jBPM User Guide

I V7= Y= 1
1.1 WAL IS JBPIM? ot e e e et 1

2 @ Y= 1 PN 3

I T @ T (T = o o |1 = PN 4

1.4, EClIPSE EILOF ..ooveiiiieiiiie ettt et e e e 5

1.5. WED-DasSEd DESIGNELceuiiii e e e e e e 7

1.6. JBPM CONSOIE ...ttt ettt e e 8

R o T Yo 0 4= T = LT ISP 9

2. GettiNG STAMTEA .ooeeiieiiii ettt 11
b2 I B o 11/] (o = o £ PP 11

2.2, GEtlING STAMEA ...oeee it 11

A T O] 121 14111 1 P 11

A S Yo U o2 S VPP 12
o N N o] ¢ 1] R PSP 12

s Yo U [oI oo o [12

b T = 10 11o [T aTo I {0 4 TE=T0 T U o 13

1 T 1 1= = = 15
TN o Y (=T U1 =T 15

3.2. Download the INSTAlIETooeei e 15

3.3, DBIMO SBIUP Luiuiiiiie ittt 15

3.4. 10-Minute Tutorial: Using the Eclipse tooliNgcovviiiiiiiiiiiieeii e 16

3.5. 10-Minute Tutorial: Using the [BPM CONSOIEcoovviiiiiiieiiiecii e 18

3.6. 10-Minute Tutorial: Using Guvnor repository and DeSignercccoeveveevinneeennnnnn. 20

3.7. What to do if | encounter problems or have questions?ccccceveviiieviineeiineeennn. 21

3.8. Frequently asked QUESTIONSc.uuuiiiiiiii i e 22

A, COre ENQING: APl oo e 23
4.1, The JBPM API .o 24
4.1.1. KNOWIEAQE BaASEouiiiiiiiii i 24

o 1= 1= o] o P PTRTN 25

41,3, EVENIS oot 27

4.2, KNnowledge-based AP ... 29

5. COre ENQINE: BASICS .uiiiiiiiiiieiiiei et e e e e e e e e e e e e e e e 31
5.1, CreatiNg @ PIrOCESS ...ceeuuueietii i eteati ettt ettt et et e et et et et et e e e et e e e et eas 31
5.1.1. Using the graphical BPMN2 EditOrccoviiiieiiiiicii e 31

5.1.2. Defining processes USING XMLccoouiiiiiiiiiii e 32

5.1.3. Defining Processes Using the Process APlccccoeeviiiiiiiiiciiiciieeceeee, 34

5.2. Details of different process conStructs: OVEIVIEWcc.ovveunieiiineeinieiiieaeieeeenn 35

5.3. Details: ProCeSS PrOPEILIESc.uuiiiiieiiieeeii et et e e e e e e e e e e eaneees 36

5.4, DetalilS: BEVENLS ...t e 37
5.4 1. STAIT @VENT ..o 37

B5.4.2. ENA BVENTS ..eniiiiiiiiie et e 38

5.4.3. INtermediale EVENLSoiiiiiiiiiii et 40

5.5. Details: ACHVITIESceeiiiiiieei e e 43

jBPM User Guide

B.5.1. SCHPL tASK ..iviiiiiiiiii et 43

5.5.2. SEIVICE TASK ..oeiiiiieii e 44

B5.5.30 USEI ASK ..vuiiiiiiii e 45

5.5.4. Reusable SUD-PrOCESSccouuiiiiiiii e 46

5.5.5. BUSINESS TUIE TASKuiiiiiiiiiiiiiie e 47

5.5.6. Embedded SUD-PrOCESScouuiiiiiiiiieiiii e 48

5.5.7. MUlti-iNStANCE SUD-PrOCESSvuiiiieiiii e et e e e e e e 49

5.6. DetallS: GAEWAYSceeutiieiiiiiiee ettt ettt 51
5.6.1. DIVErging QAEBWAYcceuuiiiiiiiiieeiiieei e eee e e e e e e e et e e e e e e e et e e eanaeeaneees 51

5.6.2. CONVEIGING JAEWAYcevvunieiiiiieeietiie e et et e et e et e e e e e eaa s 53

5.7. Using a process in your appliCationcccuieiiiiiiiiieiiii e eee e e e e 54

N T @1 (=T g (T L0 = S 55
LI 0 N B - | - L 55

5.8.2. CONSIAINTS ...ttt 56

5.8.3. ACLION SCIIPLS .uuiiiiii ittt e e e e e e aaas 57

D 8.4, BVENIS e e 59

LIRS T 1011 PP 60

5.8.6. UPdAtiNg PrOCESSES ...cvtiiiiiiiti ettt ettt et et e e et e e 60

6. Core ENgine: BPMN 2.0 ...uuiiiiiiiiii et e e e e e e e e e e e e e 63
6.1. Business Process Model and Notation (BPMN) 2.0 specificationccc...... 63

LS = 1 1] [P 68

6.3. Supported elements / attribULEScooouiiiiiiii 68

7. Core Engine: Persistence and tranSactionsccooovuiiiiiiiiiiii e eee e e 73
8 0 a1 TSI = (R 73
7.1.1. BiNAry PerSiSIEBNCEcovuiiiiiiiiii e e 73

7.1.2. SaAf@ POINLS ... 73

7.1.3. Configuring PersiStEBNCEcuuiiiiiiii e 73

0 - g STV 1 o [P 77

7.2. Process DefiNItiONSc.ouuiiiiiiiiii e e e 78

7.3 HISTOTY LOQ ettt et e e et 78
7.3.1. Storing Process Events in a Databaseccoooevviveiiiiiiiicie e, 78

8. Core ENgiNe: EXAMPIES .. 81
8.1. IBPM EXAMPIES ..ouniiiiiiiiii et 81

8.2, EXAMPIES oo 81

SR T U111 A (=) USSP 82

9. Eclipse BPMN 2.0 PIUGIN ..o et 83
9.1, INSEAIIALION ...ieieei e 83

9.2. Creating your BPMN 2.0 PIrOCESSESuuuuiiiiiiieiiitiieteii ettt e et e et 83

9.3. Filtering elements and attributescccoooiiiiiii i 88

O B =T o 1= TSP TSP 91
020 O 10 £ 7= 1= o o PSPPI 92
02 T T o S oo Yo [92

5O o T 1=] 1= PP 93
0 O 1S3 7= 1= U1 T P 93

11.2. Running the process management CONSOIEccuuiiiiiiiiiiiieiiie e 93

11.2.1. Managing ProCess INSLANCESc.uuiiiirtuaeiiii i eeeeti e et eeeai e eeni e 95

11.2.2. HUM@N taSK lISES ..oiiiiiiiiiiii e 105

11.2.3. REPOMING .ieeeietiiti ettt ettt e e ea s 107

11.3. Adding new process / task fOrmMSccoiiiiiiiiiii e 111
N] S I 1 1= 1 = T = S 112

12, HUMGAN TASKS . oitiiiiiiiii ettt e et e e e e e et e e e et e e e e et e e e eerannes 113
12.1. Human tasks iNSide PrOCESSESoiiiiuiiiiiiii e e e 113
12.0.1, SWIMIANES oot e e e e 116

12.2. Human task management COMPONENTiiiiiiiiiiiiiiee e 117
12.2.1. TASK life CYCIE v 117

12.2.2. Linking the task component to the jBPM engineccccocovviiiiiiieiennnnnn. 119

12.2.3. Starting the Task Management COmMPONENtc.coevvviieiieeiiieeiiieeiiens 120

12.2.4. Interacting With the Task Management Componentccccceveevevnnnn. 122

12.3. Human Task Management INtErfaceccocoeeiiiiiiiiii i 123
12.3.1. EClipSe INtEGrAtiONcccvuuiiiiiie it 123

12.3.2. Web-based Task VIEWcoeuuiiiiiiiiiiieis e 123

13. DOMAIN-SPECITIC PIrOCESSES ...iiiiiiiiiii et 125
R 204 O 111 o T [o 1o o I PP 125
13.2. Example: NOHFICAIONScc.uuuiiiiiiiiiiiiii e 126
13.2.1. Creating the work definitioncccoooii i 126

13.2.2. Registering the work definitioncoooiiiiiii e, 127

13.2.3. Using your new work item in YOUr PrOCESSEScvvvvueerueriiiereineeenneaenns 128

13.2.4. EXeCUting SEIVICE NOUEScouuuiiiiiiiiieeiei ettt 132

14. Testing and debUGQING ..oouniiiii e e 135
I B O o1 R (= 1 o TSP UPPPTTRPPPIN 135
14.1.1. Helper methods to create your SESSIONccceuueeiiieiiiieeiieeiiieeeieeeins 136

I =TT 5 (o o 136

14.1.3. Testing integration with external SErviCescccecvvieiiiieeiiieeiiii e, 137

14.1.4. Configuring PEISISIEINCEccuuuiiiiiiii ittt 138

7 1= o 18 o o |1 o 139
14.2.1. The Process INStanCeS VIBWiiiiuiiiiiiiiiieei e 140

14.2.2. The Human Task VIEWccoouuiiiiiiiiiii e 140

14.2.3. The AUt VIEW ...ouiiii e e e e e 141

ST o o Tod oIy S o LT o o 1T | o Y/ 143
16. BUSINESS ACHIVILY MONITOTING oovuniiiiiiie e 147
G700 I = Yo 4 11 T 147
16.2. DIreCt INtEIVENTIONieei ittt e e e e e e e e e enaeaes 149

17. FIEXIDIE PrOCESSES ..ottt e e e e e e s 151
18. Integration with Maven, OSGi, SPring, €1C. ..ocoi i 155
TR 1Y = 1Y = o PRSPPI 155

S B © 1 1 PP 156
a0 = OSSP 159

vi

viii

Chapter 1.

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It's light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute and monitor
business processes, throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need
to be executed to achieve that goal and the order, using a flow chart. This greatly improves the
visibility and agility of your business logic. jBPM focuses on executable business process, which
are business processes that contain enough detail so they can actually be executed on a BPM
engine. Executable business processes bridge the gap between business users and developers
as they are higher-level and use domain-specific concepts that are understood by business users
but can also be executed directly.

% Project Manager Evaluation !

& Self Evaluation <—*> <—*> _— @

HR Manager Evaluation

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

» Eclipse-based and web-based editor to support the graphical creation of your business
processes (drag and drop)

* Pluggable persistence and transactions based on JPA / JTA

« Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors

« Management console supporting process instance management, task lists and task form
management, and reporting

« Optional process repository to deploy your process (and other related knowledge)

Chapter 1. Overview

« History logging (for querying / monitoring / analysis)
* Integration with Seam, Spring, OSGi, etc.

BPM makes the bridge between business analysts, developers and end users, by offering process
management features and tools in a way that both business users and developers like it. Domain-
specific nodes can be plugged into the palette, making the processes more easily understood by
business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life
situations that cannot easily be described using a rigid process. We bring control back to the end
users by allowing them to control which parts of the process should be executed, to dynamically
deviate from the process, etc.

jBPM is also not just an isolated process engine. Complex business logic can be modeled as
a combination of business processes with business rules and complex event processing. jBPM
can be combined with the Drools project to support one unified environment that integrates these
paradigms where you model your business logic as a combination of processes, rules and events.

Apart from the core engine itself, there are quite a few additional (optional) components that you
can use, like an Eclipse-based or web-based designer and a management console.

Overview

1.2. Overview

End User
Your : J :
o ' Console '
r’ Core Senices
: Core 1"'-.._.___r.: Ir I-I
Your] ; [I g . : e ,
Sernvices [Process ll : Histony : : o :
S J : l Engne | T JTask :
: |Rutes Engine ! =e==" tassssss=es
! Guwvnor '
' Repository
: Ll WenBamsed
: il i Designe 1
Developer Business
Analyst

Figure 1.1.

This figure gives an overview of the different components of the jBPM project. jJBPM can integrate
with a lot of other services as (and we've shown a few using grey bloxes on the figure) but here
we focus on the components that are part of the jBPM project itself.

» The process engine is the core of the project and is required if you want to execute business
processes (all other components are optional, as indicated by the dashed border). Your

Chapter 1. Overview

application services typically invoke the core engine (to start processes or to signal events)
whenever necessary.

« An optional core service is the history log, that will log all information about the current and
previous state of all your process instances.

» Another optional core service is the human task service, that will take care of the human task
life cycle if human actors participate in the process.

« Two types of graphical editors are supported for defining your business processes:

* The Eclipse plugin is an extension to the Eclipse IDE, targeted towards developers, and
allows you to create business processes using drag and drop, advanced debugging, etc.

» The web-based designer allows business users to manage business processes in a web-
based environment.

« The Guvnor repository is an optional component that can be used to store all your business
processes. It supports collaboration, versioning, etc. There is integration with both the Eclipse
plugin and web-based designer, supporting round-tripping between the different tools.

» The jBPM console is a web-based console that allows business users to manage their business
processes (start new processes, inspect running instances), their task list and see reports.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). It's most important features are:

» Solid, stable core engine for executing your process instances

« Native support for the latest BPMN 2.0 specification for modeling and executing business
processes

 Strong focus on performance and scalability

 Light-weight (can be deployed on almost any device that supports a simple Java Runtime
Environment, does not require any web container at all)

» (Optional) pluggable persistence with a default JPA implementation
« Pluggable transaction support with a default JTA implementation

« Implemented as a generic process engine, so it can be extended to support new node types
or other process languages

Eclipse Editor

« Listeners to be notified of various events
* Ability to migrate running process instances to a new version of their process definition

The core engine can also be integrated with a few other (independent) core services:

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms and
some more advanced features like escalation, delegation, rule-based assignments, etc.

* The history log can store all information about the execution of all the processes on the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic state of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Eclipse Editor

The Eclipse editor is an plugin to the Eclipse IDE and allows you to integrate your business
processes in your development environment. It is targeted towards developers and has some
wizards to get started, a graphical editor for creating your business processes (using drag and
drop) and a lot of advanced testing and debugging capabilities.

Chapter 1. Overview

Java - suvalcistlondsrcimain'resources/E valuation bpmn - Eclipre SE0K
wigata Sagrch Project Aum Wiedow Help
e Q= Q- | @ @ | 0 5~ AL =L 100% | Ged [0 =2 A =l

uplorer I =0 w ProcessTest java =0 B Outhne
-

—_

= .|:;.'Eulu|:t) :
o -) I A Evakiation — i
i] ' = Spguenca Flow s

SR e 2 Camgunants @ O —=t i Seif Evalustion —-@ <.'> @

| 4

N
 Process et java 12 Start Event i PM Evaliaation
i Eng Event

gt Tle

I Auile Task
& Gateway |deerge]
0 Galeway |Canverngs)
) Rmissabla Sub-Process
[Scrpk Task
i Tirner Even
S Error Ewent
) Mesage Event
) s er Task
(o) Emitzdded Sub-Process
() MuBiple Instances

raluation bpemin 2, 2010

ystarn Library [java-15.1
Library

L= Service Tasies &
= Ermail
ke
% Froblers | @ javados | Declarasen | = Froperties 53 m #
Property Wl Lz
Actorid £{emplayee |
Cornrment Rease perfonm a sef-evakiation
Corbent
i 2
Mutaliata {wian=135, height=40, y=56. Uniqusid=_2, x=%8]1
Hame SeF Evalation

O Enlry Achors
| &l O Exit Actons

Figure 1.2. Eclipse editor for creating BPMN2 processes

It includes features like:

» Wizard for creating a new jBPM project
* A graphical editor for BPMN 2.0 processes

* Plugging in your own domain-specific nodes

Validation

kT

Web-based Designer

« Runtime support (so you can select which version of j[BPM you would like to use)

« Graphical debugging, to see all running process instances of a selected session, to visualize
the current state of one specific process instance, etc.

« Audit view to get an overview of what happened at runtime
 Unit testing your processes

« Integration with the knowledge repository

1.5. Web-based Designer

The web-based designer allows you to model your business processes in a web-based
environment. It is targeted towards more business users and offers a graphical editor for viewing
and editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports
round-tripping between the Eclipse editor and the web-based designer.

L) Hello Goodbye

Figure 1.3. Web-based designer for creating BPMN2 processes

Optionally, you can use one or more knowledge repositories to store your business processes (and
other related artefacts). The web-based designer is integrated in the Guvnor repository, which is
targeted towards business users and allows you to manage your processes separately from your
application. It supports:

« A repository service to store your business processes and related artefacts, using a JCR
repository, which supports versioning, remotely accessing it as a file system or using REST
services, etc.

Chapter 1. Overview

« A web-based user interface to manage your business processes, targeted towards business
users, supporting the visualization (and editing) of your processes (the web-based designer is
integrated here), but also categorisation, scenario testing, deployment, etc.

» Collaboration features to have multiple actors (for example business users and developers)
work together on the same process definition.

* A knowledge agent to easily create new sessions based on the process definitions in the
repository. This also supports (optionally) dynamically updating all sessions if a new process
has been deployed.

1.6. JBPM Console

Business processes can be managed through a web console. It is targeted towards business
users and its main features are:

« Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances, etc.

« Human task management: being able to get a list of all your current tasks (either assigned to
you or that you might be able to claim), completing tasks on your task list (using customizable
task forms), etc.

* Reporting: get an overview of the state of your application and/or system using dynamically
generated (customizable) reports, that give you an overview of your key performance indicators
(KPIs).

BPM

SRS
Definitons
tion List

Documentation

e Process Dafinitons

Hefrazh Start

instance 1D
1

rocess Instance Activily

natance: 1

4{ o HR Manager Ewvaluaton

State RLINRING

< Process Instances

Tenrminats Delata

Slata
RUBMING

4{ # Project Manager Evaluation J—»
"C_-) 1-[. # Seif Evaluation] " @

®

L

Stant Cate: 2008-08-11 182337

Activly

Figure 1.4. Managing your process instances

1.7. Documentation

The documentation is structured as follows:

2 frig
Start Dale
2008-09-11 182337
=0X
Y
-@®
- Diagras
»
In& AR

« Overview: the overview chapter gives an overview of the different components

» Getting Started: the getting started chapter teaches you where to download the binaries and
sources and contains a lot of useful links

« Installer: the installer helps you getting a running demo setup including most of the jBPM
components and runs you through them using a simple example and some 10-minute tutorials

including screencasts

Chapter 1. Overview

« Core engine: the next 4 chapters describe the core engine: the process engine API, the process
definition language (BPMN 2.0), persistence and transactions, and examples

 Eclipse editor: the next 2 chapters describe the Eclipse plugin for developers, both the old one
and the new BPMN 2.0 tooling which is being developed

» Designer: describes the web-based designer that allows business users to edit business
processes in a web-based context

« Console: the jBPM console can be used for managing process instances, human task lists and
reports

* Important features

» Human tasks: When using human actors, you need a human task service to manage the life
cycle of the tasks, the task lists, etc.

