JBPM User Guide

R @ T YT PP 1
T o B S 1= o 1Y P 1

@ YT 1= PSP 3

1.3, COrE ENQINE ..ottt et e 4

B o 11 Y=o 1 () (P 5

1.5. WeD-based DEeSIGNETiiiiiiiieieii et 7

1.6, JBPIM CONSOIE ..uuiiiiiciii et e e e 8

A B To Tor 0 4 1= o o= 4o o P 9

2. GELING STAEA ..oeiiini i e e 11
0 I T 11/] [7= To £ PP 11

2.2, GEttiNg STAMEAciieiii e 11

2.3 COMMUIIEY ettt ettt et e e et r e et et e e e et e e e e et e e e enaan s 11

A S Yo U of L PP 12
T I o =T o 1 12

P Yo U o R oo Lo - P 12

2.4.3. BUIldING frOM SOUICE .. .coeiiiiiiiii e 13

G T [1S3 = 11 = SRR 15
3.1. Prer@QUISITESiiiiiii ettt ettt e e et et e eeaans 15

3.2. DoOwWNIoad the INSLAIIETcocveiiii e 15

3.3, DBIMIO SEIUP ..ieiiiiiie ettt e 15

3.4. 10-Minute Tutorial: Using the Eclipse toolingccooviiiiiiiiiii e, 17

3.5. 10-Minute Tutorial: Using the jBPM CONSOIeccccuiiiiiiiiiiiiiiiieecii e 18

3.6. 10-Minute Tutorial: Using Guvnor repository and DeSignerc.cccovevviveeiineeiinnnns 20

3.7. What to do if | encounter problems or have quUeStioNS?ccoeviiiiiiiiiieiiiiineees 21

3.8. Frequently asked QUESLIONScccouiiiiiiiii e e 22

4. COre ENQINE: AP oo e 23
4.1, The JBPM API oo 24
4.1.1. KNOWIEAJE BASE ...ttt e 24

S 1= 11 o] o PP 25

O R Y = | £ S PP 27

4.2, KNowledge-based AP ..o 29

5. Core ENGINE: BASICS ..oouuuiiiiiiii it 31
LT O =T i [0 = T o] (Lo =N 31
5.1.1. Using the graphical BPMN2 EditOrccuuiiiiiiiiiiiiiiiiec e 31

5.1.2. Defining processes USING XMLccouuiiiiiiiiiiieiie e e 32

5.1.3. Defining Processes Using the Process APlccooviiiiiiiiiiiiiniciiiin e, 34

5.2. Details of different process CONStructs: OVEIVIEWcccuvvvviiieviineiiieeiiieeeieeennn. 35

5.3. DetailS: ProCesS PrOPEITIESciiiiiieiiiiii ettt 36

5.4, DELalS: EVENTS ...ouuiiiiiiiii ettt 37
B4 1. STAIT @VENT Lot 37

L o o I YT | £ PSP 38

5.4.3. Intermediate EVENTScccuiiiiiiieei e 40

5.5, DetallS: ACLIVILIES ...uuuiiiiiiiii et e e e et e e eaanas 42

jBPM User Guide

B5.5.1. SCHPL TASK et 42

5.5.2. SEIVICE TASK ..iiviiiiiiiii i 44

B.5.3. USEI tASK oiniiii i 45

5.5.4. Reusable SUD-PrOCESSoiiiiiiiiii i e 46

5.5.5. BUSINESS TUIE tASK ..oeuniiiiii e 47

5.5.6. Embedded SUD-PrOCESScccuiiiiiiiiii e e 48

5.5.7. MUlti-iNStanCe SUD-PrOCESSccoouuiiiiiiiiiiii e 49

5.6. DEetailS: GAtEWAYSuiiiiiiiiiiei e e e e e e 50
5.6.1. DIVEIgING QAIEWAY ... ceeeutnieiiiiiieeeiit ettt e et e et e e e et eeeere e eeees 50

5.6.2. CONVEIgING QAEWAYccuuiiiiiieiiiieiiiieeeiiee i e e e e e e e e st e e et e st eeaa e aanaas 52

5.7. Using a process in your appliCationoveiiuiiiieiiii e 53

5.8. OthEr fEALUIESuuiiiiiii i e e e e e aa s 54
LS T N 7 | - L 54

LR S 0] 01511 =T £ PP 55

5.8.3. ACLION SCHIPLS oeetiiiiiiiie ettt e e e 56

D B4, EVENIS Lo 58

LS TS T T2 1T P 59

5.8.6. UPAAtiNg PrOCESSES ..ucvvuiiiiiieiiiieeii et et e e e e e e e e e et e e et e e eanaeees 59

5.8.7. MUItI-tNre@dinguiiiiiiiiiee e 61

6. Core ENgine: BPMN 2.0 ...uuiiiiiiiiiii i e e e e et e e e e e e e e e e e e ea 65
6.1. Business Process Model and Notation (BPMN) 2.0 specificationc.....ccc.u.... 65

LS = 11 1] 0] [P 69

6.3. Supported elements / attribULEScooueiiiiiii e 70

7. Core Engine: Persistence and tranSactionsccoooeuiiiiiiiiiiii i ece e eies 75
0 0 a1 TSI = (P 75
7.1.1. BiNAry PerSiSIEBNCEccvuiiiiiiiiii e e e 75

7.1.2. SaAfE POINIS ... 75

7.1.3. Configuring PersiStENCEccuuiiiiiiiiii e e 75

0 - g STV 1 o L 79

7.2. Process DEefiNItiONSccouuuiiiiiiiiii i e e 79

RS T o 151 (0] Y Ko T R SO SUP PR UPPPTT 80
7.3.1. Storing Process Events in a Databaseccoooevieiiiiiiiii i, 80

8. Core ENgiNe: EXAMPIES ..o 83
8.1. IBPM EXAMPIES ..oeniiiiiiiii et 83

8.2, EXAMPIES ot 83

SRS T U111 A (=) PSP 84

9. Eclipse BPMN 2.0 PIUGIN ..uuiiiiiiieiii ettt e e et 85
9.1, INSEAIIALION ...uiiiiii e 85

9.2. Creating your BPMN 2.0 PIrOCESSESuuuuiiiiiiieiiiiiieieii ettt e ettt e e 85

9.3. Filtering elements and attributescccooiiiiiiii i 90

O B =T o 1= PP TSUPPTR 93
020 O 1 3 7= 1= o o PSPPI 94
02 T T o = oo Yo [94
10.3. Designer Ul EXPlaiNgdccouuiiiiiiiiii e 94

10.4. Support for Domain-specific Service NOAEScovveiiiiiiiiiiiii e 99
10.5. ConfigUING DESIGNETciii i e e e e e e e e e e e et e e eaaees 102
10.5.1. Changing the default configuration in Designerccccceeveviiiinieeinnnnnn. 102
10.5.2. Changing the default configuration in GUVNOFccoevviiiieiineein, 103
10.6. Generation of process and task formscoooiiiiiiiii 104
10.7. View processes as PDF and PNGcccocoiiiiiiiii e 107
10.8. Viewing process BPMN2 SOUICEcc.uuiiiiiiiiieiiiii et e et e e e e 108
10.9. Embedding designer in your own applicationcccoceiiieiiiiiiiiieiin e 109
10.10. Migrating existing jBPM 3.2 based processes to BPMN2ccccoevvvevnnnnnne. 109
10.11. Visual Process Validationooouuiiiiiiiiiiiii e 110
10.12. Integration with the jBPM Service RepOSItOrYcoveiiiviiiiiiiiiieeiiiiieeeciie 111
10.13. Generating code to share the process image, PDF, and embedded process
=0 1o) P 112
10.14. Importing existing BPMN2 PrOCESSESccuuiiiiieiiiiieiiieeiiiieeiee e et e e e eaaes 113
10.15. Viewing Process INformationoiiiiiiiiiiiiiiin e 113
10.16. REQUIFEMENTS ..iituiiiiiieii i ee e e e e et e e s e e e e e e et e e et e e et e e et e e et e eetnaeeanaees 114
B T 1 1=] 115
0 O 19 13 7= 1= o PRSP 115
0 O R0 1 [0 2= L1 T I PPN 115
11.1.2. User and group Managementccuuieiuuieeiiieriieeeiieeaieeeineesineeaneennns 115
11.1.3. Registering your own service handlersccooooiiiiiiiiiinieiiiinee, 116
11.2. Running the process management CONSOIEcc.vviiiiieiiiieiiiieeie e 117
11.2.1. Managing ProCess INSTANCESieierriiariiiieeteiie e et e e e e 119
11.2.2. HUM@N taSK lISES ..oiiiiiieiiiii i 129
11.2.3. REPOMING .ieetieiiiii ettt ettt ettt e e et e e e e 131
11.3. Adding new process / task fOrmMSccoiiiiiiiiiiii e 135
N o S I 1 1= o = T = S 137
12, HUMAN TASKS iitiiiiiiii ettt e e e e et e e e et e e e et e e e e et e e e eebannas 139
12.1. Human tasks iNSide PrOCESSESiiiiiiiiieiiii e 139
12.1.1. User and group asSigNMENTcveiuieeiiieiii e e ee e e e e e eeens 143
12.1.2. DAta MAPPING ...ueeeeiieeeii et 143
12.0.3. SWIMIANES ..eeviiiiiiiii et e e e et e e 145
12.0.4, EXAMPIES oot e 146
12.2. HUMAN tASK SEIVICE ...uuuiiiiiiii ettt e e e e e eeena e e e enanns 146
12.2.1. Task life CYCIE oo 146
12.2.2. Linking the human task service to the BPM enginec.cccoevevvneennnnn. 148
12.2.3. Interacting with the human task SErviceocccoviiiiiiiiiiiiiiiine 148
12.2.4. User and group asSIgNMENTiieiiieiiieiiii e ee e e e et e e eeens 150
12.2.5. Starting the human task SErviCeccviiiiiiiiiiiiii e 151
12.3. HUMAN taSK ClENTS ...ieiiiiiiiiii e e et e eeea e eees 153
12.3.1. Eclipse demo task ClEeNtoviiiiiiiiiiiii e 153
12.3.2. Web-based task client in jBPM Consolecccoocciviiiiiiiiiiieiiieeceeeenn, 154
13. DOMAIN-SPECITIC PIrOCESSES ...iiiiiiiiiiii ettt e s 155
R 200 O 1911 o T [o 1o o I PSP 155

jBPM User Guide

13.2. Example: NOHFICAIONSc.uuuiiiiiiiiieiiii e 156
13.2.1. Creating the work definitioncooooii i 156

13.2.2. Registering the work definitionccoooiiiiiii e, 157

13.2.3. Using your new work item in YOUr PrOCESSEScevvvueeruiereiiereineeenneeenns 158

13.2.4. EXeCUting SEIVICE NOUESccuuuiiiiiiiiieeiei et 162

14. Testing and debUGQING ..couniiiiiiii e e e 165
I O a1 R (= 1 o TSP UPPPTTRPPPIN 165
14.1.1. Helper methods to create your SESSIONcoceuueeiiieiiiieeiieeciiiee e eninas 166

I =TT 5 (o 166

14.1.3. Testing integration with external SErViCeSccoecvuiiiiiiieiiiieeiiiieeieeennn, 167

14.1.4. Configuring PEISISIENCEccuuuiiiiiii it 168

I B 1= o 18 o o |1 o 169
14.2.1. The Process INStANCES VIEWc.uiiiiiiiiiiiiiieie et 169

14.2.2. The Human Task VIEWccoouuiiiiiiiiiiiii e 170

14.2.3. The AUt VIEW ..oeuniiiieee et e e e e e e 171

ST o o Tod oIy S = LT o o 1T o Y/ 173
16. BUSINESS ACHIVILY MONITOTING oevuniiiiii e 177
G0 I = Yo 1 11 T 177
G2 B T (=Tl ol] (=1 V=T o1 (o] o PP 179

17, FIEXIDIE PrOCESSES ..ottt ettt e e e e e et e e e e e s 181
18. Integration with Maven, OSGi, SPring, €1C. ..iciiiiiiiiiii e 185
TR |V = 1Y = o PRSPPI 185

S B © 1 1 PP 186
ST T o] 11T TP 188
3o 1= G P 191

Vi

viii

Chapter 1.

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It's light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute and monitor
business processes, throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need
to be executed to achieve that goal and the order, using a flow chart. This greatly improves the
visibility and agility of your business logic. jBPM focuses on executable business process, which
are business processes that contain enough detail so they can actually be executed on a BPM
engine. Executable business processes bridge the gap between business users and developers
as they are higher-level and use domain-specific concepts that are understood by business users
but can also be executed directly.

% Project Manager Evaluation !

& Self Evaluation <+> <—{> —. @

HR Manager Evaluation

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

» Eclipse-based and web-based editor to support the graphical creation of your business
processes (drag and drop)

« Pluggable persistence and transactions based on JPA / JTA

* Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors

« Management console supporting process instance management, task lists and task form
management, and reporting

» Optional process repository to deploy your process (and other related knowledge)

Chapter 1. Overview

« History logging (for querying / monitoring / analysis)
« Integration with Seam, Spring, OSGi, etc.

BPM makes the bridge between business analysts, developers and end users, by offering process
management features and tools in a way that both business users and developers like it. Domain-
specific nodes can be plugged into the palette, making the processes more easily understood by
business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life
situations that cannot easily be described using a rigid process. We bring control back to the end
users by allowing them to control which parts of the process should be executed, to dynamically
deviate from the process, etc.

jBPM is also not just an isolated process engine. Complex business logic can be modeled as
a combination of business processes with business rules and complex event processing. jBPM
can be combined with the Drools project to support one unified environment that integrates these
paradigms where you model your business logic as a combination of processes, rules and events.

Apart from the core engine itself, there are quite a few additional (optional) components that you
can use, like an Eclipse-based or web-based designer and a management console.

Overview

1.2. Overview

End User
Your i JEPM :
Appllcation . Console .

; Core Sefvices
\l : [Core LR] \
vour : Process STy 0 Histoy : Human .
Senvices E . r Task
P . '_‘ =" I'\- A
' * |Rutes Engine |
. Guvnor ;
[Repository
! b ' Web-Based
: Edipse Edtor : Designer .'
Developer Busmness
Analyst

Figure 1.1.

This figure gives an overview of the different components of the jBPM project. jJBPM can integrate
with a lot of other services as (and we've shown a few using grey boxes on the figure) but here
we focus on the components that are part of the jBPM project itself.

» The process engine is the core of the project and is required if you want to execute business
processes (all other components are optional, as indicated by the dashed border). Your

Chapter 1. Overview

application services typically invoke the core engine (to start processes or to signal events)
whenever necessary.

* An optional core service is the history log, that will log all information about the current and
previous state of all your process instances.

» Another optional core service is the human task service, that will take care of the human task
life cycle if human actors participate in the process.

« Two types of graphical editors are supported for defining your business processes:

» The Eclipse plugin is an extension to the Eclipse IDE, targeted towards developers, and
allows you to create business processes using drag and drop, advanced debugging, etc.

» The web-based designer allows business users to manage business processes in a web-
based environment.

» The Guvnor repository is an optional component that can be used to store all your business
processes. It supports collaboration, versioning, etc. There is integration with both the Eclipse
plugin and web-based designer, supporting round-tripping between the different tools.

* The jBPM console is a web-based console that allows business users to manage their business
processes (start new processes, inspect running instances), their task list and see reports.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). It's most important features are:

« Solid, stable core engine for executing your process instances

« Native support for the latest BPMN 2.0 specification for modeling and executing business
processes

 Strong focus on performance and scalability

« Light-weight (can be deployed on almost any device that supports a simple Java Runtime
Environment, does not require any web container at all)

» (Optional) pluggable persistence with a default JPA implementation
* Pluggable transaction support with a default JTA implementation

« Implemented as a generic process engine, so it can be extended to support new node types
or other process languages

Eclipse Editor

« Listeners to be notified of various events
« Ability to migrate running process instances to a new version of their process definition

The core engine can also be integrated with a few other (independent) core services:

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms and
some more advanced features like escalation, delegation, rule-based assignments, etc.

« The history log can store all information about the execution of all the processes on the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic state of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Eclipse Editor

The Eclipse editor is a plugin to the Eclipse IDE and allows you to integrate your business
processes in your development environment. It is targeted towards developers and has some
wizards to get started, a graphical editor for creating your business processes (using drag and
drop) and a lot of advanced testing and debugging capabilities.

