Alternatives

It may be desirable to have multiple matching dependencies for a given injection point with

the ability to specify which implementation to use at runtime. For instance, you may have

different versions of your application which target different browsers or capabilities of the browser.

Using alternatives allows you to share common interfaces among your beans, while still using

dependency injection, by exporting consideration of what implementation to use to the container's

configuration.

Alternatives

39

Consider the following example:

@Singleton @Alternative

public class MobileView implements View {

 // ... //

}

and

@Singleton @Alternative

public class DesktopView implements View {

 // ... //

In our controller logic we in turn inject the View interface:

@EntryPoint

public class MyApp {

 @Inject

 View view;

 // ... //

}

This code is unaware of the implementation of View , which maintains good separation of

concerns. However, this of course creates an ambiguous dependency on the View interface as

it has two matching subtypes in this case. Thus, we must configure the container to specify

which alternative to use. Also note, that the beans in both cases have been annotated with

javax.enterprise.inject.Alternative .

In your ErraiApp.properties for the module, you can simply specify which active alternative

should be used:

errai.ioc.enabled.alternatives=org.foo.MobileView

You can specify multiple alternative classes by white space separating them:

Chapter 3. Dependency Injection

40

errai.ioc.enabled.alternatives=org.foo.MobileView \

 org.foo.HTML5Orientation \

 org.foo.MobileStorage

You can only have one enabled alternative for a matching set of alternatives, otherwise you will

get ambiguous resolution errors from the container.

3.6.2. Test Mocks

Similar to alternatives, but specifically designed for testing scenarios, you can replace beans with

mocks at runtime for the purposes of running unit tests. This is accomplished simply by annotating

a bean with the org.jboss.errai.ioc.client.api.TestMock annotation. Doing so will prioritize

consideration of the bean over any other matching beans while running unit tests.

Consider the following:

@ApplicationScoped

public class UserManagementImpl implements UserManagement {

 public List<User> listUsers() {

 // do user listy things!

 }

}

You can specify a mock implementation of this class by implementing its common parent type

(UserManagement) and annotating that class with the @TestMock annotation inside your test

package like so:

@TestMock @ApplicationScoped

public class MockUserManagementImpl implements UserManagement {

 public List<User> listUsers() {

 // return only a test user.

 return Collections.singletonList(TestUser.INSTANCE);

 }

}

In this case, the container will replace the UserManagementImpl with the

MockUserManagementImpl automatically when running the unit tests.

The @TestMock annotation can also be used to specify alternative providers during test execution.

For example, it can be used to mock a Caller<T> . Callers are used to invoke RPC or JAX-RS

endpoints. During tests you might want to replace theses callers with mock implementations. For

details on providers see Section 3.1, “Container Wiring” .

Bean Lifecycle

41

@TestMock @IOCProvider

public class MockedHappyServiceCallerProvider implements ContextualTypeProvider<Caller<HappyService>> {

 @Override

 public Caller<HappyService> provide(Class<?>[] typeargs, Annotation[] qualifiers) {

 return new Caller<HappyService>() {

 ...

 }

}

3.7. Bean Lifecycle

All beans managed by the Errai IOC container support the @PostConstruct and @PreDestroy

annotations.

Beans which have methods annotated with @PostConstruct are guaranteed to have those

methods called before the bean is put into service, and only after all dependencies within its graph

has been satisfied.

Beans are also guaranteed to have their @PreDestroy annotated methods called before they are

destroyed by the bean manager.

Important

This cannot be guaranteed when the browser DOM is destroyed prematurely due

to: closing the browser window; closing a tab; refreshing the page, etc.

3.7.1. Destruction of Beans

Beans under management of Errai IOC, of any scope, can be explicitly destroyed through the

client bean manager. Destruction of a managed bean is accomplished by passing a reference to

the destroyBean() method of the bean manager.

Example 3.13. Destruction of bean

public MyManagedBean {

 @Inject SyncBeanManager manager;

 public void createABeanThenDestroyIt() {

 // get a new bean.

 SimpleBean bean = manager.lookupBean(SimpleBean.class).getInstance();

Chapter 3. Dependency Injection

42

 bean.sendMessage("Sorry, I need to dispose of you now");

 // destroy the bean!

 manager.destroyBean(bean);

 }

}

When the bean manager "destroys" the bean, any pre-destroy methods the bean declares are

called, it is taken out of service and no longer tracked by the bean manager. If there are references

on the bean by other objects, the bean will continue to be accessible to those objects.

Important

Container managed resources that are dependent on the bean such as bus service

endpoints or CDI event observers will also be automatically destroyed when the

bean is destroyed.

Another important consideration is the rule, "all beans created together are destroyed together."

Consider the following example:

Example 3.14. SimpleBean.class

@Dependent

public class SimpleBean {

 @Inject @New AnotherBean anotherBean;

 public AnotherBean getAnotherBean() {

 return anotherBean;

 }

 @PreDestroy

 private void cleanUp() {

 // do some cleanup tasks

 }

}

Example 3.15. Destroying bean from subgraph

public MyManagedBean {

 @Inject SyncBeanManager manager;

Destruction of Beans

43

 public void createABeanThenDestroyIt() {

 // get a new bean.

 SimpleBean bean = manager.lookupBean(SimpleBean.class).getInstance();

 // destroy the AnotherBean reference from inside the bean

 manager.destroyBean(bean.getAnotherBean());

 }

}

In this example we pass the instance of AnotherBean, created as a dependency of SimpleBean,

to the bean manager for destruction. Because this bean was created at the same time as its

parent, its destruction will also result in the destruction of SimpleBean ; thus, this action will result

in the @PreDestroy cleanUp() method of SimpleBean being invoked.

3.7.1.1. Disposers

Another way which beans can be destroyed is through the use of the injectable

org.jboss.errai.ioc.client.api.Disposer<T> class. The class provides a straight forward

way of disposing of bean type.

For instance:

Example 3.16. Destroying bean with disposer

public MyManagedBean {

 @Inject @New SimpleBean myNewSimpleBean;

 @Inject Disposer<SimpleBean> simpleBeanDisposer;

 public void destroyMyBean() {

 simpleBeanDisposer.dispose(myNewSimpleBean);

 }

}

44

Chapter 4.

45

Errai CDI
CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling

dependency injection. In addition to dependency injection, the standard encompasses component

lifecycle, application configuration, call-interception and a decoupled, type-safe eventing

specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side

applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These

deficiencies may be addressed in future versions.

Important

Errai CDI is implemented as an extension on top of the Errai IOC Framework (see

Chapter 3, Dependency Injection), which itself implements JSR-330. Inclusion of

the CDI module your GWT project will result in the extensions automatically being

loaded and made available to your application.

Classpath Scanning and ErraiApp.properties

Errai CDI only scans the contents of classpath locations (JARs and directories)

that have a file called ErraiApp.properties at their root. If CDI features such

as dependency injection, event observation, and @PostConstruct are not working

for your classes, double-check that you have an ErraiApp.properties at the root

of every JAR and directory tree that contains classes Errai should know about.

4.1. Features and Limitations

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed

to your GWT client application. So, you can use Errai to communicate between your GWT client

components and your CDI backend beans.

Errai CDI based applications use the same annotation-driven programming model as server-side

CDI components, with some notable limitations. Many of these limitations will be addressed in

future releases.

1. There is no support for CDI interceptors in the client. Although this is planned in a future release.

2. Passivating scopes are not supported.

Chapter 4. Errai CDI

46

3. The JSR-299 SPI is not supported for client side code. Although writing extensions for the client

side container is possible via the Errai IOC Extensions API.

4. The @Typed annotation is unsupported.

5. The @Interceptor annotation is unsupported.

6. The @Decorator annotation is unsupported.

4.1.1. Other features

The CDI container in Errai is built around the Errai IOC module , and thus is a superset of

the existing functionality in Errai IOC. Thus, all features and APIs documented in Errai IOC are

accessible and usable with this Errai CDI programming model.

4.2. Events

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/

reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled

fashion. Beans consume events by registering for a particular event type and optional qualifiers.

The Errai CDI extension simply extends this concept into the client tier. A GWT client application

can simply register an Observer for a particular event type and thus receive events that are

produced on the server-side. Likewise and using the same API, GWT clients can produce events

that are consumed by a server-side observer.

Let's take a look at an example.

Example 4.1. FraudClient.java

public class FraudClient extends LayoutPanel {

 @Inject

 private Event<AccountActivity> event; (1)

 private HTML responsePanel;

 public FraudClient() {

 super(new BoxLayout(BoxLayout.Orientation.VERTICAL));

 }

 @PostConstruct

 public void buildUI() {

 Button button = new Button("Create activity", new ClickHandler() {

 public void onClick(ClickEvent clickEvent) {

 event.fire(new AccountActivity());

 }

 });

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Conversational events

47

 responsePanel = new HTML();

 add(button);

 add(responsePanel);

 }

 public void processFraud(@Observes @Detected Fraud fraudEvent) { (2)

 responsePanel.setText("Fraud detected: " + fraudEvent.getTimestamp());

 }

}

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy

2. Creation of an Observer method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-

side event subsystem (CDI container). This means any event that is fired through a dispatcher

will eventually be consumed by a CDI managed bean, if there is an corresponding Observer

registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side

observer method for a particular event type. In case an event is fired on the server this method

will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:

Example 4.2. AccountService.java

@ApplicationScoped

public class AccountService {

 @Inject @Detected

 private Event<Fraud> event;

 public void watchActivity(@Observes AccountActivity activity) {

 Fraud fraud = new Fraud(System.currentTimeMillis());

 event.fire(fraud);

 }

}

4.2.1. Conversational events

A server can address a single client in response to an event annotating event types as

@Conversational . Consider a service that responds to a subscription event.

Chapter 4. Errai CDI

48

Example 4.3. SubscriptionService.java

@ApplicationScoped

public class SubscriptionService {

 @Inject

 private Event<Documents> welcomeEvent;

 public void onSubscription(@Observes Subscription subscription) {

 Document docs = createWelcomePackage(subscription);

 welcomeEvent.fire(docs);

 }

}

And the Document class would be annotated like so:

Example 4.4. Document.java

@Conversational @Portable

public class Document {

 // code here

}

As such, when Document events are fired, they will be limited in scope to the initiating

conversational contents – which are implicitly inferred by the caller. So only the client which fired

the Subscription event will receive the fired Document event.

4.2.2. Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between

the client and the server. This permits the observation of server produced events on the client,

and vice-versa.

Example server code:

Example 4.5. MyServerBean.java

@ApplicationScoped

public class MyServerBean {

 @Inject

 Event<MyResponseEvent> myResponseEvent;

Client-Server Event Example

49

 public void myClientObserver(@Observes MyRequestEvent event) {

 MyResponseEvent response;

 if (event.isThankYou()) {

 // aww, that's nice!

 response = new MyResponseEvent("Well, you're welcome!");

 }

 else {

 // how rude!

 response = new MyResponseEvent("What? Nobody says 'thank you' anymore?");

 }

 myResponseEvent.fire(response);

 }

}

Domain-model:

Example 4.6. MyRequestEvent.java

@Portable

public class MyRequestEvent {

 private boolean thankYou;

 public MyRequestEvent(boolean thankYou) {

 setThankYou(thankYou);

 }

 public void setThankYou(boolean thankYou) {

 this.thankYou = thankYou;

 }

 public boolean isThankYou() {

 return thankYou;

 }

}

Example 4.7. MyResponseEvent.java

@Portable

public class MyResponseEvent {

 private String message;

Chapter 4. Errai CDI

50

 public MyRequestEvent(String message) {

 setMessage(message);

 }

 public void setMessage(String message) {

 this.message = message;

 }

 public String getMessage() {

 return message;

 }

}

Client application logic:

Example 4.8. MyClientBean.java

@EntryPoint

public class MyClientBean {

 @Inject

 Event<MyRequestEvent> requestEvent;

 public void myResponseObserver(@Observes MyResponseEvent event) {

 Window.alert("Server replied: " + event.getMessage());

 }

 @PostConstruct

 public void init() {

 Button thankYou = new Button("Say Thank You!");

 thankYou.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 requestEvent.fire(new MyRequestEvent(true));

 }

 }

 Button nothing = new Button("Say nothing!");

 nothing.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 requestEvent.fire(new MyRequestEvent(false));

 }

 }

 VerticalPanel vPanel = new VerticalPanel();

 vPanel.add(thankYou);

 vPanel.add(nothing);

Producers

51

 RootPanel.get().add(vPanel);

 }

}

4.3. Producers

Producer methods and fields act as sources of objects to be injected. They are useful when

additional control over object creation is needed before injections can take place e.g. when you

need to make a decision at runtime before an object can be created and injected.

Example 4.9. App.java

@EntryPoint

public class App {

 ...

 @Produces @Supported

 private MyBaseWidget createWidget() {

 return (Canvas.isSupported()) ? new MyHtml5Widget() : new MyDefaultWidget();

 }

}

Example 4.10. MyComposite.java

@ApplicationScoped

public class MyComposite extends Composite {

 @Inject @Supported

 private MyBaseWidget widget;

 ...

}

Producers can also be scoped themselves. By default, producer methods are dependent-scoped,

meaning they get called every time an injection for their provided type is requested. If a producer

method is scoped @Singleton for instance, the method will only be called once, and the bean

manager will inject the instance from the first invokation of the producer into every matching

injection point.

Chapter 4. Errai CDI

52

Example 4.11. Singleton producer

public class App {

 ...

 @Produces @Singleton

 private MyBean produceMyBean() {

 return new MyBean();

 }

}

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/

cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/

WeldDocumentation] .

4.4. safe dynamic lookup

As an alternative to using the bean manager to dynamically create beans, this can be

accomplished in a type-safe way by injecting a javax.enterprise.inject.Instance<T> .

For instance, assume you have a dependent-scoped bean Bar and consider the following:

public class Foo {

 @Inject Instance<Bar> barInstance;

 public void pingNewBar() {

 Bar bar = barInstance.get();

 bar.ping();

 }

}

In this example, calling barInstance.get() returns a new instance of the dependent-scoped

bean Bar .

4.5. Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started take a look

at the ERRAI:Quickstart Guide.

The CDI integration is a plugin to the Errai core framework and represents a CDI portable

extension. Which means it is discovered automatically by both Errai and the CDI container. In

order to use it, you first need to understand the different runtime models involved when working

GWT, Errai and CDI.

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation

Deployment in Development Mode

53

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/

webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application

containing the GWT client code will be deployed to a target container (Servlet Engine, Application

Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In

GWT development mode and in a pure servlet environment you need to provide and bootstrap

the CDI environment on your own. While any Java EE 6 Application Server already provides a

preconfigured CDI container. To accomodate these differences, we need to do a little trickery

when executing the GWT Development Mode and packaging our application for deployment.

4.5.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai

and CDI available through JNDI (common denominator across all runtimes). Since GWT uses

Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a

custom one that will setup the JNDI bindings:

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>gwt-maven plugin</artifactId>

 <version>${gwt.maven}</version>

 <configuration>

 ...

 <server>org.jboss.errai.cdi.server.gwt.JettyLauncher</server>

 </configuration>

 <executions>

 ...

 </executions>

</plugin>

Starting Development Mode from within your IDE

Consequently, when starting Development Mode from within your

IDE the following program argument has to be provided: -server

org.jboss.errai.cdi.server.gwt.JettyLauncher

4.5.1.1. Special-case Classloading

JettyLauncher uses different class loaders to load classes that belongs to the web application, the

Jetty server, and the Java standard library itself. In the majority of cases, you can simply put all

dependencies into your web application's WEB-INF/lib folder. However, there are cases where

http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Chapter 4. Errai CDI

54

putting a dependency in WEB-INF/lib will cause troubles such as ClassCastException when

same class is also loaded by a different classloader. To mitigate this problem, JettyLauncher can

be instructed that certain classes (or packages) shall be loaded only by the system class loader.

To do so, set the Java system property jetty.custom.sys.classes when launching Dev Mode.

For example, when using gwt-maven-plugin:

<extraJvmArgs>-Djetty.custom.sys.classes=bitronix;javax.transaction</

extraJvmArgs>

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web-app>

 ...

 <listener>

 <listener-class>org.jboss.errai.container.CDIServletStateListener</listener-

class>

 </listener>

 <resource-env-ref>

 <description>Object factory for the CDI Bean Manager</description>

 <resource-env-ref-name>BeanManager</resource-env-ref-name>

 <resource-env-ref-type>javax.enterprise.inject.spi.BeanManager</resource-

env-ref-type>

 </resource-env-ref>

 ...

</web-app>

4.5.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development

mode. You need to include the servlet listener that bootstraps the CDI container and make sure

both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we

ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat

Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

4.5.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the

requirements are basically the same for other vendors. When running a GWT client app that

leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and

accessible through JNDI (java:/BeanManager).

http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://jboss.org/jbossas
http://jboss.org/jbossas

Chapter 5.

55

Marshalling
Errai includes a comprehensive marshalling framework which permits the serialization of domain

objects between the browser and the server. From the perspective of GWT, this is a complete

replacement for the provided GWT serialization facilities and offers a great deal more flexibility.

You are be able to map both application-specific domain model, as well as preexisting model,

including model from third-party libraries using the custom definitions API.

5.1. Mapping Your Domain

All classes that you intend to be marshalled between the client and the server must be exposed

to the marshalling framework. There are several ways you can do it and this section will take you

through the different approaches you can take to fit your needs.

5.1.1. @Portable and @NonPortable

To make a Java class eligible for serialization with Errai Marshalling, mark it with

the org.jboss.errai.common.client.api.annotations.Portable annotation. This tells the

marshalling system to generate marshalling and demarshalling code for the annotated class and

all of its nested classes.

The mapping strategy that will be used depends on how much information you provide about

your model up-front. If you simply annotate a domain type with @Portable and do nothing else,

the marshalling system will use and exhaustive strategy to determine how to construct and

deconstruct instances of that type and its nested types.

The Errai marshalling system works by enumerating all of the Portable types it can find (by any

of the three methods discussed in this section of the reference guide), eliminating all the non-

portable types it can find (via @NonPortable annotations and entries in ErraiApp.properties),

then enumerating the marshallable properties that make up each remaining portable entity type.

The rules that Errai uses for enumerating the properties of a portable entity type are as follows:

• If an entity type has a field called foo , then that entity has a property called foo unless the

field is marked static or transient .

Note that the existence of methods called getFoo() , setFoo() , or both, does not mean that

the entity has a property called foo . Errai Marshalling always works from fields when discovering

properties.

When reading a field foo , Errai Marshalling will call the method getFoo() in preference to direct

field access if the getFoo() method exists.

Similarly, when writing a field foo , Errai Marshalling will call the method setFoo() in preference

to direct field access if the setFoo() method exists.

Chapter 5. Marshalling

56

The above rules are sufficient for marshalling an existing entity to a JSON representation, but for

de-marshalling, Errai must also know how to obtain an instance of a type. The rules that Errai

uses for deciding how to create an instance of a @Portable type are as follows:

• If the entity has a public constructor where every argument is annotated with @MapsTo , and

those parameters cover all properties of the entity type, then Errai uses this constructor to create

the object, passing in all of the property values.

• Otherwise, if the entity has a public static method where every argument is annotated with

@MapsTo , and those parameters cover all properties of the entity type, then Errai uses this

method to create the object. Note that when using this mechanism you are free to create and

return a subtype of the marshalled type, or resolve one from a cache.

• If the entity has a public no-arguments constructor (or no explicit constructors at all), it will be

created via that constructor, and the properties will be written to the new object one at a time.

Each property will be written by its setter method, or by direct field access if a setter method

is not available.

Now let's take a look at some common examples of how this works.

5.1.1.1. Example: A Simple Entity

@Portable

public class Person {

 private String name;

 private int age;

 public Person() {

 }

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

This is a pretty vanilla domain object. Note the default, public, no-argument constructor. In this

case, it will be necessary to have one explicitly declared. But notice we have no setters. In

@Portable and @NonPortable

57

this case, the marshaler will rely on private field access to write the values on each side of the

marshalling transaction. For simple domain objects, this is both nice and convenient. But you

may want to make the class immutable and have a constructor enforce invariance. See the next

section for that.

5.1.1.2. Example: An Immutable Entity with a Public Constructor

Immutability is almost always a good practice, and the marshalling system provides you a straight

forward way to tell it how to marshal and de-marshal objects which enforce an immutable contract.

Let's modify our example from the previous section.

@Portable

public class Person {

 private final String name;

 private final int age;

 public Person(@MapsTo("name") String name, @MapsTo("age") int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

Here we have set both of the class fields final. By doing so, we had to remove our default

constructor. But that's okay, because we have annotated the remaining constructor's parameters

using the org.jboss.errai.marshalling.client.api.annotations.MapsTo annotation.

By doing this, we have told the marshaling system, for instance, that the first parameter of

the constructor maps to the property name . Which in this case, defaults to the name of the

corresponding field. This may not always be the case – as will be explored in the section on custom

definitions. But for now that's a safe assumption.