» Domain-specific processes: plug in your own higher-level, domain-specific nodes in your
processes

» Testing and debugging: how to test and debug your processes

» Process repository: a process repository could be used to manage your business processes
» Advanced concepts

» Business activity monitoring: event processing to monitor the state of your systems

» Flexible processes: model much more adaptive, flexible processes using advanced process
constructs and integration with business rules and event processing

* Integration: how to integrate with other technologies like maven, OSGi, etc.

10

Chapter 2.

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artefact you want:

« bin: all the jBPM binaries (jars) and their dependencies

« src: the sources of the core components

» gwt-console: the jbpm console, a zip file containing both the server and client war
 docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jppme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will learn you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to get read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After that, you should be ready to start creating your own processes and integrate the engine
with your application, for example by starting from the installer or another example, or by starting
from scratch.

2.3. Community

Here are a lot of useful links if we want to become part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
jBPM

11

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Chapter 2. Getting Started

« The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

* A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217] for asking
guestions and giving answers

« A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests
and roadmap

e« A continuous build server [https://hudson.jboss.org/hudson/job/[BPM/] for getting the
latest snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jopm-
distribution/target/]

Please feel free to join us in our IRC channel at irc.codehaus.org #bpm. This is where most of the
real-time discussion about the project takes place and where you can find most of the developers
most of their time as well. Don't have an IRC client installed? Simply go to http://irc.codehaus.org,
input your desired nickname, and specify #bpm. Then click login to join the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

The web-based designer is based on Oryx/Wapama and is MIT License

« The BPM console is GNU Lesser General Public License (LGPL) v2.1

The Drools project is Apache License v2.0.

2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jBPM and Drools project can be found here [https://github.com/
droolsjbpm].

» The jBPM Eclipse plugin can be found here [http://anonsvn.jboss.org/repos/jbosstools/trunk/
bpmn/plugins/org.jboss.tools.jopm/].

12

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://irc.codehaus.org
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/

Building from source

e The new Eclipse BPMN2 plugin can be found here [https://github.com/droolsjbpm/bpmn2-
eclipse-editor].

« The web-based designer can be found here [https://github.com/tsurdilo/process-designer]
« The BPM console can be found here [https://github.com/bpmc/bpm-console]

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

13

https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/bpmc/bpm-console
https://github.com/bpmc/bpm-console
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

14

Chapter 3.

Chapter 3. Installer

This guide will assist you in installing and running a demo setup of the various components of the
jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,
or if you want to help out, do not hesitate to contact the jBPM community as described in the "What
to do if | encounter problems or have questions?" section.

3.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

3.2. Download the installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%205/] the
installer. There are two versions, a full installer (which already contains a lot of the dependencies
that are necessary during the installation) and a minimal installer (which only contains the installer
and will download all dependencies). In general, it is probably best to download the full installer:
jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/
[https://hudson.jboss.org/jenkins/job/iBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.
Simply go into the install folder and run:

ant install.demo
This will;

¢ Download JBoss AS
« Download Eclipse

« Install Drools Guvnor into JBoss AS

15

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 3. Installer

Install Oryx Designer into JBoss AS

Install the jBPM gwt-console into JBoss AS

Install the jBPM Eclipse plugin

Install the Drools Eclipse plugin

This could take a while (REALLY, not kidding, we are downloading an application server and
Eclipse installation, even if you downloaded the full installer). The script however always shows
which file it is downloading (you could for example check whether it is still downloading by checking
the whether the size of the file in question in the jopm-installer/lib folder is still increasing). If
you want to avoid downloading specific components (because you will hot be using them or you
already have them installed somewhere else), check below for running only specific parts of the
demo or directing the installer to an already installed component.

To limit the amount of data that needs to be downloaded, we have disabled the download of the
Eclipse BIRT plugin for reporting by default. If you want to try out reporting as well in the jBPM
console, make sure to put the jBPM.birt.download property in the build.properties file to true before
running the installer.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.demo

This will:

Start the H2 database

Start the JBoss AS

Start Eclipse

Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor repository and
jBPM console, as explained in the next three sections.

3.4. 10-Minute Tutorial: Using the Eclipse tooling

The following screencast [http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf] gives an
overview of how to run a simple demo process in Eclipse. It shows you:

« How to import an existing example project into your workspace, containing

16

http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf
http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf

10-Minute Tutorial: Using the Eclipse tooling

« a sample BPMN2 process for requesting a performance evaluation
¢ a sample Java class to start the process

» How to start the process

' e - evaluation o main T e ConT valuation. Bpemn - Ecligne

i Pociage Euplorer |

o L.s M [= Bvmiain H —
= ™ e n R - -
i e S =
il] ProcesmTest e o Lo : [| —ap st Evsiamton _..<+> @
= i ::EI-'-'--l:m.rln Simit Bl . m
-]
LE i Ee B g 7 [oshathin

+ B BE vt Lbwary | oo

B P ey e R
——
e)y MU ST _

i [g} P Recbreanor ot

Camrer]
| = || coaes

M 1
Healat raghs =8, i< (35, Lingald=_3, 7=18, =98] w

Figure 3.1.
[http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf]

Do the following:

» Once Eclipse has opened, simple import (using "File -> Import ..." and then under the General
category, select "Existing Projects into Workspace") the existing sample project (in the jopm-
installer/sample/evaluation directory). This should add the sample project, including a simple
BPMN2 process and a Java file to start the process.

* You can open the BPMN2 process and the Java class by double-clicking it.

17

http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf

Chapter 3. Installer

« We will now debug the process, so we can visualize its runtime state using the debug
tooling. First put a breakpoint on line "ksession.startProcess" of the ProcessTest class. To start
debugging, right-click on ProcessTest.java in the com.sample package (under "src/main/java")
and select "Debug As - Java Application", and switch to the debug perspective.

« Open up the various debug views: Under "Window - Show View -> Other ...", select the Process
Instances View and Process Instance View (under Drools category) and the Human Task View
(under Drools Task) and click OK.

e The program will hit the breakpoint right before starting the process. Click on the "Step
Over" (F6) to start the process. In this case, it will simply start the process, which will result in
the creation of a new user task for the user "krisv" in the human task service, after which the
process will wait for its execution. Go to the Human Task View, fill in "krisv" under Userld and
click Refresh. A new Performance Evaluation task should show up.

« To show the state of the process instance you just started graphically, click on the Process
Instances View and then select the ksession variable in the Variables View. This will show all
active process instances in the selected session. In this case, there is only one process instance.
Double-click it to see the state of that process instance annotated on the process flow chart.

« Now go back to the Task View, select the Performance Evaluation task and first start and then
complete the selected task. Now go back to the Process Instances view and double click the
process instance again to see its new state.

You could also create a new project using the jBPM project wizard. This sample project contains
a simple Helloworld BPMN2 process and an associated Java file to start the process. Simple
select "File - New ... - Project ..." and under the "jBPM" category, select "jBPM project" and click
"Next". Give the project a name and click "Finish". You should see a new project containing a
"sample.bpmn" process and a "com.sample.ProcessTest" Java class. You can open the BPMN2
process by double-clicking it. To execute the process, right-click on ProcessTest.java and select
"Run As - Java Application”. You should see a "Hello World" statement in the output console.

3.5. 10-Minute Tutorial: Using the |BPM Console

Open up the process management console:
http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password. The following screencast [http://
people.redhat.com/kverlaen/install-gwt-console-jbpm.swf] gives an overview of how to manage
your process instances. It shows you:

» How to start a new process

« How to look up the current status of a running process instance

» How to look up your tasks

18

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf

10-Minute Tutorial: Using the jBPM Console

* How to complete a task

+ How to generate reports to monitor your process execution

= X O iocahost i2/app.ht t_Pros } o N

= ey Logzut

Tasks o Procass ey i

PR e
Fgtai=] " Star | | Omiats | Terminsis

2 Emecubon Haplony Process :
LoF Frocmin Cholfyvise BN HING

Fxecution deindls

Pmoceas Evaluabon G
irstance |0 L Irace~= e
Kay
Slabs RALMNENG

Raporiing Stan Date 200-10-12 173030

sﬂlm & » | ATy

Figure 3.2.
[http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf]

« To manage your process instances, click on the "Processes" tab at the left an select "Process
Overview". After a slight delay (if you are using the application for the first time, due to session
initalization etc.), the "Process" list should show all the known processes. The jbpm-console
in the demo setup currently loads all the process in the "src/main/resources” folder of the
evaluation sample in "jbpm-installer/sample/evaluation”. If you click the process, it will show you
all current running instances. Since there are no running instances at this point, the "Instance"
table will remain empty.

* You can start a new process instance by click on the "Start" button. After confirming that you
want to start a new execution of this process, you will see a process form where you need to fill
in the necessary information to start the process. In this case, you need to fill in your username

19

http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf

Chapter 3. Installer

"krisv", after which you can complete the form and close the window. A new instance should
show up in the "Instance" table. If you click the process instance, you can check its details
below and the diagram and instance data by click on the "Diagram" and "Instance Data" buttons
respectively. The process instance that you just started is first requiring a self-evaluation of the
user and is waiting until the user has completed this task.

« To see the tasks that have been assigned to you, choose the "Tasks" tab on the left and
select "Personal Tasks" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation" task for you. You can complete this task
by selecting it and clicking the "View" button. This will open the task form for performance
evaluations. You can fill in the necessary data and then complete the form and close the window.
After completing the task, you could check the "Process Overview" once more to check the
progress of your process instance. You should be able to see that the process is how waiting
for your HR manager and project manager to also perform an evaluation. You could log in as
"john" / "john" and "mary" / "mary" to complete these tasks.

* After starting and/or completing a few process instances and human tasks, you can generate a
report of what happened so far. Under "Reporting”, select "Report Templates". By default, the
console has two report templates, one for generating a generic overview for all processes and
one for inspecting once specific process definition. If you select the latter, make sure to enter
"com.sample.evaluation" as the process definition id to see the activity related to the evaluation
process. Click the "Create Report" button to generate a realtime report of the current status.
Notice that the initialization of the reports might take a moment, especially the first time you
use the application.

3.6. 10-Minute Tutorial: Using Guvnor repository and
Designer

The Guvnor repository can be used as a process repository to store business processes. It also
offers a web-based interface to manage your processes. This includes a web-based editor for
viewing and editing processes.

Open up Drools Guvnor;
http://localhost:8080/drools-guvnor

Log in, using any non-empty username / password (we disabled authentication for demo
purposes). The following screencast [http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf]
gives an overview of how to manage your repository. It shows you:

* How to import an existing process (in this case the evaluation process) from eclipse into guvnor
« How to open up the evaluation process in the web editor

» How to build a package so it can be used for creating a session

20

http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf
http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf

What to do if | encounter problems or have questions?

- Brvewse Find defaullPackage Processes [defaulliPackage] Evaluation
= MNCWaRe Dases -
F ol it
Crekie Mew P
i X X -
= ==3 Packages S
= B gefaultFackage r,.H p
“ Business nie assets
i .
& Technical noke assedis (Y '—n"s-:ﬂ’ Evaluation
L
Lok Funclions Cemrt Al .rl'ﬂ T GatEway Bl
¥ DSL configuatons “PH Evaluation

& Moded

X Processes
= Enumsirations

*" Test Soanarcs

= KWL, Properbes

O Caher assets, documentation

a4 WorkingSels

= sed GHIObAl Ared

Yon
ViPackage snapshols

Figure 3.3.
[http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf]

If you want to know more, we recommend you take a look at the rest of the Drools Guvnor
documentation.

Once you're done playing:
ant stop.demo

and simply close all the rest.

3.7. What to do if encounter problems or have
guestions?

You can always contact the jJBPM community for assistance.

Email: jopm-dev@lists.jboss.org

21

http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf

Chapter 3. Installer

IRC: #jbpm at irc.codehaus.org

JBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

3.8. Frequently asked questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarly
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console, Guvnor and the Designer. What can | do?

A: You can check the server log for possible exceptions in the jopm-installer/jboss-4.2.3.GA/
server/default/log directory.

For all other questions, try contacting the jBPM community as described above.

22

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 4.

Chapter 4. Core Engine: API

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (to for example start a process), you heed to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definition
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

T
~_

BN
-

Knowledge
Base Session

Stateful
Knowledge

Process
Definition

Process
Instance

23

Chapter 4. Core Engine: API

For example, image you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales
order then comes in, a new process instance is started for that sales order. That process instance
contains the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as much independent session as you want and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, you want all processes from one
customer be completely independent of processes of another customer so you could create an
independent session for each customer), or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and one create session that you then use to execute all your processes.

4.1. The iBPM API

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that internal APl might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

4.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowlegde
base, use a knowledge builder to load processes from various resources (for example from the
classpath or from file system), and then create a new knowledge base from that builder. The
following code snippet shows how to create a knowledge base consisting of only one process
definition (using in this case a resource from the classpath).

24

Session

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn"), ResourceType.BPMNZ2);
KnowledgeBase kbase = kbuilder.newKnowledgeBase();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

4.1.2. Session

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
snippet shows how easy it is to create a session based on the earlier created knowledge base,
and to start a process (by id).

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
Processinstance processinstance = ksession.startProcess("com.sample.MyProcess");

The ProcessRunt i ne interface defines all the session methods for interacting with processes, as
shown below.

/**

* Start a new process instance. The process (definition) that should
* pe used is referenced by the given process id.

*

* processld The id of the process that should be started
* the Processinstance that represents the instance of the process that was started
*/

Processinstance startProcess(String processld);

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Parameters can be passed
* to the process instance (as hame-value pairs), and these will be set

* as variables of the process instance.

*

* processld the id of the process that should be started

* parameters the process variables that should be set when starting the process instance
* the ProcesslInstance that represents the instance of the process that was started

*/

Processlinstance startProcess(String processld,

25

Chapter 4. Core Engine: API

Map<String, Object> parameters);

/**

* Signals the engine that an event has occurred. The type parameter defines

* which type of event and the event parameter can contain additional information
* related to the event. All process instances that are listening to this type

* of (external) event will be notified. For performance reasons, this type of event
* signaling should only be used if one process instance should be able to notify

* other process instances. For internal event within one process instance, use the
* signalEvent method that also include the processinstanceld of the process instance
* in question.

*

* @param type the type of event

* @param event the data associated with this event

*/

void signalEvent(String type,
Object event);

/**

* Signals the process instance that an event has occurred. The type parameter defines
* which type of event and the event parameter can contain additional information
* related to the event. All node instances inside the given process instance that
* are listening to this type of (internal) event will be notified. Note that the event
*will only be processed inside the given process instance. All other process instances
* waiting for this type of event will not be notified.
*
* @param type the type of event
* @param event the data associated with this event
* @param processinstanceld the id of the process instance that should be signaled
*/
void signalEvent(String type,
Object event,
long processinstanceld);

/**

* Returns a collection of currently active process instances. Note that only process
* instances that are currently loaded and active inside the engine will be returned.

* When using persistence, it is likely not all running process instances will be loaded
* as their state will be stored persistently. It is recommended not to use this

* method to collect information about the state of your process instances but to use
* a history log for that purpose.

*

* @return a collection of process instances currently active in the session

*/

26

Events

Collection<Processlnstance> getProcessinstances();

/**

* Returns the process instance with the given id. Note that only active process instances

* will be returned. If a process instance has been completed already, this method will return
* null.

*

* @param id the id of the process instance

* @return the process instance with the given id or null if it cannot be found

*/

Processinstance getProcessinstance(long processinstanceld);

/**

* Aborts the process instance with the given id. If the process instance has been completed
* (or aborted), or the process instance cannot be found, this method will throw an

* lllegalArgumentException.

*

* @param id the id of the process instance

*/

void abortProcessinstance(long processinstanceld);

/**

* Returns the WorkltemManager related to this session. This can be used to
* register new WorkltemHandlers or to complete (or abort) Workltems.

*

* @return the WorkltemManager related to this session

*/

WorkltemManager getWorkltemManager();

4.1.3. Events

The session provides methods for registering and removing listeners. A Pr ocessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

void beforeProcessStarted(ProcessStartedEvent event);
void afterProcessStarted(ProcessStartedEvent event);
void beforeProcessCompleted(ProcessCompletedEvent event);

27

Chapter 4. Core Engine: API

void afterProcessCompleted(ProcessCompletedEvent event);

void beforeNodeTriggered(ProcessNodeTriggeredEvent event);
void afterNodeTriggered(ProcessNodeTriggeredEvent event);

void beforeNodeLeft(ProcessNodeLeftEvent event);

void afterNodeLeft(ProcessNodeLeftEvent event);

void beforeVariableChanged(ProcessVariableChangedEvent event);
void afterVariableChanged(ProcessVariableChangedEvent event);

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Knowl edgeRunt i neLogger Fact ory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created
must be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

KnowledgeRuntimeLogger logger =
KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");

// add invocations to the process engine here,

Il e.g. ksession.startProcess(processld);

logger.close();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools

28

Knowledge-based API

Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

= =, RuleFlow started: ruleflow[com.sample. ruleflow]
= 4 RuleFlow node triggered: Start in process ruleflow[com.sample.ruleflow]
= #] RuleFlow node triggered: Hello in process ruleflow[com . sample ruleflow]
= #] RuleFlow node triggered: End in process ruleflow[com.sample ruleflow]

= RuleFlow completed: ruleflow[com.sample.ruleflow]

4.2. Knowledge-based API

As you might have noticed, the API as exposed by the jBPM project is a knowledge API. That
means that it doesn't only focus on processes, but potentially also allows other types of knowledge
to be loaded. The impact for users that are only interested in processes however is very small.
It just means that, instead of having a ProcessBase or a ProcessSession, you are using a
KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your
application, the knowledge-based API allows users to add different types of resources, such as
processes and rules, in almost identical ways into the same knowledge base. This enables a
user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools
Fusion (for event processing) almost instantaneously (and even to integrate these different types
of Knowledge) as the API and tooling for these different types of knowledge is unified.

29

30

Chapter 5.

Chapter 5. Core Engine: Basics

% Project Manager Evaluation !