Chapter 1. Overview

Java - rvalustionisrcimain' rescurces'E valuatiaon.bpmn - Eclipre S0K

wigate Sagrch Project Aum Window Help
= u! qlll
apdorer =

S
on
i aia
1 AT
| Process st java
AU e

raluation bperin 2, 3010

ystarm Linrary [java.1 5.1

Library

o L- e - - =L

PSRN, ey

|100% - || Grd | [0 =2 Ju

[Select
i) Margues

' ¥
_"EHWI:H‘F"IH
[COmpInents @ O—'I I Seif Evalustion _..® @
| | ¢

20 Stant Ewent

® End Event

I Aule Task

& Gateway [deerge]

o Galeway |Canwerngs)
) Aeisable Sub-Frocess
[Scrpk Task

i Tirner Even

S Ermror Event

) Mezeage Event
() s e Tkl

(=) Emibedded Sub-Frocess
() MuBiple Instances

L= Sereice Tasis]

= Ermail
kg

|—-| i WA Evakiation

|—-| i PM Evahsaton

% Probiemrs | @ Jeados _'E, Declaration | = Properties =

Proparty

Actorid
Comment
Cortent

]

Hatallats

Harmre

O Eniry Achors
O Exit Actions

ol Lo

#{emplyee]
Flease perform a sef-evaktation

]
{widl =135, height=40, y=56, Unigusid=_2, s=087
SeF Evalation

Figure 1.2. Eclipse editor for creating BPMN2 processes

It includes features like:

Wizard for creating a new jBPM project
A graphical editor for BPMN 2.0 processes
Plugging in your own domain-specific nodes

Validation

Web-based Designer

* Runtime support (so you can select which version of jBPM you would like to use)

» Graphical debugging, to see all running process instances of a selected session, to visualize
the current state of one specific process instance, etc.

« Audit view to get an overview of what happened at runtime
 Unit testing your processes

« Integration with the knowledge repository

1.5. Web-based Designer

The web-based designer allows you to model your business processes in a web-based
environment. It is targeted towards more business users and offers a graphical editor for viewing
and editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports
round-tripping between the Eclipse editor and the web-based designer.

Prope-ios |[BFHE ey

L ul
e wrrd
e
E’ E Dot s
sk L S ——
L Helle Goodbya?
W e
Gl R
1
=i

Figure 1.3. Web-based designer for creating BPMN2 processes

Optionally, you can use one or more knowledge repositories to store your business processes (and
other related artefacts). The web-based designer is integrated in the Guvnor repository, which is
targeted towards business users and allows you to manage your processes separately from your
application. It supports:

* A repository service to store your business processes and related artefacts, using a JCR
repository, which supports versioning, remotely accessing it as a file system or using REST
services, etc.

Chapter 1. Overview

* A web-based user interface to manage your business processes, targeted towards business
users, supporting the visualization (and editing) of your processes (the web-based designer is
integrated here), but also categorisation, scenario testing, deployment, etc.

« Collaboration features to have multiple actors (for example business users and developers)
work together on the same process definition.

« A knowledge agent to easily create new sessions based on the process definitions in the
repository. This also supports (optionally) dynamically updating all sessions if a new process
has been deployed.

1.6. JBPM Console

Business processes can be managed through a web console. It is targeted towards business
users and its main features are:

» Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances, etc.

« Human task management: being able to get a list of all your current tasks (either assigned to
you or that you might be able to claim), completing tasks on your task list (using customizable
task forms), etc.

« Reporting: get an overview of the state of your application and/or system using dynamically
generated (customizable) reports, that give you an overview of your key performance indicators
(KPIs).

Documentation

BPM

we Process Dafinitions - Process Inslances

EES
Refresh Starl Tenrminats Delets
Definilions
tion List instance I0 Siake
1 RLUBMING

rocess Instance Activily

nstance: 1

4{ o Project Manager Evaluation J—‘

L

4—[o HR Manager Evaluaton

State FLINRMING
Stant Date: 2008-08-11 182337

g Activily

Figure 1.4. Managing your process instances

1.7. Documentation

The documentation is structured as follows:

» Overview: the overview chapter gives an overview of the different components

Start Dale
2008-08-11 1682337

@ —Fo sevvsvsn |+ @ ®—@®

» Getting Started: the getting started chapter teaches you where to download the binaries and

sources and contains a lot of useful links

« Installer: the installer helps you getting a running demo setup including most of the jBPM
components and runs you through them using a simple example and some 10-minute tutorials

including screencasts

K12

Cragras

Inesslancs

Chapter 1. Overview

« Core engine: the next 4 chapters describe the core engine: the process engine API, the process
definition language (BPMN 2.0), persistence and transactions, and examples

» Eclipse editor: the next 2 chapters describe the Eclipse plugin for developers, both the old one
and the new BPMN 2.0 tooling which is being developed

« Designer: describes the web-based designer that allows business users to edit business
processes in a web-based context

« Console: the jBPM console can be used for managing process instances, human task lists and
reports

« Important features

* Human tasks: When using human actors, you need a human task service to manage the life
cycle of the tasks, the task lists, etc.

» Domain-specific processes: plug in your own higher-level, domain-specific nodes in your
processes

» Testing and debugging: how to test and debug your processes

» Process repository: a process repository could be used to manage your business processes
« Advanced concepts

» Business activity monitoring: event processing to monitor the state of your systems

» Flexible processes: model much more adaptive, flexible processes using advanced process
constructs and integration with business rules and event processing

* Integration: how to integrate with other technologies like maven, OSGi, etc.

10

Chapter 2.

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artefact you want:

« bin: all the jBPM binaries (jars) and their dependencies

* src: the sources of the core components

« gwt-console: the jbpm console, a zip file containing both the server and client war
 docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jbpme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After that, you should be ready to start creating your own processes and integrate the engine
with your application, for example by starting from the installer or another example, or by starting
from scratch.

2.3. Community

Here are a lot of useful links if we want to become part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

11

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Chapter 2. Getting Started

* The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

e A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217] for asking
guestions and giving answers

* A JIRA bug tracking system [https://jira.jboss.org/jira/browse/IJBPM] for bugs, feature requests
and roadmap

« A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the
latest snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jopm-
distribution/target/]

Please feel free to join us in our IRC channel at irc.codehaus.org #bpm. This is where most of the
real-time discussion about the project takes place and where you can find most of the developers
most of their time as well. Don't have an IRC client installed? Simply go to http://irc.codehaus.org,
input your desired nickname, and specify #bpm. Then click login to join the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

The web-based designer is based on Oryx/Wapama and is MIT License

The BPM console is GNU Lesser General Public License (LGPL) v2.1

» The Drools project is Apache License v2.0.
2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jJBPM and Drools project can be found here [https://github.com/
droolsjbpm].

e The jBPM Eclipse plugin can be found here [http://anonsvn.jboss.org/repos/jbosstools/trunk/
bpmn/plugins/org.jboss.tools.jopm/].

12

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://irc.codehaus.org
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/
http://anonsvn.jboss.org/repos/jbosstools/trunk/bpmn/plugins/org.jboss.tools.jbpm/

Building from source

* The new Eclipse BPMN2 plugin can be found here [https://github.com/droolsjbpm/bpmn2-
eclipse-editor].

» The web-based designer can be found here [https://github.com/tsurdilo/process-designer]

» The BPM console can be found here [https://github.com/bpmc/bpm-console]

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

13

https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/droolsjbpm/bpmn2-eclipse-editor
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/bpmc/bpm-console
https://github.com/bpmc/bpm-console
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

14

Chapter 3.

Chapter 3. Installer

This guide will assist you in installing and running a demo setup of the various components of the
jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,
or if you want to help out, do not hesitate to contact the jBPM community as described in the "What
to do if I encounter problems or have questions?" section.

3.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

3.2. Download the installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%205/] the
installer. There are two versions, a full installer (which already contains a lot of the dependencies
that are necessary during the installation) and a minimal installer (which only contains the installer
and will download all dependencies). In general, it is probably best to download the full installer:
jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.
Simply go into the install folder and run:

ant install.deno
This will:

* Download JBoss AS
« Download Eclipse

 Install Drools Guvnor into JBoss AS

15

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://sourceforge.net/projects/jbpm/files/jBPM%205/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 3. Installer

Install Oryx Designer into JBoss AS

Install the jBPM gwt-console into JBoss AS

Install the jBPM Eclipse plugin

Install the Drools Eclipse plugin

This could take a while (REALLY, not kidding, we are downloading an application server and
Eclipse installation, even if you downloaded the full installer). The script however always shows
which file itis downloading (you could for example check whether it is still downloading by checking
the whether the size of the file in question in the jopm-installer/lib folder is still increasing). If
you want to avoid downloading specific components (because you will not be using them or you
already have them installed somewhere else), check below for running only specific parts of the
demo or directing the installer to an already installed component.

To limit the amount of data that needs to be downloaded, we have disabled the download of the
Eclipse BIRT plugin for reporting by default. If you want to try out reporting as well in the jBPM
console, make sure to put the jBPM.birt.download property in the build.properties file to true before
running the installer.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.deno

This will:

Start the H2 database

Start the JBoss AS

Start Eclipse

Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor repository and
jBPM console, as explained in the next three sections.

If you do not wish to use Eclipse in the demo setup, you can use the alternative commands:

ant install.denp. noeclipse
ant start.deno. noeclipse

16

10-Minute Tutorial: Using the Eclipse tooling

3.4. 10-Minute Tutorial: Using the Eclipse tooling

The following screencast [http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf] gives an
overview of how to run a simple demo process in Eclipse. It shows you:

» How to import an existing example project into your workspace, containing
« asample BPMN2 process for requesting a performance evaluation
e asample Java class to start the process

* How to start the process

P lava - el i main) | kel CEaT val wathen, Bpin - Eoligne

s | ProcemTerl @ o Dt c | | e [osF Evslstion —-@ @ -

o T - -

£ Pomsiers | & peacec i Ceswaion B G FluwRE""0

Saperty -~
il
==t]
Carter | o= || caes
Grapls
H i
Heallats raight =48, wigte 135, Lingumitl=. 3, y=16, k=98] -

Figure 3.1.
[http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf]

Do the following:

17

http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf
http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf
http://people.redhat.com/kverlaen/install-eclipse-jbpm.swf

Chapter 3. Installer

« Once Eclipse has opened, simple import (using "File -> Import ..." and then under the General
category, select "Existing Projects into Workspace") the existing sample project (in the jbpm-
installer/sample/evaluation directory). This should add the sample project, including a simple
BPMNZ2 process and a Java file to start the process.

* You can open the BPMN2 process and the Java class by double-clicking it.

* We will now debug the process, so we can visualize its runtime state using the debug
tooling. First put a breakpoint on line "ksession.startProcess" of the ProcessTest class. To start
debugging, right-click on ProcessTest.java in the com.sample package (under "src/main/java")
and select "Debug As - Java Application”, and switch to the debug perspective.

« Open up the various debug views: Under "Window - Show View -> Other ...", select the Process
Instances View and Process Instance View (under Drools category) and the Human Task View
(under Drools Task) and click OK.

e The program will hit the breakpoint right before starting the process. Click on the "Step
Over" (F6) to start the process. In this case, it will simply start the process, which will result in
the creation of a new user task for the user "krisv" in the human task service, after which the
process will wait for its execution. Go to the Human Task View, fill in "krisv" under Userld and
click Refresh. A new Performance Evaluation task should show up.

» To show the state of the process instance you just started graphically, click on the Process
Instances View and then select the ksession variable in the Variables View. This will show all
active process instances in the selected session. In this case, there is only one process instance.
Double-click it to see the state of that process instance annotated on the process flow chart.

* Now go back to the Task View, select the Performance Evaluation task and first start and then
complete the selected task. Now go back to the Process Instances view and double click the
process instance again to see its new state.

You could also create a new project using the jBPM project wizard. This sample project contains
a simple Helloworld BPMN2 process and an associated Java file to start the process. Simple
select "File - New ... - Project ..." and under the "jBPM" category, select "jBPM project" and click
"Next". Give the project a name and click "Finish". You should see a new project containing a
"sample.bpmn" process and a "com.sample.ProcessTest" Java class. You can open the BPMN2
process by double-clicking it. To execute the process, right-click on ProcessTest.java and select
"Run As - Java Application". You should see a "Hello World" statement in the output console.

3.5. 10-Minute Tutorial: Using the |BPM Console

Open up the process management console:
http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password. The following screencast [http://
people.redhat.com/kverlaen/install-gwt-console-jbpm.swf] gives an overview of how to manage
your process instances. It shows you:

18

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf
http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf

10-Minute Tutorial: Using the jBPM Console

» How to start a new process

« How to look up the current status of a running process instance
» How to look up your tasks

* How to complete a task

« How to generate reports to monitor your process execution

T . o A

B miav Lagaut

Tasks o Procass (R e

PR el
Plabair i L Stard | | Dwiwim | Terrirsis

T Exmecubor vayiory
ALY Procedt Chorveas RLINNING '{'J

Execution deinils
Process Evaluaton Grirse
ragance 1D 1 Irmcarm Cwia
Kay
State RLMNENG
Raporiing Stan Date 200-10-12 17-32:38
Setlings €l »| Aty

Figure 3.2.
[http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf]

» To manage your process instances, click on the "Processes" tab at the left an select "Process
Overview". After a slight delay (if you are using the application for the first time, due to session
initalization etc.), the "Process" list should show all the known processes. The jbpm-console
in the demo setup currently loads all the process in the "src/main/resources” folder of the
evaluation sample in "jbpme-installer/sample/evaluation". If you click the process, it will show you
all current running instances. Since there are no running instances at this point, the "Instance"
table will remain empty.

19

http://people.redhat.com/kverlaen/install-gwt-console-jbpm.swf

Chapter 3. Installer

* You can start a new process instance by click on the "Start" button. After confirming that you
want to start a new execution of this process, you will see a process form where you need to fill
in the necessary information to start the process. In this case, you need to fill in your username
"krisv", after which you can complete the form and close the window. A new instance should
show up in the "Instance" table. If you click the process instance, you can check its details
below and the diagram and instance data by click on the "Diagram" and "Instance Data" buttons
respectively. The process instance that you just started is first requiring a self-evaluation of the
user and is waiting until the user has completed this task.

e To see the tasks that have been assigned to you, choose the "Tasks" tab on the left and
select "Personal Tasks" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation” task for you. You can complete this task
by selecting it and clicking the "View" button. This will open the task form for performance
evaluations. You can fill in the necessary data and then complete the form and close the window.
After completing the task, you could check the "Process Overview" once more to check the
progress of your process instance. You should be able to see that the process is how waiting
for your HR manager and project manager to also perform an evaluation. You could log in as
"john" / "john" and "mary" / "mary" to complete these tasks.

* After starting and/or completing a few process instances and human tasks, you can generate a
report of what happened so far. Under "Reporting”, select "Report Templates". By default, the
console has two report templates, one for generating a generic overview for all processes and
one for inspecting once specific process definition. If you select the latter, make sure to enter
"com.sample.evaluation" as the process definition id to see the activity related to the evaluation
process. Click the "Create Report” button to generate a realtime report of the current status.
Notice that the initialization of the reports might take a moment, especially the first time you
use the application.

3.6. 10-Minute Tutorial: Using Guvnor repository and
Designer

The Guvnor repository can be used as a process repository to store business processes. It also
offers a web-based interface to manage your processes. This includes a web-based editor for
viewing and editing processes.

Open up Drools Guvnor;
http://localhost:8080/drools-guvnor

Log in, using any non-empty username / password (we disabled authentication for demo
purposes). The following screencast [http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf]
gives an overview of how to manage your repository. It shows you:

* How to import an existing process (in this case the evaluation process) from eclipse into guvnor

* How to open up the evaluation process in the web editor

20

http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf
http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf

What to do if | encounter problems or have questions?

» How to build a package so it can be used for creating a session

- Bavewse Final defauliPacikaps Procesass [delfauliPackages] Evaluaiion
KW Bl -
Fule 1= 1
Crecle Mew P
=l =aa Packages e W = 1 -
= B getaultFackage - rrH -
¢ Busingss nas 35568 " “HR Evaluation)
& Tecnnical nue assets ¢) "__nm Evaluation
= Funclions H};i GAbEW DY —— GULEWAY gns

¥ DSL confyurations

. Wiooe
1 Processes
2 Enumarationg
* Tesd Soenarias
= whiL Eroperbes
7 oiher asssts, documantation
a4 WorkingSals
= =a4 SIObAl Arpa
Yon
V' Package snapshols

Figure 3.3.
[http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf]

If you want to know more, we recommend you take a look at the rest of the Drools Guvnor
documentation.

Once you're done playing:
ant stop.deno

and simply close all the rest.

3.7. What to do if | encounter problems or have
guestions?

You can always contact the jJBPM community for assistance.

21

http://people.redhat.com/kverlaen/install-guvnor-jbpm.swf

Chapter 3. Installer

Email: jopm-dev@lists.jboss.org
IRC: #jbpm at irc.codehaus.org

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

3.8. Frequently asked questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarly
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jopme-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console, Guvnor and the Designer. What can | do?

A: You can check the server log for possible exceptions in the jppm-installer/jboss-4.2.3.GA/
server/default/log directory.

For all other questions, try contacting the jBPM community as described above.

22

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 4.

Chapter 4. Core Engine: API

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definition
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

T
~__

N
-

Knowledge
Base Session

Stateful
Knowledge

Process
Definition

Process
Instance

23

Chapter 4. Core Engine: API

For example, image you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order
comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and one create session that you then use to execute all your processes.

4.1. The iBPM API

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal AP might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

4.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a knowledge builder to load processes from various resources (for example from the
classpath or from file system), and then create a new knowledge base from that builder. The
following code snippet shows how to create a knowledge base consisting of only one process
definition (using in this case a resource from the classpath).