5.1.1.3. Example: An Immutable Entity with a Factory Method

Another good practice is to use a factory pattern to enforce invariance. Once again, let's modify

our example.

Chapter 5. Marshalling

58

@Portable

public class Person {

 private final String name;

 private final int age;

 private Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public static Person createPerson(@MapsTo("name") String name, @MapsTo("age") int age) {

 return new Person(name, age);

 }

 public String getName() {

 return name;

 }

 public int getAge() {

 return age;

 }

}

Here we have made our only declared constructor private, and created a static factory method.

Notice that we've simply used the same @MapsTo annotation in the same way we did on the

constructor from our previous example. The marshaller will see this method and know that it should

use it to construct the object.

5.1.1.4. Example: An Immutable Entity with a Builder

For types with a large number of optional attributes, a builder is often the best approach.

@Portable

public class Person {

 private final String name;

 private final int age;

 private Person(@MapsTo("name") String name, @MapsTo("age") int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

 return name;

 }

Manual Mapping

59

 public int getAge() {

 return age;

 }

 @NonPortable

 public static class Builder {

 private String name;

 private int age;

 public Builder name(String name) {

 this.name = name;

 return this;

 }

 public Builder age(int age) {

 this.age = age;

 return this;

 }

 public Person build() {

 return new Person(name, age);

 }

 }

}

In this example, we have a nested Builder class that implements the Builder Pattern and calls

the private Person constructor. Hand-written code will always use the builder to create Person

instances, but the @MapsTo annotations on the private Person constructor tell Errai Marshalling to

bypass the builder and construct instances of Person directly.

One final note: as a nested type of Person (which is marked @Portable), the builder itself would

normally be portable. However, we do not intend to move instances of Person.Builder across

the network, so we mark Person.Builder as @NonPortable .

5.1.2. Manual Mapping

Some classes may be out of your control, making it impossible to annotate them for auto-discovery

by the marshalling framework. For cases such as this, there are two approaches which can be

undertaken to include these classes in your application.

The first approach is the easiest, but is contingent on whether or not the class is directly exposed

to the GWT compiler. That means, the classes must be part of a GWT module and within the

GWT client packages. See the GWT documentation on Client-Side Code [http://code.google.com/

webtoolkit/doc/latest/DevGuideCodingBasicsClient.html] for information on this.

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html

Chapter 5. Marshalling

60

5.1.2.1. Mapping Existing Client Classes

If you have client-exposed classes that cannot be annotated with the @Portable annotation, you

may manually map these classes so that the marshaller framework will comprehend and produce

marshallers for them and their nested types.

To do this, specify them in ErraiApp.properties , using the

errai.marshalling.serializableTypes attribute with a whitespace separated list of classes

to make portable.

Example 5.1. Example ErraiApp.properties defining portable classes.

errai.marshalling.serializableTypes=org.foo.client.UserEntity \

 org.foo.client.GroupEntity \

 org.abcinc.model.client.Profile

If any of the serializable types have nested classes that you wish to make non-portable, you can

specify them like this:

Example 5.2. Example ErraiApp.properties defining nonportable classes.

errai.marshalling.nonserializableTypes=org.foo.client.UserEntity$Builder \

 org.foo.client.GroupEntity$Builder

5.1.2.2. Aliased Mappings of Existing Interface Contracts

The marshalling framework supports and promotes the concept of marshalling by interface

contract, where possible. For instance, the framework ships with a marshaller which can marshall

data to and from the java.util.List interface. Instead of having custom marshallers for classes

such as ArrayList and LinkedList , by default, these implementations are merely aliased to

the java.util.List marshaller.

There are two distinct ways to go about doing this. The most straightforward is to specify which

marshaller to alias when declaring your class is @Portable .

package org.foo.client;

@Portable(aliasOf = java.util.List.class)

public MyListImpl extends ArrayList {

 // .. //

Manual Class Mapping

61

}

In the case of this example, the marshaller will not attempt to comprehend your class. Instead,

it will merely rely on the java.util.List marshaller to dematerialize and serialize instances of

this type onto the wire.

If for some reason it is not feasible to annotate the class, directly, you may specify the mapping

in the ErraiApp.properties file using the errai.marshalling.mappingAliases attribute.

errai.marshalling.mappingAliases=org.foo.client.MyListImpl->java.util.List \

 org.foo.client.MyMapImpl->java.util.Map

The list of classes is whitespace-separated so that it may be split across lines.

The example above shows the equivalent mapping for the MyListImpl class from the previous

example, as well as a mapping of a class to the java.util.Map marshaller.

The syntax of the mapping is as follows: <class_to_map> -> <contract_to_map_to> .

Aliases do not inherit functionality!

When you alias a class to another marshalling contract, extended functionality

of the aliased class will not be available upon deserialization. For this you must

provide custom marshallers for those classes.

5.1.3. Manual Class Mapping

Although the default marshalling strategies in Errai Marshalling will suit the vast majority of use

cases, there may be situations where it is necessary to manually map your classes into the

marshalling framework to teach it how to construct and deconstruct your objects.

This is accomplished by specifying MappingDefinition classes which inform the framework

exactly how to read and write state in the process of constructing and deconstructing objects.

5.1.3.1. MappingDefinition

All manual mappings should extend the

org.jboss.errai.marshalling.rebind.api.model.MappingDefinition class. This is base

metadata class which contains data on exactly how the marshaller can deconstruct and construct

objects.

Consider the following class:

Chapter 5. Marshalling

62

public class MySuperCustomEntity {

 private final String mySuperName;

 private String mySuperNickname;

 public MySuperCustomEntity(String mySuperName) {

 this.mySuperName = mySuperName;;

 }

 public String getMySuperName() {

 return this.mySuperName;

 }

 public void setMySuperNickname(String mySuperNickname) {

 this.mySuperNickname = mySuperNickname;

 }

 public String getMySuperNickname() {

 return this.mySuperNickname;

 }

}

Let us construct this object like so:

 MySuperCustomEntity entity = new MySuperCustomEntity("Coolio");

 entity.setSuperNickname("coo");

It is clear that we may rely on this object's two getter methods to extract the totality of its state. But

due to the fact that the mySuperName field is final, the only way to properly construct this object is

to call its only public constructor and pass in the desired value of mySuperName .

Let us consider how we could go about telling the marshalling framework to pull this off:

@CustomMapping

public MySuperCustomEntityMapping extends MappingDefinition {

 public MySuperCustomEntityMapping() {

 super(MySuperCustomEntity.class); //

 (1)

 SimpleConstructorMapping cnsMapping = new SimpleConstructorMapping();

 cnsMapping.mapParmToIndex("mySuperName", 0, String.class); //

 (2)

Custom Marshallers

63

 setInstantiationMapping(cnsMapping);

 addMemberMapping(new WriteMapping("mySuperNickname", String.class, "setMySuperNickname")); //

 (3)

 addMemberMapping(new ReadMapping("mySuperName", String.class, "getMySuperName")); //

 (4)

 addMemberMapping(new ReadMapping("mySuperNickname", String.class, "getMySuperNickname")); //

 (5)

 }

}

And that's it. This describes to the marshalling framework how it should go about constructing and

deconstructing MySuperCustomEntity .

Paying attention to our annotating comments, let's describe what we've done here.

1. Call the constructor in MappingDefinition passing our reference to the class we are mapping.

2. Using the SimpleConstructorMapping class, we have indicated that a custom constructor

will be needed to instantiate this class. We have called the mapParmToIndex method with

three parameters. The first, "mySupername" describes the class field that we are targeting. The

second parameter, the integer 0 indicates the parameter index of the constructor arguments

that we'll be providing the value for the aforementioned field – in this case the first and only, and

the final parameter String.class tells the marshalling framework which marshalling contract

to use in order to de-marshall the value.

3. Using the WriteMapping class, we have indicated to the marshaller framework how to write the

"mySuperNickname" field, using the String.class marshaller, and using the setter method

setMySuperNickname .

4. Using the ReadMapping class, we have indicated to the marshaller framework how to read

the "mySuperName" field, using the String.class marshaller, and using the getter method

getMySuperName .

5. Using the ReadMapping class, we have indicated to the marshaller framework how to read the

"mySuperNickname" field, using the String.class marshaller, and using the getter method

getMySuperNickname .

5.1.4. Custom Marshallers

There is another approach to extending the marshalling functionality that doesn't involve mapping

rules, and that is to implement your own Marshaller class. This gives you complete control over

the parsing and emission of the JSON structure.

The implementation of marshallers is made relatively straight forward by the fact that both the

server and the client share the same JSON parsing API.

Chapter 5. Marshalling

64

Consider the included java.util.Date marshaller that comes built-in to the marshalling

framework:

Example 5.3. DataMarshaller.java from the built-in marshallers

@ClientMarshaller(Date.class)

@ServerMarshaller(Date.class)

public class DateMarshaller extends AbstractNullableMarshaller<Date> {

 @Override

 public Date[] getEmptyArray() {

 return new Date[0];

 }

 @Override

 public Date doNotNullDemarshall(final EJValue o, final MarshallingSession ctx) {

 if (o.isObject() != null) {

 EJValue qualifiedValue = o.isObject().get(SerializationParts.QUALIFIED_VALUE);

 if (!qualifiedValue.isNull() && qualifiedValue.isString() != null) {

 return new Date(Long.parseLong(qualifiedValue.isString().stringValue()));

 }

 EJValue numericValue = o.isObject().get(SerializationParts.NUMERIC_VALUE);

 if (!numericValue.isNull() && numericValue.isNumber() != null) {

 return new Date(new Double(numericValue.isNumber().doubleValue()).longValue());

 }

 if (!numericValue.isNull() && numericValue.isString() != null) {

 return new Date(Long.parseLong(numericValue.isString().stringValue()));

 }

 }

 return null;

 }

 @Override

 public String doNotNullMarshall(final Date o, final MarshallingSession ctx) {

 return "{\"" + SerializationParts.ENCODED_TYPE + "\":

\"" + Date.class.getName() + "\"," +

 "\"" + SerializationParts.OBJECT_ID + "\":\"" + o.hashCode() + "\"," +

 "\"" + SerializationParts.QUALIFIED_VALUE + "\":

\"" + o.getTime() + "\"}";

 }

}

The class is annotated with both @ClientMarshaller and @ServerMarshaller indicating that

this class should be used for both marshalling on the client and on the server.

Custom Marshallers

65

The doNotNullDemarshall() method is responsible for converting the given JSON object (which

has already been parsed and verified non-null) into a Java object.

The doNotNullMarshall() method does roughly the inverse: it converts the given Java object

into a String (which must be parseable as a JSON object) for transmission on the wire.

66

Chapter 6.

67

Remote Procedure Calls (RPC)
ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy

on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it

to be a more useful and concise approach for exposing services to the clients.

Please note that this API has changed since version 1.0. RPC services provide a way of creating

type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support

client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service

class which implements it. See the following:

@Remote

public interface MyRemoteService {

 public boolean isEveryoneHappy();

}

The @Remote annotation tells Errai that we'd like to use this interface as a remote interface. The

remote interface must be part of of the GWT client code. It cannot be part of the server-side code,

since the interface will need to be referenced from both the client and server side code. That said,

the implementation of a service is relatively simple to the point:

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 // blatently lie and say everyone's happy.

 return true;

 }

}

That's all there is to it. You use the same @Service annotation as described in Section 2.4. The

presence of the remote interface tips Errai off as to what you want to do with the class.

Warning

Beginning with Errai 2.0.CR1, the default for automatic service discovery has

changed in favour of CDI based applications, meaning RPC service discovery must

be explicitly turned on in case Errai CDI is not used (the weld-integration.jar

Chapter 6. Remote Procedure C...

68

is not on the classpath). This can be done using an init-param in the servlet config

of your web.xml:

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <init-param>

 <param-name>auto-discover-services</param-name>

 <param-value>true</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

6.1. Making calls

Calling a remote service involves use of the MessageBuilder API. Since all messages are

asynchronous, the actual code for calling the remote service involves the use of a callback, which

we use to receive the response from the remote method. Let's see how it works:

MessageBuilder.createCall(new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

 }, MyRemoteService.class).isEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correspond to the

return value of the method on the server. We also reference the remote interface we are calling,

and directly call the method. However, don't be tempted to write code like this :

 boolean bool = MessageBuilder.createCall(..., MyRemoteService.class).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0

depending on the type. This is due to the fact that the method is dispatched asynchronously, as

in, it does not wait for a server response before returning control. The reason we chose to do this,

as opposed to emulate the native GWT-approach, which requires the implementation of remote

and async interfaces, was purely a function of a tradeoff for simplicity.

Proxy Injection

69

6.1.1. Proxy Injection

An alternative to using the MessageBuilder API is to have a proxy of the service injected.

@Inject

private Caller<MyRemoteService> remoteService;

For calling the remote service, the callback objects need to be provided to the call method before

the corresponding interface method is invoked.

remoteService.call(callback).isEveryoneHappy();

The Errai IOC GWT module needs to be inherited to make use of caller injection. To do this, the

following line needs to be added to the application's *.gwt.xml file. It is important that this line

comes after the Errai Bus module:

 <inherits name="org.jboss.errai.ioc.Container"/>

6.2. Handling exceptions

Handling remote exceptions can be done by providing an ErrorCallback on the client:

MessageBuilder.createCall(

 new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

 },

 new ErrorCallback() {

 public boolean error(Message message, Throwable caught) {

 try {

 throw caught;

 }

 catch (NobodyIsHappyException e) {

 Window.alert("OK, that's sad!");

 }

 catch (Throwable t) {

 GWT.log("An unexpected error has occurred", t);

Chapter 6. Remote Procedure C...

70

 }

 return false;

 }

 },

 MyRemoteService.class).isEveryoneHappy();

As remote exceptions need to be serialized to be sent to the client, the @Portable annotation

needs to be present on the corresponding exception class (see Chapter 5, Marshalling). Further

the exception class needs to be part of the client-side code. For more details on ErrorCallbacks

see Section 2.8, “Handling Errors” .

6.2.1. Global RPC exception handler

In a scenario where many different remote calls potentially throw the same exception types (e.g.

exceptions related to authentication or authorization) it can be easier to register a global exception

handler instead of providing error callbacks at each RPC invocation. This global exception handler

is called in case an exception occurs in the process of a remote call that has no error callback

associated with it. So, it will handle an otherwise uncaught exception.

@UncaughtException

private void onUncaughtException(Throwable t) {

 try {

 throw caught;

 }

 catch (UserNotLoggedInException e) {

 // navigate to login dialog

 }

 catch (Throwable t) {

 GWT.log("An unexpected error has occurred", t);

 }

}

6.3. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the remote call

before it's being sent. This is useful for implementing crosscutting concerns like caching, for

example when the remote call should be avoided if the data is already cached locally.

To have a remote call intercepted, either an interface method or the remote interface type has

to be annotated with @InterceptedCall . If the type is annotated, all interface methods will be

intercepted.

@Remote

Session and request objects in RPC endpoints

71

public interface CustomerService {

 @InterceptedCall(MyCacheInterceptor.class)

 public Customer retrieveCustomerById(long id);

}

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.g.

@InterceptedCall({MyCacheInterceptor.class, MySecurityInterceptor.class})

public Customer retrieveCustomerById(long id);

Implementing an interceptor is easy:

public class MyCacheInterceptor implements RpcInterceptor {

 @Override

 public void aroundInvoke(final RemoteCallContext context) {

 // e.g check if the result is cached and carry out the actual call only

 in case it's not.

 context.proceed() // executes the next interceptor in the chain or the

 actual remote call.

 // context.setResult() // sets the result directly without carrying out

 the remote call.

 }

}

The RemoteCallContext passed to the aroundInvoke method provides access to the intercepted

method's name and read/write access to the parameter values provided at the call site.

Calling proceed executes the next interceptor in the chain or the actual remote call if all

interceptors have already been executed. If access to the result of the (asynchronous) remote

call is needed in the interceptor, one of the overloaded versions of proceed accepting a

RemoteCallback has to be used instead.

The result of the remote call can be manipulated by calling RemoteCallContext.setResult() .

Not calling proceed in the interceptor bypasses the actual remote call, passing

RestCallContext.getResult() to the RemoteCallBack provided at the call site.

6.4. Session and request objects in RPC endpoints

Before invoking an endpoint method Errai sets up an RpcContext that provides access to message

resources that are otherwise not visible to RPC endpoints.

Chapter 6. Remote Procedure C...

72

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 HttpSession session = RpcContext.getHttpSession();

 ServletRequest request = RpcContext.getServletRequest();

 ...

 return true;

 }

}

6.5. Batching remote calls

Some use cases require multiple interactions with the server to complete. Errai's RPC mechanism

allows for batched invocations of remote methods that will be executed using a single server

round-trip. This is useful for reducing the number of simultaneous HTTP connections and at the

same time allows for reusing and combining fine-grained remote services.

Injecting a BatchCaller instead of a Caller<T> is all it takes to make use of batched remote

procedure calls.

@EntryPoint

public class MyBean {

 @Inject

 private BatchCaller batchCaller;

 private void someMethod() {

 // ...

 batchCaller.call(remoteCallback1, RemoteService1.class).method1();

 batchCaller.call(remoteCallback2, RemoteService2.class).method2();

 // Invokes the accumulated remote requests using a single server round-trip.

 batchCaller.sendBatch();

 }

}

The remote methods will get executed only after sendBatch() was called. The method sendBatch

accepts an additional RemoteCallback instance as a parameter which will we invoked when all

remote calls have completed in success. Consequently, an ErrorCallback can also be provided

which will get executed for all remote calls that have completed in failure.

Chapter 7.

73

Errai JAX-RS
JAX-RS (Java API for RESTful Web Services) is a Java EE standard (JSR-311) for implementing

REST-based Web services in Java. Errai JAX-RS brings this standard to the browser and

simplifies the integration of REST-based services in GWT client applications. Errai can generate

proxies based on JAX-RS interfaces which will handle all the underlying communication and

serialization logic. All that's left to do is to invoke a Java method.

Errai's JAX-RS support consists of the following:

• A client-side API to communicate with JAX-RS endpoints

• A code generator that runs at your project's build time, providing proxy implementations for each

JAX-RS resource interfaces visible within the GWT module

• Errai IoC and CDI providers that allow you to @Inject instances of {{Caller<T>} (the same API

used in Errai RPC)}

• Integration with either Errai Marshalling or Jackson to translate request and response data

between Java object and a string-based wire format

To get started with a working demo that makes use of Errai JAX-RS you can either download and

unzip the Errai tutorial project [https://github.com/errai/errai-tutorial/archive/master.zip] or check

out the CRUD demo part of our demo collection [https://github.com/errai/errai/tree/master/errai-

demos] . If you prefer getting started from scratch keep reading

Figure 7.1. TODO Gliffy image title empty

.

7.1. Getting Started

7.1.1. Dependencies

To use Errai JAX-RS, you must include it on the compile-time classpath. If you are using Maven

for your build, add this dependency:

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-jaxrs-client</artifactId>

 <version>${errai.version}</version>

https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos

Chapter 7. Errai JAX-RS

74

 <scope>provided</scope>

 </dependency>

or if you are not using Maven for dependency management, add errai-jaxrs-client-

version.jar to your classpath.

If you intend to use Errai's JSON format on the wire you will need to add Errai's JAX-RS JSON

provider to your classpath and make sure it gets deployed to the server.

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-jaxrs-provider</artifactId>

 <version>${errai.version}</version>

 </dependency>

or manually add errai-jaxrs-provider-version.jar in case you're not using Maven. If your

REST service returns Jackson generated JSON you do not need the errai-jaxrs-provider (see

Configuration) .

7.1.2. GWT Module

Once you have Errai JAX-RS on your classpath, ensure your application inherits the GWT module

as well. Add this line to your application's *.gwt.xml file:

 <inherits name="org.jboss.errai.enterprise.Jaxrs"/>

7.1.3. Server-Side JAX-RS Implementation

Errai's JAX-RS support consists mostly of features that make the client side easier and more

reliable to maintain. You will need to use an existing third-party JAX-RS implementation on the

server side. All Java EE 6 application servers include such a module out-of-the-box. If you are

developing an application that you intend to deploy on a plain servlet container, you will have

to choose a JAX-RS implementation (for example, RestEasy) and configure it properly in your

web.xml.

Alternatively, you could keep your REST resource layer in a completely separate web application

hosted on the same server (perhaps build an Errai JAX-RS client against an existing REST service

you developed previously). In this case, you could factor out the shared JAX-RS interface into a

shared library, leaving the implementation in the non-Errai application.

Finally, you can take advantage of the cross-origin resource sharing (CoRS) feature in modern

browsers and use Errai JAX-RS to send requests to a third-party server. The third-party server

Shared JAX-RS Interface

75

would have to be configured to allow cross-domain requests. In this case, you would write a

JAX-RS-Annotated interface describing the remote REST resources, but you would not create an

implementation of that interface.

