Errai

Erral Reference Guide

[l (=] = Vo7 < T iX

1. DOCUMENT CONVENTIONS ...uiiiiiiiieeiiiie e ettt e e e ettt s e e e et e e e e et e e e eate e e e eettneeeeetnnaeeeareaaaees iX
A =T | o= Uod ¢
I a4 o To 1T o 10 Y o PSP 1
R VY g T S| U 1
I = To [T (=T B0 1 11V U= 1
2. MBS SAGING 1 ieittiet ittt ettt 3
N Y/ =YY Y= o T To @ A= V= 3
2.2. MeSSagiNg API BASICScouuuiiiiiiiie et 3
2.2.1. Sending Messages with the Client BUSccooeviiiiiiiiiiiincee e 3
2.2.2. Receiving Messages on the Server Bus / Server Servicescccoeeveeevnnnnn. 5
2.2.3. Sending Messages with the Server BUSccooevviiiiiiiiiiiieecie e, 5
2.2.4. Receiving Messages on the Client Bus/ Client Servicescccoovvveevvneeees 6
2.2.5. LOCAI SEIVICES ..iiviiiiiiiii ittt ettt e e et e aeens 7

2.3. Single-Response Conversations & Pseudo-Synchronous Messaging 8
2.4, Sender Inferred SUDJECLSuiiiiiiiii e 8
2.5, BroadCastiNgcceuuueiiiiiei it 9
2.6. Client-to-Client COMMUNICALIONuiiiiiiiieiii e e 9
2.6.1. REIAY SEIVICES ...uciiiiiieiiii et e 9

2.7. Message Routing Informationcc.oiiiiiiiiiiii e 10
2.8. HaNAliNG EITOIS ..ot e e e e e e 11
2.8.1. Handling global message transport €rrorscocceeeveiiieiiieeeiiiecneeeee e 12

2.9. AsSynchronous MeSSAge TaSKScciiiiiiiiiiiiiie ettt 12
2.10. REPEALING TASKS ..civuiiiiiiiiiii et e e e e e e e e e e e e e e e eaa s 13
2.11. QUEUE SESSIONS ..evuiiineiiteeeietet et e e et et e eea e aet e ee it e ean e eateeeanaeetnaeeaneeanaeeeen 14
0 T) = oY = 14
2,002, SCOPES eiietiieei ettt 14
2.12. Client Logging and Error Handlingccoevuiieiiiiiiiiecie e 15
2.13. Wire ProtoCol (J.REP) ...cooeiiiii e 15
2.13.1. Payload SErUCIUIEc.ouiiiiieiii e e e e e e e 15
2.13.2. MeSSAQE ROULING ...ceeviiieiiiiiieeeii ettt et e et e et e e 18
2.13.3. Bus Management and Handshaking Protocolscccccccoeviiineiinnennnnn, 18
A O 01V T 7= 11T 1 20
2.15. WEBSOCKELS ...t 20
2.15.1. Configuring the sideband SErvercoooi i 21
2.15.2. Deploying With JBOSS AS 7 ...iiiiiiiie e 21
2.16. BUS LITECYCIE ... 22
2.16.1. Turning Server Communication On and Offccociiiiiii i, 22
2.16.2. Observing Bus Lifecycle State and Communication Status 23
2.17. SNAUOW SEIVICES ...ciiiiiiieiiiiii ettt ettt e et e e et e e et e e e et e e e e eran s 24
2.18. Debugging Messaging ProbIEmSooiiiiiiiiiiiii e 24
T B 1T oX=Ta Yo =T o on A 1 | 1=] f Lo o TR 27
N I O o1 = 11 o 1= gLV o oo [P PPPTTRPPPPPI 28
3.2. Wiring server Side COMPONENTScouuiiiiieiiiiieiii e e e e e e e e e e e e eeeas 30

Errai

TR T Yol o] o[PSPPI PRN 30
3.3.1. DEPENUENT SCOPE . cevniiiiieii et e e e e e e ean s 30

B]| I =] S (o] o £ 31
4.1, BUS SEIVICES .vevtiiiiiiiiiie et e et e et et e e e e e et e e e et e e e et e e e eaan s 31
3.4.2. ClieNt COMPONENESuiiiiiiieeeeii ettt e e e et e e 32
I T I =Ty Y [T I Yo 35
0 T o T=To 1Y = 1 o T <P 36

3.5. Client-Side Bean MaNAGETocvvuuiiiiieiii e e e e e e e e e e e e e e aanas 36
3.5.1. LOOKING UP DEANS ...ouiiiiii e 37
3.5.2. Availability of BEANSiiiii 38

3.6. Alternatives and MOCKScoouuiiiiiiiiii et e e e 38
G G T B AN 1 1= 1 0 T= LAY SRR 38
3.6.2. TESE MOCKS ..eieii e 40

3.7. BEAN LIfECYCIE .oniiiiiiiii e 41
3.7.1. DeStruction Of BEANSccuiiiiiiiiiiieiii e eens 41

A - T 1 B S SPPPR 45
4.1, Features and LIimitatiONSco.uiiiiiiiiiiiiiii e 45
I O 11 1= g (== V(B (= PR 46
Y] £ PPN 46
4.2.1. CoNVErsatioNal BVENTScoiiiuiiieiiiiiie et et e et e 47
4.2.2. Client-Server Event EXamPpPlecooouiiiiiiiiiiiii e 48

e T o o [T =Y U 51
4.4, safe dynamic [00KUPcoouuiiiiii e 52
F T B T=T o] (o) Y/ g To T =1 = T I 52
4.5.1. Deployment in Development MOOEcc.uuviiiiiiiiiiiiii e 53
4.5.2. Deployment to a Servlet ENGINEoovuviiiiiiiii e 54
4.5.3. Deployment to an Application SErverccoovveiiiiiiieiiiiinee e 54

B MaAISNAIIING o e 55
5.1. Mapping YOUFr DOMAINccouuiiiiiiieiiii ettt e e e e b 55
5.1.1. @Portable and @NONPOrtableccouieniiiiii e 55
5.1.2. Manual MapPiNgoeieiiiieiiii et 59
5.1.3. Manual Class MappinNgccccuueeiuieiiiieeiieeeiiee e e eieeeaneeee e s eeaaeeaaeens 61
5.1.4. Custom Marshallerscooouiiiiiiiii e 63

6. Remote Procedure Calls (RPC) ...o.uiiiiiiii e 67
6.1. MAKING CAIIS ...oeuiiiiiii e e 68
00 T) VA 11 1= o2 1T o 69

6.2. Handling @XCEPLIONSuiiiiiiiiiiiii et et 69
6.2.1. Global RPC exception handlerccooeeiiiiiiiiiiie e 70

6.3. Client-Side INTEICEPLONSiiieeii ittt et e e e e e eeaans 70
6.4. Session and request objects in RPC endpointsc.cooeeiiiiiiieiiiiceii e, 71
6.5. Batching remote CallSoiiiiiiiii e 72
T EITAl JAX RS ittt e et a e aae 73
7.1, GettiNg STAMEAcooeviiiiiii et 73
0 T B =Y o 1= (o = g 1= 73

7.1.2. GWT MOUIE ...t 74

7.1.3. Server-Side JAX-RS Implementationcccoeeviiiiiiiiii e 74
7.1.4. Shared JAX-RS INtEIfaCeoovviiiiiiii e 75

7.2, Creating REQUESESiiiiiiiii e e e e e e e e e e et e et e et e e ea e e eeaes 76
7.2.1. ProXY INJECHON ...ttt 77

7.3. HaNAliNg RESPONSESuiiiiiiiiiieiii e e et e e e e e e e e e e e et e e e e eeas 78
7.4. Client-Side INTEICEPLOISoiieeii ettt ettt e e e e et e enaans 79
7.5, WIIE FOIMAL ..evtiiiii ettt et e e ettt e r e e e r e e e rn b e aeeeaeeens 80
LG R ©e] o1 {To 0] =1 (o] o PP PPPPTT 80
7.6.1. Configuring the default root path of JAX-RS endpointsccoceeveeeennnnns 80
7.6.2. Enabling Jackson marshallingccoooiiiiiiiiiiiiiiii e 81

8. EITal TP A e e e 83
8.1. GEettiNG STAMEAccevviiiiiii et e 84
8.1.1. Compile-time dePENUENCYccuuiiiiiiiii e 84
8.1.2. GWT MOdUIE DESCHIPION ...vuuiieiiiieeeiiie ettt 84
8.1.3. INF/PErSIStENCE.XMI ...ivviiiii i e aes 84
8.1.4. Declaring an ENtity CIaSScccuuiiiiiiiiieeiiii et 85
8.1.5. Entity LIfECYCle STAteScuiiiiiiiii i 88
8.1.6. Obtaining an instance of EntityManagercccoeveiiiiiiiiiiiiiiieecei e 89
8.1.7. NamMed QUETIEScivtiiiiiiiiii e e e e e e e e e e et e e e e aaaees 91
8.1.8. Entity LifeCYCle EVENTSc.ouiiiiiiiiii e 92
8.1.9. JPA Metamodeloiii i 94
8.1.10. JPA Features Not Implemented in Errai 2.1ccouiiiiiiiiinieiiiiineeeciie, 94
8.1.11. Other Caveats for Errai 2.1 JPAooomiiiiiiieeiiie e 95

8.2. EITal JPA DaAl@ SYNC .oevuuiiiiiiieieiii ettt ettt 95
8.2.1. HOW TO USE Il .oeiiiiiii i 96

9. DAtA BiNOING oveuieiiiiiiei ettt e e eae 103
9.1, GEttiNg SEAMEAouiiiiiiii e 103
9.1.1. Compile-time dePENTENCYcouuniiiiiiiiieiii e 103
9.1.2. GWT module deSCrPLOrc.vuiiie e e 103
9.1.3. BiNdable ODJECEScoeviiiiiiii e 103
9.1.4. Initializing @ DataBIiNderccciiiiiiiiiiiieei e 104

9.2. Creating BinNdiNGSuiiiiiiiiiiii e 105
9.3. SPECITYING CONVEIEIS . .oovuiiiiiiiii e e e e e e e e e e e e e e e e e eaa e eaes 106
9.3.1. Registering a global default converterccoovviiiiiiiiiiin 106
9.3.2. Providing a binding-specific convertercoccoeviiiiiiiiiie e, 107

9.4. Property Change HandIers ...t 107
9.5. Declarative BIiNAINGccouuiiiiiiiiiiiiii e e e e e e e e e e e eanaes 108
9.5.1. Default, Simple, and Chained Property Bindingsc.ocoevviieiiiiinnenennnn. 109
9.5.2. Data CONVEITEISccvuiiiiiiiiiicci e 110
9.5.3. Replacing a model ODJECToooiiiiiiii e 110

9.6. Bean Validationcouuuiiiiiii i eeees 111
9.6.1. Excluding Classes from Validationccccooveiiiiiiiiiiiiiii e 112

T = o - T O L PP PPPPPPPRPTIN 115

Errai

O I =Y 1 = 15 (T PPN 115
0 Y o o I 1,1 5" 1 1 115
10.2.2. POMXIMI ittt et e e ena e eees 115
10.1.3. WOrKiNG DEIMO ...cvuiiiiicii et e e e e e e e e e e 116

10.2. Use Errai Ul COmpoSite COMPONENTSuuiiiiiiiiieiiiiiiee et ee et e e e e 116
10.2.1. Inject @ SINGIE INSTANCEccouiiiiii i e 116
10.2.2. Inject multiple instances (for iteration)ccccvevieiiiiinieiiiine e 116

10.3. Create a @Templated Composite COMPONENTcvevvieiiiiiiiiieeii e eeeeeaen, 117
10.3.1. BASIC COMPONENTuiiiiiiieieii ettt 117
10.3.2. Custom template NAMEScc.viiiiiiiii e 117

10.4. Create an HTML temMPlateoooiiiiieiiii e 118
10.4.1. Select a template from a larger HTML filecccooeiiiiiiiiiiee, 118

10.5. Use other Widgets in a composite COMPONENEc.uuiveiiiiiiieiiiiiieeeiie e 120
10.5.1. Annotate Widgets in the template with @DataField 120
10.5.2. Add corresponding attributes to the HTML templatecccceeeennnis 121

10.6. How HTML templates are merged with Componentscccccceeeviieviinneinneenn, 122
10.6. 1. EXAMPIE oeeiiiii e 122
10.6.2. Element attributes (template Wins)cccovviiiiiiiiiiiiiiecie e 123
10.6.3. DOM Elements (component field WINS)ccoooeiiiiiiiiiiiiiiiciees 123
10.6.4. Inner text and inner HTML (preserved when component implements
HasText 0r HASHTML) ...cooiiiiiiii e 124

10.7. EVENE NANAIETS ... e 124
O A T O o 4 (07T o PP PP 124
10.7.2. GWT events 0N WIdQeLSccouiiiiiiiiiiicii e e 124
10.7.3. GWT events on DOM EIeMeNtScoeuveiiiiiiiiiiiiiii e 125
10.7.4. Native DOM events on Elementscooovviiiiiiiiiiiieiiiinieeeneeeei e 125

10.8. DAta BINAING ...ceeveneiiiiiieieii ettt e e et e eaaan 127
10.8.1. Default, Simple, and Chained Property Bindingsccccocoeviviiieinnn, 128
10.8.2. BiNdING OF LISES ...euuiiiiiiiiieiiiiii et 129
10.8.3. DAt CONVEITEIScunieiiiii i e e e et e et e e e e aeeens 131

10.9. Nest COmMPOSIte COMPONENTSuuuiiiiiiiieiiii et e ettt eeai e eeaans 131

10.10. Extend CompOSite COMPONENLScvuuiiiiiieeieeeiieeeiie e e e e e e e e et eeaeeeeans 131
10.20.1. TEMPIALE «.eeeiieeii et 132
10.10.2. Parent COMPONENT ...t eeaas 132
10.20.3. Child COMPONENT ...t 133

10.11. Stylesheet DINAINGcoovniiiii e 133

10.12. Internationalization (I18N)couuiiiiiiiieiiii e 134

10.13. Extended styling With LESScouiiiii e 137

11, Errai Ul NAVIGAtION .uuiiiiieei ettt e et e e 139

11.1. Getting Startedcccvniiii i 139
11.1.1. Compile-time dePeNUENCYoveieriiieiiiiii et 139
11.1.2. GWT ModUle DESCIIPION . .cvuneiiiieiiii e e e e e e e e e e eens 140

2 o o Y | VAo 4 € 140
5 R =T - T To = W = Vo - P 140

Vi

11.2.2. Declaring a Link with TransitionANCNOrccoviiiiiiiiiiiii i 143

11.2.3. Declaring a Manual LiNKcoioiiiiiiiiii e 144

11.2.4. Following a Manual LiNKcooooiiiiiiiiiieee e 144

11.2.5. Installing the Navigation Panel into the User Interfacecccc.ceuune.. 145

11.2.6. Overriding the default Nagivating Panel typeccooooiiiiiiiiiinieiiinnnnn. 146

11.2.7. Viewing the Generated Navigation Graphccccccoeviiiiniiiiniineenee 147

12. Errai Cordova (MoDile SUPPOIT) ..oeeeeeiiiiiiee e 149

D I 1=) =T 1 (=0 PP 149

1201 APP-GWEXITI (ot 149

12.2. Integrate with native hardwarecooooiiiiiin i 149

12.3. MAVEN DU ..eeeeee e e 151

12.4. ACTOGEAI WIAPPEIS ..iiuiiiitie ittt e et e e e e e e et e et eaeanaen 152

T T o T 152

T12.4.2. STOTES ..ot e e 153

e T AU 11 1= 1 o o o 153

1 1o Yo o 110 Yo 155

131 WHAt IS SIAJ? oo e 155

13.2. ClIeNt=-SIAdE SEIUP ..uiiriiiii e e e e e e e e e e e e et e e eanaees 155

13.3. SEIVEI-SIOE SEIUP ..iirtiiiiiii ettt ettt e e e 155

13.4. EXAMPIE USAQGE ...cvniiiiiiiii i e e e e e e e 155

13.5. LOGOEI NAIMES ...ttt e e 156

S o Yo} o T 1= 1 Y o PR 157

14.2. ErraiAPP.PIrOPEITIES .ottt ettt ettt e e aa s 157

14.2.1. AS @ MarKer Fle ..ouuniiiiiii e 157

14.1.2. As a Configuration Filecooiiiiiiiiii e 157

O PSP 158

14.2. Messaging (Errai Bus) Configurationoceeuiiiiiiiiiiiieiiiiieeeei e 158

14.2.1. Disabling remote cOmMmUNICALIONccuuiiiiiieiiiieiiii e e e e e 158

14.2.2. Configuring an alternative remote remote bus endpoint 159

14.2.3. EIraiServiCe.proPEITIESccuuueiii i eeie et e e e e e e e e e eaes 159

14.2.4. Servlet ConfigUrationoooieiiiiieiiiiiee e 162

15. Troubleshooting & FAQ ..o e e e s 167

15.1. Why does it seem that Errai can't see my class at compile time? 167
15.2. Why am | getting "java.lang.ClassFormatError: lllegal method name "<init>$" in

class org/xyz/package/MyCIasS"?ui i 167
15.3. I'm getting "java.lang.RuntimeException: There are no proxy providers registered

yet." in my @PostConstruct Method!o 168

T T oo T = Vo LT €U o = 169

16.1. Upgrading from 1.% 10 2.0iiiiiiiiiiiiie e 169

16.2. Upgrading from 2.0.Beta to 2.0.*.Finalccccooiiiiiiiiiiii e, 170

16.3. Upgrading from Errai 2.2.X t0 2.4 OF 3.0uuiiiiiiiiieiii e 170

A oYY] [- Vo =SSP PTPPN 173

S TS T U o = P 175

19. RePOrting ProblemS ..o 177

Vii

Errai

20. Errai License

A, REVISION HISTOTY ...t e e e e e e e e e et e ean s

viii

Preface

1. Document Conventions

2. Feedback

Chapter 1.

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web
technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC
infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the
examples, and for leveraging the quickstart utilities.

» JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

« Apache Maven: http://maven.apache.org/download.html

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

Chapter 2.

Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

ErraiBus provides a straight-forward approach to a complex problem space. Providing common
APIs across the client and server, developers will have no trouble working with complex messaging
scenarios from building instant messaging clients, stock tickers, to monitoring instruments. There's
no more messing with RPC APIs, or unweildy AJAX or COMET frameworks. We've built it all in
to one, consice messaging framework. It's single-paradigm, and it's fun to work with.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

2.2. Messaging API Basics

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the MessageBui | der .

Components that want to receive messages need to implement the MessageCal | back interface.
But before we dive into the details, let's look at some use cases first.
2.2.1. Sending Messages with the Client Bus

In order to send a message from a client you need to create a Message and send it through an
instance of MessageBus . In this simple example we send it to the subject 'HelloWorldService'.

public class Hellowrld inplenents EntryPoint {

Chapter 2. Messaging

/] Get an instance of the RequestDi spatcher
private RequestDi spatcher di spatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {
Button button = new Button("Send nessage");

but t on. addd i ckHandl er (new Cl i ckHandl er () {
public void ondick(dickEvent event) {
/1l Send a nessage to the 'Hel |l oWorl dService'.
MessageBui | der. cr eat eMessage()
.toSubj ect ("Hel | oWor| dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
. sendNowW t h(di spatcher); // (4)
1)

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:

1.

2.

We specify the subject we wish to send a message to. In this case, " Hel | oWor | dSer vi ce ".

We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

. We indicate that we do not want to provide an Error Cal | back to deal with errors for this

message.

. We transmit the message by providing an instance to the Request Di spat cher

Important

An astute observer will note that access to the Request Di spat cher differs
within client code and server code. Because the client code does not run within
a container, access to the Request Di spat cher and MessageBus is statically
accessed using the Err ai Bus. get () and Err ai Bus. get Di spat cher () methods.
The server-side code, conversely, runs inside a dependency container for
managing components. See the section on Errai IOC and Errai CDI for using
ErraiBus from a client-side container.

When using Errai IOC or CDI, you can also use the Sender<T> interface to send
messages.

Receiving Messages on the Server Bus / Server Services

2.2.2. Receiving Messages on the Server Bus / Server Services

Every message has a sender and at least one receiver. A receiver is as it sounds--it receives the
message and does something with it. Implementing a receiver (also referred to as a service) is
as simple as implementing our standard MessageCallback interface, which is used pervasively
across, both client and server code. Let's begin with server side component that receives
messages:

@bervi ce
public class Hell oWwrldService inplenents MessageCal | back {
public void call back(Message nmessage) {
Systemout.printin("Hello, Wrld!l");

He we declare an extremely simple service. The @er vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

2.2.3. Sending Messages with the Server Bus

In the following example we extend our server side component to reply with a message
when the callback method is invoked. It will create a message and address it to the subject '
Hel | oWor I dd i ent "

@er vi ce
public class Hell oWwrl dService inplenments MessageCal | back {

private Request D spatcher di spatcher;

@ nj ect
public Hel | oWrl dServi ce(Request Di spat cher di spatcher) {
di spat cher = di spatcher;

public void call back(CommandMessage nessage) {
/1 Send a nessage to the 'HelloWrlddient'.
MessageBui | der . cr eat eMessage()
.toSubject("HelloWrldCient") // (1)

.signal l'i ng() Il (2)
.with("text", "H There") Il (3)
. NnoError Handl i ng() Il (4)
. sendNowW t h(di spat cher); /'l (5)

1),

Chapter 2. Messaging

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor 1 dC i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .

2.2.4. Receiving Messages on the Client Bus/ Client Services

Messages can be received asynchronously and arbitriraily by declaring callback services within
the client bus. As ErraiBus maintains an open COMET channel at all times, these messages are
delivered in real time to the client as they are sent. This provides built-in push messaging for all
client services.

public class Hellowrld inplenments EntryPoint {
private MessageBus bus = Errai Bus. get();

public void onMbdul eLoad() {
[-..]

| *
* Declare a service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be("Broadcast Recei ver", new MessageCal | back() ({
public void cal |l back(CommandMessage message) {
/*
* When a nmessage arrives, extract the "text" field and
* do sonmething with it
*/
String nmessageText = message.get(String.class, "text");

Local Services

1)

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

2.2.5. Local Services

On the client or the server, you can create a local receiver which only receives messages that
originated on the local bus. A local server-side service only receives messages that originate on
that server, and a local client-side service only receives messages that originated on that client.

To create a local receiver using the declarative API, use the @ocal annotation in conjunction
with @er vi ce :

@ocal
@ber vi ce
public class HellolntrovertService inplenents MessageCal | back {
public void call back(Message nmessage) {
Systemout.printin("Hello, ne!");

To create a local receiver using through programmatic service registration, use the
subscri beLocal () method in place of subscri be() :

public void registerLocal Servi ce(MessageBus bus) {
bus. subscri belLocal (" Local Broadcast Recei ver", new MessageCal | back() {
public void call back(Message nmessage) {
String messageText = nessage.get(String.class, "text");

}
1),

Both examples above work in client- and server-side code.

Chapter 2. Messaging

2.3. Single-Response Conversations & Pseudo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der. cr eat eMessage()
.t oSubj ect (" Conver sati onal Servi ce").signalling()
. Wi th("SoneFi el d", soneVal ue)
. NoError Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message nmessage) {
Systemout.println("l received a response");

}
})
See the next section on how to build conversational services that can respond to such messages.

2.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.toSubj ect (" Ooj ect Service").signalling()
.wi th(MessageParts. Repl yTo, "dient Endpoint")
. noError Handl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der . cr eat eConver sat i on(message)
. subj ect Provi ded() . si gnal i ng()

Broadcasting

. Wi th("Records", records)
.noErrorHandl ing().reply();

In the above examples, assuming that the latter example is inside a service called
Obj ect Ser vi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

2.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der . cr eat eMessage() .
.toSubj ect (" Messageli st ener")
.wWth("Text", "Hello, fromyour overlords in the cloud")
. noError Handl i ng() . sendd obal Wt h(di spatcher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

2.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

2.6.1. Relay Services

The essential architectural thing you'll need to do is create a relay service that runs on the server.
Since a service advertised on the server is visible to all clients and all clients are visible to the
server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 2.7, “Message Routing Information”

Chapter 2. Messaging

2.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
gqueues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

You can obtain the Sessi onl Ddirectly from a Message by getting the QueueSessi on resource:

QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Sessi on. nane());
String sessionld = sess. get Sessionld();

You can extract the Sessi onl D from a message so that you may use it for routing by obtaining
the QueueSessi on resource from the Message . For example:

public void call back(Message nessage) ({
QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Sessi on. nane());
String sessionld = sess. get Sessionld();

/'l Record this sessionld sonewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent MessagelLi stener")

.signal ling()
.w t h(MessageParts. Sessi onl D, sessi onl d)
.with("Message", "W're relaying a nessage!")

. noErrorHandl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

10

Handling Errors

It may be tempting however, to try and include destination Sessi onl Ds at the client level, assuming
that this will make the infrastructure simpler. But this will not achieve the desired results, as the
bus treats Sessi onl Ds as transient. Meaning, the Sessi onl D information is not ever transmitted
from bus-to-bus, and therefore is only directly relevant to the proximate bus.

2.8. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicity make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor | dServi ce")
.signalling()
.with("nmsg", "H therel™")
.errorsHandl edBy(new ErrorCal | back() {
publi c bool ean error(Message nmessage, Throwabl e throwabl e) {
t hrowabl e. pri nt St ackTrace() ;
return true;
}

})
. sendNowW t h(di spat cher);

The addition of error handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCal |l back() {
publ i c bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt St ackTrace();
return true;

MessageBui | der . cr eat eMessage()

11

Chapter 2. Messaging

.toSubj ect (" Hel | oWor| dServi ce")
.signalling()

.wWth("nsg", "H there!")
.errorsHandl edBy(error)

. sendNowW t h(di spat cher);

The error handler is required to return a bool ean value. This is to indicate whether or not Errai
should perform the default error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to explicitly surpress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

2.8.1. Handling global message transport errors

You may need to detect problems which occur on the bus at runtime. The client bus API provides a
facility for doing thisinthe or g. j boss. errai . bus. cli ent. framewor k. d i ent MessageBus using
the addTr ansport Err or Handl er () method.

A Transport Error Handl er is an interface which you can use to define error handling behavior
in the event of a transport problem.

For example:

nmessageBus. addTr ansport Err or Handl er (new Transport Error Handl er () {
public void onError(TransportError error) {
/'l error handling code.

}
1),

The Transport Er r or interface represents the details of an an error from the bus. It contains a set
of methods which can be used for determining information on the initial request which triggered
the error, if the error occurred over HTTP or WebSockets, status code information, etc. See the
JavaDoc for more information.

2.9. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

12

Repeating Tasks

MessageBui | der . creat eConver sati on(msQ)
.t oSubj ect (" FunSubj ect")
.signal ling()
. noError Handl i ng()
.repl yDel ayed(Ti neUni t. SECONDS, 5); // sends the nessage after 5 seconds.

or

MessageBui | der. cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signal l'ing()
. noEr ror Handl i ng()
. sendDel ayed(request D spatcher, TinmeUnit.SECONDS, 5); // sends the nessage
after 5 seconds.

2.10. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's r epeat XXX() methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect")
.signal ling()
.wWi thProvided("time", new ResourceProvider<String>() {
Si npl eDat eFormat fmt = new Si npl eDat eFor mat (" hh: nm ss");

public String get() {
return fmt.format(new Date(SystemcurrentTimeMI1is());

}
. noEr r or Handl i ng()

. sendRepeat i ngW t h(request Di spat cher, Ti neUnit.SECONDS, 1); //sends a nessage
every 1 second

The above example sends a message very 1 second with a message part called "ti me" ,
containing a formatted time string. Note the use of the wi t hProvi ded() method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

13

Chapter 2. Messaging

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel () method of the AsyncTask instance which is returned when creating a task. Reference
to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBui |l der. creat eConver sati on(nessage)
.toSubj ect (" Ti neChannel ") . si gnal | i ng()
. Wi thProvi ded(Ti neServerParts. Ti neStri ng, new ResourceProvi der<String>() {
public String get() {
return String.val ue (SystemcurrentTineMIIlis());

}
}) . defaul t ErrorHandl i ng().repl yRepeati ng(Ti meUnit. M LLI SECONDS, 100);

/1 cancel the task and interrupt it's thread if necessary.
t ask. cancel (true);

2.11. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

2.11.1. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

2.11.2. Scopes
One of the things Errai offers is the concept of session and local scopes.
2.11.2.1. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) {

14

Client Logging and Error Handling

/1 obtain a reference to the session context by referencing the incom ng
nmessage.
Sessi onCont ext i njectionContext = SessionContext.get(nessage);

/] set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

2.11.2.2. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference to the | ocal context by referencing the i ncom ng nessage.
Local Cont ext injecti onContext = Local Context. get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

2.12. Client Logging and Error Handling
2.13. Wire Protocol (J.REP)

ErraiBus implements a JSON-based wire protocol which is used for the federated communication
between different buses. The protocol specification encompasses a standard JSON payload
structure, a set of verbs, and an object marshalling protocol. The protocol is named J.REP. Which
stands for JSON Rich Event Protocol.