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;

24

Session

kbui | der. add(Resour ceFact ory. newCl assPat hResour ce(" M/Process. bpm"), ResourceType. BPM\2) ;
Know edgeBase kbase = kbui |l der. newKnow edgeBase() ;

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

4.1.2. Session

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
snippet shows how easy it is to create a session based on the earlier created knowledge base,
and to start a process (by id).

St at ef ul Knowl edgeSessi on ksessi on = kbase. newsSt at ef ul Knowl edgeSessi on() ;
Processl nst ance processl nstance = ksession.startProcess("com sanpl e. M/Process");

The ProcessRunt i ne interface defines all the session methods for interacting with processes, as
shown below.

/**

* Start a new process instance. The process (definition) that should
* be used is referenced by the given process id.

*

* processld The id of the process that should be started
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld);

/**
* Start a new process instance. The process (definition) that should
* be used is referenced by the given process id. Paraneters can be passed

* to the process instance (as nanme-value pairs), and these will be set
* as variabl es of the process instance.

* processld the id of the process that should be started

* paranmeters the process variables that should be set when starting the process ir
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld,
Map<String, bject> paraneters);

/**

* Signals the engine that an event has occurred. The type paraneter defines

25

Chapter 4. Core Engine: API

* which type of event and the event paraneter can contain additional information
* related to the event. All process instances that are listening to this type
* of (external) event will be notified. For performance reasons, this type of event
* signaling should only be used i f one process i nstance shoul d be able to notify
* other process instances. For internal event within one process instance, use the
* signal Event nethod that also include the processlnstanceld of the process instance
* in question.
*
* @aramtype the type of event
* @param event the data associated with this event
*/
voi d signal Event (String type,
Cbj ect event);

/**

* Signals the process instance that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All node instances inside the given process instance that

* are listening to this type of (internal) event will be notified. Note that the event
* will only be processed inside the given process instance. All other process instances
* waiting for this type of event will not be notified.

* @paramtype the type of event
* @param event the data associated with this event
* @aram processlnstanceld the id of the process instance that shoul d be signal ed
*/
voi d signal Event (String type,
Cbj ect event,
I ong processlnstancel d);

/**
* Returns a collection of currently active process instances. Note that only process
* instances that are currently | oaded and active inside the engine will be returned.
* When using persistence, it is likely not all running process instances will be | oaded
*as their state will be stored persistently. It is reconmended not to use this
* method to collect information about the state of your process instances but to use
* a history log for that purpose.
*
* @eturn a collection of process instances currently active in the session
*/
Col | ecti on<Processl nst ance> get Processl nstances();

/**

* Returns the process instance with the given id. Note that only active process instance:s
* will be returned. |f a process instance has been conpl eted already, this nethod will re
* null.
*
* @aramid the id of the process instance

* @eturn the process instance with the givenidor null if it cannot be found

26

Events

]
Processl nst ance get Processl nstance(l ong processl nstancel d);

/**

* Aborts the process instance with the given id. |f the process instance has been conpl et
* (or aborted), or the process instance cannot be found, this nmethod will throw an

* | |1 egal Argunent Excepti on.

*

* id the id of the process instance

*/
voi d abort Processl nstance(l ong processl nstancel d);

/**

* Returns the Workltemvanager related to this session. This can be used to

* regi ster new WorkltenHandl ers or to conplete (or abort) Wrkltens.
*

* t he Workltemvanager related to this session
*/
Wor kI t emvanager get Wor ki t emVanager () ;

4.1.3. Events

The session provides methods for registering and removing listeners. A Pr ocessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event);

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl et ed(ProcessConpl et edEvent event);

voi d bef oreNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d bef oreNodeLeft (ProcessNodeLeftEvent event);

voi d afterNodeLeft(ProcessNodelLeftEvent event);

voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVariabl eChanged(ProcessVari abl eChangedEvent event);

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred

27

Chapter 4. Core Engine: API

at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Knowl edgeRunt i meLogger Fact ory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created
must be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

Knowl edgeRunt i neLogger | ogger =

Knowl edgeRunt i neLogger Fact ory. newri | eLogger (ksession, "test");
/1 add invocations to the process engine here,
/'l e.g. ksession.startProcess(processld)

| ogger. cl ose();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

= e; RuleFlow started: ruleflow[com.sample.ruleflow]
= #] RuleFlow node triggered: Start in process ruleflow[com.sample ruleflow]
= #] RuleFlow node triggered: Hello in process ruleflow[com . sample ruleflow]
= 4 RuleFlow node triggered: End in process ruleflow[corm.sample. ruleflow]

=2 RuleFlow completed: ruleflow[com.sample.ruleflow]

28

Knowledge-based API

4.2. Knowledge-based API

As you might have noticed, the APl as exposed by the jBPM project is a knowledge API. That
means that it doesn't only focus on processes, but potentially also allows other types of knowledge
to be loaded. The impact for users that are only interested in processes however is very small.
It just means that, instead of having a ProcessBase or a ProcessSession, you are using a
KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your
application, the knowledge-based API allows users to add different types of resources, such as
processes and rules, in almost identical ways into the same knowledge base. This enables a
user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools
Fusion (for event processing) almost instantaneously (and even to integrate these different types
of Knowledge) as the API and tooling for these different types of knowledge is unified.

29

30

Chapter 5.

Chapter 5. Core Engine: Basics

% Project Manager Evaluation !

~
& Self Evaluation |— <*:-> <-*> @
o 4

HR Manager Evaluation

Figure 5.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

5.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor in the Eclipse plugin

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

5.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is a editor that allows you to create a process by dragging and
dropping different nodes on a canvas and editing the properties of these nodes. The graphical
BPMNZ2 editor is part of the jBPM / Drools Eclipse plugin. Once you have set up a jBPM project (see
the installer for creating a working Eclipse environment where you can start), you can start adding
processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the directory
you would like to put your process in and select "New", then "File". Give the file a name and
the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can safely
ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

31

Chapter 5. Core Engine: Basics

=2 MyProcess bpmn 5 =0
' Salact

i Marguee

— SEUEncE
Flow

= Components < —
Start Event ';__ __J
 End Event
() Aule Task

o Gateway
[diverge]

= Gateway
[comverge]

=) Rawsahle
Sub-Frocess

1) Script Task
Timer Event
= Error Event

= Message
Event

(T User Task

al Emibedded
Subk-Frocess

(=) Muliple

Instarsces
= Service Ta
Log

+| Ermail

Figure 5.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
"Components" palette of the GUI. Clicking on an element in your process allows you to set the
properties of that element. You can connect the nodes (as long as it is permitted by the different
types of nodes) by using "Sequence Flow" from the "Components" palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

5.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
tar get Nanespace="htt p://ww. j boss. org/ dr ool s"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL" Rul e Task

32

Defining processes using XML

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http://ww. ong. or g/ spec/ BPMN/ 20100524/ MODEL

BPMN20. xsd"
xm ns: g="http://ww. jboss. org/drool s/fl ow gpd"

xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\N 20100524/ DI "

xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/
xm ns:tns="http://ww.]j boss. org/drool s">

e
D"

<processrocessType="Privat e"i sExecut abl e="true"i d="com sanpl e. hel | o"nane="Hel | o

Process" >

<!-- nodes -->
<startEvent id="_1" nane="Start" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello World"); </script>
</ scri pt Task>
<endEvent id="_3" nane="End" >
<t erm nat eEvent Definiti on/>
</ endEvent >

<!-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" target Ref="_2"
<sequenceFl ow i d="_2- 3" sourceRef="_2" target Ref="_3"

</ process>

<bpmmdi : BPM\Di agr an>
<bpmdi : BPMNPI ane bpmmEl enent =" com sanpl e. hel | 0" >
<bpmmdi : BPMNShape bpmEl enrent =" _1" >
<dc: Bounds x="16" y="16" w dt h="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="96" y="16" wi dth="80" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="208" y="16" wi dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNEdge bpmEl enent ="_1-_ 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bpmmdi : BPM\NEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2-_ 3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bpmmdi : BPM\NEdge>
</ bpmdi : BPM\PI ane>
</ bpmdi : BPMNDi agr an®

/>
/>

33

Chapter 5. Core Engine: Basics

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

5.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kf | ow. core and or g. j bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

5.1.3.1. Example

This is a simple example of a basic process with a script task only:

Rul eFl owPr ocessFactory factory =
Rul eFl owPr ocessFact ory. creat eProcess("org. j bpm Hel | oWorl d");
factory
/| Header
.name(" Hel | oWbr | dProcess")
.version("1.0")
. packageNane("org. j bpnt)
/'l Nodes
.startNode(1).name("Start"). done()
.actionNode(2).name("Action")
.action("java", "Systemout.printin(\"Hello Wrld\");").done()
. endNode(3) . nane("End") . done()
/'l Connecti ons
.connection(1, 2)
.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();

You can see that we start by calling the static createProcess() method from the
Rul eFl owPr ocessFact ory class. This method creates a new process with the given id and returns

34

Details of different process constructs: Overview

the Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(),
actionNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have
finished configuring that specific node, the done() method returns you to the current
Rul eFl owPr ocessFact ory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connecti on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

5.2. Details of different process constructs: Overview

The following chapters will describe the different constructs that you can use to model your
processes (and their properties) in detail. Executable processes in BPMN consist of a different
types of nodes being connected to each other using sequence flows. The BPMN 2.0 specification
defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

The following sections will describe the properties of the process itself and of each of these
different node types in detail, as supported by the Eclipse plugin and shown in the following figure

35

Chapter 5. Core Engine: Basics

of the palette. Note that the Eclipse property editor might show more properties for some of the
supported node types, but only the properties as defined in this section are supported when using
the BPMN 2.0 XML format.

=+ Components £

Start Event

@ End Event

Rule Task

@ Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

(0 Timer Event

®) Error Event

@ Signal Event

User Task

(=) Embedded Sub-Process

(w) Multiple Instances

= Service Tasks £

= Log

== Email

Figure 5.3. The different types of BPMN2 nodes

5.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

¢ |d: The unique id of the process.

* Name: The display name of the process.

36

Details: Events

« Version: The version number of the process.
» Package: The package (namespace) the process is defined in.

» Variables: Variables can be defined to store data during the execution of your process. See
section “Data” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“Human Tasks” for details.

5.4. Detalls: Events

5.4.1. Start event

Figure 5.4. Start event

The start of the process. A process should have exactly one start node, which cannot have
incoming connections and should have one outgoing connection. Whenever a process is started,
execution will start at this node and automatically continue to the first node linked to this start
event, and so on. It contains the following properties:

 Id: The id of the node (which is unique within one node container).

* Name: The display name of the node.

37

Chapter 5. Core Engine: Basics

5.4.2. End events

5.4.2.1. End event

Figure 5.5. End event

The end of the process. A process should have one or more end events. The End Event
should have one incoming connection and cannot have any outgoing connections. It contains the
following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are cancelled. Non-terminating end events
are simply ends for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance
will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating the top-level process instance, not just that sub-
process.

38

End events

5.4.2.2. Throwing error event

Figure 5.6. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e FaultName: The name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

» FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

Error handlers can be specified using boundary events. This is however currently only possible
when working with XML directly. We will be adding support for graphically specifying this in the
new BPMN2 editor.

39

Chapter 5. Core Engine: Basics

5.4.3. Intermediate events

5.4.3.1. Catching timer event

— —

Figure 5.7. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled
(e.g., by completing or aborting the enclosing process instance). Consult the section “Timers” for
more information. The Timer Event contains the following properties:

* Id: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d] [#h] [#n [#s] [#[ns]] . This means that you can specify the amount
of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify
anything). For example, the expression "1h" will wait one hour before triggering the timer. The
expression could also use #{expr} to dynamically derive the delay based on some process
variable. Expr in this case could be a process variable, or a more complex expression based
on a process variable (e.g. myVariable.getValue()).

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]] . This

40

Intermediate events

means that you can specify the amount of days, hours, minutes, seconds and milliseconds
(which is the default if you don't specify anything). For example, the expression "1h" will wait
one hour before triggering the timer again. The expression could also use #{expr} to dynamically
derive the period based on some process variable. Expr in this case could be a process variable,
or a more complex expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes. This is however
currently only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

5.4.3.2. Catching signal event

Figure 5.8. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have no incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

* |d: The id of the node (which is unique within one node container).

41

Chapter 5. Core Engine: Basics

* Name: The display name of the node.
» EventType: The type of event that is expected.

* VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using
ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Know edgeRunti me() . si gnal Event (
event Type, data, kcontext.getProcesslnstance().getld());

A throwing signal events could also be used to model the signaling of an event. This is however
currently only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMN2 editor.

5.5. Detalls: Activities

5.5.1. Script task

4 ™
script Task |[—

. vy

Figure 5.9. Script task

!

42

Script task

Represents a script that should be executed in this process. A Script Task should have one
incoming connection and one outgoing connection. The associated action specifies what should
be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext that
references the ProcessCont ext object (which can, for example, be used to access the current
Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession
using kcont ext . get Know edgeRunt i me()). When a Script Task is reached in the process, it will
execute the action and then continue with the next node. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by
business users, it is probably wise to avoid low-level implementation details inside the process,
including inside these script tasks. Script task could still be used to quickly manipulate variables
etc. but other concepts like a service task could be used to model more complex behaviour in
a higher-level manner.

 Scripts should be immediate. They are using the engine thread to execute the script. Scripts that
could take some time to execute should probably be modeled as an asynchronous service task.

* You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the
knowledge of the engine, which can be problematic, especially when using persistence and
transactions. In general, it is probably wiser to model communication with an external service
using a service task.

 Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

43

Chapter 5. Core Engine: Basics

5.5.2. Service task

Service Task

Figure 5.10. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

Id: The id of the node (which is unigque within one node container).
Name: The display name of the node.

Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of

44

User task

type Stri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oStri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

5.5.3. User task

—» % User Task

4 ™

., vy

Figure 5.11. User task

Processes can also involve tasks that need to be executed by human actors. A User Task
represents an atomic task to be executed by a human actor. It should have one incoming
connection and one outgoing connection. User Tasks can be used in combination with Swimlanes
to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more
details. A User Task is actually nothing more than a specific type of service node (of type "Human
Task"). A User Task contains the following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.

TaskName: The name of the human task.

Priority: An integer indicating the priority of the human task.
Comment: A comment associated with the human task.

Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

45

Chapter 5. Core Engine: Basics

» Content: The data associated with this task.

e Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

< On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result” that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note
that, if there is data related to this specific process instance that the end user needs when
performing the task, this data should be passed as the content of the task. The task for example
does not have access to process variables. Check out the chapter on human tasks to get more
detail on how to pass data between human tasks and the process instance.

5.5.4. Reusable sub-process

=«_ Reusable Sub-Process

Figure 5.12. Reusable sub-process

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

» Processld: The id of the process that should be executed.

46

Business rule task

» Wait for completion: If this property is true, this sub-process node will only continue if the child
process that was started has terminated its execution (completed or aborted); otherwise it will
continue immediately after starting the subprocess (so it will not wait for its completion).

* Independent: If this property is true, the child process is started as an independent process,
which means that the child process will not be terminated if this parent process is completed (or
this sub-process node is cancelled for some other reason); otherwise the active sub-process
will be cancelled on termination of the parent process (or cancellation of the sub-process node).

e On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

« Parameter infout mapping: A sub-process node can also define in- and out-mappings for
variables. The variables given in the "in" mapping will be used as parameters (with the
associated parameter name) when starting the process. The variables of the child process
that are defined the "out" mappings will be copied to the variables of this process when the
child process has been completed. Note that you can use "out" mappings only when "Wait for
completion” is set to true.

5.5.5. Business rule task

Business Rules Task

Figure 5.13. Business rule task

Represents a set of rules that need to be evaluated. The rules are evaluated when the node is
reached. A Rule Task should have one incoming connection and one outgoing connection. Rules
are defined in separate files using the Drools rule format. Rules can become part of a specific
ruleflow group using the rul ef | ow gr oup attribute in the header of the rule. When a Rule Task
is reached in the process, the engine will start executing rules that are part of the corresponding
ruleflow-group (if any). Execution will automatically continue to the next node if there are no more
active rules in this ruleflow group. This means that, during the execution of a ruleflow group, it
is possible that new activations belonging to the currently active ruleflow group are added to the
Agenda due to changes made to the facts by the other rules. Note that the process will immediately
continue with the next node if it encounters a ruleflow group where there are no active rules
at that time. If the ruleflow group was already active, the ruleflow group will remain active and
execution will only continue if all active rules of the ruleflow group has been completed. It contains
the following properties:

47

Chapter 5. Core Engine: Basics

* Id: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

* RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

5.5.6. Embedded sub-process

Sub-Process

& User Task

Figure 5.14. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but
also the definition of additional variables that are accessible for all nodes inside this container. A
sub-process should have one incoming connection and one outgoing connection. It should also
contain one start node that defines where to start (inside the Sub-Process) when you reach the
sub-process. It should also contain one or more end events. Note that, if you use a terminating
event node inside a sub-process, you are terminating the top-level process instance, not just that
sub-process, so in general you should use non-terminating end nodes inside a sub-process. A
sub-process ends when there are no more active nodes inside the sub-process. It contains the
following properties:

 Id: The id of the node (which is unique within one node container).