7.1.4. Shared JAX-RS Interface

Errai JAX-RS works by leveraging standard Java interfaces that bear JAX-RS annotations. You

will also want these interfaces visible to server-side code so that your JAX-RS resource classes

can implement them (and inherit the annotations). This keeps the whole setup typesafe, and

reduces duplication to the bare minimum. The natural solution, then is to put the JAX-RS interfaces

under the client.shared package within your GWT module:

• project

• src

• main

• java

• com.mycompany.myapp

• MyApp.gwt.xml [the app's GWT module]

• com.mycompany.myapp.client.local

• MyAppClientStuff.java [code that @Injects Caller<MyAppRestResource>]

• com.mycompany.myapp.client.shared

• CustomerService.java [the JAX-RS interface]

• com.mycompany.myapp.server

• CustomerServiceImpl.java [the server-side JAX-RS resource implementation]

The contents of the server-side files would be as follows:

Example 7.1. CustomerService.java

@Path("customers")

public interface CustomerService {

 @GET

 @Produces("application/json")

 public List<Customer> listAllCustomers();

 @POST

 @Consumes("application/json")

Chapter 7. Errai JAX-RS

76

 @Produces("text/plain")

 public long createCustomer(Customer customer);

}

The above interface is visible both to server-side code and to client-side code. It is used by client-

side code to describe the available operations, their parameter types, and their return types. If

you use your IDE's refactoring tools to modify this interface, both the server-side and client-side

code will be updated automatically.

Example 7.2. CustomerServiceImpl.java

public class CustomerServiceImpl implements CustomerService {

 @Override

 public List<Customer> listAllCustomers() {

 // Use a database API to look up all customers in back-end data store

 // Return the resulting list

 }

 @Override

 public long createCustomer(Customer customer) {

 // Store new Customer instance in back-end data store

 }

}

The above class implements the shared interface. Since it performs database and/or filesystem

operations to manipulate the persistent data store, it is not GWT translatable, and it's therefore

kept in a package that is not part of the GWT module.

Save typing and reduce duplication

Note that all JAX-RS annotations (@Path , @GET , @Consumes , and so on) can be

inherited from the interface. You do not need to repeat these annotations in your

resource implementation classes.

7.2. Creating Requests

This section assumes you have already set up the CustomerService JAX-RS endpoint as

described in the previous section.

To create a request on the client, all that needs to be done is to invoke RestClient.create()

, thereby providing the JAX-RS interface, a response callback and to invoke the corresponding

interface method:

Proxy Injection

77

Example 7.3. App.java

...

Button create = new Button("Create", new ClickHandler() {

 public void onClick(ClickEvent clickEvent) {

 Customer customer = new Customer(firstName, lastName, postalCode);

 RestClient.create(CustomerService.class, callback).createCustomer(customer);

 }

});

...

For details on the callback mechanism see Handling Responses .

7.2.1. Proxy Injection

Injectable proxies can be used as an alternative to calling RestClient.create() .

@Inject

private Caller<CustomerService> customerService;

To create a request, the callback objects need to be provided to the call method before the

corresponding interface method is invoked.

customerService.call(callback).listAllCustomers();

To use caller injection, your application needs to inherit the Errai IOC GWT module. To do this,

just add this line to your application's *.gwt.xml file and make sure it comes after the Errai JAX-

RS module (see Getting Started):

 <inherits name="org.jboss.errai.ioc.Container"/>

Note

The JAX-RS interfaces need to be visible to the GWT compiler and must therefore

reside within the client packages (e.g. client.shared).

Chapter 7. Errai JAX-RS

78

7.3. Handling Responses

An instance of Errai's RemoteCallback<T> has to be passed to the RestClient.create() call,

which will provide access to the JAX-RS resource method's result. T is the return type of the JAX-

RS resource method. In the example below it's just a Long representing a customer ID, but it can

be any serializable type (see Chapter 5, Marshalling).

RemoteCallback<Long> callback = new RemoteCallback<Long>() {

 public void callback(Long id) {

 Window.alert("Customer created with ID: " + id);

 }

};

A special case of this RemoteCallback is the ResponseCallback which can be used as an

alternative. It provides access to the Response object representing the underlying HTTP response.

This is useful when more details of the HTTP response are needed, such as headers and the

status code. The ResponseCallback can also be used for JAX-RS interface methods that return

a javax.ws.rs.core.Response type. In this case, the MarshallingWrapper class can be used

to manually demarshall the response body to an entity of the desired type.

ResponseCallback callback = new ResponseCallback() {

 public void callback(Response response) {

 Window.alert("HTTP status code: " + response.getStatusCode());

 Window.alert("HTTP response body: " + response.getText());

 }

};

For handling errors, Errai's error callback mechanism can be reused and an instance of

ErrorCallback can optionally be passed to the RestClient.create() call. In case of an HTTP

error, the ResponseException provides access to the Response object. All other Throwables

indicate a communication problem.

ErrorCallback errorCallback = new RestErrorCallback() {

 public boolean error(Request request, Throwable throwable) {

 try {

 throw throwable;

 }

 catch (ResponseException e) {

 Response response = e.getResponse();

 // process unexpected response

Client-side Interceptors

79

 response.getStatusCode();

 }

 catch (Throwable t) {

 // process unexpected error (e.g. a network problem)

 }

 return false;

 }

};

7.4. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the request before

it's being sent. This is useful for implementing crosscutting concerns like caching or security

features e.g:

• avoiding the request when the data is cached locally

• adding special HTTP headers or parameters to the request

To have a JAX-RS remote call intercepted, either an interface method or the remote interface

type has to be annotated with @InterceptedCall . If the type is annotated, all interface methods

will be intercepted.

@Path("customers")

public interface CustomerService {

 @GET

 @Path("/{id}")

 @Produces("application/json")

 @InterceptedCall(MyCacheInterceptor.class)

 public Customer retrieveCustomerById(@PathParam("id") long id);

}

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.g.

@InterceptedCall({MyCacheInterceptor.class, MySecurityInterceptor.class})

public Customer retrieveCustomerById(@PathParam("id") long id);

Implementing an interceptor is easy:

Chapter 7. Errai JAX-RS

80

public class MyCacheInterceptor implements RestClientInterceptor {

 @Override

 public void aroundInvoke(final RestCallContext context) {

 RequestBuilder builder = context.getRequestBuilder();

 builder.setHeader("headerName", "value");

 context.proceed();

 }

}

The RestCallContext passed to the aroundInvoke method provides access to the context of the

intercepted JAX-RS (REST) remote call. It allows to read and write the parameter values provided

at the call site and provides read/write access to the RequestBuilder instance which has the

URL, HTTP headers and parameters set.

Calling proceed executes the next interceptor in the chain or the actual remote call if all

interceptors have already been executed. If access to the result of the (asynchronous) remote

call is needed in the interceptor, one of the overloaded versions of proceed accepting a

RemoteCallback has to be used instead.

The result of the remote call can be manipulated by calling RestCallContext.setResult() .

Not calling proceed in the interceptor bypasses the actual remote call, passing

RestCallContext.getResult() to the RemoteCallBack provided at the call site.

7.5. Wire Format

Errai's JSON format will be used to serialize/deserialize your custom types. See Chapter 5,

Marshalling for details.

Alternatively, a Jackson compatible JSON format can be used on the wire. See Configuration for

details on how to enable Jackson marshalling.

7.6. Configuration

7.6.1. Configuring the default root path of JAX-RS endpoints

All paths specified using the @Path annotation on JAX-RS interfaces are by definition relative

paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified

paths relative to the GWT client application's context path.

To configure a relative or absolute root path, the following JavaScript variable can be set in either

the host HTML page

<script type="text/javascript">

Enabling Jackson marshalling

81

 erraiJaxRsApplicationRoot = "/MyJaxRsEndpointPath";

</script>

or by using a JSNI method:

private native void setMyJaxRsAppRoot(String path) /*-{

 $wnd.erraiJaxRsApplicationRoot = path;

}-*/;

or by simply invoking:

RestClient.setApplicationRoot("/MyJaxRsEndpointPath");

The root path will be prepended to all paths specified on the JAX-RS interfaces. It serves as the

base URL for all requests sent from the client.

7.6.2. Enabling Jackson marshalling

The following options are available for activating Jackson marshalling on the client. Note

that this is a client-side configuration, the JAX-RS endpoint is assumed to already return a

Jackson representation (Jackson is supported by all JAX-RS implementations). The errai-

jaxrs-provider.jar does not have to be deployed on the server in this case!

<script type="text/javascript">

 erraiJaxRsJacksonMarshallingActive = true;

</script>

or by using a JSNI method:

private native void setJacksonMarshallingActive(boolean active) /*-{

 $wnd.erraiJaxRsJacksonMarshallingActive = active;

}-*/;

or by simply invoking:

Chapter 7. Errai JAX-RS

82

RestClient.setJacksonMarshallingActive(true);

Chapter 8.

83

Errai JPA
Starting with Errai 2.1, Errai implements a subset of JPA 2.0. With Errai JPA, you can store and

retrieve entity objects on the client side, in the browser's local storage. This allows the reuse of

JPA-related code (both entity class definitions and procedural logic that uses the EntityManager)

between client and server.

Errai JPA implements the following subset of JPA 2.0:

• Annotation-based configuration

• Entity Types with

• Identifiers of any numeric type (int, long, short, etc.)

• Generated identifiers

• Regular attributes of any JPA Basic type (Java primitive types, boxed primitives, enums,

BigInteger, BigDecimal, String, Date, Time, and Timestamp)

• Singular and Plural (collection-valued) attributes of other entity types

• All association types (one-to-one, one-to-many, many-to-one, many-to-many)

• All association cascade rules (ALL, PERSIST, MERGE, REMOVE, REFRESH, DETACH)

• Circular and self references work properly

• Property access by field or get/set methods

• Named, typed JPQL queries that select exactly one entity type

• With cascading fetch of related entities

• With or without WHERE clause

• All boolean, arithmetic, and string operators supported

• All String manipulation functions supported

• With or without ORDER BY clause

• Lifecycle events and entity lifecycle listeners

• Much of the Metamodel API (Metamodel , EntityType , SingularAttribute ,

PluralAttribute , etc.)

Chapter 8. Errai JPA

84

It's all client-side

Errai JPA is a declarative, typesafe interface to the web browser's localStorage

object. As such it is a client-side implementation of JPA. Objects are stored and

fetched from the browser's local storage, not from the JPA provider on the server

side.

8.1. Getting Started

8.1.1. Compile-time dependency

To use Errai JPA, you must include it on the compile-time classpath. If you are using Maven for

your build, add this dependency:

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-jpa-client</artifactId>

 <version>${errai.version}</version>

 </dependency>

If you are not using Maven for dependency management, add errai-jpa-client-version.jar

, Hibernate 4.1.1, and Google Guava for GWT 12.0 to your compile-time classpath.

8.1.2. GWT Module Descriptor

Once you have Errai JPA on your classpath, ensure your application inherits the GWT module as

well. Add this line to your application's *.gwt.xml file:

 <inherits name="org.jboss.errai.jpa.JPA"/>

8.1.3. INF/persistence.xml

Errai ignores META-INF/persistence.xml for purposes of client-side JPA. Instead, Errai scans all

Java packages that are part of your GWT modules for classes annotated with @Entity . This

allows you the freedom of defining a persistence.xml that includes both shared entity classes that

you use on the client and the server, plus server-only entities that are defined in a server-only

package.

Declaring an Entity Class

85

8.1.4. Declaring an Entity Class

Classes whose instances can be stored and retrieved by JPA are called entities . To declare a

class as a JPA entity, annotate it with @Entity .

JPA requires that entity classes conform to a set of rules. These are:

• The class must have an ID attribute

• The class must have a public or protected constructor that takes no arguments

• The class must be public and nonfinal

• No methods or persistent fields of the class may be final

• The class must be a top-level type (not a nested or inner class)

Here is an example of a valid entity class with an ID attribute (id) and a String-valued persistent

attribute (name):

@Entity

public class Genre {

 @Id @GeneratedValue

 private int id;

 private String name;

 // This constructor is used by JPA

 public Genre() {}

 // This constructor is not used by JPA

 public Genre(String name) {

 this();

 this.name = name;

 }

 // These getter and Setter methods are optional:

 public int getId() { return id; }

 public void setId(int id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

}

Chapter 8. Errai JPA

86

8.1.4.1. Entity Attributes

The state of fields and JavaBeans properties of entities are generally persisted with the entity

instance. These persistent things are called attributes .

JPA Attributes are subdivided into two main types: singular and plural . Singular attributes

are scalar types like Integer or String . Plural attributes are collection values, such as

List<Integer> or Set<String> .

The values of singular attributes (and the elements of plural attributes) can be of any application-

defined entity type or a JPA Basic type. The JPA basic types are all of the Java primitive

types, all boxed primitives, enums, BigInteger, BigDecimal, String, Date (java.util.Date or

java.sql.Date), Time, and Timestamp.

You can direct JPA to read and write your entity's attributes by direct field access or via JavaBeans

property access methods (that is, "getters and setters"). Direct field access is the default. To

request property access, annotate the class with @Access(AccessType.PROPERTY) . If using

direct field access, attribute-specific JPA annotations should be on the fields themselves; when

using property access, the attribute-specific annotations should be on the getter method for that

property.

8.1.4.2. ID Attributes and Auto-Generated Identifiers

Each entity class must have exactly one ID attribute. The value of this attribute together with the

fully-qualified class name uniquely identifies an instance to the entity manager.

ID values can be assigned by the application, or they can be generated by the JPA entity manager.

To declare a generated identifier, annotate the field with @GeneratedValue . To declare an

application-assigned identifier, leave off the @GeneratedValue annotation.

Generated identifier fields must not be initialized or modified by application code. Application-

assigned identifier fields must be initialized to a unique value before the entity is persisted by the

entity manager, but must not be modified afterward.

8.1.4.3. Single-valued Attributes

By default, every field of a JPA basic type is a persistent attribute. If a basic type field should not

be presistent, mark it with transient or annotate it with @Transient .

Single-valued attributes of entity types must be annotated with @OneToOne or @ManyToOne .

Single-valued types that are neither entity types nor JPA Basic types are not presently supported

by Errai JPA. Such attributes must be marked transient.

Here is an example of an entity with single-valued basic attributes and a single-valued relation

to another entity type:

Declaring an Entity Class

87

@Entity

public class Album {

 @GeneratedValue

 @Id

 private Long id;

 private String name;

 @ManyToOne

 private Artist artist;

 private Date releaseDate;

 private Format format;

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 public Artist getArtist() { return artist; }

 public void setArtist(Artist artist) { this.artist = artist; }

 public Date getReleaseDate() { return releaseDate; }

 public void setReleaseDate(Date releaseDate) { this.releaseDate = releaseDate; }

 public Format getFormat() { return format; }

 public void setFormat(Format format) { this.format = format; }

}

8.1.4.4. Plural (collection-valued) Attributes

Collection-valued types Collection<T> , Set<T> , and List<T> are supported. JPA rules require

that all access to the collections are done through the collection interface method; never by specific

methods on an implementation.

The element type of a collection attribute can be a JPA basic type or an entity type. If it is an entity

type, the attribute must be annotated with @OneToMany or @ManyToMany .

Here is an example of an entity with two plural attributes:

@Entity

public class Artist {

 @Id

Chapter 8. Errai JPA

88

 private Long id;

 private String name;

 // a two-way relationship (albums refer back to artists)

 @OneToMany(mappedBy="artist", cascade=CascadeType.ALL)

 private Set<Album> albums = new HashSet<Album>();

 // a one-way relationship (genres don't reference artists)

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE})

 private Set<Genre> genres = new HashSet<Genre>();

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 public Set<Album> getAlbums() { return albums; }

 public void setAlbums(Set<Album> albums) { this.albums = albums; }

 public Set<Genre> getGenres() { return genres; }

 public void setGenres(Set<Genre> genres) { this.genres = genres; }

}

8.1.5. Entity Lifecycle States

8.1.5.1. Cascade Rules

When an entity changes state (more on this later), that state change can be cascaded

automatically to related entity instances. By default, no state changes are cascaded to related

entities. To request cascading of entity state changes, use the cascade attribute on any of the

relationship quantifiers @OneToOne , @ManyToOne , @OneToMany , and @ManyToMany .

CascadeType value Description

PERSIST Persist the related entity object(s) when this

entity is persisted

MERGE Merge the attributes of the related entity

object(s) when this entity is merged

REMOVE Remove the related entity object(s) from

persistent storage when this one is removed

REFRESH Not applicable in Errai JPA

DETACH Detach the related entity object(s) from the

entity manager when this object is detached

ALL Equivalent to specifying all of the above

Obtaining an instance of EntityManager

89

For an example of specifying cascade rules, refer to the Artist example above. In that example,

the cascade type on albums is ALL . When a particular Artist is persisted or removed, detached,

etc., all of that artist's albums will also be persisted or removed, or detached correspondingly.

However, the cascade rules for genres are different: we only specify PERSIST and MERGE .

Because a Genre instance is reusable and potentially shared between many artists, we do not

want to remove or detach these when one artist that references them is removed or detached.

However, we still want the convenience of automatic cascading persistence in case we persist an

Artist which references a new, unmanaged Genre .

8.1.6. Obtaining an instance of EntityManager

The entity manager provides the means for storing, retrieving, removing, and otherwise affecting

the lifecycle state of entity instances.

To obtain an instance of EntityManager on the client side, use Errai IoC (or CDI) to inject it into

any client-side bean:

@EntryPoint

public class Main {

 @Inject EntityManager em;

}

8.1.6.1. Storing and Updating Entities

To store an entity object in persistent storage, pass that object to the EntityManager.persist()

method. Once this is done, the entity instance transitions from the new state to the managed state.

If the entity references any related entities, these entities must be in the managed state already, or

have cascade-on-persist enabled. If neither of these criteria are met, an IllegalStateException

will be thrown.

See an example in the following section.

8.1.6.2. Fetching Entities by ID

If you know the unique ID of an entity object, you can use the EntityManager.find() method

to retrieve it from persistent storage. The object returned from the find() method will be in the

managed state.

Example:

 // make it

 Album album = new Album();

 album.setArtist(null);

Chapter 8. Errai JPA

90

 album.setName("Abbey Road");

 album.setReleaseDate(new Date(-8366400000L));

 // store it

 EntityManager em = getEntityManager();

 em.persist(album);

 em.flush();

 em.detach(album);

 assertNotNull(album.getId());

 // fetch it

 Album fetchedAlbum = em.find(Album.class, album.getId());

 assertNotSame(album, fetchedAlbum);

 assertEquals(album.toString(), fetchedAlbum.toString());

8.1.6.3. Removing Entities from Persistent Storage

To remove a persistent managed entity, pass it to the EntityManager.remove() method. As the

cascade rules specify, related entities will also be removed recursively.

Once an entity has been removed and the entity manager's state has been flushed, the entity

object is unmanaged and back in the new state.

8.1.6.3.1. Clearing all Local Storage

Errai's EntityManager class provides a removeAll() method which removes everything from the

browser's persistent store for the domain of the current webpage.

This method is not part of the JPA standard, so you must down-cast your client-side

EntityManager instance to ErraiEntityManager . Example:

@EntryPoint

public class Main {

 @Inject EntityManager em;

 void resetJpaStorage() {

 ((ErraiEntityManager) em).removeAll();

 }

}

8.1.6.4. Detaching Entity Instances from the Entity Manager

For every entity instance in the managed state, changes to the attribute values of that entity

are persisted to local storage whenever the entity manager is flushed. To prevent this automatic

Named Queries

91

updating from happening, you can detach an entity from the entity manager. When an instance

is detached, it is not deleted. All information about it remains in persistent storage. The next time

that entity is retrieved, the entity manager will create a new and separate managed instance for it.

To detach one particular object along with all related objects whose cascade rules say so, call

EntityManager.detach() and pass in that object.

To detach all objects from the entity manager at once, call EntityManager.detachAll() .

8.1.6.5. Testing if an Entity is in the Managed State

To check if a given object is presently managed by the entity manager, call

EntityManager.contains() and pass in the object of interest.

8.1.7. Named Queries

To retrieve one or more entities that match a set of criteria, Errai JPA allows the use of JPA named

queries . Named queries are declared in annotations on entity classes.

8.1.7.1. Declaring Named Queries

Queries in JPA are written in the JPQL language. As of Errai 2.1, Errai JPA does not support

all JPQL features. Most importantly, implicit and explicit joins in queries are not yet supported.

Queries of the following form generally work:

SELECT et FROM EntityType et WHERE [expression with constants, named parameters and attributes of et] ORDER BY et.attr1 [ASC|DESC], et.attr2 [ASC|DESC]

Here is how to declare a JPQL query on an entity:

@NamedQuery(name="selectAlbumByName", query="SELECT a FROM Album a WHERE

 a.name=:name")

@Entity

public class Album {

 ... same as before ...

}

To declare more than one query on the same entity, wrap the @NamedQuery annotations in

@NamedQueries like this:

@NamedQueries({

 @NamedQuery(name="selectAlbumByName", query="SELECT a FROM Album a WHERE a.name

 = :name"),

Chapter 8. Errai JPA

92

 @NamedQuery(name="selectAlbumsAfter", query="SELECT a FROM Album a WHERE

 a.releaseDate >= :startDate")

})

@Entity

public class Album {

 ... same as before ...