2.13.1. Payload Structure

All wire messages sent across are assumed to be JSON arrays at the outermost element,
contained in which, there are 0..n messages. An empty array is considered a no-operation, but
should be counted as activity against any idle timeout limit between federated buses.

Example 2.1. Figure 1 - Example J.REP Payload

15

Chapter 2. Messaging

{"ToSubj ect" : "SoneEndpoint", "Value" : "SoneVal ue" },
{"ToSubj ect" : "SoneQ her Endpoi nt", "Value" : "SoneQ herVal ue"}

In Figure 1, we see an example of a J.REP payload containing two messages. One bound for an
endpoint named " SomreEndpoi nt " and the other bound for the endpoint " Some her Endpoi nt "
. They both include a payload element " Val ue" which contain strings. Let's take a look at the
anatomy of an individual message.

Example 2.2. Figure 2 - An J.REP Message

{
"ToSubj ect” : "Topi cSubscriber",
"ComrandType" : "Subscribe",
"Val ue " "happyTopi c",
"Repl yTo" : "MTopi cSubscri ber Repl yTo"
}

The message shown in Figure 2 shows a very vanilla J.REP message. The keys of the JSON
Object represent individual message parts , with the values representing their corresponding
values. The standard J.REP protocol encompasses a set of standard message parts and values,
which for the purposes of this specification we'll collectively refer to as the protocol verbs.

The following table describes all of the message parts that a J.REP capable client is expected
to understand:

Part Required JSON Type Description

ToSubj ect Yes String Specifies the subject
within the bus, and
its federation, which
the message should
be routed to.

CommandType No String Specifies a command
verb to be transmitted
to the receiving
subject. This is an
optional part of a
message contract, but
is required for using
management services

Repl yTo No String Specifies to the
receiver what subject
it should reply to

16

Payload Structure

Required JSON Type Description

in response to this
message.

Val ue No Any A recommended but
not required standard
payload part for
sending data to

services
PriorityProcessing No Number A processing order
salience attribute.
Messages which
specify priority

processing will be
processed first if they
are competing for
resources with other
messages in flight.
Note: the current
version of ErraiBus
only supports two
salience levels (0 and
>1). Any non-zero
salience in ErraiBus
will be given the same
priority relative to 0
salience messages

Err or Message No String An accompanying
error message with
any serialized
exception

Thr owabl e No Object If applicable, an
encoded object
representing any
remote exception
that was thrown
while dispatching the
specified service

2.13.1.1. Built-in Subjects

The table contains a list of reserved subject names used for facilitating things like bus management
and error handling. A bus should never allow clients to subscribe to these subjects directly.

17

Chapter 2. Messaging

Subject Description

d i ent Bus The self-hosted message bus endpoint on the
client

Ser ver Bus The self-hosted message bus endpoint on the
server

ClientBusErrors The standard error receiving service for clients

As this table indicates, the bus management protocols in J.REP are accomplished using self-
hosted services. See the section on Bus Management and Handshaking Protocols for details.

2.13.2. Message Routing

There is no real distinction in the J.REP protocol between communication with the server, versus
communication with the client. In fact, it assumed from an architectural standpoint that there is
no real distinction between a client and a server. Each bus participates in a flat-namespaced
federation. Therefore, it is possible that a subject may be observed on both the server and the
client.

One in-built assumption of a J.REP-compliant bus however, is that messages are routed within
the auspices of session isolation. Consider the following diagram:

Figure 2.1. Figure 3 - Topology of a J.REP Messaging Federation

In Figure 3, is is possible for Client A to send messages to the subjects ServiceA and ServiceB
. But it is not possible to address messages to ServiceC . Conversely, Client B can address
messages to ServiceC and ServiceB , but not ServiceA .

2.13.3. Bus Management and Handshaking Protocols

Federation between buses requires management traffic to negotiate connections and manage
visibility of services between buses. This is accomplished through services named d i ent Bus and
Ser ver Bus which both implement the same protocol contracts which are defined in this section.

2.13.3.1. ServerBus and ClientBus commands

Both bus services share the same management protocols, by implementing verbs (or commands)
that perform different actions. These are specified in the protocol with the CommandType message
part. The following table describes these commands:

Table 2.1. Message Parts for Bus Commands:

Command / Verb Message Parts Description

Connect ToQueue N/A The first message sent by a
connecting client to begin the
handshaking process.

18

Bus Management and Handshaking Protocols

Command / Verb Message Parts Description

CapabilitiesNotice Capabi | i ti esFl ags A message sent by one bus
to another to notify it of its
capabilities during handshake
(for instance long polling or
websockets)

Fi ni shSt at eSync N/A A message sent from one
bus to another to indicate
that it has now provided all
necessary information to the
counter-party bus to establish
the federation. When both
buses have sent this message
to each other, the federation is
considered active.

Renot eSubscri be Subj ect or Subj ect sLi st A message sent to the remote
bus to notify it of a service
or set of services which it is
capable of routing to.

Renot eUnsubscri be Subj ect A message sent to the remote
bus to notify it that a service is
no longer available.

Di sconnect Reason A message sent to a server
bus from a client bus to
indicate that it wishes to
disconnect and defederate.
Or, when sent from the client
to server, indicates that the
session has been terminated.

Sessi onExpi red N/A A message sent to a client bus
to indicate that its messages
are no longer being routed
because it no longer has an
active session

Hear t beat N/A A message sent from one
bus to another periodically to
indicate it is still active.

Part Required JSON Type Description

CapabilitiesFlags Yes String A comma delimited
string of capabilities

19

Chapter 2. Messaging

Required JSON Type Description

the bus is capable of

us
Subj ect Yes String The subject to
subscribe or

unsubscribe from

Subj ect sLi st Yes Array An array of strings
representing a list of
subjects to subscribe
to

2.14. Conversations

Conversations are message exchanges which are between a single client and a service. They
are a fundmentally important concept in ErraiBus, since by default, a message will be broadcast
to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

@ber vi ce
public class Hell oWrl dService inplenents MessageCal | back {
public void call back(CommandMessage nessage) {
/'l Send a nessage to the '"HellowrldCient' on the client that sent us the
/'l the message.
MessageBui | der . creat eConver sati on(message)
.toSubj ect ("Hel | oWor!l dd i ent")
.signal ling()
.with("text", "H There! W're having a reply!")
. noErrorHandl i ng().reply();
¥

Note that the only difference between the example in the previous section and this is the use of
the cr eat eConver sati on() method with MessageBui | der .

2.15. WebSockets

ErraiBus has support for WebSocket-based communication. When WebSockets are enabled,
capable web browsers will attempt to upgrade their COMET-based communication with the server-
side bus to use a WebSocket channel.

20

Configuring the sideband server

There are two different ways the bus can enable WebSockets. The first uses a sideband server,
which is a small, lightweight server which runs on a different port from the application server. The
second is native JBoss AS 7-based integration.

2.15.1. Configuring the sideband server

Activating the sideband server is as simple as adding the following to the
Errai Service. properti es file:

errai. bus. enabl e_web_socket _server=true

The default port for the sideband server is 8085 . You can change this by specifying a port with
the errai . bus. web_socket _port property in the Errai Servi ce. properti es file.

2.15.2. Deploying with JBoss AS 7

Itis currently necessary use the native connector in JBoss AS for WebSockets to work. So the first
step is to configure your JBoss AS instance to use the native connector by changing the donai n/
confi gurati on/ domai n. xm file, and change the line:

<subsystem xm ns="urn:jboss: domain: web: 1. 1" default-virtual -server="default-
host" native="fal se">

to:

<subsystem xm ns="urn:jboss: donmain:web: 1.1" default-virtual -server="default-
host" native="true">

You will then need to configure the servlet in your application's web. xmi which will provide
WebSocket upgrade support within AS7.

Add the following to the web. xm :

<cont ext - par ank
<par am nanme>websocket s- enabl ed</ par am nanme>
<par am val ue>t rue</ par am val ue>

</ cont ext - par an®>

<cont ext - par an»

21

Chapter 2. Messaging

<par am name>websocket - pat h- el ement </ par am nane>
<par am val ue>i n. er r ai Bus\WB</ par am val ue>
</ cont ext - par anm>

This will tell the bus to enable web sockets support. The websocket - pat h- el ement specified
the path element within a URL which the client bus should request in order to negotiate a
websocket connection. For instance, specifying i n. er r ai Bus\Ws as we have in the snippit above,
will result in attempted negotiation at htt p: / / <your _ser ver >: <your _port >/ <cont ext _pat h>/
i n. errai BusWs . For this to have any meaningful result, we must add a servlet mapping that will
match this pattern:

<servl et >
<ser vl et - nane>Er r ai WsSer vl et </ ser vl et - nane>
<servl et-cl ass>org.j boss. errai.bus. server. servl et. JBossAS7TWbSocket Ser vl et </
servl et-cl ass>
<i nit-paranp
<par am nane>servi ce- | ocat or </ par am nane>
<par am val ue>org. j boss. errai.cdi.server. CDl Servi ceLocat or </ par am val ue>
</init-paranp
<l oad-on-startup>1</| oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - nane>Er r ai WsSer vl et </ ser vl et - nanme>
<url -pattern>*. errai BusWs</ ur| - pattern>

</ servl et - mappi ng>

@ Do not remove the regular ErraiBus servlet mappings!

When configuring ErraiBus to use WebSockets on JBoss AS, you do not remove
the existing servlet mappings for the bus. The WebSocket servlet is in addition to
your current bus servlet. This is because ErraiBus always negotiates WebSocket
sessions over the COMET channel.

2.16. Bus Lifecycle

2.16.1. Turning Server Communication On and Off

By default, Errai's client-side message bus attempts to connect to the server as soon as the
ErraiBus module has been loaded. The bus will stay connected until a lengthy (about 45 seconds)
communication failure occurs, or the web page is unloaded.

The application can affect bus communication through two mechanisms:

22

Observing Bus Lifecycle State and Communication Status

1. By setting a global JavaScript variable err ai BusRenot eCommuni cati onEnabl ed = fal se
before the GWT scripts load, bus communication with the server is permanently disabled

2. By calling ((d i ent MessageBus) Errai Bus. get()).stop() , the bus disconnects from the
server

To resume server communication after a call to dient MessageBus. stop() or after
communication with the server has exceeded the bus' retry timeout, call ((d i ent MessageBus)
Errai Bus.get()).init() . You can use a BusLi f ecycl eLi st ener to monitor the success or
failure of this attempt. See the next section for details.

2.16.2. Observing Bus Lifecycle State and Communication
Status

In a perfect world, the client message bus would always be able to communicate with the server
message bus. But in the real world, there's a whole array of reasons why the communication link
between the server and the client might be interrupted.

On its own, the client message bus will attempt to reconnect with the server whenever
communication has been disrupted. Errai applications can monitor the status of the bus'
communication link (whether it is disconnected, attempting to connect, or fully connected) through
the BuslLi f ecycl eLi st ener interface:

cl ass BusStatusLogger inplenents BusLifecycl eListener {

@verride

public void busAssoci ati ng(BusLifecycl eEvent e) {
GAT. | og("Errai Bus trying to connect...");

}

@verride

public void busOnline(BusLifecycl eEvent e) {
GAT. | og("Errai Bus connected!");

}

@verride

public void busOfline(BusLifecycl eEvent e) {
GAM.log("Errai Bus trying to connect...");

}

@verride

public void busDi sassoci ati ng(BusLifecycl eEvent e) {
GAT. | og("Errai Bus going into |ocal-only node.");

23

Chapter 2. Messaging

To attach such a listener to the bus, make the following call in client-side code:

Cl i ent MessageBus bus = (Cient MessageBus) Errai Bus. get();
bus. addLi f ecycl eLi st ener (new BusSt at usLogger ());

2.17. Shadow Services

Shadow Services is a Service that will get invoked when there is no longer a connection with the
server. This is particular helpful when developing an application for mobile. To create a Shadow
Service for a specific Services all you have to do is annotate a new client side implementation
with the @ShadowService:

@hadowSer vi ce
public class SignupShadowService inplenents MessageCal | back {

@verride
public void call back(Message nessage) {
}

Also when you have a RPC based Service you can just add @ShadowService on a client side
implementation to configure it to be the service to get called when there is no network:

@hadowSer vi ce
public class SignupServi ceShadow i npl enents Si gnupService {

@verride
public User register(User newUser Chject, String password) throws Registrati onException {

}

In this shadow service we can create logic that will deal with the temporary connection loss. For
instance you could save the data that needs to get send to the server with JPA on the client and
then when the bus get online again sent the data to the server.

2.18. Debugging Messaging Problems

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

24

Debugging Messaging Problems

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application's dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tools. bus_nonitor_attach=true

Figure 2.2. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 2.3. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

25

26

Chapter 3.

Dependency Injection

The core Errai IOC module implements the JSR-330 Dependency Injection [http://
download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for
in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the
implementation of decoupled and type-safe components. By using DI, components do not need
to be aware of the implementation of provided services. Instead, they merely declare a contract
with the container, which in turn provides instances of the services that component depends on.

@ Classpath Scanning and ErraiApp.properties

Errai only scans the contents of classpath locations (JARs and directories) that
have at their root. If dependency injection
is not working for you, double-check that you have an Err ai App. properti es in
every JAR and directory that contains classes Errai should know about.

A simple example:

public class M/Littl ed ass {
private final TinmeService tineService;

@ nj ect
public MyLittl eC ass(Ti meService tineService) ({
this.tinmeService = tineService;

public void printTime() {
Systemout.println(this.timeService.getTine());

In this example, we create a simple class which declares a dependency using
@nject [http://downl oad. oracl e.contjavaeel/ 6/ api/javax/inject/Inject.htm] for
the interface Ti neSer vi ce . In this particular case, we use constructor injection to establish the
contract between the container and the component. We can similarly use field injection to the
same effect:

public class MyLittl ed ass {
@ nj ect

27

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 3. Dependency Injection

private TimeService tineService;

public void printTinme() {
Systemout.println(this.timeService.getTine());

In order to inject Ti meSer vi ce , you must annotate it with @\ppl i cati onScoped or the Errai DI
container will not acknowledge the type as a bean.

@\ppl i cati onScoped
public class TineService {

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot
create immutable classes using the pattern, since the container must first call the
default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential — albeit remote — that the object could be left in an partially or
improperly initialized state. The advantage of constructor injection is that fields can
be immutable (final), and invariance rules applied at construction time, leading to
earlier failures, and the guarantee of consistent state.

3.1. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide
a programmatic way of creating and configuring injectors. Instead, container-level binding rules are
defined by implementing a Provi der [http://downl oad. oracl e. cont j avaee/ 6/ api / j avax/
inject/Provider.htnml] ,which is scanned for and auto-discovered by the container.

A Provi der is essentially a factory which produces type instances within in the container, and
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Pr ovi der <T> interface.

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai IOC implements these default top-level providers, all defined in the
org.jboss.errai.ioc.client.api.builtin package:

e CallerProvider : Makes RPC Cal | er <T> objects available for injection.

28

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

» Di sposerProvi der : Makes Errai IoC Di sposer <T> objects available for injection.
e InitBallotProvider : Makes instances of I ni t Bal | ot available for injection.

e | OCBeanManager Provi der : Makes Errai's client-side bean manager, C i ent BeanManager ,
available for injection.

* MessageBusProvi der : Makes Errai's client-side MessageBus singleton available for injection.

* Request Di spat cher Provi der : Makes an instance of the Request Di spat cher available for
injection.

e Root Panel Provi der : Makes GWT's Root Panel singleton injectable.

* Sender Provi der : Makes MessageBus Sender <T> objects available for injection.

Implementing a Pr ovi der is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface Ti neService {
public String getTime();

TimeServiceProvider.java

@ OCPr ovi der
@i ngl et on
public class TimeServiceProvider inplenments Provider<Ti meService> {

@verride

public TimeService get() {

return new Ti neService() {
public String getTinme() {
return "lIt's mdnight sonewhere!";

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Cui ce. creat el nj ect or (new Abstract Modul e() {
public void configure() {

29

Chapter 3. Dependency Injection

bi nd(Ti meSer vi ce. cl ass).toProvi der (Ti neServi ceProvider. cl ass);

}
}) . getl nstance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are regular beans, so they can inject dependencies—
particularly from other top-level providers—as necessary.

3.2. Wiring server side components

By default, Errai uses Google Guice to wire server-side components. When deploying
services on the server-side, it is currently possible to obtain references to the MessageBus
Request Di spat cher , the Errai Servi ceConfi gurator , and Errai Servi ce by declaring them
as injection dependencies in Service classes, extension components, and session providers.

Alternatively, supports CDI based wiring of server-side components. See the chapter on Errai CDI
for more information.

3.3. Scopes

Out of the box, the I0C container supports three bean scopes, @ependent , @i ngl et on and
@nt ryPoi nt . The singleton and entry-point scopes are roughly the same semantics.

3.3.1. Dependent Scope

In Errai 10C, all client types are valid bean types if they are default constructable or can
have construction dependencies satisfied. These unqualified beans belong to the dependent
pseudo-scope. See: Dependent Psuedo-Scope from CDI Documentation [http://docs.jboss.org/
weld/reference/latest/en-US/html/scopescontexts.html#d0e1997]

Additionally, beans may be qualified as @ppl i cati onScoped , @i ngl et on or @nt ryPoi nt
. Although @\pplicationScoped and @i ngl eton are supported for completeness and
conformance, within the client they effectively result in behavior that is identical.

Example 3.1. Example dependent scoped bean

public voi d MyDependent ScopedBean {
private final Date createdDate;

30

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997

Built-in Extensions

publ i c MyDependent ScopedBean {
createdDate = new Date();

Example 3.2. Example ApplicationScoped bean

@\ppl i cati onScoped
public void MyClientBean {
@ nj ect MyDependent ScopedBean bean;

I

Availability of dependent beans in the client-side
BeanManager

As is mentioned in the bean manager documentation , only beans that are
explicitly scoped will be made available to the bean manager for lookup. So while
it is not necessary for regular injection, you must annotate your dependent scoped
beans with @ependent if you wish to dynamically lookup these beans at runtime.

3.4. Built-in Extensions

3.4.1. Bus Services

As Errai I0C provides a container-based approach to client development, support for Errai
services are exposed to the container so they may be injected and used throughout your
application where appropriate. This section covers those services.

3.4.1.1. @Service

The org.jboss.errai.bus.server.annotations. Service annotation is used for binding
service endpoints to the bus. Within the Errai IOC container you can annotate services and have
them published to the bus on the client (or on the server) in a very straight-forward manner:

Example 3.3. A simple message receiving service

@bervi ce

31

Chapter 3. Dependency Injection

public class MyService inplenents MessageCal | back {
public void call back(Message nmessage) {
I 1

As with server-side use of the annotation, if a service name is not explicitly specified, the underlying
class name or field name being annotated will be used as the service name.

3.4.1.2. @Local

The org.jboss. errai.bus. server. api.Local annotation is used in conjunction with the
@ser vi ce annotation to advertise a service only for visibility on the local bus and thus, cannot
receive messages across the wire for the service.

Example 3.4. A local only service

@ervi ce @ocal
public class MyLocal Service inplenents MessageCal | back {
public void call back(Message nessage) ({
I 1

3.4.1.3. Lifecycle Impact of Services

Services which are registered with ErraiBus via the bean manager through use of the @er vi ce
annotation, have de-registration hooks tied implicitly to the destruction of the bean. Thus,
destruction of the bean implies that these associated services are to be dereferenced.

3.4.2. Client Components

The 10C container, by default, provides a set of default injectable bean types. They range from
basic services, to injectable proxies for RPC. This section covers the facilities available out-of-
the-box.

3.4.2.1. MessageBus

The type org. j boss. errai. bus. client.franmework. MessageBus is globally injectable into any
bean. Injecting this type will provide the instance of the active message bus running in the client.

Example 3.5. Injecting a MessageBus

32

Client Components

@nj ect MessageBus bus;

3.4.2.2. RequestDispatcher

The type org. j boss. errai . bus. client.franmework. Request Di spat cher is globally injectable
into any bean. Injecting this type will provide a Request Di spat cher instance capable of delivering
any messages provided to it, to the the MessageBus .

Example 3.6. Injecting a RequestDispatcher

@ nj ect Request Di spatcher di spatcher;

3.4.2.3. Caller<?>

The type org. j boss. errai . cormon. cl i ent. api . Cal | er <?>is a globally injectable RPC proxy.
RPC proxies may be provided by various components. For example, JAX-RS or Errai RPC.
The proxy itself is agnostic to the underlying RPC mechanism and is qualified by it's type
parameterization.

For example:

Example 3.7. An example Caller<?> proxy

public void MyClientBean {
@ nj ect
private Call er<MyRpclnterface> rpcCaller;

I 1

@vent Handl er ("button")
public void onButtond ick(C ickHandl er handler) {
rpcCal |l er.call (new Renot eCal | back<Voi d>() {
public void callback(Void void) {
/1 put code here that should execute after RPC response arrives

}
) . cal | SoneMet hod() ;

The above code shows the injection of a proxy for the RPC remote interface, MyRpcl nt er f ace
. For more information on defining RPC proxies see Chapter 6, Remote Procedure Calls (RPC)
and Creating Requests in Errai JAX-RS.

33

Chapter 3. Dependency Injection

3.4.2.4. Sender<?>

The org.jboss.errai.ioc.support.bus.client.Sender<?> interface is the lower-level
counterpart to the Cal | er <?> interface described above. You can inject a Sender to send low-
level ErraiBus messages directly to subscribers on any subject.

For example:

@ nj ect
@oSubj ect ("ListCapitializationService")
Sender <Li st <Stri ng>> | i st Sender;

I

@vent Handl er ("button")
public void onButtond ick(C ickHandl er handler) {
Li st<String> nyListO Strings = get Sel ectedC ti esFronfForm);
| i st Sender. send(nmyLi stOf Strings, new MessageCal | back() {
public void call back(Message reply) {
/1 do stuff with reply

The Sender . send() method is overloaded. The variant demonstrated above takes a value and a
MessageCallback to reply receive a reply (assuming the subscriber sends a conversational reply).
The following variants are available:

e send(T)

e send(T, ErrorCall back)

* send(T, MessageCall back)

* send(T, MessageCall back, ErrorcCall back)

The reply-to service can also be specified declaratively using the @Repl yTo annotation. This allows
the app to receive conversational replies even when using the send() variants that do not take
a MessageCal | back :

@ nj ect

@oSubj ect ("ListCapitializationService")
@repl yTo("d i ent Li st Service")

Sender <Li st <Stri ng>> | i st Sender ;

34

Lifecycle Tools

1o 1

@vent Handl er (" button")

public void onButtond ick(d ickHandl er handler) {
Li st<String> nyListOfStrings = getSel ectedCi ti esFronfForm);
| i st Sender. send(nmyLi stOf Stri ngs);

@i ngl et on
@bervi ce
public static class dientlListService inplenents MessageCal | back {

@verride
public void call back(Message nmessage) {
/1 do stuff with nessage

These Sender <?> features are just convenient wrappers around the full-featured programmatic
ErraiBus API. See Section 2.2, “Messaging API Basics” and Section 2.14, “Conversations” for full
information about low-level ErraiBus communication.

3.4.3. Lifecycle Tools

A problem commonly associated with building large applications in the browser is ensuring that
things happen in the proper order when code starts executing. Errai I0C provides you tools
which permit you to ensure things happen before initialization, and forcing things to happen after
initialization of all of the Errai services.

3.4.3.1. Controlling Startup

In order to prevent initialization of the the bus and it's services so that you can do
necessary configuration, especially if you are writing extensions to the Errai framework
itself, you can create an implicit startup dependency on your bean by injecting an
org.jboss.errai.ioc.client.api.lnitBallot<?>.

Example 3.8. Using an InitBallot to Control Startup

@i ngl et on
public class MyCientBean {
@nj ect InitBallot<MydientBean> ballot;

@ost Const ruct
public void doStuff() {
/[l ... do sone work ...

35

Chapter 3. Dependency Injection

bal | ot.voteForlnit();

3.4.3.2. Performing Tasks After Initialization

Sending RPC calls to the server from inside constructors and @ost Const r uct methods in Errai
is not always reliable due to the fact that the bus and RPC proxies initialize asynchronously with
the rest of the application. Therefore it is often desirable to have such things happen in a post-
initialization task, which is exposed in the d i ent MessageBus API. However, it is much cleaner to
use the @fterlnitialization annotation on one of your bean methods.

Example 3.9. Using @Afterlnitialization to do something after startup

@i ngl et on
public class M/dientBean {
@\fterlnitialization
public void doStuffAfterinit() {
/[l ... do sone work ...

3.4.4. Timed Methods

The @i med annotation allows scheduling method executions on managed client-side beans.
Timers are automatically scoped to the scope of the corresponding managed bean and participate
in the same lifecycle (see Section 3.7, “Bean Lifecycle” for details).

In the following example the updat eTi me method is invoked repeatedly every second.

@i ned(type = Timer Type. REPEATING, interval = 1, tineUnit = Ti neUnit. SECONDS)
private void updateTine() {
ti meW dget. set Ti me(SystemcurrentTimeM | [is);

For delayed one-time execution of methods t ype = Ti mer Type. DELAYED can be used instead.

3.5. Client-Side Bean Manager

It may be necessary at times to manually obtain instances of beans managed by Errai
IOC from outside the container managed scope or creating a hard dependency from your

36

Looking up beans

bean. Errai 10C provides a simple client-side bean manager for handling these scenarios:

org.jboss.errai.ioc.client.contai ner.C ient BeanManager .

As you might expect, you can inject a bean manager instance into any of your managed beans.
If you use Errai IOC in its default mode you will need to inject the synchronous bean manager (
org.jboss.errai.ioc.client.container.SyncBeanManager).

If you have asynchronous IOC mode enabled simply inject the asynchronous bean
manager (org.jboss.errai.ioc.client.container.async. AsyncBeanManager) instead.
Asynchronous 10C brings support for code splitting [http://www.gwtproject.org/doc/latest/
DevGuideCodeSplitting.html] . That means that any bean annotated with @oadAsync can be
compiled into a separate JavaScript file that's downloaded when the bean is first needed on the
client.

Example 3.10. Injecting the client-side bean manager

public MyManagedBean {
@ nj ect SyncBeanManager nmnager;

/1 class body

If you need to access the bean manager outside a managed bean, such as in a unit test, you can
access it by calling org. j boss. errai .ioc.client.container.|CC. get BeanManager ()

3.5.1. Looking up beans

Looking up beans can be done through the use of the | ookupBeans() method. Here's a basic
example:

Example 3.11. Example lookup of a bean

publi c MyManagedBean {
@ nj ect SyncBeanManager nanager;

public void | ookupBean() {
| OCBeanDef <Si npl eBean> bean = manager .| ookupBean(Si npl eBean. cl ass);

if (bean !'= null) {
/1 get the instance of the bean
Si npl eBean i nst = bean. getl nstance();

37

http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html

Chapter 3. Dependency Injection

In this example we lookup a bean class hamed Si npl eBean . This example will succeed assuming
that Si npl eBean is unambiguous. If the bean is ambiguous and requires qualification, you can
do a qualified lookup like so:

Example 3.12. Looking up beans with qualifiers

MyQualifier qual = new MyQualifier() {
publ i c annotationType() {
return MyQualifier.class

MOt her Qual i fier qual2 = new MyQtherQualifier() {
public annotationType() {
return MyQtherQualifier.class;

/1 pass qualifiers to CientBeanManager.| ookupBeans
| OCBeanDef <Si npl eBean> bean = beanManager .| ookupBean(Si npl eBean. cl ass, qual, qual 2);

In this example we manually construct instances of qualifier annotations in order to pass it to the
bean manager for lookup. This is a necessary step since there's currently no support for annotation
literals in Errai client code.

3.5.2. Availability of beans

Not all beans that are available for injection are available for lookup from the bean manager
by default. Only beans which are explicitly scoped are available for dynamic lookup. This is an
intentional feature to keep the size of the generated code down in the browser.

3.6. Alternatives and Mocks

3.6.1. Alternatives

It may be desirable to have multiple matching dependencies for a given injection point with
the ability to specify which implementation to use at runtime. For instance, you may have
different versions of your application which target different browsers or capabilities of the browser.
Using alternatives allows you to share common interfaces among your beans, while still using
dependency injection, by exporting consideration of what implementation to use to the container's
configuration.

38

Alternatives

Consider the following example:

@i ngleton @\ ternative
public class MbileView inplements View {
I

and

@i ngl eton @\ ternative
public class DesktopView inplenents View {
I

In our controller logic we in turn inject the Vi ew interface:

@nt r yPoi nt

public class MyApp {
@ nj ect
Vi ew Vi ew;

I

This code is unaware of the implementation of Vi ew , which maintains good separation of
concerns. However, this of course creates an ambiguous dependency on the Vi ew interface as
it has two matching subtypes in this case. Thus, we must configure the container to specify
which alternative to use. Also note, that the beans in both cases have been annotated with

javax.enterprise.inject.Alternative.