~,
& Sell Evaluation |—m <+> @ @
o 4

HR Manager Evaluation

Figure 5.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

5.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor in the Eclipse plugin

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

5.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is a editor that allows you to create a process by dragging and
dropping different nodes on a canvas and editing the properties of these nodes. The graphical
BPMNZ2 editor is part of the jBPM / Drools Eclipse plugin. Once you have set up a jBPM project (see
the installer for creating an working Eclipse environment where you can start), you can start adding
processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the directory
you would like to put your process in and select "New", then "File". Give the file a name and
the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can safely
ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

31

Chapter 5. Core Engine: Basics

=2 MyProcess bpmn 5 =0
[Salact
i Margues

—t CEQUENCE
Flow

= Componants < —
Start Event . __.]
W Endd Ewvert
IR} Rule Task

& Gateway
[diverge]

o Gataway
[comverge]

! Reusable
Sub-Process

=) Script Task
Timer Event
=} Error Event

= Message
Event

IE_I User Task

al Emibedded
Subk-Frocess

=) MuRiple
Instandces

= Service Ta
Log

+| Ermail

Figure 5.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
"Components" palette of the GUI. Clicking on an element in your process allows you to set the
properties of that element. You can connect the nodes (as long as it is permitted by the different
types of nodes) by using "Sequence Flow" from the "Components" palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

5.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"
targetNamespace="http://www.jboss.org/drools"
typeLanguage="http://www.java.com/javaTypes"
expressionLanguage="http://www.mvel.org/2.0"

32

Defining processes using XML

xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
xmlns:g="http://www.jboss.org/drools/flow/gpd"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
xmlns:tns="http://www.jboss.org/drools">

<process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello
Process" >

<!-- nodes -->

<startEvent id="_1" name="Start" />

<scriptTask id="_2" name="Hello" >

<script>System.out.printin("Hello World");</script>

</scriptTask>

<endEvent id="_3" name="End" >

<terminateEventDefinition/>
</endEvent>

<l-- connections -->
<sequenceFlow id="_1- 2" sourceRef="_1"targetRef=" 2" />
<sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

</process>

<bpmndi:BPMNDiagram>
<bpmndi:BPMNPIlane bpmnElement="com.sample.hello" >

<bpmndi:BPMNShape bpmnElement="_1" >
<dc:Bounds x="16" y="16" width="48" height="48" />

</bpmndi:BPMNShape>

<bpmndi:BPMNShape bpmnElement="_2" >
<dc:Bounds x="96" y="16" width="80" height="48" />

</bpmndi:BPMNShape>

<bpmndi:BPMNShape bpmnElement="_3" >
<dc:Bounds x="208" y="16" width="48" height="48" />

</bpmndi:BPMNShape>

<bpmndi:BPMNEdge bpmnElement="_1- 2" >
<di:waypoint x="40" y="40" />
<di:waypoint x="136" y="40" />

</bpmndi:BPMNEdge>

<bpmndi:BPMNEdge bpmnElement="_2- 3" >
<di:waypoint x="136" y="40" />

33

Chapter 5. Core Engine: Basics

<di:waypoint x="232" y="40" />
</bpmndi:BPMNEdge>
</bpmndi:BPMNPIlane>
</bpmndi:BPMNDiagram>

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

5.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kfl ow. core and or g. j bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

5.1.3.1. Example

This is a simple example of a basic process with a script task only:

RuleFlowProcessFactory factory =
RuleFlowProcessFactory.createProcess("org.jopm.HelloWorld");
factory
/l Header
.name("HelloWorldProcess")
.version("1.0")
.packageName("org.jbpm")
/ Nodes
.startNode(1).name("Start").done()
.actionNode(2).name("Action")
.action("java", "System.out.printin(\"Hello World\");").done()
.endNode(3).name("End").done()
/I Connections

34

Details of different process constructs: Overview

.connection(1, 2)
.connection(2, 3);
RuleFlowProcess process = factory.validate().getProcess();

You can see that we start by calling the static createProcess() method from the
Rul eFl owPr ocessFact or y class. This method creates a new process with the given id and returns
the Rul eFl owPr ocessFact or y that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(),
actionNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have
finished configuring that specific node, the done() method returns you to the current
Rul eFl owPr ocessFact ory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connecti on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

5.2. Details of different process constructs: Overview

The following chapters will describe the different constructs that you can use to model your
processes (and their properties) in detail. Executable processes in BPMN consist of a different
types of nodes being connected to each other using sequence flows. The BPMN 2.0 specification
defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

 Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and actvities could also be nested (using different
types of sub-processes).

35

Chapter 5. Core Engine: Basics

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

The following sections will describe the properties of the process itself and of each of these
different node types in detail, as supported by the Eclipse plugin and shown in the following figure
of the palette. Note that the Eclipse property editor might show more properties for some of the
supported node types, but only the properties as defined in this section are supported when using

the BPMN 2.0 XML format.

L= Components £

Start Event

@ End Event

Fule Task

@ Gateway [diverge]

& Gateway [converge]

(=) Reusable Sub-Process

Script Task

(%) Timer Event

® Error Event

&) Signal Event

User Task

(=) Embedded Sub-Process

(w) Multiple Instances

L= S5ervice Tasks £
= Log
== Email

Figure 5.3. The different types of BPMN2 nodes

5.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

36

Details: Events

« Id: The unique id of the process.

« Name: The display nhame of the process.

« Version: The version number of the process.

« Package: The package (namespace) the process is defined in.

« Variables: Variables can be defined to store data during the execution of your process. See
section “Data” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“Human Tasks” for details.

5.4. Detalls: Events

5.4.1. Start event

Figure 5.4. Start event

The start of the process. A process should have exactly one start node, which cannot have
incoming connections and should have one outgoing connection. Whenever a process is started,
execution will start at this node and automatically continue to the first node linked to this start
event, and so on. It contains the following properties:

 Id: The id of the node (which is unique within one node container).

* Name: The display name of the node.

37

Chapter 5. Core Engine: Basics

5.4.2. End events

5.4.2.1. End event

Figure 5.5. End event

The end of the process. A process should have one or more end events. The End Event should
have one incoming connection and cannot have outgoing connections. It contains the following
properties:

* |d: The id of the node (which is unigque within one node container).
« Name: The display name of the node.

» Terminate: An End Event can be terminating for the entire process or just for the path. When a
process instance is terminated, it means its state is set to completed and all other nodes that
might still be active (on parallel paths) in this process instance are cancelled. Non-terminating
end events are simply ends for this path (execution of this branch will end here), but other
parallel paths can still continue. A process instances will automatically complete if there are no
more active paths inside that process instance (for example, if a process instance reaches a
non-terminating end node but there are no more active branches inside the process instance,
the process instance will be completed anyway). Terminating end event are visualized using
a full circle inside the event node, non-terminating event nodes are empty. Note that, if you
use a terminating event node inside a sub-process, you are terminating the top-level process
instance, not just that sub-process.

38

End events

5.4.2.2. Throwing error event

Figure 5.6. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

* Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.

» FaultName: The name of the fault. This name is used to search for appriopriate exception
handlers that is capable of handling this kind of fault.

» FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

Error handlers can be specified using boundary events. This is however currently only possible
by doing this in XML directly. We will be adding support for graphically specifying this in the new
BPMNZ2 editor.

39

Chapter 5. Core Engine: Basics

5.4.3. Intermediate events

5.4.3.1. Catching timer event

— —

Figure 5.7. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled
(e.g., by completing or aborting the enclosing process instance). Consult the section “Timers” for
more information. The Timer Event contains the following properties:

« |d: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d] [#h] [#n] [#s] [#[ns]] . This means that you can specify the amount
of days, hours, minutes, seconds and multiseconds (which is the default if you don't specify
anything). For example, the expression "1h" will wait one hour before triggering the timer. The
expression could also use #{expr} to dynamically derive the delay based on some process
variable. Expr in this case could be a process variable, or a more complex expression based
on a process variable (e.g. myVariable.getValue()).

40

Intermediate events

» Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]] . This
means that you can specify the amount of days, hours, minutes, seconds and multiseconds
(which is the default if you don't specify anything). For example, the expression "1h" will wait
one hour before triggering the timer again. The expression could also use #{expr} to dynamically
derive the period based on some process variable. Expr in this case could be a process variable,
or a more complex expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes. This is however
currently only possible by doing this in XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

5.4.3.2. Catching signal event

Figure 5.8. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have no incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

41

Chapter 5. Core Engine: Basics

Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« EventType: The type of event that is expected.

VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksession.signalEvent(eventType, data, processinstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcontext.getkKnowledgeRuntime().signalEvent(
eventType, data, kcontext.getProcessinstance().getld());

A throwing signal events could also be used to model the signaling of an event. This is however
currently only possible by doing this in XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

42

Details: Activities

5.5. Detalls: Activities

5.5.1. Script task

4 ™
script Task |[—

. vy

Figure 5.9. Script task

!

Represents a script that should be executed in this process. A Script Task should have one
incoming connection and one outgoing connection. The associated action specifies what should
be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext that
references the ProcessCont ext object (which can, for example, be used to access the current
Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession
using kcont ext . get Know edgeRunt i me()). When a Script Task is reached in the process, it will
execute the action and then continue with the next node. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
» Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by
business users, it is probably wise to avoid low-level implementation details inside the process,
including inside these script tasks. Script task could still be used to quickly manipulate variables
etc. but other concepts like a service task could be used to model more complex behaviour in
a higher-level manner.

 Scripts should be immediate. They are using the engine thread to execute the script. Scripts that
could take some time to execute should probably be modeled as an asynchronous service task.

* You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the

43

Chapter 5. Core Engine: Basics

knowledge of the engine, which can be problematic, especially when using persistence and
transactions. In general, it is probably wiser to model communication with an external service
using a service task.

 Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

5.5.2. Service task

Service Task

Figure 5.10. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

44

User task

e On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

« Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oStri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi rst nane}.

5.5.3. User task

" ™
—» & User Task [—
LY v

Figure 5.11. User task

Processes can also involve tasks that need to be executed by human actors. A User Task
represents an atomic task to be executed by a human actor. It should have one incoming
connection and one outgoing connection. User Tasks can be used in combination with Swimlanes
to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more
details. A User Task is actually nothing more than a specific type of service node (of type "Human
Task™"). A User Task contains the following properties:

Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.

+ TaskName: The name of the human task.

Priority: An integer indicating the priority of the human task.

45

Chapter 5. Core Engine: Basics

« Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

» Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

« Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

* Content: The data associated with this task.

« Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

« On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note
that, if there is data related to this specific process instance that the end user needs when
performing the task, this data should be passed as the content of the task. The task for example
does not have access to process variables. Check out the chapter on human tasks to get more
detail on how to pass data between human tasks and the process instance.

5.5.4. Reusable sub-process

=_ Reusable Sub-Process

Figure 5.12. Reusable sub-process

46

Business rule task

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion: If this property is true, this sub-process node will only continue if the child
process that was started has terminated its execution (completed or aborted); otherwise it will
continue immediately after starting the subprocess (so it will not wait for its completion).

Independent: If this property is true, the child process is started as an independent process,
which means that the child process will not be terminated if this parent process is completed (or
this sub-process node is cancelled for some other reason); otherwise the active sub-process
will be cancelled on termination of the parent process (or cancellation of the sub-process node).

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

Parameter infout mapping: A sub-process node can also define in- and out-mappings for
variables. The variables given in the "in" mapping will be used as parameters (with the
associated parameter name) when starting the process. The variables of the child process
that are defined the "out" mappings will be copied to the variables of this process when the
child process has been completed. Note that you can use "out" mappings only when "Wait for
completion” is set to true.

5.5.5. Business rule task

Business Rules Task

Figure 5.13. Business rule task

Represents a set of rules that need to be evaluated. The rules are evaluated when the node is
reached. A Rule Task should have one incoming connection and one outgoing connection. Rules
are defined in separate files using the Drools rule format. Rules can become part of a specific

47

Chapter 5. Core Engine: Basics

ruleflow group using the rul ef | ow gr oup attribute in the header of the rule. When a Rule Task
is reached in the process, the engine will start executing rules that are part of the corresponding
ruleflow-group (if any). Execution will automatically continue to the next node if there are no more
active rules in this ruleflow group. This means that, during the execution of a ruleflow group, it
is possible that new activations belonging to the currently active ruleflow group are added to the
Agenda due to changes made to the facts by the other rules. Note that the process will immediately
continue with the next node if it encounters a ruleflow group where there are no active rules
at that time. If the ruleflow group was already active, the ruleflow group will remain active and
execution will only continue if all active rules of the ruleflow group has been completed. It contains
the following properties:

* |d: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

e RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

5.5.6. Embedded sub-process

Sub-Process

& User Task

Figure 5.14. Embedded sub-process

48

Multi-instance sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but
also the definition of additional variables that are accessible for all nodes inside this container. A
sub-process should have one incoming connection and one outgoing connection. It should also
contain one start node that defines where to start (inside the Sub-Process) when you reach the
sub-process. It should also contain one or more end events. Note that, if you use a terminating
event node inside a sub-process, you are terminating the top-level process instance, not just that
sub-process, so in general you should use non-terminating end nodes inside a sub-process. A
sub-process ends when there are no more active nodes inside the sub-process. It contains the
following properties:

* |d: The id of the node (which is unigue within one node container).

« Name: The display name of the node.

» Variables: Additional variables can be defined to store data during the execution of this node.
See section “Data” for details.

5.5.7. Multi-instance sub-process

Multiple Instances

o O @

Figure 5.15. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple
instance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).

49

Chapter 5. Core Engine: Basics

« Name: The display name of the node.

» CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Coll ection.Ifthe collection expression evaluates to null or an empty collection, the
multiple instances sub-process will be completed immediate and follow its outgoing connection.

» VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

50

Details: Gateways

5.6. Details: Gatewavs

Figure 5.16. Diverging gateway

51

Chapter 5. Core Engine: Basics

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes
currently supported:

« AND or parallel means that the control flow will continue in all outgoing connections
simultaneously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. The constraint with the lowest priority number that evaluates to true is selected.
Constraints can be specified using different dialects. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the ruleflow will
throw an exception at runtime if it cannot find at least one outgoing connection).

* OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the process will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

52

Converging gateway

5.6.2. Converging gateway

Y

r

Figure 5.17. Converging gateway

53

Chapter 5. Core Engine: Basics

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are two types of splits currently
supported:

e AND or parallel means that is will wait until all incoming branches are completed before
continuing.

* XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifitis triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

It contains the following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Type: The type of the Join node, i.e. AND or XOR.

5.7. Using a process in your application

As explained in more detail in the API chapter, there are two things you need to do to be able to
execute processes from within your application: (1) you need to create a Knowledge Base that
contains the definition of the process, and (2) you need to start the process by creating a session
to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the
Knowledge Base:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn2"),
ResourceType.BPMN2);

After adding all your process to the builder (you can add more than one process), you can
create a new knowledge base like this:

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could
not parse your processes correctly).

54

Other features

2. Starting a process: To start a particular process, you will need to call the st art Pr ocess method
on your session and pass the id of the process you want to start. For example:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ksession.startProcess("com.sample.hello");

The parameter of the st art Process method is the id of the process that needs to be started.
When defining a process, this process id needs to be specified as a property of the process (as
for example shown in the Properties View in Eclipse when you click the background canvas
of your process).

When you start the process, you may specify additional parameters that are used to pass
additional input data to the process, using the startProcess(String processld, Map
par amet er s) method. The additional set of parameters is a set of name-value pairs. These
parameters are copied to the newly created process instance as top-level variables of the
process, so they can be accessed in the remainder of your process directly.

5.8. Other features

5.8.1. Data

While the flow chart focuses on specifying the control flow of the process, it is usually also
necessary to look at the process from a data perspective. Throughout the execution of a process,
data can retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass. Variables can be defined inside a variable scope. The
top-level scope is the variable scope of the process itself. Subscopes can be defined using a Sub-
Process. Variables that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:
» Process-level variables can be set when starting a process by providing a map of parameters

to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

55

Chapter 5. Core Engine: Basics

« Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jbpm.Person” in the process, a script in the process could access this directly:

/I call method on the process variable "person”
person.setAge(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcontext.setVariable(variableName, value);

» Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. getName()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

» Various other nodes can also access data. Event nodes for example can store the data
associated to the event in a variable, etc. Check the properties of the different node types for
more information.

Finally, processes (and rules) all have access to globals, i.e. globally defined variables
and data in the Knowledge Session. Globals are directly accessible in actions just like
variables. Globals need to be defined as part of the process before they can be used. You
can for example define globals by clicking the globals button when specifying an action
script in the Eclipse action property editor. You can also set the value of a global from
the outside using ksessi on. set d obal (nane, val ue) or from inside process scripts using
kcont ext . get Knowl edgeRunti me() . set d obal (nane, val ue); .

5.8.2. Constraints

Constraints can be used in various locations in your processes, for example in a diverging
gateway. jBPM supports two types of constraints:

« Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in
the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

56

Action scripts

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the Working Memory and matching for the process instance in your
rule constraint. We have added special logic to make sure that a variable processl nst ance of
type Wor kf | owPr ocessl nst ance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to
insert the process instance into the session and, possibly, to update it, for example, using Java
code or an on-entry or on-exit or explicit action in your process. The following example of a rule
constraint will search for a person with the same name as the value stored in the variable "name"
of the process:

processinstance : WorkflowProcesslnstance()
Person(name == (processinstance.getVariable("name")))
add more constraints here ...

5.8.3. Action scripts

Action scripts can be used in different ways:

« Within a Script Task,

* As entry or exit actions, with a number of nodes.

57

Chapter 5. Core Engine: Basics

Actions have access to globals and the \variables that are defined for
the process and the predefined variable kcontext. This variable is of type
org. drool s. runtime. process. ProcessCont ext and can be used for several tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodelnstance node = kcontext.getNodelnstance();
String name = node.getNodeName();

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processinstance proc = kcontext.getProcessinstance();
proc.signalEvent(type, eventObiject);

» Getting or setting the value of variables.

» Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. name instead of person. get Name()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints
out the name of the person in the "requester" variable of the process would look like this:

/Il Java dialect
System.out.printin(person.getName());

/[MVEL dialect
System.out.println(person.name);

58

Events

5.8.4. Events

'h_::'l _4,\' Hello | h-v\-!-/ -|x Script | i-@

S

Figure 5.18. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are
executed according to the process plan, by requesting the execution of work items and waiting for
the results. However, it is also possible that the process should respond to events that were not
directly requested by the process engine. Explicitly representing these events in a process allows
the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own
event types and their associated data.

A process can specify how to respond to events by using a Message Event. An Event node needs
to specify the type of event the node is interested in. It can also define the name of a variable,
which will receive the data that is associated with the event. This allows subsequent nodes in the
process to access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

« Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or
on-exit action of some node) can signal the occurence of an internal event to the surrounding
process instance, using code like the following:

kcontext.getProcessinstance().signalEvent(type, eventData);

« External event: A process instance can be notified of an event from outside using code such as:

processinstance.signalEvent(type, eventData);

« External event using event correlation: Instead of notifying a process instance directly, it is
also possible to have the engine automatically determine which process instances might be

59

Chapter 5. Core Engine: Basics

interested in an event using event correlation, which is based on the event type. A process
instance that contains an event node listening to external events of some type is notified
whenever such an event occurs. To signal such an event to the process engine, write code
such as:

ksession.signalEvent(type, eventData);

Events could also be used to start a process. Whenever a Message Start Event defines an event
trigger of a specific type, a new process instance will be started every time that type of event is
signalled to the process engine.

5.8.5. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of O results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. This means that
you can specify the amount of days, hours, minutes, seconds and multiseconds (which is the
default if you don't specify anything). For example, the expression "1h" will wait one hour before
triggering the timer (again).

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

« A Timer Event may be added to the process flow. Its activation starts the timer, and when
it triggers, once or repeatedly, it activates the Timer node's successor. This means that the
outgoing connection of a timer with a positive period is triggered multiple times. Cancelling a
Timer node also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process as a boundary event. This is however currently
only possible by doing this in XML directly. We will be adding support for graphically specifying
this in the new BPMN2 editor.