}

8.1.7.2. Executing Named Queries

To execute a named query, retrieve it by name and result type from the entity manager, set the

values of its parameters (if any), and then call one of the execution methods getSingleResult()

or getResultList() .

Example:

 TypedQuery<Album> q = em.createNamedQuery("selectAlbumByName", Album.class);

 q.setParameter("name", "Let It Be");

 List<Album> fetchedAlbums = q.getResultList();

8.1.8. Entity Lifecycle Events

To receive a notification when an entity instance transitions from one lifecycle state to another,

use an entity lifecycle listener.

These annotations can be applied to methods in order to receive notifications at certain points in

an entity's lifecycle. These events are delivered for direct operations initiated on the EntityManager

as well as operations that happen due to cascade rules.

Annotation Meaning

@PrePersist The entity is about to be persisted or merged

into the entity manager.

@PostPersist The entity has just been persisted or merged

into the entity manager.

@PreUpdate The entity's state is about to be captured into

the browser's localStorage.

@PostUpdate The entity's state has just been captured into

the browser's localStorage.

@PreRemove The entity is about to be removed from

persistent storage.

@PostRemove The entity has just been removed from

persistent storage.

Entity Lifecycle Events

93

Annotation Meaning

@PostLoad The entity's state has just been retrieved from

the browser's localStorage.

JPA lifecycle event annotations can be placed on methods in the entity type itself, or on a method

of any type with a public no-args constructor.

To receive lifecycle event notifications directly on the affected entity instance, create a no-args

method on the entity class and annotate it with one or more of the lifecycle annotations in the

above table.

For example, here is a variant of the Album class where instances receive notification right after

they are loaded from persistent storage:

@Entity

public class Album {

 ... same as before ...

 @PostLoad

 public void postLoad() {

 System.out.println("Album " + getName() + " was just loaded into the entity

 manager");

 }

}

To receive lifecycle methods in a different class, declare a method that takes one parameter of

the entity type and annotate it with the desired lifecycle annotations. Then name that class in the

@EntityListeners annotation on the entity type.

The following example produces the same results as the previous example:

@Entity

@EntityListeners(StandaloneLifecycleListener.class)

public class Album {

 ... same as always ...

}

public class StandaloneLifecycleListener {

 @PostLoad

 public void albumLoaded(Album a) {

Chapter 8. Errai JPA

94

 public void postLoad() {

 System.out.println("Album " + a.getName() + " was just loaded into the

 entity manager");

 }

}

8.1.9. JPA Metamodel

Errai captures structural information about entity types at compile time and makes them available

in the GWT runtime environment. The JPA metamodel includes methods for enumerating all

known entity types and enumerating the singular and plural attributes of those types. Errai extends

the JPA 2.0 Metamodel by providing methods that can create new instances of entity classes, and

read and write attribute values of existing entity instances.

As an example of what is possible, this functionality could be used to create a reusable UI widget

that can present an editable table of any JPA entity type.

To access the JPA Metamodel, call the EntityManager.getMetamodel() method. For details

on what can be done with the stock JPA metamodel, see the API's javadoc or consult the JPA

specification.

8.1.9.1. Errai Extensions to JPA Metamodel API

Wherever you obtain an instance of SingularAttribute from the metamodel API, you can down-

cast it to ErraiSingularAttribute . Likewise, you can down-cast any PluralAttribute to

ErraiPluralAttribute .

In either case, you can read the value of an arbitrary attribute by calling ErraiAttribute.get()

and passing in the entity instance. You can set any attribute's value by calling

ErraiAttribute.set() , passing in the entity instance and the new value.

In addition to get() and set() , ErraiPluralAttribute also has the

createEmptyCollection() method, which creates an empty collection of the correct interface

type for the given attribute.

8.1.10. JPA Features Not Implemented in Errai 2.1

The following features are not yet implemented, but could conceivably be implemented in a future

Errai JPA release:

• Flush modes other than immediate

• Transactions, including EntityManager.getTransaction()

• More than one persistence context

• In named queries:

Other Caveats for Errai 2.1 JPA

95

• Joins and nested attribute paths (a.b.c) do not yet work, although single-step attribute paths

(a.b) do.

• The SELECT clause must specify exactly one entity type. Selection of individual attributes is

not yet implemented.

• Embedded collections

• Compound identifiers (presently, only basic types are supported for entity IDs)

• Polymorphic relations (eg. relationship to a collection of a base entity type)

• EntityManager.merge()

• EntityManager.refresh() to pick up changes made in localStorage from a different browser

window/tab.

• Criteria Queries

• The generated static Metamodel

• The @PersistenceContext annotation currently has no effect in client-side code (use @Inject

instead)

The following may never be implemented due to limitations and restrictions in the GWT client-

side environment:

• EntityManager.createQuery(String, ...) (that is, unnamed queries) are impractical

because JPQL queries are parsed at compile time, not in the browser.

• EntityManager.createNativeQuery(String, ...) don't make sense because the

underlying database is just a hash table. It does not have a query language.

• Persistent attributes of type java.util.Calendar because the Calendar class is not in GWT's

JRE emulation library.

8.1.11. Other Caveats for Errai 2.1 JPA

We hope to remedy these shortcomings in a future release.

• In Dev Mode, changes to entity classes are not discovered on page refresh. You need to restart

Dev Mode.

• The local data stored in the browser is not encrypted

8.2. Errai JPA Data Sync

Traditional JPA implementations allow you to store and retrieve entity objects on the server side.

Errai's JPA implementation allows you to store and retrieve entity objects in the web browser using

Chapter 8. Errai JPA

96

the same APIs. All that's missing is the ability to synchronize the stored data between the server

side and the client side.

This is where Errai JPA Data Sync comes in: it provides an easy mechanism for two-way

synchronization of data sets between the client and the server.

8.2.1. How To Use It

8.2.1.1. Dependencies

First, ensure your pom.xml includes a dependency on the Data Sync module. This module must

be packaged in your application's WAR file, so include it with the default scope (compile):

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-jpa-datasync</artifactId>

 <version>${errai.version}</version>

 </dependency>

Then, ensure your project's gwt.xml module descriptor includes a dependency on the Data Sync

GWT module:

 <inherits name="org.jboss.errai.jpa.sync.DataSync"/>

8.2.1.2. A Running Example

For the rest of this chapter, we will refer to the following Entity classes, which are defined in a

shared package that's visible to client and server code:

@Portable

@Entity

@NamedQuery(name = "allUsers", query = "SELECT u FROM User u")

public class User {

 @Id

 @GeneratedValue

 private long id;

 private String name;

 // getters and setters omitted

How To Use It

97

}

@Portable

@Entity

@NamedQuery(name = "groceryListsForUser", query = "SELECT gl FROM GroceryList

 gl WHERE gl.owner=:user")

public class GroceryList {

 @Id

 @GeneratedValue

 private long id;

 @ManyToOne

 private User owner;

 @OneToMany(cascade = { CascadeType.PERSIST, CascadeType.MERGE, CascadeType.REFRESH })

 private List<Item> items = new ArrayList<Item>();

 // getters and setters omitted

}

@Portable

@Entity

@NamedQuery(name = "allItems", query = "SELECT i FROM Item i")

public class Item {

 @Id

 @GeneratedValue

 private long id;

 private String name;

 private String department;

 private String comment;

 private Date addedOn;

 @ManyToOne(cascade = { CascadeType.PERSIST, CascadeType.MERGE, CascadeType.REFRESH })

 private User addedBy;

 // getters and setters omitted

}

To summarize: there are three entity types: User , GroceryList , and Item . Each GroceryList

belongs to a User and has a list of Item objects.

Chapter 8. Errai JPA

98

Note

All the entities involved in the data synchronization request must be marshallable

via Errai Marshalling. This is normally accomplished by adding the @Portable

annotation to each JPA entity class, but it is also acceptable to list them in

ErraiApp.properties . See the Chapter 5, Marshalling section for more details.

Now let's say we want to synchronize the data for all of a user's grocery lists. This will make

them available for offline use through Errai JPA, and at the same time it will update the server

with the latest changes made on the client. Ultimately, the sync operation is accomplished in one

asynchronous call, but first we have to prepare a few things on the client and the server.

8.2.1.3. Client Side

 @Inject private ClientSyncManager syncManager;

 @Inject private EntityManager em;

 public void syncGroceryLists(User forUser) {

 RemoteCallback<List<SyncResponse<GroceryList>>> onCompletion = new RemoteCallback<List<SyncResponse<GroceryList>>>() {

 @Override

 public void callback(List<SyncResponse<GroceryList>> response) {

 Window.alert("Data Sync Complete!");

 }

 };

 ErrorCallback<?> onError = new BusErrorCallback() {

 @Override

 public boolean error(Message message, Throwable throwable) {

 Window.alert("Data Sync failed!");

 return false;

 }

 };

 Map<String, Object> queryParams = new HashMap<String, Object>();

 queryParams.put("user", forUser);

 syncManager.coldSync("groceryListsForUser", GroceryList.class, queryParams, onCompletion, onError);

 }

How To Use It

99

Important

The onCompletion and onError callbacks are optional. In the unlikely case that

your application doesn't care if a data sync request completed successfully, you

can pass null for either callback.

Once your onCompletion callback has been notified, the server and client will have the same

entities stored in their respective databases for all entities reachable from the given query result.

8.2.1.4. Server Side – DataSyncServiceImpl

During the coldSync() call, the client-side sync manager sends an Errai RPC request to the

server. Although a server-side implementation of the remote interface is provided, you are

responsible for implementing a thin wrapper around it. This wrapper serves two purposes:

1. It allows you to determine how to obtain a reference to the JPA EntityManager (and to choose

which persistence context the server-side data sync will operate on)

2. It allows you to inspect the contents of each sync request and make security decisions about

access to particular entities

If you are deploying to a container that supports CDI and EJB 3, you can use this

DataSyncServiceImpl as a template for your own:

@Stateless @org.jboss.errai.bus.server.annotations.Service

public class DataSyncServiceImpl implements DataSyncService {

 @PersistenceContext

 private EntityManager em;

 private final JpaAttributeAccessor attributeAccessor = new JavaReflectionAttributeAccessor();

 @Inject private LoginService loginService;

 @Override

 public <X> List<SyncResponse<X>> coldSync(SyncableDataSet<X> dataSet, List<SyncRequestOperation<X>> remoteResults) {

 // Ensure a user is logged in

 User currentUser = loginService.whoAmI();

 if (currentUser == null) {

 throw new IllegalStateException("Nobody is logged in!");

 }

 // Ensure user is accessing their own data!

 if (dataSet.getQueryName().equals("groceryListsForUser")) {

Chapter 8. Errai JPA

100

 User requestedUser = (User) dataSet.getParameters().get("user");

 if (!currentUser.getId().equals(requestedUser.getId())) {

 throw new AccessDeniedException("You don't have permission to sync user

 " + requestedUser.getId());

 }

 }

 else {

 throw new IllegalArgumentException("You don't have permission to sync

 dataset " + dataSet.getQueryName());

 }

 DataSyncService dss = new org.jboss.errai.jpa.sync.server.DataSyncServiceImpl(em, attributeAccessor);

 return dss.coldSync(dataSet, remoteResults);

 }

}

If you are not using EJB 3, you will not be able to use the @PersistenceContext annotation. In

this case, obtain a reference to your EntityManager the same way you would anywhere else in

your application.

8.2.1.5. Dealing With Conflicts

When the client sends the sync request to the server, it includes information about the state it

expects each entity to be in. If an entity's state on the server does not match this expected state

on the client, the server ignores the client's change request and includes a ConflictResponse

object in the sync reply.

When the client processes the sync responses from the server, it applies the new state from the

server to the local data store. This overwrites the change that was initially requested from the

client. In short, you could call this the "server wins" conflict resolution policy.

In some cases, your application may be able to do something smarter: apply domain-specific

knowledge to merge the conflict automatically, or prompt the user to perform a manual merge.

In order to do this, you will have to examine the server response from inside the onCompletion

callback you provided to the coldSync() method:

 RemoteCallback<List<SyncResponse<GroceryList>>> onCompletion = new RemoteCallback<List<SyncResponse<GroceryList>>>() {

 @Override

 public void callback(List<SyncResponse<GroceryList>> responses) {

 for (SyncResponse<GroceryList> response : responses) {

 if (response instanceof ConflictResponse) {

 ConflictResponse<GroceryList> cr = (ConflictResponse<GroceryList>) response;

 List<Item> expectedItems = cr.getExpected().getItems();

 List<Item> serverItems = cr.getActualNew().getItems();

 List<Item> clientItems = cr.getRequestedNew().getItems();

How To Use It

101

 // merge the list of items by comparing each to expectedItems

 List<Item> merged = ...;

 // update local storage with the merged list

 em.find(GroceryList.class, cr.getActualNew().getId()).setItems(merged);

 em.flush();

 }

 }

 }

 };

Remember, because of Errai's default "server wins" resolution policy, the call to

em.find(GroceryList.class, cr.getActualNew().getId()) will return a GroceryList object

that has already been updated to match the state present in serverItems .

Note

Searching for ConflictResponse objects in the onCompletion callback is the

only way to recover client data that was clobbered in a conflict. If you do not

merge this data back into local storage, or at least retain a reference to the

cr.getRequestedNew() object, this conflicting client data will be lost forever.

In a future release of Errai JPA, we plan to provide a client-side callback

mechanism for custom conflict handling. If such a callback is registered, it will

override the default behaviour.

102

Chapter 9.

103

Data Binding
Errai's data binding module provides the ability to bind model objects to UI fields/widgets. The

bound properties of the model and the UI components will automatically be kept in sync for as

long as they are bound. So, there is no need to write code for UI updates in response to model

changes and no need to register listeners to update the model in response to UI changes.

9.1. Getting Started

The data binding module is directly integrated with Chapter 10, Errai UI and Chapter 8, Errai JPA

but can also be used as a standalone project in any GWT client application:

9.1.1. Compile-time dependency

To use Errai's data binding module, you must include it on the compile-time classpath. If you are

using Maven for your build, add this dependency:

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-data-binding</artifactId>

 <version>${errai.version}</version>

 </dependency>

If you are not using Maven for dependency management, add errai-data-binding- version

.jar to your classpath.

9.1.2. GWT module descriptor

You must also inherit the Errai data binding module by adding the following line to your GWT

module descriptor (gwt.xml).

Example 9.1. App.gwt.xml

<inherits name="org.jboss.errai.databinding.DataBinding" />

9.1.3. Bindable Objects

Objects that should participate in data bindings have to be marked as @Bindable and must follow

Java bean conventions. All editable properties of these objects are then bindable to UI widgets.

Chapter 9. Data Binding

104

Example 9.2. Customer.java

@Bindable

public class Customer {

 ...

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 ...

}

Important

If you cannot or prefer not to annotate your classes with @Bindable

, you can alternatively specify bindable types in your ErraiApp.properties

using a whitespace-separated list of fully qualified class names:

errai.ui.bindableTypes=org.example.Model1 org.example.Model2

9.1.4. Initializing a DataBinder

An instance of DataBinder is required to create bindings. It can either be

injected into a client-side bean:

public class CustomerView {

 @Inject

 private DataBinder<Customer> dataBinder;

}

or created manually:

DataBinder<Customer> dataBinder = DataBinder.forType(Customer.class);

Creating Bindings

105

In both cases above, the DataBinder instance is associated with a new instance of the model (e.g.

a new Customer object). A DataBinder can also be associated with an already existing object:

DataBinder<Customer> dataBinder = DataBinder.forModel(existingCustomerObject);

In case there is existing state in either the model object or the UI components before the they are

bound, initial state synchronization can be carried out to align the model and the corresponding

UI fields.

For using the model object's state to set the initial values in the UI:

DataBinder<Customer> dataBinder = DataBinder.forModel(existingCustomerObject, InitialState.FROM_MODEL);

For using the UI values to set the initial state in the model object:

DataBinder<Customer> dataBinder = DataBinder.forModel(existingCustomerObject, InitialState.FROM_UI);

9.2. Creating Bindings

Bindings can be created by calling the bind method on a DataBinder instance, thereby specifying

which widgets should be bound to which properties of the model. It is possible to use property

chains for bindings, given that all nested properties are of bindable types. When binding to

customer.address.streetName , for example, both customer and address have to be of a type

annotated with @Bindable .

public class CustomerView {

 @Inject

 private DataBinder<Customer> dataBinder;

 private Customer customer;

 private TextBox nameTextBox = new TextBox();

 // more UI widgets...

 @PostConstruct

 private void init() {

 customer = dataBinder

 .bind(nameTextBox, "name")

 .bind(idLabel, "id")

Chapter 9. Data Binding

106

 .getModel();

 }

}

After the call to dataBinder.bind() in the example above, the customer object's name property

and the nameTextBox are kept in sync until either the dataBinder.unbind() method is called or

the CustomerView bean is destroyed.

That means that a call to customer.setName() will automatically update the value of the TextBox

and any change to the TextBox's value in the browser will update the customer object's name

property. So, customer.getName() will always reflect the currently displayed value of the TextBox

.

Note

It's important to retrieve the model instance using dataBinder.getModel() before

making changes to it as the data binder will provide a proxy to the model to ensure

that changes will update the corresponding UI components.

Tip

Errai also provides a declarative binding API that can be used to create bindings

automatically based on matching field and model property names.

9.3. Specifying Converters

Errai has built-in conversion support for all Number types as well as Boolean and Date to

java.lang.String and vice versa. However, in some cases it will be necessary to provide custom

converters (e.g. if a custom date format is desired). This can be done on two levels.

9.3.1. Registering a global default converter

@DefaultConverter

public class MyCustomDateConverter implements Converter<Date, String> {

 private static final String DATE_FORMAT = "YY_DD_MM";

 @Override

 public Date toModelValue(String widgetValue) {

 return DateTimeFormat.getFormat(DATE_FORMAT).parse(widgetValue);

 }

Providing a binding-specific converter

107

 @Override

 public String toWidgetValue(Date modelValue) {

 return DateTimeFormat.getFormat(DATE_FORMAT).format((Date) modelValue);

 }

}

All converters annotated with @DefaultConverter will be registered as global defaults calling

Convert.registerDefaultConverter() . Note that the Converter interface specifies two type

parameters. The first one represents the type of the model field, the second one the type held by

the widget (e.g. String for widgets implementing HasValue<String>). These default converters

will be used for all bindings with matching model and widget types.

9.3.2. Providing a binding-specific converter

Alternatively, converter instances can be passed to the dataBinder.bind() calls.

dataBinder.bind(textBox, "name", customConverter);

Converters specified on the binding level take precedence over global default converters with

matching types.

9.4. Property Change Handlers

In some cases keeping the model and the UI in sync is not enough. Errai's DataBinder allows

for the registration of PropertyChangeHandlers for specific properties, property expressions

or all properties of a bound model. A property expression can be a property chain such as

customer.address.street. It can end in a wildcard to indicate that changes of any property of the

corresponding bean should be observed (e.g "customer.address.*"). A double wildcard can

be used at the end of a property expression to register a cascading change handler for any nested

property (e.g "customer.**").

This provides a uniform notification mechanism for model and UI value changes.

PropertyChangeHandlers can be used to carry out any additional logic that might be necessary

after a model or UI value has changed.

dataBinder.addPropertyChangeHandler(new PropertyChangeHandler() {

 @Override

 public void onPropertyChange(PropertyChangeEvent event) {

 Window.alert(event.getPropertyName() + " changed to:" + event.getNewValue());

 }

});

Chapter 9. Data Binding

108

dataBinder.addPropertyChangeHandler("name", new PropertyChangeHandler() {

 @Override

 public void onPropertyChange(PropertyChangeEvent event) {

 Window.alert("name changed to:" + event.getNewValue());

 }

});

9.5. Declarative Binding

Programmatic binding as described above (see Creating Bindings) can be tedious when working

with UI components that contain a large number of input fields. Errai provides an annotation-driven

binding API that can be used to create bindings automatically which cuts a lot of boilerplate code.

The declarative API will work in any Errai IOC managed bean (including Chapter 10, Errai UI

templates). Simply inject a data binder or model object and declare the bindings using @Bound .

Here is a simple example using an injected model object provided by the @Model annotation (field

injection is used here, but constructor and method injection are supported as well):

@Dependent

public class CustomerView {

 @Inject @Model

 private Customer customer;

 @Inject @Bound

 private TextBox name;

 @Bound

 private Label id = new Label();

}

Here is the same example injecting a DataBinder instead of the model object. This is useful when

more control is needed (e.g. the ability to register property change handlers). The @AutoBound

annotation specifies that this DataBinder should be used to bind the model to all enclosing widgets

annotated with @Bound . This example uses field injection again but constructor and method

injection are supported as well.

@Dependent

public class CustomerView {

 @Inject @AutoBound

Default, Simple, and Chained Property Bindings

109

 private DataBinder<Customer> customerBinder;

 @Inject @Bound

 private TextBox name;

 @Bound

 private Label id = new Label();

 ...