48

Multi-instance sub-process

* Name: The display name of the node.

« Variables: Additional variables can be defined to store data during the execution of this node.
See section “Data” for details.

5.5.7. Multi-instance sub-process

Multiple Instances

o O @

Figure 5.15. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple
instance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

» CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util. Col | ecti on.Ifthe collection expression evaluates to null or an empty collection, the
multiple instances sub-process will be completed immediate and follow its outgoing connection.

* VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

49

Chapter 5. Core Engine: Basics

5.6. Details: Gatewavs

Figure 5.16. Diverging gateway

50

Diverging gateway

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes
currently supported:

« AND or parallel means that the control flow will continue in all outgoing connections
simultaneously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. The constraint with the lowest priority number that evaluates to true is selected.
Constraints can be specified using different dialects. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the ruleflow will
throw an exception at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the process will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

51

Chapter 5. Core Engine: Basics

5.6.2. Converging gateway

Figure 5.17. Converging gateway

52

Using a process in your application

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are two types of splits currently
supported:

e AND or parallel means that is will wait until all incoming branches are completed before
continuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifit is triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

It contains the following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Type: The type of the Join node, i.e. AND or XOR.

5.7. Using a process in your application

As explained in more detail in the API chapter, there are two things you need to do to be able to
execute processes from within your application: (1) you need to create a Knowledge Base that
contains the definition of the process, and (2) you need to start the process by creating a session
to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the
Knowledge Base:

Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der. add(Resour ceFact ory. newCl assPat hResour ce(" MyProcess. bpmm2"),
Resour ceType. BPM\2) ;

After adding all your process to the builder (you can add more than one process), you can
create a new knowledge base like this:

Know edgeBase kbase = kbuil der. newKnow edgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could
not parse your processes correctly).

53

Chapter 5. Core Engine: Basics

2. Starting a process: To start a particular process, you will need to call the st ar t Pr ocess method
on your session and pass the id of the process you want to start. For example:

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. start Process("com sanpl e. hel | 0");

The parameter of the st art Process method is the id of the process that needs to be started.
When defining a process, this process id needs to be specified as a property of the process (as
for example shown in the Properties View in Eclipse when you click the background canvas
of your process).

When you start the process, you may specify additional parameters that are used to pass
additional input data to the process, using the startProcess(String processlid, Map
par amet er s) method. The additional set of parameters is a set of hame-value pairs. These
parameters are copied to the newly created process instance as top-level variables of the
process, so they can be accessed in the remainder of your process directly.

5.8. Other features

5.8.1. Data

While the flow chart focuses on specifying the control flow of the process, it is usually also
necessary to look at the process from a data perspective. Throughout the execution of a process,
data can retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass. Variables can be defined inside a variable scope. The
top-level scope is the variable scope of the process itself. Subscopes can be defined using a Sub-
Process. Variables that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

54

Constraints

« Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

/'l call method on the process variable "person"
per son. set Age(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

» Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on} . For example, the description of a human task could be defined as You need
to contact person #{person. get Name()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

« Various other nodes can also access data. Event nodes for example can store the data
associated to the event in a variable, etc. Check the properties of the different node types for
more information.

Finally, processes (and rules) all have access to globals, i.e. globally defined variables
and data in the Knowledge Session. Globals are directly accessible in actions just like
variables. Globals need to be defined as part of the process before they can be used. You
can for example define globals by clicking the globals button when specifying an action
script in the Eclipse action property editor. You can also set the value of a global from
the outside using ksessi on. set d obal (nane, val ue) or from inside process scripts using

kcont ext . get Know edgeRunti me() . set d obal (nane, val ue) ;.

5.8.2. Constraints

Constraints can be used in various locations in your processes, for example in a diverging
gateway. [BPM supports two types of constraints:

» Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in

55

Chapter 5. Core Engine: Basics

the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

return person.get Age() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the Working Memory and matching for the process instance in your
rule constraint. We have added special logic to make sure that a variable processl nst ance of
type Wor kf | owPr ocessl nst ance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to
insert the process instance into the session and, possibly, to update it, for example, using Java
code or an on-entry or on-exit or explicit action in your process. The following example of a rule
constraint will search for a person with the same name as the value stored in the variable "name"
of the process:

processl nstance : Workfl owPr ocessl nstance()
Person(nane == (processlnstance. getVari abl e("nane")))
add nore constraints here ...

5.8.3. Action scripts

Action scripts can be used in different ways:

» Within a Script Task,

» As entry or exit actions, with a number of nodes.

56

Action scripts

Actions have access to (globals and the variables that are defined for
the process and the predefined variable kcontext. This variable is of type
org. drool s. runtime. process. ProcessCont ext and can be used for several tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodel nst ance node = kcont ext. get Nodel nst ance() ;
String nane = node. get NodeName() ;

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processl nstance proc = kcontext.getProcesslnstance();
proc. signal Event (type, eventbject);

» Getting or setting the value of variables.

» Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. nanme instead of person. get Name()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints
out the name of the person in the "requester"” variable of the process would look like this:

/1 Java di al ect
System out. println(person.getNanme());

/1 MEL di al ect
System out . println(person.name);

57

Chapter 5. Core Engine: Basics

5.8.4. Events

® T
I"«,_::'I —-|H Hello | h-'\\-l'/ ~|‘L Script | r@

-

Figure 5.18. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are
executed according to the process plan, by requesting the execution of work items and waiting for
the results. However, it is also possible that the process should respond to events that were not
directly requested by the process engine. Explicitly representing these events in a process allows
the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own
event types and their associated data.

A process can specify how to respond to events by using a Message Event. An Event node needs
to specify the type of event the node is interested in. It can also define the name of a variable,
which will receive the data that is associated with the event. This allows subsequent nodes in the
process to access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

« Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or
on-exit action of some node) can signal the occurrence of an internal event to the surrounding
process instance, using code like the following:

kcont ext . get Processl nstance() . si gnal Event (type, eventData);
« External event: A process instance can be notified of an event from outside using code such as:

processl nst ance. si gnal Event (type, eventData);

« External event using event correlation: Instead of notifying a process instance directly, it is
also possible to have the engine automatically determine which process instances might be

58

Timers

interested in an event using event correlation, which is based on the event type. A process
instance that contains an event node listening to external events of some type is notified
whenever such an event occurs. To signal such an event to the process engine, write code
such as:

ksessi on. si gnal Event (type, eventData);

Events could also be used to start a process. Whenever a Message Start Event defines an event
trigger of a specific type, a new process instance will be started every time that type of event is
signalled to the process engine.

5.8.5. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of O results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. This means that
you can specify the amount of days, hours, minutes, seconds and milliseconds (which is the default
if you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer (again).

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

* A Timer Event may be added to the process flow. Its activation starts the timer, and when
it triggers, once or repeatedly, it activates the Timer node's successor. This means that the
outgoing connection of a timer with a positive period is triggered multiple times. Cancelling a
Timer node also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process as a boundary event. This is however currently
only possible when working with XML directly. We will be adding support for graphically
specifying this in the new BPMNZ2 editor.

5.8.6. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or
due to changing requirements. Actually, you cannot really update a process, you can only deploy
a new version of the process, the old process will still exist. That is because existing process
instances might still need that process definition. So the new process should have a different id,

59

Chapter 5. Core Engine: Basics

though the name could be the same, and you can use the version parameter to show when a
process is updated (the version parameter is just a String and is not validated by the process
framework itself, so you can select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already
running process instances. There are various strategies one could consider for each running
instance:

» Proceed: The running process instance proceeds as normal, following the process (definition) as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the
updated process.

» Abort (and restart): The already running instance is aborted. If necessary, the process instance
can be restarted using the new process definition.

« Transfer: The process instance is migrated to the new process definition, meaning that - once it
has been migrated successfully - it will continue executing based on the updated process logic.

By default, jBPM uses the proceed approach, meaning that multiple versions of the same process
can be deployed, but existing process instances will simply continue executing based on the
process definition that was used when starting the process instance. Running process instances
could always be aborted as well of course, using the process management API. Process instance
migration is more difficult and is explained in the following paragraphs.

5.8.6.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some
later point in time. This includes all the data linked to this process instance (as variables), but also
the current state in the process diagram. For each node that is currently active, a node instance is
used to represent this. This node instance can also contain additional state linked to the execution
of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,
using id references) that represents the process logic that needs to be followed when executing
this process instance (this clear separation of definition and runtime state allows reuse of the
definition across all process instances based on this process and minimizes runtime state). As a
result, updating a running process instance to a newer version so it used the new process logic
instead of the old one is simply a matter of changing the referenced process id from the old to
the new id.

However, this does not take into account that the state of the process instance (the variable
instances and the node instances) might need to be migrated as well. In cases where the process
is only extended and all existing wait states are kept, this is pretty straightforward, the runtime
state of the process instance does not need to change at all. However, it is also possible that a
more sofisticated mapping is necessary. For example, when an existing wait state is removed,
or split into multiple wait states, an existing process instance that is waiting in that state cannot

60

Multi-threading

simply be updated. Or when a new process variable is introduced, that variable might need to be
initiated correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessinstanceUpgrader can be used to upgrade a workflow process instance to a
newer process instance. Of course, you need to provide the process instance and the new process
id. By default, jBPM will automatically map old node instances to new node instances with the
same id. But you can provide a mapping of the old (unique) node id to the new node id. The unique
node id is the node id, preceded by the node ids of its parents (with a colon inbetween), to allow
to uniquely identify a node when composite nodes are used (as a node id is only unique within its
node container. The new node id is simply the new node id in the node container (so no unique
node id here, simply the new node id). The following code snippet shows a simple example.

/1 create the session and start the process "com sanpl e. process”

Knowl edgeBui | der kbuilder = ...

St at ef ul Knowl edgeSessi on ksession = ...

Processl nst ance processlnstance = ksession. startProcess("com sanpl e. process");

/1 add a new version of the process "com sanpl e. process2"
kbui | der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui |l der. add(..., ResourceType. BPM\2);

kbase. addkKnow edgePackages(kbui | der. get Knowl edgePackages());

/1 mgrate process instance to new version
Map<String, Long> mappi ng = new HashMap<String, Long>();
/1 top level node 2 is mapped to a new node with id 3
mappi ng. put ("2", 3L);
/1 node 2, which is part of conposite node 5, is nmapped to a new node with id 4
mappi ng. put ("5.2", 4L);
Wor kf | owPr ocessl nst anceUpgr ader . upgr adePr ocessl nst ance(
ksessi on, processlnstance.getld(),
"com sanpl e. process2", nmapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for
specific situations. Be sure to first disconnect the process instance, change the state accordingly
and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader
does it.

5.8.7. Multi-threading

The engine itself allows you to run multiple threads on the same session. A process instance itself
however uses logical multi-threading to implement parallel execution, not multiple real threads.
The main reason for doing this is that allowing multiple threads to execute on the same process
instance implicates that we have to make sure that state is consistent across these threads,
and that there are no race conditions and deadlocks etc. This can have a significant impact
on performance, even when multi-threading is not required. Allowing real multi-threading on the
same process instance is also no guarantee on improved performance, as in general it leads to

61

Chapter 5. Core Engine: Basics

decreased performance (due to overhead and conflicts). Therefore, we only allow one thread to
be processing a specific process instance at each time. It is however simple to achieve logical
multi-threading using asynchronous tasks, as explained below.

In general, the engine executes the process sequentially. For example, when the engine
encounters a script task in a process, it will synchronously execute that script and wait for it to
complete before continuing execution. Similarly, if a process encounters a parallel gateway, it
will sequentially trigger each of the outgoing branches, one after the other. This is possible since
execution is almost always instantaneous, meaning that it is extremely fast and almost produces
no overhead. As a result, the user usually doesn't even notice this.

When a service task is reached in the process, the engine will also invoke the handler of this
service synchronously. This means that the engine will wait for the completeWorkltem(..) method
to return before continuing execution. Therefore, it is important that your service handler executes
your service asynchronously if its execution is not instantaneous. Image for example you want
to invoke an external service. Since the delay of invoking this service remotely and waiting for
the results might be too high, it might be a good idea to invoke this service asynchronously. This
means that the handler will only invoke the service asynchronously and will notify the engine if the
results are available. In the mean time, the process engine can then continue execution elsewhere.
Similarly, your action scripts also be instantaneous, as the engine will be waiting for it to execute.
For example, doing Thread.sleep(..) as part of a script will not make the engine continue execution
elsewhere but will block the engine thread during that period.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. Therefore, the
human task handler will only create a new task (on the task list of the assigned actor) when the
human task node is triggered. The engine will then be able to continue execution on the rest of
the process (if necessary) and the handler will notify the engine asynchronously when the user
has completed the task.

Image for example that you have a process that executes three service in parallel using a parallel
gateway. The engine will first trigger the first service when executing this process, in which case
the first service will be invoked. Since the handler will invoke this service asynchronously, this
service will be executing separately. The engine can in the mean while continue executing the rest
of the process, until the results of the service return. So the engine will continue with executing
the second branch of the parallel gateway, triggering the second service (asynchronously). While
the second service is also executing, it will then invoke the third service as well. At that point, all
three services will be executing in parallel and the engine will be waiting for the results to return.
As you can see, you can achieve multi-threading and parallelism by making sure that the tasks
that need to be executed in parallel are invoked asynchronously

5.8.7.1. Asynchronous handlers

How to implement an asynchronous service handler? In general, this all depends on the
technology you're using. If you're using only simple Java, you can for example execute the actual
service in a new thread:

62

Multi-threading

public class MyServi ceTaskHandl er inplenents WrkltenHandl er {

public void executeWrkltem(Wrkltem workltem WorkltemVanager manager) {
new Thr ead(new Runnabl e() {
public void run() {
/1 Do the heavy lifting here ...

}
}).start();

public void abortWorkltem Wrkltem workltem WorkltemVanager nmanager) ({
}

In general, a handler usually will not implement the business logic to perform the work item,
but would rather contact an existing service to do the hard work. For example, the human task
handler simply invokes the human task service to add a task there. To implement an asynchronous
handler, you usually have to simply do an asynchronous invocation of this service. This usually
depends on the technology you use to do the communication, but this might be as simple as
asynchronously invoking a web service, sending a JMS message to the external service, etc.

63

64

Chapter 6.

Chapter 6. Core Engine: BPMN 2.0

6.1. Business Process Model and Notation (BPMN) 2.0
specification

The primary goal of BPMNis to provide a notation that is readily understandable
by all business users,

from the business analysts that create the initial drafts of the processes, to
the techni cal devel opers

responsi ble for inplenenting the technology that will perform those processes,
and finally, to the

busi ness people who will nanage and nonitor those processes."”

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPMS5 allows you to execute processes defined using the BPMN 2.0 XML format. That means
that you can use all the different jBPM5 tooling to model, execute, manage and monitor
your business processes using the BPMN 2.0 format for specifying your executable business
processes. Actually, the full BPMN 2.0 specification also includes details on how to represent
things like choreographies and collaboration. The jBPM project however focuses on that part of
the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

» Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

» Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPMS5 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be

65

Chapter 6. Core Engine: BPMN 2.0

used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional
elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:
* Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
« End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
« Non-interrupting Boundary Event (Escalation, Timer)
« Interrupting Boundary Event (Escalation, Error, Timer, Compensation)
* Activities
e Script Task
* Task
» Service Task
» User Task
* Business Rule Task
* Manual Task
e Send Task
* Receive Task
* Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
* Ad-Hoc Sub-Process
« Data-Object
* Gateways
« Diverging

* Exclusive

66

Business Process Model and Notation (BPMN) 2.0 specification

* Inclusive
» Parallel
+ Event-Based
e Converging
» Exclusive
+ Parallel
e Lanes
« Data
» Java type language
* Process properties
» Embedded Sub-Process properties
* Activity properties
» Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
tar get Nanespace="htt p: //ww. exanpl e. or g/ M ni mal Exanpl e"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL
BPM\20. xsd"
xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\ 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"

67

Chapter 6. Core Engine: BPMN 2.0

xm ns: di ="http://ww. ong. or g/ spec/ DDY 20100524/ DI "
xm ns:tns="http://ww.jboss. org/drool s">

<procegw ocessType="Pri vat d"'sExecut abl e="t r ua@"d="com sanpl e. Hel | oWor | dfane="Hel | o
World" >

<!-- nodes -->
<startEvent id="_1" name="StartProcess" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello Wirld"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t erm nat eEvent Defini ti on/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1-_2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmdi : BPM\Di agr an
<bpmmdi : BPMNPI ane bpmmEl enent ="M ni mal * >
<bpmdi : BPMNShape bpmmEl enent ="_1" >
<dc: Bounds x="15" y="91" wi dth="48" hei ght="48" />
</ bpmmdi : BPMNShape>
<bpmmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="95" y="88" w dt h="83" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmmdi : BPMNShape bpmeEl enrent =" _3" >
<dc: Bounds x="258" y="86" w dth="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNEdge bpmEl erent =" _1-_2" >
<di : waypoi nt x="39" y="115" />
<di : waypoi nt x="75" y="46" />
<di : waypoi nt x="136" y="112" />
</ bprmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2- 3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bpmmdi : BPM\NEdge>
</ bpmmdi : BPM\PI ane>
</ bpmdi : BPMNDi agr an®

</definitions>

To create your own process using BPMN 2.0 format, you can

68

Examples

» Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,
make sure you select Drools 5.1 code compatibility. This will create a new process using the
BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

« The Designer is an open-source web-based editor that supports the BPMN 2.0 format. We have
embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the
Designer (either standalone or integrated) to create / edit BPMN 2.0 processes and then export
them to BPMN 2.0 format or save them into Guvnor and import them so they can be executed.

