
jBPM User Guide

iii

... v

1. Overview .. 1

1.1. Modeling .. 1

1.1.1. Drools Flow Eclipse Plugin for creating BPMN2 processes 1

1.1.2. jBPM5 Eclipse Plugin for creating BPMN2 processes 2

1.1.3. Web-based process modeling using Oryx Designer 3

1.2. Deployment .. 4

1.3. Execution ... 4

1.3.1. Process engine .. 4

1.3.2. Human task service ... 6

1.4. Monitoring .. 7

1.4.1. Web-based management console ... 8

2. Installer .. 11

2.1. Prerequisites ... 11

2.2. Download the installer ... 11

2.3. Demo setup .. 11

2.4. Using Eclipse Tooling .. 12

2.5. Using web management consoles .. 13

2.6. Using Guvnor repository .. 14

2.7. What to do if I encounter problems or have questions? .. 14

3. BPMN 2.0 ... 17

3.1. Business Process Model and Notation (BPMN) 2.0 specification 17

3.2. Examples ... 21

3.3. Supported elements / attributes ... 22

4. API ... 27

4.1. The jBPM API .. 28

4.1.1. Knowledge Base .. 28

4.1.2. Session ... 28

4.1.3. Events ... 31

4.2. Knowledge-based API ... 32

5. Human Tasks ... 35

5.1. Human tasks inside processes .. 35

5.1.1. Swimlanes ... 38

5.2. Human task management component .. 39

5.2.1. Task life cycle .. 39

5.2.2. Linking the task component to the jBPM engine 41

5.2.3. Starting the Task Management Component ... 42

5.2.4. Interacting With the Task Management Component 44

5.3. Human Task Management Interface ... 45

5.3.1. Eclipse integration .. 45

5.3.2. Web-based Task View .. 45

6. Domain-specific processes .. 47

6.1. Introduction ... 47

6.2. Example: Notifications ... 48

jBPM User Guide

iv

6.2.1. Creating the work definition .. 48

6.2.2. Registering the work definition .. 49

6.2.3. Using your new work item in your processes .. 49

6.2.4. Executing service nodes ... 51

7. Persistence .. 53

7.1. Runtime State ... 53

7.1.1. Binary Persistence ... 53

7.1.2. Safe Points .. 53

7.1.3. Configuring Persistence .. 53

7.1.4. Transactions .. 57

7.2. Process Definitions ... 58

7.3. History Log ... 58

7.3.1. Storing Process Events in a Database ... 58

8. Console .. 61

8.1. Installation .. 61

8.2. Running the process management console .. 61

8.2.1. Managing process instances ... 63

8.2.2. Human task lists .. 73

8.2.3. Reporting ... 75

8.3. Adding new process / task forms ... 79

Index ... 81

v

vi

Chapter 1.

1

Chapter 1. Overview
This chapter will give an overview of the various components that are offered as part of the jBPM

project. It will walk through the different phases in the life cycle of a business process, from

modeling and deployment to execution and monitoring.

1.1. Modeling

jBPM currently allows users to create and modify business processes using graphical flow charts.

We target both developers and business users, using an Eclipse editors and a web-based editor

respectively. Currently, we offer three options to model your BPMN2 processes.

1.1.1. Drools Flow Eclipse Plugin for creating BPMN2

processes

This Eclipse plugin allows developers to create, test and debug BPMN2 processes.

Chapter 1. Overview

2

Figure 1.1. The Drools Flow editor for creating BPMN2 processes

1.1.2. jBPM5 Eclipse Plugin for creating BPMN2 processes

This new Eclipse plugin is being created to support the full BPMN2 specification. It is currently

still under development and only supports a limited number of constructs and attributes, but can

already be used to create simple BPMN2 processes.

Web-based process modeling using Oryx Designer

3

Figure 1.2. The jBPM editor for creating BPMN2 processes

1.1.3. Web-based process modeling using Oryx Designer

Web-based editing is possible using the Oryx Designer. This designer is also integrated into

Guvnor, the knowledge repository where you can store your processes. The Designer can be

used to view, update or create BPMN2 processes.

Chapter 1. Overview

4

Figure 1.3. The web-based Oryx editor for creating BPMN2 processes

1.2. Deployment

Guvnor can be used as a knowledge repository, for storing your processes, domain model,

business rules, etc. Guvnor provides a web-based management console for inspecting, modifying

and testing your knowledge. The Oryx Designer is integrated with the Guvnor console. Guvnor

also supports collaboration between different users, scenario testing, packaging, etc.

1.3. Execution

1.3.1. Process engine

The core engine is a lightweight workflow engine in Java:

• native BPMN2 process execution

• pluggable persistence and transactions

• audit and history logging

• based on a generic process engine

We do yet implement all node types and attributes as defined in the BPMN 2.0 specification, but

we already support a very significant subset, which includes all common node types. The following

list gives an overview of the various elements that can already be executed using the BPMN 2.0

XML format:

• Flow objects

Process engine

5

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Timer)

• Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

• Activities

• Script Task (Java or MVEL expression language)

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive (Java, MVEL or XPath expression language)

• Inclusive (Java, MVEL or XPath expression language)

• Parallel

• Event-Based

Chapter 1. Overview

6

• Converging

• Exclusive

• Parallel

• Lanes

• Data

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

1.3.2. Human task service

Human tasks are an important part of a BPM solution. While some of the work performed in a

process can be executed automatically, some tasks need to be executed with the interaction

of human actors. This includes task lists for users, claiming and/or assigning tasks, etc. The

process engine itself is not tied to one specific, internal implementation but allows for other

implementations to be plugged in. By default jBPM currently supports a WS-HT service as the

default implementation. The life cycle as supported by the Human Task specification is shown

below. Note that the WS-HT service also includes features like group assignment, escalation,

assignment rules, etc.

Monitoring

7

Figure 1.4. The WS-HT human task life cycle

User-defined human task forms are also supported using a template-based approach, while a

other task form solutions can easily be integrated.

1.4. Monitoring

To monitoring your processes, you first need the ability to know what happening at runtime.

Process listeners can be used to listen to different kinds of events occuring at runtime, like process

instances being started or node instances being completed, etc. This information could then be

Chapter 1. Overview

8

used to create history logs (for reporting or static analysis purposes), or to dymanically analyze

and respond using Business Activity Monitoring (BAM).

1.4.1. Web-based management console

Processes can be managed through a web console. This includes features like managing your

process instances (starting/stopping/inspecting), ...

Figure 1.5. Managing your process instances

... inspecting your (human) task list and executing those tasks, ...

Web-based management console

9

Figure 1.6. Managing your tasks

... and generating reports.

Chapter 1. Overview

10

Figure 1.7. Generating reports

Chapter 2.

11

Chapter 2. Installer
This guide will assist you in installing and running a demo setup of the various components of the

jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,

or if you want to help out, do not hesitate to contact the jBPM community as described in the "What

to do if I encounter problems or have questions?" section.

2.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you

don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

2.2. Download the installer

First of all, you need to download the installer: jBPM-{version}-install.zip

You can for example find the latest snapshot release here.

http://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/

2.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.

Simply go into the install folder and run:

ant install.demo

This will:

• Download JBoss AS

• Download Eclipse

• Install Drools Guvnor into JBoss AS

• Install Oryx Designer into JBoss AS

• Install the jBPM gwt-console into JBoss AS

• Install the jBPM Eclipse plugin

• Install the Drools Eclipse plugin

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
http://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/

Chapter 2. Installer

12

This could take a while (REALLY, not kidding, we are downloading an application server and

Eclipse installation). The script however always shows which file it is downloading (you could

for example check whether it is still downloading by checking the whether the size of the file in

question in the jbpm-installer/lib folder is still increasing). If you want to avoid downloading specific

components (because you will not be using them or you already have them installed somewhere

else), check below for running only specific parts of the demo or directing the installer to an already

installed component.