In your Errai App. properties for the module, you can simply specify which active alternative
should be used:

errai.ioc.enabl ed. alternati ves=org. foo. Mobil eVi ew

You can specify multiple alternative classes by white space separating them:

39

Chapter 3. Dependency Injection

errai.ioc.enabl ed. alternati ves=org. foo. Mbil eVi ew \
org. foo. HTM.5Cri entation \
org. f oo. Mbbi | eSt or age

You can only have one enabled alternative for a matching set of alternatives, otherwise you will
get ambiguous resolution errors from the container.

3.6.2. Test Mocks

Similar to alternatives, but specifically designed for testing scenarios, you can replace beans with
mocks at runtime for the purposes of running unit tests. This is accomplished simply by annotating
abeanwiththeorg. jboss. errai.ioc.client.api.Test Mock annotation. Doing so will prioritize
consideration of the bean over any other matching beans while running unit tests.

Consider the following:

@\ppl i cati onScoped
public class User Managenent | npl inplenments User Managenent {
public List<User> listUsers() {
/1 do user listy things!

You can specify a mock implementation of this class by implementing its common parent type
(User Managenent) and annotating that class with the @est Mock annotation inside your test
package like so:

@est Mock @\ppli cati onScoped
public class MdckUser Managerment | npl i npl ements User Managenent {
public List<User> listUsers() {
/1 return only a test user.
return Col |l ections. singl etonLi st (TestUser. | NSTANCE);

In this case, the container will replace the UserManagenent!npl with the
MockUser Managenent | npl automatically when running the unit tests.

The @est Mock annotation can also be used to specify alternative providers during test execution.
For example, it can be used to mock a Cal | er <T>. Cal | er s are used to invoke RPC or JAX-RS
endpoints. During tests you might want to replace theses callers with mock implementations. For
details on providers see Section 3.1, “Container Wiring” .

40

Bean Lifecycle

@rest Mock @ OCPr ovi der
public class MockedHappyServi ceCall er Provi der inplenents Contextual TypeProvi der <Cal | er <HappySet

@verride
publ i c Cal | er<HappyServi ce> provi de(Cl ass<?>[] typeargs, Annotation[] qualifiers) {
return new Cal | er <HappyService>() {

3.7. Bean Lifecycle

All beans managed by the Errai IOC container support the @ost Const ruct and @r eDest r oy
annotations.

Beans which have methods annotated with @ost Construct are guaranteed to have those
methods called before the bean is put into service, and only after all dependencies within its graph
has been satisfied.

Beans are also guaranteed to have their @r eDest r oy annotated methods called before they are
destroyed by the bean manager.

Important

This cannot be guaranteed when the browser DOM is destroyed prematurely due
to: closing the browser window; closing a tab; refreshing the page, etc.

3.7.1. Destruction of Beans

Beans under management of Errai IOC, of any scope, can be explicitly destroyed through the
client bean manager. Destruction of a managed bean is accomplished by passing a reference to
the dest r oyBean() method of the bean manager.

Example 3.13. Destruction of bean

publi ¢ MyManagedBean {
@ nj ect SyncBeanManager nanager ;

public void createABeanThenDestroylt() {
/1l get a new bean.
Si npl eBean bean = nanager. | ookupBean(Si npl eBean. cl ass) . get | nstance();

41

Chapter 3. Dependency Injection

bean. sendMessage("Sorry, | need to di spose of you now');

/1 destroy the bean!
manager . dest r oyBean(bean) ;

When the bean manager "destroys" the bean, any pre-destroy methods the bean declares are
called, it is taken out of service and no longer tracked by the bean manager. If there are references
on the bean by other objects, the bean will continue to be accessible to those objects.

Important

Container managed resources that are dependent on the bean such as bus service
endpoints or CDI event observers will also be automatically destroyed when the
bean is destroyed.

Another important consideration is the rule, "all beans created together are destroyed together."
Consider the following example:

Example 3.14. SimpleBean.class

@ependent
public class SinpleBean {
@nj ect @New Anot her Bean anot her Bean;

publ i ¢ Anot her Bean get Anot her Bean() {

return anot her Bean;

@°r eDest r oy
private void cleanUp() {
/1 do sone cl eanup tasks

Example 3.15. Destroying bean from subgraph

public MyManagedBean {
@ nj ect SyncBeanManager nanager;

42

Destruction of Beans

public void createABeanThenDestroylt() {
/'l get a new bean.
Si npl eBean bean = manager .| ookupBean(Si npl eBean. cl ass) . get | nstance();

/1 destroy the AnotherBean reference frominside the bean
manager . dest r oyBean(bean. get Anot her Bean()) ;

In this example we pass the instance of Anot her Bean, created as a dependency of Si npl eBean,
to the bean manager for destruction. Because this bean was created at the same time as its
parent, its destruction will also result in the destruction of Si npl eBean ; thus, this action will result
in the @r eDest roy cl eanUp() method of Si npl eBean being invoked.

3.7.1.1. Disposers

Another way which beans can be destroyed is through the use of the injectable
org.jboss.errai.ioc.client.api.Di sposer<T> class. The class provides a straight forward
way of disposing of bean type.

For instance:

Example 3.16. Destroying bean with disposer

publi c MyManagedBean {
@ nj ect @ew Si npl eBean nyNewSi npl eBean;
@ nj ect Di sposer<Si npl eBean> si npl eBeanDi sposer;

public void destroyMyBean() ({
si npl eBeanDi sposer . di spose(nyNewSi npl eBean) ;

43

44

Chapter 4.

Erral CDI

CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling
dependency injection. In addition to dependency injection, the standard encompasses component
lifecycle, application configuration, call-interception and a decoupled, type-safe eventing
specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side
applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These
deficiencies may be addressed in future versions.

Important

Errai CDI is implemented as an extension on top of the Errai IOC Framework (see
Chapter 3, Dependency Injection), which itself implements JSR-330. Inclusion of
the CDI module your GWT project will result in the extensions automatically being
loaded and made available to your application.

. Classpath Scanning and ErraiApp.properties

Errai CDI only scans the contents of classpath locations (JARs and directories)
that have at their root. If CDI features such
as dependency injection, event observation, and @ost Const r uct are not working
for your classes, double-check that you have an Er r ai App. properti es at the root
of every JAR and directory tree that contains classes Errai should know about.

4.1. Features and Limitations

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed
to your GWT client application. So, you can use Errai to communicate between your GWT client
components and your CDI backend beans.

Errai CDI based applications use the same annotation-driven programming model as server-side
CDI components, with some notable limitations. Many of these limitations will be addressed in
future releases.

1. Thereis no support for CDI interceptors in the client. Although this is planned in a future release.

2. Passivating scopes are not supported.

45

Chapter 4. Errai CDI

3. The JSR-299 SPI is not supported for client side code. Although writing extensions for the client
side container is possible via the Errai IOC Extensions API.

4. The @yped annotation is unsupported.
5. The @nt er cept or annotation is unsupported.

6. The @ecor at or annotation is unsupported.

4.1.1. Other features

The CDI container in Errai is built around the Errai IOC module , and thus is a superset of
the existing functionality in Errai IOC. Thus, all features and APIs documented in Errai IOC are
accessible and usable with this Errai CDI programming model.

4.2. Events

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/
reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled
fashion. Beans consume events by registering for a particular event type and optional qualifiers.
The Errai CDI extension simply extends this concept into the client tier. A GWT client application
can simply register an Observer for a particular event type and thus receive events that are
produced on the server-side. Likewise and using the same API, GWT clients can produce events
that are consumed by a server-side observer.

Let's take a look at an example.

Example 4.1. FraudClient.java

public class FraudCient extends LayoutPanel {

@ nj ect
private Event<AccountActivity> event; (1)

private HTM. responsePanel ;

public Frauddient() {
super (new BoxLayout (BoxLayout. Ori entati on. VERTI CAL)) ;

@Post Construct
public void buildU () {
Button button = new Button("Create activity", new dickHandl er() {
public void onCick(dickEvent clickEvent) {
event.fire(new AccountActivity());
}
1

46

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Conversational events

responsePanel = new HTM.();
add(button);
add(responsePanel);

public void processFraud(@bserves @etected Fraud fraudEvent) { (2)
responsePanel . set Text ("Fraud detected: " + fraudEvent.getTi mestanp());

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy
2. Creation of an Qoser ver method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-
side event subsystem (CDI container). This means any event that is fired through a dispatcher
will eventually be consumed by a CDI managed bean, if there is an corresponding Qoser ver
registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side
observer method for a particular event type. In case an event is fired on the server this method
will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:

Example 4.2. AccountService.java

@\ppl i cati onScoped
public class Account Service {

@nj ect @petected
private Event <Fraud> event;

public void watchActivity(@bserves AccountActivity activity) {

Fraud fraud = new Fraud(SystemcurrentTimeMI1lis());
event.fire(fraud);

4.2.1. Conversational events

A server can address a single client in response to an event annotating event types as
@onver sat i onal . Consider a service that responds to a subscription event.

47

Chapter 4. Errai CDI

Example 4.3. SubscriptionService.java

@\ppl i cati onScoped
public class SubscriptionService {

@ nj ect
private Event <Docunent s> wel coneEvent ;

public void onSubscription(@bserves Subscription subscription) {
Document docs = creat eWel conmePackage(subscri ption);
wel comeEvent . fire(docs);

And the Docunent class would be annotated like so:

Example 4.4. Document.java

@onver sati onal @pPortabl e
public class Docunment {
/'l code here

As such, when Document events are fired, they will be limited in scope to the initiating
conversational contents — which are implicitly inferred by the caller. So only the client which fired
the Subscri pti on event will receive the fired Document event.

4.2.2. Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between
the client and the server. This permits the observation of server produced events on the client,
and vice-versa.

Example server code:

Example 4.5. MyServerBean.java

@\ppl i cati onScoped
public class MyServerBean {
@ nj ect
Event <MyResponseEvent > nmyResponseEvent ;

48

Client-Server Event Example

public void nmyd ient Coserver (@bserves M/Request Event event) {
MyResponseEvent response,

if (event.isThankYou()) {
/1 aww, that's nice!
response = new MyResponseEvent ("Wl |, you're wel cone!");

}
el se {
/1 how rude!
response = new MyResponseEvent ("Wat? Nobody says 'thank you'

nyResponseEvent . fire(response);

Domain-model:

Example 4.6. MyRequestEvent.java

@ortabl e
public class MyRequest Event ({
private bool ean thankYou;

publ i c MyRequest Event (bool ean t hankYou) {

set ThankYou(t hankYou) ;

public void set ThankYou(bool ean t hankYou) {
t hi s.thankYou = t hankYou;

publi ¢ bool ean i sThankYou() ({

return thankYou;

Example 4.7. MyResponseEvent.java

@ort abl e
public class MyResponseEvent {
private String nmessage;

anynore?");

49

Chapter 4. Errai CDI

publi ¢ MyRequest Event (String message) {
set Message(nessage) ;

public void set Message(String nessage) {
thi s. message = nessage;

public String get Message() {
return nessage;

Client application logic:

Example 4.8. MyClientBean.java

@nt r yPoi nt
public class M/dientBean {
@ nj ect
Event <MyRequest Event > r equest Event ;

public void myResponseCbserver (@bserves MyResponseEvent event) {
W ndow. al ert ("Server replied: " + event.getMessage());

@ost Const ruct
public void init() {
Button thankYou = new Button("Say Thank You!");
t hankYou. addd i ckHandl er (new d i ckHandl er () {
public void onCick(dickEvent event) {
request Event . fi re(new MyRequest Event (true));

Butt on not hi ng = new Button("Say nothing!");
not hi ng. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
request Event. fire(new M/Request Event (fal se));

Vertical Panel vPanel = new Verti cal Panel ();
vPanel . add(t hankYou) ;
vPanel . add(not hi ng) ;

50

Producers

Root Panel . get (). add(vPanel) ;

4.3. Producers

Producer methods and fields act as sources of objects to be injected. They are useful when
additional control over object creation is needed before injections can take place e.g. when you
need to make a decision at runtime before an object can be created and injected.

Example 4.9. App.java

@nt r yPoi nt
public class App {

@r oduces @upport ed
private MyBaseW dget createWdget () {
return (Canvas.isSupported()) ? new MyHt ml 5W dget ()

}

Example 4.10. MyComposite.java

@\ppl i cati onScoped
public class MyConposite extends Conposite {

@nj ect @upported
private MyBaseW dget wi dget;

new MyDef aul t W dget () ;

Producers can also be scoped themselves. By default, producer methods are dependent-scoped,
meaning they get called every time an injection for their provided type is requested. If a producer
method is scoped @i ngl et on for instance, the method will only be called once, and the bean
manager will inject the instance from the first invokation of the producer into every matching

injection point.

51

Chapter 4. Errai CDI

Example 4.11. Singleton producer

public class App {

@r oduces @i ngl et on
private MyBean produceMyBean() {
return new MyBean();

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/
cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/
WeldDocumentation] .

4.4. safe dynamic lookup

As an alternative to using the bean manager to dynamically create beans, this can be
accomplished in a type-safe way by injecting a j avax. enterpri se. i nj ect. | nstance<T> .

For instance, assume you have a dependent-scoped bean Bar and consider the following:

public class Foo {
@ nj ect | nstance<Bar> barl nstance;

public void pingNewBar () {
Bar bar = barlnstance.get();
bar . pi ng();

In this example, calling bar | nst ance. get () returns a new instance of the dependent-scoped
bean Bar .

4.5. Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started take a look
at the ERRAI:Quickstart Guide.

The CDI integration is a plugin to the Errai core framework and represents a CDI portable
extension. Which means it is discovered automatically by both Errai and the CDI container. In
order to use it, you first need to understand the different runtime models involved when working
GWT, Errai and CDI.

52

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation

Deployment in Development Mode

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/
webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application
containing the GWT client code will be deployed to a target container (Servlet Engine, Application
Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In
GWT development mode and in a pure servlet environment you need to provide and bootstrap
the CDI environment on your own. While any Java EE 6 Application Server already provides a
preconfigured CDI container. To accomodate these differences, we need to do a little trickery
when executing the GWT Development Mode and packaging our application for deployment.

4.5.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai
and CDI available through JNDI (common denominator across all runtimes). Since GWT uses
Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a
custom one that will setup the JNDI bindings:

<pl ugi n>
<gr oupl d>or g. codehaus. nmoj o</ gr oupl d>
<artifactld>gwt-maven plugin</artifactld>
<versi on>%${gwt . maven} </ ver si on>

<configuration>
<server>org. jboss.errai.cdi.server.gw.JettylLauncher</server>
</ confi guration>

<executi ons>

</ executi ons>
</ pl ugi n>

@ Starting Development Mode from within your IDE

Consequently, when starting Development Mode from within your
IDE the following program argument has to be provided: -server
org.jboss.errai.cdi.server.gwt.JettyLauncher

4.5.1.1. Special-case Classloading

JettyLauncher uses different class loaders to load classes that belongs to the web application, the
Jetty server, and the Java standard library itself. In the majority of cases, you can simply put all
dependencies into your web application's VEB- | NF/ | i b folder. However, there are cases where

53

http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Chapter 4. Errai CDI

putting a dependency in VEB- | NF/ | i b will cause troubles such as Cl assCast Excepti on when
same class is also loaded by a different classloader. To mitigate this problem, JettyLauncher can
be instructed that certain classes (or packages) shall be loaded only by the system class loader.
To do so, set the Java system property j etty. cust om sys. cl asses when launching Dev Mode.

For example, when using gwt-maven-plugin:

<extraJvmArgs>-Dj etty. cust om sys. cl asses=bi troni x; j avax. transacti on</
extraJvmAr gs>

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web- app>

<listener>

<listener-class>org.jboss.errai.container.CDl Servl et St at eLi stener</|istener-
cl ass>

</listener>

<resource-env-ref>
<description>0hject factory for the CDI Bean Manager </ descri ption>
<resour ce- env-r ef - nane>BeanManager </ r esour ce- env-r ef - nane>
<resource-env-ref-type>javax.enterprise.inject.spi.BeanManager</resource-
env-ref-type>
</resource-env-ref>

</ web- app>

4.5.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development
mode. You need to include the servlet listener that bootstraps the CDI container and make sure
both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we
ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat
Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

4.5.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the
requirements are basically the same for other vendors. When running a GWT client app that
leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and
accessible through JNDI (j ava: / BeanManager).

54

http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://jboss.org/jbossas
http://jboss.org/jbossas

Chapter 5.

Marshalling

Errai includes a comprehensive marshalling framework which permits the serialization of domain
objects between the browser and the server. From the perspective of GWT, this is a complete
replacement for the provided GWT serialization facilities and offers a great deal more flexibility.
You are be able to map both application-specific domain model, as well as preexisting model,
including model from third-party libraries using the custom definitions API.

5.1. Mapping Your Domain

All classes that you intend to be marshalled between the client and the server must be exposed
to the marshalling framework. There are several ways you can do it and this section will take you
through the different approaches you can take to fit your needs.

5.1.1. @Portable and @NonPortable

To make a Java class eligible for serialization with Errai Marshalling, mark it with
the org.j boss. errai.common. client. api.annotations. Portabl e annotation. This tells the
marshalling system to generate marshalling and demarshalling code for the annotated class and
all of its nested classes.

The mapping strategy that will be used depends on how much information you provide about
your model up-front. If you simply annotate a domain type with @&ort abl e and do nothing else,
the marshalling system will use and exhaustive strategy to determine how to construct and
deconstruct instances of that type and its nested types.

The Errai marshalling system works by enumerating all of the Portable types it can find (by any
of the three methods discussed in this section of the reference guide), eliminating all the non-
portable types it can find (via @onPor t abl e annotations and entries in Er r ai App. properti es),
then enumerating the marshallable properties that make up each remaining portable entity type.
The rules that Errai uses for enumerating the properties of a portable entity type are as follows:

« If an entity type has a field called f oo , then that entity has a property called f oo unless the
field is marked static ortransient .

Note that the existence of methods called get Foo() , set Foo() , or both, does not mean that
the entity has a property called f oo . Errai Marshalling always works from fields when discovering
properties.

When reading a field f oo , Errai Marshalling will call the method get Foo() in preference to direct
field access if the get Foo() method exists.

Similarly, when writing a field f oo , Errai Marshalling will call the method set Foo() in preference
to direct field access if the set Foo() method exists.

55

Chapter 5. Marshalling

The above rules are sufficient for marshalling an existing entity to a JSON representation, but for
de-marshalling, Errai must also know how to obtain an instance of a type. The rules that Errai
uses for deciding how to create an instance of a @ort abl e type are as follows:

« If the entity has a public constructor where every argument is annotated with @apsTo , and
those parameters cover all properties of the entity type, then Errai uses this constructor to create
the object, passing in all of the property values.

» Otherwise, if the entity has a public static method where every argument is annotated with
@mpsTo , and those parameters cover all properties of the entity type, then Errai uses this
method to create the object. Note that when using this mechanism you are free to create and
return a subtype of the marshalled type, or resolve one from a cache.

« If the entity has a public no-arguments constructor (or no explicit constructors at all), it will be
created via that constructor, and the properties will be written to the new object one at a time.
Each property will be written by its setter method, or by direct field access if a setter method
is not available.

Now let's take a look at some common examples of how this works.

5.1.1.1. Example: A Simple Entity

@ort abl e

public class Person {
private String name;
private int age;

public Person() {
}

public Person(String name, int age) ({
thi s. nane = nane;
thi s. age = age;

public String getName() {
return name;

public int getAge() {

return age;

This is a pretty vanilla domain object. Note the default, public, no-argument constructor. In this
case, it will be necessary to have one explicitly declared. But notice we have no setters. In

56

@Portable and @NonPortable

this case, the marshaler will rely on private field access to write the values on each side of the
marshalling transaction. For simple domain objects, this is both nice and convenient. But you
may want to make the class immutable and have a constructor enforce invariance. See the next
section for that.

5.1.1.2. Example: An Immutable Entity with a Public Constructor

Immutability is almost always a good practice, and the marshalling system provides you a straight
forward way to tell it how to marshal and de-marshal objects which enforce an immutable contract.
Let's modify our example from the previous section.

@ort abl e

public class Person {
private final String namne;
private final int age;

publ i c Person(@apsTo("nanme") String nane, @mbapsTo("age") int age) {
thi s. nanme = nane;
thi s. age = age;

public String getName() {
return nane;

public int getAge() {
return age;

Here we have set both of the class fields final. By doing so, we had to remove our default
constructor. But that's okay, because we have annotated the remaining constructor's parameters
using the org. j boss. errai . marshal | i ng. cli ent. api.annot ati ons. MapsTo annotation.

By doing this, we have told the marshaling system, for instance, that the first parameter of
the constructor maps to the property name . Which in this case, defaults to the name of the
corresponding field. This may not always be the case — as will be explored in the section on custom
definitions. But for now that's a safe assumption.

5.1.1.3. Example: An Immutable Entity with a Factory Method

Another good practice is to use a factory pattern to enforce invariance. Once again, let's modify
our example.

57

Chapter 5. Marshalling

@ort abl e

public class Person {
private final String namne;
private final int age;

private Person(String nane, int age) {
thi s. nanme = nane;
thi s. age = age;

public static Person createPerson(@hapsTo("nane") String name, @mhpsTo("age") int age) {
return new Person(name, age);

public String getName() {
return nane;

public int getAge() {
return age;

Here we have made our only declared constructor private, and created a static factory method.
Notice that we've simply used the same @apsTo annotation in the same way we did on the
constructor from our previous example. The marshaller will see this method and know that it should
use it to construct the object.

5.1.1.4. Example: An Immutable Entity with a Builder

For types with a large number of optional attributes, a builder is often the best approach.

@Port abl e

public class Person {
private final String nane;
private final int age;

private Person(@bpsTo("nanme") String name, @MbapsTo("age") int age) {
thi s. name = nane;
this.age = age;

public String getName() {
return name;

58

Manual Mapping

public int getAge() {
return age;

@\onPort abl e

public static class Builder {
private String nane;
private int age;

public Builder nane(String name) {
thi s. nanme = nane;
return this;

public Builder age(int age) ({
thi s. age = age;
return this;

public Person build() {
return new Person(name, age);

In this example, we have a nested Bui | der class that implements the Builder Pattern and calls
the private Per son constructor. Hand-written code will always use the builder to create Per son
instances, but the @apsTo annotations on the private Per son constructor tell Errai Marshalling to
bypass the builder and construct instances of Person directly.

One final note: as a nested type of Per son (which is marked @por t abl e), the builder itself would
normally be portable. However, we do not intend to move instances of Per son. Bui | der across
the network, so we mark Per son. Bui | der as @onPort abl e .

5.1.2. Manual Mapping

Some classes may be out of your control, making it impossible to annotate them for auto-discovery
by the marshalling framework. For cases such as this, there are two approaches which can be
undertaken to include these classes in your application.

The first approach is the easiest, but is contingent on whether or not the class is directly exposed
to the GWT compiler. That means, the classes must be part of a GWT module and within the
GWT client packages. See the GWT documentation on Client-Side Code [http://code.google.com/
webtoolkit/doc/latest/DevGuideCodingBasicsClient.html] for information on this.

59

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html

Chapter 5. Marshalling

5.1.2.1. Mapping Existing Client Classes

If you have client-exposed classes that cannot be annotated with the @or t abl e annotation, you
may manually map these classes so that the marshaller framework will comprehend and produce
marshallers for them and their nested types.

To do this, specify them in ErraiApp.properties . using the
errai . marshal | i ng. seri al i zabl eTypes attribute with a whitespace separated list of classes
to make portable.

Example 5.1. Example ErraiApp.properties defining portable classes.

errai . marshal | i ng. seri al i zabl eTypes=org.foo.client.UserEntity \
org.foo.client. GoupEntity \
org. abci nc. nodel .client.Profile

If any of the serializable types have nested classes that you wish to make non-portable, you can
specify them like this:

Example 5.2. Example ErraiApp.properties defining nonportable classes.

errai . marshal | i ng. nonseri al i zabl eTypes=org. foo.client. UserEntity$Buil der \
org.foo.client.GoupEntity$Buil der

5.1.2.2. Aliased Mappings of Existing Interface Contracts

The marshalling framework supports and promotes the concept of marshalling by interface
contract, where possible. For instance, the framework ships with a marshaller which can marshall
data to and from the j ava. uti | . Li st interface. Instead of having custom marshallers for classes
such as ArraylLi st and Li nkedLi st , by default, these implementations are merely aliased to
the j ava. util. Li st marshaller.

There are two distinct ways to go about doing this. The most straightforward is to specify which
marshaller to alias when declaring your class is @&ort abl e .

package org.foo.client;

@ortable(aliasO = java.util.List.class)
public MyListlnpl extends ArrayList {
I

60

Manual Class Mapping

In the case of this example, the marshaller will not attempt to comprehend your class. Instead,
it will merely rely on the j ava. uti | . Li st marshaller to dematerialize and serialize instances of
this type onto the wire.

If for some reason it is not feasible to annotate the class, directly, you may specify the mapping
in the ErraiApp.properties file using the errai . mar shal | i ng. mappi ngAl i ases attribute.

errai . marshal | i ng. mappi ngAl i ases=org. foo.client. M/Listlnpl->ava.util.List \
org. foo. client. MyMapl npl ->j ava. util . Map

The list of classes is whitespace-separated so that it may be split across lines.

The example above shows the equivalent mapping for the MyLi st I npl class from the previous
example, as well as a mapping of a class to the j ava. uti | . Map marshaller.

The syntax of the mapping is as follows: <cl ass_t o_map> -> <contract _to_map_t o> .

Aliases do not inherit functionality!

When you alias a class to another marshalling contract, extended functionality
of the aliased class will not be available upon deserialization. For this you must
provide custom marshallers for those classes.

5.1.3. Manual Class Mapping

Although the default marshalling strategies in Errai Marshalling will suit the vast majority of use
cases, there may be situations where it is necessary to manually map your classes into the
marshalling framework to teach it how to construct and deconstruct your objects.

This is accomplished by specifying Mappi ngDefi ni ti on classes which inform the framework
exactly how to read and write state in the process of constructing and deconstructing objects.

5.1.3.1. MappingDefinition

All manual mappings should extend the
org.j boss. errai.marshal | i ng. rebind. api . nodel . Mappi ngDef i ni ti on class. This is base
metadata class which contains data on exactly how the marshaller can deconstruct and construct
objects.

Consider the following class:

61

Chapter 5. Marshalling

public class MySuperCustonEntity {
private final String mySuper Nane;
private String nmySuperN cknane;

publ i c MySuperCustonEntity(String nySuperName) {
thi s. mySuper Nane = nySuper Nane; ;

public String get MySuper Narme() ({
return this. m/SuperName;

public void set MySuper Ni ckname(String nySuperN ckname) {
t hi s. mySuper Nl ckname = nySuper Ni cknane;

public String get MySuperN ckname() {
return this. mySuperN ckname;

Let us construct this object like so:

MySuper CustonEntity entity = new MySuper CustonEntity(" Coolio");
entity. set Super Ni ckname("coo");

Itis clear that we may rely on this object's two getter methods to extract the totality of its state. But
due to the fact that the nySuper Nane field is final, the only way to properly construct this object is
to call its only public constructor and pass in the desired value of mySuper Nane .

Let us consider how we could go about telling the marshalling framework to pull this off:

@cust omvappi ng
publ i ¢ MySuper Cust onEnt i t yMappi ng ext ends Mappi ngDefinition {
publ i ¢ MySuper Cust onEntit yMappi ng() {
super (MySuper Cust onEnti ty. cl ass); /1

(1)

Si npl eConst ruct or Mappi ng cnsMappi ng = new Si npl eConst ruct or Mappi ng() ;
cnsMappi ng. mapPar nifol ndex(" nySuper Nane", 0, String. cl ass); /1

(2)

62

Custom Marshallers

set |l nstanti ati onMappi ng(cnsMappi ng) ;

addMenber Mappi ng(new i t eMappi ng(" mySuper Ni cknane"Stri ng. cl ass',set MySuper Ni cknange"))/;/
(3)

addMenber Mappi ng(newReadMappi ng(" mySuper Nane", Stri ng. cl ass, "get MySuper Nane")) J/
(4)
addMenber Mappi ng(neReadMappi ng(" mySuper Ni cknane" Stri ng. cl ass) get MySuper Ni cknamne")) /
(5)
}

And that's it. This describes to the marshalling framework how it should go about constructing and
deconstructing MySuper Cust onEntity .

Paying attention to our annotating comments, let's describe what we've done here.

1. Call the constructor in Mappi ngDef i ni ti on passing our reference to the class we are mapping.

2. Using the Si npl eConst r uct or Mappi ng class, we have indicated that a custom constructor
will be needed to instantiate this class. We have called the mapPar niTol ndex method with
three parameters. The first, " mySuper nane” describes the class field that we are targeting. The
second parameter, the integer 0 indicates the parameter index of the constructor arguments
that we'll be providing the value for the aforementioned field — in this case the first and only, and
the final parameter St ri ng. cl ass tells the marshalling framework which marshalling contract
to use in order to de-marshall the value.

3. Using the Wi t eMappi ng class, we have indicated to the marshaller framework how to write the
"mySuper Ni ckname" field, using the Stri ng. cl ass marshaller, and using the setter method
set MySuper Ni cknane .

4. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read
the "nySuper Narre" field, using the String. cl ass marshaller, and using the getter method
get MySuper Nane .

5. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read the
"mySuper Ni ckname" field, using the Stri ng. cl ass marshaller, and using the getter method
get MySuper Ni cknane .

5.1.4. Custom Marshallers

There is another approach to extending the marshalling functionality that doesn't involve mapping
rules, and that is to implement your own Mar shal | er class. This gives you complete control over
the parsing and emission of the JSON structure.

The implementation of marshallers is made relatively straight forward by the fact that both the
server and the client share the same JSON parsing API.

63

Chapter 5. Marshalling

Consider the included java.util.Date marshaller that comes built-in to the marshalling
framework:

Example 5.3. DataMarshaller.java from the built-in marshallers

@ i ent Marshal | er (Dat e. cl ass)
@ser ver Mar shal | er (Dat e. cl ass)
public class DateMarshal |l er extends AbstractNul | abl eMar shal | er <Dat e> {
@verride
public Date[] getEnptyArray() {
return new Date[O0];

@verride
publ i c Dat e doNot Nul | Demar shal | (fi nal EJVal ue o, final MarshallingSession ctx) {
if (o.isject() !'= null) {
EJVal ue qualifiedValue = o.isObject().get(SerializationParts. QJALI FI ED_VALUE);
if (lqualifiedvalue.isNull() &% qualifiedValue.isString() !'= null) {
return new Dat e(Long. parseLong(qual i fiedVal ue.isString().stringValue()));

}
EJVal ue nunericValue = o.isObject().get(SerializationParts. NUMERI C_VALUE) ;
if (!'nunericValue.isNull () && nunericValue.isNunmber() !'= null) {
return new Dat e(new Doubl e(numeri cVal ue. i sNunber (). doubl eVal ue()) .1 ongVal ue());
}
if (!nunericValue.isNull() && nunericValue.isString() !'= null) {
return new Dat e(Long. parseLong(numericVal ue.isString().stringValue()));
}
}
return null;
}
@verride
public String doNotNul | Marshal | (final Date o, final MarshallingSession ctx) ({

return "{\"" + SerializationParts. ENCODED_TYPE + "\"
\"" + Date.class.getName() + "\"," +

"\"" + SerializationParts. OBJECT_ID + "\":\"" + 0. hashCode() + "\"," +

1

"\"" 4+ SerializationParts. QJALI FIED VALUE + "\"
\"" + o.getTime() + "\"}"

The class is annotated with both @ i ent Marshal | er and @er ver Mar shal | er indicating that
this class should be used for both marshalling on the client and on the server.

64

Custom Marshallers

The doNot Nul | Demar shal | () method is responsible for converting the given JSON object (which
has already been parsed and verified non-null) into a Java object.

The doNot Nul | Mar shal | () method does roughly the inverse: it converts the given Java object
into a String (which must be parseable as a JSON object) for transmission on the wire.

65

66

Chapter 6.

Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach for exposing services to the clients.

Please note that this API has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renvot e
public interface MyRenoteService {
publi ¢ bool ean i sEveryoneHappy();

The @renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively simple to the point:

@er vi ce
public class MyRenoteServicel npl inplenents MyRenoteService {

public bool ean i sEveryoneHappy() {
/] blatently lie and say everyone's happy.
return true;

That's all there is to it. You use the same @ser vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

Warning

Beginning with Errai 2.0.CR1, the default for automatic service discovery has
changed in favour of CDI based applications, meaning RPC service discovery must
be explicitly turned on in case Errai CDI is not used (the wel d-i nt egrati on. j ar

67

Chapter 6. Remote Procedure C...

is not on the classpath). This can be done using an init-param in the servlet config

of your web.xml:

<servl| et >
<servl et - nane>Err ai Servl et </ ser vl et - name>
<servlet-class>org.]jboss. errai. bus. server. servl et. Def aul t Bl ocki ngServl et </
servl et-cl ass>
<init-paranpr
<par am nanme>aut o- di scover - servi ces</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paranp
<l oad- on- st art up>1</| oad-on-start up>
</servlet>

6.1. Making calls

Calling a remote service involves use of the MessageBui | der API. Since all messages are
asynchronous, the actual code for calling the remote service involves the use of a callback, which
we use to receive the response from the remote method. Let's see how it works:

MessageBui | der. creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
if (isHappy) Wndow. al ert("Everyone is happy!");

}
}. MyRenot eServi ce. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correspond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

bool ean bool = MessageBuil der.createCall (..., M/RenoteService. class).i sEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

68

Proxy Injection

6.1.1. Proxy Injection

An alternative to using the MessageBui | der APl is to have a proxy of the service injected.

@ nj ect
private Cal |l er<MyRenot eServi ce> renot eServi ce;

For calling the remote service, the callback objects need to be provided to the cal I method before
the corresponding interface method is invoked.

renot eServi ce. cal | (cal | back) . i sEveryoneHappy();

The Errai IOC GWT module needs to be inherited to make use of caller injection. To do this, the
following line needs to be added to the application's *. gwt . xnl file. It is important that this line
comes af t er the Errai Bus module:

<inherits name="org.jboss.errai.ioc.Container"/>

6.2. Handling exceptions

Handling remote exceptions can be done by providing an Err or Cal | back on the client:

MessageBui | der. createCal | (
new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
i f (isHappy) Wndow. al ert("Everyone is happy!");
}
}
new Error Cal | back() {
public bool ean error(Message nessage, Throwabl e caught) {
try {
t hrow caught;
}
catch (Nobodyl sHappyException e) {
W ndow. al ert ("OK, that's sad!");
}
catch (Throwable t) {
GM. | og(" An unexpected error has occurred", t);

69

Chapter 6. Remote Procedure C...

}

return false;

}
be
MyRenot eSer vi ce. cl ass) . i sEver yoneHappy() ;

As remote exceptions need to be serialized to be sent to the client, the @Port abl e annotation
needs to be present on the corresponding exception class (see Chapter 5, Marshalling). Further
the exception class needs to be part of the client-side code. For more details on Er r or Cal | backs
see Section 2.8, “Handling Errors” .

6.2.1. Global RPC exception handler

In a scenario where many different remote calls potentially throw the same exception types (e.g.
exceptions related to authentication or authorization) it can be easier to register a global exception
handler instead of providing error callbacks at each RPC invocation. This global exception handler
is called in case an exception occurs in the process of a remote call that has no error callback
associated with it. So, it will handle an otherwise uncaught exception.

@Jncaught Excepti on
private voi d onUncaught Excepti on(Throwabl e t) {

try {
t hrow caught;

}
catch (User Not Loggedl nException e) {

/1 navigate to | ogin dialog

}
catch (Throwable t) {

GAT. | og("An unexpected error has occurred", t);

6.3. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the remote call
before it's being sent. This is useful for implementing crosscutting concerns like caching, for
example when the remote call should be avoided if the data is already cached locally.

To have a remote call intercepted, either an interface method or the remote interface type has
to be annotated with @ nt er cept edCal | . If the type is annotated, all interface methods will be
intercepted.

@Renvot e

70

Session and request objects in RPC endpoints

public interface CustomerService {

@ nt erceptedCal | (MyCachel nterceptor. cl ass)
public Customer retrieveCustomerByld(long id);

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.g.

@nterceptedCal | ({ MCachel nterceptor.class, MySecuritylnterceptor.class})
public Custoner retrieveCustonmerByld(long id);

Implementing an interceptor is easy:

public class MyCachel nterceptor inplenents Rpclnterceptor {

@verride
public void aroundl nvoke(final RenoteCall Context context) {

/'l e.g check if the result is cached and carry out the actual call only
in case it's not.

context.proceed() // executes the next interceptor in the chain or the
actual renote call.

/] context.setResult() // sets the result directly w thout carrying out
the remote call.

}

The Renpt eCal | Cont ext passed to the ar oundl nvoke method provides access to the intercepted
method's name and read/write access to the parameter values provided at the call site.

Calling proceed executes the next interceptor in the chain or the actual remote call if all
interceptors have already been executed. If access to the result of the (asynchronous) remote
call is needed in the interceptor, one of the overloaded versions of proceed accepting a
Renot eCal | back has to be used instead.

The result of the remote call can be manipulated by calling Renot eCal | Cont ext . set Resul t () .

Not calling proceed in the interceptor bypasses the actual remote call, passing
Rest Cal | Cont ext . get Resul t () to the Renot eCal | Back provided at the call site.

6.4. Session and request objects in RPC endpoints

Before invoking an endpoint method Errai sets up an RpcCont ext that provides access to message
resources that are otherwise not visible to RPC endpoints.

71

Chapter 6. Remote Procedure C...

@er vi ce
public class MyRenoteServicel npl inplenments MyRenot eService {

publ i c bool ean i sEveryoneHappy() {
Ht t pSessi on sessi on = RpcCont ext. get Htt pSessi on();
Servl et Request request = RpcCont ext. get Servl et Request () ;

return true;

6.5. Batching remote calls

Some use cases require multiple interactions with the server to complete. Errai's RPC mechanism
allows for batched invocations of remote methods that will be executed using a single server
round-trip. This is useful for reducing the number of simultaneous HTTP connections and at the
same time allows for reusing and combining fine-grained remote services.

Injecting a BatchCaller instead of a Caller<T> is all it takes to make use of batched remote
procedure calls.

@nt r yPoi nt
public class MyBean {

@ nj ect
private BatchCaller batchCaller

private void sonmeMet hod() {
I/
bat chCal | er. cal | (renot eCal | backl, RenoteServicel.cl ass). nmethodl();
batchCal Il er. cal |l (renot eCal | back2, RenoteService2.cl ass). nethod2();

/1 I nvokes the accumul ated renote requests using a single server round-trip.
bat chCal | er. sendBat ch() ;

The remote methods will get executed only after sendBat ch() was called. The method sendBat ch
accepts an additional Renot eCal | back instance as a parameter which will we invoked when all
remote calls have completed in success. Consequently, an Err or Cal | back can also be provided
which will get executed for all remote calls that have completed in failure.

72

Chapter 7.

Erral JAX-RS

JAX-RS (Java API for RESTful Web Services) is a Java EE standard (JSR-311) for implementing
REST-based Web services in Java. Errai JAX-RS brings this standard to the browser and
simplifies the integration of REST-based services in GWT client applications. Errai can generate
proxies based on JAX-RS interfaces which will handle all the underlying communication and
serialization logic. All that's left to do is to invoke a Java method.

Errai's JAX-RS support consists of the following:

* A client-side API to communicate with JAX-RS endpoints

» A code generator that runs at your project's build time, providing proxy implementations for each
JAX-RS resource interfaces visible within the GWT module

 Errai loC and CDI providers that allow you to @ nj ect instances of {{Caller<T>} (the same API
used in Errai RPC)}

* Integration with either Errai Marshalling or Jackson to translate request and response data
between Java object and a string-based wire format

To get started with a working demo that makes use of Errai JAX-RS you can either download and
unzip the Errai tutorial project [https://github.com/errai/errai-tutorial/archive/master.zip] or check
out the CRUD demo part of our demo collection [https://github.com/errai/errai/tree/master/errai-
demos] . If you prefer getting started from scratch keep reading

Figure 7.1. TODO Gliffy image title empty

7.1. Getting Started

7.1.1. Dependencies

To use Errai JAX-RS, you must include it on the compile-time classpath. If you are using Maven
for your build, add this dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-jaxrs-client</artifactld>
<versi on>${errai.version}</version>

73

https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos

Chapter 7. Errai JAX-RS

<scope>pr ovi ded</ scope>
</ dependency>

or if you are not using Maven for dependency management, add errai-jaxrs-client-
ver si on. j ar to your classpath.

If you intend to use Errai's JSON format on the wire you will need to add Errai's JAX-RS JSON
provider to your classpath and make sure it gets deployed to the server.

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-jaxrs-provider</artifactld>
<version>${errai.version}</version>

</ dependency>

or manually add errai -j axrs-provi der-version.jar in case you're not using Maven. If your
REST service returns Jackson generated JSON you do not need the errai-jaxrs-provider (see
Configuration) .

7.1.2. GWT Module

Once you have Errai JAX-RS on your classpath, ensure your application inherits the GWT module
as well. Add this line to your application's *. gwt . xn file:

<inherits nane="org.jboss.errai.enterprise.Jaxrs"/>

7.1.3. Server-Side JAX-RS Implementation

Errai's JAX-RS support consists mostly of features that make the client side easier and more
reliable to maintain. You will need to use an existing third-party JAX-RS implementation on the
server side. All Java EE 6 application servers include such a module out-of-the-box. If you are
developing an application that you intend to deploy on a plain servlet container, you will have
to choose a JAX-RS implementation (for example, RestEasy) and configure it properly in your
web.xml.

Alternatively, you could keep your REST resource layer in a completely separate web application
hosted on the same server (perhaps build an Errai JAX-RS client against an existing REST service
you developed previously). In this case, you could factor out the shared JAX-RS interface into a
shared library, leaving the implementation in the non-Errai application.

Finally, you can take advantage of the cross-origin resource sharing (CoRS) feature in modern
browsers and use Errai JAX-RS to send requests to a third-party server. The third-party server

74

Shared JAX-RS Interface

would have to be configured to allow cross-domain requests. In this case, you would write a
JAX-RS-Annotated interface describing the remote REST resources, but you would not create an
implementation of that interface.

7.1.4. Shared JAX-RS Interface

Errai JAX-RS works by leveraging standard Java interfaces that bear JAX-RS annotations. You
will also want these interfaces visible to server-side code so that your JAX-RS resource classes
can implement them (and inherit the annotations). This keeps the whole setup typesafe, and
reduces duplication to the bare minimum. The natural solution, then is to put the JAX-RS interfaces
under the client.shared package within your GWT module:
e project
* src
* main
e java
¢ com.mycompany.myapp
o MyApp.gwt.xml [the app's GWT module]
» com.mycompany.myapp.client.local
* MyAppClientStuff.java [code that @Injects Caller<MyAppRestResource>]
* com.mycompany.myapp.client.shared
¢ CustomerService.java [the JAX-RS interface]
* com.mycompany.myapp.server

* CustomerServicelmpl.java [the server-side JAX-RS resource implementation]

The contents of the server-side files would be as follows:

Example 7.1. CustomerService.java

@rat h("cust onmers")
public interface CustonerService {
@ET
@°r oduces("application/json")
public List<Custonmer> |istAll Custoners();

@GosT
@Consunes("application/json")

75

Chapter 7. Errai JAX-RS

@r oduces("text/plain")
public | ong createCustomer(Custonmer custoner);

The above interface is visible both to server-side code and to client-side code. It is used by client-
side code to describe the available operations, their parameter types, and their return types. If
you use your IDE's refactoring tools to modify this interface, both the server-side and client-side
code will be updated automatically.

Example 7.2. CustomerServicelmpl.java

public class CustonerServicel npl inplenents CustomnerService {

@verride

public List<Customer> |istAllCustonmers() {
/1l Use a database APl to | ook up all custoners in back-end data store
// Return the resulting |ist

@verride
public | ong createCustomer(Custoner customner) ({
/| Store new Custoner instance in back-end data store

The above class implements the shared interface. Since it performs database and/or filesystem
operations to manipulate the persistent data store, it is not GWT translatable, and it's therefore
kept in a package that is not part of the GWT module.

Save typing and reduce duplication

Note that all JAX-RS annotations (@Pat h , @ET , @onsunes , and so on) can be
inherited from the interface. You do not need to repeat these annotations in your
resource implementation classes.

7.2. Creating Requests

This section assumes you have already set up the CustomerService JAX-RS endpoint as
described in the previous section.

To create a request on the client, all that needs to be done is to invoke Rest Cl i ent . creat e()
, thereby providing the JAX-RS interface, a response callback and to invoke the corresponding
interface method:

76

Proxy Injection

Example 7.3. App.java

Button create = new Button("Create", new CickHandler() {
public void onCick(dickEvent clickEvent) {
Cust oner customer = new Custoner (firstName, |astNanme, postal Code);
Rest Cli ent.create(Customner Servi ce. cl ass, call back). creat eCust omer (cust oner);

}
s
For details on the callback mechanism see Handling Responses .

7.2.1. Proxy Injection

Injectable proxies can be used as an alternative to calling Rest Cl i ent. create() .

@ nj ect
private Call er<Custoner Servi ce> custoner Servi ce;

To create a request, the callback objects need to be provided to the cal I method before the
corresponding interface method is invoked.

cust oner Servi ce. cal | (cal | back).listAll Customers();

To use caller injection, your application needs to inherit the Errai IOC GWT module. To do this,
just add this line to your application's *. gwt . xm file and make sure it comes af t er the Errai JAX-
RS module (see Getting Started):

<inherits nane="org.jboss.errai.ioc.Container"/>

@ Note

The JAX-RS interfaces need to be visible to the GWT compiler and must therefore
reside within the client packages (e.g. client.shared).

77

Chapter 7. Errai JAX-RS

7.3. Handling Responses

An instance of Errai's Renot eCal | back<T> has to be passed to the Rest Cl i ent. creat e() call,
which will provide access to the JAX-RS resource method's result. T is the return type of the JAX-
RS resource method. In the example below it's just a Long representing a customer ID, but it can
be any serializable type (see Chapter 5, Marshalling).

Renot eCal | back<Long> cal | back = new Renot eCal | back<Long>() {
public void callback(Long id) {
W ndow. al ert ("Custoner created with ID: " + id);

A special case of this Renot eCal | back is the ResponseCal | back which can be used as an
alternative. It provides access to the Response object representing the underlying HTTP response.
This is useful when more details of the HTTP response are needed, such as headers and the
status code. The ResponseCal | back can also be used for JAX-RS interface methods that return
ajavax.ws.rs. core. Response type. In this case, the Mar shal | i ngW apper class can be used
to manually demarshall the response body to an entity of the desired type.

ResponseCal | back cal | back = new ResponseCal | back() {
public void cal |l back(Response response) {
W ndow. al ert ("HTTP status code: " + response. get StatusCode());
W ndow. al ert ("HTTP response body: " + response.getText());

For handling errors, Errai's error callback mechanism can be reused and an instance of
Error Cal | back can optionally be passed to the Rest Cl i ent. creat e() call. In case of an HTTP
error, the ResponseExcept i on provides access to the Response object. All other Thr owabl es
indicate a communication problem.

Error Cal | back errorCal |l back = new RestErrorCal | back() {
publi c bool ean error(Request request, Throwable throwable) {

try {
t hrow t hr owabl e;

}

catch (ResponseException e) {
Response response = e. get Response();
/| process unexpected response

78

Client-side Interceptors

response. get St at usCode() ;

}
catch (Throwable t) {

/| process unexpected error (e.g. a network problem

}

return false;

7.4. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the request before
it's being sent. This is useful for implementing crosscutting concerns like caching or security
features e.g:

« avoiding the request when the data is cached locally

« adding special HTTP headers or parameters to the request

To have a JAX-RS remote call intercepted, either an interface method or the remote interface
type has to be annotated with @ nt er cept edCal | . If the type is annotated, all interface methods
will be intercepted.

@at h("cust oners")
public interface CustomerService {

@EET

@ath("/{id}")

@r oduces("application/json")

@ nterceptedCal | (MyCachel nterceptor. cl ass)

public Customer retrieveCustomnerByld(@athParan("id") |ong id);

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.g.
@nterceptedCal | ({ M/ Cachel nterceptor.class, M/Securitylnterceptor.class})
public Custoner retrieveCustonerByl d(@athParan({"id") |ong id);

Implementing an interceptor is easy:

79

Chapter 7. Errai JAX-RS

public class MyCachelnterceptor inplenments RestClientlnterceptor {

@verride

public void aroundl nvoke(final RestCall Context context) {
Request Bui | der buil der = context. get Request Bui | der();
bui | der. set Header (" header Nane", "val ue");
cont ext . proceed();

The Rest Cal | Cont ext passed to the ar oundl nvoke method provides access to the context of the
intercepted JAX-RS (REST) remote call. It allows to read and write the parameter values provided
at the call site and provides read/write access to the Request Bui | der instance which has the
URL, HTTP headers and parameters set.

Calling proceed executes the next interceptor in the chain or the actual remote call if all
interceptors have already been executed. If access to the result of the (asynchronous) remote
call is needed in the interceptor, one of the overloaded versions of proceed accepting a
Renot eCal | back has to be used instead.

The result of the remote call can be manipulated by calling Rest Cal | Cont ext . set Resul t () .

Not calling proceed in the interceptor bypasses the actual remote call, passing
Rest Cal | Cont ext . get Resul t () to the Renot eCal | Back provided at the call site.

7.5. Wire Format

Errai's JSON format will be used to serialize/deserialize your custom types. See Chapter 5,
Marshalling for details.

Alternatively, a Jackson compatible JSON format can be used on the wire. See Configuration for
details on how to enable Jackson marshalling.

7.6. Configuration

7.6.1. Configuring the default root path of JAX-RS endpoints

All paths specified using the @at h annotation on JAX-RS interfaces are by definition relative
paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified
paths relative to the GWT client application's context path.

To configure a relative or absolute root path, the following JavaScript variable can be set in either

the host HTML page

<script type="text/javascript">

80

Enabling Jackson marshalling

errai JaxRsAppl i cati onRoot = "/ MyJaxRsEndpoi nt Pat h";
</script>

or by using a JSNI method:

private native void set M\JaxRsAppRoot (String path) /*-{
$wnd. errai JaxRsAppl i cati onRoot = pat h;
p-*1

or by simply invoking:

Rest Cli ent. set Appl i cati onRoot ("/ MyJaxRsEndpoi nt Pat h") ;

The root path will be prepended to all paths specified on the JAX-RS interfaces. It serves as the
base URL for all requests sent from the client.

7.6.2. Enabling Jackson marshalling

The following options are available for activating Jackson marshalling on the client. Note
that this is a client-side configuration, the JAX-RS endpoint is assumed to already return a
Jackson representation (Jackson is supported by all JAX-RS implementations). The errai -
j axrs-provider.jar does not have to be deployed on the server in this case!

<script type="text/javascript">
errai JaxRsJacksonMar shal | i ngActive = true;
</script>

or by using a JSNI method:

private native void setJacksonMarshal | i ngActive(bool ean active) /*-{
$wnd. errai JaxRsJacksonMar shal | i ngActive = acti ve;
p-r1

or by simply invoking:

81

Chapter 7. Errai JAX-RS

Rest d i ent . set JacksonMar shal | i ngActi ve(true);

82

Chapter 8.

Erral JPA

Starting with Errai 2.1, Errai implements a subset of JPA 2.0. With Errai JPA, you can store and
retrieve entity objects on the client side, in the browser's local storage. This allows the reuse of
JPA-related code (both entity class definitions and procedural logic that uses the EntityManager)
between client and server.

Errai JPA implements the following subset of JPA 2.0:

« Annotation-based configuration
« Entity Types with
« Identifiers of any numeric type (int, long, short, etc.)
* Generated identifiers

» Regular attributes of any JPA Basic type (Java primitive types, boxed primitives, enums,
Biginteger, BigDecimal, String, Date, Time, and Timestamp)

 Singular and Plural (collection-valued) attributes of other entity types
< All association types (one-to-one, one-to-many, many-to-one, many-to-many)
« All association cascade rules (ALL, PERSIST, MERGE, REMOVE, REFRESH, DETACH)
 Circular and self references work properly
» Property access by field or get/set methods
* Named, typed JPQL queries that select exactly one entity type
« With cascading fetch of related entities
* With or without WHERE clause
« All boolean, arithmetic, and string operators supported
« All String manipulation functions supported
+ With or without ORDER BY clause
« Lifecycle events and entity lifecycle listeners

e Much of the Metamodel APl (Metanodel , EntityType , SingularAttribute ,
Plural Attribute, etc.)

83

Chapter 8. Errai JPA

It's all client-side

Errai JPA is a declarative, typesafe interface to the web browser's | ocal St or age

object. As such itis a client-side implementation of JPA. Objects are stored and
fetched from the browser's local storage, not from the JPA provider on the server
side.

8.1. Getting Started

8.1.1. Compile-time dependency

To use Errai JPA, you must include it on the compile-time classpath. If you are using Maven for
your build, add this dependency:

<dependency>
<gr oupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-jpa-client</artifactld>
<versi on>${errai.version}</version>

</ dependency>

If you are not using Maven for dependency management, add err ai - j pa-cl i ent-version.j ar
, Hibernate 4.1.1, and Google Guava for GWT 12.0 to your compile-time classpath.

8.1.2. GWT Module Descriptor

Once you have Errai JPA on your classpath, ensure your application inherits the GWT module as
well. Add this line to your application's *. gwt . xni file:

<inherits name="org.jboss.errai.jpa.JPA"/>

8.1.3. INF/persistence.xml

Errai ignores META-INF/persistence.xml for purposes of client-side JPA. Instead, Errai scans all
Java packages that are part of your GWT modules for classes annotated with @ntity . This
allows you the freedom of defining a persistence.xml that includes both shared entity classes that
you use on the client and the server, plus server-only entities that are defined in a server-only
package.

84

Declaring an Entity Class

8.1.4. Declaring an Entity Class

Classes whose instances can be stored and retrieved by JPA are called entities . To declare a
class as a JPA entity, annotate it with @ntity .

JPA requires that entity classes conform to a set of rules. These are:

* The class must have an ID attribute
» The class must have a public or protected constructor that takes no arguments

» The class must be public and nonfinal

No methods or persistent fields of the class may be final
» The class must be a top-level type (not a nested or inner class)

Here is an example of a valid entity class with an ID attribute (i d) and a String-valued persistent
attribute (nane):

@ntity

public class Genre {

@d @ener at edVal ue
private int id,

private String nane;

/] This constructor is used by JPA
public Genre() {}

/1 This constructor is not used by JPA
public Genre(String name) {

this();

thi s. nanme = nane;

/'l These getter and Setter nethods are optional:

public int getld() { return id; }
public void setld(int id) { this.id =id; }

public String getName() { return nane; }
public void setNane(String name) { this.nane = nane; }

85

Chapter 8. Errai JPA

8.1.4.1. Entity Attributes

The state of fields and JavaBeans properties of entities are generally persisted with the entity
instance. These persistent things are called attributes .

JPA Attributes are subdivided into two main types: singular and plural . Singular attributes
are scalar types like I nteger or String . Plural attributes are collection values, such as
Li st <l nteger>or Set<String>.

The values of singular attributes (and the elements of plural attributes) can be of any application-
defined entity type or a JPA Basic type. The JPA basic types are all of the Java primitive
types, all boxed primitives, enums, Biginteger, BigDecimal, String, Date (j ava. util . Date or
j ava. sqgl . Dat e), Time, and Timestamp.

You can direct JPA to read and write your entity's attributes by direct field access or via JavaBeans
property access methods (that is, "getters and setters"). Direct field access is the default. To
request property access, annotate the class with @ccess(AccessType. PROPERTY) . If using
direct field access, attribute-specific JPA annotations should be on the fields themselves; when
using property access, the attribute-specific annotations should be on the getter method for that

property.
8.1.4.2. ID Attributes and Auto-Generated Identifiers

Each entity class must have exactly one ID attribute. The value of this attribute together with the
fully-qualified class name uniquely identifies an instance to the entity manager.

ID values can be assigned by the application, or they can be generated by the JPA entity manager.
To declare a generated identifier, annotate the field with @=ner at edval ue . To declare an
application-assigned identifier, leave off the @zener at edVval ue annotation.

Generated identifier fields must not be initialized or modified by application code. Application-
assigned identifier fields must be initialized to a unique value before the entity is persisted by the
entity manager, but must not be modified afterward.

8.1.4.3. Single-valued Attributes

By default, every field of a JPA basic type is a persistent attribute. If a basic type field should not
be presistent, mark it with t r ansi ent or annotate it with @ ansi ent .

Single-valued attributes of entity types must be annotated with @neToOne or @/kanyToOne .

Single-valued types that are neither entity types nor JPA Basic types are not presently supported
by Errai JPA. Such attributes must be marked transient.

Here is an example of an entity with single-valued basic attributes and a single-valued relation
to another entity type:

86

Declaring an Entity Class

@ntity
public class A bum {

@cener at edVal ue
@d
private Long id;

private String nane;

@manyToOne
private Artist artist;

private Date rel easeDat e;
private Format format;

public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }

public String getName() { return nane; }
public void setNane(String name) { this.nane = nane; }

public Artist getArtist() { return artist; }
public void setArtist(Artist artist) { this.artist = artist; }

public Date get Rel easeDate() { return rel easeDate; }
publ i c voi d set Rel easeDat e(Dat e rel easeDate) { this.rel easeDate = rel easeDate; }

public Format getFormat() { return format; }
public void setFormat (Format format) { this.format = format; }

8.1.4.4. Plural (collection-valued) Attributes

Collection-valued types Col | ecti on<T>, Set <T>, and Li st <T> are supported. JPA rules require
that all access to the collections are done through the collection interface method; never by specific
methods on an implementation.

The element type of a collection attribute can be a JPA basic type or an entity type. If it is an entity
type, the attribute must be annotated with @neToMany or @anyToMany .