5.8.6. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or
due to changing requirements. Actually, you cannot really update a process, you can only deploy
a new version of the process, the old process will still exist. That is because existing process
instances might still need that process definition. So the new process should have a different id,

60

Updating processes

though the name could be the same, and you can use the version parameter to show when a
process is updated (the version parameter is just a String and is not validated by the process
framework itself, so you can select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already
running process instances. There are various strategies one could consider for each running
instance:

» Proceed: The running process instance proceeds as normal, following the process (definition) as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the
updated process.

» Abort (and restart): The already running instance is aborted. If necessary, the process instance
can be restarted using the new process definition.

« Transfer: The process instance is migrated to the new process definition, meaning that - once it
has been migrated successfully - it will continue executing based on the updated process logic.

By default, jBPM uses the proceed approach, meaning that multiple versions of the same process
can be deployed, but existing process instances will simply continue executing based on the
process definition that was used when starting the process instance. Running process instances
could always be aborted as well of course, using the process management API. Process instance
migration is more difficult and is explained in the following paragraphs.

5.8.6.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some
later point in time. This includes all the data linked to this process instance (as variables), but also
the current state in the process diagram. For each node that is currently active, a node instance is
used to represent this. This node instance can also contain additional state linked to the execution
of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,
using id references) that represents the process logic that needs to be followed when executing
this process instance (this clear separation of definition and runtime state allows reuse of the
definition accross all process instances based on this process and minimizes runtime state). As
a result, updating a running process instance to a newer version so it used the new process logic
instead of the old one is simply a matter of changing the referenced process id from the old to
the new id.

However, this does not take into account that the state of the process instance (the variable
instances and the node instances) might need to be migrated as well. In cases where the process
is only extended and all existing wait states are kept, this is pretty straightforward, the runtime
state of the process instance does not need to change at all. However, it is also possible that a
more sofisticated mapping is necessary. For example, when an existing wait state is removed,
or split into multiple wait states, an existing process instance that is waiting in that state cannot

61

Chapter 5. Core Engine: Basics

simply be updated. Or when a new process variable is introduced, that variable might need to be
initiazed correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessinstanceUpgrader can be used to upgrade a workflow process instance to a
newer process instance. Of course, you need to provide the process instance and the new process
id. By default, jBPM will automatically map old node instances to new node instances with the
same id. But you can provide a mapping of the old (unique) node id to the new node id. The unique
node id is the node id, preceded by the node ids of its parents (with a colon inbetween), to allow
to uniquely identify a node when composite nodes are used (as a node id is only unique within its
node container. The new node id is simply the new node id in the node container (so no unique
node id here, simply the new node id). The following code snippet shows a simple example.

/Il create the session and start the process "com.sample.process"
KnowledgeBuilder kbuilder = ...

StatefulKnowledgeSession ksession = ...

Processlinstance processinstance = ksession.startProcess("com.sample.process");

/I add a new version of the process "com.sample.process2"
kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(..., ResourceType.BPMN2);
kbase.addKnowledgePackages(kbuilder.getkKnowledgePackages());

/I migrate process instance to new version
Map<String, Long> mapping = new HashMap<String, Long>();
Il top level node 2 is mapped to a new node with id 3
mapping.put("2", 3L);
/I node 2, which is part of composite node 5, is mapped to a new node with id 4
mapping.put("5.2", 4L);
WorkflowProcessInstanceUpgrader.upgradeProcessinstance(
ksession, processinstance.getld(),
"com.sample.process2", mapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for
specific situations. Be sure to first disconnect the process instance, change the state accordingly
and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader
does it.

62

Chapter 6.

Chapter 6. Core Engine: BPMN 2.0

6.1. Business Process Model and Notation (BPMN) 2.0
specification

The primary goal of BPMN is to provide a notation that is readily understandable by all business
users,

from the business analysts that create the initial drafts of the processes, to the technical
developers

responsible for implementing the technology that will perform those processes, and finally, to the
business people who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPMS5 allows you to execute processes defined using the BPMN 2.0 XML format. That means that
you can use all the different jBPM5 tooling to model, execute, manage and monitor your business
processes using the BPMN 2.0 format for specifying your executable business processes.
Actually, the full BPMN 2.0 specification also includes details on how to represent things like
choreographies and and collaboration. The jBPM project however focuses on that part of the
specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

» Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

 Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and actvities could also be nested (using different
types of sub-processes).

» Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPMS5 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be

63

Chapter 6. Core Engine: BPMN 2.0

used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional
elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:
» Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
< End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
« Non-interrupting Boundary Event (Escalation, Timer)
« Interrupting Boundary Event (Escalation, Error, Timer, Compensation)
» Activities
e Script Task
e Task
» Service Task
» User Task
* Business Rule Task
¢ Manual Task
» Send Task
* Receive Task
* Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
» Ad-Hoc Sub-Process
« Data-Object
* Gateways
 Diverging

* Exclusive

64

Business Process Model and Notation (BPMN) 2.0 specification

* Inclusive
» Parallel
» Event-Based
e Converging
» Exclusive
o Parallel
e Lanes
» Data
« Java type language
* Process properties
» Embedded Sub-Process properties
* Activity properties
» Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

S

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"
targetNamespace="http://www.example.org/MinimalExample"
typeLanguage="http://www.java.com/javaTypes"
expressionLanguage="http://www.mvel.org/2.0"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"

xs:schemalocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

65

Chapter 6. Core Engine: BPMN 2.0

xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
xmlns:tns="http://www.jboss.org/drools">

<processprocessType="Private"isExecutable="true"id="com.sample.HelloWorld"name="Hello
World" >

<!-- nodes -->

<startEvent id="_1" name="StartProcess" />

<scriptTask id="_2" name="Hello" >
<script>System.out.printin("Hello World");</script>

</scriptTask>

<endEvent id="_3" name="EndProcess" >

<terminateEventDefinition/>
</endEvent>

<l-- connections -->
<sequenceFlow id="_1- 2" sourceRef="_1"targetRef="_ 2" />
<sequenceFlow id="_2- 3" sourceRef="_2"targetRef="_3" />

</process>

<bpmndi:BPMNDiagram>
<bpmndi:BPMNPIlane bpmnElement="Minimal" >
<bpmndi:BPMNShape bpmnElement="_1" >
<dc:Bounds x="15" y="91" width="48" height="48" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="_2" >
<dc:Bounds x="95" y="88" width="83" height="48" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="_3" >
<dc:Bounds x="258" y="86" width="48" height="48" />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge bpmnElement="_1- 2" >
<di:waypoint x="39" y="115" />
<di:waypoint x="75" y="46" />
<di:waypoint x="136" y="112" />
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="_2- 3" >
<di:waypoint x="136" y="112" />
<di:waypoint x="240" y="240" />
<di:waypoint x="282" y="110" />
</bpmndi:BPMNEdge>
</bpmndi:BPMNPIlane>
</bpmndi:BPMNDiagram>

66

Business Process Model and Notation (BPMN) 2.0 specification

</definitions>

To create your own process using BPMN 2.0 format, you can

» Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,
make sure you select Drools 5.1 code compatibility. This will create a new process using the
BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

» The Designer is an open-source web-based editor that supports the BPMN 2.0 format. We have
embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the
Designer (either standalone or integrated) to create / edit BPMN 2.0 processes and then export
them to BPMN 2.0 format or save them into Guvnor and import them so they can be executed.

* A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification. It
is currently still under development and only supports a limited humber of constructs and
attributes, but can already be used to create simple BPMN2 processes. To create a new BPMN2
file for this editor, use the wizard (under Examples) to create a new BPMNZ2 file, which will
generate a .bpmn2 file and a .prd file containing the graphical information. Double-click the .prd
file to edit the file using the graphical editor. For more detail, check out the chapter on the new
BPMNZ2 Eclipse plugin.

* You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static KnowledgeBase createKnowledgeBase() throws Exception {
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource('sample.bpmn2"), ResourceType.BPMNZ2);
return kbuilder.newKnowledgeBase();

}

... and how to execute this process ...

KnowledgeBase kbase = createKnowledgeBase();
StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

67

Chapter 6. Core Engine: BPMN 2.0

ksession.startProcess("com.sample.HelloWorld");

For more detail, check out the chapter on the API and the basics.

6.2. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and
other elements).

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These
test processes can also serve as simple examples: they don't really represent an entire real life
business processes but can definitely be used to show how specific features can be used. For
example, the following figures shows the flow chart of a few of those examples. The entire list can
be found in the src/main/resources folder for the jopm-bpmn2 module like here [http://github.com/
krisv/jbpm/tree/master/jppm-bpmn2/src/test/resources/].

6.3. Supported elements / attributes

Table 6.1. Keywords

Extension
elements

Extension
attributes

Supported

Supported

attributes elements

definitions rootElement
BPMNDiagram
process processType property laneSet packageName import global
isExecutable flowElement adHoc version
name id
sequenceFlow sourceRef conditionExpressiopriority
targetRef bendpoints
isimmediate
name id
interface name id operation
operation name id inMessageRef
laneSet lane
lane name id flowNodeRef
import* name
global* identifier type
Events
startEvent name id dataOutput X y width height
dataOutputAssociation

68

http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Supported elements / attributes

Element

Supported

attributes

Extension
attributes

Supported
elements

Extension
elements

endEvent

intermediateCatch

name id

Eeme id

intermediate ThrowBeen¢ id

boundaryEvent

terminateEventDe
cancelEventDefini

compensateEvent

conditionalEventD

cancelActivity
attachedToRef
name id

finition
tion

DaftiitigRef

efinition

errorEventDefinitiorerrorRef

error

errorCode id

escalationEventDefasitialationRef

escalation

escalationCode
id

messageEventDefinitezsageRef

message

signalEventDefinit

itemRef id

aignalRef

timerEventDefinition

Activities

task

name id

outputSet
eventDefinition

datalnput X y width height
datalnputAssociation
inputSet

eventDefinition

dataOutput X y width height
dataOutputAssociation
outputSet

eventDefinition

datalnput X y width height
datalnputAssociation
inputSet

eventDefinition

eventDefinition X y width height

documentation
extensionElements

condition

timeCycle
timeDuration

ioSpecification taskName x vy
datalnputAssociatiomidth height
dataOutputAssociation

69

Chapter 6. Core E

ngine: BPMN 2.0

Element

Supported

attributes

Extension
attributes

Supported
elements

Extension
elements

scriptTask

script

userTask

potentialOwner

businessRuleTask

manualTask

sendTask

receiveTask

serviceTask

subProcess

adHocSubProcess

callActivity

multilnstanceLoop

onEntry-script*

onExit-script*

Gateways

scriptFormat
name id

name id

resourceAssignmentExpression

name id

name id

messageRef
name id

messageRef
name id

operationRef

name id

name id

5 cancelRemainingl
name id

calledElement
name id

Characteristics

scriptFormat

scriptFormat

script X y width height
text[mixed

content]

ioSpecification X y width height

datalnputAssociation
dataOutputAssociation
resourceRole

resourceAssignmentExpression

expression
X y width height
ruleFlowGroup
X y width height
ioSpecification X y width height

datalnputAssociation
ioSpecification X y width height
dataOutputAssociation
ioSpecification X y width height
datalnputAssociation
dataOutputAssociation

flowElement

property
loopCharacteristics

X y width height

nstanpegionConditior y width height
flowElement

property

ioSpecification X y width height

dataOutputAssociatimtependent

loopDatalnputRef
inputDataltem

script

script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script

datalnputAssociatiomaitForCompletion onExit-script

70

Supported elements / attributes

Element

parallelGateway

eventBasedGatew

exclusiveGateway

inclusiveGateway

Data

property

dataObject

itemDefinition

ioSpecification

datalnput

datalnputAssociat

dataOutput
dataOutputAssoci

inputSet
outputSet
assignment

formalExpression

BPMNDI

Supported

attributes

gatewayDirection
name id

ayatewayDirection
name id

default
gatewayDirection
name id

default
gatewayDirection
name id

itemSubjectRef
id
itemSubjectRef
id

structureRef id

name id

name id

ation

language

Extension
attributes

Supported
elements

X y width height

X y width height

X y width height

X y width height

datalnput
dataOutput
inputSet
outputSet

sourceRef
targetRef
assignment

sourceRef
targetRef
assignment

datalnputRefs
dataOutputRefs
from to

text[mixed
content]

71

Chapter 6. Core Engine: BPMN 2.0

Element

Supported
attributes

Extension
attributes

Supported
elements

Extension

elements

BPMNDiagram
BPMNPlane

BPMNShape
BPMNEdge
Bounds

waypoint

bpmnElement

bpmnElement
bpmnElement
X y width height
Xy

BPMNPIlane

BPMNEdge
BPMNShape

Bounds

waypoint

72

Chapter 7.

Chapter 7. Core Engine:
Persistence and transactions

jBPM allows the persistent storage of certain information, i.e., the process runtime state, the history
information, etc.

7.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution
of the process in that specific context. For example, when executing a process that specifies
how to process a sales order, one process instance is created for each sales request. The
process instance represents the current execution state in that specific context, and contains all
the information related to that process instance. Note that it only contains the minimal runtime
state that is needed to continue the execution of that process instance at some later time, but it
does not include information about the history of that process instance if that information is no
longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

7.1.1. Binary Persistence

jBPM provides a binary persistence mechanism that allows you to save the state of a process
instance as a bhinary dataset. This way, the state of all running process instances can always be
stored in a persistent location. Note that these binary datasets usually are relatively small, as they
only contain the minimal execution state of the process instance. For a simple process instance,
this usually contains one or a few node instances, i.e., any node that is currently executing, and,
possibly, some variable values.

7.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the
process engine. Whenever a process instance is executing, after its start or continuation from a
wait state, the engine proceeds until no more actions can be performed. At that point, the engine
has reached the next safe state, and the state of the process instance and all other process
instances that might have been affected is stored persistently.

7.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. It is, however, pretty straightforward
to configure the engine to do this, by adding a configuration file and the necessary dependencies.

73

Chapter 7. Core Engine: Persi...

Persistence itself is based on the Java Persistence APl (JPA) and can thus work with several
persistence mechanisms. We are using Hibernate by default, but feel free to employ alternatives.
A H2 database is used underneath to store the data, but you might choose your own alternative
for this, too.

First of all, you need to add the necessary dependencies to your classpath. If you're using the
Eclipse IDE, you can do that by adding the jar files to your jBPM runtime directory, or by manually
adding these dependencies to your project. First of all, you need the jar file j bpm per si st ence-
j pa.jar, as that contains code for saving the runtime state whenever necessary. Next, you
also need various other dependencies, depending on the persistence solution and database you
are using. For the default combination with Hibernate as the JPA persistence provider, the H2
database and Bitronix for JTA-based transaction management, the following list of additional
dependencies is needed:

1. jbpm-persistence-jpa (org.jopm)

2. drools-persistence-jpa (org.drools)

3. persistence-api (javax.persistence)

4. hibernate-entitymanager (org.hibernate)

5. hibernate-annotations (org.hibernate)

6. hibernate-commons-annotations (org.hibernate)
7. hibernate-core (org.hibernate)

8. dom4j (dom4))

9. jta (javax.transaction)

10btm (org.codehaus.btm)

11javassist (javassist)

12slf4j-api (org.slf4))

13slf4j-jdk14 (org.slf4))

14h2 (com.h2database)
15commons-collections (commons-collections)

Next, you need to configure the jBPM engine to save the state of the engine whenever
necessary. The easiest way to do this is to use JPAKnowl edgeSer vi ce to create your knowledge
session, based on a knowledge base, a knowledge session configuration (if necessary) and an
environment. The environment needs to contain a reference to your Entity Manager Factory. For
example:

Il create the entity manager factory and register it in the environment

74

Configuring Persistence

EntityManagerFactory emf =

Persistence.createEntityManagerFactory("org.jopm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

/I create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =

JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);
int sessionld = ksession.getld();

/[invoke methods on your method here
ksession.startProcess("MyProcess");
ksession.dispose();

You can also yse the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

/Il recreate the session from database using the sessionld
ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionld, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process
instance at some later point. This means, for example, that it does not contain information about
already executed nodes if that information is no longer relevant, or that process instances that
have been completed or aborted are removed from the database. If you want to search for history-
related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configures JPA to use Hibernate
and the H2 database (or your preference), called persi st ence. xn in the META-INF directory,
as shown below. For more details on how to change this for your own configuration, we refer to
the JPA and Hibernate documentation for more information.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<persistence
version="1.0"
xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/persistence">

75

Chapter 7. Core Engine: Persi...

<persistence-unit name="org.jbpm.persistence.jpa">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>jdbc/processinstanceDS</jta-data-source>
<class>org.drools.persistence.info.SessionInfo</class>
<class>org.jbpm.persistence.processinstance.ProcessInstancelnfo</class>
<class>org.drools.persistence.info.WorkltemInfo</class>

<properties>
<property name="hibernate.dialect” value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="update"/>
<property name="hibernate.show_sql" value="true"/>
<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
</properties>
</persistence-unit>
</persistence>

This configuration file refers to a data source called "jdbc/processinstanceDS". The following Java
fragment could be used to set up this data source, where we are using the file-based H2 database.

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/testDS1");

ds.setClassName("org.h2.jdbcx.JdbcDataSource™);

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password”, "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:file:/NotBackedUp/data/process-instance-db");

ds.init();

If you're deploying to an application server, you can usually create a datasource by dropping a
configuration file in the deploy directory, for example:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>jdbc/testDS1</|ndi-name>
<connection-url>jdbc:h2:file:/NotBackedUp/data/process-instance-db</connection-url>
<driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>
<user-name>sa</user-name>

76

Transactions

<password>sasa</password>
</local-tx-datasource>
</datasources>

7.1.4. Transactions

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this
behavior is acceptable, you don't need to do anything else. You can, however, also specify the
transaction boundaries yourself. This allows you, for example, to combine multiple commands

into one transaction.

You need to register a transaction manager at the environment before using user-defined
transactions. The following sample code uses the Bitronix transaction manager. Next, we use the

Java Transaction API (JTA) to specify transaction boundaries, as shown below:

/Il create the entity manager factory and register it in the environment
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("org.jopm.persistence.jpa™);
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName. TRANSACTION_MANAGER,
TransactionManagerServices.getTransactionManager());

/I create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

/[start the transaction
UserTransaction ut =

(UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
ut.begin();

/I perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");

/I commit the transaction
ut.commit();

77

Chapter 7. Core Engine: Persi...

7.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a
file system during development. However, whenever you want to make your knowledge accessible
to one or more engines in production, we recommend using a knowledge repository that (logically)
centralizes your knowledge in one or more knowledge repositories.