Once the demo setup has finished, you can start playing with the various components by starting

the demo setup:

ant start.demo

This will:

• Start the H2 database

• Start the JBoss AS

• Start Eclipse

• Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor and gwt-console,

as explained in the next three sections.

2.4. Using Eclipse Tooling

The following screencast [http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf] gives an

overview of how to run a simple demo process in Eclipse. It shows you:

• How to import an existing example project into your workspace, containing

• a sample BPMN2 process for requesting a performance evaluation

• a sample Java class to start the process

• How to start the process

Once Eclipse has opened, simple import (using "File -> Import ..." and then under the General

category, select "Existing Projects into Workspace") the existing sample project (in the jbpm-

installer/sample/evaluation directory). This should add the sample project, including a simple

BPMN2 process and a Java file to start the process. You can open the BPMN2 process by double-

clicking it. To execute the process, right-click on ProcessTest.java in the com.sample package

(under "src/main/java") and select "Run As - Java Application". In this case, it will simply start the

process, which will result in the creation of a new user task for the user "krisv" in the human task

http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf
http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf

Using web management consoles

13

service, after which the process will wait for its execution. We will show you later how you could

complete human tasks like this using a human task client like the jbpm-console.

You could also create a new project using the jBPM project wizard. This sample project contains

a simple HelloWorld BPMN2 process and an associated Java file to start the process. Simple

select "File - New ... - Project ..." and under the "jBPM" category, select "jBPM project" and click

"Next". Give the project a name and click "Finish". You should see a new project containing a

"sample.bpmn" process and a "com.sample.ProcessTest" Java class. You can open the BPMN2

process by double-clicking it. To execute the process, right-click on ProcessTest.java and select

"Run As - Java Application". You should see a "Hello World" statement in the output console.

2.5. Using web management consoles

Open up the process management console:

http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password. The following screencast [http://

people.redhat.com/kverlaen/install-gwt-console-jbpm.swf] gives an overview of how to manage

your process instances. It shows you:

• How to start a new process

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

Once Eclipse has opened, simple import (using "File -> Import ..." and then under the General

category, select "Existing Projects into Workspace") the existing sample project (in the jbpm-

installer/sample/evaluation directory). This should add the sample project, including a simple

BPMN2 process and a Java file to start the process. You can open the BPMN2 process by double-

clicking it. To execute the process, right-click on ProcessTest.java in the com.sample package

(under "src/main/java") and select "Run As - Java Application". In this case, it will simply start the

process, which will result in the creation of a new user task for the user "krisv" in the human task

service, after which the process will wait for its execution. We will show you later how you could

complete human tasks like this using a human task client like the jbpm-console.

You could also create a new project using the jBPM project wizard. This sample project contains

a simple HelloWorld BPMN2 process and an associated Java file to start the process. Simple

select "File - New ... - Project ..." and under the "jBPM" category, select "jBPM project" and click

"Next". Give the project a name and click "Finish". You should see a new project containing a

"sample.bpmn" process and a "com.sample.ProcessTest" Java class. You can open the BPMN2

process by double-clicking it. To execute the process, right-click on ProcessTest.java and select

"Run As - Java Application". You should see a "Hello World" statement in the output console.

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf

Chapter 2. Installer

14

2.6. Using Guvnor repository

We're still working on the integration with the Guvnor repository. This will be improved in the next

releases but feel free to already try it out. Current limitations:

• If you want to create a new BPMN2 process definition on Guvnor, you should select "Create

New - New File" and specify bpmn as the extension.

• The designer currently only works in Google Chrome.

• It is currently not yet possible to use a package built on Guvnor as a jBPM5 knowledge base.

• It is possible that the designer is still unable to save or load specific BPMN2 processes. Please

contact the jBPM community with details on how to reproduce the issue so we can improve it.

Open up Drools Guvnor:

http://localhost:8080/drools-guvnor

Log in, using any non-empty username / password (we disabled authentication for demo

purposes). The following screencast [TODO] [TODO] gives an overview of how to manage your

repository. It shows you:

• How to import an existing sample repository, containing the performance evaluation process

as shown in the previous section

• How to open up the evaluation process in the web editor

• How to build a package so it can be used for creating a session

If you want to know more, we recommend you take a look at the rest of the Drools Guvnor

documentation.

Once you're done playing:

ant stop.demo

and simply close all the rest.

2.7. What to do if I encounter problems or have

questions?

You can always contact the jBPM community for assistance.

Email: jbpm-dev@jboss.org

http://localhost:8080/drools-guvnor
TODO
TODO

What to do if I encounter problems or have questions?

15

IRC: #jbpm at irc.codehaus.org

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

16

Chapter 3.

17

Chapter 3. BPMN 2.0

3.1. Business Process Model and Notation (BPMN) 2.0

specification

The primary goal of BPMN is to provide a notation that is readily understandable by all business

 users,

from the business analysts that create the initial drafts of the processes, to the technical

 developers

responsible for implementing the technology that will perform those processes, and finally, to the

business people who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that

not only defines a standard on how to graphically represent a business process (like BPMN 1.x),

but now also includes execution semantics for the elements defined, and an XML format on how

to store (and share) process definitions.

jBPM5 allows you to execute processes defined using the BPMN 2.0 XML format. That means that

you can all the different jBPM5 components to model, execute, manage and monitor your business

processes using the BPMN 2.0 format for specifying your executable business processes.

Actually, the full BPMN 2.0 specification also includes details on how to represent things like

choreographies and and collaboration. The jBPM project however focuses on that part of the

specification that can be used to specify executable processes.

jBPM5 does not implement all elements and attributes as defined in the BPMN 2.0 specification.

We do however support a significant subset, including the most common node types that can be

used inside executable processes. This includes (almost) all elements and attributes as defined in

the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

elements and attributes we believe are valuable in that context as well. The full set of elements

and attributes that are supported can be found below, but it includes elements like:

• Flow objects

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

Chapter 3. BPMN 2.0

18

• Non-interrupting Boundary Event (Escalation, Timer)

• Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

• Activities

• Script Task

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive

• Inclusive

• Parallel

• Event-Based

• Converging

• Exclusive

• Parallel

• Lanes

• Data

Business Process Model and Notation (BPMN) 2.0 specification

19

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more

that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something

like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.example.org/MinimalExample"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.HelloWorld" name="Hello

 World" >

 <!-- nodes -->

 <startEvent id="_1" name="StartProcess" />

 <scriptTask id="_2" name="Hello" >

 <script>System.out.println("Hello World");</script>

 </scriptTask>

 <endEvent id="_3" name="EndProcess" >

 <terminateEventDefinition/>

Chapter 3. BPMN 2.0

20

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="Minimal" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="15" y="91" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="95" y="88" width="83" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="258" y="86" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="39" y="115" />

 <di:waypoint x="75" y="46" />

 <di:waypoint x="136" y="112" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="136" y="112" />

 <di:waypoint x="240" y="240" />

 <di:waypoint x="282" y="110" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</definitions>

To create your own process using BPMN 2.0 format, you can

• Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,

make sure you select Drools 5.1 code compatibility. This will create a new process using the

BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still

uses different attributes names etc. It does however save the process using valid BPMN 2.0

syntax. Also note that the editor does not support all node types and attributes that are already

supported in the execution engine.

Examples

21

• Oryx is an open-source web-based editor that supports the BPMN 2.0 format. We have

embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the Oryx

editor (either standalone or integrated) to create / edit BPMN 2.0 processes and then export

them to BPMN 2.0 format or save them into Guvnor and import them so they can be executed.

• A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification. It

is currently still under development and only supports a limited number of constructs and

attributes, but can already be used to create simple BPMN2 processes. To create a new BPMN2

file for this editor, use the wizard (under Examples) to create a new BPMN2 file, which will

generate a .bpmn2 file and a .prd file containing the graphical information. Double-click the .prd

file to edit the file using the graphical editor.

• You can always manually create your BPMN 2.0 process files by writing the XML directly.