* A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification. It
is currently still under development and only supports a limited number of constructs and
attributes, but can already be used to create simple BPMN2 processes. To create a new BPMN2
file for this editor, use the wizard (under Examples) to create a new BPMN2 file, which will
generate a .bpmn2 file and a .prd file containing the graphical information. Double-click the .prd
file to edit the file using the graphical editor. For more detail, check out the chapter on the new
BPMN2 Eclipse plugin.

* You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce("sanpl e. bprm2"), Resour ceType. BPM\2) ;
return kbuil der. newKnow edgeBase();

... and how to execute this process ...

Know edgeBase kbase = creat eKnow edgeBase();
St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;
ksession. start Process("com sanpl e. Hel | oWworl d");

For more detail, check out the chapter on the API and the basics.

6.2. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and
other elements).

69

Chapter 6. Core Engine: BPMN 2.0

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These
test processes can also serve as simple examples: they don't really represent an entire real life
business processes but can definitely be used to show how specific features can be used. For
example, the following figures shows the flow chart of a few of those examples. The entire list can
be found in the src/main/resources folder for the jopm-bpmn2 module like here [http://github.com/
krisv/jopm/tree/master/joppm-bpmn2/src/test/resources/].

6.3. Supported elements / attributes

Table 6.1. Keywords

Element Supported Supported Extension Extension
attributes elements attributes elements
definitions rootElement
BPMNDiagram
process processType property laneSet packageName import global
isExecutable flowElement adHoc version
name id
sequenceFlow sourceRef conditionExpressiopriority
targetRef
isimmediate
name id
interface name id operation
operation name id inMessageRef
laneSet lane
lane name id flowNodeRef
import* name
global* identifier type
Events
startEvent name id dataOutput X y width height
dataOutputAssociation
outputSet
eventDefinition
endEvent name id datalnput X y width height
datalnputAssociation
inputSet
eventDefinition
intermediateCatchEnane id dataOutput X y width height
dataOutputAssociation

70

http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/krisv/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Supported elements / attributes

Element

Supported

attributes

intermediate ThrowEaene id

boundaryEvent

terminateEventDe

compensateEvent

conditionalEventD
errorEventDefinitic
error
escalationEventDe

escalation

messageEventDetf
message
signalEventDefinit

timerEventDefinitic

Activities

task

scriptTask

script

userTask

potentialOwner

cancelActivity
attachedToRef
name id

finition

DatiitigRef

efinition
rerrorRef
errorCode id
>fgsitalationRef
escalationCode
id
infiEmsageRef
itemRef id
aignalRef

019

name id

scriptFormat
name id

name id

Supported
elements

outputSet
eventDefinition

datalnput

Extension
attributes

X y width height

datalnputAssociation

inputSet
eventDefinition

eventDefinition

documentation
extensionElements

condition

timeCycle
timeDuration

ioSpecification

X y width height

taskName x vy

datalnputAssociatiomidth height
dataOutputAssociation

script

text[mixed
content]

ioSpecification

X y width height

X y width height

datalnputAssociation
dataOutputAssociation

resourceRole

resourceAssignmentExpression

Extension
elements

onEntry-script
onExit-script

71

Chapter 6. Core Engine: BPMN 2.0

Element

Supported

attributes

Extension
elements

resourceAssignme

businessRuleTask

manualTask

sendTask

receiveTask

serviceTask

subProcess

adHocSubProcess

callActivity

multilnstanceLoop

onEntry-script*

onExit-script*

Gateways

parallelGateway

eventBasedGatew

exclusiveGateway

inclusiveGateway

ntExpression

name id

name id

messageRef
name id

messageRef
name id

operationRef
name id

name id

cancelRemainingl
name id

calledElement
name id

Characteristics

scriptFormat

scriptFormat

gatewayDirection
name id

ayatewayDirection
name id

default
gatewayDirection
name id

default
gatewayDirection
name id

Supported Extension
elements attributes
expression

X y width height

ruleFlowGroup

X y width height
ioSpecification X y width height

datalnputAssociation

ioSpecification X y width height
dataOutputAssociation
ioSpecification X y width height
datalnputAssociation
dataOutputAssociation

flowElement

property
loopCharacteristics

X y width height

nstanpétionConditior y width height

flowElement
property

ioSpecification X y width height

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script
onExit-script

onEntry-script

datalnputAssociatiomaitForCompletion onExit-script

dataOutputAssociatimtependent

loopDatalnputRef
inputDataltem

script

script

X y width height

X y width height

X y width height

X y width height

72

Supported elements / attributes

Element

Data

property

dataObject

itemDefinition

ioSpecification

datalnput

datalnputAssociat

dataOutput
dataOutputAssoci

inputSet
outputSet
assignment

formalExpression

BPMNDI
BPMNDiagram
BPMNPIane

BPMNShape
BPMNEdge
Bounds

waypoint

Supported

attributes

itemSubjectRef
id
itemSubjectRef
id

structureRef id

name id

on

name id

ation

language

bpmnElement

bpmnElement
bpmnElement

X y width height

Xy

Extension
attributes

Supported
elements

datalnput
dataOutput
inputSet
outputSet

sourceRef
targetRef
assignment

sourceRef
targetRef
assignment

datalnputRefs
dataOutputRefs
from to

text[mixed
content]

BPMNPIlane

BPMNEdge
BPMNShape

Bounds

waypoint

Extension
elements

73

74

Chapter 7.

Chapter 7. Core Engine:
Persistence and transactions

jBPM allows the persistent storage of certain information, i.e., the process runtime state, the history
information, etc.

7.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution
of the process in that specific context. For example, when executing a process that specifies
how to process a sales order, one process instance is created for each sales request. The
process instance represents the current execution state in that specific context, and contains all
the information related to that process instance. Note that it only contains the minimal runtime
state that is needed to continue the execution of that process instance at some later time, but it
does not include information about the history of that process instance if that information is no
longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

7.1.1. Binary Persistence

jBPM provides a binary persistence mechanism that allows you to save the state of a process
instance as a binary dataset. This way, the state of all running process instances can always be
stored in a persistent location. Note that these binary datasets usually are relatively small, as they
only contain the minimal execution state of the process instance. For a simple process instance,
this usually contains one or a few node instances, i.e., any node that is currently executing, and,
possibly, some variable values.

7.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the
process engine. Whenever a process instance is executing, after its start or continuation from a
wait state, the engine proceeds until no more actions can be performed. At that point, the engine
has reached the next safe state, and the state of the process instance and all other process
instances that might have been affected is stored persistently.

7.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. Itis, however, pretty straightforward
to configure the engine to do this, by adding a configuration file and the necessary dependencies.

75

Chapter 7. Core Engine: Persi...

Persistence itself is based on the Java Persistence API (JPA) and can thus work with several
persistence mechanisms. We are using Hibernate by default, but feel free to employ alternatives.
A H2 database is used underneath to store the data, but you might choose your own alternative
for this, too.

First of all, you need to add the necessary dependencies to your classpath. If you're using the
Eclipse IDE, you can do that by adding the jar files to your jBPM runtime directory, or by manually
adding these dependencies to your project. First of all, you need the jar file j bpm per si st ence-
j pa.jar, as that contains code for saving the runtime state whenever necessary. Next, you
also need various other dependencies, depending on the persistence solution and database you
are using. For the default combination with Hibernate as the JPA persistence provider, the H2
database and Bitronix for JTA-based transaction management, the following list of additional
dependencies is needed:

1. jbpm-persistence-jpa (org.jbpm)

2. drools-persistence-jpa (org.drools)

3. persistence-api (javax.persistence)

4. hibernate-entitymanager (org.hibernate)

5. hibernate-annotations (org.hibernate)

6. hibernate-commons-annotations (org.hibernate)
7. hibernate-core (org.hibernate)

8. dom4j (doma4j)

9. jta (javax.transaction)

10btm (org.codehaus.btm)

11javassist (javassist)

12slf4j-api (org.slf4j)

13slf4j-jdk14 (org.slf4))

14h2 (com.h2database)
15commons-collections (commons-collections)

Next, you need to configure the jBPM engine to save the state of the engine whenever
necessary. The easiest way to do this is to use JPAKnow edgeSer vi ce to create your knowledge
session, based on a knowledge base, a knowledge session configuration (if necessary) and an

76

Configuring Persistence

environment. The environment needs to contain a reference to your Entity Manager Factory. For
example:

/]l create the entity manager factory and register it in the environnment
EntityManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence.jpa");
Envi ronnent env = Know edgeBaseFact ory. newEnvi r onnent () ;
env. set (Envi ronnent Nanme. ENTI TY_MANAGER _FACTCRY, enf);

/'l create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on =

JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);
int sessionld = ksession.getld();

/1 invoke nethods on your nethod here
ksession. start Process("MProcess");
ksessi on. di spose();

You can also yse the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

/1 recreate the session from database using the sessionld
ksessi on = JPAKnow edgeServi ce. | oadSt at ef ul Knowl edgeSessi on(sessionld, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process
instance at some later point. This means, for example, that it does not contain information about
already executed nodes if that information is no longer relevant, or that process instances that
have been completed or aborted are removed from the database. If you want to search for history-
related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configures JPA to use Hibernate
and the H2 database (or your preference), called per si st ence. xnl in the META-INF directory,
as shown below. For more details on how to change this for your own configuration, we refer to
the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si stence
versi on="1. 0"
xsi : schenmalLocat i on=
"http://java.sun. com xm / ns/ persi st ence
http://java. sun. coml xm / ns/ per si st ence/ persi stence_1_0. xsd
http://java. sun. coml xm / ns/ per si st ence/ orm
http://java. sun. com xm / ns/ persi stence/orm 1_0. xsd"
xm ns:ornm="http://java. sun. com xm / ns/ per si st ence/ or ni

77

Chapter 7. Core Engine: Persi...

</

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://java. sun. com xm / ns/ per si st ence" >

<persi stence-unit nane="org.j bpm persi stence. jpa">
<provi der >org. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ processl nst anceDS</ | t a- dat a- sour ce>
<cl ass>org. drool s. persi st ence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nf o</cl ass>

<properties>
<property nane="hi ber nat e. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="update"/>
<property nane="hi bernate. show _sql" value="true"/>
<property nane="hi bernate.transaction. manager _| ookup_cl ass"
val ue="or g. hi bernate. transacti on. BTMIr ansact i onManager Lookup"/ >
</ properties>
</ persi stence-unit>
persi st ence>

This configuration file refers to a data source called "jdbc/processinstanceDS". The following Java
fragment could be used to set up this data source, where we are using the file-based H2 database.

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce() ;

ds.
ds.
ds.
ds.
ds.
ds.
ds.

in
ds

set Uni queNanme("j dbc/t est DS1");

set Cl assNanme("org. h2.j dbcx. JdbcDat aSour ce") ;

set MaxPool Si ze(3);

set Al | owLocal Transacti ons(true);

get DriverProperties().put("user", "sa");

getDriverProperties(). put("password", "sasa");

getDriverProperties(). put("URL", "jdbc: h2: fil e:/ Not BackedUp/ dat a/ pr ocess-
stance-db");

init();

If you're deploying to an application server, you can usually create a datasource by dropping a
configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>

<l ocal -t x- dat asour ce>
<j ndi - name>j dbc/ t est DS1</ j ndi - nanme>
<connection-url >jdbc: h2:file:/NotBackedUp/ dat a/ process-i nstance-db</

connection-url >

78

Transactions

<driver-class>org. h2.jdbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nane>sa</ user - nane>
<passwor d>sasa</ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

7.1.4. Transactions

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this
behavior is acceptable, you don't need to do anything else. You can, however, also specify the
transaction boundaries yourself. This allows you, for example, to combine multiple commands
into one transaction.

You need to register a transaction manager at the environment before using user-defined
transactions. The following sample code uses the Bitronix transaction manager. Next, we use the
Java Transaction API (JTA) to specify transaction boundaries, as shown below:

/]l create the entity manager factory and register it in the environnment
EntityManager Factory enf =
Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence.jpa");
Envi ronnment env = Knowl edgeBaseFact ory. newEnvi r onnent () ;
env. set (Envi ronnent Nane. ENTI TY_MANAGER _FACTCRY, enf);
env. set (Envi r onnent Name. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/'l create a new knowl edge session that uses JPA to store the runtine state
St at ef ul Know edgeSessi on ksessi on =
JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);

/1 start the transaction
User Transaction ut =

(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begin();

[l performmultiple commands inside one transaction
ksession.insert(new Person("John Doe"));

ksession. start Process("M/Process");

// commt the transaction
ut.commt();

7.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a
file system during development. However, whenever you want to make your knowledge accessible

79

Chapter 7. Core Engine: Persi...

to one or more engines in production, we recommend using a knowledge repository that (logically)
centralizes your knowledge in one or more knowledge repositories.

Guvnor is a Drools sub-project that provides exactly that. It consists of a repository for storing
different kinds of knowledge, not only process definitions but also rules, object models, etc. It
allows easy retrieval of this knowledge using WebDAV or by employing a knowledge agent that
automatically downloads the information from Guvnor when creating a knowledge base, and
provides a web application that allows business users to view and possibly update the information
in the knowledge repository. Check out the Drools Guvnor documentation for more information
on how to do this.

7.3. History Log

In many cases it is useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards, for example, to verify what actions
have been executed for a particular process instance, or to monitor and analyze the efficiency
of a particular process. Storing history information in the runtime database is usually not a good
idea, as this would result in ever-growing runtime data, and monitoring and analysis queries
might influence the performance of your runtime engine. That is why history information about the
execution of process instances is stored separately.

This history log of execution information is created based on the events generated by the process
engine during execution. The jBPM runtime engine provides a generic mechanism to listen to
different kinds of events. The necessary information can easily be extracted from these events
and made persistent, for example in a database. Filters can be used to only store the information
you find relevant.

7.3.1. Storing Process Events in a Database

The jbpm-bam module contains an event listener that stores process-related information in a
database using JPA or Hibernate directly. The database contains two tables, one for process
instance information and one for node instance information (see the figure below):

1. ProcesslinstancelLog: This lists the process instance id, the process (definition) id, the start date
and (if applicable) the end date of all process instances.

2. NodelnstanceLog: This table contains more detailed information about which nodes were
actually executed inside each process instance. Whenever a node instance is entered from
one of its incomming connections or is exited through one of its outgoing connections, that
information is stored in this table. For this, it stores the process instance id and the process id
of the process instance it is being executed in, and the node instance id and the corresponding
node id (in the process definition) of the node instance in question. Finally, the type of event (0
= enter, 1 = exit) and the date of the event is stored as well.

80

Storing Process Events in a Database

ID | PROCESSINSTANCEID | PROCESSID | START_DATE

ID |TYPE[NODEINSTANCEIDINODE ID[PROCESSINSTANCEID|PROCESSID| LOG_DATE

To log process history information in a database like this, you need to register the logger on your
session (or working memory) like this:

St at ef ul Knowl edgeSessi on ksession = ...;
JPAWT ki ngMenor yDbLogger | ogger = new JPAWr ki ngMenor yDbLogger (ksessi on);

/1 1nvoke met hods one your session here

| ogger. di spose();

Note that this logger is like any other audit logger, which means that you can add one or more
filters by calling the method addFi | t er to ensure that only relevant information is stored in the
database. Only information accepted by all your filters will appear in the database. You should
dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstanceLog, NodelnstanceLog and
VariablelnstancelLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si st ence
version="1.0"
xsi : schemalLocat i on=
"http://java. sun.com xm / ns/ per si st ence
http://java. sun. com xm / ns/ persi st ence/ persi stence_1_0. xsd
http://java. sun. coml xm / ns/ per si st ence/ orm
http://java. sun. com xm / ns/ persi stence/orm 1_0. xsd"
xm ns:orm="http://java. sun. com xm / ns/ per si st ence/ or nf'
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://java. sun. com xm / ns/ per si st ence" >

<persi stence-unit nane="org.j bpm persi stence. jpa">
<provi der >org. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ processl nst anceDS</ | t a- dat a- sour ce>
<cl ass>org. drool s. persi stence. i nfo. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nf o</cl ass>

81

Chapter 7. Core Engine: Persi...