Guvnor is a Drools sub-project that provides exactly that. It consists of a repository for storing
different kinds of knowledge, not only process definitions but also rules, object models, etc. It
allows easy retrieval of this knowledge using WebDAYV or by employing a knowledge agent that
automatically downloads the information from Guvnor when creating a knowledge base, and
provides a web application that allows business users to view and possibly update the information
in the knowledge repository. Check out the Drools Guvnor documentation for more information
on how to do this.

7.3. History Log

In many cases it is useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards, for example, to verify what actions
have been executed for a particular process instance, or to monitor and analyze the efficiency
of a particular process. Storing history information in the runtime database is usually not a good
idea, as this would result in ever-growing runtime data, and monitoring and analysis queries
might influence the performance of your runtime engine. That is why history information about the
execution of process instances is stored separately.

This history log of execution information is created based on the events generated by the process
engine during execution. The jBPM runtime engine provides a generic mechanism to listen to
different kinds of events. The necessary information can easily be extracted from these events
and made persistent, for example in a database. Filters can be used to only store the information
you find relevant.

7.3.1. Storing Process Events in a Database

The jbpm-bam module contains an event listener that stores process-related information in a
database using JPA or Hibernate directly. The database contains two tables, one for process
instance information and one for node instance information (see the figure below):

1. Processlinstancelog: This lists the process instance id, the process (definition) id, the start date
and (if applicable) the end date of all process instances.

2. NodelnstancelLog: This table contains more detailed information about which nodes were
actually executed inside each process instance. Whenever a node instance is entered from
one of its incomming connections or is exited through one of its outgoing connections, that
information is stored in this table. For this, it stores the process instance id and the process id
of the process instance it is being executed in, and the node instance id and the corresponding

78

Storing Process Events in a Database

node id (in the process definition) of the node instance in question. Finally, the type of event (0
= enter, 1 = exit) and the date of the event is stored as well.

D

PROCESSINSTANCEID

PROCESSID | START_DATE

TYPE|NODEINSTANCEID

NODEID|

PROCESSINSTANCEID

PROCESSID

LOG_DATE

To log process history information in a database like this, you need to register the logger on your
session (or working memory) like this:

StatefulKnowledgeSession ksession = ...;
JPAWorkingMemoryDbLogger logger = new JPAWorkingMemoryDbLogger(ksession);

/I invoke methods one your session here

logger.dispose();

Note that this logger is like any other audit logger, which means that you can add one or more
filters by calling the method addFi | t er to ensure that only relevant information is stored in the
database. Only information accepted by all your filters will appear in the database. You should
dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstanceLog, NodelnstanceLog and
VariablelnstancelLog), as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence
version="1.0"
xsi:schemal ocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1 0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="org.jopm.persistence.jpa">

79

Chapter 7. Core Engine: Persi...

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>jdbc/processinstanceDS</jta-data-source>
<class>org.drools.persistence.info.SessionInfo</class>
<class>org.jbpm.persistence.processinstance.Processinstancelnfo</class>
<class>org.drools.persistence.info.WorkltemInfo</class>
<class>org.jbpm.process.audit.ProcessinstanceLog</class>
<class>org.jbpm.process.audit.NodelnstanceLog</class>
<class>org.jbpm.process.audit.VariablelnstanceLog</class>

<properties>
<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="update"/>
<property name="hibernate.show_sql" value="true"/>
<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
</properties>
</persistence-unit>
</persistence>

All this information can easily be queried and used in a lot of different use cases, ranging
from creating a history log for one specific process instance to analyzing the performance of all
instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

80

Chapter 8.

Chapter 8. Core Engine: Examples

8.1. JBPM Examples

There is a separate jBPM examples module that contains a set of example processes that show
how to use the jBPM engine and the behavior or the different process constructs as defined by
the BPMN 2.0 specification.

To start using these, simply unzip the file somewhere and open up your Eclipse development
environment with all required plugins installed. If you don't know how to do this yet, take a look
at the installer chapter, where you can learn how to create a demo environment, including a fully
configured Eclipse IDE, using the jBPM installer. You can also take a look at the Eclipse plugin
chapter if you want to learn how to manually install and configure this.

To take a look at the examples, simply import the downloaded examples project into Eclipse (File
-> Import ... -> Under General: Existing Projects into Workspace), browse to the folder where you
unzipped the jBPM examples artefact and click finish. This should import the examples project in
your workspace, so you can start looking at the processes and executing the classes.

8.2. Examples

The examples module contains a number of examples, from basic to advanced:

* Looping: An example that shows how you can use exclusive gateways to loop a part your
process until the loop condition is no longer valid. The process takes the 'count’ (the number of
times the loop needs to be repeated) as input and simply prints out a statement during every
loop until the process is completed.

» Multilnstance: This example shows how to execute a sub-process for each element in a
collection. The process takes a collection of names as input and creates a review task for a
sales representative for each person in that list. The process completes if the task has been
executed for every person on that list.

« Evaluation: A performance evaluation process that shows how to integrate human actors in the
process. While the basic example simply shows tasks assigned to predefined users, the more
advanced version shows data passing from the process to the task and back, group assignment,
task delegation, etc.

¢ HumanTask: An advanced example when using human tasks. It shows how to do data passing
between tasks, task forms, swimlanes, etc. This example can also be deployed to the Guvnor
repository (including all the forms etc.) and executed on the jBPM console out-of-the-box.

* Request: An advanced example that shows various ways in which processes and rules can
work together, like a rule task for invoking validation rules, rules as expression language for

81

Chapter 8. Core Engine: Examples

constraints inside the process, rules for exception handling, event processing for monitoring,
ad hoc rules for more flexible processes, etc.

8.3. Unit tests

The examples project contains a large number of simple BPMN2 processes for each of the
different node types that are supported by jBPM5. In the junit folder under src/main/resources
you can for example find process examples for constructs like a conditional start event, exclusive
diverging gateways using default connections, etc. So if you're looking for a simple working
example that shows the behavior of one specific element, you can probably find one here. The
folder already contains well over 50 sample processes. Simply double-click them to open them
in the graphical editor.

Each of those processes is also accompanied by a small junit test that tests the implementation
of that construct. The org.jopm.examples.junit. BPMN2JUnitTests class contains one test for each
of the processes in the junit resources folder. You can execute these tests yourself by selecting
the method you want to execute (or the entire class) and right-click and then Run as -> JUnit test.

Check out the chapter on testing and debugging if you want to learn more how to debug these
example processes.

82

Chapter 9.

Chapter 9. Eclipse BPMN 2.0 Plugin

We are working on a new BPMN 2.0 Eclipse editor that allows you to specify business processes,
choreographies, etc. using the BPMN 2.0 XML syntax (including BPMNDI for the graphical
information). The editor itself is based on the Eclipse Graphiti framework and the Eclipse BPMN
2.0 model.

Features:

« It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,
annotations and all the BPMN2 node types).

« Support for the few custom attributes that jBPM5 introduces.

« Allows you to configure which elements and attributes you want use when modeling processes
(so we can limit the constructs for example to the subset currently supported by jBPM5, which
is a profile we will support by default, or even more if you like).

Many thanks go out to the people at Codehoop that did a great job in creating a first version of
this editor.

9.1. Installation

Requirements

» Eclipse 3.6 or newer
» Graphiti framework, using update site http://download.eclipse.org/graphiti/updates/0.7.1/

To install, startup Eclipse and install Graphiti from the update site above (from menu Help -> Install
new software and then add the update site in question and select and install the Graphiti runtime)
and then use the following update site http://codehoop.com/bpmn2 to install the latest version of
the BPMN 2.0 editor in Eclipse. A screencast that shows all this in action can be found here [http://
vimeo.com/22022128].

Sources can be found here: https://github.com/droolsjbpm/bpmn2-eclipse-editor

9.2. Creating your BPMN 2.0 processes

You can use a simple wizard to create a new BPMN 2.0 process (under File -> New - Other ...
select BPMN - BPMN2 Diagram).

A video that shows some sample BPMN 2.0 processes from the examples that are part of the
BPMN 2.0 specification:

83

http://download.eclipse.org/graphiti/updates/0.7.1/
http://codehoop.com/bpmn2
http://vimeo.com/22022128
http://vimeo.com/22022128
http://vimeo.com/22022128
https://github.com/droolsjbpm/bpmn2-eclipse-editor

Chapter 9. Eclipse BPMN 2.0 P...

gt WView Mawigeie Segrch Project Bun Window Help
- [& RN RN - NN R RO AR R ST R

| 2| Be ok o | CRR B M [Ey R e -
chage Evplarer 5E el

ER|lw

| Cumiiy
2
W IFE Sxmhem Libesy [laea5E-100]
i 2019-06-03
= Coimeation
= Diagram Inbsrchange

= ehdad Vioting
= Hardware Atader Armand A0 e iatines!
N RERR M S 19 ebeiEd RETERRTS (

= Muodek & Disgrameg
= Mihr# Prigs THH=y
[Mabed Prize Prscesss b
[Mabd Price Prosess D
P Qs Fulldbment
[E] Procunsment Proceses with Em
[Pracunsment Processes wiih Em
= Pixza
2 Trawed Baodineg
E Fzabpmnd

P ooy i I corwy rw o o v Pl i i e

Figure 9.1.
[http://vimeo.com/22021856]

Here are some screenshots of the editor in action.

84

http://vimeo.com/22021856

Creating your BPMN 2.0 processes

i

User Task |

i)

User Task

©

Y

Service Task

End

SubProcess

End

Figure 9.2.

85

Chapter 9. Eclipse BPMN 2.0 P...

id RD-ecTg_EeCAlthQz68wROQ

name Task Name

completionQuantity 1

isForCompensation [|

startQuantity 1

Figure 9.3.

86

Creating your BPMN 2.0 processes

emreil Histach ¥ pagas 35

it & Odi

a=
offi

i

o3

sl

*} g ol

el

off o, ol
o siid ot

=

il

J d

i

i
|

Figure 9.4.

87

rwrrers Froenem vt Ergr M bng - Son il Hsdech 3 papan 4 rcifens Mansgerent - ool chor |

e

I T

Chapter 9. Eclipse BPMN 2.0 P...

=

| Ry Vs | L it i Pl

oy Aarmrei Hasagre T

= Al el et

il vl s spw Quud

el el g T - Emda P

ad

Hame |G groh ko descrpior

e Fepe Mara

T

[y

Figure 9.5.

9.3. Filtering elements and attributes

You can define which of the BPMN 2.0 elements and attributes you want to use when describing
your BPMN 2.0 diagrams. Since the BPMN 2.0 specification is rather complex and includes a very
large set of different node types and attributes for each of those nodes, you may not want to use
all of these elements and attributes in your project. Elements and attributes can be enablement /
disabled at the project level using the BPMN2 preferences category (right-click your project folder
and select Properties ... which will open up a new dialog). The BPMN2 preferences contain an
entry for all supported elements and attributes (per node type) and you can enable or disable each
of those by (un)checking the box for each of those elements and attributes.

88

Filtering elements and attributes

type filter text ﬂ] BPMN2 . v -

» Resource

Enabled tools and attributes

Project Facets name
Project References completionQ uantity
Run/Debug Settings isForC ompensation
Server - startQuantity
. Task Repository extensionvalues
3 LE:I:::?:H docurnentation
WikiTesxt auditing
rrionitoring
oS pechication
properties
datalnputAssociations
datalutputissocations
resources
loopCharacteristics
AdHocSubProcess
Assignment

Association
BoundaryEwent
BusinassRuleTask
CallableElermarnt

C all&ctivity
CallChoreography
CancelEventD efinition
C ategory
Choreograghy
Chnrengrﬁﬂask
Collaboration

b CompensateEventDefinition 4

| Import Profile ... | | Export Profile ...

AR A - S A -
ENRENRCNRCNNCNNENRENRENRENRENRENRENREN

Figure 9.6. | Restore Defaults | | Apply

@ | Cancel | | o] 4

90

ik
i@z Somarnoaad
apanded SubarecEss

- lizeddd Evient
1
vent-Subproceas
2 T

Taln-ohed Eechigecd (XOR

1y

 yer-DEed Gaie v iy
Akl GEENEY
nchisiie Galeway

T bl iy

rdanes
facts

s Objects
rt Evenls

AT

0] A geadgs vl

Chapter 10.

Chapter 10. Designer

The designer is a web-based editor for viewing, creating and editing your business processes. It
is very similar to the Eclipse-based designer and allows the creation of BPMN2 processes in a
web context. There is a palette on the left and a properties panel on the right (make sure to click

the arrows on the side of the canvas to make them visible if you cannot see them).

= o ‘& ""i[ﬁj""

.ﬂ.
PM Evaluatygn
.-'n "\l
— ', s
I.rd_h" Celf Evaluation
- —
Iy}
HF Evaluatson
e i
Figure 10.1.

The designer targets the following scenarios:

Properties (BPFHMN- Dagram)
ligme W

o {Mtem used
Hame

CezeZisrmnbmign

= More Properties

» View existing BPMN2 processes: The designer allows you to open existing BPMN2 processes
(for example created using the BPMN2 Eclipse editor or any other tooling that exports BPMN

2.0 XML) in a web context.

» Prototyping new BPMN2 processes: A user can create a new BPMN2 process in the Designer
and use the editing capabilities (drag and drop and filling in properties in the properties panel) to

91

Chapter 10. Designer

fill in initial details. This for example allows business users to create a first prototype version of
the business process that they want to create. This process could then for example be imported
into Eclipse to add all the details to make it fully executable.

At this point, the designer does not yet support full roundtripping of your BPMN2 processes (due
to limitations in the parser and the editor). We recommend you use the Eclipse plugin to add all
the execution details (you can easily import a process from Guvnor there). The results can then
be committed back to Guvnor so that the business user can see the resulting process. We are
working hard to add full roundtripping support in the next version.

10.1. Installation

If you are using the jBPM installer, this should automatically download and install the latest version
of the designer for you. To manually install the designer, simply drop the designer war into your
application server deploy folder. This version that should deploy without any changes on JBoss AS
5.1.0. Note: If you want to deploy on other (versions of an) application server, you might have to
adjust the dependencies inside the war based on the default libraries provided by your application
server. The latest version of the designer can be found here [http://people.redhat.com/tsurdilo/
oryx/1.0.0.051/].

To open up the designer, open up Guvnor (e.g. http://localhost:8080/drools-guvnor [http://
localhost:8080/drools-guvnor]) and either open up an existing BPMN2 process or create a new
one (under the "Knowledge Bases category on the left, select create new BPMN2 process”). This
will open up the designer for the selected process in the center panel. You can use the palette on
the left to drag and drop node types and the properties tab on the right to fill in the details (if either
of these panels is not visible, click the arrow on the side of the editor to make them move forward).

The designer can also be opened stand-alone by using the following link: http://localhost:8080/
designer/editor?profile=jbpm&uuid=123456 (where 123456 should be replaced by the id of the
process on guvnor). Note that running designer in this way allows you to only view existing
processes, and not save any edits nor create new ones. Information on how to integrate designer
into your own applications can be found here: http://blog.athico.com/2011/04/using-oryx-designer-
and-guvnor-in-your.html.

10.2. Source code

The designer is based on the Oryx codebase. Oryx is a web-based editor for modeling different
types of business processes hosted at Google Code. Oryx is also backed by Signavio, who
provides a professionally maintained version.

jBPM integrates with the BPMN2 process designer based on an Oryx branch maintained by Intalio
and JBoss. The goal of this branch is to apply upstream patches to the Oryx project where possible
and it's latest version can be downloaded from github.

https://github.com/intalio/process-designer/

92

http://people.redhat.com/tsurdilo/oryx/1.0.0.051/
http://people.redhat.com/tsurdilo/oryx/1.0.0.051/
http://people.redhat.com/tsurdilo/oryx/1.0.0.051/
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
https://github.com/intalio/process-designer/

Chapter 11.

Chapter 11. Console

Business processes can be managed through a web console. This includes features like managing
your process instances (starting/stopping/inspecting), inspecting your (human) task list and
executing those tasks, and generating reports.

The jBPM console consists of two wars that must be deployed in your application server
and contains the necessary libraries, the actual application, etc. One jar contains the server
application, the other one the client.

11.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,
install and configure all the necessary components to get the console running, including an in-
memory database, a human task service, etc. Check out the chapter on the installer for more
information.

The console is a separate sub-project that is shared across different projects, like for example
jBPM and RiftSaw. The source code of the version that jBPMS5 is currently using can be found on
SVN here [http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/]. The latest
version of the console has been moved to Git and can be found here [https://github.com/bpmc].

11.2. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application
server is configured): http://localhost:8080/jbpm-console

A login screen should pop up, asking for your user name and password. By default, the following
username/password configurations are supported: krisv/krisv, admin/admin, john/john and mary/
mary.

jBPM Console >

Lsername: |krisw

Password: |==e==»

Subrmit

Wersion: 2.1

After filling these in, the process management workbench should be opened, as shown in the
screenshot below. On the right you will see several tabs, related to process instance management,
human task lists and reporting, as explained in the following sections.

93

http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
https://github.com/bpmc
https://github.com/bpmc
http://localhost:8080/jbpm-console

Chapter 11. Console

rsonal Tasks

h_] "ufiew| Release |

letails

S5

ee:
ption:

94

Managing process instances

11.2.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the
installed knowledge base, start new process instances and manage running process instances
(which includes inspecting their state and data).

11.2.1.1. Inspecting process definitions

When you open the process definition list, all known process definitions are shown. You can then
either inspect process instances for one specific process or start a new process instance.

95

Chapter 11. Console

ocess Overview

-

J All ot Start | Signal | Delete | Terminate |

T T

Execution details

Process:
Instance 10
Key:

State

Start Date:

»_J Activity-

96

Managing process instances

11.2.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in
the process definition list. Click on the "Start" button in the instances table to start a new instance of
that specific process. When a form is associated with this particular process (to ask for additional
information before starting the process), this form will be shown. After completing this form, the
process will be started with the provided information.

97

Chapter 11. Console

ocess Overview

J All - Start | signal | Delete | Terminate |

T

New Process Instance: com.sample.evaluation

Start Performance Evaluation

Please fill in your username: |krisv |

| Complete |

98

Managing process instances

11.2.1.3. Managing process instances

The process instances table shows all running instances of that specific process definition. Select
a process instance to show the details of that specific process instance.

99

Chapter 11. Console

{‘é} Process Overview

Refresh | All [= Start | Signal | Del=te | Terminate |

Execution details

Process: Evaluation

Instance ID: 1

Key:

State RUNMNING

Stant Date: 2010-11-22 16:46:59

M ﬂ Activity:

100

Managing process instances

11.2.1.4. Inspecting process instance state

You can inspect the state of a specific process instance by clicking on the "Diagram” button. This
will show you the process flow chart, where a red traingle is shown at each node that is currently
active (like for example a human task node waiting for the task to be completed or a join node
waiting for more incoming connections before continuing). [Note that multiple instances of one
node could be executing simultaneously. They will still be shown using only one red triangle.]