The following code fragment shows you how to load a BPMN2 process into your knowledge

base ...

private static KnowledgeBase createKnowledgeBase() throws Exception {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("sample.bpmn2"), ResourceType.BPMN2);

 return kbuilder.newKnowledgeBase();

}

... and how to execute this process ...

KnowledgeBase kbase = createKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("com.sample.HelloWorld");

3.2. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and

other elements).

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These

test processes can also serve as simple examples: they don't really represent an entire real life

business processes but can definitely be used to show how specific features can be used. For

example, the following figures shows the flow chart of a few of those examples. The entire list can

be found in the src/main/resources folder for the jbpm-bpmn2 module like here [http://github.com/

krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/].

http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Chapter 3. BPMN 2.0

22

3.3. Supported elements / attributes

Table 3.1. Keywords

Element Supported attributes Supported elements Extension attributes

definitions rootElement

BPMNDiagram

process processType

isExecutable name id

property laneSet

flowElement

packageName

sequenceFlow sourceRef targetRef

isImmediate name id

conditionExpression bendpoints

interface name id operation

operation name id inMessageRef

laneSet lane

lane name id flowNodeRef

Events

startEvent name id dataOutput

dataOutputAssociation

outputSet

eventDefinition

x y width height

endEvent name id dataInput

dataInputAssociation

inputSet

eventDefinition

x y width height

intermediateCatchEventname id dataOutput

dataOutputAssociation

outputSet

eventDefinition

x y width height

intermediateThrowEventname id dataInput

dataInputAssociation

inputSet

eventDefinition

x y width height

boundaryEvent cancelActivity

attachedToRef name

id

eventDefinition x y width height

terminateEventDefinition

cancelEventDefinition

compensateEventDefinitionactivityRef documentation

extensionElements

Supported elements / attributes

23

Element Supported attributes Supported elements Extension attributes

conditionalEventDefinition condition

errorEventDefinition errorRef

error errorCode id

escalationEventDefinitionescalationRef

escalation escalationCode id

messageEventDefinitionmessageRef

message itemRef id

signalEventDefinition signalRef

timerEventDefinition timeCycle

Activities

task name id ioSpecification

dataInputAssociation

dataOutputAssociation

taskName x y width

height

scriptTask scriptFormat name id script x y width height

script text[mixed content]

userTask name id ioSpecification

dataInputAssociation

dataOutputAssociation

resourceRole

x y width height

potentialOwner resourceAssignmentExpression

resourceAssignmentExpression expression

businessRuleTask name id x y width height

ruleFlowGroup

manualTask name id x y width height

sendTask messageRef name id ioSpecification

dataInputAssociation

x y width height

receiveTask messageRef name id ioSpecification

dataOutputAssociation

x y width height

serviceTask operationRef name id ioSpecification

dataInputAssociation

dataOutputAssociation

x y width height

subProcess name id flowElement property

loopCharacteristics

x y width height

adHocSubProcess cancelRemainingInstances

name id

completionCondition

flowElement property

x y width height

Chapter 3. BPMN 2.0

24

Element Supported attributes Supported elements Extension attributes

callActivity calledElement name

id

ioSpecification

dataInputAssociation

dataOutputAssociation

x y width height

waitForCompletion

independent

multiInstanceLoopCharacteristics loopDataInputRef

inputDataItem

Gateways

parallelGateway gatewayDirection

name id

x y width height

eventBasedGateway gatewayDirection

name id

x y width height

exclusiveGateway default

gatewayDirection

name id

x y width height

inclusiveGateway default

gatewayDirection

name id

x y width height

Data

property itemSubjectRef id

dataObject itemSubjectRef id

itemDefinition structureRef id

ioSpecification dataInput dataOutput

inputSet outputSet

dataInput name id

dataInputAssociation sourceRef targetRef

assignment

dataOutput name id

dataOutputAssociation sourceRef targetRef

assignment

inputSet dataInputRefs

outputSet dataOutputRefs

assignment from to

formalExpression language text[mixed content]

BPMNDI

Supported elements / attributes

25

Element Supported attributes Supported elements Extension attributes

BPMNDiagram BPMNPlane

BPMNPlane bpmnElement BPMNEdge

BPMNShape

BPMNShape bpmnElement Bounds

BPMNEdge bpmnElement waypoint

Bounds x y width height

waypoint x y

26

Chapter 4.

27

Chapter 4. API
To interact with the process engine (to for example start a process), you need to set up a session.

This session will be used to communicate with the process engine. A session also needs to have

a reference to a knowledge base. This knowledge base is used to look up the process definitions

whenever necessary. Whenever a process is started, a new process instance is created (for that

process definition) that maintains the state of that specific instance of the process.

For example, image you are writing an application to process sales orders. You could then define

one or more process definitions that define how the order should be processed. When starting up

your application, you first need to create a knowledge base that contains those process definitions.

You can then create a session based on this knowledge base so that, whenever a new sales order

then comes in, a new process instance is started for that sales order.

A knowledge base can be shared across sessions and usually is only created once, at the start of

the application (as creating a knowledge base can be rather heavy-weight as it involves parsing

Chapter 4. API

28

and compiling the process definitions). Knowledge bases can be dynamically changed (so you

can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and

interact with the engine. You can create as much independent session as you want and creating

a session is considered relatively lightweight. How much sessions you create is up to you, but

in general you could for example create one session and direct all calls in your application to

that one session. You could decide to create multiple sessions if for example you want to have

multiple independent processing units (for example, you want all processes from one customer

be completely independent of processes of another customer so you could create an independent

session for each customer), or if you need multiple sessions for scalability reasons. If you don't

know what to do, simply start by having one knowledge base that contains all your process

definitions and one create session that you then use to execute all your processes.

4.1. The jBPM API

The project has a clear separation between the API the users should be interacting with and the

actual implementation classes. The public API exposes most of the features we believe "normal"

users can safely use and should remain rather stable across releases. Expert users can still access

internal classes but should be aware that they should know what they are doing and that internal

API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that

contains your process definitions, and to (2) create a session to start new process instances,

signal existing ones, register listeners, etc.

4.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include

all your process definitions that might need to be executed. The following code snippet shows how

to create a knowledge base consisting of only one process definition (using a knowledge builder,

in this case to add a resource from the classpath).

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn"), ResourceType.BPMN2);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

4.1.2. Session

Next, you should create a session to interact with the engine. The following code snippet shows

how easy it is to create a session based on the earlier created knowledge base, and to start a

process (by id).

Session

29

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

The ProcessRuntime interface defines all the session methods for interacting with processes, as

shown below.

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id.

 *

 * @param processId The id of the process that should be started

 * @return the ProcessInstance that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId);

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id. Parameters can be passed

 * to the process instance (as name-value pairs), and these will be set

 * as variables of the process instance.

 *

 * @param processId the id of the process that should be started

 * @param parameters the process variables that should be set when starting the process instance

 * @return the ProcessInstance that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId,

 Map<String, Object> parameters);

 /**

 * Signals the engine that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All process instances that are listening to this type

 * of (external) event will be notified. For performance reasons, this type of event

 * signaling should only be used if one process instance should be able to notify

 * other process instances. For internal event within one process instance, use the

 * signalEvent method that also include the processInstanceId of the process instance

 * in question.

 *

 * @param type the type of event

 * @param event the data associated with this event

Chapter 4. API

30

 */

 void signalEvent(String type,

 Object event);

 /**

 * Signals the process instance that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All node instances inside the given process instance that

 * are listening to this type of (internal) event will be notified. Note that the event

 * will only be processed inside the given process instance. All other process instances

 * waiting for this type of event will not be notified.

 *

 * @param type the type of event

 * @param event the data associated with this event

 * @param processInstanceId the id of the process instance that should be signaled

 */

 void signalEvent(String type,

 Object event,

 long processInstanceId);

 /**

 * Returns a collection of currently active process instances. Note that only process

 * instances that are currently loaded and active inside the engine will be returned.