}

In both examples above an instance of the Customer model is automatically bound to the

corresponding UI widgets based on matching field names. The model object and the UI fields

will automatically be kept in sync. The widgets are inferred from all enclosing fields and methods

annotated with @Bound of the class that defines the @AutoBound DataBinder or @Model and all

its super classes.

9.5.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property names on the model

object. In the examples above, the field name was automatically bound to the JavaBeans property

name of the model (user object). If the field name does not match the model property name,

you can use the property attribute of the @Bound annotation to specify the name of the property.

The property can be a simple name (for example, "name") or a property chain (for example,

user.address.streetName). When binding to a property chain, all properties but the last in the

chain must refer to @Bindable values.

The following example illustrates all three scenarios:

@Bindable

public class Address {

 private String line1;

 private String line2;

 private String city;

 private String stateProv;

 private String country;

 // getters and setters

}

@Bindable

public class User {

 private String name;

 private String password;

 private Date dob;

 private Address address;

Chapter 9. Data Binding

110

 private List<Role> roles;

 // getters and setters

}

@Templated

public class UserWidget {

 @Inject @AutoBound DataBinder<User> user;

 @Inject @Bound TextBox name;

 @Inject @Bound("dob") DatePicker dateOfBirth;

 @Inject @Bound("address.city") TextBox city;

}

In UserWidget above, the name text box is bound to user.name using the default name matching;

the dateOfBirth date picker is bound to user.dob using a simple property name mapping; finally,

the city text box is bound to user.address.city using a property chain. Note that the Address

class is required to be @Bindable in this case.

9.5.2. Data Converters

The @Bound annotation further allows to specify a converter to use for the binding (see Specifying

Converters for details). This is how a binding specific converter can be specified on a data field:

@Inject

@Bound(converter=MyDateConverter.class)

@DataField

private TextBox date;

9.5.3. Replacing a model object

The injected model objects in the examples above are always proxies to the actual model since

method invocations on these objects need to trigger additional logic for updating the UI. Special

care needs to be taken in case a model object should be replaced.

When working with an @AutoBound DataBinder , simply calling setModel() on the DataBinder

will be enough to replace the underlying model instance. However, when working with @Model

the instance cannot be replaced directly. Errai provides a special method level annotation

@ModelSetter that will allow replacing the model instance. Here's an example:

@Dependent

public class CustomerView {

 @Inject @Model

 private Customer customer;

Bean validation

111

 @Inject @Bound

 private TextBox name;

 @Bound

 private Label id = new Label();

 @ModelSetter

 public void setModel(TestModel model) {

 this.model = model;

 }

}

The @ModelSetter method is required to have a single parameter. The parameter type needs to

correspond to the type of the managed model.

9.6. Bean validation

Java bean validation (JSR 303) provides a declarative programming model for validating entities.

More details and examples can be found here [http://docs.jboss.org/hibernate/validator/4.3/

reference/en-US/html_single/] . Errai provides a bean validation module that makes Validator

instances injectable and work well with Errai's data binding module. The following line needs to

be added to the GWT module descriptor to inherit Errai's bean validation module:

Example 9.3. App.gwt.xml

<inherits name="org.jboss.errai.validation.Validation" />

<inherits name="org.hibernate.validator.HibernateValidator" />

To use Errai's bean validation module, you must add the module, the javax.validation API and

an implementation such as hibernate validator to your classpath. If you are using Maven for your

build, add these dependencies:

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-validation</artifactId>

 <version>${errai.version}</version>

 </dependency>

 <dependency>

 <groupId>javax.validation</groupId>

 <artifactId>validation-api</artifactId>

http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/

Chapter 9. Data Binding

112

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.validation</groupId>

 <artifactId>validation-api</artifactId>

 <classifier>sources</classifier>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 <version>4.2.0.Final</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-validator</artifactId>

 <version>4.2.0.Final</version>

 <scope>provided</scope>

 <classifier>sources</classifier>

 </dependency>

Now it is as simple as injecting a Validator instance into an Errai IOC managed bean and calling

the validate method.

@Inject

private Validator validator;

Set<ConstraintViolation<Customer>> violations = validator.validate(customer);

// display violations

9.6.1. Excluding Classes from Validation

By default, Errai scans the entire classpath for classes with constraints. But sometimes it is

necessary or desirable to exclude some shared classes from being validated on the client side.

This can be done by adding a list of classes and package masks to the ErraiApp.properties file

like so:

Excluding Classes from Validation

113

The following blacklists the class some.fully.qualified.ClassName and all

 classes in some.package.mask (and subpackages thereof).

errai.validation.blacklist = some.fully.qualified.ClassName \

 some.package.mask.*

114

Chapter 10.

115

Errai UI
One of the primary complaints of GWT to date

has been that it is difficult to use "pure HTML"

when building and skinning widgets. Inevitably

one must turn to Java-based configuration in

order to finish the job. Errai, however, strives

to remove the need for Java styling. HTML

template files are placed in the project source

tree, and referenced from custom "Composite

components" (Errai UI Widgets) in Java. Since

Errai UI depends on Errai IOC and Errai

CDI, dependency injection is supported in all

custom components. Errai UI provides rapid

prototyping and HTML5 templating for GWT.

Figure 10.1. TODO Gliffy image title

empty
[http://get.adobe.com/flashplayer/]

10.1. Get started

The Errai UI module is directly integrated with Chapter 9, Data Binding and Errai JPA but can also

be used as a standalone project in any GWT client application by simply inheriting the Errai UI

GWT module, and ensuring that you have properly using Errai CDI's @Inject to instantiate your

widgets:

10.1.1. App.gwt.xml

<inherits name="org.jboss.errai.ui.UI" />

10.1.2. pom.xml

The easiest way to get Errai UI on your classpath is to depend on the special errai-javaee-all

artifact, which brings in most Errai modules:

<dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-javaee-all</artifactId>

 <version>${errai.version}</version>

</dependency>

Or if you prefer to manage your project's dependency in a finer-grained way, you can depend on

errai-ui directly:

http://get.adobe.com/flashplayer/

Chapter 10. Errai UI

116

<dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-ui</artifactId>

 <version>${errai.version}</version>

</dependency>

10.1.3. Working Demo

If you work better by playing with a finished product, you can see a simple client-server project

implemented using Errai UI here [https://github.com/errai/summit-demo-2013] .

10.2. Use Errai UI Composite components

Before explaining how to create Errai UI components, it should be noted that these components

behave no differently from any other GWT Widget once built. The primary difference is in A) their

construction, and B) their instantiation. As with most other features of Errai, dependency injection

with CDI is the programming model of choice, so when interacting with components defined using

Errai UI, you should always @Inject references to your Composite components.

10.2.1. Inject a single instance

@EntryPoint

public class Application {

 @Inject

 private ColorComponent comp;

 @PostConstruct

 public void init() {

 comp.setColor("blue");

 RootPanel.get().add(comp);

 }

}

10.2.2. Inject multiple instances (for iteration)

@EntryPoint

public class Application {

 private String[] colors = new String[]{"Blue", "Yellow", "Red"};

 @Inject

https://github.com/errai/summit-demo-2013
https://github.com/errai/summit-demo-2013

Create a @Templated Composite component

117

 private Instance<ColorComponent> instance;

 @PostConstruct

 public void init() {

 for(String color: colors) {

 ColorComponent comp = instance.get();

 comp.setColor(c);

 RootPanel.get().add();

 }

 }

}

10.3. Create a @Templated Composite component

Custom components in Errai UI are single classes extending from

com.google.gwt.user.client.ui.Composite , and must be annotated with @Templated.

10.3.1. Basic component

@Templated

public class LoginForm extends Composite {

 /* looks for LoginForm.html in LoginForm's package */

}

10.3.2. Custom template names

With default values, @Templated informs Errai UI to look in the current package for a parallel

".html" template next to the Composite component Class; however, the template name may be

overridden by passing a String into the @Templated annotation, like so:

@Templated("my-template.html")

public class LoginForm extends Composite {

 /* looks for my-template.html in LoginForm's package */

}

Fully qualified template paths are also supported, but must begin with a leading '/':

@Templated("/org/example/my-template.html")

public class LoginForm extends Composite {

 /* looks for my-template.html in package org.example */

Chapter 10. Errai UI

118

}

10.4. Create an HTML template

Templates in Errai UI may be designed either as an HTML snippet or as a full HTML document.

You can even take an existing HTML page and use it as a template. With either approach, the id

, class , and data-field attributes in the template identify elements by name. These elements

and their children are used in the Composite component to add behavior, and use additional

components to add functionality to the template. There is no limit to how many component classes

may share a given HTML template.

We will begin by creating a simple HTML login form to accompany our @Templated LoginForm

composite component.

<form>

 <legend>Log in to your account</legend>

 <label for="username">Username</label>

 <input id="username" type="text" placeholder="Username">

 <label for="password">Password</label>

 <input id="password" type="password" placeholder="Password">

 <button>Log in</button>

 <button>Cancel</button>

</form>

10.4.1. Select a template from a larger HTML file

Or as a full HTML document which may be more easily previewed during design without running

the application; however, in this case we must also specify the location of our component's

root DOM Element using a "data-field" , id , or class attribute matching the value of the

@Templated annotation. There is no limit to how many component classes may share a given

HTML template.

@Templated("my-template.html#login-form")

public class LoginForm extends Composite {

 /* Specifies that <... id="login-form"> be used as the root Element of this

 Widget */

}

Select a template from a larger HTML file

119

Notice the corresponding HTML id attribute in the form Element below (we could have used data-

field or class instead). Note that multiple components may use the same template provided

that they specify a corresponding data-field , id , or class attribute. Also note that two or more

components may share the same DOM elements; there is no conflict since components each

receive a unique copy of the template DOM rooted at the designated element at runtime (or from

the root element if a fragment is not specified.)

<!DOCTYPE html>

<html lang="en">

<head>

 <title>A full HTML snippet</title>

</head>

<body>

 <div>

 <form id="login-form">

 <legend>Log in to your account</legend>

 <label for="username">Username</label>

 <input id="username" type="text" placeholder="Username">

 <label for="username">Password</label>

 <input id="password" type="password" placeholder="Password">

 <button>Log in</button>

 <button>Cancel</button>

 </form>

 </div>

 <hr>

 <footer id="theme-footer">

 <p>(c) Company 2012</p>

 </footer>

</body>

</html>

For example's sake, the component below could also use the same template. All it needs to do

is reference the template name, and specify a fragment.

@Templated("my-template.html#theme-footer")

public class Footer extends Composite {

 /* Specifies that <... id="theme-footer"> be used as the root Element of

 this Widget */

}

Chapter 10. Errai UI

120

10.5. Use other Widgets in a composite component

Now that we have created the @Templated Composite component and an HTML template, we

can start wiring in functionality and behavior; this is done by annotating fields and methods to

replace specific sub-elements of the template DOM with other Widgets. We can even replace

portions of the template with other Errai UI Widgets!

10.5.1. Annotate Widgets in the template with @DataField

In order to composite Widgets into the template DOM, you annotate fields in your @Templated

Composite component with @DataField, and mark the HTML template Element with a

correspondingly named data-field , id , or class attribute. This informs Errai UI which element

in the template the Widget should replace. All replacements happen while the @Templated

Composite component is being constructed; thus, fields annotated with @DataField must either

be {{@Inject}}ed or provide their own Widget or Element instances in field initializers.

@Templated

public class LoginForm extends Composite {

 // This element must be initialized manually because Element is not @Inject-

able*/

 @DataField

 private Element form = DOM.createForm();

 // If not otherwise specified, the name to match in the HTML template defaults

 to the name of the field; in this case, the name would be "username"

 @Inject

 @DataField

 private TextBox username;

 // The name to reference in the template can also be specified manually

 @Inject

 @DataField("pass")

 private PasswordTextBox password;

 // We can also choose to instantiate our own Widgets. Injection is not required.

 @DataField

 private Button submit = new Button();

}

Important

Note: Field, method, and constructor injection are all supported by @DataField.

Add corresponding attributes to the HTML template

121

10.5.2. Add corresponding attributes to the HTML template

Each @DataField reference in the Java class must match an element in the HTML template. The

matching of Java references to HTML elements is performed as follows:

1. A name for the Java reference is determined. If the @DataField annotation has a value

argument, that is used as the reference name. For fields, the default reference name is the

field name. Method and constructor parameters have no default name, so they must always

specify a value.

2. If there is an element in the HTML template with attribute data-field=name , the Java reference

will point to this element. If there is more than one such element, the Java reference points

to the first.

3. Otherwise, if there is an element in the HTML template with attribute id=name , the Java

reference will point to this element. If there is more than one such element, the Java reference

points to the first.

4. Otherwise, if there is an element in the HTML template with a CSS style class name , the Java

reference will point to this element. If there is more than one such element, the Java reference

points to the first. For elements with more than one CSS style, each style name is considered

individually. For example:

 <div class="eat drink be-merry">

matches Java references named eat , drink , or be-merry .

5. If no matching element is found by this point, it is an error.

If more than one Java reference matches the same HTML element in the template, it is an error.

For example, given a template containing the element <div class="eat drink be-merry"> ,

the following Java code is in error:

@Templated

public class ErroneousTemplate extends Composite {

 @Inject @DataField

 private Label eat;

 @Inject @DataField

 private Label drink;

}

because both fields eat and drink refer to the same HTML div element.

Chapter 10. Errai UI

122

So now we must ensure there are data-field , id , or class attributes in the right places in our

template HTML file. This, combined with the @DataField annotation in our Composite component

allow Errai UI to determine where and what should be composited when creating component

instances.

<form id="form">

 <legend>Log in to your account</legend>

 <label for="username">Username</label>

 <input id="username" type="text" placeholder="Username">

 <label for="password">Password</label>

 <input data-field="pass" id="password" type="password" placeholder="Password">

 <button id="submit">Log in</button>

 <button>Cancel</button>

</form>

Now, when we run our application, we will be able to interact with these fields in our Widget.

10.6. How HTML templates are merged with

Components

Three things are merged or modified when Errai UI creates a new Composite component instance:

1. Element attributes are merged from the template to the component

2. DOM Elements are merged from the component to the template

3. Template element inner text and inner HTML are preserved when the given @DataField Widget

implements HasText or HasHTML

10.6.1. Example

10.6.1.1. Composite component class:

@Templated

public class StyledComponent extends Composite {

 @Inject

 @DataField("field-1")

 private Label div = new Label();

 public StyledComponent() {

Element attributes (template wins)

123

 div.getElement().setAttribute("style", "position: fixed; top: 0; left: 0;");

 this.getElement().setId("outer-id");

 }

}

10.6.1.2. Template:

<form>

 <span data-

field="field-1" style="display:inline;"> This element will become a div

</form>

This text will be ignored.

10.6.1.3. Output / result:

<form id="outer-id">

 <div data-

field="field-1" style="display:inline;"> This element will become a div </div>

</form>

But why does the output look the way it does? Some things happened that may be unsettling at

first, but we find that once you understand why these things occur, you'll find the mechanisms

extremely powerful.

10.6.2. Element attributes (template wins)

When styling your templates, you should keep in mind that all attributes defined in the template

file will take precedence over any preset attributes in your Widgets. This "attribute merge" occurs

only when the components are instantiated; subsequent changes to any attributes after Widget

construction will function normally. In the example we defined a Composite component that applied

several styles to a child Widget in its constructor, but we can see from the output that the styles

from the template have overridden them. If styles must be applied in Java, instead of the template,

@PostConstruct or other methods should be favored over constructors to apply styles to fully-

constructed Composite components.

10.6.3. DOM Elements (component field wins)

Element composition, however, functions inversely from attribute merging, and the defined

in our template was actually be replaced by the <div> Label in our Composite component field.

This does not, however, change the behavior of the attribute merge - the new <div> was still be

Chapter 10. Errai UI

124

rendered inline, because we have specified this style in our template, and the template always wins

in competition with attributes set programatically before composition occurs. In short, whatever

is inside the @DataField in your class will replace the children of the corresponding element in

your template.

10.6.4. Inner text and inner HTML (preserved when component

implements HasText or HasHTML)

Additionally, because Label implements both HasText and HasHTML (only one is required,) the

contents of this "field-1" Element in the template were preserved; however, this would not

have been the case if the @DataField specified for the element did not implement HasText or

HasHTML . In short, if you wish to preserve text or HTML contents of an element in your template,

you can do one of two things: do not composite that Element with a @DataField reference, or

ensure that the Widget being composited implements HasText or HasHTML .

10.7. Event handlers

Dealing with User and DOM Events is a reality in rich web development, and Errai UI provides

several approaches for dealing with all types of browser events using its "quick handler"

functionality. It is possible to handle:

1. GWT events on Widgets

2. GWT events on DOM Elements

3. Native DOM events on Elements

Important

It is not possible to handle Native DOM events on Widgets because GWT

overrides native event handlers when Widgets are added to the DOM. You must

programatically configure such handlers after the Widget has been added to the

DOM.

10.7.1. Concepts

Each of the three scenarios mentioned above use the same basic programming model for event

handling: Errai UI wires methods annotated with @EventHandler("my-data-field") (event

handler methods) to handle events on the corresponding @DataField("my-data-field") in the

same component. Event handler methods annotated with a bare @EventHandler annotation (no

annotation parameter) are wired to receive events on the @Templated component itself.

10.7.2. GWT events on Widgets

Probably the simplest and most common use-case, this approach handles GWT Event classes

for Widgets that explicitly handle the given event type. If a Widget does not handle the Event type

GWT events on DOM Elements

125

given in the @EventHandler method's signature, the application will fail to compile and appropriate

errors will be displayed.

@Templated

public class WidgetHandlerComponent extends Composite {

 @Inject

 @DataField("b1")

 private Button button;

 @EventHandler("b1")

 public void doSomethingC1(ClickEvent e) {

 // do something

 }

}

10.7.3. GWT events on DOM Elements

Errai UI also makes it possible to handle GWT events on native Elements which are specified

as a @DataField in the component class. This is useful when a full GWT Widget is not available

for a given Element, or for GWT events that might not normally be available on a given Element

type. This could occur, for instance, when clicking on a <div> , which would normally not have

the ability to receive the GWT ClickEvent , and would otherwise require creating a custom DIV

Widget to handle such an event.

@Templated

public class ElementHandlerComponent extends Composite {

 @DataField("div-1")

 private DivElement button = DOM.createDiv();

 @EventHandler("div-1")

 public void doSomethingC1(ClickEvent e) {

 // do something

 }

}

10.7.4. Native DOM events on Elements

The last approach is handles the case where native DOM events must be handled, but no

such GWT event handler exists for the given event type. Alternatively, it can also be used for

situations where Elements in the template should receive events, but no handle to the Element

Chapter 10. Errai UI

126

the component class is necessary (aside from the event handling itself.) Native DOM events do

not require a corresponding @DataField be configured in the class; only the HTML data-field

, id , or class template attribute is required.

<div>

 this is a hyperlink

 <div data-field="div"> Some content </div>

</div>

The @SinkNative annotation specifies (as a bit mask) which native events the method should

handle; this sink behaves the same in Errai UI as it would with DOM.sinkEvents(Element e, int

bits) . Note that a @DataField reference in the component class is optional.

Important

Only one @EventHandler may be specified for a given template element when

@SinkNative is used to handle native DOM events.

@Templated

public class QuickHandlerComponent extends Composite {

 @DataField

 private AnchorElement link = DOM.createAnchor().cast();

 @EventHandler("link")

 @SinkNative(Event.ONCLICK | Event.ONMOUSEOVER)

 public void doSomething(Event e) {

 // do something

 }

 @EventHandler("div")

 @SinkNative(Event.ONMOUSEOVER)

 public void doSomethingElse(Event e) {

 // do something else

 }

}

Data Binding

127

10.8. Data Binding

A recurring implementation task in rich web development is writing event handler code for updating

model objects to reflect input field changes in the user interface. The requirement to update user

interface fields in response to changed model values is just as common. These tasks require a

significant amount of boilerplate code which can be alleviated by Errai. Errai's data binding module

provides the ability to bind model objects to user interface fields, so they will automatically be kept

in sync. While the module can be used on its own, it can cut even more boilerplate when used

together with Errai UI.

In the following example, all @DataFields annotated with @Bound have their contents bound

to properties of the data model (a User object). The model object is injected and annotated

with @Model , which indicates automatic binding should be carried out. Alternatively, the model

object could be provided by an injected DataBinder instance annotated with @AutoBound , see

Declarative Binding for details.

@Templated

public class LoginForm extends Composite {

 @Inject

 @Model

 private User user;

 @Inject

 @Bound

 @DataField

 private TextBox name;

 @Inject

 @Bound

 @DataField

 private PasswordTextBox password;

 @DataField

 private Button submit = new Button();

}

Now the user object and the username and password fields in the UI are automatically

kept in sync. No event handling code needs to be written to update the user object

in response to input field changes and no code needs to be written to update

the UI fields when the model object changes. So, with the above annotations in

place, it will always be true that user.getUsername().equals(username.getText()) and

user.getPassword().equals(password.getText()) .