101

Chapter 11. Console

All - Start | Signal | Delete | Terminate |

| v

Process Instance Activity

Instance: 1

HR Evaluation

N
O % Self Evaluation @
\—{ % PM Evaluation]—

[M

Managing process instances

11.2.1.5. Inspecting process instance variables

You can inspect the (top-level) variables of a specific process instance by clicking on the
"Instance Data" button. This will show you how each variable defined in the process maps to it's

corresponding value for that specific process instance.

103

Chapter 11. Console

All ot Start | Signal | Delete | Terminate |

v

e e lawe

tance Data: 1

®sstring java.lang.string

Human task lists

11.2.2. Human task lists

The task management section allows a user to see his/her current task list. The group task list
shows all the tasks that are not yet assigned to one specific user but that the currently logged in
user could claim. The personal task list shows all tasks that are assigned to the currently logged in
user. To execute a task, select it in your personal task list and select "View". If a form is associated
with the selected task (for example to ask for additional information), this form will be shown. After
completing the form, the task will also be completed.

105

Chapter 11. Console

Task Mame

nce Evaluation

evaluation

1 self-evalutation.

following evaluation form:
perfDI"IIlElIlEE: | Outstanding =

pply:

iative

ange
lication skills

Reporting

11.2.3. Reporting

The reporting section allows you to view reports about the execution of processes. This includes
an overall report showing an overview of all processes, as shown below.

107

Chapter 11. Console

This report doesn't require any paramters.

Business Activity Monitori

Instances / Hour

I comsample evaluation

Reporting

A report regarding one specific process instance can also be generated.

109

Chapter 11. Console

Please enter a process definition id
P com.sampl

Business Activity Monitori
Process com.sample.evaluatiol

com.sample.evaluation
1
1

1

ncess Instances

T corsample evaluation

Adding new process / task forms

jBPM provides some sample reports that could be used to visualize some generic execution
characteristics like the number of active process instances per process etc. But custom reports
could be generated to show the information your company thinks is important, by replacing the
report templates in the report directory.

11.3. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker
templates to dynamically create forms. To create a form for a specific process definition, create
a freemarker template with the name {processld}.ftl. The template itself should use HTML code
to model the form. For example, the form to start the evaluation process shown above is defined
in the com.sample.evaluation.ftl file:

<html>

<body>

<h2>Start Performance Evaluation</h2>

<hr>

<form action="complete" method="POST" enctype="multipart/form-data">
Please fill in your username: <input type="text" name="employee" /></BR>
<input type="submit" value="Complete">

</form>

</body>

</html|>

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can
be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The
form has access to a "task” parameter that represents the current human task, so it allows you
to dynamically adjust the task form based on the task input. The task parameter is a Task model
object as defined in the jppm-human-task module. This for example allows you to customize the
task form based on the description or input data related to that task. For example, the evaluation
form shown earlier uses the task parameter to access the description of the task and show that
in the task form:

<html>

<body>

<h2>Employee evaluation</h2>

<hr>

${task.descriptions[0].text}

Please fill in the following evaluation form:

<form action="complete" method="POST" enctype="multipart/form-data">

111

Chapter 11. Console

Rate the overall performance: <select name="performance">

<option value="outstanding">Outstanding</option>

<option value="exceeding">Exceeding expectations</option>

<option value="acceptable">Acceptable</option>

<option value="below">Below average</option>

</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good communication
skills

<input type="submit" value="Complete">

</form>

</body>

</html>

Data that is provided by the user when filling in the task form will be added as parameters
when completing the task. For example, when completing the task above, the Map of

outcome parameters will include result variables called "performance”, "initiative", "change" and
"communication”. The result parameters can be accessed in the related process by mapping these
parameters to process variables.

Forms should be included in the joppm-gwt-form.jar in the server war.

11.4. REST interface

The console also offers a REST interface for the functionality it exposes. This for example allows
easy integration with the process engine for features like starting process instances, retrieving
task lists, etc.

The list URLS that the REST interface exposes can be inspected if you navigate to the following
URL (after installing and starting the console):

http://localhost:8080/gwt-console-server/rs/server/resources
For example, this allows you to close a task using
/gwt-console-server/rs/task/{taskld}/close

or starting a new process instances using

/gwt-console-server/rs/process/definition/{id}/new_instance

112

http://localhost:8080/gwt-console-server/rs/server/resources

Chapter 12.

Chapter 12. Human Tasks

An important aspect of work flow and BPM is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed with
the interaction of human actors. jBPM supports the use of human tasks inside processes using
a special user task node that will represent this interaction. This node allows process designers
to define the type of task, the actor(s), the data associated with the task, etc. We also have
implemented a task service that can be used to manage these user tasks. Users are however
open to integrate any other solution if they want to, as this is fully pluggable.

To start using human tasks inside your processes, you first need to (1) include user task nodes
inside your process, (2) integrate a task management component of your choice (e.g. the WS-HT
implementation provided by us) and (3) have end users interact with the human task management
component using some kind of user interface. These elements will be discussed in more detail
in the next sections.

12.1. Human tasks inside processes

Q —.Eﬁ u;:ir Taslc:ii—- ©

jBPM supports the use of human tasks inside processes using a special user task node (as shown
in the figure above). A user task node represents an atomic task that needs to be executed by
a human actor. Although jBPM has a special user task node for including human tasks inside a
process, human tasks are simply considered as any other kind of external service that needs to
be invoked and are therefore simply implemented as a special kind of work item. The only thing
that is special about the user task node is that we have added support for swimlanes, making it
easier to assign tasks to users (see below). A user task node contains the following properties:

« Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.

» TaskName: The name of the human task.

« Priority: An integer indicating the priority of the human task.

+ Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

» Skippable: Specifies whether the human task can be skipped (i.e. the actor decides not to
execute the human task).

113

Chapter 12. Human Tasks

* Content: The data associated with this task.

* Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See below for more detail on how to use swimlanes.

» Wait for completion: If this property is true, the human task node will only continue if the human
task has been terminated (i.e. completed or any other terminal state); otherwise it will continue
immediately after creating the human task.

« On-entry and on-exit actions: Actions that are executed upon entry and exit of this node.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. Note that can only use
result mappings when "Wait for completion" is set to true. A human task has a result variable
"Result" that contains the data returned by the human actor. The variable "Actorld" contains the
id of the actor that actually executed the task.

« Timers: Timers that are linked to this node (see the 'timers' section for more details).

» Parentld: Allows to specify the parent task id, in the case that this task is a sub task of another.
(see the 'sub task' section for more details)

You can edit these variables in the properties view (see below) when selecting the user task node,
or the most important properties can also be edited by double-clicking the user task node, after
which a custom user task node editor is opened, as shown below as well.

114

Human tasks inside processes

| Properties &3

Property
Actorld

Commemnt

Content

Id

Mame

©n Entry Actions
On Exit Actions
Parameter Mapping
Priority

Result Mapping
Skippable
swimlane
TaskMame
Timers

Wait for completion

YValue

Sales Representative

You should call #{customer.name} to
confirm the order.

4

Hurman Task

1}

1}

true

Call custormer

true

115

Chapter 12. Human Tasks

| € Human Task Editor x|
Name: k:all customer
Actor{s): Sales Representative

You should call #{customer.name} to
confirm the order,

Comment:

Priority: 3
Skippable

Content:

OK] | Cancel

Note that you could either specify the values of the different parameters (actorld, priority, content,
etc.) directly (in which case they will be the same for each execution of this process), or make
them context-specific, based on the data inside the process instance. For example, parameters
of type String can use #{expression} to embed a value in the String. The value will be retrieved
when creating the work item and the #{...} will be replaced by the toString() value of the variable.
The expression could simply be the name of a variable (in which case it will be resolved to
the value of the variable), but more advanced MVEL expressions are possible as well, like
#{person.name.firstname}. For example, when sending an email, the body of the email could
contain something like "Dear #{customer.name}, ...". For other types of variables, it is possible to
map the value of a variable to a parameter using the parameter mapping.

12.1.1. Swimlanes

User task nodes can be used in combination with swimlanes to assign multiple human tasks to the
similar actors. Tasks in the same swimlane will be assigned to the same actor. Whenever the first
task in a swimlane is created, and that task has an actorld specified, that actorld will be assigned

116

Human task management component

to the swimlane as well. All other tasks that will be created in that swimlane will use that actorld
as well, even if an actorld has been specified for the task as well.

Whenever a human task that is part of a swimlane is completed, the actorld of that swimlane is
set to the actorld that executed that human task. This allows for example to assign a human task
to a group of users, and to assign future tasks of that swimlame to the user that claimed the first
task. This will also automatically change the assignment of tasks if at some point one of the tasks
is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the
"Swimlane" parameter of the user task node. A process must also define all the swimlanes that
it contains. To do so, open the process properties by clicking on the background of the process
and click on the "Swimlanes" property. You can add new swimlanes there.

12.2. Human task management component

As far as the jBPM engine is concerned, human tasks are similar to any other external service that
needs to be invoked and are implemented as an extension of normal work items. As a result, the
process itself only contains an abstract description of the human tasks that need to be executed,
and a work item handler is responsible for binding this abstract tasks to a specific implementation.
Using our pluggable work item handler approach (see the chapter on domain-specific processes
for more details), users can plug in any back-end implementation.

We do however provide an implementation of such a human task management component based
on the WS-HumanTask specification. If you do not have the requirement to integrate a specific
human task component yourself, you can use this service. It manages the task life cycle of the
tasks (creation, claiming, completion, etc.) and stores the state of the task persistently. It also
supports features like internationalization, calendar integration, different types of assignments,
delegation, deadlines, etc.

Because we did not want to implement a custom solution when a standard is available,
we chose to implement our service based on the WS-HumanTask (WS-HT) specification.
This specification defines in detail the model of the tasks, the life cycle, and a lot of
other features as the ones mentioned above. It is pretty comprehensive and can be
found here [http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpeldpeople/WS-
HumanTask_v1.pdf].

12.2.1. Task life cycle

Looking from the perspective of the process, whenever a user task node is triggered during the
execution of a process instance, a human task is created. The process will only continue from
that point when that human task has been completed or aborted (unless of course you specify
that the process does not need to wait for the human task to complete, by setting the "Wait for
completion" property to true). However, the human task usually has a separate life cycle itself.
We will now shortly introduce this life cycle, as shown in the figure below. For more details, check
out the WS-HumanTask specification.

117

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Chapter 12. Human Tasks

Inactive

rd context obtained]
coordinator

nomir
sin

on performed) &&

I// Suspended \\‘ ners || work queue)

. N oW
‘ Ready | Ready I
- J I
claim || delegate
/ ™
‘ Reserved
start
e B
InProgress | InProgress
\‘, /" A /
[Completion with fault response]
7/’ Com| th response] Send application fault [Non-recoverable error] [WS-HT exit] | [Skip && isSkippable]
- resuit Send "WS-HT fault" Exit task Send ,WS-HT skipped*

L 4

Va
LComp\eled | [Failed [Error } [Exited J [Obsoletej

y
(@)« /
'\.,/

Closed

Whenever a task is created, it starts in the "Created" stage. It usually automatically transfers to
the "Ready" state, at which point the task will show up on the task list of all the actors that are
allowed to execute the task. There, it is waiting for one of these actors to claim the task, indicating
that he or she will be executing the task. Once a user has claimed a task, the status is changed
to "Reserved". Note that a task that only has one potential actor will automatically be assigned
to that actor upon creation of that task. After claiming the task, that user can then at some point
decide to start executing the task, in which case the task status is changed to "InProgress". Finally,
once the task has been performed, the user must complete the task (and can specify the result
data related to the task), in which case the status is changed to "Completed". If the task could
not be completed, the user can also indicate this using a fault response (possibly with fault data
associated), in which case the status is changed to "Failed".

The life cycle explained above is the normal life cycle. The service also allows a lot of other life
cycle methods, like:

» Delegating or forwarding a task, in which case it is assigned to another actor

» Revoking a task, so it is no longer claimed by one specific actor but reappears on the task list
of all potential actors

» Temporarly suspending and resuming a task

» Stopping a task in progress

118

Linking the task component to the jBPM engine

« Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

12.2.2. Linking the task component to the jBPM engine

The task management component needs to be integrated with the jBPM engine just like any other
external service, by registering a work item handler that is responsible for translating the abstract
work item (in this case a human task) to a specific invocation. We have implemented such a
work item handler (org.jbpm.process.workitem.wsht.WSHumanTaskHandler in the jopm-human-
task module) so you can easily link this work item handler like this:

StatefulKnowledgeSession ksession = ...;
ksession.getWorkltemManager().registerWorkltemHandler("Human
Task", new WSHumanTaskHandler());

By default, this handler will connect to the human task management component on the local
machine on port 9123, but you can easily change that by invoking the setConnection(ipAddress,
port) method on the WSHumanTaskHandler.

If you are using persistence for the session (check out the
chapter on persistence for more information), you should use the
org.jbpm.process.workitem.wsht.CommandBasedWSHumanTaskHandler as that makes sure
that the state of the process instances is persisted correctly after interacting with the process
engine.

The communication between the human task service and the process engine, or any task client,
is done using messages being sent between the client and the server. The implementation allows
different transport mechanisms being plugged in, but by default, Mina (http://mina.apache.org/)
[http://mina.apache.org/] is used for client/server communication. An alternative implementation
using HornetQ is also available.

A task client offers the following methods for managing the life cycle of human tasks:

public void start(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void stop(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void release(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void suspend(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void resume(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void skip(long taskld, String userld, TaskOperationResponseHandler responseHandler)
public void delegate(long taskld, String userld, String targetUserld,
TaskOperationResponseHandler responseHandler)
public void complete(long taskld, String userld, ContentData outputData,
TaskOperationResponseHandler responseHandler)

119

http://mina.apache.org/
http://mina.apache.org/

Chapter 12. Human Tasks

You can either use these methods directly, or probably use some kind of GUI that the end user
will use to lookup and execute the tasks that are assigned to them. If you take a look a the method
signatures you will notice that almost all of this method takes the following arguments:

 taskld: The id of the task that we are working with. This is usually extract from the currently
selected task in the user task list in the user interface.

« userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

« responseHandler: Communication with the task service is usually asynchronous, so you
should use a response handler that will be notified when the results are available.

As you can imagine all the methods create a message that will be sent to the server, and the
server will execute the logic that implements the correct action.

12.2.3. Starting the Task Management Component

The task management component is a completely independent service that the process engine
communicates with. We therefore recommend to start it as a separate service as well. The installer
contains a command to start the task server (in this case using Mina as transport protocol), or you
can use the following code fragment:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jopm.task");

TaskService taskService = new TaskService(emf, SystemEventListenerFactory.getSystemEventListener());
MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

The task management component uses the Java Persistence API (JPA) to store all task
information in a persistent manner. To configure the persistence, you need to modify the
persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do
that. The following fragment shows for example how to use the task management component with
hibernate and an in-memory H2 database:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
version="1.0"
xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm

120

Starting the Task Management Component

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="org.jbpm.task">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<class>org.jbpm.task.Attachment</class>
<class>org.jbpm.task.Content</class>
<class>org.jbpm.task.BooleanExpression</class>
<class>org.jbpm.task.Comment</class>
<class>org.jbpm.task.Deadline</class>
<class>org.jbpm.task.Comment</class>
<class>org.jbpm.task.Deadline</class>
<class>org.jbpm.task.Delegation</class>
<class>org.jbpm.task.Escalation</class>
<class>org.jbpm.task.Group</class>
<class>org.jbpm.task.I18NText</class>
<class>org.jbpm.task.Notification</class>
<class>org.jbpm.task.EmailNotification</class>
<class>org.jbpm.task.EmailNotificationHeader</class>
<class>org.jbpm.task.PeopleAssignments</class>
<class>org.jbpm.task.Reassignment</class>
<class>org.jbpm.task.Status</class>
<class>org.jbpm.task.Task</class>
<class>org.jbpm.task.TaskData</class>
<class>org.jbpm.task.SubTasksStrategy</class>
<class>org.jbpm.task.OnParentAbortAllISubTasksEndStrategy</class>
<class>org.jbpm.task.OnAllSubTasksEndParentEndStrategy</class>
<class>org.jbpm.task.User</class>

<properties>
<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.connection.driver_class" value="org.h2.Driver"/>
<property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />
<property name="hibernate.connection.username" value="sa"/>
<property name="hibernate.connection.password" value="sasa"/>
<property name="hibernate.connection.autocommit” value="false" />
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="create" />
<property name="hibernate.show_sql" value="true" />

</properties>

</persistence-unit>

121

Chapter 12. Human Tasks

</persistence>

The first time you start the task management component, you need to make sure that all the
necessary users and groups are added to the database. Our implementation requires all users and
groups to be predefined before trying to assign a task to that user or group. So you need to make
sure you add the necessary users and group to the database using the taskSession.addUser(user)
and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user
as all tasks are automatically assigned to this user as the administrator role.

The jbpm-human-task module contains a org.jppm.task.RunTaskService class in the src/test/java
source folder that can be used to start a task server. It automatically adds users and groups as
defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

12.2.4. Interacting With the Task Management Component

The task management component exposes various methods to manage the life cycle of the tasks
through a Java API. This allows clients to integrate (at a low level) with the task management
component. Note that end users should probably not interact with this low-level API directly but
rather use one of the task list clients (see below). These clients interact with the task management
component using this API. The following code sample shows how to create a task client and
interact with the task service to create, start and complete a task.

TaskClient client = new TaskClient(new MinaTaskClientConnector(“client 1",
new MinaTaskClientHandler(SystemEventListenerFactory.getSystemEventListener())));
client.connect("127.0.0.1", 9123);

/[adding a task

BlockingAddTaskResponseHandler addTaskResponseHandler = new BlockingAddTaskResponseHandler();
Task task = ...;

client.addTask(task, null, addTaskResponseHandler);

long taskld = addTaskResponseHandler.getTaskld();

/I getting tasks for user "bobba”
BlockingTaskSummaryResponseHandler taskSummaryResponseHandler =

new BlockingTaskSummaryResponseHandler();
client.getTasksAssignedAsPotentialOwner("bobba”, "en-UK", taskSummaryResponseHandler);
List<TaskSummary> tasks = taskSummaryResponseHandler.getResults();

/[starting a task

BlockingTaskOperationResponseHandler responseHandler =
new BlockingTaskOperationResponseHandler();

client.start(taskld, "bobba", responseHandler);

/I completing a task

122

Human Task Management Interface

responseHandler = new BlockingTaskOperationResponseHandler();
client.complete(taskld, users.get("bobba").getld(), null, responseHandler);

12.3. Human Task Management Interface

12.3.1. Eclipse integration

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug
processes using human tasks. In contains a Human Task View that can connect to a running task
management component, request the relevant tasks for a particular user (i.e. the tasks where the
user is either a potential owner or the tasks that the user already claimed and is executing). The
life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping
the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown
below. You can configure which task management component to connect to in the Drools Task
preference page (select Window -> Preferences and select Drools Task). Here you can specify
the url and port (default = 127.0.0.1:9123).