 * When using persistence, it is likely not all running process instances will be loaded

 * as their state will be stored persistently. It is recommended not to use this

 * method to collect information about the state of your process instances but to use

 * a history log for that purpose.

 *

 * @return a collection of process instances currently active in the session

 */

 Collection<ProcessInstance> getProcessInstances();

 /**

 * Returns the process instance with the given id. Note that only active process instances

 * will be returned. If a process instance has been completed already, this method will return

 * null.

 *

 * @param id the id of the process instance

 * @return the process instance with the given id or null if it cannot be found

 */

 ProcessInstance getProcessInstance(long processInstanceId);

 /**

 * Aborts the process instance with the given id. If the process instance has been completed

Events

31

 * (or aborted), or the process instance cannot be found, this method will throw an

 * IllegalArgumentException.

 *

 * @param id the id of the process instance

 */

 void abortProcessInstance(long processInstanceId);

 /**

 * Returns the WorkItemManager related to this session. This can be used to

 * register new WorkItemHandlers or to complete (or abort) WorkItems.

 *

 * @return the WorkItemManager related to this session

 */

 WorkItemManager getWorkItemManager();

4.1.3. Events

The session provides methods for registering and removing listeners. A ProcessEventListener

can be used to listen to process-related events, like starting or completing a process, entering

and leaving a node, etc. Below, the different methods of the ProcessEventListener class are

shown. An event object provides access to related information, like the process instance and node

instance linked to the event.

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);

 void afterProcessStarted(ProcessStartedEvent event);

 void beforeProcessCompleted(ProcessCompletedEvent event);

 void afterProcessCompleted(ProcessCompletedEvent event);

 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);

 void afterNodeTriggered(ProcessNodeTriggeredEvent event);

 void beforeNodeLeft(ProcessNodeLeftEvent event);

 void afterNodeLeft(ProcessNodeLeftEvent event);

}

An audit log can be created based on the information provided by these process listeners. We

provide various default logger implementations:

1. Console logger: This logger writes out all the events to the console.

Chapter 4. API

32

2. File logger: This logger writes out all the events to a file using an XML representation. This

log file might then be used in the IDE to generate a tree-based visualization of the events that

occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the

logger or when the number of events in the logger reaches a predefined level, it cannot be

used when debugging processes at runtime. A threaded file logger writes the events to a file

after a specified time interval, making it possible to use the logger to visualize the progress in

realtime, while debugging processes.

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown below.

When creating a console logger, the knowledge session for which the logger needs to be created

must be passed as an argument. The file logger also requires the name of the log file to be created,

and the threaded file logger requires the interval (in milliseconds) after which the events should

be saved.

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");

// add invocations to the process engine here,

// e.g. ksession.startProcess(processId);

...

logger.close();

The log file can be opened in Eclipse, using the Audit View in the Drools Eclipse plugin, where the

events are visualized as a tree. Events that occur between the before and after event are shown

as children of that event. The following screenshot shows a simple example, where a process is

started, resulting in the activation of the Start node, an Action node and an End node, after which

the process was completed.

4.2. Knowledge-based API

As you might have noticed, the API as exposed by the jBPM project is a knowledge API. That

means that it doesn't only focus on processes, but potentially also allows other types of knowledge

to be loaded. The impact for users that are only interested in processes however is very small.

Knowledge-based API

33

It just means that, instead of having a ProcessBase or a ProcessSession, you are using a

KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your

application, the knowledge-based API allows users to add different types of resources, such as

processes and rules, in almost identical ways into the same knowledge base. This enables a

user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools

Fusion (for event processing) almost instantaneously (and even to integrate these different types

of Knowledge) as the API and tooling for these different types of knowledge is unified.

34

Chapter 5.

35

Chapter 5. Human Tasks
An important aspect of work flow and BPM is human task management. While some of the work

performed in a process can be executed automatically, some tasks need to be executed with

the interaction of human actors. jBPM supports the use of human tasks inside processes using

a special user task node that will represent this interaction. This node allows process designers

to define the type of task, the actor(s), the data associated with the task, etc. We also have

implemented a task service that can be used to manage these user tasks. Users are however

open to integrate any other solution if they want to, as this is fully pluggable.

To start using human tasks inside your processes, you first need to (1) include user task nodes

inside your process, (2) integrate a task management component of your choice (e.g. the WS-HT

implementation provided by us) and (3) have end users interact with the human task management

component using some kind of user interface. These elements will be discussed in more detail

in the next sections.

5.1. Human tasks inside processes

jBPM supports the use of human tasks inside processes using a special user task node (as shown

in the figure above). A user task node represents an atomic task that needs to be executed by

a human actor. Although jBPM has a special user task node for including human tasks inside a

process, human tasks are simply considered as any other kind of external service that needs to

be invoked and are therefore simply implemented as a special kind of work item. The only thing

that is special about the user task node is that we have added support for swimlanes, making it

easier to assign tasks to users (see below). A user task node contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped (i.e. the actor decides not to

execute the human task).

Chapter 5. Human Tasks

36

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See below for more detail on how to use swimlanes.

• Wait for completion: If this property is true, the human task node will only continue if the human

task has been terminated (i.e. completed or any other terminal state); otherwise it will continue

immediately after creating the human task.

• On-entry and on-exit actions: Actions that are executed upon entry and exit of this node.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. Note that can only use

result mappings when "Wait for completion" is set to true. A human task has a result variable

"Result" that contains the data returned by the human actor. The variable "ActorId" contains the

id of the actor that actually executed the task.

• Timers: Timers that are linked to this node (see the 'timers' section for more details).

• ParentId: Allows to specify the parent task id, in the case that this task is a sub task of another.

(see the 'sub task' section for more details)

You can edit these variables in the properties view (see below) when selecting the user task node,

or the most important properties can also be edited by double-clicking the user task node, after

which a custom user task node editor is opened, as shown below as well.

Human tasks inside processes

37

Chapter 5. Human Tasks

38

Note that you could either specify the values of the different parameters (actorId, priority, content,

etc.) directly (in which case they will be the same for each execution of this process), or make

them context-specific, based on the data inside the process instance. For example, parameters

of type String can use #{expression} to embed a value in the String. The value will be retrieved

when creating the work item and the #{...} will be replaced by the toString() value of the variable.

The expression could simply be the name of a variable (in which case it will be resolved to

the value of the variable), but more advanced MVEL expressions are possible as well, like

#{person.name.firstname}. For example, when sending an email, the body of the email could

contain something like "Dear #{customer.name}, ...". For other types of variables, it is possible to

map the value of a variable to a parameter using the parameter mapping.

5.1.1. Swimlanes

User task nodes can be used in combination with swimlanes to assign multiple human tasks to the

similar actors. Tasks in the same swimlane will be assigned to the same actor. Whenever the first

task in a swimlane is created, and that task has an actorId specified, that actorId will be assigned

Human task management component

39

to the swimlane as well. All other tasks that will be created in that swimlane will use that actorId

as well, even if an actorId has been specified for the task as well.

Whenever a human task that is part of a swimlane is completed, the actorId of that swimlane is

set to the actorId that executed that human task. This allows for example to assign a human task

to a group of users, and to assign future tasks of that swimlame to the user that claimed the first

task. This will also automatically change the assignment of tasks if at some point one of the tasks

is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the

"Swimlane" parameter of the user task node. A process must also define all the swimlanes that

it contains. To do so, open the process properties by clicking on the background of the process

and click on the "Swimlanes" property. You can add new swimlanes there.

5.2. Human task management component

As far as the jBPM engine is concerned, human tasks are similar to any other external service that

needs to be invoked and are implemented as an extension of normal work items. As a result, the

process itself only contains an abstract description of the human tasks that need to be executed,

and a work item handler is responsible for binding this abstract tasks to a specific implementation.

Using our pluggable work item handler approach (see the chapter on domain-specific processes

for more details), users can plug in any back-end implementation.