Here is an example of an entity with two plural attributes:

@ntity
public class Artist {

@d

87

Chapter 8. Errai JPA

private Long id;

private String nane;

/1 a two-way relationship (al bunms refer back to artists)
@neToMany(mappedBy="arti st", cascade=CascadeType. ALL)
private Set <Al bumr al bums = new HashSet <Al bun®();

/1l a one-way relationship (genres don't reference artists)
@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. MERGE})
private Set<Genre> genres = new HashSet <Genre>();

public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }

public String getName() { return nane; }
public void setNane(String name) { this.nane = nane; }

public Set <Al bun> get Al buns() { return al buns; }
public void setAl burms(Set <Al bun® al buns) { this.al buns

al buns; }

public Set<Genre> getGenres() { return genres; }
public void set Genres(Set<Genre> genres) { this.genres = genres; }

8.1.5. Entity Lifecycle States

8.1.5.1. Cascade Rules

When an entity changes state (more on this later), that state change can be cascaded
automatically to related entity instances. By default, no state changes are cascaded to related
entities. To request cascading of entity state changes, use the cascade attribute on any of the
relationship quantifiers @neToOne , @/anyToOne , @neToMany , and @/anyToNany .

CascadeType value Description

PERSI ST Persist the related entity object(s) when this
entity is persisted

MERGE Merge the attributes of the related entity
object(s) when this entity is merged

REMOVE Remove the related entity object(s) from
persistent storage when this one is removed

REFRESH Not applicable in Errai JPA

DETACH Detach the related entity object(s) from the

entity manager when this object is detached

ALL Equivalent to specifying all of the above

88

Obtaining an instance of EntityManager

For an example of specifying cascade rules, refer to the Arti st example above. In that example,
the cascade type on al buns is ALL . When a particular Arti st is persisted or removed, detached,
etc., all of that artist's albums will also be persisted or removed, or detached correspondingly.
However, the cascade rules for genres are different: we only specify PERSI ST and MERGE .
Because a Genr e instance is reusable and potentially shared between many artists, we do not
want to remove or detach these when one artist that references them is removed or detached.
However, we still want the convenience of automatic cascading persistence in case we persist an
Arti st which references a new, unmanaged Genre .

8.1.6. Obtaining an instance of EntityManager

The entity manager provides the means for storing, retrieving, removing, and otherwise affecting
the lifecycle state of entity instances.

To obtain an instance of EntityManager on the client side, use Errai 1oC (or CDI) to inject it into
any client-side bean:

@nt r yPoi nt
public class Min {
@nject EntityManager em

8.1.6.1. Storing and Updating Entities

To store an entity object in persistent storage, pass that object to the Ent i t yManager . per si st ()
method. Once this is done, the entity instance transitions from the new state to the managed state.

If the entity references any related entities, these entities must be in the managed state already, or
have cascade-on-persist enabled. If neither of these criteria are met, an | | | egal St at eExcepti on
will be thrown.

See an example in the following section.

8.1.6.2. Fetching Entities by ID

If you know the unique ID of an entity object, you can use the Entit yManager. fi nd() method
to retrieve it from persistent storage. The object returned from the fi nd() method will be in the
managed state.

Example:

Il make it
Al bum al bum = new Al bun();
al bum set Artist(null);

89

Chapter 8. Errai JPA

al bum set Nanme(" Abbey Road");
al bum set Rel easeDat e(new Dat e(-8366400000L));

[l store it

EntityManager em = get EntityManager();
em persi st (al bum ;

em flush();

em det ach(al bum ;

assert Not Nul | (al bum getld());

/] fetch it
Al bum f et chedAl bum = em fi nd(Al bum cl ass, al bumgetld());

assert Not Sane(al bum fetchedAl bum ;
assert Equal s(al bumtoString(), fetchedA bumtoString());

8.1.6.3. Removing Entities from Persistent Storage

To remove a persistent managed entity, pass it to the Ent i t yManager . r enove() method. As the
cascade rules specify, related entities will also be removed recursively.

Once an entity has been removed and the entity manager's state has been flushed, the entity
object is unmanaged and back in the new state.

8.1.6.3.1. Clearing all Local Storage

Errai's EntityManager class provides a r enoveAl | () method which removes everything from the
browser's persistent store for the domain of the current webpage.

This method is not part of the JPA standard, so you must down-cast your client-side
Enti t yManager instance to Errai Entit yManager . Example:

@nt ryPoi nt
public class Main {

@nject EntityManager em

voi d resetJpaStorage() {
((Errai EntityManager) em.renoveAl l ();

8.1.6.4. Detaching Entity Instances from the Entity Manager

For every entity instance in the managed state, changes to the attribute values of that entity
are persisted to local storage whenever the entity manager is flushed. To prevent this automatic

90

Named Queries

updating from happening, you can detach an entity from the entity manager. When an instance
is detached, it is not deleted. All information about it remains in persistent storage. The next time
that entity is retrieved, the entity manager will create a new and separate managed instance for it.

To detach one particular object along with all related objects whose cascade rules say so, call
Ent it yManager . det ach() and pass in that object.

To detach all objects from the entity manager at once, call Enti t yManager. detachAl | () .
8.1.6.5. Testing if an Entity is in the Managed State

To check if a given object is presently managed by the entity manager, call
Enti t yManager . cont ai ns() and pass in the object of interest.

8.1.7. Named Queries

To retrieve one or more entities that match a set of criteria, Errai JPA allows the use of JPA named
queries . Named queries are declared in annotations on entity classes.

8.1.7.1. Declaring Named Queries

Queries in JPA are written in the JPQL language. As of Errai 2.1, Errai JPA does not support
all JPQL features. Most importantly, implicit and explicit joins in queries are not yet supported.
Queries of the following form generally work:

SELECT et FROM EntityType et WHERE [expression with constants, named paraneters

Here is how to declare a JPQL query on an entity:

@\anmedQuer y(nane="sel ect Al bunByNane", query="SELECT a FROM Al bum a WHERE
a. nane=: nane")
@ntity
public class Al bum {
same as before ...

To declare more than one query on the same entity, wrap the @lanedQuery annotations in
@anmedQueri es like this:

@\anmedQueri es({
@NanmedQuer y(nane="sel ect Al bunByNane", query="SELECT a FROM Al buma WHERE a. nane
= :nane"),

91

and attributes

Chapter 8. Errai JPA

@anmedQuer y(nane="sel ect Al bunsAfter", query="SELECT a FROM Al bum a WHERE
a.rel easeDate >= :startDate")

}

@ntity

public class Al bum {
same as before ...

8.1.7.2. Executing Named Queries

To execute a named query, retrieve it by name and result type from the entity manager, set the
values of its parameters (if any), and then call one of the execution methods get Si ngl eResul t ()
orgetResultList() .

Example:

TypedQuer y<Al bun®» q = em cr eat eNanedQuer y("sel ect Al bunByNane", Al bum cl ass);
g. set Paraneter ("nane", "Let It Be");
Li st <Al burme f et chedAl bunms = . get Resul tList();

8.1.8. Entity Lifecycle Events

To receive a notification when an entity instance transitions from one lifecycle state to another,
use an entity lifecycle listener.

These annotations can be applied to methods in order to receive notifications at certain points in
an entity's lifecycle. These events are delivered for direct operations initiated on the EntityManager
as well as operations that happen due to cascade rules.

Annotation Meaning

@r ePer si st The entity is about to be persisted or merged
into the entity manager.

@Post Per si st The entity has just been persisted or merged
into the entity manager.

@r eUpdat e The entity's state is about to be captured into
the browser's localStorage.

@ost Updat e The entity's state has just been captured into
the browser's localStorage.

@r eRenove The entity is about to be removed from
persistent storage.

@ost Renove The entity has just been removed from
persistent storage.

92

Entity Lifecycle Events

Annotation Meaning

@ost Load The entity's state has just been retrieved from
the browser's localStorage.

JPA lifecycle event annotations can be placed on methods in the entity type itself, or on a method
of any type with a public no-args constructor.

To receive lifecycle event notifications directly on the affected entity instance, create a no-args
method on the entity class and annotate it with one or more of the lifecycle annotations in the
above table.

For example, here is a variant of the Album class where instances receive notification right after
they are loaded from persistent storage:

@ntity
public class A bum {

sane as before ...

@ost Load
public void postLoad() {
Systemout.println("A bum" + getName() + " was just |oaded into the entity
manager") ;

}

To receive lifecycle methods in a different class, declare a method that takes one parameter of
the entity type and annotate it with the desired lifecycle annotations. Then name that class in the
@ntityLi st ener s annotation on the entity type.

The following example produces the same results as the previous example:

@ntity
@nt i tyLi st eners(St andal oneLi f ecycl eLi st ener. cl ass)
public class A bum {

same as al ways ...

public class Standal onelLifecycl eLi stener {

@Post Load
public void al bumLoaded(Al bum a) {

93

Chapter 8. Errai JPA

public void postLoad() {
Systemout.println("Album " + a.getNane() + " was just l|oaded into the
entity manager");

}

8.1.9. JPA Metamodel

Errai captures structural information about entity types at compile time and makes them available
in the GWT runtime environment. The JPA metamodel includes methods for enumerating all
known entity types and enumerating the singular and plural attributes of those types. Errai extends
the JPA 2.0 Metamodel by providing methods that can create new instances of entity classes, and
read and write attribute values of existing entity instances.

As an example of what is possible, this functionality could be used to create a reusable Ul widget
that can present an editable table of any JPA entity type.

To access the JPA Metamodel, call the Enti t yManager . get Met anodel () method. For details
on what can be done with the stock JPA metamodel, see the API's javadoc or consult the JPA
specification.

8.1.9.1. Errai Extensions to JPA Metamodel API

Wherever you obtain an instance of Si ngul ar At t ri but e from the metamodel API, you can down-
cast it to Errai Singul arAttribute . Likewise, you can down-cast any Pl ural Attribute to
Errai Plural Attribute .

In either case, you can read the value of an arbitrary attribute by calling Errai Attri bute. get ()
and passing in the entity instance. You can set any attribute's value by calling
Errai Attribute. set() , passing in the entity instance and the new value.

In additon to get() and set() , FErraiPluralAttribute also has the
creat eEnpt yCol | ecti on() method, which creates an empty collection of the correct interface
type for the given attribute.

8.1.10. JPA Features Not Implemented in Errai 2.1

The following features are not yet implemented, but could conceivably be implemented in a future
Errai JPA release:

* Flush modes other than immediate

» Transactions, including EntityManager.getTransaction()

« More than one persistence context

* In named queries:

94

Other Caveats for Errai 2.1 JPA

 Joins and nested attribute paths (a. b. ¢) do not yet work, although single-step attribute paths
(a.b)do.

e The SELECT clause must specify exactly one entity type. Selection of individual attributes is
not yet implemented.

+ Embedded collections

« Compound identifiers (presently, only basic types are supported for entity IDs)
» Polymorphic relations (eg. relationship to a collection of a base entity type)

e EntityManager. nerge()

* EntityManager.refresh() to pick up changes made in localStorage from a different browser
window/tab.

 Criteria Queries
» The generated static Metamodel

« The @er si st enceCont ext annotation currently has no effect in client-side code (use @ nj ect
instead)

The following may never be implemented due to limitations and restrictions in the GWT client-
side environment:

e EntityManager.createQuery(String, ...) (that is, unnamed queries) are impractical
because JPQL queries are parsed at compile time, not in the browser.

e EntityMnager.createNativeQuery(String, ...) dont make sense because the
underlying database is just a hash table. It does not have a query language.

» Persistent attributes of type j ava. uti | . Cal endar because the Cal endar class is notin GWT's
JRE emulation library.

8.1.11. Other Caveats for Errai 2.1 JPA

We hope to remedy these shortcomings in a future release.

« In Dev Mode, changes to entity classes are not discovered on page refresh. You need to restart
Dev Mode.

» The local data stored in the browser is not encrypted

8.2. Errai JPA Data Sync

Traditional JPA implementations allow you to store and retrieve entity objects on the server side.
Errai's JPA implementation allows you to store and retrieve entity objects in the web browser using

95

Chapter 8. Errai JPA

the same APIs. All that's missing is the ability to synchronize the stored data between the server
side and the client side.

This is where Errai JPA Data Sync comes in: it provides an easy mechanism for two-way
synchronization of data sets between the client and the server.

8.2.1. How To Use It

8.2.1.1. Dependencies

First, ensure your pom xm includes a dependency on the Data Sync module. This module must
be packaged in your application's WAR file, so include it with the default scope (compile):

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-jpa-datasync</artifactld>
<version>${errai.version}</version>

</ dependency>

Then, ensure your project's gwt . xmi module descriptor includes a dependency on the Data Sync
GWT module:

<inherits nane="org.jboss.errai.jpa.sync. DataSync"/ >

8.2.1.2. A Running Example

For the rest of this chapter, we will refer to the following Entity classes, which are defined in a
shar ed package that's visible to client and server code:

@ort abl e

@ntity

@\anmedQuery(nane = "al |l Users", query = "SELECT u FROM User u")
public class User {

@d
@cener at edVal ue
private long id;

private String nane;

/] getters and setters onmitted

96

How To Use It

@Port abl e

@ntity

@lanedQuery(nane = "grocerylistsForUser", query = "SELECT gl FROM GrocerylLi st
gl WHERE gl . owner =: user")

public class GoceryList {

@d
@:ener at edVal ue
private long id;

@manyToOne
private User owner;

@neToMany(cascade = { CascadeType. PERSI ST, CascadeType. MERGE, CascadeType. REFRESH })
private List<ltem> itenms = new ArraylList<ltenp();

/] getters and setters onmtted

@vor t abl e

@ntity

@anmedQuery(nane = "allltens", query = "SELECT i FROM Itemi")
public class Item {

@d
@:zener at edVal ue
private long id;

private String nane;
private String departnent;
private String conment;
private Date addedOn;

@manyToOne(cascade = { CascadeType. PERSI ST, CascadeType. MERGE, CascadeType. REFRESH })
private User addedBy;

/] getters and setters omitted

To summarize: there are three entity types: User , G ocerylLi st ,and | tem. Each GroceryLi st
belongs to a User and has a list of I t emobjects.

97

Chapter 8. Errai JPA

@ Note
All the entities involved in the data synchronization request must be marshallable
via Errai Marshalling. This is normally accomplished by adding the @ort abl e
annotation to each JPA entity class, but it is also acceptable to list them in
Errai App. properties . See the section for more detalils.

Now let's say we want to synchronize the data for all of a user's grocery lists. This will make
them available for offline use through Errai JPA, and at the same time it will update the server
with the latest changes made on the client. Ultimately, the sync operation is accomplished in one
asynchronous call, but first we have to prepare a few things on the client and the server.

8.2.1.3. Client Side

@nject private dient SyncManager syncManager;
@nject private EntityManager em

public void syncG ocerylLists(User forUser) {
Renot eCal | back<Li st <SyncResponse<G oceryLi st >>> onConpl eti on = new Renot eCal | back<Li st <Sync

@verride

public void call back(Li st<SyncResponse<G oceryList>> response) {
W ndow. al ert ("Data Sync Conplete!");

Error Cal | back<?> onError = new BusErrorCal | back() {

@verride

publi c bool ean error(Message nmessage, Throwabl e throwable) {
W ndow. al ert ("Data Sync failed!");
return fal se;
}
b

Map<String, Object> queryParanms = new HashMap<String, Object>();
quer yPar ans. put ("user", forUser);

syncManager . col dSync("grocerylLi st sForUser", GocerylList.class, queryParans, onConpletion, ¢

98

How To Use It

Important

The onConpl eti on and onErr or callbacks are optional. In the unlikely case that
your application doesn't care if a data sync request completed successfully, you
can pass nul | for either callback.

Once your onConpl et i on callback has been notified, the server and client will have the same
entities stored in their respective databases for all entities reachable from the given query result.

8.2.1.4. Server Side — DataSyncServicelmpl

During the col dSync() call, the client-side sync manager sends an Errai RPC request to the
server. Although a server-side implementation of the remote interface is provided, you are
responsible for implementing a thin wrapper around it. This wrapper serves two purposes:

1. It allows you to determine how to obtain a reference to the JPA EntityManager (and to choose
which persistence context the server-side data sync will operate on)

2. It allows you to inspect the contents of each sync request and make security decisions about
access to particular entities

If you are deploying to a container that supports CDI and EJB 3, you can use this
DataSyncServicelmpl as a template for your own;

@t at el ess @rg. j boss. errai.bus. server. annotations. Servi ce
public class DataSyncServicel npl inplenents DataSyncService {

@per si st enceCont ext
private EntityManager em

private final JpaAttributeAccessor attributeAccessor = new JavaRefl ecti onAttri buteAccessor();
@nject private Logi nService |oginService;

@verride
public <X> Li st <SyncResponse<X>> col dSync(Syncabl eDat aSet <X> dat aSet, Li st<SyncRequest Oper at i

/'l Ensure a user is logged in
User currentUser = | ogi nService.whoAn ();
if (currentUser == null) {
throw new |1 egal St at eException("Nobody is |ogged in!");

/1l Ensure user is accessing their own datal
i f (dataSet.get QueryNane().equal s("grocerylListsForUser")) ({

99

Chapter 8. Errai JPA

dat aset

User requestedUser = (User) dataSet.getParaneters().get("user");
if (!'currentUser.getld().equal s(requestedUser.getld())) {
t hrow new AccessDeni edExcepti on("You don't have perm ssion to sync user
+ request edUser. getld());

throw new 111 egal Argunent Exception("You don't have perm ssion to sync

+ dat aSet . get QueryNane());

Dat aSyncServi ce dss = new org.jboss. errai.jpa.sync.server. DataSyncServicel npl (em attribute
return dss.col dSync(dataSet, renoteResults);

If you are not using EJB 3, you will not be able to use the @er si st enceCont ext annotation. In
this case, obtain a reference to your EntityManager the same way you would anywhere else in
your application.

8.2.1.5. Dealing With Conflicts

When the client sends the sync request to the server, it includes information about the state it
expects each entity to be in. If an entity's state on the server does not match this expected state
on the client, the server ignores the client's change request and includes a Conf | i ct Response
object in the sync reply.

When the client processes the sync responses from the server, it applies the new state from the
server to the local data store. This overwrites the change that was initially requested from the
client. In short, you could call this the "server wins" conflict resolution policy.

In some cases, your application may be able to do something smarter: apply domain-specific
knowledge to merge the conflict automatically, or prompt the user to perform a manual merge.
In order to do this, you will have to examine the server response from inside the onConpl eti on
callback you provided to the col dSync() method:

Renot eCal | back<Li st <SyncResponse<G ocer yLi st >>> onConpl eti on = new Renpt eCal | back<Li st <Sync
@verride
public void call back(Li st<SyncResponse<G oceryLi st>> responses) {

(SyncResponse<G ocerylLi st > response : responses) {

if (response instanceof ConflictResponse) {

Conflict Response<GroceryList> cr = (ConflictResponse<G ocerylList>) response;
Li st<lten> expectedltens = cr.get Expected().getltens();

List<ltenm> serverltens = cr.getActual New().getltens();

List<ltem> clientltens = cr.get Request edNew().getltens();

100

How To Use It

/'l nmerge the list of itens by conparing each to expectedltens
List<ltem> nmerged = ...;

/'l update |ocal storage with the nerged Ii st
em find(GocerylList.class, cr.getActual New().getld()).setltens(nerged);
em flush();

Remember, because of Errai's default "server wins" resolution policy, the call to
em find(G oceryList.class, cr.getActual New().getld()) will return a GroceryList object
that has already been updated to match the state presentin serverl|tens .

101

102

Chapter 9.

Data Binding

Errai's data binding module provides the ability to bind model objects to Ul fields/widgets. The
bound properties of the model and the Ul components will automatically be kept in sync for as
long as they are bound. So, there is no need to write code for Ul updates in response to model
changes and no need to register listeners to update the model in response to Ul changes.

9.1. Getting Started

The data binding module is directly integrated with Chapter 10, Errai Ul and Chapter 8, Errai JPA
but can also be used as a standalone project in any GWT client application:

9.1.1. Compile-time dependency

To use Errai's data binding module, you must include it on the compile-time classpath. If you are
using Maven for your build, add this dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactl|d>errai-data-binding</artifactld>
<version>${errai.version}</version>

</ dependency>

If you are not using Maven for dependency management, add err ai - dat a- bi ndi ng- versi on
. j ar to your classpath.

9.1.2. GWT module descriptor

You must also inherit the Errai data binding module by adding the following line to your GWT
module descriptor (gwt.xml).

Example 9.1. App.gwt.xml

<inherits nane="org.jboss. errai.databi ndi ng. Dat aBi ndi ng" />

9.1.3. Bindable Objects

Objects that should participate in data bindings have to be marked as @i ndabl e and must follow
Java bean conventions. All editable properties of these objects are then bindable to Ul widgets.

103

Chapter 9. Data Binding

Example 9.2. Customer.java

@Bi ndabl e

public class Customer {

private String nane;

public String getName() {
return name;

public void set Nane(String name) {
t hi s. nane = nane;

Important

If you cannot or prefer not to annotate your classes with @i ndabl e
, you can alternatively specify bindable types in your ErraiApp.properties
using a Wwhitespace-separated list of fully qualified class names:
errai. ui.bi ndabl eTypes=or g. exanpl e. Model 1 or g. exanpl e. Mbdel 2

9.1.4. Initializing a DataBinder

An instance of Dat aBi nder is required to create bindings. It can either be

injected into a client-side bean:

public class CustonerView {

@ nj ect

private Dat aBi nder <Cust omer > dat aBi nder;

or created manually:

Dat aBi nder <Cust orrer > dat aBi nder = Dat aBi nder. f or Type(Cust oner. cl ass) ;

104

Creating Bindings

In both cases above, the Dat aBi nder instance is associated with a new instance of the model (e.g.
a new Cust oner object). A Dat aBi nder can also be associated with an already existing object:

Dat aBi nder <Cust orrer > dat aBi nder = Dat aBi nder . f or Model (exi sti ngCust oner Cbj ect) ;

In case there is existing state in either the model object or the Ul components before the they are
bound, initial state synchronization can be carried out to align the model and the corresponding
Ul fields.

For using the model object's state to set the initial values in the Ul:

Dat aBi nder <Cust onmer > dat aBi nder = Dat aBi nder . f or Model (exi sti ngCust oner Cbj ect, Initial State. FRO

For using the Ul values to set the initial state in the model object:

Dat aBi nder <Cust orer > dat aBi nder = Dat aBi nder. f or Model (exi sti ngCust oner Cbj ect, Initial State. FRO

9.2. Creating Bindings

Bindings can be created by calling the bi nd method on a Dat aBi nder instance, thereby specifying
which widgets should be bound to which properties of the model. It is possible to use property
chains for bindings, given that all nested properties are of bindable types. When binding to
cust omer . addr ess. st r eet Name , for example, both cust omer and addr ess have to be of a type
annotated with @i ndabl e .

public class CustomerView {
@ nj ect
private DataBi nder <Cust ormer > dat aBi nder ;

private Custoner custoner;
private Text Box naneText Box = new Text Box();
/1l nmore U widgets...

@ost Const ruct
private void init() {
cust oner = dat aBi nder
. bi nd(naneText Box, "nane")
. bi nd(i dLabel , "id")

105

Chapter 9. Data Binding

. get Model () ;

After the call to dat aBi nder. bi nd() in the example above, the customer object's name property
and the nameText Box are kept in sync until either the dat aBi nder . unbi nd() method is called or
the Cust omer Vi ew bean is destroyed.

That means that a call to cust omrer . set Nane() will automatically update the value of the TextBox
and any change to the TextBox's value in the browser will update the customer object's name
property. So, cust omer . get Nane() will always reflect the currently displayed value of the Text Box

Tip
@

Errai also provides a declarative binding API that can be used to create bindings
automatically based on matching field and model property names.

9.3. Specifying Converters

Errai has built-in conversion support for all Number types as well as Boolean and Date to
java.lang.String and vice versa. However, in some cases it will be necessary to provide custom
converters (e.g. if a custom date format is desired). This can be done on two levels.

9.3.1. Registering a global default converter

@ef aul t Converter
public class MyCustonDat eConverter inplenents Converter<Date, String> {

private static final String DATE_FORMAT = "YY_DD MM';
@verride

public Date toMdel Val ue(String w dget Val ue) {
return DateTi neFor mat . get For mat (DATE_FORMAT) . par se(w dget Val ue) ;

106

Providing a binding-specific converter

@verride
public String toWdgetVal ue(Date nodel Val ue) {
return DateTi neFor mat. get For mat (DATE_FORMAT) . f or mat ((Dat e) nodel Val ue) ;

All converters annotated with @ef aul t Converter will be registered as global defaults calling
Convert . regi st er Def aul t Converter () . Note that the Converter interface specifies two type
parameters. The first one represents the type of the model field, the second one the type held by
the widget (e.g. St ri ng for widgets implementing HasVal ue<St ri ng>). These default converters
will be used for all bindings with matching model and widget types.

9.3.2. Providing a binding-specific converter

Alternatively, converter instances can be passed to the dat aBi nder. bi nd() calls.

dat aBi nder . bi nd(t ext Box, "nanme", custonConverter);

Converters specified on the binding level take precedence over global default converters with
matching types.

9.4. Property Change Handlers

In some cases keeping the model and the Ul in sync is not enough. Errai's Dat aBi nder allows
for the registration of PropertyChangeHand! ers for specific properties, property expressions
or all properties of a bound model. A property expression can be a property chain such as
customer.address.street. It can end in a wildcard to indicate that changes of any property of the
corresponding bean should be observed (e.g "cust onmer. addr ess. *"). A double wildcard can
be used at the end of a property expression to register a cascading change handler for any nested
property (e.g "cust omer. **"),

This provides a uniform notification mechanism for model and Ul value changes.
Pr oper t yChangeHandl er s can be used to carry out any additional logic that might be necessary
after a model or Ul value has changed.

dat aBi nder . addPr oper t yChangeHandl er (new PropertyChangeHandl er () {
@verride
public void onPropertyChange(PropertyChangeEvent event) {
W ndow. al ert (event. get PropertyNane() + " changed to:" + event. get Newval ue());
}
1)

107

Chapter 9. Data Binding

dat aBi nder . addPr opert yChangeHand| er ("nanme", new PropertyChangeHandl er () {

@verride
publ i c void onPropertyChange(PropertyChangeEvent event) {
W ndow. al ert ("nanme changed to:" + event.get Newal ue());

}
1),

9.5. Declarative Binding

Programmatic binding as described above (see Creating Bindings) can be tedious when working
with Ul components that contain a large number of input fields. Errai provides an annotation-driven
binding API that can be used to create bindings automatically which cuts a lot of boilerplate code.
The declarative API will work in any Errai IOC managed bean (including Chapter 10, Errai Ul
templates). Simply inject a data binder or model object and declare the bindings using @ound .

Here is a simple example using an injected model object provided by the @bdel annotation (field
injection is used here, but constructor and method injection are supported as well):

@ependent
public class CustonerView {

@ nj ect @mbdel
private Custoner custoner;

@ nj ect @ound
private TextBox nane;

@ound
private Label id = new Label ();

Here is the same example injecting a Dat aBi nder instead of the model object. This is useful when
more control is needed (e.g. the ability to register property change handlers). The @ut oBound
annotation specifies that this Dat aBi nder should be used to bind the model to all enclosing widgets
annotated with @ound . This example uses field injection again but constructor and method
injection are supported as well.

@ependent
public class CustonerView {
@ nj ect @A\ut oBound

108

Default, Simple, and Chained Property Bindings

private Dat aBi nder <Cust oner > cust oner Bi nder ;

@ nj ect @ound
private TextBox narme;

@ound
private Label id = new Label ();

In both examples above an instance of the Custoner model is automatically bound to the
corresponding Ul widgets based on matching field names. The model object and the Ul fields
will automatically be kept in sync. The widgets are inferred from all enclosing fields and methods
annotated with @ound of the class that defines the @ut oBound Dat aBi nder or @bdel and all
its super classes.

9.5.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property hames on the model
object. In the examples above, the field name was automatically bound to the JavaBeans property
name of the model (user object). If the field name does not match the model property name,
you can use the pr oper t y attribute of the @ound annotation to specify the name of the property.
The property can be a simple name (for example, "name") or a property chain (for example,
user . addr ess. st reet Nane). When binding to a property chain, all properties but the last in the
chain must refer to @Bindable values.

The following example illustrates all three scenarios:

@i ndabl e

public class Address {
private String |inel;
private String |ine2;
private String city;
private String stateProv;
private String country;

/] getters and setters

@Bi ndabl e

public class User {
private String nane;
private String password;
private Date dob;
private Address address;

109

Chapter 9. Data Binding

private List<Role> roles;

/]l getters and setters

@enpl at ed
public class User Wdget {
@ nj ect @\ut oBound Dat aBi nder <User > user;
@ nj ect @ound Text Box nane;
@ nj ect @ound("dob") DatePicker dateOfBirth;
@ nj ect @ound("address.city") TextBox city;

In User W dget above, the nane text box is bound to user . nanme using the default name matching;
the dat eOF Bi r t h date picker is bound to user . dob using a simple property name mapping; finally,
the ci ty text box is bound to user . addr ess. ci ty using a property chain. Note that the Addr ess
class is required to be @i ndabl e in this case.