% Human Task View 3 i ¥ =8
Userld sales-rep
Name Status Owner Created On Comment
Some Task INnProgress sales-rep r31, 2009 4:44:22

Some other task Reserved sales-rep r 31, 2009 4:45:02

12.3.2. Web-based Task View

The jBPM console also contains a task view for looking up task lists and managing the life cycle
of tasks. See the chapter on the jBPM console for more information.

123

124

Chapter 13.

Chapter 13. Domain-specific
processes

13.1. Introduction

One of the goals of BPM is to allow users to extend the default process constructs with domain-
specific extensions that simplify development in a particular application domain. This tutorial
describes how to take your first steps towards domain-specific processes. Note that you don't
need to be a jBPM expert to define your own domain-specific nodes, this should be considered
integration code that a normal developer with some experience in jBPM can do himself.

Most process languages offer some generic action (node) construct that allows plugging in custum
user actions. However, these actions are usually low-level, where the user is required to write
custom code to implement the work that should be incorporated in the process. The code is also
closely linked to a specific target environment, making it difficult to reuse the process in different
contexts.

Domain-specific languages are targeted to one particular application domain and therefore can
offer constructs that are closely related to the problem the user is trying to solve. This makes
the processes and easier to understand and self-documenting. We will show you how to define
domain-specific work items (also called service nodes), which represent atomic units of work that
need to be executed. These service nodes specify the work that should be executed in the context
of a process in a declarative manner, i.e. specifying what should be executed (and not how) on
a higher level (no code) and hiding implementation details.

So we want service nodes that are:

1. domain-specific

2. declarative (what, not how)
3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific service nodes and integrate them in our
process language. For example, the next figure shows an example of a process in a healthcare
context. The process includes domain-specific service nodes for ordering nursing tasks (e.g.
measuring blood pressure), prescribing medication and notifying care providers.

125

Chapter 13. Domain-specific p...

@ BP Medicatinn]

#= Blood Pressure

@
yd
\ NN
e)@
e

=_ BP Fnllnw-up}

13.2. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work
item represent an atomic unit of work in a declarative way. It is defined by a unique name and
additional parameters that can be used to describe the work in more detail. Work items can also
return information after they have been executed, specified as results. Our notification work item
could thus be defined using a work definition with four parameters and no results:

Name: "Notification"
Parameters

From [String]

To [String]
Message [String]
Priority [String]

13.2.1. Creating the work definition

All work definitions must be specified in one or more configuration files in the project classpath,
where all the properties are specified as name-value pairs. Parameters and results are maps
where each parameter name is also mapped to the expected data type. Note that this configuration

126

Registering the work definition

file also includes some additional user interface information, like the icon and the display name
of the work item.

In our example we will use MVEL for reading in the configuration file, which allows us to do more
advanced configuration files. This file must be placed in the project classpath in a directory called
META-INF. Our MyWorkDefinitions.wid file looks like this:

import org.drools.process.core.datatype.impl.type.StringDataType;

[

/l the Notification work item
[
"name" : "Notification",
"parameters” : [
"Message" : new StringDataType(),
"From" : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),
P
"displayName" : "Notification",
"icon" : "icons/notification.gif"

]

The project directory structure could then look something like this:

project/src/main/resources/META-INF/MyWorkDefinitions.wid

You might now want to create your own icons to go along with your new work definition. To add
these you will need .gif or .png images with a pixel size of 16x16. Place them in a directory outside
of the META-INF directory, for example as follows:

project/src/main/resources/icons/naotification.gif

13.2.2. Registering the work definition

The configuration APl can be used to register work definition files for your project using
the drools.workDefinitions property, which represents a list of files containing work definitions

127

Chapter 13. Domain-specific p...

(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF
directory of your project and add the following line:

drools.workDefinitions = MyWorkDefinitions.wid

This will replace the default domain specific node types EMAIL and LOG with the newly defined
NOTIFICATION node in the process editor. Should you wish to just add a newly created node
definition to the existing palette nodes, adjust the drools.workDefinitions property as follows
including the default set configuration file:

drools.workDefinitions = MyWorkDefinitions.conf WorkDefinitions.conf

13.2.3. Using your new work item in your processes

Once our work definition has been created and registered, we can start using it in our processes.
The process editor contains a separate section in the palette where the different service nodes
that have been defined for the project appear.

128

Using your new work item in your processes

[Ig Select

' Marquee

— Sequence Flow

.= Components £

Start Event

® End Event

Rule Task

& Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

) Timer Event

®) Error Event

[Message Event

User Task

(=) Embedded Sub-Process

(w) Multiple Instances

= Service Tasks £

® Notification h

Using drag and drop, a natification node can be created inside your process. The properties can
be filled in using the properties view.

Apart from the properties defined by for this work item, all work items also have these three
properties:

1. Parameter Mapping: Allows you map the value of a variable in the process to a parameter of
the work item. This allows you to customize the work item based on the current state of the
actual process instance (for example, the priority of the notification could be dependent of some
process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to
a variable of the process. This allows you to use results in the remainder of the process.

129

Chapter 13. Domain-specific p...

3. Wait for completion: By default, the process waits until the requested work item has been
completed before continuing with the process. It is also possible to continue immediately
after the work item has been requested (and not waiting for the results) by setting "wait for
completion” to false.

Here is an example that creates a domain specific node to execute Java, asking for the class
and method parameters. It includes a custom java.gif icon and consists of the following files and
resulting screenshot:

import org.drools.process.core.datatype.impl.type.StringDataType;
[
// the Java Node work item located in:
I project/src/main/resources/META-INF/JavaNodeDefinition.conf
[
"name" : "JavaNode",
"parameters" : [
“class" : new StringDataType(),
"method" : new StringDataType(),
]!
"displayName" : "Java Node",
"icon" : "icons/java.gif"

/l'located in: project/src/main/resources/META-INF/drools.rulebase.conf
I
drools.workDefinitions = JavaNodeDefinition.conf WorkDefinitions.conf

/I icon for java.gif located in:
/I project/src/main/resources/icons/java.gif

130

Using your new work item in your processes

[+ Select

' Marquee O

— Sequence

Flow l

(= Components <« 'r) j

N = ava Node =
() Start Event L@J J
@® End Event)

Rule Task

l
@ Gateway O

[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task
&) Timer Event
@) Error Event

Message
Event

User Task

(=) Embedded
Sub-Process

Multiple

TR S

(= Service Ta... <«
= Log
== Email
% Java Node

131

Chapter 13. Domain-specific p...

13.2.4. Executing service nodes

The jBPM engine contains a WorkltemManager that is responsible for executing work items
whenever necessary. The WorkltemManager is responsible for delegating the work items to
WorkltemHandlers that execute the work item and notify the WorkltemManager when the work
item has been completed. For executing notification work items, a NotificationWorkltemHandler
should be created (implementing the WorkltemHandler interface):

package com.sample;

import org.drools.runtime.process.Workltem;
import org.drools.runtime.process.WorkltemHandler;
import org.drools.runtime.process.WorkltemManager;

public class NotificationWorkltemHandler implements WorkltemHandler {

public void executeWorkltem(Workltem workltem, WorkltemManager manager) {
/I extract parameters
String from = (String) workltem.getParameter("From");
String to = (String) workltem.getParameter("To");
String message = (String) workltem.getParameter("Message");
String priority = (String) workltem.getParameter("Priority");
/I send email
EmailService service = ServiceRegistry.getinstance().getEmailService();
service.sendEmail(from, to, "Notification", message);
/I notify manager that work item has been completed
manager.completeWorkltem(workltem.getld(), null);

public void abortWorkltem(Workltem workltem, WorkltemManager manager) {
/I Do nothing, notifications cannot be aborted

}

This WorkltemHandler sends a notification as an email and then immediate notifies the
WorkltemManager that the work item has been completed. Note that not all work items can be
completed directly. In cases where executing a work item takes some time, execution can continue
asynchronously and the work item manager can be notified later. In these situations, it might also
be possible that a work item is being aborted before it has been completed. The abort method
can be used to specify how to abort such work items.

WorkltemHandlers should be registered at the WorkltemManager, using the following API:

132

Executing service nodes

ksession.getWorkltemManager().registerWorkltemHandler(
"Notification", new NotificationWorkltemHandler());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The
process itself should not be changed. It is also possible to use the same process in different
environments, where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more
difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during
testing or simulation, it might not be necessary to actually execute the work items. In this case
specialized dummy work item handlers could be used during testing.

133

134

Chapter 14.

Chapter 14. Testing and debugging

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

14.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific

use cases, for example test the output based on the existing input. To simplify unit testing, jBPM

includes a helper class called JbpmJUnitTestCase (in the jopm-bpmn2 test module) that you can

use to greatly simplify your junit testing, by offering:

 helper methods to create a new knowledge base and session for a given (set of) process(es)
» you can select whether you want to use persistence or not

* assert statements to check

« the state of a process instance (active, completed, aborted)

which node instances are currently active

which nodes have been triggered (to check the path that has been followed)

get the value of variables
* etc.

For example, conside the following hello world process containing a start event, a script task and
an end event. The following junit test will create a new session, start the process and then verify
whether the process instance completed successfully and whether these three nodes have been

executed.

public class MyProcessTest extends JbpmJUnitTestCase {

public void testProcess() {
/I create your session and load the given process(es)
StatefulKnowledgeSession ksession = createKnowledgeSession("sample.bpmn™);

135

Chapter 14. Testing and debugging

/[start the process

Processlnstance processinstance = ksession.startProcess("com.sample.bpmn.hello™);
/I check whether the process instance has completed successfully
assertProcessInstanceCompleted(processinstance.getld(), ksession);

/I check whether the given nodes were executed during the process execution
assertNodeTriggered(processinstance.getld(), "StartProcess", "Hello", "EndProcess");

14.1.1. Helper methods to create your session

Several methods are provided to simplify the creation of a knowledge base and a session to
interact with the engine.

» createKnowledgeBase(String... process): Returns a new knowledge base containing all the
processes in the given filenames (loaded from classpath)

« createKnowledgeBase(Map<String, ResourceType> resources) :Returns a new knowledge
base containing all the resources (not limited to processes but possibly also including other
resource types like rules, decision tables, etc.) from the given filenames (loaded from classpath)

» createKnowledgeBaseGuvnor(String... packages): Returns a new knowledge base containing
all the processes loaded from Guvnor (the process repository) from the given packages

« createKnowledgeSession(KnowledgeBase kbase): Creates a new statefull knowledge session
from the given knowledge base

« restoreSession(StatefulKnowledgeSession ksession, boolean noCache) : completely restores
this session from database, can be used to recreate a session to simulate a critical failure and
to test recovery, if noCache is true, the existing persistence cache will not be used to restore
the data

14.1.2. Assertions

The following assertions are added to simplify testing the current state of a process instance:

 assertProcessinstanceActive(long processinstanceld, StatefulKnowledgeSession ksession):
check whether the process instance with the given id is still active

 assertProcessinstanceCompleted(long processlinstanceld, StatefulKnowledgeSession
ksession): check whether the process instance with the given id has completed successfully

 assertProcessinstanceAborted(long processinstanceld, StatefulkKnowledgeSession ksession):
check whether the process instance with the given id was aborted

136

Testing integration with external services

« assertNodeActive(long processinstanceld, StatefulKnowledgeSession ksession, String...
name): check whether the process instance with the given id contains at least one active node
with the given node name (for each of the given names)

» assertNodeTriggered(long processinstanceld, String... nodeNames) : check for each given
node name whether a node instance was triggered (but not necessarily active anymore) during
the execution of the process instance with the given

« getVariableValue(String name, long processinstanceld, StatefulkKnowledgeSession ksession):
retrieves the value of the variable with the given name from the given process instance, can
then be used to check the value of process variables

14.1.3. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the
advantages of our domain-specific process approach is that you can specify yourself how to
actually execute your own domain-specific nodes, by registering a handler. And this handler can
be different depending on your context, allowing you to use testing handlers for unit testing your
process. When you are unit testing your business process, you can register test handlers that
then verify whether specific services are requested correctly, and provide test responses for those
services. For example, imagine you have an email node or a human task as part of your process.
When unit testing, you don't want to send out an actual email but rather test whether the email
that is requested contains the correct information (for example the right to email, a personalized
body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

137

Chapter 14. Testing and debugging

®

Qg{ e J_>®sent

failed

®

public void testProcess2() {
/I create your session and load the given process(es)
StatefulKnowledgeSession ksession = createKnowledgeSession("sample2.bpmn");
I register a test handler for "Email”
TestWorkltemHandler testHandler = new TestWorkltemHandler();
ksession.getWorkltemManager().registerWorkltemHandler("Email", testHandler);
/I start the process
Processlinstance processinstance = ksession.startProcess("com.sample.bpmn.hello2");
assertProcessinstanceActive(processinstance.getld(), ksession);
assertNodeTriggered(processinstance.getld(), "StartProcess", "Email");
Il check whether the email has been requested
Workltem workltem = testHandler.getWorkltem();
assertNotNull(workltem);
assertEquals("Email", workltem.getName());
assertEquals("me@mail.com", workltem.getParameter("From"));
assertEquals("you@mail.com”, workltem.getParameter("To"));
/I notify the engine the email has been sent
ksession.getWorkltemManager().abortWorkltem(workltem.getld());
assertProcessinstanceAborted(processinstance.getld(), ksession);
assertNodeTriggered(processinstance.getld(), "Gateway", "Failed", "Error");

14.1.4. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,
the junit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the junit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

138

Debugging

By default, persistence is turned on. To turn off persistence, simply pass a boolean to the super
constructor when creating your test case, as shown below:

public class MyProcessTest extends JbpmJUnitTestCase {

public MyProcessTest() {
/I configure this tests to not use persistence in this case
super(false);

14.2. Debugging

This section describes how to debug processes using the Eclipse plugin. This means that the
current state of your running processes can be inspected and visualized during the execution.
Note that we currently don't allow you to put breakpoints on the nodes within a process directly.
You can however put breakpoints inside any Java code you might have (i.e. your application code
that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be
evaluated in the context of a process). At these breakpoints, you can then inspect the internal
state of all your process instances.

When debugging the application, you can use the following debug views to track the execution
of the process:

1. The process instances view, showing all running process instances (and their state). When
double-clicking a process instance, the process instance view visually shows the current state
of that process instance at that point in time.

2. The human task view, showing the task list of the given user (fill in the user id of the actor and
click refresh to view all the tasks for the given actor), where you can then control the life cycle
of the task, for example start and complete it.

3. The audit view, showing the audit log (note that you should probably use a threaded file logger
if you want to session to save the audit event to the file system on regular intervals, so the audit
view can be update to show the latest state).

4. The global data view, showing the globals.

5. Other views related to rule execution like the working memory view (showing the contents (data)
in the working memory related to rule execution), the agenda view (showing all activated rules),
etc.

139

Chapter 14. Testing and debugging

14.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows
that there is currently one running process (instance), currently executing one node instance, i.e.
business rule task. When double-clicking a process instance, the process instance viewer will
graphically show the progress of the process instance. An example where the process instance
is waiting for a human actor to perform a self-evaluation task is shown below.

| Console | 4% Tasks "1:] Agenda View "1:] Global Data View "1:] Process Instances View - "D Working Memary Vis

& [1]=RuleFlowProcessInstance (id=2087)
& id=1
+- & processMame= Truleflow”
1 & processId= "com.sample.ruleflow”
= & nodelnstances= Object[] {id=2092)
+- & [1]=RuleSetModelnstance (id=2093)
When you double-click a process instance in the process instances view and the process instance
view complains that it cannot find the process, this means that the plugin wasn't able to find the
process definition of the selected process instance in the cache of parsed process definitions. To
solve this, simply change the process definition in question and save again (so it will be parsed)
or rebuild the project that contains the process definition in question.
i Process Instance 3 9 Audit EE Outline — B

1 = Evaluation[com.sample. evaluation] 2

2# HR Evaluation

O} ® "®—@

% PM Evaluation

14.2.2. The Human Task View

The Human Task View can connect to a running human task service and request the relevant
tasks for a particular user (i.e. the tasks where the user is either a potential owner or the tasks that
the user already claimed and is executing). The life cycle of these tasks can then be executed, i.e.
claiming or releasing a task, starting or stopping the execution of a task, completing a task, etc.

140

The Audit View

A screenshot of this Human Task View is shown below. You can configure which task service to
connect to in the Drools Task preference page (select Window -> Preferences and select Drools
Task). Here you can specify the url and port (default = 127.0.0.1:9123).

Global Data '|:| Working Memary (] Process Instances & Human Task View .

Status Chvner Creabed On Comment

-2009 1:28:09 Self evaluation

14.2.3. The Audit View

The audit view, showing the audit log, which is a log of all events that were logged from the session.
To create a logger, use the KnowledgeRuntimeLoggerFactory to create a new logger and attach
it to a session. Note that you should probably use a threaded file logger if you want to session
to save the audit event to the file system on regular intervals, so the audit view can be update to
show the latest state. When creating a threaded file logger, you can specify the name of the file
where the audit log should be created and the interval after which event should be saved to the
file (in milliseconds). Be sure to close the logger after usage.

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory
.newThreadedFileLogger(ksession, "logdir/mylogfile”, 1000);

/I do something with the session here

logger.close();

To open up an audit tree in the audit view, open the selected log file in the audit view or simply
drag the file into the audit view. A tree-based view is generated based on the audit log. An event
is shown as a subnode of another event if the child event is caused by (a direct consequence of)
the parent event. An example is shown below.

141

Chapter 14. Testing and debugging

= =, RuleFlow started: ruleflow[com.sample. ruleflow]
= 4 RuleFlow node triggered: Start in process ruleflow[com.sample.ruleflow]
= #] RuleFlow node triggered: Hello in process ruleflow[com . sample ruleflow]
= #] RuleFlow node triggered: End in process ruleflow[com.sample ruleflow]

= RuleFlow completed: ruleflow[com.sample.ruleflow]

142

Chapter 15.

Chapter 15. Process Repository

A process repository is an important part of your BPM architecture if you start using more and
more business processes in your applications and especially if you want to have the ability to
dynamically update them. The process repository is the location where you store and manage
your business processes. Because they are not deployed as part of your application, they have
their own life cycle, meaning you can update your business processes dynamically, without having
to change the application code.

Note that a process repository is a lot more than simply a database to store your process
definitions. It almost acts as a combination of a source code management system, content
management system, collaboration suite and development and testing environment. These are
the kind of features you can expect from a process repository:

 Persistent storage of your processes so the latest version can always easily be accessed from
anywhere, including versioning

 Build and deploy selected processes

« User-friendly (web-based) interface to manage, update and deploy your processes (targeted to
business users, not just developers)

« Authentication / authorization to make sure only people that have the right role can see and/
or edit your processes

« Categorization and searching

» Scenario testing to make sure you don't break anything when you change your process
» Collaboration and other social features like comments, notifications on change, etc.