We do however provide an implementation of such a human task management component based

on the WS-HumanTask specification. If you do not have the requirement to integrate a specific

human task component yourself, you can use this service. It manages the task life cycle of the

tasks (creation, claiming, completion, etc.) and stores the state of the task persistently. It also

supports features like internationalization, calendar integration, different types of assignments,

delegation, deadlines, etc.

Because we did not want to implement a custom solution when a standard is available,

we chose to implement our service based on the WS-HumanTask (WS-HT) specification.

This specification defines in detail the model of the tasks, the life cycle, and a lot of

other features as the ones mentioned above. It is pretty comprehensive and can be

found here [http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-

HumanTask_v1.pdf].

5.2.1. Task life cycle

Looking from the perspective of the process, whenever a user task node is triggered during the

execution of a process instance, a human task is created. The process will only continue from

that point when that human task has been completed or aborted (unless of course you specify

that the process does not need to wait for the human task to complete, by setting the "Wait for

completion" property to true). However, the human task usually has a separate life cycle itself.

We will now shortly introduce this life cycle, as shown in the figure below. For more details, check

out the WS-HumanTask specification.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Chapter 5. Human Tasks

40

Whenever a task is created, it starts in the "Created" stage. It usually automatically transfers to

the "Ready" state, at which point the task will show up on the task list of all the actors that are

allowed to execute the task. There, it is waiting for one of these actors to claim the task, indicating

that he or she will be executing the task. Once a user has claimed a task, the status is changed

to "Reserved". Note that a task that only has one potential actor will automatically be assigned

to that actor upon creation of that task. After claiming the task, that user can then at some point

decide to start executing the task, in which case the task status is changed to "InProgress". Finally,

once the task has been performed, the user must complete the task (and can specify the result

data related to the task), in which case the status is changed to "Completed". If the task could

not be completed, the user can also indicate this using a fault response (possibly with fault data

associated), in which case the status is changed to "Failed".

The life cycle explained above is the normal life cycle. The service also allows a lot of other life

cycle methods, like:

• Delegating or forwarding a task, in which case it is assigned to another actor

• Revoking a task, so it is no longer claimed by one specific actor but reappears on the task list

of all potential actors

• Temporarly suspending and resuming a task

• Stopping a task in progress

Linking the task component to the jBPM engine

41

• Skipping a task (if the task has been marked as skippable), in which case the task will not be

executed

5.2.2. Linking the task component to the jBPM engine

The task management component needs to be integrated with the jBPM engine just like any other

external service, by registering a work item handler that is responsible for translating the abstract

work item (in this case a human task) to a specific invocation. We have implemented such a

work item handler (org.jbpm.process.workitem.wsht.WSHumanTaskHandler in the jbpm-human-

task module) so you can easily link this work item handler like this:

StatefulKnowledgeSession ksession = ...;

ksession.getWorkItemManager().registerWorkItemHandler("Human

 Task", new WSHumanTaskHandler());

By default, this handler will connect to the human task management component on the local

machine on port 9123, but you can easily change that by invoking the setConnection(ipAddress,

port) method on the WSHumanTaskHandler.

If you are using persistence for the session (check out the

chapter on persistence for more information), you should use the

org.jbpm.process.workitem.wsht.CommandBasedWSHumanTaskHandler as that makes sure

that the state of the process instances is persisted correctly after interacting with the process

engine.

The communication between the human task service and the process engine, or any task client,

is done using messages being sent between the client and the server. The implementation allows

different transport mechanisms being plugged in, but by default, Mina (http://mina.apache.org/)

[http://mina.apache.org/] is used for client/server communication. An alternative implementation

using HornetQ is also available.

A task client offers the following methods for managing the life cycle of human tasks:

public void start(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void stop(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void release(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void suspend(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void resume(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void skip(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void delegate(long taskId, String userId, String targetUserId,

 TaskOperationResponseHandler responseHandler)

public void complete(long taskId, String userId, ContentData outputData,

 TaskOperationResponseHandler responseHandler)

http://mina.apache.org/
http://mina.apache.org/

Chapter 5. Human Tasks

42

...

You can either use these methods directly, or probably use some kind of GUI that the end user

will use to lookup and execute the tasks that are assigned to them. If you take a look a the method

signatures you will notice that almost all of this method takes the following arguments:

• taskId: The id of the task that we are working with. This is usually extract from the currently

selected task in the user task list in the user interface.

• userId: The id of the user that is executing the action. This is usually the id of the user that is

logged in into the application.

• responseHandler: Communication with the task service is usually asynchronous, so you

should use a response handler that will be notified when the results are available.

As you can imagine all the methods create a message that will be sent to the server, and the

server will execute the logic that implements the correct action.

5.2.3. Starting the Task Management Component

The task management component is a completely independent service that the process engine

communicates with. We therefore recommend to start it as a separate service as well. The installer

contains a command to start the task server (in this case using Mina as transport protocol), or you

can use the following code fragment:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jbpm.task");

TaskService taskService = new TaskService(emf, SystemEventListenerFactory.getSystemEventListener());

MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

The task management component uses the Java Persistence API (JPA) to store all task

information in a persistent manner. To configure the persistence, you need to modify the

persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do

that. The following fragment shows for example how to use the task management component with

hibernate and an in-memory H2 database:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

Starting the Task Management Component

43

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.drools.task">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <class>org.jbpm.task.Attachment</class>

 <class>org.jbpm.task.Content</class>

 <class>org.jbpm.task.BooleanExpression</class>

 <class>org.jbpm.task.Comment</class>

 <class>org.jbpm.task.Deadline</class>

 <class>org.jbpm.task.Comment</class>

 <class>org.jbpm.task.Deadline</class>

 <class>org.jbpm.task.Delegation</class>

 <class>org.jbpm.task.Escalation</class>

 <class>org.jbpm.task.Group</class>

 <class>org.jbpm.task.I18NText</class>

 <class>org.jbpm.task.Notification</class>

 <class>org.jbpm.task.EmailNotification</class>

 <class>org.jbpm.task.EmailNotificationHeader</class>

 <class>org.jbpm.task.PeopleAssignments</class>

 <class>org.jbpm.task.Reassignment</class>

 <class>org.jbpm.task.Status</class>

 <class>org.jbpm.task.Task</class>

 <class>org.jbpm.task.TaskData</class>

 <class>org.jbpm.task.SubTasksStrategy</class>

 <class>org.jbpm.task.OnParentAbortAllSubTasksEndStrategy</class>

 <class>org.jbpm.task.OnAllSubTasksEndParentEndStrategy</class>

 <class>org.jbpm.task.User</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/>

 <property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />

 <property name="hibernate.connection.username" value="sa"/>

 <property name="hibernate.connection.password" value="sasa"/>

 <property name="hibernate.connection.autocommit" value="false" />

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="create" />

 <property name="hibernate.show_sql" value="true" />

 </properties>

 </persistence-unit>

Chapter 5. Human Tasks

44

</persistence>

The first time you start the task management component, you need to make sure that all the

necessary users and groups are added to the database. Our implementation requires all users and

groups to be predefined before trying to assign a task to that user or group. So you need to make

sure you add the necessary users and group to the database using the taskSession.addUser(user)

and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user

as all tasks are automatically assigned to this user as the administrator role.

The jbpm-human-task module contains a org.jbpm.task.RunTaskService class in the src/test/java

source folder that can be used to start a task server. It automatically adds users and groups as

defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

5.2.4. Interacting With the Task Management Component

The task management component exposes various methods to manage the life cycle of the tasks

through a Java API. This allows clients to integrate (at a low level) with the task management

component. Note that end users should probably not interact with this low-level API directly but

rather use one of the task list clients (see below). These clients interact with the task management

component using this API. The following code sample shows how to create a task client and

interact with the task service to create, start and complete a task.