<cl ass>org. j bpm process. audi t. Processl| nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t. Nodel nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2dd| . aut 0" val ue="update"/>
<property nane="hi bernate. show sql" value="true"/>
<property nane="hi bernate.transaction. manager _| ookup_cl ass”
val ue="org. hi bernat e. transacti on. BTMITr ansact i onManager Lookup"/ >
</ properties>
</ per si stence-uni t>
</ per si st ence>

All this information can easily be queried and used in a lot of different use cases, ranging
from creating a history log for one specific process instance to analyzing the performance of all
instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

82

Chapter 8.

Chapter 8. Core Engine: Examples

8.1. JBPM Examples

There is a separate jBPM examples module that contains a set of example processes that show
how to use the jBPM engine and the behavior or the different process constructs as defined by
the BPMN 2.0 specification.

To start using these, simply unzip the file somewhere and open up your Eclipse development
environment with all required plugins installed. If you don't know how to do this yet, take a look
at the installer chapter, where you can learn how to create a demo environment, including a fully
configured Eclipse IDE, using the jBPM installer. You can also take a look at the Eclipse plugin
chapter if you want to learn how to manually install and configure this.

To take a look at the examples, simply import the downloaded examples project into Eclipse (File
-> Import ... -> Under General: Existing Projects into Workspace), browse to the folder where you
unzipped the jBPM examples artefact and click finish. This should import the examples project in
your workspace, so you can start looking at the processes and executing the classes.

8.2. Examples

The examples module contains a number of examples, from basic to advanced:

« Looping: An example that shows how you can use exclusive gateways to loop a part your
process until the loop condition is no longer valid. The process takes the 'count’ (the number of
times the loop needs to be repeated) as input and simply prints out a statement during every
loop until the process is completed.

* Multiinstance: This example shows how to execute a sub-process for each element in a
collection. The process takes a collection of names as input and creates a review task for a
sales representative for each person in that list. The process completes if the task has been
executed for every person on that list.

« Evaluation: A performance evaluation process that shows how to integrate human actors in the
process. While the basic example simply shows tasks assigned to predefined users, the more
advanced version shows data passing from the process to the task and back, group assignment,
task delegation, etc.

« HumanTask: An advanced example when using human tasks. It shows how to do data passing
between tasks, task forms, swimlanes, etc. This example can also be deployed to the Guvnor
repository (including all the forms etc.) and executed on the jBPM console out-of-the-box.

* Request: An advanced example that shows various ways in which processes and rules can
work together, like a rule task for invoking validation rules, rules as expression language for

83

Chapter 8. Core Engine: Examples

constraints inside the process, rules for exception handling, event processing for monitoring,
ad hoc rules for more flexible processes, etc.

8.3. Unit tests

The examples project contains a large number of simple BPMN2 processes for each of the
different node types that are supported by jBPM5. In the junit folder under src/main/resources
you can for example find process examples for constructs like a conditional start event, exclusive
diverging gateways using default connections, etc. So if you're looking for a simple working
example that shows the behavior of one specific element, you can probably find one here. The
folder already contains well over 50 sample processes. Simply double-click them to open them
in the graphical editor.

Each of those processes is also accompanied by a small junit test that tests the implementation
of that construct. The org.joppm.examples.junit. BPMN2JUnitTests class contains one test for each
of the processes in the junit resources folder. You can execute these tests yourself by selecting
the method you want to execute (or the entire class) and right-click and then Run as -> JUnit test.

Check out the chapter on testing and debugging if you want to learn more how to debug these
example processes.

84

Chapter 9.

Chapter 9. Eclipse BPMN 2.0 Plugin

We are working on a new BPMN 2.0 Eclipse editor that allows you to specify business processes,
choreographies, etc. using the BPMN 2.0 XML syntax (including BPMNDI for the graphical
information). The editor itself is based on the Eclipse Graphiti framework and the Eclipse BPMN
2.0 model.

Features:

« It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,
annotations and all the BPMN2 node types).

» Support for the few custom attributes that jBPM5 introduces.

 Allows you to configure which elements and attributes you want use when modeling processes
(so we can limit the constructs for example to the subset currently supported by jBPM5, which
is a profile we will support by default, or even more if you like).

Many thanks go out to the people at Codehoop that did a great job in creating a first version of
this editor.

9.1. Installation

Requirements

 Eclipse 3.6 or newer
« Graphiti framework, using update site http://download.eclipse.org/graphiti/updates/0.7.1/

To install, startup Eclipse and install Graphiti from the update site above (from menu Help -> Install
new software and then add the update site in question and select and install the Graphiti runtime)
and then use the following update site http://codehoop.com/bpmn2 to install the latest version of
the BPMN 2.0 editor in Eclipse. A screencast that shows all this in action can be found here [http://
vimeo.com/22022128].

Sources can be found here: https://github.com/droolsjbpm/bpmn2-eclipse-editor

9.2. Creating your BPMN 2.0 processes

You can use a simple wizard to create a new BPMN 2.0 process (under File -> New - Other ...
select BPMN - BPMN2 Diagram).

A video that shows some sample BPMN 2.0 processes from the examples that are part of the
BPMN 2.0 specification:

85

http://download.eclipse.org/graphiti/updates/0.7.1/
http://codehoop.com/bpmn2
http://vimeo.com/22022128
http://vimeo.com/22022128
http://vimeo.com/22022128
https://github.com/droolsjbpm/bpmn2-eclipse-editor

Chapter 9. Eclipse BPMN 2.0 P...

dt View Nevigete Seprch Project fun Widaw Hep
-l & L R Bd-Re AV K AT J-F ASEIRSIRA L R AN
| | ek o B R B MR R e -

opceener 50 ("

Ehle

| Demin
[eLR-
W IFE Symhem Libesry [le=a5E-1.4]
= 19-06-13
B Coimelation
= Diagesm [nbsrchange
= Pl okineg
= HaidksaieApiailer
= Incigent Mansgement
= Muodek & Disjiane
= Modred Prigs
|3 Mhobedd Prize Proscess, b
[Mol Prize Proess v
= Qs Fullimgnt
& Procunsment Proceses sith Em
1 Procisement Processes with Em
& Piazs
= Trawed Baikineg
E Pizabpmnd

P ook i oy v Tl P v Pl el c i e

Figure 9.1.
[http://vimeo.com/22021856]

Here are some screenshots of the editor in action.

86

http://vimeo.com/22021856

Creating your BPMN 2.0 processes

W User Task |

) User Task

(&)

Y

Service Task

End

SubProcess

End

Figure 9.2.

87

Chapter 9. Eclipse BPMN 2.0 P...

id RD-ecTg_EeCAlthQz68wROQ

name Task Name

completionQuantity 1

isForCompensation [|

startQuantity 1

Figure 9.3.

88

Creating your BPMN 2.0 processes

off| «dzofi | ofif| <j xif <l
off| ejaela] olf | ol = 13}
oti| wiiwit | ofi Ruff osfl, obfs
off Bujijeigd ot

=
B R
Fom it
=

Tk

nam
Budr
Toak

eip wr
el
cannbi
]
i Doy
sl pan

el

rerrare Prcan s wite BrnogHeesd irg - Sareil Hisdee b Y pagan 33

89

Figure 9.4.

Chapter 9. Eclipse BPMN 2.0 P...

rwrre e Proccan s i ifé Bro Haeed frag - Soeeei | Hesbee b Y papas U e idars Men g e - ool chpr [0

. .
WiF megoe W ey
v Laspmmy iy i Mo villmi poi jrEa gl 0 L'I':_'

my A rd Hassgr By g b A i Tyl L

=
Thck i o
fir Aarnard Hamage Thaic e
L
= A e el aggai - Feak dals BRems® Cigpr
e -

el ey el mgmed LETY |

11 et g e Emie . P [wre
[- Cabw Banrsd

sty P o vl i

Tl el m] v e T . Emla Harim

7= S BT R el e e e)
A s Pecapga e s 2ol

L T T B g 7

i

3 ol | Bbd

ed Hare |G g ok ke d eEcriobor
e e Mare

Esterman Defninrs

Figure 9.5.

9.3. Filtering elements and attributes

You can define which of the BPMN 2.0 elements and attributes you want to use when describing
your BPMN 2.0 diagrams. Since the BPMN 2.0 specification is rather complex and includes a very
large set of different node types and attributes for each of those nodes, you may not want to use
all of these elements and attributes in your project. Elements and attributes can be enablement /
disabled at the project level using the BPMN2 preferences category (right-click your project folder
and select Properties ... which will open up a new dialog). The BPMN2 preferences contain an
entry for all supported elements and attributes (per node type) and you can enable or disable each
of those by (un)checking the box for each of those elements and attributes.

90

Filtering elements and attributes

type filter text ﬂ] BPMN2Z v . —

» Resource

Enabled tools and attributes

Project Facets name
Project References cormpletion@ uantity
Run/Debug Settings isForC ompensation
Server - startQuantity
. Task Repository extensiorivaluas
> LE:I:::?:” docurnentation
WikiTesct auditing
rmonitoring
05 pechication
properties
datalnputissociations
datalutputAssocations
resources
loopCharacteristics
AdHocSubProcess
Assignimernt

Association
BoundaryEvent
BusinessRuleTask
CallableElernent
Callactivity

C allC horeography
CancelEvertD efintion
C ategory
Choreograghy
Chnreugrﬁﬂﬂk

Collaboration

AR~ S S B
ENRENRCNRENNCNNCNRENRENRENRENRENRENAEY

e
-

E

| Import Profile ... | | Export Profile ...

Figure 9.6.
| Restore Defaults | | Apphy

@ | Cancel | | o] 4

92

Chapter 10.

Chapter 10. Designer

Web-based process editing is possible using the jBPM Designer. The designer is fully integrated
into Drools Guvnor, the knowledge repository where you can store all your BPM assets such as
of course your BPMN2 processes as well as rules, process images, workitem configurations, and
process forms. The Designer can be used to create, view or update BPMN2 based processes
which are executable in the jBPM runtime environment.

] s =t D &is # B ¥ = -
5 L Propertiea | BORIM-O
N2 — ™ el Wi
i =
? N | Thy o Ofer ueed
w == 1 -.'n'-- g .'I'-
Sl o Tt o
AL
4 Hors Prepartioa
w1 - -"_'.:. 'H-I *
= = REREEL T | =+ Prpert
b e T b ey | BT gl
errapdale Dyenls B
JiH Pl
iy =
el ™l
I o A i et v s
1
4 E —-‘I Hanager APl e
- aapciata =]
sl
i irebdont s [vanid AR P
11,000 0
] N Sy L
e ’ — —
. un AL =% .__I'-\. '-._I'.
T i T X ~ REview ¥ \:".- _-"ﬁl_-"l = Harmindee == Natification .
i ‘ ; |
-G TE TN - @ e = RN numer . Ernd - £

P ML EMRD P

Figure 10.1.

Designer targets the following scenarios:

« View and/or edit existing BPMN2 processes: The designer allows you to open existing BPMN2
processes (for example created using the BPMNZ2 Eclipse editor or any other tooling that exports
BPMN2 XML) in a web context.

« Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the
Designer and use the editing capabilities (drag and drop and filling in properties in the properties
panel) to fill in the details. This for example allows business users to create complete business
processes all inside a a browser. The integration with Drools Guvnor allows for your business
processes as wells as other business assets such as business rules, process forms/images,
etc. to be stored and versioned inside a content repository.

93

Chapter 10. Designer

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-
specific BPMN2 extension elements and attributes.

10.1. Installation

If you are using the jBPM installer, this should automatically download and install the latest
version of the designer for you. To manually install the designer, simply drop the designer war
into your application server deploy folder. Currently out-of-the-box designer deployments exist for
JBoss 5.1.0 and JBoss AS7. Note: If you want to deploy on other (versions of an) application
server, you might have to adjust the dependencies inside the war based on the default libraries
provided by your application server. The latest version of the designer can be found here [http://
sourceforge.net/projects/jbpm/files/designer/].

To start working with the designer, open Guvnor (e.g. http://localhost:8080/drools-guvnor [http://
localhost:8080/drools-guvnor]) and either open an existing BPMN2 process or create a new one
(under the "Knowledge Bases category on the left, select create new BPMN2 process"). This will
open up the designer for the selected process in the center panel. You can use the palette on the
left to drag and drop node types and the properties tab on the right to fill in the details (if either of
these panels is not visible, click the arrow on the side of the editor to make them move forward).

The designer may also be opened stand-alone by using the following link: http://localhost:8080/
designer/editor?profile=jbpm&uuid=123456 (where 123456 should be replaced by the uuid of a
process stored in Guvnor). Note that running designer in this way allows you to only view existing
processes, and not save any edits nor create new ones. Information on how to integrate designer
into your own applications can be found here [http://blog.athico.com/2011/04/using-oryx-designer-
and-guvnor-in-your.html].

10.2. Source code

The designer source code is available for each release. You can find it here [http://sourceforge.net/
projects/jbpm/files/designer/].

You can also browse and clone the project on github [https://github.com/tsurdilo/process-
designer].

10.3. Designer Ul Explained

The Designer Ul is composed of a number of sections as shown in the screenshot below:

94

http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/drools-guvnor
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://localhost:8080/designer/editor?profile=jbpm&uuid=123456
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://blog.athico.com/2011/04/using-oryx-designer-and-guvnor-in-your.html
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
http://sourceforge.net/projects/jbpm/files/designer/
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer
https://github.com/tsurdilo/process-designer

Designer Ul Explained

P
i
E
-g- [[l ..l' u
i lll
g — - oy v— ";.-"|" :.
Aale [wrnly /) |
E 5 /
gl — L P] o &] I
5 \ J '
= = |
g Y v
" g [y i =1
il Ed—eo—o-=—-0 F=-e \
. ,
Figure 10.2.

(1) Shape Repository Panel - the expandable section on the left shows the BPM BPMN2
(default) shape repository. It includes all shapes of the [BPM BPMN2 stencil set which can
be used to assemble your processes. If you expand each section sub-group you can see the
BPMNZ2 elements that can be placed onto the Designer Canvas (2) by dragging and dropping
the shape onto it.

(2) Canvas - this is your process drawing board. After dropping different shapes onto the canvas,
you can move them around, connect them, etc. Clicking on a shape on the canvas allows you
to set its properties in the expandable Properties Window (3)

(3) Properties Panel - this expandable section on the right allows you to set both process and
shape properties. It is divided in two sections, namely "Often used", and "More Properties"
section which is expandable. When clicking on a shape in the Canvas, this panel is reloaded
to show properties specific to the shape type. If you click on the canvas itself (not on a shape)
the section shows your general process properties.

(4) Toolbar - the toolbar contains operations which can be performed on shapes present on
the Canvas. Individual operations are disabled or enabled depending on what is selected. For

95

Chapter 10. Designer

example, if no shapes are selected, the Cut/Paste/Delete operations are disabled, and become
enabled once you select a shape. Hovering over the icons in the Toolbar displays the description

text of the operation.

* (5) Footer - the footer contains operations that allow users to view the source of the process
being editor in the Canvas section in various formats such as BPMN2, PNG, JSON, etc.

» (6) Process Information - this section contains information about your process, such as its name,

creation date, version, etc

Connecting shapes together in the canvas is realized with the Shape-Menu. The Shape-Menu is

displayed by clicking on a shape:

Log
Emai
Collapsed Subprocess

Embedded Subprocess

ACHOC Subprocess

Figure 10.3.

96

Designer Ul Explained

The Shape-Menu is composed of two sections:

« (1) Connection section: allows you to easily connect your shape with a new one. The shapes
displayed in this section are based on connection rules of the BPMN2 specification.

* (2) Morphing section: allows you to easily morphe a base shape into any other that extend this
base shape.

Following sequence of picture shows how easy it is to quickly create and connect multiple shapes
in the canvas:

97

Chapter 10. Designer

'y

Pl

L

"‘TESS-EI;-L" Emd Evert
Eoralation Emnd Evant
Error End Event

Cancel End Evert
Compensation End Event
Signal End Event

ultiple End Event

@eEDOBE®

Terrninate Emnd Event

Figure 10.4.

98

Support for Domain-specific service nodes

You can also hame your shapes by double-clicking on the shape in the canvas. This sets the
name attribute of the particular shape:

Figure 10.5.

10.4. Support for Domain-specific service nodes

Designer has full support for jBPM domain-specific service nodes. To include your service nodes in
the Designer jBPM BPMN2 stencil set, you can either upload your existing service node definitions
into Guvnor, or use the the new service node configuration editor which we added to Guvnor to
create new configurations.

99

Chapter 10. Designer

_

Find Wik | 1em Dedinition |Semol] demodelinlions

Fila Edil a1
Adbribsies Edit
[
kg Fainitn v i . o= =
Dheliri Bt st - “ToabHEr T adk
brupan. e mampis p—
I L . e
Ml Ny ety Displaythama v a o .
-iep, Rl 5 el T —_—
o" - it ek BOd - N - .
P P
| il il para
s
Chck o class o import !
Cirdiny i o L -
oisanCita Typa " L5
AT e Erns=iDataTym T e o
i ; Flai Data Typa "k playlama ™ : "
i o]
1 BCarano -, . . I a
L. Fropesrties LissDita Type
o pnnpdn documaniation Lhyaciatal sl
GrdnaansT
i
kingGta T e .
Sl B0 L0 i H s ¢ i .

k HomDefinition

N

Figure 10.6.