» Synchronization with your development environment

Actually, it would be better to talk about a knowledge repository, as the repository will not only store
your process definitions, but possibly also other related artefacts like task forms, your domain
model, associated business rules, etc. Luckily, we don't have to reinvent the wheel for this, as the
Guvnor project acts as a generic knowledge repository to store any type of artefacts and already
supports most of these features.

The following screencast shows how you can upload your process definition to Guvnor, along
with the process form (that is used when you try to start a new instance of that process to collect
the necessary data), task forms (for the human tasks inside the process), and the process image
(that can be annotated to show runtime progress). The jobpm-console is configured to get all this
information from Guvnor whenever necessary and show them in the console.

143

Chapter 15. Process Repository

[http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf]

Figure 15.1.

If you use the installer, that should automatically download and install the latest version of Guvnor
as well. So simply deploy your assets (for example using the Guvnor Eclipse integration as shown
in the screencast, also automatically installed) to Guvnor (taking some naming conventions into
account, as explained below), build the package and start up the console.

The current integration with the jbpm-console uses the following naming conventions to find the
artefacts it needs (though we hope to update this to something more flexible in the near future):

« All artefacts should be deployed to the "defaultPackage" on Guvnor (as that is where the jopm-
console will be looking)

« A process should define "defaultPackage" as the package name (otherwise you won't be able
to build your package on Guvnor)

« Don't forget to build the package on Guvnor before opening the console, as Guvnor will only
publish the latest version of your processes once you build the package

 Currently, the console will load the process definitions the first time the list of processes is
requested in the console. At this point, automatic updating from guvnor when the package is
rebuilt is turned off by default, so you will have to either configure this or restart the application
server to get the latest versions.

144

http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf

« Task forms that should be associated with a specific process definition should have the name
"{processDefinitionld}.ftl"

» Task forms for a specific human task should have the name "{taskName}.ftl"

e The process diagram for a specific process should have the name "{processDefinitionld}-
image.png"

If you follow these rules, your processes, forms and images should show up without any issues
in the jbpm-console.

145

146

Chapter 16.

Chapter 16. Business Activity
Monitoring

You need to actively monitor your processes to make sure you can detect any anomalies and
react to unexpected events as soon as possible. Business Activity Monitoring (BAM) is concerned
with real-time monitoring of your processes and the option of intervening directly, possibly even
automatically, based on the analysis of these events.

jBPM allows users to define reports based on the events generated by the process engine, and
possibly direct intervention in specific situations using complex event processing rules (Drools
Fusion), as described in the next two sections. Future releases of the jBPM platform will include
support for all requirements of Business Activity Monitoring, including a web-based application
that can be used to more easily interact with a running process engine, inspect its state, generate
reports, etc.

16.1. Reporting

By adding a history logger to the process engine, all relevent events are stored in the database.
This history log can be used to monitor and analyze the execution of your processes. We are
using the Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key
performance indicators. Its easy to define your own reports yourself, using the predefined data
sets containing all process history information, and any other data sources you might want to add
yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview
your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to
define your own reports.) The following screen shot shows a sample on how to create such a chart.

147

Chapter 16. Business Activity...

Edit Chart

Select the data to display in the chart and bind it to the series. ule

lii* Select Chart Type | R Select Data |fgf Format Chart

Chart Preview

Average Completion Time (seconds)
100
s
Malue (Y) Series 8 ‘ L
- Optional Y Series Grouping:
[SEHESI v] 60 ‘]
—
=
20 ‘ 305
o
2/12/08 12:00 PM 2/12/08 4:00 PM
L Category (X) Series: [row["START_DATE"]] J
Select Data

O Inherit Data fram Container

(@ Use Data from |M E]|

Data Preview

Use the right-click menu er drag the column into series fields

PROCESSINSTANCE\D][PROCESSID HSTART_DATE HEND_DATE I

1 org.drools.exanFeb 12, 2009 5: Feb 12, 2009 5:

2 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4:

3 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4: [Filters...]
4 org.drools.exanFeb 12, 2009 2: Feb 12, 2009 2: [Parameters]
5 org.drools.exanFeb 12, 2009 1zFeb 12, 2009 1= — .
[" - — ”””|) [Data Binding...]

@ [< Back l [Mext = l [Einish l [Cancel

Figure 16.1. Creating a report using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of
requests per hour and the average completion time of the request during that hour. These charts
could be used to check for an unexpected drop or rise of requests, an increase in the average
processing time, etc. These charts could signal possible problems before the situation really gets
out of hand.

148

Direct Intervention

YProcls

Eventing Report

Number of Requests

1 1

February 12, 2008 February 12, 2008 February 12, 2000 February 12, 2000
12:00 14:00 16:00 17:00

Average Completion Time (seconds)

30.5
0 T 1
21209 12:00 FM 21208 200 FM 2/12/08 400 FM 21208 500 FM

Feb 13, 2009 12:56 AM

Figure 16.2. The eventing report

16.2. Direct Intervention

Reports can be used to visualize an overview of the current state of your processes, but they
rely on a human actor to take action based on the information in these charts. However, we allow
users to define automatic responses to specific circumstances.

Drools Fusion provides numerous features that make it easy to process large sets of events. This
can be used to monitor the process engine itself. This can be achieved by adding a listener to
the engine that forwards all related process events, such as the start and completion of a process
instance, or the triggering of a specific node, to a session responsible for processing these events.
This could be the same session as the one executing the processes, or an independent session
as well. Complex Event Processing (CEP) rules could then be used to specify how to process
these events. For example, these rules could generate higher-level business events based on a
specific occurrence of low-level process events. The rules could also specify how to respond to
specific situations.

The next section shows a sample rule that accumulates all start process events for one specific
order process over the last hour, using the "sliding window" support. This rule prints out an error

149

Chapter 16. Business Activity...

message if more than 1000 process instances were started in the last hour (e.g., to detect a
possible overload of the server). Note that, in a realistic setting, this would probably be replaced
by sending an email or other form of notification to the responsible instead of the simple logging.

declare ProcessStartedEvent
@role(event)
end

dialect "mvel"

rule "Number of process instances above threshold"
when
Number(nbProcesses : intValue > 1000)
from accumulate(
e: ProcessStartedEvent(processinstance.processld == "com.sample.order.OrderProcess")
over window:size(1h),
count(e))
then
System.err.printin("WARNING: Number of order processes in the last hour above 1000: " +
nbProcesses);
end

These rules could even be used to alter the behavior of a process automatically at runtime,
based on the events generated by the engine. For example, whenever a specific situation is
detected, additional rules could be added to the Knowledge Base to modify process behavior. For
instance, whenever a large amount of user requests within a specific time frame are detected, an
additional validation could be added to the process, enforcing some sort of flow control to reduce
the frequency of incoming requests. There is also the possibility of deploying additional logging
rules as the consequence of detecting problems. As soon as the situtation reverts back to normal,
such rules would be removed again.

150

Chapter 17.

Chapter 17. Flexible Processes

Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be
a growing need amongst end users for more flexible and adaptive business processes, without
ending up with overly complex solutions. Everyone seems to agree that using a process-centric
approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge
workers" no longer want to be locked into rigid processes but wants to have the power and flexibility
to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition
of what it might or might not mean, as this has been a hot topic for discussion, it refers to the
basic idea that many applications in the real world cannot really be described completely from
start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes
a different approach: instead of trying to model what should happen from start to finish, let's give
the end user the flexibility to decide what should happen at runtime. In its most extreme form for
example, case management doesn't even require any process definition at all. Whenever a new
case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where
care plans can be used to describe how patients should be treated in specific circumstances,
but people like general practitioners still need to have the flexibility to add additional steps and
deviate from the proposed plan, as each case is unique. And there are similar examples in claim
management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we
don't model any process up front), you still need a lot of the other features a BPM system (usually)
provides: there still is a clear need for audit logs, monitoring, coordinating various services,
human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are
somewhere in between, or might even evolve from case management to more structured business
process over time (when we for example try to extract common approaches from many cases).
If we can offer flexibility as part of our processes, can't we let the users decide how and where
they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your
processes. The first example shows a care plan that shows the tasks that should be performed
when a patient has high blood pressure. While a large part of the process is still well-structured,
the general practitioner can decide himself which tasks should be performed as part of the sub-
process. And he also has the ability to add new tasks during that period, tasks that were not
defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc
sub-process to model this kind of flexibility, possibly augmented with rules or event processing to
help in deciding which fragments to execute.

151

Chapter 17. Flexible Processes

AR Sul- PV S

| i Meanr P | |

D | ¥ Mg ua] - <_|>
[."r T] 'I;-mjl—{ mm_.-:n‘{—-@
J HO _{

'

®

Figure 17.1.

The second example actually goes a lot further than that. In this example, an internet provider
could define how cases about internet connectivity problems will be handled by the internet
provider. There are a number of actions the case worker can select from, but those are simply
small process fragments. The case worker is responsible for selecting what to do next and can
even add new tasks dynamically. As you can see, there is not process from start to finish anymore,
but the user is responsible for selecting which process fragments to execute.

O —{ Creabe Probdem E.nr]

& Update Problem I:It:cnpﬂun]

[B Perforrn Systern Diagnostics]—{Aﬂdjﬁli DHagnastics H.:EF nieepnet QIH“QMS]

B Comtacy Cws:-:nan

——@®
sobeid
[¢ Reguest Techanician H B Technician H:ﬂ}—b®
\—{_ | Update Cage i Folow LlpJ
®

0w @S

Figure 17.2.

152

And in its most extreme form, we even allow you to create case instances without a process
definition, where what needs to be performed is selected purely at runtime. This however doesn't
mean you can't figure out anymore what 's actually happening. For example, meetings can be
very adhoc and dynamic, but we usually want a log of what was actually discussed. The following
screenshot shows how our regular audit view can still be used in this case, and the end user
could then for example get a lot more info about what actually happened by looking at the data
associated with each of those steps. And maybe, over time, we can even automate part of that
by using a semi-structured process.

- = started: Company Meeting
w £ List Attendees
1 Agenda Overview

Agenda Topic: New Hires
+#) Agenda Topic: Customer Feedback
] Agenda Topic Moved to Next Meeting: Company Party

] Questions?

= #) Question: Fix Problems with Coffee Machine?

=. completed: Company Meeting

Figure 17.3.

153

154

Chapter 18.

Chapter 18. Integration with Maven,
OSGi, Spring, etc.

jBPM can be integrated with a lot of other technologies. This chapter gives an overview of a few
of those that are supported out-of-the-box. Most of these modules are developed as part of the
droolsjbpme-integration module, so they work not only for your business processes but also for
business rules and complex event processing.

18.1. Maven

By using a Maven pom.xml to define your project dependencies, you can let maven get your
dependencies for you. The following pom.xml is an example that could for example be used to
create a new Maven project that is capable of executing a BPMN2 process:

<?xml version="1.0" encoding="utf-8"?>
<project xmIns="http://maven.apache.org/POM/4.0.0"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupld>org.jbpm</groupld>
<artifactld>jbpm-maven-example</artifactid>
<name>jBPM Maven Project</name>
<version>1.0-SNAPSHOT</version>

<repositories>
<!I-- use this repository for stable releases -->
<repository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>

155

Chapter 18. Integration with ...

</repository>
<l-- use this repository for snapshot releases -->
<repository>
<id>jboss-snapshot-repository-group</id>
<name>JBoss SNAPSHOT Maven Repository Group</name>
<url>https://repository.jboss.org/nexus/content/repositories/snapshots/</url>
<layout>default</layout>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</shapshots>
</repository>

</repositories>

<dependencies>
<dependency>
<groupld>org.jbpm</groupld>
<artifactld>jbpm-bpmn2</artifactld>
<version>5.0.0</version>
</dependency>
</dependencies>

</project>

To use this as the basis for your project in Eclipse, either use M2Eclipse or use "mvn
eclipse:eclipse" to generate eclipse .project and .classpath files based on this pom.

18.2. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These
manifest files are automatically generated by the build. You can plug these jars directly into an
OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar
in OSGi is called a bundle and has it's own Classloader. Each bundle specifies the packages it
exports (makes publicly available) and which packages it imports (external dependencies). OSGi
will use this information to wire the classloaders of different bundles together; the key distinction is
you don't specify what bundle you depend on, or have a single monolithic classpath, instead you
specify your package import and version and OSGi attempts to satisfy this from available bundles.

156

OSGi

It also supports side by side versioning, so you can have multiple versions of a bundle installed
and it'll wire up the correct one. Further to this Bundles can register services for other bundles to
use. These services need initialisation, which can cause ordering problems - how do you make
sure you don't consume a service before its registered? OSGi has a nhumber of features to help
with service composition and ordering. The two main ones are the programmatic ServiceTracker
and the xml based Declarative Services. There are also other projects that help with this; Spring
DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

* jbpm-flow
 jbpm-flow-builder
* jbpm-bpmn2

For example, the following code example shows how you can look up the necessary services in
an OSGi environment using the service registry and create a session that can then be used to
start processes, signal events, etc.

ServiceReference serviceRef =
bundleContext.getServiceReference(ServiceRegistry.class.getName());
ServiceRegistry registry = (ServiceRegistry) bundleContext.getService(serviceRef);

KnowledgeBuilderFactoryService knowledgeBuilderFactoryService =
registry.get(KnowledgeBuilderFactoryService.class);
KnowledgeBaseFactoryService knowledgeBaseFactoryService =

registry.get(KnowledgeBaseFactoryService.class);
ResourceFactoryService resourceFactoryService = registry.get(ResourceFactoryService.class);

KnowledgeBaseConfiguration kbaseConf =
knowledgeBaseFactoryService.newKnowledgeBaseConfiguration(
getClass().getClassLoader());

KnowledgeBuilderConfiguration kbConf =
knowledgeBuilderFactoryService.newKnowledgeBuilderConfiguration(

getClass().getClassLoader());

KnowledgeBuilder kbuilder = knowledgeBuilderFactoryService.newKnowledgeBuilder(kbConf);

kbuilder.add(resourceFactoryService.newClassPathResource("MyProcess.bpmn",

Dummy.class), ResourceType.BPMN2);

kbaseConf = knowledgeBaseFactoryService.newKnowledgeBaseConfiguration(null,
getClass().getClassLoader());

KnowledgeBase kbase = knowledgeBaseFactoryService.newKnowledgeBase(kbaseConf);
kbase.addKnowledgePackages(kbuilder.getknowledgePackages());

157

nu

Chapter 18. Integration with ...

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

158

Index

159

160

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Eclipse Editor
	1.5. Web-based Designer
	1.6. jBPM Console
	1.7. Documentation

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	Chapter 3. Installer
	3.1. Prerequisites
	3.2. Download the installer
	3.3. Demo setup
	3.4. 10-Minute Tutorial: Using the Eclipse tooling
	3.5. 10-Minute Tutorial: Using the jBPM Console
	3.6. 10-Minute Tutorial: Using Guvnor repository and Designer
	3.7. What to do if I encounter problems or have questions?
	3.8. Frequently asked questions

	Chapter 4. Core Engine: API
	4.1. The jBPM API
	4.1.1. Knowledge Base
	4.1.2. Session
	4.1.3. Events

	4.2. Knowledge-based API

	Chapter 5. Core Engine: Basics
	5.1. Creating a process
	5.1.1. Using the graphical BPMN2 Editor
	5.1.2. Defining processes using XML
	5.1.3. Defining Processes Using the Process API
	5.1.3.1. Example

	5.2. Details of different process constructs: Overview
	5.3. Details: Process properties
	5.4. Details: Events
	5.4.1. Start event
	5.4.2. End events
	5.4.2.1. End event
	5.4.2.2. Throwing error event

	5.4.3. Intermediate events
	5.4.3.1. Catching timer event
	5.4.3.2. Catching signal event

	5.5. Details: Activities
	5.5.1. Script task
	5.5.2. Service task
	5.5.3. User task
	5.5.4. Reusable sub-process
	5.5.5. Business rule task
	5.5.6. Embedded sub-process
	5.5.7. Multi-instance sub-process

	5.6. Details: Gateways
	5.6.1. Diverging gateway
	5.6.2. Converging gateway

	5.7. Using a process in your application
	5.8. Other features
	5.8.1. Data
	5.8.2. Constraints
	5.8.3. Action scripts
	5.8.4. Events
	5.8.5. Timers
	5.8.6. Updating processes
	5.8.6.1. Process instance migration

	Chapter 6. Core Engine: BPMN 2.0
	6.1. Business Process Model and Notation (BPMN) 2.0 specification
	6.2. Examples
	6.3. Supported elements / attributes

	Chapter 7. Core Engine: Persistence and transactions
	7.1. Runtime State
	7.1.1. Binary Persistence
	7.1.2. Safe Points
	7.1.3. Configuring Persistence
	7.1.4. Transactions

	7.2. Process Definitions
	7.3. History Log
	7.3.1. Storing Process Events in a Database

	Chapter 8. Core Engine: Examples
	8.1. jBPM Examples
	8.2. Examples
	8.3. Unit tests

	Chapter 9. Eclipse BPMN 2.0 Plugin
	9.1. Installation
	9.2. Creating your BPMN 2.0 processes
	9.3. Filtering elements and attributes

	Chapter 10. Designer
	10.1. Installation
	10.2. Source code

	Chapter 11. Console
	11.1. Installation
	11.2. Running the process management console
	11.2.1. Managing process instances
	11.2.1.1. Inspecting process definitions
	11.2.1.2. Starting new process instances
	11.2.1.3. Managing process instances
	11.2.1.4. Inspecting process instance state
	11.2.1.5. Inspecting process instance variables

	11.2.2. Human task lists
	11.2.3. Reporting

	11.3. Adding new process / task forms
	11.4. REST interface

	Chapter 12. Human Tasks
	12.1. Human tasks inside processes
	12.1.1. Swimlanes

	12.2. Human task management component
	12.2.1. Task life cycle
	12.2.2. Linking the task component to the jBPM engine
	12.2.3. Starting the Task Management Component
	12.2.4. Interacting With the Task Management Component

	12.3. Human Task Management Interface
	12.3.1. Eclipse integration
	12.3.2. Web-based Task View

	Chapter 13. Domain-specific processes
	13.1. Introduction
	13.2. Example: Notifications
	13.2.1. Creating the work definition
	13.2.2. Registering the work definition
	13.2.3. Using your new work item in your processes
	13.2.4. Executing service nodes

	Chapter 14. Testing and debugging
	14.1. Unit testing
	14.1.1. Helper methods to create your session
	14.1.2. Assertions
	14.1.3. Testing integration with external services
	14.1.4. Configuring persistence

	14.2. Debugging
	14.2.1. The Process Instances View
	14.2.2. The Human Task View
	14.2.3. The Audit View

	Chapter 15. Process Repository
	Chapter 16. Business Activity Monitoring
	16.1. Reporting
	16.2. Direct Intervention

	Chapter 17. Flexible Processes
	Chapter 18. Integration with Maven, OSGi, Spring, etc.
	18.1. Maven
	18.2. OSGi

	Index