Chapter 10. Errai UI

128

10.8.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property names on the model

object. In the example above, the field name was automatically bound to the JavaBeans property

name of the model (user object). If the field name does not match the model property name,

you can use the property attribute of the @Bound annotation to specify the name of the property.

The property can be a simple name (for example, "name") or a property chain (for example,

user.address.streetName). When binding to a property chain, all properties but the last in the

chain must refer to @Bindable values.

The following example illustrates all three scenarios:

@Bindable

public class Address {

 private String line1;

 private String line2;

 private String city;

 private String stateProv;

 private String country;

 // getters and setters

}

@Bindable

public class User {

 private String name;

 private String password;

 private Date dob;

 private Address address;

 private List<Role> roles;

 // getters and setters

}

@Templated

public class UserWidget extends Composite {

 @Inject @AutoBound DataBinder<User> user;

 @Inject @Bound TextBox name;

 @Inject @Bound("dob") DatePicker dateOfBirth;

 @Inject @Bound("address.city") TextBox city;

}

In UserWidget above, the name text box is bound to user.name using the default name matching;

the dateOfBirth date picker is bound to user.dob using a simple property name mapping; finally,

the city text box is bound to user.address.city using a property chain. Note that the Address

class is required to be @Bindable in this case.

Binding of Lists

129

10.8.2. Binding of Lists

Often you will need to bind a list of model objects so that every object in the list is bound to a

corresponding widget. This task can be accomplished using Errai UI's ListWidget class. Here's

an example of binding a list of users using the UserWidget class from the previous example. First,

we need to enhance UserWidget to implement HasModel .

@Templated

public class UserWidget extends Composite implements HasModel<User> {

 @Inject @AutoBound DataBinder<User> userBinder;

 @Inject @Bound TextBox name;

 @Inject @Bound("dob") DatePicker dateOfBirth;

 @Inject @Bound("address.city") TextBox city;

 public User getModel() {

 userBinder.getModel();

 }

 public void setModel(User user) {

 userBinder.setModel(user);

 }

}

Now we can use UserWidget to display items in a list.

@Templated

public class MyComposite extends Composite {

 @Inject @DataField ListWidget<User, UserWidget> userListWidget;

 @PostConstruct

 public void init() {

 List<User> users =

 userListWidget.setItems(users);

 }

}

Calling setItems on the userListWidget causes an instance of UserWidget to be displayed for

each user in the list. The UserWidget is then bound to the corresponding user object. By default,

the widgets are arranged in a vertical panel. However, ListWidget can also be subclassed to

provide alternative behaviour. In the following example, we use a horizontal panel to display the

widgets.

Chapter 10. Errai UI

130

public class UserListWidget extends ListWidget<User, UserWidget> {

 public UserList() {

 super(new HorizontalPanel());

 }

 @PostConstruct

 public void init() {

 List<User> users =

 setItems(users);

 }

 @Override

 public Class<UserWidget> getItemWidgetType() {

 return UserWidget.class;

 }

}

10.8.2.1. Binding lists with @Bound

An instance of ListWidget can also participate in automatic bindings using @Bound . In this case,

setItems never needs to be called manually. The bound list property and displayed items will

automatically be kept in sync. In the example below a list of user roles is bound to a ListWidget

that displays and manages a RoleWidget for each role in the list. Every change to the list returned

by user.getRoles() will now trigger a corresponding update in the UI.

@Templated

public class UserDetailView extends Composite {

 @Inject

 @Bound

 @DataField

 private TextBox name;

 @Inject

 @Bound

 @DataField

 private PasswordTextBox password;

 @Inject

 @Bound

 @DataField

 private ListWidget<Role, RoleWidget> roles;

Data Converters

131

 @DataField

 private Button submit = new Button();

 @Inject @Model

 private User user;

}

10.8.3. Data Converters

The @Bound annotation further allows to specify a converter to use for the binding (see Specifying

Converters for details). This is how a binding specific converter can be specified on a data field:

@Inject

@Bound(converter=MyDateConverter.class)

@DataField

private TextBox date;

Errai's DataBinder also allows to register PropertyChangeHandlers for the cases where keeping

the model and UI in sync is not enough and additional logic needs to be executed (see Property

Change Handlers for details).

10.9. Nest Composite components

Using Composite components to build up a hierarchy of widgets functions exactly the same as

when building hierarchies of GWT widgets. The only distinction might be that with Errai UI, @Inject

is preferred to manual instantiation.

@Templated

public class ComponentOne extends Composite {

 @Inject

 @DataField("other-comp")

 private ComponentTwo two;

}

10.10. Extend Composite components

Templating would not be complete without the ability to inherit from parent templates, and Errai

UI also makes this possible using simple Java inheritance. The only additional requirement is that

Composite components extending from a parent Composite component must also be annotated

with @Templated, and the path to the template file must also be specified in the child component's

Chapter 10. Errai UI

132

annotation. Child components may specify @DataField references that were omitted in the parent

class, and they may also override @DataField references (by using the same data-field name)

that were already specified in the parent component.

10.10.1. Template

Extension templating is particularly useful for creating reusable page layouts with some shared

content (navigation menus, side-bars, footers, etc...,) where certain sections will be filled with

unique content for each page that extends from the base template; this is commonly seen when

combined with the MVP design pattern traditionally used in GWT applications.

<div class="container">

 <div id="header"> Default header </div>

 <div id="content"> Default content </div>

 <div id="footer"> Default footer </div>

</div>

10.10.2. Parent component

This component provides the common features of our page layout, including header and footer, but

does not specify any content. The missing @DataField "content" will be provided by the individual

page components extending from this parent component.

@Templated

public class PageLayout extends Composite {

 @Inject

 @DataField

 private HeaderComponent header;

 @Inject

 @DataField

 private FooterComponent footer;

 @PostConstruct

 public final void init() {

 // do some setup

 }

}

Child component

133

10.10.3. Child component

We are free to fill in the missing "content" @DataField with a Widget of our choosing. Note that it

is not required to fill in all omitted @DataField references.

@Templated("PageLayout.html")

public class LoginLayout extends PageLayout {

 @Inject

 @DataField

 private LoginForm content;

}

We could also have chosen to override one or more @DataField references defined in the parent

component, simply by specifying a @DataField with the same name in the child component, as

is done with the "footer" data field below.

@Templated("PageLayout.html")

public class LoginLayout extends PageLayout {

 @Inject

 @DataField

 private LoginForm content;

 /* Override footer defined in PageLayout */

 @Inject

 @DataField

 private CustomFooter footer;

}

10.11. Stylesheet binding

When developing moderately-complex web applications with Errai, you may find yourself needing

to do quite a bit of programmatic style changes. A common case being: showing or enabling

controls only if a user has the necessary permissions to use them. One part of the problem is

securing those features from being used, and the other part – which is an important usability

consideration – is communicating that state to the user.

Let's start with the example case I just described. We have a control that we only want to be visible

if the user is an admin. So the first thing we do is create a style binding annotation.

Chapter 10. Errai UI

134

@StyleBinding

@Retention(RetentionPolicy.RUNTIME)

public @interface Admin {

}

This defines Admin as a stylebinding now we can use it like this:

@EntryPoint

@Templated

public class HelloWorldForm extends Composite {

 @Inject @Admin @DataField Button deleteButton;

 @Inject SessionManager sessionManager;

 @EventHandler("deleteButton")

 private void handleSendClick(ClickEvent event) {

 // do some deleting!

 }

 @Admin

 private void applyAdminStyling(Style style) {

 if (!sessionManager.isAdmin()) {

 style.setVisibility(Style.Visibility.HIDDEN);

 }

 }

}

Now before the form is shown to the user the applyAdminStyling method will be executed where

the sessionManager is queried to see if the user is an admin if not the delete button that is also

annotated with @Admin will be hidden from the view.

In addition when using this in conjunction with Errai Databinding. Any Errai UI component which

uses @AutoBound, will get live updating of the style rules for free, anytime the model changes.

Allowing dynamic styling based on user input and other state changes.

10.12. Internationalization (i18n)

User interfaces often need to be available in multiple languages. To get started with Errai's

internationalization support, simply put the @Bundle("bundle.json") annotation on your entry

point and add an empty bundle.json file to your classpath (e.g. to src/main/java or src/main/

resources). Of course, you can name it differently.

Internationalization (i18n)

135

Errai will scan your HTML templates and process all text elements to generate key/value pairs

for translation. It will generate a file called errai-bundle-all.json and put it in your .errai

directory. You can copy this generated file and use it as a starting point for your custom translation

bundles. If the text value is longer than 128 characters the key will get cut off and a hash appended

at the end.

The translation bundle files use the same naming scheme as Java (e.g. bundle_nl_BE.json

for Belgian Dutch and bundle_nl.json for plain Dutch). Errai will also generate a file called

errai-bundle-missing.json in the .errai folder containing all template values for which no

translations have been defined. You can copy the key/value pairs out of this file to create our own

translations:

{

"StoresPage.Stores!" : "Stores!",

"WelcomePage.As_you_move_toward_a_more_and_more_declarative_style,_you_allow_the_compiler_and_the_framework_to_catch_more_mistakes_up_front._-734987445" : "As

 you move toward a more and more declarative style, you allow the compiler and the

 framework to catch more mistakes up front. Broken links? A thing of the past!"

}

If you want to use your own keys instead of these generated ones you can specify them in your

templates using the data-i18n-key attribute:

<html>

<body>

 <div id="content">

 <p data-i18n-key="welcome">Welcome to errai-ui i18n.</p>

<div>

...

By adding this attribute in the template you can translate it with the following:

{

 "Widget.welcome": "Willkommen bei Errai-ui i18n."

}

Because your templates are designer templates and can contain some mock data that doesn't

need to be translated, Errai has the ability to indicate that with an attribute data-role=dummy :

Chapter 10. Errai UI

136

<div id=navbar data-role=dummy>

 <div class="navbar navbar-fixed-top">

 <div class=navbar-inner>

 <div class=container>

 Example Navbar

 <ul class=nav>

 <a>Item

 <a>Item

 </div>

 </div>

 </div>

</div>

Here the template fills out a navbar with dummy elements, useful for creating a design, adding

data-role=dummy will not only exclude it form being translated it will also strip the children nodes

from the template that will be used by the application.

When you have setup a translation of your application Errai will look at the browser locale and

select the locale, if it's available, if not it will use the default (bundle.json). If the users of your

application need to be able to switch the language manually, Errai offers a pre build component

you can easily add to your page: LocaleListBox will render a Listbox with all available languages.

If you want more control of what this language selector looks like there is also a LocaleSelector

that you can use to query and select the locale for example:

@Templated

public class NavBar extends Composite {

 @Inject

 private LocaleSelector selector;

 @Inject @DataField @OrderedList

 ListWidget<Locale, LanguageItem> language;

 @AfterInitialization

 public void buildLangaugeList() {

 language.setItems(new ArrayList<Locale>(selector.getSupportedLocales()));

 }

...

// in LanguageItem we add a click handler on a link

 @Inject

 Navigation navigation;

 @Inject

Extended styling with LESS

137

 private LocaleSelector selector;

 link.addClickHandler(new ClickHandler() {

 @Override

 public void onClick(ClickEvent event) {

 selector.select(model.getLocale());

 navigation.goTo(navigation.getCurrentPage().name());

 }

 });

10.13. Extended styling with LESS

Errai also supports LESS [http://lesscss.org] stylesheets. To get started using these you'll have

to create a LESS stylesheet and place it on the classpath of your project. Errai will convert the

LESS stylesheet to css preform optimisations on it and ensure that is get injected into the pages

of your application. It will also obfuscate the class selectors and replace the use of those in your

templates. To be able to use the selectors in your code you can use:

public class MyComponent extends Component {

#@Inject

#private LessStyle lessStyle;

...

#@PostCreate

#private void init() {

#textBox.setStyleName(lessStyle.get("input"));

#}

}

Finally it will also add any deferred binding properties to the top of your LESS stylesheet, so for

example you could use the user.agent in LESS like this:

.mixin (@a) when (@a = "safari") {

 background-color: black;

}

.mixin (@a) when (@a = "gecko1_8") {

 background-color: white;

}

.class1 { .mixin(@user_agent) }

http://lesscss.org
http://lesscss.org

Chapter 10. Errai UI

138

Because a dot is not allowed in LESS variables it's replaced with an underscore, so in the example

above class1 will have a black background on Safari and Chrome and white on Firefox. On the

top of this LESS stylesheet @user_agent: "safari" will get generated.

Chapter 11.

139

Errai UI Navigation
Starting in version 2.1, Errai offers a system for creating applications that have multiple

bookmarkable pages. This navigation system has the following features:

• Declarative, statically-analyzable configuration of pages and links

• Compile time referential safety (i.e. “no broken links”)

• Generates a storyboard of the application’s navigation flow at compile time

• Decentralized configuration

• Create a new page by creating a new annotated class. No need to edit a second file.

• Make navigational changes in the natural place in the code.

• Integrates cleanly with Errai UI templates, but also works well with other view technologies.

• Builds on Errai IoC & CDI

11.1. Getting Started

11.1.1. Compile-time dependency

To use Errai UI Navigation, you must include it on the compile-time classpath. If you are using

Maven for your build, add these dependencies:

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-navigation</artifactId>

 <version>${errai.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.errai</groupId>

 <artifactId>errai-cdi-client</artifactId>

 <version>${errai.version}</version>

 <scope>provided</scope>

 </dependency>

If you are not using Maven for dependency management, add errai-navigation- version .jar

to the compile-time classpath of a project that's already set up for Errai UI templating.

Chapter 11. Errai UI Navigation

140

11.1.2. GWT Module Descriptor

Once you have Errai UI Navigation on your classpath, ensure your application inherits the GWT

module as well. Add this line to your application's *.gwt.xml file:

 <inherits name="org.jboss.errai.ui.nav.Navigation"/>

11.2. How it Works

Errai Navigation has three main parts: the @Page annotation marks any widget as a page; the

TransitionTo<P> interface is an injectable type that provides a link to another page; and the

Navigation singleton offers control over the navigation system as a whole.

The Navigation singleton owns a GWT Panel called the navigation panel . This panel always

contains a widget corresponding to the the fragment ID (the part after the # symbol) in the

browser's location bar. Whenever the fragment ID changes for any reason (for example, because

the user pressed the back button, navigated to a bookmarked URL, or simply typed a fragment ID

by hand), the widget in the navigation panel is replaced by the widget associated with that fragment

ID. Likewise, when the application asks the navigation system to follow a link, the fragment ID in

the browser's location bar is updated to reflect the new current page.

11.2.1. Declaring a Page

To declare a page, annotate any subclass of Widget with the @Page annotation:

@Page

public class ItemListPage extends Composite {

 // Anything goes...

}

By default, the name of a page is the simple name of the class that declares it. In the above

example, the ItemListPage will fill the navigation panel whenever the browser's location bar

ends with #ItemListPage . If you prefer a different page name, use the @Page annotation's path

attribute:

@Page(path="items")

public class ItemListPage extends Composite {

 // Anything goes...

}

Declaring a Page

141

Navigation and Errai UI

Any widget can be a page. This includes Errai UI @Templated classes! Simply

annotate any Errai UI templated class with @Page , and it will become a page that

can be navigated to.

11.2.1.1. The Starting Page

Each application must have exactly one starting page . This requirement is enforced at compile

time. The starting page is displayed when there is no fragment ID present in the browser's location

bar.

Use the startingPage attribute to declare the starting page, like this:

@Page(startingPage=true)

public class WelcomePage extends Composite {

 // Anything goes...

}

Pages are looked up as CDI beans, so you can inject other CDI beans into fields or a constructor.

Pages can also have @PostConstruct and @PreDestroy CDI methods.

11.2.1.2. Page Lifecycle

There are four annotations related to page lifecycle events: @PageShowing , @PageShown ,

@PageHiding , and @PageHidden . These annotations designate methods so a page widget can

be notified when it is displayed or hidden:

@Page

public class ItemPage extends VerticalPanel {

 @PageShowing

 private void preparePage() {

 }

 @PageHiding

 private void unpreparePage() {

 }

 // Anything goes...

}

Chapter 11. Errai UI Navigation

142

Page Lifecycle:

1. The fragment identifier in the URL changes

2. The @PageHiding method on the current (about-to-be-navigated-away-from) page is invoked

3. The current page is removed from the browser's DOM

4. The @PageHidden method on the just-removed page is invoked

5. The navigation system looks up the corresponding @Page bean in the client-side bean manager

(we'll call this bean "the new page")

6. The navigation system writes to all @PageState fields in the new page bean (more on this in

the next section)

7. The @PageShowing method of the new page is invoked

8. The new page widget is added to the DOM (as a direct child of the navigation content panel)

9. The @PageShown method of the new page is invoked.

The @PageShowing and @PageShown methods are permitted one optional parameter of type

HistoryToken ---more on this in the next section.

The lifespan of a Page instance is governed by CDI scope: Dependent and implict-scoped

page beans are instantiated each time the user navigates to them, whereas Singleton and

ApplicationScoped beans are created only once over the lifetime of the application. If a particular

page is slow to appear because its UI takes a lot of effort to build, try marking it as a singleton.

11.2.1.3. Page State Parameters

A page widget will often represent a view on on instance of a class of things. For example, there

might be an ItemPage that displays a particular item available at a store. In cases like this, it's

important that the bookmarkable navigation URL includes not only the name of the page but also

an identifier for the particular item being displayed.

This is where page state parameters come in. Consider the following page widget:

@Page

public class ItemPage extends VerticalPanel {

 @PageState

 private int itemId;

 // Anything goes...

}

Declaring a Link with TransitionAnchor

143

This page would be reachable at a URL like http://www.company.com/store/

#ItemPage;itemId=4 . Before the page was displayed, the Errai UI Navigation framework would

write the int value 4 into the itemId field.

There are three ways to pass state information to a page: by passing a Multimap to

TransitionTo.go() ; by passing a Multimap to Navigation.goTo() , or by including the state

information in the fragment identifier of a hyperlink as illustrated in the previous paragraph (use

the HistoryToken class to construct such a fragment ID properly.)

A page widget can have any number of @PageState fields. The fields can be of any primitive or

boxed primitive type (except char or Character), String , or a Collection , List , or Set of

the allowable scalar types. Nested collections are not supported.

@PageState fields can be private, protected, default access, or public. They are always updated

by direct field access; never via a setter method. The updates occur just before the @PageShowing

method is invoked.

In addition to receiving page state information via direct writes to @PageState fields, you can also

receive the whole Multimap in the @PageShowing and @PageShown methods through a parameter

of type HistoryToken . Whether or not a lifecycle method has such a parameter, the @PageState

fields will still be written as usual.

Page state values are represented in the URL much like HTML form parameters: as key=value

pairs separated by the ampersand (&) character. Multi-valued page state fields are represented

by repeated occurrences of the same key. If a key corresponding to a @PageState field is absent

from the state information passed to the page, the framework writes a default value: null for scalar

Object fields, the JVM default (0 or false) for primitives, and an empty collection for collection-

valued fields. To construct and parse state tokens programmatically, use the HistoryToken class.

11.2.2. Declaring a Link with TransitionAnchor

The easiest way to declare a link between pages is to inject an instance of TransitionAnchor<P>

, where P is the class of the target page.

Here is an example declaring an anchor link from the templated welcome page to the item list

page. The first code sample would go in WelcomePage.java while the second would go in the

WelcomePage.html, the associated html template.

@Page(startingPage=true)

@Templated

public class WelcomePage extends Composite {

 @Inject @DataField TransitionAnchor<ItemListPage> itemLink;

}

http://www.company.com/store/#ItemPage;itemId=4
http://www.company.com/store/#ItemPage;itemId=4

Chapter 11. Errai UI Navigation

144

<div>

 <a data-field="itemLink">Go to Item List Page

</div>

You can inject any number of links into a page. The only restriction is that the target of the link must

be a Widget type that is annotated with @Page . When the user clicks the link Errai will transition

to the item list page.

11.2.3. Declaring a Manual Link

Sometimes it is necessary to manually transition between pages (such as in response to an

event being fired). To declare a manual link from one page to another, inject an instance of

TransitionTo<P> , where P is the class of the target page.

This code declares a manual transition from the welcome page to the item list page:

@Page(startingPage=true)

public class WelcomePage extends Composite {

 @Inject TransitionTo<ItemListPage> startButtonClicked;

}

You do not need to implement the TransitionTo interface yourself; the framework creates the

appropriate instance for you.

As with TransitionAnchor , the only restriction is that the target of the link must be a Widget

type that is annotated with @Page .

11.2.4. Following a Manual Link

To follow a manual link, simply call the go() method on an injected TransitionTo object. For

example:

@Page(startingPage=true)

public class WelcomePage extends Composite {

 @Inject TransitionTo<ItemListPage> startButtonClicked;

 public void onStartButtonPressed(ClickEvent e) {

 startButtonClicked.go();

Installing the Navigation Panel into the User Interface

145

 }

}

11.2.5. Installing the Navigation Panel into the User Interface

Beginning in version 2.4, Errai will automatically attach the Navigation Panel to the Root Panel,

but it is possible to override this behaviour by simply adding the Navigation Panel to another

component manually. The best time to do this is during application startup, for example in the

@PostConstruct method of your @EntryPoint class. By using the default behaviour you can

allow Errai Navigation to control the full contents of the page, or you can opt to keep some parts

of the page (headers, footers, and sidebars, for example) away from Errai Navigation by choosing

an alternate location for the Navigation Panel.