TaskClient client = new TaskClient(new MinaTaskClientConnector("client 1",

 new MinaTaskClientHandler(SystemEventListenerFactory.getSystemEventListener())));

client.connect("127.0.0.1", 9123);

// adding a task

BlockingAddTaskResponseHandler addTaskResponseHandler = new BlockingAddTaskResponseHandler();

Task task = ...;

client.addTask(task, null, addTaskResponseHandler);

long taskId = addTaskResponseHandler.getTaskId();

// getting tasks for user "bobba"

BlockingTaskSummaryResponseHandler taskSummaryResponseHandler =

 new BlockingTaskSummaryResponseHandler();

client.getTasksAssignedAsPotentialOwner("bobba", "en-UK", taskSummaryResponseHandler);

List<TaskSummary> tasks = taskSummaryResponseHandler.getResults();

// starting a task

BlockingTaskOperationResponseHandler responseHandler =

 new BlockingTaskOperationResponseHandler();

client.start(taskId, "bobba", responseHandler);

// completing a task

Human Task Management Interface

45

responseHandler = new BlockingTaskOperationResponseHandler();

client.complete(taskId, users.get("bobba").getId(), null, responseHandler);

5.3. Human Task Management Interface

5.3.1. Eclipse integration

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug

processes using human tasks. In contains a Human Task View that can connect to a running task

management component, request the relevant tasks for a particular user (i.e. the tasks where the

user is either a potential owner or the tasks that the user already claimed and is executing). The

life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping

the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown

below. You can configure which task management component to connect to in the Drools Task

preference page (select Window -> Preferences and select Drools Task). Here you can specify

the url and port (default = 127.0.0.1:9123).

5.3.2. Web-based Task View

The jBPM console also contains a task view for looking up task lists and managing the life cycle

of tasks. See the chapter on the jBPM console for more information.

46

Chapter 6.

47

Chapter 6. Domain-specific

processes

6.1. Introduction

One of the goals of jBPM is to allow users to extend the default process constructs with domain-

specific extensions that simplify development in a particular application domain. This tutorial

describes how to take your first steps towards domain-specific processes. Note that you don't

need to be a jBPM expert to define your own domain-specific nodes, this should be considered

integration code that a normal developer with some experience in jBPM can do himself.

Most process languages offer some generic action (node) construct that allows plugging in custum

user actions. However, these actions are usually low-level, where the user is required to write

custom code to implement the work that should be incorporated in the process. The code is also

closely linked to a specific target environment, making it difficult to reuse the process in different

contexts.

Domain-specific languages are targeted to one particular application domain and therefore can

offer constructs that are closely related to the problem the user is trying to solve. This makes

the processes and easier to understand and self-documenting. We will show you how to define

domain-specific work items (also called service nodes), which represent atomic units of work that

need to be executed. These service nodes specify the work that should be executed in the context

of a process in a declarative manner, i.e. specifying what should be executed (and not how) on

a higher level (no code) and hiding implementation details.

So we want service nodes that are:

1. domain-specific

2. declarative (what, not how)

3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific service nodes and integrate them in our

process language. For example, the next figure shows an example of a process in a healthcare

context. The process includes domain-specific service nodes for ordering nursing tasks (e.g.

measuring blood pressure), prescribing medication and notifying care providers.

Chapter 6. Domain-specific pr...

48

6.2. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work

item represent an atomic unit of work in a declarative way. It is defined by a unique name and

additional parameters that can be used to describe the work in more detail. Work items can also

return information after they have been executed, specified as results. Our notification work item

could thus be defined using a work definition with four parameters and no results:

 Name: "Notification"

 Parameters

 From [String]

 To [String]

 Message [String]

 Priority [String]

6.2.1. Creating the work definition

All wprk definitions must be specified in one or more configuration files in the project classpath,

where all the properties are specified as name-value pairs. Parameters and results are maps

where each parameter name is also mapped to the expected data type. Note that this configuration

file also includes some additional user interface information, like the icon and the display name

Registering the work definition

49

of the work item. (We use MVEL for reading in the configuration file, which allows us to do more

advanced configuration files). Our MyWorkDefinitions.conf file looks like this:

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 // the Notification work item

 [

 "name" : "Notification",

 "parameters" : [

 "Message" : new StringDataType(),

 "From" : new StringDataType(),

 "To" : new StringDataType(),

 "Priority" : new StringDataType(),

],

 "displayName" : "Notification",

 "icon" : "icons/notification.gif"

]

]

6.2.2. Registering the work definition

The configuration API can be used to register work definition files for your project using

the drools.workDefinitions property, which represents a list of files containing work definitions

(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF

directory of your project and add the following line:

 drools.workDefinitions = MyWorkDefinitions.conf

6.2.3. Using your new work item in your processes

Once our work definition has been created and registered, we can start using it in our processes.

The process editor contains a separate section in the palette where the different service nodes

that have been defined for the project appear.

Chapter 6. Domain-specific pr...

50

Using drag and drop, a notification node can be created inside your process. The properties can

be filled in using the properties view.

Apart from the properties defined by for this work item, all work items also have these three

properties:

1. Parameter Mapping: Allows you map the value of a variable in the process to a parameter of

the work item. This allows you to customize the work item based on the current state of the

actual process instance (for example, the priority of the notification could be dependent of some

process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to

a variable of the process. This allows you to use results in the remainder of the process.

Executing service nodes

51

3. Wait for completion: By default, the process waits until the requested work item has been

completed before continuing with the process. It is also possible to continue immediately

after the work item has been requested (and not waiting for the results) by setting "wait for

completion" to false.

6.2.4. Executing service nodes

The Drools engine contains a WorkItemManager that is responsible for executing work items

whenever necessary. The WorkItemManager is responsible for delegating the work items to

WorkItemHandlers that execute the work item and notify the WorkItemManager when the work

item has been completed. For executing notification work items, a NotificationWorkItemHandler

should be created (implementing the WorkItemHandler interface):

package com.sample;

import org.drools.runtime.process.WorkItem;

import org.drools.runtime.process.WorkItemHandler;

import org.drools.runtime.process.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 // extract parameters

 String from = (String) workItem.getParameter("From");

 String to = (String) workItem.getParameter("To");

 String message = (String) workItem.getParameter("Message");

 String priority = (String) workItem.getParameter("Priority");

 // send email

 EmailService service = ServiceRegistry.getInstance().getEmailService();

 service.sendEmail(from, to, "Notification", message);

 // notify manager that work item has been completed

 manager.completeWorkItem(workItem.getId(), null);

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 // Do nothing, notifications cannot be aborted

 }

}

This WorkItemHandler sends a notification as an email and then immediate notifies the

WorkItemManager that the work item has been completed. Note that not all work items can be

completed directly. In cases where executing a work item takes some time, execution can continue

asynchronously and the work item manager can be notified later. In these situations, it might also

Chapter 6. Domain-specific pr...

52

be possible that a work item is being aborted before it has been completed. The abort method

can be used to specify how to abort such work items.

WorkItemHandlers should be registered at the WorkItemManager, using the following API:

ksession.getWorkItemManager().registerWorkItemHandler(

 "Notification", new NotificationWorkItemHandler());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The

process itself should not be changed. It is also possible to use the same process in different

environments, where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more

difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during

testing or simulation, it might not be necessary to actually execute the work items. In this case

specialized dummy work item handlers could be used during testing.

Chapter 7.

53

Chapter 7. Persistence
jBPM allows the persistent storage of certain information, i.e., the process runtime state, the history

information, etc.

7.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution

of the process in that specific context. For example, when executing a process that specifies

how to process a sales order, one process instance is created for each sales request. The

process instance represents the current execution state in that specific context, and contains all

the information related to that process instance. Note that it only contains the minimal runtime

state that is needed to continue the execution of that process instance at some later time, but it

does not include information about the history of that process instance if that information is no

longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.

This allows to restore the state of execution of all running processes in case of unexpected failure,

or to temporarily remove running instances from memory and restore them at some later time.

jBPM allows you to plug in different persistence strategies. By default, if you do not configure the

process engine otherwise, process instances are not made persistent.