Once you have some service node configurations present, you can see them being included in
Designer stencil set by re-opening an existing or creating a new process. Your service nodes will
be now available under the "Service Task" section of the JBPM BPMN2 stencil set.

100

Support for Domain-specific service nodes

Figure 10.7.

-

Shape Repository

=l jBPM BPMN2
= Activities

O
(&)
(=)
(=)

Task

3]

Collapsed Subprocess

Embedded Subprocess

AdHoc Subprocess

H Artifacts

tl Catching Intermediate Events
tl Connecting Objects

t pata Objects
+l End Events

t Gateways
=l Service Tasks

0 Update Facebook Status

B

Send Tweet

Send Email

*l Start Events
* swimlanes

4 Throwing Intermediate Events

Service nodes are fully usable within your processes. Please note that the service node
configurations are package-specific in Guvnor. If you want to re-use your service nodes across
multiple Guvnor packages, you have to copy their configurations to each indidual package you
would like to use them in.

101

Chapter 10. Designer

Edit Source

tes Edit

epository i
| BPMMN2
thes

1k
bapsed Subprocess
ieddiesd Subprocess

Hoo Subprocess ﬁg';,\

- [] Enter Info
ing Intermedinte Eventa p—

eting Objecta
Ihjects

VEMTS

ays

o Tasks

daln Facabook Siatus
ol Tt
nd Ermai

Events
la e

fing Intearmediate Events

Figure 10.8.

For more information on this feature please view this [http://vimeo.com/26126678], and this [http://

vimeo.com/24288229] video.

10.5. Configuring Designer

Designer is tightly integrated with Guvnor. By default Designer expects to find a Guvnor instance
on http://localhost:8080/drools-guvnor/. Guvnor, by default, expects to find the Designer on http://
localhost:8080/designer. Here we show how to configure both Designer and Guvnor to be able to
change these default settings when needed.

-

Send Emaill

10.5.1. Changing the default configuration in Designer

In cases where Guvnor is configured to use https, or is running on a different host/port/domain/
subdomain you have to configure Designer to reflect these settings. in order to change Designer

102

http://vimeo.com/26126678
http://vimeo.com/26126678
http://vimeo.com/24288229
http://vimeo.com/24288229
http://vimeo.com/24288229

Changing the default configuration in Guvnor

configurations you have to deploy it as an exploded war. In $designer.war/profiles/jbpm.xml notice
the section on the bottom:

<ext ernal | oadur| protocol ="http" host="Iocal host: 8080" subdonai n="dr ool s-
guvnor/org. drool s. guvnor. Guvnor/oryxedi tor" usr="adm n" pwd="adni n"/>

The configuration attributes include:

protocol: the protocol to use (http/https)
« host: includes both the host and the port that Guvnor is running on

e subdomain: in some situations Guvnor subdomain is not drools-guvnor. You should leave the
path to the servlet as-is.

« usr: if you have set up JAAS authentication in Guvnor, provide a Guvnor user name here. Note
that this user should have admin privileges in Guvnor

* pwd: password for the Guvnor user

Alernative you can specify these configrations via system properties:

* oryx.external.protocol
 oryx.external.host
* oryx.external.usr
 oryx.external.pwd

If you choose to use system properties you do not have to deploy the designer war as exploded.

10.5.2. Changing the default configuration in Guvnor

To configure Guvnor to reflect the host/port/domain/subdomain and the default profile settings of
the Designer, we need to edit $drools-guvnor.war/WEB-INF/preferences.properties:

#Desi gner configuration

desi gner.url =http://Iocal host: 8080

#Do not change this unless you know what are you doi ng
desi gner. cont ext =desi gner

103

Chapter 10. Designer

desi gner. profil e=j bpm

The configuration attributes include:

« designer.url: set the protocol, host, and port where Designer is located at

 designer.context: this sets the configured subdomain of Designer. Should not change unless
you deploy it under some other subdomain

« designer.profile: Designer can have multiple profiles defined. Profiles determine the used stencil
set, the saving/loading strategy of processes, etc. The default profile name used is "jbopm™ and
this should not be changes unless you create a custom profile to be used

Note that in order to be able to edit $drools-guvnor.war/WEB-INF/preferences.properties, you
have to deploy Guvnor as an exploded archive.

10.6. Generation of process and task forms

Designer allows users to generate process and task ftl forms. These forms are fully usable in the
jBPM console. To start using this feature, locate the "Generate Task Form Templates" button in
the designer toolbar:

Figure 10.9.

Designer will iterate through your process BPMN2 and create forms for your process, and each
of the human tasks in your process. It uses the defined process variables and human task data
input/output parameters and associations to create form fields. The generated forms are stored
in Guvnor, and user is presented with a page which shows each of the forms created as well as
a link to their sources in Guvnor:

104

Generation of process and task forms

Figure 10.10.

As mentioned, all forms are fully usable inside jBPM console. In addition each form includes basic
JavaScript form validation which is determined based on the type of the process variables, and/
or human task data input/output association definitions. Here is an example generated human
task form.

105

Chapter 10. Designer

e |

Figure 10.11. SUBMIT

View processes as PDF and PNG

In order for process and task forms to be generated you have to make sure that your process has
it's id parameter set, as well that each of your human tasks have the TaskName parameter set.
Task forms contain pure HTML, CSS, and JavaScript, so they are easily editable in any HTML
editor. Please note that there is no edit feature available currently in Designer, so each time you
generate forms, existing ones will be overwritten.

For more information on this feature please view this [http://vimeo.com/26126678] video.

10.7. View processes as PDF and PNG

Any process created in Designer can be easily viewed in PDF and PNG formats. In the Designer
footer section locate the "Convert to PDF" and "Convert to PNG" buttons. Both PDF and PNG
formats are also stored in Guvnor, making it easily accessible.

'n:__ 1 /1 2. 120 - | = R nd =
L um“
Facebook
Status
A ! .
O Y ¥
e
Send Emall
R
Figure 10.12.

The footer section also includes buttons to view the process sources in ERDF, JSON, SVG, and
BPMN2 formats.

ERDF JSON PDF | PNG BPMN2Z @ 5WG

Figure 10.13.

107

http://vimeo.com/26126678
http://vimeo.com/26126678

Chapter 10. Designer

10.8. Viewing process BPMN2 source

At any time you can view your process's BPMN2 source by selecting the Source->View Source
link in the Guvnor toolbar above the designer frame. The soure generated by designer is fully

BPMN2 compliant and can be used in any BPMN2 compliant editor.

Wigwing source for, demoprocess
o= Viewing source for: demoprocess

1. |=taml wersion="1.0" encoding="UTF-8"%>
<hprnn? - definctions xmingsess"hitp s wioong 2001 HMLSchama-instance™
amirs="httpy e omg.ongbpmnl® xminscbpmn2="hittpc/fwwe.omgong'spacB PRN
L2A000524MODEL" xrming: bpmndi="hiip www, omeg org SpecBPMMN20 100524007
mmilrsdes“hitpaivwersr. ormg ol specDOZ01 00524/ DC" xrndns:dis"hitpwa, ormg..ong
lhmﬂﬂmim xminscdnools="hittpferwes. jooss.org/drools” id="b20d8edb-61fd-4dc-
adfE-obBE2aleh14” s schamal coation="hitpifwsw. omg orglspac B PMNIA0 100524
/MODEL BPMN20 xsd” namié="DemoProcess™ targetNamespace="hitp /fwww.omg.ong
Topmin©=
| <bpen2 emDefinition ids"_messagetieam"/>
| <bprmn? process id="demoprocess” name="DemoProcs” isExecutable="lrue™
| <bprmn2 startEvent id="_BTE29F 123-DF CA-3 ABE- 64 B-HREF RAEZAIIC name="">
| <bpmnZ-cutgoing>_2TEACEFE-CERE-40FC- 54 86-00DT ED4H0854 </opmn outgoing>
| «/bpminZ:stafEvent.

<bpmn2 userTask id="_IE430369.54F C-4864-88C3-DFBFDGCE4EDR"
Il:lmh:lmhﬂlm:‘Entﬂ’ﬂu" nama="Enter [nfo">

9. |<bpmaZincoming>_2TBACEFE-CHA5-40FC-04B6-000TED4O0854</bpmn2:incoming>

10, | <bpmnal-cutgoing=_BIES00002-02AA-48E2-814C-DDDEAL 584 DES</bpmnd outgoing=

11. | <bprmn2iaSpechication d="_AmKLILkIEaCXILFWcHLABA™>

Figure 10.14.

Same can be done by clicking on the BPMN2 button in the footer section of the designer:

108

Embedding designer in your own application

—.[‘iﬂ"' HR Approrsl
- f
g g

Gatiway '-._,ﬂ.

= Manager Appraval

End
Timer

Figure 10.15.

BPMHI Sourca

Tl version =" .07 encoding = "UTF-H"7s

o bpern 2 cheslintionss yemmies oo “hitp: weweal il ongy 00N -
Irestane” i = "D [v cmig orgL Epemen i
oS - bpmnd s TR D P 0mg. ong spec TEFRN 20 10053
i bpmndi = *Rttpeeveveromeg oy soee TP L 00,

B riem i Hp wweauomg orgpec D00 1005240

wler o= "l oo comy. g i D00 DOS 34T
e ook = "I et JERORELOf g el ™
d="_oodfDiWGERLnl_ErgetEag”
wesinchesmal ocation s Ththoe | e 0. ot spec BPMIR0
HODEL BRNI0 o™
expressonlangeaages “tilp: [wwwmvelorglE.0°
gt Mrssdn = Tl Favwiw, OiGL oG homn 0T
ypael s = "Tilp: e, lnvil Comna Tyt
=kl tembDelition ai="_ugerleliem” ithutrefel ="
= bl RembDalintion id="_deseriptonibem”
structunefled s “Shringr =
=bpmal-temDefindion id="_gateltem” sruchorefsl="0,
<bpmid:temDelintion d="_reuRiiem” srudumiel="
<bpmad: fembefirtion w="_tgme }
=bprnad: fembefintion ="_reif herlbem”
Hruchuraflel="5kengt s
<bpmad- femDalintion d="_reafanages [em”
truchunefled = “Shringr
<bpmalprocess id =" Domboampies. hymantsc

A rur ety e 5 el e e s bk e

10.9. Embedding designer in your own application

It is possible to embed the designer in your own application and still be able to utilize Guvnor as
the asset repository for all of your process assets. For more information on this feature please

view this video [http://vimeo.com/22033817].

10.10. Migrating existing |BPM 3.2 based processes to

BPMN2

To migrate your existing jBPM 3.2 based processes to BPMN2 locate the migration button in the

toolbar section of the designer:

¢l

Figure 10.16.

The feature allows users to select the location of their processdefinition file, and the location
of it's gpd.xml file. Designer then uses the jbpmmigration tool [https://github.com/droolsjbpm/
jbpmmigration] to convert the jBPM 3.2 based processes to BPMN2 and displays it onto the

designer canvas:

109

http://vimeo.com/22033817
http://vimeo.com/22033817
https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration
https://github.com/droolsjbpm/jbpmmigration

Chapter 10. Designer

Migrate to BPMN2 4

1. Select & jPDL processdefinition.oml file {or type it in)

Definition | Browse... |
I\‘—r‘I
file:

Z. Select a jPDL gpd.xml file {or type it in)

GPD file: | Browse... |
Migrabe Close
Figure 10.17.

For more information on this feature please view this [http://vimeo.com/30857949] video.

10.11. Visual Process Validation

To run process validation against the process you are developing in the designer, locate the
validation button in the designer toolbar section:

Figure 10.18.

In case of validation errors, designer presents a red "X" mark next to process nodes that contain
them. Mouse-over this red "X" presents a tooltip with the descriptions of validation errors. Note
that since the process node is not visually displayed, designer will merge all process-node-specific

110

http://vimeo.com/30857949
http://vimeo.com/30857949

Integration with the jBPM Service Repository

validation errors with those of the very first node of the BPMN2 process. Following is a screenshot
of the visual process validation feature in use:

HR. Approval J

Motification

Eﬂeview

Gatew

Manager Approval

) 4
) Fain
/ Validation Results:
* |ser Task has no task name.
Timer -

Figure 10.19.

For more information on this feature please view this [http://vimeo.com/30857949] video.
10.12. Integration with the jBPM Service Repository
Designer integrates with the |BPM Service Repository and allows users to install and use assets
from the repository. [http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html].

To connect to the Service Repository from designer, click on the service repository button in the
designer toolbar:

Figure 10.20.

111

http://vimeo.com/30857949
http://vimeo.com/30857949
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html
http://kverlaen.blogspot.com/2011/10/introducing-service-repository.html

sitory Data

Chapter 10. Designer

Designer will present you with all assets located in the jBPM service repository in table format.
Colums of this table show information about the specific asset in the repo. To install the item to
your local Guvnor package, simply double-click on the item row. You will have to save and re-
open your process in order to be able to start using the installed items.

ouble-click on a row bo install.

EXPLAMATION DOCUMENTATIOR INPUT PARAMETERS RESLULTS
link Body, Subject, Te, From
link Message
Figure 10.21.

For more information on this feature please view this [http://vimeo.com/30857949] video.

10.13. Generating code to share the process image,
PDF, and embedded process editor

It is important to be able to share your process with users who do not have access to your running
designer instance. For these cases designer allows code generation of "sharable" image, PDF
and embedded editor code of your processes. To use this feature locate the following dropdown
in the designer toolbar section:

112

http://vimeo.com/30857949
http://vimeo.com/30857949

Importing existing BPMN2 processes

leilml @ 5 0 #£ % =

Share Process Image
Share Process FDF

Share Embeddable Process

Figure 10.22.

10.14. Importing existing BPMN2 processes

You can easily import your existing BPMN2 processes into the designer by locating and clicking
on the following dropdown selection list in the toolbar section:

bimé B 0 = 2
Import from BPMN2

Import from JSON

Figure 10.23.

You will be able to either select an existing file on your filesystem or paste existing BPMN2 XML.
The designer canvas will automatically import and display your process without a page refresh.

10.15. Viewing Process Information

Process Information

Mame: EmployeeBEvaluation

Format: Bpmn

Package: jbpmExamples.evaluation
Created: 2011-11-04TDD:23:10.196-04:
Creabed
By

Last
Madified: 2011-11-16T12:47:35.857-05]

Comment: added new process variable
Version: 12

admin

Figure 10.24.

The Process Information section displays important information about your process. These include
the process:

* name

113

Chapter 10. Designer

» format

» Guvnor package name the process belongs to
* creation date

< name of user that created the process

« last modification date

* last check-in comment

* version number

10.16. Requirements

Java:

e Java 6

Browsers:

* Mozilla Firefox (including 6)
» Google Chrome

JBoss AS:

» Designer war is currently compatible with JBoss AS 4.x, 5.1, and 7

114

Chapter 11.

Chapter 11. Console

Business processes can be managed through a web console. This includes features like managing
your process instances (starting/stopping/inspecting), inspecting your (human) task list and
executing those tasks, and generating reports.

The jBPM console consists of two wars that must be deployed in your application server
and contains the necessary libraries, the actual application, etc. One jar contains the server
application, the other one the client.

11.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,
install and configure all the necessary components to get the console running, including an in-
memory database, a human task service, etc. Check out the chapter on the installer for more
information.

The console is a separate sub-project that is shared across different projects, like for example
jBPM and RiftSaw. The source code of the version that jBPMS5 is currently using can be found on
SVN here [http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/]. The latest
version of the console has been moved to Git and can be found here [https://github.com/bpmc].

11.1.1. Authorization

The console requires users to log in before being to use the application. The console uses normal
username / password authentication. When using JBossAS for example, this can be specified in
the users.properties file in the server/{profile}/conf folder. There you can specify the combination
of users that can log into the console and their password.

When using the jBPM installer, a predefined users.properties file (located in the auth folder) is
copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains
a few predefined users: admin, krisv, john, mary, and sales-rep (as these are commonly used in
examples). The password associated with these users is the same as their username.

11.1.2. User and group management

The human task service requires you to define which groups a user is part of, so that he can
then claim the tasks that are assigned to one of the groups he is part of. The console uses
username / group association for that. When using JBossAS for example, this can be specified in
the roles.properties file in the server/{profile}/conf folder. There you can specify the combination
of users and the groups they are part of.

When using the jBPM installer, a predefined roles.properties file (located in the auth folder) is
copied to the jbossas/server/default/conf folder automatically. This file can be edited and contains
the groups the predefined users are part of (as these are commonly used in examples): all

115

http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
http://anonsvn.jboss.org/repos/soag/bpm-console/tags/bpm-console-2.1/
https://github.com/bpmc
https://github.com/bpmc

Chapter 11. Console

users are part of the admin, manager and user group but john is also part of the PM (project
management) group, mary is part of HR (human resources) and sales-rep is part of sales.

11.1.3. Registering your own service handlers

As explained in the chapter on domain-specific services, BPM allows you to register your
own domain-specific services as custom service tasks. The process only contains a high-level
description of the service that needs to be executed, and a handler is responsible for the actual
implementation, i.e. invoking the service.