The following example reserves space for header and footer content that is not affected by the

navigation system:

@EntryPoint

public class Bootstrap {

 @Inject

 private Navigation navigation;

 @PostConstruct

 public void clientMain() {

 VerticalPanel vp = new VerticalPanel();

 vp.add(new HeaderWidget());

 vp.add(navigation.getContentPanel());

 vp.add(new FooterWidget());

 RootPanel.get().add(vp);

 }

}

This last example demonstrates a simple approach to defining the page structure with an Errai

UI template. The final product is identical to the above example, but in this case the overall

page structure is declared in an HTML template rather than being defined programmatically in

procedural logic:

@Templated

@EntryPoint

public class OverallPageStrucutre extends Composite {

 @Inject

Chapter 11. Errai UI Navigation

146

 private Navigation navigation;

 @Inject @DataField

 private HeaderWidget header;

 @Inject @DataField

 private SimplePanel content;

 @Inject @DataField

 private FooterWidget footer;

 @PostConstruct

 public void clientMain() {

 // give over the contents of this.content to the navigation panel

 content.add(navigation.getContentPanel());

 // add this whole templated widget to the root panel

 RootPanel.get().add(this);

 }

}

11.2.6. Overriding the default Nagivating Panel type

By default Errai uses com.google.gwt.user.client.ui.SimplePanel as a container for

navigation panel. Sometimes this is not sufficient and users would prefer using another

implementation. For example a com.google.gwt.user.client.ui.SimpleLayoutPanel that

manages child size state.

To provide your own implementation of the navigation panel you must implement

org.jboss.errai.ui.nav.client.local.NavigatingContainer . For example:

public class NavigatingPanel implements NavigatingContainer {

SimplePanel panel = new SimpleLayoutPanel();

public void clear() {

this.panel.clear();

}

public Widget asWidget() {

return panel.asWidget();

}

public Widget getWidget() {

Viewing the Generated Navigation Graph

147

return panel.getWidget();

}

public void setWidget(Widget childWidget) {

panel.add(childWidget);

}

public void setWidget(IsWidget childWidget) {

panel.add(childWidget);

}

}

Then in your GWT module descriptor you need to override the default navigation panel (

org.jboss.errai.ui.nav.client.local.NavigatingContainer) by adding:

<replace-with class="com.company.application.client.NavigatingPanel">

<when-type-

is class="org.jboss.errai.ui.nav.client.local.NavigatingContainer"/>

</replace-with>

11.2.7. Viewing the Generated Navigation Graph

Because the pages and links in an Errai Navigation application are declared structurally, the

framework gets a complete picture of the app's navigation structure at compile time. This

knowledge is saved out during compilation (and at page reload when in Dev Mode) to the file

.errai/navgraph.gv . You can view the navigation graph using any tool that understands the

GraphViz (also known as DOT) file format.

One popular open source tool that can display GraphViz/DOT files is GraphViz [http://

www.graphviz.org/] . Free downloads are available for all major operating systems.

When rendered, a navigation graph looks like this:

Figure 11.1. TODO InformalFigure image title empty

In the rendered graph, the pages are nodes (text surrounded by an ellipse). The starting page is

drawn with a heavier stroke. The links are drawn as arrows from one page to another. The labels

on these arrows come from the Java field names the TransitionTo objects were injected into.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

148

Chapter 12.

149

Errai Cordova (Mobile Support)
Starting with version 2.4.0, Errai now supports mobile development. One of the modules that

makes this feasible is the Cordova module. It offers a way to integrate with native hardware in

an Errai way.

12.1. Get started

Add the following to your application's .gwt.xml module file:

12.1.1. App.gwt.xml

<inherits name="org.jboss.errai.ui.Cordova"/>

12.2. Integrate with native hardware

When the Cordova module is included you can integrate with native hardware by injecting the

native components into your code:

@Templated("#main")

public class KitchenSinkClient extends Composite {

 @Inject

 Camera camera;

 @Inject

 @DataField

 Button takePicture;

 @EventHandler("takePicture")

 public void onTakePicktureClicked(ClickEvent event) {

 PictureOptions options = new PictureOptions(25);

 options.setDestinationType(PictureOptions.DESTINATION_TYPE_DATA_URL);

 options.setSourceType(PictureOptions.PICTURE_SOURCE_TYPE_CAMERA);

 camera.getPicture(options, new PictureCallback() {

 @Override

 public void onSuccess(String data) {

 image.setUrl(UriUtils.fromSafeConstant("data:image/jpeg;base64," + data));

 }

 @Override

Chapter 12. Errai Cordova (Mo...

150

 public void onFailure(String error) {

 setGeneralErrorMessage("Could not take picture: " + error);

 }

 });

 }

The components that are supported come from the gwt-phonegap [https://code.google.com/p/

gwt-phonegap/] project have a look there form more documentation.

Here are the native hardware components you can inject:

• Camera

• Accelerometer

• Contacts

• Capture (Provides access to the audio, image, and video capture capabilities of the device).

• Compass

• Notification (see documentation on phonegap site [http://docs.phonegap.com/en/edge/

cordova_notification_notification.md.html#Notification])

• File create a native file

• Device Get general information about the device.

So to integrate with these things all we have to do is @Inject these classes. There are also a

couple of CDI events one can observe to be informed about hardware state:

• BackButtonEvent

• BatteryCriticalEvent

• BatteryEvent

• BatteryLowEvent

• BatteryStatusEvent

• EndCallButtonEvent

• MenuButtonEvent

• OffLineEvent

https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification

Maven build

151

• OnlineEvent

• PauseEvent

• ResumeEvent

• SearchButtonEvent

• StartCallButtonEvent

• VolumeDownButtonEvent

• VolumeUpButtonEvent

Example of how to use these events:

 private void batteryIsLow(@Observes BatteryLowEvent event) {

 //mission accomplished. we can stop the infinite loop now.

 }

12.3. Maven build

All that is left to do is build this and put it on a actual device. In order to make this as easy

as possible we have a maven plugin that will create a native binary that you can install on a

device. It will put the html and javascript of you application in a cordova [http://cordova.apache.org/

] application, because by doing so the client is no longer servered by the server the client will need

to know how it can reach the server to do that place the following in your gwt.xml:

<replace-with class="com.company.application.Config">

 <when-type-is class="org.jboss.errai.bus.client.framework.Configuration" />

</replace-with>

This class must implement org.jboss.errai.bus.client.framework.Configuration and return the url

where the server is configured.

import org.jboss.errai.bus.client.framework.Configuration;

public class Config implements Configuration {

 @Override

 public String getRemoteLocation() {

 // you probably want to do something environment specify here instead

 of something like this:

 return "https://grocery-edewit.rhcloud.com/errai-jpa-demo-grocery-list";

http://cordova.apache.org/
http://cordova.apache.org/

Chapter 12. Errai Cordova (Mo...

152

 }

}

Now all that is left is to add the plugin to the pom.xml like so:

<build>

 ...

 <plugins>

 <plugin>

 <groupId>org.jboss.errai</groupId>

 <artifactId>cordova-maven-plugin</artifactId>

 <version>${errai.version}</version>

 </plugin>

Now you can execute a native build with the following maven command:

#will build all supported platforms for now only ios and android

mvn cordova:build-project

#only build android

mvn cordova:build-project -Dplatform=android

#start the ios emulator with the deployed application

mvn cordova:emulator -Dplatform=ios

Important

For these to work you'll need to have the SDK's installed and on your path! In

case of android you will additionally have to have ANDROID_HOME environment

variable set.

12.4. AeroGear Wrappers

These wrappers allow your Errai client to talk to an AeroGear server. Also have a look at the

documentation [http://aerogear.org/docs] of the AeroGear project.

12.4.1. Pipes

Pipes are for getting data from the server. Right now the only implementation is REST it will use

Id to construct urls.

http://aerogear.org/docs
http://aerogear.org/docs

Stores

153

 Pipe<Task> pipe = new PipeFactory().createPipe(Task.class, "tasks");

 pipe.save(new Task(123, "new", "2012-01-01"), new AsyncCallback<Task>() {

 @Override

 public void onSuccess(Task result) {

 Window.alert("jipee saved a taks");

 }

 @Override

 public void onFailure(Throwable caught) {

 }

 });

This will preform a PUT /tasks URL

12.4.2. Stores

Another concept that comes with AeroGear is Stores. Currently there are 2 Store types supported:

Memory and SessionLocal. Memory is just a big javascript array to hold your data. Here is how

you create and configure a Store:

 Store<User> store = new DataManager().store(User.class);

 store.save(new User(2, "test2"));

 Collection<User> collection = store.readAll();

 User user = store.read(2);

12.4.3. Authentication

Pipes can be authenticated by just adding the authenticator into the Pipe and you are good to go.

 Authenticator authenticator = new AuthenticationFactory().createAuthenticator("name");

 Pipe<Task> pipe = new PipeFactory().createPipe(Task.class, "tasks", authenticator);

 authenticator.login(username.getText(), password.getText(), new AsyncCallback<String>() {

 @Override

 public void onSuccess(String result) {

 Window.alert("successful login");

 }

 @Override

 public void onFailure(Throwable caught) {

Chapter 12. Errai Cordova (Mo...

154

 message.setText("Login failed, please try again");

 }

 });

There is also a method called enroll() for adding new users.

Chapter 13.

155

Logging
Errai now supports using the slf4j [http://www.slf4j.org/] logging api on the server and client. This

gives you the flexibility of choosing your own logging back-end for your server-side code, while

still allowing a uniform logging interface that can be used in shared packages.

13.1. What is slf4j?

sl4j is logging abstraction. Using the slf4j api, you can add log statements to your code using a fixed

api while maintaining the ability to switch the logging implementation at run-time. For example,

the slf4j api can be used with java.util.logging (JUL) as the back-end.

13.2. Client-Side Setup

The client-side slf4j code uses the GWT Logging [http://www.gwtproject.org/doc/latest/

DevGuideLogging.html] as the back-end. Using slf4j in client-side code has two steps:

1. Add the errai-common artifact as a maven dependency to your project

2. Inherit the gwt module org.jboss.errai.common.Logging

The GWT logging back-end works analogously to JUL. See the above GWT Logging link for

instructions on how to adjust settings such as the log level.

13.3. Server-Side Setup

On the server you are free to use any logging back-end that has slf4j bindings (or to make your

own). Just make sure to add dependencies for the slf4j-api artifact and the slf4j binding you

choose. Note: Some application servers provide their own slf4j bindings (such as JBoss AS), in

which case you should add your binding dependency as provided scope.

To learn more about how to setup slf4j for your server-side code, see their website [http://

www.slf4j.org/] .

13.4. Example Usage

Here is sample usage of the slf4j code (which with the above setup can be run on the client or

server):

Example 13.1. LogExample.java

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

http://www.slf4j.org/
http://www.slf4j.org/
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Chapter 13. Logging

156

import javax.inject.Inject;

public class LogExample {

 public void logStuff() {

 // Get a logger for this class

 @Inject Logger logger;

 // Logging going from most to least detailed

 logger.trace("this is extremely specific!");

 logger.debug("this is still pretty specific");

 logger.info("this is an average log message");

 logger.warn("there might be something fishy here...");

 logger.error("uh oh... abandon ship!", new Exception("I am a logged

 exception"));

 }

}

13.5. Logger Names

By default, the above example with provide a logger with the fully qualified class name of the

enclosing class. To inject a logger with an alternate name, use the NamedLogger annotation:

Example 13.2. NamedLogExample.java

import org.slf4j.Logger;

import javax.inject.Inject;

import org.jboss.errai.common.client.api.NamedLogger;

public class NamedLogExample {

 // Get a logger with the name "Logger!"

 @Inject @NamedLogger("Logger!") logger;

 // Get the root logger

 @Inject @NamedLogger rootLogger;

}

Chapter 14.

157

Configuration
This section contains information on configuring Errai.

14.1. ErraiApp.properties

ErraiApp.properties acts both as a marker file for JARs that contain Errai-enabled GWT modules,

and as a place to put configuration settings for those modules in the rare case that non-default

configuration is necessary.

14.1.1. As a Marker File

An ErraiApp.properties file must appear at the root of each classpath location that

contains an Errai module. The contents of JAR and directory classpath entries that do not

contain an ErraiApp.properties are effectively invisible to Errai's classpath scanner.

14.1.2. As a Configuration File

ErraiApp.properties is usually left empty, but it can contain configuration settings for both the core

of Errai and any of its extensions. Configuration properties defined and used by Errai components

have keys that start with " errai. ". Third party extensions should each choose their own prefix

for keys in ErraiApp.properties.

14.1.2.1. Configuration Merging

In a non-trivial application, there will be several instances of ErraiApp.properties on the classpath

(one per JAR file that contains Errai modules, beans, or portable classes).

Before using the configuration information from ErraiApp.properties, Errai reads the contents of

every ErraiApp.properties on the classpath. The configuration information in all these files is

merged together to form one set of key=value pairs.

If the same key appears in more than one ErraiApp.properties file, only one of the values will be

associated with that key. The other values will be ignored. In future versions of Errai, this condition

may be made into an error. It's best to avoid specifying the same configuration key in multiple

ErraiApp.properties files.

14.1.2.2. Errai Marshalling Configuration

• errai.marshalling.use_static_marshallers when set to false , Errai will not use the

precompiled server-side marshallers even if the generated ServerMarshallingFactoryImpl

class is found on the classpath. This is useful when using Dev Mode in conjunction with an

external server such as JBoss AS 7 or EAP 6.

Chapter 14. Configuration

158

• errai.marshalling.force_static_marshallers when set to true , Errai will not use dynamic

marshallers. If the generated ServerMarshallingFactoryImpl cannot be loaded (possibly

after an attempt to generate it on-the-fly), the Errai web app will fail to start.

Errai also supports configuring portable types in ErraiApp.properties as an alternative to the

@Portable annotation. See the Errai Marshalling section on Manual Mapping for details.

14.1.2.3. Errai IoC Configuration

• errai.ioc.QualifyingMetaDataFactory specifies the fully-qualified class name of the

QualifyingMetadataFactory implementation to use with Errai IoC.

• errai.ioc.enabled.alternatives specifies a whitespace-separated list of fully-qualified class

names for alternative beans . See Section 3.6, “Alternatives and Mocks” for details.

• errai.ioc.blacklist specifies a whitespace-separated list of classes that should be hidden

from Errai IOC and that will be excluded when generating the bean graph and wiring

components. Wildcards are supported to exclude all types underneath a package e.g.

org.jboss.myapp.exclude.* (all types under the exclude package will be hidden from ERRAI

IOC).

• errai.ioc.whitelist when this property is present all types in your application are hidden

from Errai IOC by default. It specifies a whitespace-separated list of classes that should

be visible to IOC and that will be included when generating the bean graph and wiring

components. Wildcards are supported to include all types underneath a package e.g.

org.jboss.myapp.include.* (all types under the include package will be visible to ERRAI IOC).

14.1.3.

14.2. Messaging (Errai Bus) Configuration

14.2.1. Disabling remote communication

In some cases it might be desirable to prevent the client bus from communicating with the server.

One use case for this is when all communication with the server is handled using JAX-RS and the

constant long polling requests for message exchange are not needed.

To turn off remote communication in the client bus the following JavaScript variable can be set

in the HTML host page:

Configuring an alternative remote remote bus endpoint

159

<script type="text/javascript">

 erraiBusRemoteCommunicationEnabled = false;

</script>

14.2.2. Configuring an alternative remote remote bus endpoint

By default the remote bus is expected at the GWT web application's context path. In case the

remote bus is part of a different web application or deployed on a different server, the following

configuration can be used in the HTML host page to configure the remote bus endpoint used on

the client.

<script type="text/javascript">

 erraiBusApplicationRoot = "/MyRemoteMessageBusEnpoint";

</script>

14.2.3. ErraiService.properties

The ErraiService.properties file contains basic configuration for the bus itself. Unlike

ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of

a deployed application. If you do not need to set any properties to their non-default values, this

file can be omitted from the deployment entirely.

14.2.3.1. Message Dispatching

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere

and seeing that they are delivered to where they need to go. There are two primary

implementations that are provided with Errai, depending on your needs.

14.2.3.1.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

14.2.3.1.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

Chapter 14. Configuration

160

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

• errai.dispatcher.implementation specifies the dispatcher implementation to be used by

the bus. There are two implementations which come with Errai out of the box: the

SimpleDispatcher and the AsyncDispatcher . See ERRAI:Dispatcher Implementations for

more information about the differences between the two.

14.2.3.2. Threading

• errai.async_thread_pool_size specifies the total number of worker threads in the worker pool

for handling and delivering messages. Adjusting this value does not have any effect if you are

using the SimpleDispatcher.

• errai.async.worker_timeout specifies the total amount of time (in seconds) that a service is

given to finish processing an incoming message before the pool interrupts the thread and returns

an error. Adjusting this value has no effect if you are using the SimpleDispatcher.

14.2.3.3. Buffering

• errai.bus.buffer_size The total size of the transmission buffer, in megabytes. If this

attribute is specified along with errai.bus.buffer_segment_count , then the segment

count is inferred by the calculation buffer_segment_count / buffer_size}. If

{{errai.bus.buffer_segment_count is also defined, it will be ignored in the presence of this

property. Default value: 32.

• errai.bus.buffer_segment_size The transmission buffer segment size in bytes. This is the

minimum amount of memory each message will consume while stored within the buffer. Defualt

value: 8.

• errai.bus.buffer_segment_count The number of segments in absolute terms. If this attribute

is specified in the absence of errai.bus.buffer_size , the buffer size is inferred by the

calculation buffer_segment_size / buffer_segment_count .

• errai.bus.buffer_allocation_mode Buffer allocation mode. Allowed values are direct and

heap . Direct allocation puts buffer memory outside of the JVM heap, while heap allocation

uses buffer memory inside the Java heap. For most situations, heap allocation is preferable.

However, if the application is data intensive and requires a substantially large buffer, it is

preferable to use a direct buffer. From a throughput perspective, current JVM implementations

pay about a 20% performance penalty for direct-allocated memory access. However, your

ErraiService.properties

161

application may show better scaling characteristics with direct buffers. Benchmarking under real

load conditions is the only way to know the optimal setting for your use case and expected load.

Default value: direct .

14.2.3.4. Security

• errai.authentication_adapter specifies the authentication modelAdapter the bus should use

for determining whether calls should be serviced based on authentication and security

principals.

• errai.require_authentication_for_all indicates whether or not the bus should always require

the use of authentication for all requests inbound for the bus. If this is turned on, an

authentication model adapter must be defined, and any user must be authenticated before the

bus will deliver any messages from the client to any service.

14.2.3.5. Clustering

• errai.bus.enable_clustering A boolean indicating whether or not Errai's server side bus

should attempt to orchestrate with its peers. The orchestration mechanism is dependent on

the configured clustering provider (e.g. UDP based multicast discovery in case of the default

JGroups provider). The default value is false .

• errai.bus.clustering_provider The fully qualified class name of

the clustering provider implementation. A class that implements

org.jboss.errai.bus.server.cluster.ClusteringProvider . Currently the only build-in

provider is the

org.jboss.errai.bus.server.cluster.jgroups.JGroupsClusteringProvider .

14.2.3.6. Startup Configuration

• errai.auto_discover_services A boolean indicating whether or not the Errai bootstrapper

should automatically scan for services. This property must be set to true if and only if Errai

CDI is not on the classpath . The default value is false .

• errai.auto_load_extensions A boolean indicating whether or not the Errai bootstrapper should

automatically scan for extensions. The default value is true .

14.2.3.7. Example Configuration

Chapter 14. Configuration

162

##

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

14.2.4. Servlet Configuration

Errai has several different implementations for HTTP traffic to and from the bus. We provide a

universally-compatible blocking implementation that provides fully synchronous communication

to/from the server-side bus. Where this introduces scalability problems, we have implemented

many webserver-specific implementations that take advantage of the various proprietary APIs to

provide true asynchrony.

These included implementations are packaged at: org.jboss.errai.bus.server.servlet .

Servlet Configuration

163

One is Enough!

You should use just one of the options below. Configuring multiple ErraiServlet

implementations in the same application will lead to unpredictable behaviour!

Remember that all Errai demos and archetypes are preconfigured with

DefaultBlockingServlet as a servlet. You will need to remove this default setup if

you choose to use a different ErraiServlet implementation in your app.

Rolling your own security? Beware!

All of the following examples use a wildcard mapping for *.erraiBus with no path

prefix. This allows Errai Bus to communicate from any point in your application's

URI hierarchy, which allows bus communication to work properly no matter where

you choose to put your GWT host page.