7.1.1. Binary Persistence

jBPM provides a binary persistence mechanism that allows you to save the state of a process

instance as a binary dataset. This way, the state of all running process instances can always be

stored in a persistent location. Note that these binary datasets usually are relatively small, as they

only contain the minimal execution state of the process instance. For a simple process instance,

this usually contains one or a few node instances, i.e., any node that is currently executing, and,

possibly, some variable values.

7.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the

process engine. Whenever a process instance is executing, after its start or continuation from a

wait state, the engine proceeds until no more actions can be performed. At that point, the engine

has reached the next safe state, and the state of the process instance and all other process

instances that might have been affected is stored persistently.

7.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. It is, however, pretty straightforward

to configure the engine to do this, by adding a configuration file and the necessary dependencies.

Persistence itself is based on the Java Persistence API (JPA) and can thus work with several

persistence mechanisms. We are using Hibernate by default, but feel free to employ alternatives.

Chapter 7. Persistence

54

A H2 database is used underneath to store the data, but you might choose your own alternative

for this, too.

First of all, you need to add the necessary dependencies to your classpath. If you're using the

Eclipse IDE, you can do that by adding the jar files to your Drools runtime directory, or by manually

adding these dependencies to your project. First of all, you need the jar file jbpm-persistence-

jpa.jar, as that contains code for saving the runtime state whenever necessary. Next, you

also need various other dependencies, depending on the persistence solution and database you

are using. For the default combination with Hibernate as the JPA persistence provider, the H2

database and Bitronix for JTA-based transaction management, the following list of additional

dependencies is needed:

1. jbpm-persistence-jpa (org.jbpm)

2. drools-persistence-jpa (org.drools)

3. persistence-api (javax.persistence)

4. hibernate-entitymanager (org.hibernate)

5. hibernate-annotations (org.hibernate)

6. hibernate-commons-annotations (org.hibernate)

7. hibernate-core (org.hibernate)

8. dom4j (dom4j)

9. jta (javax.transaction)

10.btm (org.codehaus.btm)

11.javassist (javassist)

12.slf4j-api (org.slf4j)

13.slf4j-jdk14 (org.slf4j)

14.h2 (com.h2database)

15.commons-collections (commons-collections)

Next, you need to configure the jbpm engine to save the state of the engine whenever

necessary. The easiest way to do this is to use JPAKnowledgeService to create your knowledge

session, based on a knowledge base, a knowledge session configuration (if necessary) and an

environment. The environment needs to contain a reference to your Entity Manager Factory. For

example:

// create the entity manager factory and register it in the environment

Configuring Persistence

55

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess("MyProcess");

ksession.dispose();

You can also yse the JPAKnowledgeService to recreate a session based on a specific session id:

// recreate the session from database using the sessionId

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process

instance at some later point. This means, for example, that it does not contain information about

already executed nodes if that information is no longer relevant, or that process instances that

have been completed or aborted are removed from the database. If you want to search for history-

related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configures JPA to use Hibernate

and the H2 database (or your preference), called persistence.xml in the META-INF directory,

as shown below. For more details on how to change this for your own configuration, we refer to

the JPA and Hibernate documentation for more information.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

Chapter 7. Persistence

56

 <persistence-unit name="org.jbpm.persistence.jpa">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/processInstanceDS</jta-data-source>

 <class>org.drools.persistence.session.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.jbpm.persistence.processinstance.WorkItemInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>

 </properties>

 </persistence-unit>

</persistence>

This configuration file refers to a data source called "jdbc/processInstanceDS". The following Java

fragment could be used to set up this data source, where we are using the file-based H2 database.

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/testDS1");

ds.setClassName("org.h2.jdbcx.JdbcDataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:file:/NotBackedUp/data/process-instance-db");

ds.init();

If you're deploying to an application server, you can usually create a datasource by dropping a

configuration file in the deploy directory, for example:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>jdbc/testDS1</jndi-name>

 <connection-url>jdbc:h2:file:/NotBackedUp/data/process-instance-db</connection-url>

 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

 <user-name>sa</user-name>

Transactions

57

 <password>sasa</password>

 </local-tx-datasource>

</datasources>

7.1.4. Transactions

Whenever you do not provide transaction boundaries inside your application, the engine will

automatically execute each method invocation on the engine in a separate transaction. If this

behavior is acceptable, you don't need to do anything else. You can, however, also specify the

transaction boundaries yourself. This allows you, for example, to combine multiple commands

into one transaction.

You need to register a transaction manager at the environment before using user-defined

transactions. The following sample code uses the Bitronix transaction manager. Next, we use the

Java Transaction API (JTA) to specify transaction boundaries, as shown below:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

env.set(EnvironmentName.TRANSACTION_MANAGER,

 TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction

UserTransaction ut =

 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();

// perform multiple commands inside one transaction

ksession.insert(new Person("John Doe"));

ksession.startProcess("MyProcess");

// commit the transaction

ut.commit();

Chapter 7. Persistence

58

7.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a

file system during development. However, whenever you want to make your knowledge accessible

to one or more engines in production, we recommend using a knowledge repository that (logically)

centralizes your knowledge in one or more knowledge repositories.

Guvnor is a Drools sub-project that provides exactly that. It consists of a repository for storing

different kinds of knowledge, not only process definitions but also rules, object models, etc. It

allows easy retrieval of this knowledge using WebDAV or by employing a knowledge agent that

automatically downloads the information from Guvnor when creating a knowledge base, and

provides a web application that allows business users to view and possibly update the information

in the knowledge repository. Check out the Drools Guvnor documentation for more information

on how to do this.

7.3. History Log

In many cases it is useful (if not necessary) to store information about the execution of process

instances, so that this information can be used afterwards, for example, to verify what actions

have been executed for a particular process instance, or to monitor and analyze the efficiency

of a particular process. Storing history information in the runtime database is usually not a good

idea, as this would result in ever-growing runtime data, and monitoring and analysis queries

might influence the performance of your runtime engine. That is why history information about the

execution of process instances is stored separately.

This history log of execution information is created based on the events generated by the process

engine during execution. The Drools runtime engine provides a generic mechanism to listen to

different kinds of events. The necessary information can easily be extracted from these events

and made persistent, for example in a database. Filters can be used to only store the information

you find relevant.

7.3.1. Storing Process Events in a Database

The jbpm-bam module contains an event listener that stores process-related information in a

database using JPA or Hibernate directly. The database contains two tables, one for process

instance information and one for node instance information (see the figure below):

1. ProcessInstanceLog: This lists the process instance id, the process (definition) id, the start date

and (if applicable) the end date of all process instances.

2. NodeInstanceLog: This table contains more detailed information about which nodes were

actually executed inside each process instance. Whenever a node instance is entered from

one of its incomming connections or is exited through one of its outgoing connections, that

information is stored in this table. For this, it stores the process instance id and the process id

of the process instance it is being executed in, and the node instance id and the corresponding

Storing Process Events in a Database

59

node id (in the process definition) of the node instance in question. Finally, the type of event (0

= enter, 1 = exit) and the date of the event is stored as well.

To log process history information in a database like this, you need to register the logger on your

session (or working memory) like this:

StatefulKnowledgeSession ksession = ...;

JPAWorkingMemoryDbLogger logger = new JPAWorkingMemoryDbLogger(ksession);

// invoke methods one your session here

logger.dispose();

Note that this logger is like any other audit logger, which means that you can add one or more

filters by calling the method addFilter to ensure that only relevant information is stored in the

database. Only information accepted by all your filters will appear in the database. You should

dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file persistence.xml

file to include the audit log classes as well (ProcessInstanceLog, NodeInstanceLog and

VariableInstanceLog), as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.persistence.jpa">

Chapter 7. Persistence

60

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/processInstanceDS</jta-data-source>

 <class>org.drools.persistence.session.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.jbpm.persistence.processinstance.WorkItemInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>

 <class>org.jbpm.process.audit.NodeInstanceLog</class>

 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>

 </properties>

 </persistence-unit>

</persistence>

All this information can easily be queried and used in a lot of different use cases, ranging

from creating a history log for one specific process instance to analyzing the performance of all

instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information

you need to store for analysis afterwards, and for performance reasons it is recommended to only

store the relevant data. Depending on your use cases, you might define your own data model for

storing the information you need, and use the process event listeners to extract that information.