9.5.2. Data Converters

The @ound annotation further allows to specify a converter to use for the binding (see Specifying
Converters for details). This is how a binding specific converter can be specified on a data field:

@ nj ect

@ound(convert er=MyDat eConverter. cl ass)
@at aFi el d

private TextBox date;

9.5.3. Replacing a model object

The injected model objects in the examples above are always proxies to the actual model since
method invocations on these objects need to trigger additional logic for updating the Ul. Special
care needs to be taken in case a model object should be replaced.

When working with an @wut oBound Dat aBi nder , simply calling set Model () on the Dat aBi nder
will be enough to replace the underlying model instance. However, when working with @mbdel
the instance cannot be replaced directly. Errai provides a special method level annotation
@nbdel Set t er that will allow replacing the model instance. Here's an example:

@ependent
public class CustonerView {

@ nj ect @mbdel
private Custoner custoner;

110

Bean validation

@ nj ect @ound
private TextBox name;

@ound
private Label id = new Label ();

@bdel Setter

public void set Model (Test Model nodel) {
this. model = nodel;

}

The @wbdel Sett er method is required to have a single parameter. The parameter type needs to
correspond to the type of the managed model.

9.6. Bean validation

Java bean validation (JSR 303) provides a declarative programming model for validating entities.
More details and examples can be found here [http://docs.jboss.org/hibernate/validator/4.3/
reference/en-US/html_single/] . Errai provides a bean validation module that makes Val i dat or
instances injectable and work well with Errai's data binding module. The following line needs to
be added to the GWT module descriptor to inherit Errai's bean validation module:

Example 9.3. App.gwt.xml

<inherits nane="org.jboss.errai.validation.Validation" />

<inherits nane="org. hi bernate. validator.Hi bernateValidator" />

To use Errai's bean validation module, you must add the module, the javax.validation APl and
an implementation such as hibernate validator to your classpath. If you are using Maven for your
build, add these dependencies:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-validation</artifactld>
<version>${errai.version}</version>

</ dependency>

<dependency>
<groupl d>j avax. val i dati on</ gr oupl d>
<artifactld>validation-api</artifactld>

111

http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/

Chapter 9. Data Binding

<scope>pr ovi ded</ scope>
</ dependency>

<dependency>
<groupl d>j avax. val i dati on</ groupl d>
<artifactld>validation-api</artifactld>
<cl assi fi er>sources</cl assifier>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!|d>hi bernate-validator</artifactld>
<version>4. 2. 0. Fi nal </versi on>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
<versi on>4. 2. 0. Fi nal </ ver si on>
<scope>provi ded</ scope>
<cl assi fi er>sources</cl assifier>

</ dependency>

Now it is as simple as injecting a Val i dat or instance into an Errai IOC managed bean and calling
the val i dat e method.

@ nj ect
private Validator validator;

Set <Constrai nt Vi ol ati on<Cust omer >> vi ol ations = validator.validate(custoner);
/1 display violations

9.6.1. Excluding Classes from Validation

By default, Errai scans the entire classpath for classes with constraints. But sometimes it is
necessary or desirable to exclude some shared classes from being validated on the client side.
This can be done by adding a list of classes and package masks to the ErraiApp.properties file
like so:

112

Excluding Classes from Validation

The following blacklists the class sone.fully.qualified.dassNane and all
cl asses in sone. package. mask (and subpackages thereof).
errai.validation.blacklist = sone.fully.qualified.C assName \
sone. package. mask. *

113

114

Chapter 10.

Erral Ul

One of the primary complaints of GWT to date

Get ALOBE" o
FLASH® PLAYER

has been that it is difficult to use "pure HTML"
when building and skinning widgets. Inevitably
one must turn to Java-based configuration in
order to finish the job. Errai, however, strives Figure 10.1. TODO Gliffy image title
to remove the need for Java styling. HTML
template files are placed in the project source
tree, and referenced from custom "Composite
components” (Errai Ul Widgets) in Java. Since
Errai Ul depends on Errai IOC and Errai
CDI, dependency injection is supported in all
custom components. Errai Ul provides rapid

prototyping and HTML5 templating for GWT.

empty
[http://get.adobe.com/flashplayer/]

10.1. Get started

The Errai Ul module is directly integrated with Chapter 9, Data Binding and Errai JPA but can also
be used as a standalone project in any GWT client application by simply inheriting the Errai Ul
GWT module, and ensuring that you have properly using Errai CDI's @Inject to instantiate your
widgets:

10.1.1. App.gwt.xml

<inherits nane="org.jboss.errai.ui.U" />

10.1.2. pom.xml

The easiest way to get Errai Ul on your classpath is to depend on the special err ai - j avaee- al |
artifact, which brings in most Errai modules:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-javaee-all</artifactld>
<version>${errai.version}</version>

</ dependency>

Or if you prefer to manage your project's dependency in a finer-grained way, you can depend on
errai-ui directly:

115

http://get.adobe.com/flashplayer/

Chapter 10. Errai Ul

<dependency>
<gr oupl d>org. j boss. errai </ groupl d>
<artifactld>errai-ui</artifactld>
<version>%${errai.version}</version>
</ dependency>

10.1.3. Working Demo

If you work better by playing with a finished product, you can see a simple client-server project
implemented using Errai Ul here [https://github.com/errai/summit-demo-2013] .

10.2. Use Errai Ul Composite components

Before explaining how to create Errai Ul components, it should be noted that these components
behave no differently from any other GWT Widget once built. The primary difference is in A) their
construction, and B) their instantiation. As with most other features of Errai, dependency injection
with CDlI is the programming model of choice, so when interacting with components defined using
Errai Ul, you should always @ nj ect references to your Composite components.

10.2.1. Inject a single instance

@nt r yPoi nt
public class Application {
@ nj ect
private Col or Conponent conp;

@ost Const ruct

public void init() {
conp. set Col or (" bl ue");
Root Panel . get (). add(conp) ;

10.2.2. Inject multiple instances (for iteration)

@nt r yPoi nt
public class Application {
private String[] colors = new String[]{"Blue", "Yellow', "Red"};

@ nj ect

116

https://github.com/errai/summit-demo-2013
https://github.com/errai/summit-demo-2013

Create a @Templated Composite component

private |nstance<Col or Conponent > i nst ance;

@Post Const ruct
public void init() {
for(String color: colors) {
Col or Conponent conp = instance. get();
conp. set Col or(c);
Root Panel . get (). add();

10.3. Create a @Templated Composite component

Custom components in Errai Ul are single classes extending from
com googl e. gwt . user. cl i ent. ui. Conposi t e, and must be annotated with @Templated.

10.3.1. Basic component

@renpl at ed
public class Logi nForm ext ends Conposite {
/* 1 ooks for LoginFormhtm in LoginForm s package */

10.3.2. Custom template names

With default values, @Templated informs Errai Ul to look in the current package for a parallel
".htm " template next to the Composite component Class; however, the template name may be
overridden by passing a String into the @ Templated annotation, like so:

@enpl ated("nmy-tenplate. htm ")
public class Logi nForm extends Conposite {
/* 1l ooks for ny-tenplate.htnml in LoginForm s package */

Fully qualified template paths are also supported, but must begin with a leading '/":

@enpl at ed("/ or g/ exanpl e/ my-tenpl ate. htm ")
public class Logi nForm ext ends Conposite {
/* |l ooks for nmy-tenplate.html in package org.exanple */

117

Chapter 10. Errai Ul

10.4. Create an HTML template

Templates in Errai Ul may be designed either as an HTML snippet or as a full HTML document.
You can even take an existing HTML page and use it as a template. With either approach, the i d
, class , and dat a- fi el d attributes in the template identify elements by name. These elements
and their children are used in the Composite component to add behavior, and use additional
components to add functionality to the template. There is no limit to how many component classes
may share a given HTML template.

We will begin by creating a simple HTML login form to accompany our @enpl at ed Logi nForm
composite component.

<f or nm»
<l egend>Log in to your account</|egend>

<l abel for="usernane">User nane</| abel >
<i nput id="username" type="text" placehol der="User nane">

<l abel for="password">Password</| abel >
<i nput id="password" type="password" placehol der="Password">

<but t on>Log i n</ button>
<but t on>Cancel </ but t on>
</form

10.4.1. Select atemplate from a larger HTML file

Or as a full HTML document which may be more easily previewed during design without running
the application; however, in this case we must also specify the location of our component's
root DOM Element using a "data-field" ,id, or class attribute matching the value of the
@Templated annotation. There is no limit to how many component classes may share a given
HTML template.

@enpl at ed("nmy-tenpl ate. ht m #| ogi n-f ornt')
public class Logi nForm ext ends Conposite {
/[* Specifies that <... id="login-form'> be used as the root Elenent of this
W dget */
}

118

Select a template from a larger HTML file

Notice the corresponding HTML i d attribute in the form Element below (we could have used dat a-
field or cl ass instead). Note that multiple components may use the same template provided
that they specify a corresponding data-fi el d,id, orcl ass attribute. Also note that two or more
components may share the same DOM elements; there is no conflict since components each
receive a unigue copy of the template DOM rooted at the designated element at runtime (or from
the root element if a fragment is not specified.)

<! DOCTYPE html >
<htm | ang="en">

<head>
<title>A full HTM. snippet</title>
</ head>
<body>
<di v>
<formid="1ogin-fornt>
<l egend>Log in to your account</|egend>
<l abel for="usernane">User name</| abel >
<i nput id="username" type="text" placehol der="User nane">
<l abel for="usernane">Password</| abel >
<i nput id="password" type="password" placehol der="Password">
<but t on>Log i n</ button>
<but t on>Cancel </ but t on>
</forne
</ di v>
<hr >

<footer id="theme-footer">
<p>(c) Conpany 2012</p>
</ footer>
</ body>
</htm >

For example's sake, the component below could also use the same template. All it needs to do
is reference the template name, and specify a fragment.

@enpl at ed(" nmy-tenpl at e. ht m #t hene- f oot er")
public class Footer extends Conposite {
/* Specifies that <... id="thene-footer"> be used as the root Elenent of
this Wdget */
}

119

Chapter 10. Errai Ul

10.5. Use other Widgets in a composite component

Now that we have created the @Templated Composite component and an HTML template, we
can start wiring in functionality and behavior; this is done by annotating fields and methods to
replace specific sub-elements of the template DOM with other Widgets. We can even replace
portions of the template with other Errai Ul Widgets!

10.5.1. Annotate Widgets in the template with @DataField

In order to composite Widgets into the template DOM, you annotate fields in your @Templated
Composite component with @DataField, and mark the HTML template Element with a
correspondingly named dat a-fi el d,i d, orcl ass attribute. This informs Errai Ul which element
in the template the Widget should replace. All replacements happen while the @Templated
Composite component is being constructed; thus, fields annotated with @DataField must either
be {{@Inject}}ed or provide their own Widget or Element instances in field initializers.

@enpl at ed
public class Logi nForm extends Conposite {

/1 This element nust be initialized manual |y because El enment is not @nject-
abl e*/

@at aFi el d

private El ement form = DOM createForn();

/1 1f not otherw se specified, the nanme to match in the HTM. tenpl ate defaul ts
to the nane of the field; in this case, the nane woul d be "usernane"

@ nj ect

@at aFi el d

private TextBox usernane;

/1 The name to reference in the tenplate can al so be specified manual ly
@ nj ect

@pat aFi el d(" pass")

private PasswordText Box password;

/1 W can al so choose to instantiate our own Wdgets. Injectionis not required.
@at aFi el d
private Button submit = new Button();

Important

Note: Field, method, and constructor injection are all supported by @DataField.

120

Add corresponding attributes to the HTML template

10.5.2. Add corresponding attributes to the HTML template

Each @DataField reference in the Java class must match an element in the HTML template. The
matching of Java references to HTML elements is performed as follows:

1. A name for the Java reference is determined. If the @at aFi el d annotation has a value
argument, that is used as the reference name. For fields, the default reference name is the
field name. Method and constructor parameters have no default name, so they must always
specify a value.

2. Ifthere is an elementin the HTML template with attribute dat a- f i el d=nane , the Java reference
will point to this element. If there is more than one such element, the Java reference points
to the first.

3. Otherwise, if there is an element in the HTML template with attribute i d=name , the Java
reference will point to this element. If there is more than one such element, the Java reference
points to the first.

4. Otherwise, if there is an element in the HTML template with a CSS style class nane , the Java
reference will point to this element. If there is more than one such element, the Java reference
points to the first. For elements with more than one CSS style, each style name is considered
individually. For example:

<div class="eat drink be-nerry">

matches Java references named eat , drink , or be-nerry .
5. If no matching element is found by this point, it is an error.

If more than one Java reference matches the same HTML element in the template, it is an error.
For example, given a template containing the element <di v cl ass="eat drink be-nerry">,
the following Java code is in error:

@enpl at ed

public class ErroneousTenpl ate extends Conposite {
@ nj ect @pat aField
private Label eat;

@ nj ect @pat aField

private Label drink;

}

because both fields eat and dri nk refer to the same HTML di v element.

121

Chapter 10. Errai Ul

So now we must ensure there are data-fiel d,id, orcl ass attributes in the right places in our
template HTML file. This, combined with the @DataField annotation in our Composite component
allow Errai Ul to determine where and what should be composited when creating component
instances.

<formid="forn'>
<l egend>Log in to your account</|egend>

<l abel for="usernane">User nane</| abel >
<input id="username" type="text" placehol der="Usernanme">

<l abel for="password">Password</| abel >
<i nput data-fiel d="pass" id="password" type="password" pl acehol der =" Password" >

<button id="subm t">Log in</button>
<but t on>Cancel </ but t on>
</fornp

Now, when we run our application, we will be able to interact with these fields in our Widget.

10.6. How HTML templates are merged with
Components

Three things are merged or modified when Errai Ul creates a new Composite component instance:

1. Element attributes are merged from the template to the component
2. DOM Elements are merged from the component to the template

3. Template elementinnertextand inner HTML are preserved when the given @at aFi el d W dget
implements HasText or HasHTM.

10.6.1. Example

10.6.1.1. Composite component class:

@enpl at ed

public class Styl edConponent extends Conposite {
@ nj ect
@at aFiel d("field-1")
private Label div = new Label ();

public Styl edConmponent () {

122

Element attributes (template wins)

div.getEl ement ().setAttribute("style", "position: fixed; top: 0; left: 0;");
this.getEl ement().setld("outer-id");

10.6.1.2. Template:

<f or m»

<span dat a-
field="field-1" style="display:inline;"> This element will become a div
</form

This text will be ignored.

10.6.1.3. Output / result:

<formid="outer-id">

<di v dat a-
field="field-1" style="display:inline;"> This element will become a div </div>
</ fornp

But why does the output look the way it does? Some things happened that may be unsettling at
first, but we find that once you understand why these things occur, you'll find the mechanisms
extremely powerful.

10.6.2. Element attributes (template wins)

When styling your templates, you should keep in mind that all attributes defined in the template
file will take precedence over any preset attributes in your Widgets. This "attribute merge" occurs
only when the components are instantiated; subsequent changes to any attributes after Widget
construction will function normally. In the example we defined a Composite component that applied
several styles to a child Widget in its constructor, but we can see from the output that the styles
from the template have overridden them. If styles must be applied in Java, instead of the template,
@ost Const ruct or other methods should be favored over constructors to apply styles to fully-
constructed Composite components.

10.6.3. DOM Elements (component field wins)

Element composition, however, functions inversely from attribute merging, and the defined
in our template was actually be replaced by the <di v> Label in our Composite component field.
This does not, however, change the behavior of the attribute merge - the new <di v> was still be

123

Chapter 10. Errai Ul

rendered inline, because we have specified this style in our template, and the template always wins
in competition with attributes set programatically before composition occurs. In short, whatever
is inside the @at aFi el d in your class will replace the children of the corresponding element in
your template.

10.6.4. Inner text and inner HTML (preserved when component
implements HasText or HasHTML)

Additionally, because Label implements both HasText and HasHTM. (only one is required,) the
contents of this "field-1" Element in the template were preserved; however, this would not
have been the case if the @at aFi el d specified for the element did not implement HasText or
HasHTM. . In short, if you wish to preserve text or HTML contents of an element in your template,
you can do one of two things: do not composite that Element with a @at aFi el d reference, or
ensure that the Widget being composited implements HasText or HasHTM. .

10.7. Event handlers

Dealing with User and DOM Events is a reality in rich web development, and Errai Ul provides
several approaches for dealing with all types of browser events using its "quick handler"
functionality. It is possible to handle:

1. GWT events on Widgets
2. GWT events on DOM Elements

3. Native DOM events on Elements

Important

It is not possible to handle Native DOM events on Widgets because GWT
overrides native event handlers when Widgets are added to the DOM. You must
programatically configure such handlers after the Widget has been added to the
DOM.

10.7.1. Concepts

Each of the three scenarios mentioned above use the same basic programming model for event
handling: Errai Ul wires methods annotated with @vent Handl er ("ny-data-fiel d") (event
handler methods) to handle events on the corresponding @at aFi el d(" ny-dat a-fi el d") inthe
same component. Event handler methods annotated with a bare @vent Handl er annotation (no
annotation parameter) are wired to receive events on the @ Templated component itself.

10.7.2. GWT events on Widgets

Probably the simplest and most common use-case, this approach handles GWT Event classes
for Widgets that explicitly handle the given event type. If a Widget does not handle the Event type

124

GWT events on DOM Elements

given in the @vent Handl er method's signature, the application will fail to compile and appropriate
errors will be displayed.

@renpl at ed
public class W dget Handl er Conponent extends Conposite {

@ nj ect
@at aFi el d("b1")
private Button button;

@tvent Handl er (" b1")
public void doSonet hi ngCLl(C i ckEvent e) {
/1 do sonething

10.7.3. GWT events on DOM Elements

Errai Ul also makes it possible to handle GWT events on native Elements which are specified
as a @at aFi el d in the component class. This is useful when a full GWT Widget is not available
for a given Element, or for GWT events that might not normally be available on a given Element
type. This could occur, for instance, when clicking on a <di v> , which would normally not have
the ability to receive the GWT d i ckEvent , and would otherwise require creating a custom DIV
Widget to handle such an event.

@enpl at ed
public class El ement Handl er Conponent extends Conposite {

@pat aFi el d("div-1")
private Di vEl ement button = DOM createbDiv();

@vent Handl er ("di v-1")
public void doSonet hi ngC1(d i ckEvent e) {
/1 do sonet hi ng

10.7.4. Native DOM events on Elements

The last approach is handles the case where native DOM events must be handled, but no
such GWT event handler exists for the given event type. Alternatively, it can also be used for
situations where Elements in the template should receive events, but no handle to the Element

125

Chapter 10. Errai Ul

the component class is necessary (aside from the event handling itself.) Native DOM events do
not require a corresponding @at aFi el d be configured in the class; only the HTML dat a-fi el d
,id,orclass template attribute is required.

<di v>
this is a hyperlink
<div data-field="div"> Some content </div>

</ di v>

The @i nkNat i ve annotation specifies (as a bit mask) which native events the method should
handle; this sink behaves the same in Errai Ul as it would with DOM si nkEvent s(El enent e, int
bi ts) . Note that a @at aFi el d reference in the component class is optional.

Important

Only one @EventHandler may be specified for a given template element when
@SinkNative is used to handle native DOM events.

@enpl at ed
public class Qui ckHandl er Conponent extends Conposite {

@at aFi el d
private AnchorEl enent |ink = DOM createAnchor().cast();

@vent Handl er ("Ii nk")
@i nkNat i ve(Event. ONCLI CK | Event. ONMOUSEOVER)
public void doSoret hi ng(Event e) {

/' do sonething

@vent Handl er ("di v")

@i nkNat i ve(Event . ONMOUSEOVER)

public void doSonet hi ngEl se(Event e) {
/1 do sonething el se

126

Data Binding

10.8. Data Binding

A recurring implementation task in rich web development is writing event handler code for updating
model objects to reflect input field changes in the user interface. The requirement to update user
interface fields in response to changed model values is just as common. These tasks require a
significant amount of boilerplate code which can be alleviated by Errai. Errai's data binding module
provides the ability to bind model objects to user interface fields, so they will automatically be kept
in sync. While the module can be used on its own, it can cut even more boilerplate when used
together with Errai UL.

In the following example, all @at aFi el ds annotated with @ound have their contents bound
to properties of the data model (a User object). The model object is injected and annotated
with @wbdel , which indicates automatic binding should be carried out. Alternatively, the model
object could be provided by an injected Dat aBi nder instance annotated with @ut oBound , see
Declarative Binding for detalils.

@renpl at ed
public class Logi nForm ext ends Conposite {

@ nj ect
@vbdel
private User user;

@ nj ect

@ound

@at aFi el d

private TextBox nane;

@ nj ect

@ound

@at aFi el d

private PasswordText Box password;

@at aFi el d
private Button submt = new Button();

Now the user object and the username and password fields in the Ul are automatically
kept in sync. No event handling code needs to be written to update the user object
in response to input field changes and no code needs to be written to update
the Ul fields when the model object changes. So, with the above annotations in
place, it will always be true that user. get User name(). equal s(user nanme. get Text ()) and
user. get Passwor d() . equal s(password. get Text()) .

127

Chapter 10. Errai Ul

10.8.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property hames on the model
object. In the example above, the field nane was automatically bound to the JavaBeans property
name of the model (user object). If the field name does not match the model property name,
you can use the pr oper t y attribute of the @ound annotation to specify the name of the property.
The property can be a simple name (for example, "name") or a property chain (for example,
user . addr ess. st reet Nane). When binding to a property chain, all properties but the last in the
chain must refer to @Bindable values.

The following example illustrates all three scenarios:

@i ndabl e

public class Address {
private String |inel;
private String line2;
private String city;
private String stateProv;
private String country;

/] getters and setters

@Bi ndabl e

public class User {
private String nane;
private String password;
private Date dob;
private Address address;
private List<Role> rol es;

/'l getters and setters

@enpl at ed
public class User Wdget extends Conposite {
@ nj ect @\ut oBound Dat aBi nder <User > user;
@ nj ect @ound Text Box nane;
@ nj ect @ound("dob") DatePicker dateOfBirth;
@nject @ound("address.city") TextBox city;

In User W dget above, the name text box is bound to user . nanme using the default name matching;
the dat e Bi rt h date picker is bound to user . dob using a simple property name mapping; finally,
the ci ty text box is bound to user . addr ess. ci t y using a property chain. Note that the Addr ess
class is required to be @i ndabl e in this case.

128

Binding of Lists

10.8.2. Binding of Lists

Often you will need to bind a list of model objects so that every object in the list is bound to a
corresponding widget. This task can be accomplished using Errai Ul's Li st W dget class. Here's
an example of binding a list of users using the User W dget class from the previous example. First,
we need to enhance User W dget to implement HasModel .

@enpl at ed
public class User Wdget extends Conposite inplenments HasMdel <User > {

@ nj ect @A\t oBound Dat aBi nder <User > user Bi nder ;
@ nj ect @ound Text Box nane;

@ nj ect @ound("dob") DatePicker dateOfBirth;
@nject @ound("address.city") TextBox city;

public User getMdel () {
user Bi nder . get Model () ;

public void set Mbdel (User user) {
user Bi nder . set Mbdel (user);

Now we can use User W dget to display items in a list.

@enpl at ed
public class MyConposite extends Conposite {

@nject @ataField ListWdget<User, UserW dget> userListWdget;

@ost Const ruct
public void init() {
Li st<User> users =
user Li st Wdget . setltens(users);

Calling set I t ens on the user Li st W dget causes an instance of User W dget to be displayed for
each user in the list. The User W dget is then bound to the corresponding user object. By default,
the widgets are arranged in a vertical panel. However, Li st W dget can also be subclassed to
provide alternative behaviour. In the following example, we use a horizontal panel to display the
widgets.

129

Chapter 10. Errai Ul

public class UserlListWdget extends ListWdget<User, UserW dget> {

public UserlList() {
super (new Hori zont al Panel ());

@ost Const ruct

public void init() {
Li st <User> users =
setltens(users);

@verride
public C ass<User Wdget > getl|temN dget Type() {
return User Wdget. cl ass;

10.8.2.1. Binding lists with @Bound

An instance of Li st W dget can also participate in automatic bindings using @ound . In this case,
set|tenms never needs to be called manually. The bound list property and displayed items will
automatically be kept in sync. In the example below a list of user roles is bound to a Li st W dget
that displays and manages a Rol eW dget for each role in the list. Every change to the list returned
by user. get Rol es() will now trigger a corresponding update in the Ul.

@enpl at ed
public class UserDetail View extends Conposite {

@ nj ect

@ound

@at aFi el d

private TextBox narne;

@ nj ect

@ound

@at aFi el d

private PasswordText Box password;

@ nj ect

@ound

@pat aFi el d

private ListWdget<Role, RoleWdget> roles;

130

Data Converters

@at aFi el d
private Button submt = new Button();

@ nj ect @bdel
private User user;

10.8.3. Data Converters

The @ound annotation further allows to specify a converter to use for the binding (see Specifying
Converters for details). This is how a binding specific converter can be specified on a data field:

@ nj ect

@ound(convert er =MyDat eConverter. cl ass)
@at aFi el d

private TextBox date;

Errai's Dat aBi nder also allows to register Pr oper t yChangeHand! er s for the cases where keeping
the model and Ul in sync is not enough and additional logic needs to be executed (see Property
Change Handlers for details).

10.9. Nest Composite components

Using Composite components to build up a hierarchy of widgets functions exactly the same as
when building hierarchies of GWT widgets. The only distinction might be that with Errai Ul, @ nj ect
is preferred to manual instantiation.

@enpl at ed
public class Conponent One extends Conposite {

@ nj ect
@pat aFi el d(" ot her - conmp")
private Conmponent Two two;

10.10. Extend Composite components

Templating would not be complete without the ability to inherit from parent templates, and Errai
Ul also makes this possible using simple Java inheritance. The only additional requirement is that
Composite components extending from a parent Composite component must also be annotated
with @ Templated, and the path to the template file must also be specified in the child component's

131

Chapter 10. Errai Ul

annotation. Child components may specify @at aFi el d references that were omitted in the parent
class, and they may also override @at aFi el d references (by using the same dat a- f i el d name)
that were already specified in the parent component.

10.10.1. Template

Extension templating is particularly useful for creating reusable page layouts with some shared
content (navigation menus, side-bars, footers, etc...,) where certain sections will be filled with
unigue content for each page that extends from the base template; this is commonly seen when
combined with the MVP design pattern traditionally used in GWT applications.

<di v class="contai ner">
<di v id="header"> Default header </div>
<div id="content"> Default content </div>
<div id="footer"> Default footer </div>
</ di v>

10.10.2. Parent component

This component provides the common features of our page layout, including header and footer, but
does not specify any content. The missing @DataField "content" will be provided by the individual
page components extending from this parent component.

@enpl at ed
public cl ass PagelLayout extends Conposite {

@ nj ect
@at aFi el d
private Header Conponent header;

@ nj ect
@at aFi el d
private Footer Conponent footer;

@ ost Const ruct
public final void init() {
/1 do sone setup

132

Child component

10.10.3. Child component

We are free to fill in the missing "content" @DataField with a Widget of our choosing. Note that it
is not required to fill in all omitted @DataField references.

@enpl at ed(" PageLayout . htm ")
public class Logi nLayout extends PagelLayout {

@ nj ect
@at aFi el d
private Logi nForm content;

We could also have chosen to override one or more @at aFi el d references defined in the parent
component, simply by specifying a @at aFi el d with the same name in the child component, as
is done with the "footer" data field below.

@enpl at ed(" PageLayout . htm ")
public class Logi nLayout extends PagelLayout {

@ nj ect
@at aFi el d
private Logi nForm content;

/* COverride footer defined in PageLayout */
@ nj ect

@at aFi el d

private Custonfooter footer;

10.11. Stylesheet binding

When developing moderately-complex web applications with Errai, you may find yourself needing
to do quite a bit of programmatic style changes. A common case being: showing or enabling
controls only if a user has the necessary permissions to use them. One part of the problem is
securing those features from being used, and the other part — which is an important usability
consideration — is communicating that state to the user.

Let's start with the example case | just described. We have a control that we only want to be visible
if the user is an admin. So the first thing we do is create a style binding annotation.

133

Chapter 10. Errai Ul

@t yl eBi ndi ng
@Ret enti on(Retenti onPol i cy. RUNTI ME)
public @nterface Admn {

}

This defines Adni n as a stylebinding now we can use it like this:

@nt r yPoi nt

@enpl at ed

public class Hell oWwrl dForm ext ends Conposite {
@nject @dm n @ataField Button del et eButton;
@ nj ect Sessi onManager sessi onManager;

@vent Handl er ("del et eButt on")
private void handl eSendd i ck(C i ckEvent event) {
/1 do sone del eting!

@\dni n
private void appl yAdnmi nStyling(Style style) {
i f (!sessionManager.isAdmn()) {
style.setVisibility(Style.Visibility.H DDEN);

Now before the form is shown to the user the appl yAdni nSt yl i ng method will be executed where
the sessi onManager is queried to see if the user is an admin if not the delete button that is also
annotated with @\dni n will be hidden from the view.