For example, all of the following are equivalent from Errai's point of view:

• /in.erraiBus

• /foo/bar/in.erraiBus

• /long/path/to/get/to.erraiBus

If you rely on your own security rules or a custom security filter to control access

to Errai Bus (rather than the security framework within Errai Bus,) ensure you use

the same mapping pattern for that filter-mapping or security-constraint as

you do for the Errai Servlet itself.

14.2.4.1. DefaultBlockingServlet

This ErraiServlet implementation should work in virtually any servlet container that supports Java

Servlets 2.0 or higher. It provides purely synchronous request handling. The one scenario where

this servlet will not work is in servers that put restrictions on putting threads into sleep states.

The default DefaultBlockingServlet which provides the HTTP-protocol gateway between the

server bus and the client buses.

As its name suggests, DefaultBlockingServlet is normally configured as an HTTP Servlet in the

web.xml file:

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

Chapter 14. Configuration

164

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

</servlet-mapping>

14.2.4.2. DefaultBlockingServlet configured as Filter

Alternatively, the DefaultBlockingServlet can be deployed as a Servlet Filter. This may be

necessary in cases where an existing filter is configured in the web application, and that filter

interferes with the Errai Bus requests. In this case, configuring DefaultBlockingServlet to handle

*.erraiBus requests ahead of other filters in web.xml will solve the problem:

<filter>

 <filter-name>ErraiServlet</filter-name>

 <filter-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

filter-class>

</filter>

<filter-mapping>

 <filter-name>ErraiServlet</filter-name>

 <url-pattern>*.erraiBus</url-pattern>

</filter-mapping>

14.2.4.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.JettyContinuationsServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

Servlet Configuration

165

<servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

</servlet-mapping>

14.2.4.4. StandardAsyncServlet

This implementation leverages asynchronous support in Servlet 3.0 to allow for threadless pausing

of port connections. Note that <async-supported>true</async-supported> has to be added

to the servlet definition in web.xml .

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.StandardAsyncServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 <async-supported>true</async-supported>

</servlet>

<servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

</servlet-mapping>

166

Chapter 15.

167

Troubleshooting & FAQ
This section explains the cause of and solution to some common problems that people encounter

when building applications with Errai.

Of course, when lots of people trip over the same problem, it's probably because there is a

deficiency in the framework! A FAQ list like this is just a band-aid solution. If you have suggestions

for permanent fixes to these problems, please get in touch with us: file an issue in our issue tracker,

chat with us on IRC, or post a suggestion on our forum.

But for now, on to the FAQ:

15.1. Why does it seem that Errai can't see my class at

compile time?

Possible symptoms:

• uncaught exception: java.lang.RuntimeException: No proxy provider found for type:

my.fully.qualified.ServiceName

Answer: Make sure the Section 14.1, “ErraiApp.properties” file is actually making it into your

runtime classpath.

One common cause of this problem is a <resources> section in pom.xml that includes src/main/

java (to expose .java sources to the GWT compiler) that does not also include src/main/resources

as a resource path. You must include both explicitly:

<resources>

 <resource>

 <directory>src/main/java</directory>

 </resource>

 <resource>

 <directory>src/main/resources</directory>

 </resource>

</resources>

15.2. Why am I getting "java.lang.ClassFormatError:

Illegal method name "<init>$" in class org/xyz/package/

MyClass"?

Answer: This error message means that your project has a (direct or indirect) subclass of

JavaScriptObject that lacks a protected no-args constructor. All subtypes of JavaScriptObject

Chapter 15. Troubleshooting & FAQ

168

(also known as overlay types) must declare a protected no-args constructor, but the error

message could be much clearer. There is an issue filed in the GWT project's bug tracker for

improving the error message: GWT issue 3383 [http://code.google.com/p/google-web-toolkit/

issues/detail?id=3383] .

15.3. I'm getting "java.lang.RuntimeException:

There are no proxy providers registered yet." in my

@PostConstruct method!

Answer: You can't invoke RPC methods via Caller<?> or by other means until after the

Errai Bus has finished its initial handshake. Try changing your @PostConstruct annotation

to @AfterInitialization . This will cause your method to be invoked later—after the bus

handshake has completed.

If this doesn't help, it is also possible that the proxies were never generated in the first place. Check

in .errai/RpcProxyLoaderImpl.java to see if proxy code exists for the @Remote and/or @Path

interface in question. If not, your @Remote interfaces were not present on the GWT compiler's

classpath when your application module was compiled. Double-check your GWT compilation

classpath: all @Remote interfaces must be visible to (in or inherited by) the GWT module that

contains the Caller<?> types. Pay special attention that your @Remote and @Path interfaces are

not in a package excluded from the GWT module (by default, every subpackage other than client

and shared is invisible to the GWT compiler).

http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383

Chapter 16.

169

Upgrade Guide
This chapter contains important information for migrating to newer versions of Errai. If you

experience any problems, don't hesitate to get in touch with us. See Chapter 19, Reporting

problems .

16.1. Upgrading from 1.* to 2.0

The first issues that will arise after replacing the jars or after changing the version numbers in

the pom.xml are unresolved package imports. This is due to refactorings that became necessary

when the project grew. Most of these import problems can be resolved automatically by modern

IDEs (Organize Imports). So, this should replace org.jboss.errai.bus.client.protocols.*

with org.jboss.errai.common.client.protocols.* for example.

The following is a list of manual steps that have to be carried out when upgrading:

• @ExposedEntity became @Portable (

org.jboss.errai.common.client.api.annotations.Portable). See Chapter 5,

Marshalling for details.

• The @Conversational annotation must now target the event objects themselves, not the

observer methods of the events. So an event type is either conversational or not; you no

longer specify that listeners receive arbitrary events in a conversational context. See the

Conversational Events section of the CDI chapter for details.

• Errai CDI projects must now use the SimpleDispatcher instead of the AsynDispatcher . This

has to be configured in Section 14.2, “Messaging (Errai Bus) Configuration” .

• The bootstrap listener (configured in WEB-INF/web.xml) for Errai CDI

has changed (org.jboss.errai.container.DevModeCDIBootstrap is now

org.jboss.errai.container.CDIServletStateListener).

• gwt 2.3.0 or newer must be used and replace older versions.

• mvel2 2.1.Beta8 or newer must be used and replace older versions.

• weld 1.1.5.Final or newer must be used and replace older versions.

• slf4j 1.6.1 or newer must be used and replace older versions.

• This step can be skipped if Maven is used to build the project. If the project is NOT built using

Maven, the following jar files have to be added manually to project's build/class path: errai-

common-2.x.jar, errai-marshalling-2.x.jar, errai-codegen-2.x.jar, netty-4.0.0.Alpha1.errai.r1.jar.

Chapter 16. Upgrade Guide

170

• If the project was built using an early version of an Errai archetype the configuration of

the maven-gwt-plugin has to be modified to contain the <hostedWebapp>path-to-your-

standard-webapp-folder</hostedWebapp> . This is usually either war or src/main/webapp .

16.2. Upgrading from 2.0.Beta to 2.0.*.Final

The following is a list of manual steps that have to be carried out when upgrading from a 2.0.Beta

version to 2.0.CR1 or 2.0.Final:

• Starting with 2.0.CR1 the default for automatic service discovery has been changed in

favour of CDI based applications. That means it has to be explicitly turned on for plain

bus applications (Errai applications that do not use Errai-CDI). Not doing so will result in

NoSubscribersToDeliverTo exceptions. The snippet below shows how to activate automatic

service discovery:

Example 16.1. web.xml

<servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <init-param>

 <param-name>auto-discover-services</param-name>

 <param-value>true</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

• The jboss7-support module was deleted and is no longer needed as a dependency.

16.3. Upgrading from Errai 2.2.x to 2.4 or 3.0

There are some breaking API changes in the update from Errai 2.2.x to Errai 2.4.x and 3.0.x.

Here are the steps you'll need to take to get your project compiling after you update:

• Starting with Errai 2.3.0, GWT 2.5.0 or higher is required.

• Use your IDE to organize imports at the top level. In eclipse, you'd click in the Project Explorer,

press Ctrl-A (select all) and then Ctrl-O (Organize Imports). Other IDEs have similar features.

• The ErrorCallback interface has been made more general so the same type can be shared

between Errai modules. This allows you reuse your own generic error handler class for, eg,

Upgrading from Errai 2.2.x to 2.4 or 3.0

171

Errai JAX-RS and ErraiBus callbacks. If you want to use a generic error handler throughout your

app, change your ErrorCallback implementations to ErrorCallback<?> and change the first

argument type of your error() method to Object. Otherwise, if you have use-case-specific error

callbacks, implement the interfaces RestErrorCallback or BusErrorCallback as appropriate.

• IOCBeanManager was replaced by two new types SyncBeanManager and AsyncBeanManager

that need to be used instead. See Section 3.5, “Client-Side Bean Manager” for details.

Note: Errai 3 is still changing rapidly, so this section is a work in progress. Please add any

additional steps you had to take in upgrading your own codebase.

172

Chapter 17.

173

Downloads
The distribution packages can be downloaded from jboss.org http://jboss.org/errai/

Downloads.html

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

174

Chapter 18.

175

Sources
Errai is currently managed using Github. You can clone our repositories from http://github.com/

errai .

http://github.com/errai
http://github.com/errai

176

Chapter 19.

177

Reporting problems
If you run into trouble don't hesitate to get in touch with us:

• JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

• User Forum: http://community.jboss.org/en/errai?view=discussions

• Mailing List: http://jboss.org/errai/MailingLists.html

• IRC: irc://irc.freenode.net/errai

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

178

Chapter 20.

179

Errai License
Errai is distributed under the terms of the Apache License, Version 2.0. See the full Apache license

text [http://www.apache.org/licenses/LICENSE-2.0] .

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

180

181

Appendix A. Revision History
Revision History

Revision <>

182

	Errai
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. Messaging API Basics
	2.2.1. Sending Messages with the Client Bus
	2.2.2. Receiving Messages on the Server Bus / Server Services
	2.2.3. Sending Messages with the Server Bus
	2.2.4. Receiving Messages on the Client Bus/ Client Services
	2.2.5. Local Services

	2.3. Single-Response Conversations & Pseudo-Synchronous Messaging
	2.4. Sender Inferred Subjects
	2.5. Broadcasting
	2.6. Client-to-Client Communication
	2.6.1. Relay Services

	2.7. Message Routing Information
	2.8. Handling Errors
	2.8.1. Handling global message transport errors

	2.9. Asynchronous Message Tasks
	2.10. Repeating Tasks
	2.11. Queue Sessions
	2.11.1. Lifecycle
	2.11.2. Scopes
	2.11.2.1. Session Scope
	2.11.2.2. Local Scope

	2.12. Client Logging and Error Handling
	2.13. Wire Protocol (J.REP)
	2.13.1. Payload Structure
	2.13.1.1. Built-in Subjects

	2.13.2. Message Routing
	2.13.3. Bus Management and Handshaking Protocols
	2.13.3.1. ServerBus and ClientBus commands

	2.14. Conversations
	2.15. WebSockets
	2.15.1. Configuring the sideband server
	2.15.2. Deploying with JBoss AS 7

	2.16. Bus Lifecycle
	2.16.1. Turning Server Communication On and Off
	2.16.2. Observing Bus Lifecycle State and Communication Status

	2.17. Shadow Services
	2.18. Debugging Messaging Problems

	Chapter 3. Dependency Injection
	3.1. Container Wiring
	3.2. Wiring server side components
	3.3. Scopes
	3.3.1. Dependent Scope

	3.4. Built-in Extensions
	3.4.1. Bus Services
	3.4.1.1. @Service
	3.4.1.2. @Local
	3.4.1.3. Lifecycle Impact of Services

	3.4.2. Client Components
	3.4.2.1. MessageBus
	3.4.2.2. RequestDispatcher
	3.4.2.3. Caller<?>
	3.4.2.4. Sender<?>

	3.4.3. Lifecycle Tools
	3.4.3.1. Controlling Startup
	3.4.3.2. Performing Tasks After Initialization

	3.4.4. Timed Methods

	3.5. Client-Side Bean Manager
	3.5.1. Looking up beans
	3.5.2. Availability of beans

	3.6. Alternatives and Mocks
	3.6.1. Alternatives
	3.6.2. Test Mocks

	3.7. Bean Lifecycle
	3.7.1. Destruction of Beans
	3.7.1.1. Disposers

	Chapter 4. Errai CDI
	4.1. Features and Limitations
	4.1.1. Other features

	4.2. Events
	4.2.1. Conversational events
	4.2.2. Client-Server Event Example

	4.3. Producers
	4.4. safe dynamic lookup
	4.5. Deploying Errai CDI
	4.5.1. Deployment in Development Mode
	4.5.1.1. Special-case Classloading

	4.5.2. Deployment to a Servlet Engine
	4.5.3. Deployment to an Application Server

	Chapter 5. Marshalling
	5.1. Mapping Your Domain
	5.1.1. @Portable and @NonPortable
	5.1.1.1. Example: A Simple Entity
	5.1.1.2. Example: An Immutable Entity with a Public Constructor
	5.1.1.3. Example: An Immutable Entity with a Factory Method
	5.1.1.4. Example: An Immutable Entity with a Builder

	5.1.2. Manual Mapping
	5.1.2.1. Mapping Existing Client Classes
	5.1.2.2. Aliased Mappings of Existing Interface Contracts

	5.1.3. Manual Class Mapping
	5.1.3.1. MappingDefinition

	5.1.4. Custom Marshallers

	Chapter 6. Remote Procedure Calls (RPC)
	6.1. Making calls
	6.1.1. Proxy Injection

	6.2. Handling exceptions
	6.2.1. Global RPC exception handler

	6.3. Client-side Interceptors
	6.4. Session and request objects in RPC endpoints
	6.5. Batching remote calls

	Chapter 7. Errai JAX-RS
	7.1. Getting Started
	7.1.1. Dependencies
	7.1.2. GWT Module
	7.1.3. Server-Side JAX-RS Implementation
	7.1.4. Shared JAX-RS Interface

	7.2. Creating Requests
	7.2.1. Proxy Injection

	7.3. Handling Responses
	7.4. Client-side Interceptors
	7.5. Wire Format
	7.6. Configuration
	7.6.1. Configuring the default root path of JAX-RS endpoints
	7.6.2. Enabling Jackson marshalling

	Chapter 8. Errai JPA
	8.1. Getting Started
	8.1.1. Compile-time dependency
	8.1.2. GWT Module Descriptor
	8.1.3. INF/persistence.xml
	8.1.4. Declaring an Entity Class
	8.1.4.1. Entity Attributes
	8.1.4.2. ID Attributes and Auto-Generated Identifiers
	8.1.4.3. Single-valued Attributes
	8.1.4.4. Plural (collection-valued) Attributes

	8.1.5. Entity Lifecycle States
	8.1.5.1. Cascade Rules

	8.1.6. Obtaining an instance of EntityManager
	8.1.6.1. Storing and Updating Entities
	8.1.6.2. Fetching Entities by ID
	8.1.6.3. Removing Entities from Persistent Storage
	8.1.6.3.1. Clearing all Local Storage

	8.1.6.4. Detaching Entity Instances from the Entity Manager
	8.1.6.5. Testing if an Entity is in the Managed State

	8.1.7. Named Queries
	8.1.7.1. Declaring Named Queries
	8.1.7.2. Executing Named Queries

	8.1.8. Entity Lifecycle Events
	8.1.9. JPA Metamodel
	8.1.9.1. Errai Extensions to JPA Metamodel API

	8.1.10. JPA Features Not Implemented in Errai 2.1
	8.1.11. Other Caveats for Errai 2.1 JPA

	8.2. Errai JPA Data Sync
	8.2.1. How To Use It
	8.2.1.1. Dependencies
	8.2.1.2. A Running Example
	8.2.1.3. Client Side
	8.2.1.4. Server Side – DataSyncServiceImpl
	8.2.1.5. Dealing With Conflicts

	Chapter 9. Data Binding
	9.1. Getting Started
	9.1.1. Compile-time dependency
	9.1.2. GWT module descriptor
	9.1.3. Bindable Objects
	9.1.4. Initializing a DataBinder

	9.2. Creating Bindings
	9.3. Specifying Converters
	9.3.1. Registering a global default converter
	9.3.2. Providing a binding-specific converter

	9.4. Property Change Handlers
	9.5. Declarative Binding
	9.5.1. Default, Simple, and Chained Property Bindings
	9.5.2. Data Converters
	9.5.3. Replacing a model object

	9.6. Bean validation
	9.6.1. Excluding Classes from Validation

	Chapter 10. Errai UI
	10.1. Get started
	10.1.1. App.gwt.xml
	10.1.2. pom.xml
	10.1.3. Working Demo

	10.2. Use Errai UI Composite components
	10.2.1. Inject a single instance
	10.2.2. Inject multiple instances (for iteration)

	10.3. Create a @Templated Composite component
	10.3.1. Basic component
	10.3.2. Custom template names

	10.4. Create an HTML template
	10.4.1. Select a template from a larger HTML file

	10.5. Use other Widgets in a composite component
	10.5.1. Annotate Widgets in the template with @DataField
	10.5.2. Add corresponding attributes to the HTML template

	10.6. How HTML templates are merged with Components
	10.6.1. Example
	10.6.1.1. Composite component class:
	10.6.1.2. Template:
	10.6.1.3. Output / result:

	10.6.2. Element attributes (template wins)
	10.6.3. DOM Elements (component field wins)
	10.6.4. Inner text and inner HTML (preserved when component implements HasText or HasHTML)

	10.7. Event handlers
	10.7.1. Concepts
	10.7.2. GWT events on Widgets
	10.7.3. GWT events on DOM Elements
	10.7.4. Native DOM events on Elements

	10.8. Data Binding
	10.8.1. Default, Simple, and Chained Property Bindings
	10.8.2. Binding of Lists
	10.8.2.1. Binding lists with @Bound

	10.8.3. Data Converters

	10.9. Nest Composite components
	10.10. Extend Composite components
	10.10.1. Template
	10.10.2. Parent component
	10.10.3. Child component

	10.11. Stylesheet binding
	10.12. Internationalization (i18n)
	10.13. Extended styling with LESS

	Chapter 11. Errai UI Navigation
	11.1. Getting Started
	11.1.1. Compile-time dependency
	11.1.2. GWT Module Descriptor

	11.2. How it Works
	11.2.1. Declaring a Page
	11.2.1.1. The Starting Page
	11.2.1.2. Page Lifecycle
	11.2.1.3. Page State Parameters

	11.2.2. Declaring a Link with TransitionAnchor
	11.2.3. Declaring a Manual Link
	11.2.4. Following a Manual Link
	11.2.5. Installing the Navigation Panel into the User Interface
	11.2.6. Overriding the default Nagivating Panel type
	11.2.7. Viewing the Generated Navigation Graph

	Chapter 12. Errai Cordova (Mobile Support)
	12.1. Get started
	12.1.1. App.gwt.xml

	12.2. Integrate with native hardware
	12.3. Maven build
	12.4. AeroGear Wrappers
	12.4.1. Pipes
	12.4.2. Stores
	12.4.3. Authentication

	Chapter 13. Logging
	13.1. What is slf4j?
	13.2. Client-Side Setup
	13.3. Server-Side Setup
	13.4. Example Usage
	13.5. Logger Names

	Chapter 14. Configuration
	14.1. ErraiApp.properties
	14.1.1. As a Marker File
	14.1.2. As a Configuration File
	14.1.2.1. Configuration Merging
	14.1.2.2. Errai Marshalling Configuration
	14.1.2.3. Errai IoC Configuration

	14.1.3.

	14.2. Messaging (Errai Bus) Configuration
	14.2.1. Disabling remote communication
	14.2.2. Configuring an alternative remote remote bus endpoint
	14.2.3. ErraiService.properties
	14.2.3.1. Message Dispatching
	14.2.3.1.1. SimpleDispatcher
	14.2.3.1.2. AsyncDispatcher

	14.2.3.2. Threading
	14.2.3.3. Buffering
	14.2.3.4. Security
	14.2.3.5. Clustering
	14.2.3.6. Startup Configuration
	14.2.3.7. Example Configuration

	14.2.4. Servlet Configuration
	14.2.4.1. DefaultBlockingServlet
	14.2.4.2. DefaultBlockingServlet configured as Filter
	14.2.4.3. JettyContinuationsServlet
	14.2.4.4. StandardAsyncServlet

	Chapter 15. Troubleshooting & FAQ
	15.1. Why does it seem that Errai can't see my class at compile time?
	15.2. Why am I getting "java.lang.ClassFormatError: Illegal method name "<init>$" in class org/xyz/package/MyClass"?
	15.3. I'm getting "java.lang.RuntimeException: There are no proxy providers registered yet." in my @PostConstruct method!

	Chapter 16. Upgrade Guide
	16.1. Upgrading from 1.* to 2.0
	16.2. Upgrading from 2.0.Beta to 2.0.*.Final
	16.3. Upgrading from Errai 2.2.x to 2.4 or 3.0

	Chapter 17. Downloads
	Chapter 18. Sources
	Chapter 19. Reporting problems
	Chapter 20. Errai License
	Appendix A. Revision History