Chapter 8.

61

Chapter 8. Console
Business processes can be managed through a web console. This includes features like managing

your process instances (starting/stopping/inspecting), inspecting your (human) task list and

executing those tasks, and generating reports.

The jBPM console consists of two wars that must be deployed in your application server

and contains the necessary libraries, the actual application, etc. One jar contains the server

application, the other one the client.

8.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,

install and configure all the necessary components to get the console running, including an in-

memory database, a human task service, etc. Check out the chapter on the installer for more

information.

8.2. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application

server is configured): http://localhost:8080/jbpm-console

A login screen should pop up, asking for your user name and password. By default, the following

username/password configurations are supported: krisv/krisv, admin/admin, john/john and mary/

mary.

After filling these in, the process management workbench should be opened, as shown in the

screenshot below. On the right you will see several tabs, related to process instance management,

human task lists and reporting, as explained in the following sections.

http://localhost:8080/jbpm-console

Chapter 8. Console

62

Managing process instances

63

8.2.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the

installed knowledge base, start new process instances and manage running process instances

(which includes inspecting their state and data).

8.2.1.1. Inspecting process definitions

When you open the process definition list, all known process definitions are shown. You can then

either inspect process instances for one specific process or start a new process instance.

Chapter 8. Console

64

Managing process instances

65

8.2.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in

the process definition list. Click on the "Start" button in the instances table to start a new instance of

that specific process. When a form is associated with this particular process (to ask for additional

information before starting the process), this form will be shown. After completing this form, the

process will be started with the provided information.

Chapter 8. Console

66

Managing process instances

67

8.2.1.3. Managing process instances

The process instances table shows all running instances of that specific process definition. Select

a process instance to show the details of that specific process instance.

Chapter 8. Console

68

Managing process instances

69

8.2.1.4. Inspecting process instance state

You can inspect the state of a specific process instance by clicking on the "Diagram" button. This

will show you the process flow chart, where a red traingle is shown at each node that is currently

active (like for example a human task node waiting for the task to be completed or a join node

waiting for more incoming connections before continuing). [Note that multiple instances of one

node could be executing simultaneously. They will still be shown using only one red triangle.]

Chapter 8. Console

70

Managing process instances

71

8.2.1.5. Inspecting process instance variables

You can inspect the (top-level) variables of a specific process instance by clicking on the

"Instance Data" button. This will show you how each variable defined in the process maps to it's

corresponding value for that specific process instance.

Chapter 8. Console

72

Human task lists

73

8.2.2. Human task lists

The task management section allows a user to see his/her current task list. The group task list

shows all the tasks that are not yet assigned to one specific user but that the currently logged in

user could claim. The personal task list shows all tasks that are assigned to the currently logged in

user. To execute a task, select it in your personal task list and select "View". If a form is associated

with the selected task (for example to ask for additional information), this form will be shown. After

completing the form, the task will also be completed.

Chapter 8. Console

74

Reporting

75

8.2.3. Reporting

The reporting section allows you to view reports about the execution of processes. This includes

an overall report showing an overview of all processes, as shown below.

Chapter 8. Console

76

Reporting

77

A report regarding one specific process instance can also be generated.

Chapter 8. Console

78

Adding new process / task forms

79

jBPM provides some sample reports that could be used to visualize some generic execution

characteristics like the number of active process instances per process etc. But custom reports

could be generated to show the information your company thinks is important, by replacing the

report templates in the report directory.

8.3. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker

templates to dynamically create forms. To create a form for a specific process definition, create

a freemarker template with the name {processId}.ftl. The template itself should use HTML code

to model the form. For example, the form to start the evaluation process shown above is defined

in the com.sample.evaluation.ftl file:

<html>

<body>

<h2>Start Performance Evaluation</h2>

<hr>

<form action="complete" method="POST" enctype="multipart/form-data">

Please fill in your username: <input type="text" name="employee" /></BR>

<input type="submit" value="Complete">

</form>

</body>

</html>

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can

be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The

form has access to a "task" parameter that represents the current human task, so it allows you

to dynamically adjust the task form based on the task input. The task parameter is a Task model

object as defined in the drools-process-task module. This for example allows you to customize the

task form based on the description or input data related to that task. For example, the evaluation

form shown earlier uses the task parameter to access the description of the task and show that

in the task form:

<html>

<body>

<h2>Employee evaluation</h2>

<hr>

${task.descriptions[0].text}

Please fill in the following evaluation form:

<form action="complete" method="POST" enctype="multipart/form-data">

Chapter 8. Console

80

Rate the overall performance: <select name="performance">

<option value="outstanding">Outstanding</option>

<option value="exceeding">Exceeding expectations</option>

<option value="acceptable">Acceptable</option>

<option value="below">Below average</option>

</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good communication

 skills

<input type="submit" value="Complete">

</form>

</body>

</html>

Data that is provided by the user when filling in the task form will be added as parameters

when completing the task. For example, when completing the task above, the Map of

outcome parameters will include result variables called "performance", "initiative", "change" and

"communication". The result parameters can be accessed in the related process by mapping these

parameters to process variables.

Forms should be included in the jbpm-gwt-form.jar in the server war.

81

Index

82

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. Modeling
	1.1.1. Drools Flow Eclipse Plugin for creating BPMN2 processes
	1.1.2. jBPM5 Eclipse Plugin for creating BPMN2 processes
	1.1.3. Web-based process modeling using Oryx Designer

	1.2. Deployment
	1.3. Execution
	1.3.1. Process engine
	1.3.2. Human task service

	1.4. Monitoring
	1.4.1. Web-based management console

	Chapter 2. Installer
	2.1. Prerequisites
	2.2. Download the installer
	2.3. Demo setup
	2.4. Using Eclipse Tooling
	2.5. Using web management consoles
	2.6. Using Guvnor repository
	2.7. What to do if I encounter problems or have questions?

	Chapter 3. BPMN 2.0
	3.1. Business Process Model and Notation (BPMN) 2.0 specification
	3.2. Examples
	3.3. Supported elements / attributes

	Chapter 4. API
	4.1. The jBPM API
	4.1.1. Knowledge Base
	4.1.2. Session
	4.1.3. Events

	4.2. Knowledge-based API

	Chapter 5. Human Tasks
	5.1. Human tasks inside processes
	5.1.1. Swimlanes

	5.2. Human task management component
	5.2.1. Task life cycle
	5.2.2. Linking the task component to the jBPM engine
	5.2.3. Starting the Task Management Component
	5.2.4. Interacting With the Task Management Component

	5.3. Human Task Management Interface
	5.3.1. Eclipse integration
	5.3.2. Web-based Task View

	Chapter 6. Domain-specific processes
	6.1. Introduction
	6.2. Example: Notifications
	6.2.1. Creating the work definition
	6.2.2. Registering the work definition
	6.2.3. Using your new work item in your processes
	6.2.4. Executing service nodes

	Chapter 7. Persistence
	7.1. Runtime State
	7.1.1. Binary Persistence
	7.1.2. Safe Points
	7.1.3. Configuring Persistence
	7.1.4. Transactions

	7.2. Process Definitions
	7.3. History Log
	7.3.1. Storing Process Events in a Database

	Chapter 8. Console
	8.1. Installation
	8.2. Running the process management console
	8.2.1. Managing process instances
	8.2.1.1. Inspecting process definitions
	8.2.1.2. Starting new process instances
	8.2.1.3. Managing process instances
	8.2.1.4. Inspecting process instance state
	8.2.1.5. Inspecting process instance variables

	8.2.2. Human task lists
	8.2.3. Reporting

	8.3. Adding new process / task forms

	Index