In addition when using this in conjunction with Errai Databinding. Any Errai Ul component which
uses @AutoBound, will get live updating of the style rules for free, anytime the model changes.
Allowing dynamic styling based on user input and other state changes.

10.12. Internationalization (i18n)

User interfaces often need to be available in multiple languages. To get started with Errai's
internationalization support, simply put the @undl e("bundl e. j son") annotation on your entry
point and add an empty bundl e. j son file to your classpath (e.g. to src/main/java or src/main/
resources). Of course, you can name it differently.

134

Internationalization (i18n)

Errai will scan your HTML templates and process all text elements to generate key/value pairs
for translation. It will generate a file called errai - bundl e-al | . j son and put it in your . err ai
directory. You can copy this generated file and use it as a starting point for your custom translation
bundles. If the text value is longer than 128 characters the key will get cut off and a hash appended
at the end.

The translation bundle files use the same naming scheme as Java (e.g. bundl e_nl _BE. j son
for Belgian Dutch and bundl e_nl . j son for plain Dutch). Errai will also generate a file called
errai -bundl e- i ssing. json in the . errai folder containing all template values for which no
translations have been defined. You can copy the key/value pairs out of this file to create our own
translations:

{

"StoresPage. Stores!" : "Stores!",
"Wl conePage. As_you_nove_toward_a nore_and_nore_decl arative_style, _you_al |l ow Afie_conpil er _and_t
you nove toward a nore and nore decl arative style, you allowthe conpiler and t he

framework to catch nore m stakes up front. Broken |links? A thing of the past!"”

}

If you want to use your own keys instead of these generated ones you can specify them in your
templates using the dat a- i 18n- key attribute:

<ht m >
<body>

<di v id="content">

<p data-i 18n-key="wel cone" >Wel cone to errai-ui i18n.</p>
<di v>

By adding this attribute in the template you can translate it with the following:

"W dget.wel cone": "WII| konmmen bei Errai-ui i18n."

Because your templates are designer templates and can contain some mock data that doesn't
need to be translated, Errai has the ability to indicate that with an attribute dat a- r ol e=dumy :

135

Chapter 10. Errai Ul

<di v id=navbar dat a-rol e=dunmy>
<di v cl ass="navbar navbar-fi xed-top">
<di v cl ass=navbar-inner>
<di v cl ass=cont ai ner>
Exanpl e Navbar </ span>
<ul cl ass=nav>
<l i><a>ltenx/a>
<a>ltenx/a>
</ ul >
</ di v>
</ di v>
</ di v>
</ di v>

Here the template fills out a navbar with dummy elements, useful for creating a design, adding
dat a- r ol e=dunmy will not only exclude it form being translated it will also strip the children nodes
from the template that will be used by the application.

When you have setup a translation of your application Errai will look at the browser locale and
select the locale, if it's available, if not it will use the default (bundl e. j son). If the users of your
application need to be able to switch the language manually, Errai offers a pre build component
you can easily add to your page: Local eLi st Box will render a Listbox with all available languages.
If you want more control of what this language selector looks like there is also a Local eSel ect or
that you can use to query and select the locale for example:

@enpl at ed
public class NavBar extends Conposite {

@ nj ect
private Local eSel ector sel ector;

@ nj ect @ataField @rderedLi st
Li st Wdget <Local e, Languageltenm> | anguage;

@fterlnitialization

public void buil dLangaugeLi st () {
| anguage. set | tenms(new ArraylLi st <Local e>(sel ector. get Support edLocal es()));

/1 in Languageltem we add a click handler on a |ink

@ nj ect
Navi gati on navi gati on;

@ nj ect

136

Extended styling with LESS

private Local eSel ector sel ector;

I i nk. addd i ckHandl er (new C i ckHandl er () {
@verride
public void ondick(dickEvent event) {
sel ector. sel ect (nodel . get Local e());
navi gati on. goTo(navi gati on. get Curr ent Page() . nane());

}
1)

10.13. Extended styling with LESS

Errai also supports LESS [http://lesscss.org] stylesheets. To get started using these you'll have
to create a LESS stylesheet and place it on the classpath of your project. Errai will convert the
LESS stylesheet to css preform optimisations on it and ensure that is get injected into the pages
of your application. It will also obfuscate the class selectors and replace the use of those in your
templates. To be able to use the selectors in your code you can use:

public class MyConponent extends Conponent {
#@nj ect
#private LessStyle | essStyle;

#@Post Create

#private void init() {

#textBox.setStyl eNane(| essStyle.get("input"));
#}

}

Finally it will also add any deferred binding properties to the top of your LESS stylesheet, so for
example you could use the user.agent in LESS like this:

.mxin (@) when (@ = "safari") {
background- col or: bl ack;

.mxin (@) when (@ = "geckol 8") {
background- col or: white;

.classl { .mxin(@ser_agent) }

137

http://lesscss.org
http://lesscss.org

Chapter 10. Errai Ul

Because a dot is not allowed in LESS variables it's replaced with an underscore, so in the example
above class1 will have a black background on Safari and Chrome and white on Firefox. On the
top of this LESS stylesheet @user_agent: "safari" will get generated.

138

Chapter 11.

Errai Ul Navigation

Starting in version 2.1, Errai offers a system for creating applications that have multiple
bookmarkable pages. This navigation system has the following features:

» Declarative, statically-analyzable configuration of pages and links
e Compile time referential safety (i.e. “no broken links”)
» Generates a storyboard of the application’s navigation flow at compile time
« Decentralized configuration
» Create a new page by creating a new annotated class. No need to edit a second file.
« Make navigational changes in the natural place in the code.

* Integrates cleanly with Errai Ul templates, but also works well with other view technologies.

Builds on Errai loC & CDI
11.1. Getting Started

11.1.1. Compile-time dependency

To use Errai Ul Navigation, you must include it on the compile-time classpath. If you are using
Maven for your build, add these dependencies:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-navigation</artifactld>
<version>${errai.version}</version>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>org. j boss. errai </ groupl d>
<artifactld>errai-cdi-client</artifactld>
<version>${errai.version}</version>
<scope>pr ovi ded</ scope>

</ dependency>

If you are not using Maven for dependency management, add er r ai - navi gati on- version.jar
to the compile-time classpath of a project that's already set up for Errai Ul templating.

139

Chapter 11. Errai Ul Navigation

11.1.2. GWT Module Descriptor

Once you have Errai Ul Navigation on your classpath, ensure your application inherits the GWT
module as well. Add this line to your application's *. gwt . xni file:

<inherits name="org.] boss.errai.ui.nav. Navi gation"/>

11.2. How it Works

Errai Navigation has three main parts: the @age annotation marks any widget as a page; the
Transi ti onTo<P> interface is an injectable type that provides a link to another page; and the
Navi gat i on singleton offers control over the navigation system as a whole.

The Navi gat i on singleton owns a GWT Panel called the navigation panel . This panel always
contains a widget corresponding to the the fragment ID (the part after the # symbol) in the
browser's location bar. Whenever the fragment ID changes for any reason (for example, because
the user pressed the back button, navigated to a bookmarked URL, or simply typed a fragment ID
by hand), the widget in the navigation panel is replaced by the widget associated with that fragment
ID. Likewise, when the application asks the navigation system to follow a link, the fragment ID in
the browser's location bar is updated to reflect the new current page.

11.2.1. Declaring a Page

To declare a page, annotate any subclass of Widget with the @age annotation:

@rage
public class ItenLi st Page extends Conposite {
/1 Anyt hing goes...

By default, the name of a page is the simple name of the class that declares it. In the above
example, the It enLi st Page will fill the navigation panel whenever the browser's location bar
ends with #I t enLi st Page . If you prefer a different page name, use the @age annotation's pat h
attribute:

@age(path="itens")
public class ItenLi st Page extends Conposite {
/'l Anything goes. ..

140

Declaring a Page

Navigation and Errai Ul

Any widget can be a page. This includes Errai Ul @renpl at ed classes! Simply
annotate any Errai Ul templated class with @age , and it will become a page that
can be navigated to.

11.2.1.1. The Starting Page

Each application must have exactly one starting page . This requirement is enforced at compile
time. The starting page is displayed when there is no fragment ID present in the browser's location
bar.

Use the st art i ngPage attribute to declare the starting page, like this:

@Page(st arti ngPage=true)
public class Wl comePage extends Conposite {
/1 Anyt hing goes. ..

Pages are looked up as CDI beans, so you can inject other CDI beans into fields or a constructor.
Pages can also have @ost Const ruct and @°r eDest r oy CDI methods.

11.2.1.2. Page Lifecycle

There are four annotations related to page lifecycle events: @ageShowi ng , @ageShown ,
@ageHi di ng , and @ageH dden . These annotations designate methods so a page widget can
be notified when it is displayed or hidden:

@rage
public class ItenPage extends Vertical Panel {

@ageShow ng
private voi d preparePage() {

}

@rageH di ng

private void unpreparePage() {
}

/1 Anyt hing goes...

141

Chapter 11. Errai Ul Navigation

Page Lifecycle:

1. The fragment identifier in the URL changes

2. The @PageHi di ng method on the current (about-to-be-navigated-away-from) page is invoked
3. The current page is removed from the browser's DOM

4. The @ageH dden method on the just-removed page is invoked

5. The navigation system looks up the corresponding @age bean in the client-side bean manager
(we'll call this bean "the new page")

6. The navigation system writes to all @ageSt at e fields in the new page bean (more on this in
the next section)

7. The @ageShowi ng method of the new page is invoked
8. The new page widget is added to the DOM (as a direct child of the navigation content panel)
9. The @ageShown method of the new page is invoked.

The @PageShowi ng and @ageShown methods are permitted one optional parameter of type
Hi st or yToken ---more on this in the next section.

The lifespan of a Page instance is governed by CDI scope: Dependent and implict-scoped
page beans are instantiated each time the user navigates to them, whereas Singleton and
ApplicationScoped beans are created only once over the lifetime of the application. If a particular
page is slow to appear because its Ul takes a lot of effort to build, try marking it as a singleton.

11.2.1.3. Page State Parameters

A page widget will often represent a view on on instance of a class of things. For example, there
might be an ItemPage that displays a particular item available at a store. In cases like this, it's
important that the bookmarkable navigation URL includes not only the name of the page but also
an identifier for the particular item being displayed.

This is where page state parameters come in. Consider the following page widget:

@rage
public class ItemPage extends Vertical Panel {

@ageSt at e
private int itemd;

/'l Anyt hing goes. ..

142

Declaring a Link with TransitionAnchor

This page would be reachable at a URL like http://ww. conpany. con st or e/
#l t enPage; i t eml d=4 . Before the page was displayed, the Errai Ul Navigation framework would
write the i nt value 4 into the i t em d field.

There are three ways to pass state information to a page: by passing a Multimap to
TransitionTo. go() ; by passing a Multimap to Navi gati on. goTo() , or by including the state
information in the fragment identifier of a hyperlink as illustrated in the previous paragraph (use
the Hi st or yToken class to construct such a fragment ID properly.)

A page widget can have any number of @ageSt at e fields. The fields can be of any primitive or
boxed primitive type (except char or Character), String, or a Col | ection, List , or Set of
the allowable scalar types. Nested collections are not supported.

@ageSt at e fields can be private, protected, default access, or public. They are always updated
by direct field access; never via a setter method. The updates occur just before the @ageShowi ng
method is invoked.

In addition to receiving page state information via direct writes to @ageSt at e fields, you can also
receive the whole Multimap in the @ageShow ng and @ageShown methods through a parameter
of type H st or yToken . Whether or not a lifecycle method has such a parameter, the @ageSt at e
fields will still be written as usual.

Page state values are represented in the URL much like HTML form parameters: as key=value
pairs separated by the ampersand (&) character. Multi-valued page state fields are represented
by repeated occurrences of the same key. If a key corresponding to a @ageSt at e field is absent
from the state information passed to the page, the framework writes a default value: nul | for scalar
Object fields, the JVM default (O or false) for primitives, and an empty collection for collection-
valued fields. To construct and parse state tokens programmatically, use the Hi st or yToken class.

11.2.2. Declaring a Link with TransitionAnchor

The easiest way to declare a link between pages is to inject an instance of Tr ansi t i onAnchor <P>
, Where P is the class of the target page.

Here is an example declaring an anchor link from the templated welcome page to the item list
page. The first code sample would go in WelcomePage.java while the second would go in the
WelcomePage.html, the associated html template.

@Page(starti ngPage=true)
@enpl at ed
public class Wl conePage extends Conposite {

@nject @ataField TransitionAnchor<ltenlistPage> itenlink;

143

http://www.company.com/store/#ItemPage;itemId=4
http://www.company.com/store/#ItemPage;itemId=4

Chapter 11. Errai Ul Navigation

<di v>
<a data-field="itenLink">Go to Item List Page
</ di v>

You can inject any number of links into a page. The only restriction is that the target of the link must
be a Widget type that is annotated with @age . When the user clicks the link Errai will transition
to the item list page.

11.2.3. Declaring a Manual Link

Sometimes it is necessary to manually transition between pages (such as in response to an
event being fired). To declare a manual link from one page to another, inject an instance of
Transi ti onTo<P>, where P is the class of the target page.

This code declares a manual transition from the welcome page to the item list page:

@age(starti ngPage=true)
public class Wl comePage extends Conposite {

@nject TransitionTo<ltenlistPage> startButtond icked,;

You do not need to implement the Transi ti onTo interface yourself; the framework creates the
appropriate instance for you.

As with Transi ti onAnchor , the only restriction is that the target of the link must be a Widget
type that is annotated with @age .

11.2.4. Following a Manual Link

To follow a manual link, simply call the go() method on an injected Tr ansi ti onTo object. For
example:

@rage(starti ngPage=true)
public class Wl comePage extends Conposite {

@nject TransitionTo<ltenlistPage> startButtond icked,;

public void onStartButtonPressed(CickEvent e) {
startButtond i cked. go();

144

Installing the Navigation Panel into the User Interface

11.2.5. Installing the Navigation Panel into the User Interface

Beginning in version 2.4, Errai will automatically attach the Navigation Panel to the Root Panel,
but it is possible to override this behaviour by simply adding the Navigation Panel to another
component manually. The best time to do this is during application startup, for example in the
@vost Const ruct method of your @nt ryPoi nt class. By using the default behaviour you can
allow Errai Navigation to control the full contents of the page, or you can opt to keep some parts
of the page (headers, footers, and sidebars, for example) away from Errai Navigation by choosing
an alternate location for the Navigation Panel.

The following example reserves space for header and footer content that is not affected by the
navigation system:

@nt r yPoi nt
public class Bootstrap {

@ nj ect
private Navigati on navigation;

@ost Const ruct

public void clientMin() {
Vertical Panel vp = new Verti cal Panel ();
vp. add(new Header Wdget ());
vp. add(navi gati on. get Cont ent Panel ());
vp. add(new Foot er Wdget ());

Root Panel . get (). add(vp);

This last example demonstrates a simple approach to defining the page structure with an Errai
Ul template. The final product is identical to the above example, but in this case the overall
page structure is declared in an HTML template rather than being defined programmatically in
procedural logic:

@enpl at ed
@nt r yPoi nt
public class Overal | PageStrucutre extends Conposite {

@ nj ect

145

Chapter 11. Errai Ul Navigation

private Navigation navigation;

@nject @ataField
private Header W dget header;

@nject @ataField
private SinplePanel content;

@nject @ataField
private FooterWdget footer;

@Post Construct
public void clientMin() {

/'l give over the contents of this.content to the navigation panel
cont ent . add(navi gati on. get Cont ent Panel ());

/1l add this whole tenplated wi dget to the root panel
Root Panel . get (). add(this);

11.2.6. Overriding the default Nagivating Panel type

By default Errai uses com googl e. gwt . user.client.ui.Sinpl ePanel as a container for
navigation panel. Sometimes this is not sufficient and users would prefer using another
implementation. For example a com googl e. gwt . user. cli ent. ui. Si npl eLayout Panel that
manages child size state.

To provide your own implementation of the navigation panel you must implement
org.jboss.errai.ui.nav.client.|ocal.NavigatingContainer . For example:

public class Navigati ngPanel inplenents Navi gati ngContainer {

Si npl ePanel panel = new Si npl eLayout Panel () ;

public void clear() {

this.panel.clear();

#}

public Wdget asWdget() {

return panel.asWdget();

#}

public Wdget getWdget() {

146

Viewing the Generated Navigation Graph

return panel.getWdget();

#}

public void set Wdget (Wdget chil dWdget) {
panel . add(chi | dW dget);

#}

public void set Wdget (I sWdget chil dWdget) {
panel . add(chi | dW dget);

#}

}

Then in your GWT module descriptor you need to override the default navigation panel (
org.jboss. errai.ui.nav.client.local.NavigatingContai ner) by adding:

<repl ace-wi th class="com conpany. application. client. Navi gati ngPanel ">

<when-t ype-
is class="org.jboss.errai.ui.nav.client.|ocal.NavigatingContainer"/>

</repl ace-wit h>

11.2.7. Viewing the Generated Navigation Graph

Because the pages and links in an Errai Navigation application are declared structurally, the
framework gets a complete picture of the app's navigation structure at compile time. This
knowledge is saved out during compilation (and at page reload when in Dev Mode) to the file
. errai/navgraph. gv . You can view the navigation graph using any tool that understands the
GraphViz (also known as DOT) file format.

One popular open source tool that can display GraphViz/DOT files is GraphViz [http://
www.graphviz.org/] . Free downloads are available for all major operating systems.

When rendered, a navigation graph looks like this:

Figure 11.1. TODO InformalFigure image title empty

In the rendered graph, the pages are nodes (text surrounded by an ellipse). The starting page is
drawn with a heavier stroke. The links are drawn as arrows from one page to another. The labels
on these arrows come from the Java field names the TransitionTo objects were injected into.

147

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

148

Chapter 12.

Errai Cordova (Mobile Support)

Starting with version 2.4.0, Errai now supports mobile development. One of the modules that
makes this feasible is the Cordova module. It offers a way to integrate with native hardware in
an Errai way.

12.1. Get started

Add the following to your application's .gwt.xml module file:

12.1.1. App.gwt.xml

<inherits nane="org.jboss. errai.ui.Cordova"/>

12.2. Integrate with native hardware

When the Cordova module is included you can integrate with native hardware by injecting the
native components into your code:

@enpl at ed(" #mai n")

public class KitchenSi nkCd ient extends Conposite {
@ nj ect
Canera caner a;

@ nj ect
@pat aFi el d
Button t akePi cture;

@vent Handl er ("t akePi cture")

public void onTakePi cktured icked(d i ckEvent event) {
Pi ctureOptions options = new PictureQOptions(25);
opti ons. set Desti nati onType(Pi ctureOpti ons. DESTI NATI ON_TYPE_DATA URL);
opti ons. set Sour ceType(Pi ct ureQOpti ons. Pl CTURE_SOURCE_TYPE_CAMERA) ;

canera. get Picture(options, new PictureCall back() {

@erride
public void onSuccess(String data) {
i mage.setUrl (Ui lWils.fronSafeConstant("data:inage/]jpeg; base64," + data));

}

@verride

149

Chapter 12. Errai Cordova (Mo...

public void onFailure(String error) {
set Gener al Error Message("Coul d not take picture: " + error);

}
1),

The components that are supported come from the gwt-phonegap [https://code.google.com/p/
gwt-phonegap/] project have a look there form more documentation.

Here are the native hardware components you can inject:

» Camera

» Accelerometer

» Contacts

» Capture (Provides access to the audio, image, and video capture capabilities of the device).
« Compass

« Notification (see documentation on phonegap site [http://docs.phonegap.com/en/edge/
cordova_notification_notification.md.html#Notification])

 File create a native file
» Device Get general information about the device.

So to integrate with these things all we have to do is @ nj ect these classes. There are also a
couple of CDI events one can observe to be informed about hardware state:

« BackButtonEvent
 BatteryCriticalEvent
» BatteryEvent

» BatteryLowEvent

« BatteryStatusEvent
» EndCallButtonEvent
¢ MenuButtonEvent

« OffLineEvent

150

https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification

Maven build

e OnlineEvent

» PauseEvent

* ResumeEvent

» SearchButtonEvent
 StartCallButtonEvent

* VolumeDownButtonEvent
* VolumeUpButtonEvent

Example of how to use these events:

private void batteryl sLow @bserves BatterylLowEvent event) {
[/ m ssion acconplished. we can stop the infinite | oop now.

12.3. Maven build

All that is left to do is build this and put it on a actual device. In order to make this as easy
as possible we have a maven plugin that will create a native binary that you can install on a
device. It will put the html and javascript of you application in a cordova [http://cordova.apache.org/
] application, because by doing so the client is no longer servered by the server the client will need
to know how it can reach the server to do that place the following in your gwt.xml:

<repl ace-wi th class="com conpany. application. Config">
<when-type-is class="org.jboss.errai.bus.client.framework. Configuration" />
</repl ace-w t h>

This class must implement org.jboss.errai.bus.client.framework.Configuration and return the url
where the server is configured.

i nport org.jboss.errai.bus.client.franmework. Configuration;

public class Config inplenents Configuration {
@verride
public String getRenotelLocation() {
/'l you probably want to do sonething environment specify here instead
of sonmething like this:
return "https://grocery-edew t.rhcl oud. com errai-j pa-deno-grocery-list";

151

http://cordova.apache.org/
http://cordova.apache.org/

Chapter 12. Errai Cordova (Mo...

Now all that is left is to add the plugin to the pom.xml like so:

<bui | d>

<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. j boss. errai </ groupl d>
<artifactl|d>cordova- maven-plugin</artifactld>
<versi on>${errai.version}</version>
</ pl ugi n>

Now you can execute a native build with the following maven command:

#w |l build all supported platfornms for now only ios and android
mvn cor dova: bui | d- proj ect

#only build android
mvn cordova: bui | d- proj ect -Dpl at form=android

#start the ios enulator with the depl oyed application
mv/n cordova: enul at or - Dpl at f or rri 0s

Important

For these to work you'll need to have the SDK's installed and on your path! In
case of android you will additionally have to have ANDROID HOME environment
variable set.

12.4. AeroGear Wrappers

These wrappers allow your Errai client to talk to an AeroGear server. Also have a look at the
documentation [http://aerogear.org/docs] of the AeroGear project.

12.4.1. Pipes

Pipes are for getting data from the server. Right now the only implementation is REST it will use
Id to construct urls.

152

http://aerogear.org/docs
http://aerogear.org/docs

Stores

Pi pe<Task> pi pe = new Pi peFactory().createPi pe(Task.cl ass, "tasks");

pi pe. save(new Task(123, "new', "2012-01-01"), new AsyncCal | back<Task>() {
@erride
public void onSuccess(Task result) {
W ndow. al ert ("ji pee saved a taks");

}
@verride
public void onFail ure(Throwabl e caught) {
}
s

This will preform a PUT /tasks URL

12.4.2. Stores

Another concept that comes with AeroGear is Stores. Currently there are 2 Store types supported:
Memory and SessionLocal. Memory is just a big javascript array to hold your data. Here is how
you create and configure a Store:

St ore<User> store = new Dat aManager (). store(User.cl ass);

store. save(new User (2, "test2"));
Col | ecti on<User> collection = store.readAl();

User user = store.read(2);

12.4.3. Authentication

Pipes can be authenticated by just adding the authenticator into the Pipe and you are good to go.

Aut henti cat or aut henticator = new Aut henticati onFactory().createAuthenticator("name");
Pi pe<Task> pi pe = new Pi peFactory().createPi pe(Task. cl ass, "tasks", authenticator);

aut henti cator. | ogi n(usernane. get Text (), password. get Text(), new AsyncCal | back<String>() {
@verride

public void onSuccess(String result) {
W ndow. al ert ("successful |ogin");

@verride
public void onFail ure(Throwabl e caught) {

153

Chapter 12. Errai Cordova (Mo...

nmessage. set Text ("Login failed, please try again");
}
1

There is also a method called enrol | () for adding new users.

154

Chapter 13.

Logging

Errai now supports using the slf4j [http://www.slf4j.org/] logging api on the server and client. This
gives you the flexibility of choosing your own logging back-end for your server-side code, while
still allowing a uniform logging interface that can be used in shared packages.

13.1. What is slf4j?

sl4jis logging abstraction. Using the slf4j api, you can add log statements to your code using a fixed
api while maintaining the ability to switch the logging implementation at run-time. For example,
the slIf4j api can be used with java.util.logging (JUL) as the back-end.

13.2. Client-Side Setup

The client-side slf4j code uses the GWT Logging [http://www.gwtproject.org/doc/latest/
DevGuideLogging.html] as the back-end. Using slIf4j in client-side code has two steps:

1. Add the errai-common artifact as a maven dependency to your project

2. Inherit the gwt module or g. j boss. errai . conmon. Loggi ng

The GWT logging back-end works analogously to JUL. See the above GWT Logging link for
instructions on how to adjust settings such as the log level.

13.3. Server-Side Setup

On the server you are free to use any logging back-end that has slf4j bindings (or to make your
own). Just make sure to add dependencies for the slf4j-api artifact and the slIf4j binding you
choose. Note: Some application servers provide their own slf4j bindings (such as JBoss AS), in
which case you should add your binding dependency as provided scope.

To learn more about how to setup slIf4j for your server-side code, see their website [http://
www.slf4j.org/] .

13.4. Example Usage

Here is sample usage of the slf4j code (which with the above setup can be run on the client or
server):

Example 13.1. LogExample.java

i mport org.slf4j.Logger;
i mport org.slf4j.Logger Factory;

155

http://www.slf4j.org/
http://www.slf4j.org/
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Chapter 13. Logging

i mport javax.inject.Inject;
public class LogExanmple {
public void logStuff() {
[/l Get a logger for this class

@ nj ect Logger |ogger;

/1 Logging going fromnost to | east detail ed
| ogger.trace("this is extrenely specific!");

| ogger . debug("this is still pretty specific");
| ogger.info("this is an average | og nessage");
| ogger.warn("there might be sonething fishy here...");
| ogger.error("uh oh... abandon ship!'", new Exception("l am a |ogged
exception"));

}

13.5. Logger Names

By default, the above example with provide a logger with the fully qualified class name of the
enclosing class. To inject a logger with an alternate name, use the NamedLogger annotation:

Example 13.2. NamedLogExample.java

i nport org.slf4j.Logger;
i mport javax.inject.Inject;
i mport org.jboss.errai.common. client. api.NanmedLogger;

public class NanedLogExanple {

/1 CGet a logger with the name "Logger!"
@ nj ect @lanmedLogger ("Logger!") | ogger;

/1l Get the root | ogger
@ nj ect @lanmedLogger rootLogger;

156

Chapter 14.

Configuration

This section contains information on configuring Errai.

14.1. ErraiApp.properties

ErraiApp.properties acts both as a marker file for JARs that contain Errai-enabled GWT modules,
and as a place to put configuration settings for those modules in the rare case that non-default
configuration is necessary.

14.1.1. As a Marker File

An Errai App. properties file must appear at the root of each classpath location that
contains an Errai module. The contents of JAR and directory classpath entries that do not
contain an Err ai App. properti es are effectively invisible to Errai's classpath scanner.

14.1.2. As a Configuration File

ErraiApp.properties is usually left empty, but it can contain configuration settings for both the core
of Errai and any of its extensions. Configuration properties defined and used by Errai components
have keys that start with " errai . ". Third party extensions should each choose their own prefix
for keys in ErraiApp.properties.

14.1.2.1. Configuration Merging

In a non-trivial application, there will be several instances of ErraiApp.properties on the classpath
(one per JAR file that contains Errai modules, beans, or portable classes).

Before using the configuration information from ErraiApp.properties, Errai reads the contents of
every ErraiApp.properties on the classpath. The configuration information in all these files is
merged together to form one set of key=value pairs.

If the same key appears in more than one ErraiApp.properties file, only one of the values will be
associated with that key. The other values will be ignored. In future versions of Errai, this condition
may be made into an error. It's best to avoid specifying the same configuration key in multiple
ErraiApp.properties files.

14.1.2.2. Errai Marshalling Configuration

» errai.marshalling.use_static_marshallers when set to false , Errai will not use the
precompiled server-side marshallers even if the generated Ser ver Mar shal | i ngFact or yl npl
class is found on the classpath. This is useful when using Dev Mode in conjunction with an
external server such as JBoss AS 7 or EAP 6.

157

Chapter 14. Configuration

» errai.marshalling.force_static_marshallers when set to true , Errai will not use dynamic
marshallers. If the generated Server Mar shal | i ngFact oryl npl cannot be loaded (possibly
after an attempt to generate it on-the-fly), the Errai web app will fail to start.

Errai also supports configuring portable types in Err ai App. properti es as an alternative to the
@Por t abl e annotation. See the Errai Marshalling section on Manual Mapping for details.

14.1.2.3. Errai loC Configuration

 errai.ioc.QualifyingMetaDataFactory specifies the fully-qualified class name of the
QualifyingMetadataFactory implementation to use with Errai loC.

 errai.ioc.enabled.alternatives specifies a whitespace-separated list of fully-qualified class
names for alternative beans . See Section 3.6, “Alternatives and Mocks” for details.

 errai.ioc.blacklist specifies a whitespace-separated list of classes that should be hidden
from Errai IOC and that will be excluded when generating the bean graph and wiring
components. Wildcards are supported to exclude all types underneath a package e.g.
org.jpboss.myapp.exclude.* (all types under the exclude package will be hidden from ERRAI
10C).

 errai.ioc.whitelist when this property is present all types in your application are hidden
from Errai 10C by default. It specifies a whitespace-separated list of classes that should
be visible to 1I0C and that will be included when generating the bean graph and wiring
components. Wildcards are supported to include all types underneath a package e.g.
org.jpboss.myapp.include.* (all types under the include package will be visible to ERRAI IOC).

14.1.3.
14.2. Messaging (Errai Bus) Configuration

14.2.1. Disabling remote communication

In some cases it might be desirable to prevent the client bus from communicating with the server.
One use case for this is when all communication with the server is handled using JAX-RS and the
constant long polling requests for message exchange are not needed.

To turn off remote communication in the client bus the following JavaScript variable can be set
in the HTML host page:

158

Configuring an alternative remote remote bus endpoint

<script type="text/javascript">
er r ai BusRenot eConmuni cat i onEnabl ed = fal se;
</script>

14.2.2. Configuring an alternative remote remote bus endpoint

By default the remote bus is expected at the GWT web application's context path. In case the
remote bus is part of a different web application or deployed on a different server, the following
configuration can be used in the HTML host page to configure the remote bus endpoint used on
the client.

<script type="text/javascript">
errai BusApplicati onRoot = "/ M/Renpt eMessageBusEnpoi nt";
</script>

14.2.3. ErraiService.properties

The ErraiService.properties file contains basic configuration for the bus itself. Unlike
ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of
a deployed application. If you do not need to set any properties to their non-default values, this
file can be omitted from the deployment entirely.

14.2.3.1. Message Dispatching

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

14.2.3.1.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

14.2.3.1.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.

159

Chapter 14. Configuration

This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

« errai.dispatcher.implementation specifies the dispatcher implementation to be used by
the bus. There are two implementations which come with Errai out of the box: the
Si npl eDi spat cher and the AsyncDi spat cher . See ERRAI:Dispatcher Implementations for
more information about the differences between the two.

14.2.3.2. Threading

« errai.async_thread_pool_size specifies the total number of worker threads in the worker pool
for handling and delivering messages. Adjusting this value does not have any effect if you are
using the SimpleDispatcher.

 errai.async.worker_timeout specifies the total amount of time (in seconds) that a service is
given to finish processing an incoming message before the pool interrupts the thread and returns
an error. Adjusting this value has no effect if you are using the SimpleDispatcher.

14.2.3.3. Buffering

» errai.bus.buffer_size The total size of the transmission buffer, in megabytes. If this
attribute is specified along with errai. bus. buf fer _segment _count , then the segment
count is inferred by the calculation buffer_segment_count / buffer_size}. |If
{{errai.bus. buf fer_segment _count is also defined, it will be ignored in the presence of this
property. Default value: 32.

« errai.bus.buffer_segment_size The transmission buffer segment size in bytes. This is the
minimum amount of memory each message will consume while stored within the buffer. Defualt
value: 8.

 errai.bus.buffer_segment_count The number of segments in absolute terms. If this attribute
is specified in the absence of errai. bus. buffer_si ze , the buffer size is inferred by the
calculation buf f er _segment _si ze / buffer_segnment_count .

 errai.bus.buffer_allocation_mode Buffer allocation mode. Allowed values are direct and
heap . Direct allocation puts buffer memory outside of the JVM heap, while heap allocation
uses buffer memory inside the Java heap. For most situations, heap allocation is preferable.
However, if the application is data intensive and requires a substantially large buffer, it is
preferable to use a direct buffer. From a throughput perspective, current JVM implementations
pay about a 20% performance penalty for direct-allocated memory access. However, your

160

ErraiService.properties

application may show better scaling characteristics with direct buffers. Benchmarking under real
load conditions is the only way to know the optimal setting for your use case and expected load.
Default value: di rect .

14.2.3.4. Security

» errai.authentication_adapter specifies the authentication modelAdapter the bus should use
for determining whether calls should be serviced based on authentication and security
principals.

 errai.require_authentication_for_all indicates whether or not the bus should always require
the use of authentication for all requests inbound for the bus. If this is turned on, an
authentication model adapter must be defined, and any user must be authenticated before the
bus will deliver any messages from the client to any service.

14.2.3.5. Clustering

« errai.bus.enable_clustering A boolean indicating whether or not Errai's server side bus
should attempt to orchestrate with its peers. The orchestration mechanism is dependent on
the configured clustering provider (e.g. UDP based multicast discovery in case of the default
JGroups provider). The default value is f al se .

 errai.bus.clustering_provider The fully qualified class name of
the clustering provider implementation. A class that implements
org.j boss. errai.bus. server.cluster.d usteringProvider . Currently the only build-in
provider is the

org.jboss.errai.bus.server.cluster.jgroups.JG&G oupsC usteringProvider .

14.2.3.6. Startup Configuration

» errai.auto_discover_services A boolean indicating whether or not the Errai bootstrapper
should automatically scan for services. This property must be setto true if and only if Errai
CDl is not on the classpath . The default value is f al se .

« errai.auto_load_extensions A boolean indicating whether or not the Errai bootstrapper should
automatically scan for extensions. The default value ist r ue .

14.2.3.7. Example Configuration

161

Chapter 14. Configuration

Hit

Request di spatcher inplenentation (default is SinpleD spatcher)

##

#errai . di spat cher_i npl ement ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement ati on=org. j boss. errai . bus. server. AsyncD spat cher

#

\Wrker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

Hit

errai.async. t hread_pool _si ze=5

##

Worker timeout (in seconds). This defines the time that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
t he AsyncDi spat cher

i mpl ement ati on.

##t

errai.async. worker. ti meout =5

##t

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henticati on_adapt er=org.j boss. errai.persistence.server.security.H bernateAuthenticati
#errai . aut henti cati on_adapter=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application shoul d be secure.

Ht

#errai.require_authentication_for_all=true

14.2.4. Servlet Configuration

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These included implementations are packaged at: or g. j boss. errai . bus. server. servl et .

162

Servlet Configuration

One is Enough!

You should use just one of the options below. Configuring multiple ErraiServlet
implementations in the same application will lead to unpredictable behaviour!

Remember that all Errai demos and archetypes are preconfigured with
DefaultBlockingServlet as a servlet. You will need to remove this default setup if
you choose to use a different ErraiServlet implementation in your app.

E] Rolling your own security? Beware!

All of the following examples use a wildcard mapping for *. er r ai Bus with no path
prefix. This allows Errai Bus to communicate from any point in your application's
URI hierarchy, which allows bus communication to work properly no matter where
you choose to put your GWT host page.

For example, all of the following are equivalent from Errai's point of view:

 /in.erraiBus
» /foo/bar/in.erraiBus
« /long/path/to/get/to.erraiBus

If you rely on your own security rules or a custom security filter to control access
to Errai Bus (rather than the security framework within Errai Bus,) ensure you use
the same mapping pattern for that fi | t er - mappi ng or security-constraint as
you do for the Errai Servlet itself.

14.2.4.1. DefaultBlockingServlet

This ErraiServlet implementation should work in virtually any servlet container that supports Java
Servlets 2.0 or higher. It provides purely synchronous request handling. The one scenario where
this servlet will not work is in servers that put restrictions on putting threads into sleep states.

The default DefaultBlockingServiet which provides the HTTP-protocol gateway between the
server bus and the client buses.

As its name suggests, DefaultBlockingServlet is normally configured as an HTTP Servlet in the
web. xm file:

<servl et >
<servl et - nane>Err ai Servl et </ servl et - nane>

163

Chapter 14. Configuration

<servlet-class>org.]jboss. errai.bus. server. servl et. Def aul t Bl ocki ngServl et </
servl et-cl ass>
<l oad- on- st art up>1</| oad-on-start up>
</servlet>

<servl et - mappi ng>
<servl et - name>Err ai Servl et </ servl et - nane>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

14.2.4.2. DefaultBlockingServlet configured as Filter

Alternatively, the DefaultBlockingServiet can be deployed as a Servlet Filter. This may be
necessary in cases where an existing filter is configured in the web application, and that filter
interferes with the Errai Bus requests. In this case, configuring DefaultBlockingServlet to handle
*. errai Bus requests ahead of other filters in web.xml will solve the problem:

<filter>
<filter-name>Errai Servlet</filter-nanme>
<filter-class>org.]jboss. errai.bus. server.servl et. Def aul t Bl ocki ngServl et </
filter-class>
</filter>

<filter-mppi ng>
<filter-name>Errai Servlet</filter-nanme>
<url -pattern>*.errai Bus</url -pattern>
</filter-mappi ng>

14.2.4.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

<servl et>

<servl et - nanme>Err ai Servl et </ servl et - nane>

<servl et-class>org.jboss. errai.bus. server.servlet.JettyContinuati onsServl et </
servl et-cl ass>

<l oad- on- st art up>1</| oad-on-start up>
</servlet>

164

Servlet Configuration

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - nane>
<url -pattern>*. errai Bus</url - pattern>

</ servl et - mappi ng>

14.2.4.4. StandardAsyncServlet

This implementation leverages asynchronous support in Servlet 3.0 to allow for threadless pausing
of port connections. Note that <async- support ed>t r ue</ async- suppor t ed> has to be added
to the servlet definition in web. xm .

<servl| et >
<servl et - nane>Err ai Servl et </ servl et - name>
<servlet-class>org.jboss. errai.bus. server. servl et. St andar dAsyncSer vl et </
servl et-cl ass>
<l oad- on- st artup>1</| oad- on- st art up>
<async- supported>true</async- support ed>
</servlet>

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - nane>
<url -pattern>*. errai Bus</url - pattern>

</ servl et - mappi ng>

165

166

Chapter 15.

Troubleshooting & FAQ

This section explains the cause of and solution to some common problems that people encounter
when building applications with Errai.

Of course, when lots of people trip over the same problem, it's probably because there is a
deficiency in the framework! A FAQ list like this is just a band-aid solution. If you have suggestions
for permanent fixes to these problems, please get in touch with us: file an issue in our issue tracker,
chat with us on IRC, or post a suggestion on our forum.

But for now, on to the FAQ:

15.1. Why does it seem that Errai can't see my class at
compile time?

Possible symptoms:

e uncaught exception: java.lang.RuntimeException: No proxy provider found for type:
my.fully.qualified.ServiceName

Answer: Make sure the Section 14.1, “ErraiApp.properties” file is actually making it into your
runtime classpath.

One common cause of this problem is a <resources> section in pom.xml that includes src/main/
java (to expose .java sources to the GWT compiler) that does not also include src/main/resources
as a resource path. You must include both explicitly:

<r esour ces>
<resour ce>
<di rect ory>src/ mai n/java</directory>
</ resource>
<r esour ce>
<di rect ory>src/ mai n/ resour ces</di rect ory>
</ resource>
</resources>

15.2. Why am | getting "java.lang.ClassFormatError:
lllegal method name "<init>$" in class org/xyz/package/
MyClass"?

Answer: This error message means that your project has a (direct or indirect) subclass of
JavaScriptObject that lacks a protected no-args constructor. All subtypes of JavaScriptObject

167

Chapter 15. Troubleshooting & FAQ

(also known as overlay types) must declare a protected no-args constructor, but the error
message could be much clearer. There is an issue filed in the GWT project's bug tracker for
improving the error message: GWT issue 3383 [http://code.google.com/p/google-web-toolkit/
issues/detail ?id=3383] .

15.3. I'm getting "java.lang.RuntimeException:
There are no proxy providers registered yet." in my
@PostConstruct method!

Answer: You can't invoke RPC methods via Cal | er<?> or by other means until after the
Errai Bus has finished its initial handshake. Try changing your @ost Construct annotation
to @fterinitialization . This will cause your method to be invoked later—after the bus
handshake has completed.

If this doesn't help, it is also possible that the proxies were never generated in the first place. Check
in . errai/RpcProxyLoader I npl . j ava to see if proxy code exists for the @Renot e and/or @Pat h
interface in question. If not, your @Renot e interfaces were not present on the GWT compiler's
classpath when your application module was compiled. Double-check your GWT compilation
classpath: all @Renot e interfaces must be visible to (in or inherited by) the GWT module that
contains the Cal | er <?> types. Pay special attention that your @renot e and @at h interfaces are
not in a package excluded from the GWT module (by default, every subpackage other thancl i ent
and shar ed is invisible to the GWT compiler).

168

http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383

Chapter 16.

Upgrade Guide

This chapter contains important information for migrating to newer versions of Errai. If you
experience any problems, don't hesitate to get in touch with us. See Chapter 19, Reporting
problems .

16.1. Upgrading from 1.* to 2.0

The first issues that will arise after replacing the jars or after changing the version numbers in
the pom xm are unresolved package imports. This is due to refactorings that became necessary
when the project grew. Most of these import problems can be resolved automatically by modern
IDEs (Organize Imports). So, this should replace or g. j boss. errai . bus. cli ent. protocol s. *
with or g. j boss. errai . common. cl i ent. protocol s. * for example.

The following is a list of manual steps that have to be carried out when upgrading:
* @ExposedEntity became @Portable (

org.jboss.errai.comon.client.api.annotations.Portable). See Chapter 5,
Marshalling for details.

« The @Conversational annotation must now target the event objects themselves, not the
observer methods of the events. So an event type is either conversational or not; you no
longer specify that listeners receive arbitrary events in a conversational context. See the
Conversational Events section of the CDI chapter for details.

 Errai CDI projects must now use the Si npl eDi spat cher instead of the AsynDi spat cher . This
has to be configured in Section 14.2, “Messaging (Errai Bus) Configuration” .

e The bootstrap listener (configured in VEB-INF/web.xml) for Errai CDI
has changed (org.jboss.errai.container. DevModeCDl Boot st rap is now
org.jboss.errai.container.CDl Servl et St at eLi st ener).

« gwt 2.3.0 or newer must be used and replace older versions.
e mvel2 2.1.Beta8 or newer must be used and replace older versions.
« weld 1.1.5.Final or newer must be used and replace older versions.
* slf4j 1.6.1 or newer must be used and replace older versions.

» This step can be skipped if Maven is used to build the project. If the project is NOT built using
Maven, the following jar files have to be added manually to project's build/class path: errai-
common-2.x.jar, errai-marshalling-2.x.jar, errai-codegen-2.x.jar, netty-4.0.0.Alphal.errai.rl.jar.

169

Chapter 16. Upgrade Guide

* If the project was built using an early version of an Errai archetype the configuration of
the maven-gwt-plugin has to be modified to contain the <host edWbapp>pat h-t o-your -
st andar d- webapp- f ol der </ host edWebapp> . This is usually either war or src/ nai n/ webapp .

16.2. Upgrading from 2.0.Beta to 2.0.*.Final

The following is a list of manual steps that have to be carried out when upgrading from a 2.0.Beta
version to 2.0.CR1 or 2.0.Final:

» Starting with 2.0.CR1 the default for automatic service discovery has been changed in
favour of CDI based applications. That means it has to be explicitly turned on for plain
bus applications (Errai applications that do not use Errai-CDI). Not doing so will result in
NoSubscri ber sToDel i ver To exceptions. The snippet below shows how to activate automatic
service discovery:

Example 16.1. web.xml

<servl et >
<servl et - name>Err ai Servl et </ servl et - nane>
<servlet-class>org.]j boss. errai.bus. server.servl et. Def aul t Bl ocki ngServl et </
servl et -cl ass>
<i ni t-paran>
<par am nane>aut o- di scover - servi ces</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranp
<| oad- on- st art up>1</ | oad- on-st art up>
</servlet>

e Thej boss7-support module was deleted and is no longer needed as a dependency.

16.3. Upgrading from Errai 2.2.x to 2.4 or 3.0

There are some breaking API changes in the update from Errai 2.2.x to Errai 2.4.x and 3.0.x.

Here are the steps you'll need to take to get your project compiling after you update:
« Starting with Errai 2.3.0, GWT 2.5.0 or higher is required.

» Use your IDE to organize imports at the top level. In eclipse, you'd click in the Project Explorer,
press Ctrl-A (select all) and then Ctrl-O (Organize Imports). Other IDEs have similar features.

e The ErrorCal | back interface has been made more general so the same type can be shared
between Errai modules. This allows you reuse your own generic error handler class for, eg,

170

Upgrading from Errai 2.2.x to 2.4 or 3.0

Errai JAX-RS and ErraiBus callbacks. If you want to use a generic error handler throughout your
app, change your Er r or Cal | back implementations to Er r or Cal | back<?> and change the first
argument type of your error() method to Object. Otherwise, if you have use-case-specific error
callbacks, implement the interfaces Rest Er r or Cal | back or BusEr r or Cal | back as appropriate.

e | CCBeanManager was replaced by two new types SyncBeanManager and AsyncBeanManager
that need to be used instead. See Section 3.5, “Client-Side Bean Manager” for details.

Note: Errai 3 is still changing rapidly, so this section is a work in progress. Please add any
additional steps you had to take in upgrading your own codebase.

171

172

Chapter 17.

Downloads

The distribution packages can be downloaded from jboss.org http://jboss.org/errail
Downloads.html

173

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

174

Chapter 18.

Sources

Errai is currently managed using Github. You can clone our repositories from http://github.com/
errai .

175

http://github.com/errai
http://github.com/errai

176

Chapter 19.

Reporting problems

If you run into trouble don't hesitate to get in touch with us:

JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

e User Forum: http://community.jboss.org/en/errai?view=discussions

Mailing List: http://jposs.org/errai/MailingLists.html

IRC: irc:/lirc.freenode.net/errai

177

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

178

Chapter 20.

Erral License

Erraiis distributed under the terms of the Apache License, Version 2.0. See the full Apache license
text [http://www.apache.org/licenses/LICENSE-2.0] .

179

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

180

Appendix A. Revision History

Revision History
Revision <

181

182

	Errai
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. Messaging API Basics
	2.2.1. Sending Messages with the Client Bus
	2.2.2. Receiving Messages on the Server Bus / Server Services
	2.2.3. Sending Messages with the Server Bus
	2.2.4. Receiving Messages on the Client Bus/ Client Services
	2.2.5. Local Services

	2.3. Single-Response Conversations & Pseudo-Synchronous Messaging
	2.4. Sender Inferred Subjects
	2.5. Broadcasting
	2.6. Client-to-Client Communication
	2.6.1. Relay Services

	2.7. Message Routing Information
	2.8. Handling Errors
	2.8.1. Handling global message transport errors

	2.9. Asynchronous Message Tasks
	2.10. Repeating Tasks
	2.11. Queue Sessions
	2.11.1. Lifecycle
	2.11.2. Scopes
	2.11.2.1. Session Scope
	2.11.2.2. Local Scope

	2.12. Client Logging and Error Handling
	2.13. Wire Protocol (J.REP)
	2.13.1. Payload Structure
	2.13.1.1. Built-in Subjects

	2.13.2. Message Routing
	2.13.3. Bus Management and Handshaking Protocols
	2.13.3.1. ServerBus and ClientBus commands

	2.14. Conversations
	2.15. WebSockets
	2.15.1. Configuring the sideband server
	2.15.2. Deploying with JBoss AS 7

	2.16. Bus Lifecycle
	2.16.1. Turning Server Communication On and Off
	2.16.2. Observing Bus Lifecycle State and Communication Status

	2.17. Shadow Services
	2.18. Debugging Messaging Problems

	Chapter 3. Dependency Injection
	3.1. Container Wiring
	3.2. Wiring server side components
	3.3. Scopes
	3.3.1. Dependent Scope

	3.4. Built-in Extensions
	3.4.1. Bus Services
	3.4.1.1. @Service
	3.4.1.2. @Local
	3.4.1.3. Lifecycle Impact of Services

	3.4.2. Client Components
	3.4.2.1. MessageBus
	3.4.2.2. RequestDispatcher
	3.4.2.3. Caller<?>
	3.4.2.4. Sender<?>

	3.4.3. Lifecycle Tools
	3.4.3.1. Controlling Startup
	3.4.3.2. Performing Tasks After Initialization

	3.4.4. Timed Methods

	3.5. Client-Side Bean Manager
	3.5.1. Looking up beans
	3.5.2. Availability of beans

	3.6. Alternatives and Mocks
	3.6.1. Alternatives
	3.6.2. Test Mocks

	3.7. Bean Lifecycle
	3.7.1. Destruction of Beans
	3.7.1.1. Disposers

	Chapter 4. Errai CDI
	4.1. Features and Limitations
	4.1.1. Other features

	4.2. Events
	4.2.1. Conversational events
	4.2.2. Client-Server Event Example

	4.3. Producers
	4.4. safe dynamic lookup
	4.5. Deploying Errai CDI
	4.5.1. Deployment in Development Mode
	4.5.1.1. Special-case Classloading

	4.5.2. Deployment to a Servlet Engine
	4.5.3. Deployment to an Application Server

	Chapter 5. Marshalling
	5.1. Mapping Your Domain
	5.1.1. @Portable and @NonPortable
	5.1.1.1. Example: A Simple Entity
	5.1.1.2. Example: An Immutable Entity with a Public Constructor
	5.1.1.3. Example: An Immutable Entity with a Factory Method
	5.1.1.4. Example: An Immutable Entity with a Builder

	5.1.2. Manual Mapping
	5.1.2.1. Mapping Existing Client Classes
	5.1.2.2. Aliased Mappings of Existing Interface Contracts

	5.1.3. Manual Class Mapping
	5.1.3.1. MappingDefinition

	5.1.4. Custom Marshallers

	Chapter 6. Remote Procedure Calls (RPC)
	6.1. Making calls
	6.1.1. Proxy Injection

	6.2. Handling exceptions
	6.2.1. Global RPC exception handler

	6.3. Client-side Interceptors
	6.4. Session and request objects in RPC endpoints
	6.5. Batching remote calls

	Chapter 7. Errai JAX-RS
	7.1. Getting Started
	7.1.1. Dependencies
	7.1.2. GWT Module
	7.1.3. Server-Side JAX-RS Implementation
	7.1.4. Shared JAX-RS Interface

	7.2. Creating Requests
	7.2.1. Proxy Injection

	7.3. Handling Responses
	7.4. Client-side Interceptors
	7.5. Wire Format
	7.6. Configuration
	7.6.1. Configuring the default root path of JAX-RS endpoints
	7.6.2. Enabling Jackson marshalling

	Chapter 8. Errai JPA
	8.1. Getting Started
	8.1.1. Compile-time dependency
	8.1.2. GWT Module Descriptor
	8.1.3. INF/persistence.xml
	8.1.4. Declaring an Entity Class
	8.1.4.1. Entity Attributes
	8.1.4.2. ID Attributes and Auto-Generated Identifiers
	8.1.4.3. Single-valued Attributes
	8.1.4.4. Plural (collection-valued) Attributes

	8.1.5. Entity Lifecycle States
	8.1.5.1. Cascade Rules

	8.1.6. Obtaining an instance of EntityManager
	8.1.6.1. Storing and Updating Entities
	8.1.6.2. Fetching Entities by ID
	8.1.6.3. Removing Entities from Persistent Storage
	8.1.6.3.1. Clearing all Local Storage

	8.1.6.4. Detaching Entity Instances from the Entity Manager
	8.1.6.5. Testing if an Entity is in the Managed State

	8.1.7. Named Queries
	8.1.7.1. Declaring Named Queries
	8.1.7.2. Executing Named Queries

	8.1.8. Entity Lifecycle Events
	8.1.9. JPA Metamodel
	8.1.9.1. Errai Extensions to JPA Metamodel API

	8.1.10. JPA Features Not Implemented in Errai 2.1
	8.1.11. Other Caveats for Errai 2.1 JPA

	8.2. Errai JPA Data Sync
	8.2.1. How To Use It
	8.2.1.1. Dependencies
	8.2.1.2. A Running Example
	8.2.1.3. Client Side
	8.2.1.4. Server Side – DataSyncServiceImpl
	8.2.1.5. Dealing With Conflicts

	Chapter 9. Data Binding
	9.1. Getting Started
	9.1.1. Compile-time dependency
	9.1.2. GWT module descriptor
	9.1.3. Bindable Objects
	9.1.4. Initializing a DataBinder

	9.2. Creating Bindings
	9.3. Specifying Converters
	9.3.1. Registering a global default converter
	9.3.2. Providing a binding-specific converter

	9.4. Property Change Handlers
	9.5. Declarative Binding
	9.5.1. Default, Simple, and Chained Property Bindings
	9.5.2. Data Converters
	9.5.3. Replacing a model object

	9.6. Bean validation
	9.6.1. Excluding Classes from Validation

	Chapter 10. Errai UI
	10.1. Get started
	10.1.1. App.gwt.xml
	10.1.2. pom.xml
	10.1.3. Working Demo

	10.2. Use Errai UI Composite components
	10.2.1. Inject a single instance
	10.2.2. Inject multiple instances (for iteration)

	10.3. Create a @Templated Composite component
	10.3.1. Basic component
	10.3.2. Custom template names

	10.4. Create an HTML template
	10.4.1. Select a template from a larger HTML file

	10.5. Use other Widgets in a composite component
	10.5.1. Annotate Widgets in the template with @DataField
	10.5.2. Add corresponding attributes to the HTML template

	10.6. How HTML templates are merged with Components
	10.6.1. Example
	10.6.1.1. Composite component class:
	10.6.1.2. Template:
	10.6.1.3. Output / result:

	10.6.2. Element attributes (template wins)
	10.6.3. DOM Elements (component field wins)
	10.6.4. Inner text and inner HTML (preserved when component implements HasText or HasHTML)

	10.7. Event handlers
	10.7.1. Concepts
	10.7.2. GWT events on Widgets
	10.7.3. GWT events on DOM Elements
	10.7.4. Native DOM events on Elements

	10.8. Data Binding
	10.8.1. Default, Simple, and Chained Property Bindings
	10.8.2. Binding of Lists
	10.8.2.1. Binding lists with @Bound

	10.8.3. Data Converters

	10.9. Nest Composite components
	10.10. Extend Composite components
	10.10.1. Template
	10.10.2. Parent component
	10.10.3. Child component

	10.11. Stylesheet binding
	10.12. Internationalization (i18n)
	10.13. Extended styling with LESS

	Chapter 11. Errai UI Navigation
	11.1. Getting Started
	11.1.1. Compile-time dependency
	11.1.2. GWT Module Descriptor

	11.2. How it Works
	11.2.1. Declaring a Page
	11.2.1.1. The Starting Page
	11.2.1.2. Page Lifecycle
	11.2.1.3. Page State Parameters

	11.2.2. Declaring a Link with TransitionAnchor
	11.2.3. Declaring a Manual Link
	11.2.4. Following a Manual Link
	11.2.5. Installing the Navigation Panel into the User Interface
	11.2.6. Overriding the default Nagivating Panel type
	11.2.7. Viewing the Generated Navigation Graph

	Chapter 12. Errai Cordova (Mobile Support)
	12.1. Get started
	12.1.1. App.gwt.xml

	12.2. Integrate with native hardware
	12.3. Maven build
	12.4. AeroGear Wrappers
	12.4.1. Pipes
	12.4.2. Stores
	12.4.3. Authentication

	Chapter 13. Logging
	13.1. What is slf4j?
	13.2. Client-Side Setup
	13.3. Server-Side Setup
	13.4. Example Usage
	13.5. Logger Names

	Chapter 14. Configuration
	14.1. ErraiApp.properties
	14.1.1. As a Marker File
	14.1.2. As a Configuration File
	14.1.2.1. Configuration Merging
	14.1.2.2. Errai Marshalling Configuration
	14.1.2.3. Errai IoC Configuration

	14.1.3.

	14.2. Messaging (Errai Bus) Configuration
	14.2.1. Disabling remote communication
	14.2.2. Configuring an alternative remote remote bus endpoint
	14.2.3. ErraiService.properties
	14.2.3.1. Message Dispatching
	14.2.3.1.1. SimpleDispatcher
	14.2.3.1.2. AsyncDispatcher

	14.2.3.2. Threading
	14.2.3.3. Buffering
	14.2.3.4. Security
	14.2.3.5. Clustering
	14.2.3.6. Startup Configuration
	14.2.3.7. Example Configuration

	14.2.4. Servlet Configuration
	14.2.4.1. DefaultBlockingServlet
	14.2.4.2. DefaultBlockingServlet configured as Filter
	14.2.4.3. JettyContinuationsServlet
	14.2.4.4. StandardAsyncServlet

	Chapter 15. Troubleshooting & FAQ
	15.1. Why does it seem that Errai can't see my class at compile time?
	15.2. Why am I getting "java.lang.ClassFormatError: Illegal method name "<init>$" in class org/xyz/package/MyClass"?
	15.3. I'm getting "java.lang.RuntimeException: There are no proxy providers registered yet." in my @PostConstruct method!

	Chapter 16. Upgrade Guide
	16.1. Upgrading from 1.* to 2.0
	16.2. Upgrading from 2.0.Beta to 2.0.*.Final
	16.3. Upgrading from Errai 2.2.x to 2.4 or 3.0

	Chapter 17. Downloads
	Chapter 18. Sources
	Chapter 19. Reporting problems
	Chapter 20. Errai License
	Appendix A. Revision History