You must register your handlers to be able to execute domain-specific services. You can register
your handlers by dropping a configuration file in the classpath that specifies the implementation
class for each of the handlers. You can specify which configuration files must be loaded in the
drools.session.conf file, using the drools.workltemHandlers property (as a list of space-separated
file names). These file names should contain a Map of entries, the name and the corresponding
WorkltemHandler instance that should be used to execute the service. The configuration file is
using the MVEL script language to specify a map of type Map<String,WorkltemHandler>.

You should also make sure that the implementation classes (and dependencies) are also available
on the classpath of the server war, for example by dropping the necessary wars in the server/
{profile}/lib directory of your JBossAS installation.

For example, suggest you want to use the "Email" service task (that is provided out-of-the-box as
an example in the jppm-workitems module). You should put the jopm-workitems, javax.mail and
javax.activation jars in the lib folder of the AS and the include the following two configuration files
in the META-INF folder in the WEB-INF/classes folder of the server war. The drools.session.conf
simply refers to the CustomWorkltemHandlers.conf file that contains the actual handlers:

dr ool s. wor kl t enHandl ers = Cust om\r kl t emrHandl ers. conf

This configuration file then specifies which handler to register for each of the domain-specific
services that are being used, using MVEL to specify a Map<String,WorkltemHandler> (with host,
port, username and password replaced by a meaningful value of course):

"Emai | ": new org.jbpm process. workitem email.Email Wrkl t emrHandl er (
"host", "port", "usernane", "password"),

The installer simplifies registering your own work item handlers significantly by offering these
configuration files in the jopm-installer/conf folder already and automatically copying them to the
right location when installing the demo. Simply update these files with your own entries before
running ant install.demo.

116

Running the process management console

11.2. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application
server is configured): http://localhost:8080/jbpm-console

A login screen should pop up, asking for your user name and password. By default, the following
username/password configurations are supported: krisv/krisv, admin/admin, john/john and mary/
mary.

jBPM Console >

Usemame: |krisv

Password:; |#+=s»

Subrmit

Version: 2.1

After filling these in, the process management workbench should be opened, as shown in the
screenshot below. On the right you will see several tabs, related to process instance management,
human task lists and reporting, as explained in the following sections.

117

http://localhost:8080/jbpm-console

Chapter 11. Console

rsonal Tasks

h7J "u’iew| Release |

_ Process Task Mame

letails

55

[=1=}
ption:

118

Managing process instances

11.2.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the
installed knowledge base, start new process instances and manage running process instances
(which includes inspecting their state and data).

11.2.1.1. Inspecting process definitions

When you open the process definition list, all known process definitions are shown. You can then
either inspect process instances for one specific process or start a new process instance.

119

Chapter 11. Console

ocess Overview

_] All > Start | Signal | Delete | Terminate |

N T N T T

Execution details

Process:
Instance 1D:
Key:

State

Start Date:

»_J Activity:

120

Managing process instances

11.2.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in
the process definition list. Click on the "Start" button in the instances table to start a new instance of
that specific process. When a form is associated with this particular process (to ask for additional
information before starting the process), this form will be shown. After completing this form, the
process will be started with the provided information.

121

Chapter 11. Console

ocess Overview

_] All > Start | Signal | Delete | Terminate |

T

New Process Instance: com.sample.evaluation

Start Performance Evaluation

Please fill in your username: |krisv |

| Complete |

122

Managing process instances

11.2.1.3. Managing process instances

The process instances table shows all running instances of that specific process definition. Select
a process instance to show the details of that specific process instance.

123

Chapter 11. Console

@ Process Overview

Refresh | All [= Start | signal | Delete | Terminate |

Execution details

Process: Evaluation

Instance 1D: 1

Key:

State RUNNING

Stant Date: 2010-11-22 164659

M M Activity:

124

Managing process instances

11.2.1.4. Inspecting process instance state

You can inspect the state of a specific process instance by clicking on the "Diagram” button. This
will show you the process flow chart, where a red triangle is shown at each node that is currently
active (like for example a human task node waiting for the task to be completed or a join node
waiting for more incoming connections before continuing). [Note that multiple instances of one
node could be executing simultaneously. They will still be shown using only one red triangle.]

125

Chapter 11. Console

All - Start | Signal | Delete | Terminate |

Process Instance Activity

Instance: 1

O —%{g self Eualuatiun]—b @

“# HR Evaluation

% PM Evaluation

[I

Managing process instances

11.2.1.5. Inspecting process instance variables

You can inspect the (top-level) variables of a specific process instance by clicking on the
"Instance Data" button. This will show you how each variable defined in the process maps to it's

corresponding value for that specific process instance.

127

Chapter 11. Console

All = Start | Signal | Delete | Terminate |

v

e

tance Data: 1

_ J E"-I'I. E'L TI-IIII I:IE.

xsstring java.lang.=tring

Human task lists

11.2.2. Human task lists

The task management section allows a user to see his/her current task list. The group task list
shows all the tasks that are not yet assigned to one specific user but that the currently logged in
user could claim. The personal task list shows all tasks that are assigned to the currently logged in
user. To execute a task, select it in your personal task list and select "View". If a form is associated
with the selected task (for example to ask for additional information), this form will be shown. After
completing the form, the task will also be completed.

129

Chapter 11. Console

Task Mame

nce Evaluation

evaluation

1 self-evalutation.

following evaluation form:
[JEI‘fDI‘IIlElIlEE: | Outstanding =

pply:

iative

ange
lication skills

Reporting

11.2.3. Reporting

The reporting section allows you to view reports about the execution of processes. This includes
an overall report showing an overview of all processes, as shown below.

131

Chapter 11. Console

This repornt doesn't require any paramters.

Business Activity Monitori

Instances / Hour

T cormsample evaluation

Reporting

A report regarding one specific process instance can also be generated.

133

Chapter 11. Console

Please enter a process definition id
P com.sampl

Business Activity Monitori
Process com.sample.evaluatiol

com.sample.evaluation
1
1

1

ncess Instances

T cormsample evaluation

Adding new process / task forms

jBPM provides some sample reports that could be used to visualize some generic execution
characteristics like the number of active process instances per process etc. But custom reports
could be generated to show the information your company thinks is important, by replacing the
report templates in the report directory.

The jBPM installer by default does not install the reporting engine (to limit the size of the download).
If you want to try out persistence, make sure to put the jBPM.birt.download property in the
build.properties file to true before running the installer. If you get an exception that the report
engine was not initialized correctly, please run the installer again after making sure that reporting
is enabled.

11.3. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker
templates to dynamically create forms. To create a form for a specific process definition, create
a freemarker template with the name {processld}.ftl. The template itself should use HTML code
to model the form. For example, the form to start the evaluation process shown above is defined
in the com.sample.evaluation.ftl file:

<htm >

<body>

<h2>Start Perfornmance Eval uati on</h2>

<hr >

<form acti on="conpl ete" nethod="POST" enctype="nultipart/formdata">

Pl ease fill in your username: <input type="text" nane="enpl oyee" /></BR>
<i nput type="submt" val ue="Conpl ete">

</fornp

</ body>

</htm >

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can
be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The
form has access to a "task" parameter that represents the current human task, so it allows you
to dynamically adjust the task form based on the task input. The task parameter is a Task model
object as defined in the jopm-human-task module. This for example allows you to customize the
task form based on the description or input data related to that task. For example, the evaluation
form shown earlier uses the task parameter to access the description of the task and show that
in the task form:

<htm >

<body>

<h2>Enpl oyee eval uati on</ h2>

<hr >

${t ask. descri pti ons[0].text}

135

Chapter 11. Console

Please fill in the follow ng evaluation form

<form acti on="conpl ete" net hod="POST" enctype="nultipart/formdata">
Rate the overall performance: <sel ect nane="perfornmance">

<option val ue="out st andi ng" >Qut st andi ng</ opti on>

<option val ue="exceedi ng" >Exceedi ng expectati ons</opti on>

<option val ue="accept abl e">Accept abl e</ opti on>

<option val ue="bel ow'>Bel ow aver age</ opti on>

</ sel ect >

Check any that apply:

<i nput t ype="checkbox" nane="initiative" val ue="initiative">D spl ayi ng

initiative

<i nput type="checkbox" nane="change" val ue="change">Thrivi ng on change

<i nput t ype="checkbox" nane="comuni cati on” val ue="communi cati on" >Good
conmuni cati on skills

<i nput type="submt" val ue="Conpl ete">
</forne
</ body>
</htm >

Task forms also have access to the additional task parameters that might be mapped in the user
task node from process variable using parameter mapping. Check out the chapter on human tasks
for more details. These task parameters are also directly accessible inside the task form. For
example, imagine that you want to make a task form for review customer requests. The user task
node copies the userld (of the customer that performed the request), the comment (the description
of the request) and the date (the actual date and time of the request) from the process into the
task as task parameters. In that case, these parameters will then be accessible directly in the task
form, as shown below:

<htm >

<body>

<h2>Request Revi ew</ h2>

<hr >

Userld: ${userld}

Description: ${description}

Dat e: ${date?date} ${date?tine}

<form action="conpl ete" nethod="POST" enctype="nultipart/formdata">
Comment : <BR/ >

<textarea col s="50" rows="5" name="comment"></t ext area></ BR>
<i nput type="submt" nane="outconme" val ue="Accept">

<i nput type="subnmit" nanme="outcone" val ue="Reject">

</fornp

</ body>

</htm >

136

REST interface

Data that is provided by the user when filling in the task form will be added as result parameters
when completing the task. The name of the data element will be used as the name of the result
parameter. For example, when completing the first task above, the Map of outcome parameters
will include result variables called "performance”, "initiative", "change" and "communication". The
result parameters can be accessed in the related process by mapping these result parameters to

process variables using result mapping.

Forms should either be available on the classpath (for example inside a jar in the jpossas/server/
default/lib folder or added to the set of sample forms in the jbpm-gwt-form.jar in the jbpm console
server war), or you could use the Guvnor process repository to store your forms as well. Check
out the chapter on the process repository to get more information on how to do that.

11.4. REST interface

The console also offers a REST interface for the functionality it exposes. This for example allows
easy integration with the process engine for features like starting process instances, retrieving
task lists, etc.

The list URLS that the REST interface exposes can be inspected if you navigate to the following
URL (after installing and starting the console):

http://localhost:8080/gwt-console-server/rs/server/resources
For example, this allows you to close a task using
/gwt-console-server/rs/task/{taskld}/close

or starting a new process instance using

/gwt-console-server/rs/process/definition/{id}/new_instance

137

http://localhost:8080/gwt-console-server/rs/server/resources

138

Chapter 12.

Chapter 12. Human Tasks

An important aspect of business processes is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed by human
actors. jBPM supports a special human task node inside processes for modeling this interaction
with human users. This human task node allows process designers to define the properties related
to the task that the human actor needs to execute, like for example the type of task, the actor(s),
the data associated with the task, etc. jBPM also includes a so-called human task service, a back-
end service that manages the life cycle of these tasks at runtime. This implementation is based
on the WS-HumanTask specification. Note however that this implementation is fully pluggable,
meaning that users can integrate their own human task solution if necessary.

To have human actors participate in your processes, you first need to (1) include human task
nodes inside your process to model the interaction with human actors, (2) integrate a task
management component (like for example the WS-HumanTask based implementation provided
by jBPM) and (3) have end users interact with a human task client to request their task list and
claim and complete the tasks assigned to them. Each of these three elements will be discussed
in more detail in the next sections.

12.1. Human tasks inside processes

O —-[{? u;:ir Tagh:}—- @

jBPM supports the use of human tasks inside processes using a special user task node (as shown
in the figure above). A user task node represents an atomic task that needs to be executed by
a human actor. [Although jBPM has a special user task node for including human tasks inside a
process, human tasks are considered the same as any other kind of external service that needs
to be invoked and are therefore simply implemented as a domain-specific service. Check out the
chapter on domain-specific services to learn more about how to register your own domain-specific
services.]

A user task node contains the following properties:

Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

+ TaskName: The name of the human task.

Priority: An integer indicating the priority of the human task.

« Comment: A comment associated with the human task.

139

Chapter 12. Human Tasks

Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

Content: The data associated with this task.

Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

You can edit these variables in the properties view (see below) when selecting the user task node,
or the most important properties can also be edited by double-clicking the user task node, after
which a custom user task node editor is opened, as shown below as well.

140

Human tasks inside processes

| Properties &3

Property
Actorld

Comment

Content

Id

Name

On Entry Actions
On Exit Actions
Parameter Mapping
Priority

Result Mapping
skippable
swimlane
TaskMame
Timers

Wait for completion

Value
Sales Representative

You should call #{customer.name} to
confirm the order,

4

Human Task

i}

1}

true

Call customer

true

141

Chapter 12. Human Tasks

|'-% Human Task Editor x|
MName: |Ca|| customer
Actor(s): Sales Representative

You should call #{customer.name} to
confirm the order.

Comment:

Priority: 3
Skippable

Content:

OK l | Cancel

In many cases, the parameters of a user task (like for example the task name, actorld, priority,
etc.) can be defined when creating the process. You simply fill in value of these properties in the
property editor. It is however likely that some of the properties of the human task are dependent
on some data related to the process instance this task is being requested in. For example, if a
business process is used to model how to handle incoming sales requests, tasks that are assigned
to a sales representative could include information related to that specific sales request, like
its unique id, the name of the customer that requested it, etc. You can make your human task
properties dynamic in two ways:

» #{expression}: Task parameters of type String can use #{expression} to embed the value of the
given expression in the String. For example, the comment related to a task might be "Please
review this request from user #{user}", where user is a variable in the process. At runtime,
#{user} will be replaced by the actual user name for that specific process instance. The value
of #{expression} will be resolved when creating human task and the #{...} will be replaced by
the toString() value of the value it resolves to. The expression could simply be the name of
a variable (in which case it will be resolved to the value of the variable), but more advanced

142

User and group assignment

MVEL expressions are possible as well, like for example #{person.name.firsthame}. Note that
this approach can only be used for String parameters. Other parameters should use parameter
mapping to map a value to that parameter.

» Parameter mapping: You can map the value of a process variable (or a value derived from a
variable) to a task parameter. For example, if you need to assign a task to a user whose id is
a variable in your process, you can do so by mapping that variable to the parameter Actorld,
as shown in the following screenshot. [Note that, for parameters of type String, this would be
identical to specifying the Actorld using #{userVariable}, so it would probably be easier to use
#{expression} in this case, but parameter mapping also allow you to assign a value to properties
that are not of type String.]

e Parameter Mapping x

Farameter Variable Add

Actorld uservariable
Remowve

L D

Cancel | | OK

12.1.1. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of
that specific user only. If a task is assigned to more than one user, any of those users can claim
and execute this task.

Tasks can also be assigned to one or more groups. This means that any user that is part of the
group can claim and execute the task. For more information on how user and group management
is handled in the default human task service, check out the user and group assignment.

12.1.2. Data mapping

Human tasks typically present some data related to the task that needs to be performed to the
actor that is executing the task and usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor
and request results.

143

Chapter 12. Human Tasks

12.1.2.1. Task parameters

Data that needs to be displayed in a task form should be passed to the task, using parameter
mapping. Parameter mapping allows you to copy the value of a process variable to a task
parameter (as described above). This could for example be the customer name that needs to
be displayed in the task form, the actual request, etc. To copy data to the task, simply map the
variable to a task parameter. This parameter will then be accessible in the task form (as shown
later, when describing how to create task forms).

For example, the following human task (as part of the humantask example in jopm-examples) is
assigned to a sales representative that needs to decide whether to accept or reject a request from
a customer. Therefore, it copies the following process variables to the task as task parameters:
the userld (of the customer doing the request), the description (of the request), and the date (of
the request).

Parameter Mapping

Parameter Variable Add
description description
: :
userld userld
date date
(4] D
Cancel | | 5] 4

12.1.2.2. Task results

Data that needs to be returned to the process should be mapped from the task back into process
variables, using result mapping. Result mapping allows you to copy the value of a task result to a
process variable (as described above). This could for example be some data that the actor filled
in. To copy a task result to a process variable, simply map the task result parameter to the variable
in the result mapping. The value of the task result will then be copied after completion of the task
so it can be used in the remainder of the process.

For example, the following human task (as part of the humantask example in jopm-examples) is
assigned to a sales representative that needs to decide whether to accept or reject a request from

144

Swimlanes

a customer. Therefore, it copies the following task results back to the process: the outcome (the
decision that the sales representative has made regarding this request, in this case "Accept" or
"Reject") and the comment (the justification why).

L Parameter Mapping x|
Parameter Variable Add
Remowve
outcome result
(4] Il D
Cancel | | Ok

12.1.3. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same
actor. Whenever the first task in a swimlane is created, and that task has an actorld specified,
that actorld will be assigned to (all other tasks of) that swimlane as well. Note that this would
override the actorld of subsequent tasks in that swimlane (if specified), so only the actorld of the
first human task in a swimlane will be taken into account, all others will then take the actorld as
assigned in the first one.

Whenever a human task that is part of a swimlane is completed, the actorld of that swimlane is
set to the actorld that executed that human task. This allows for example to assign a human task
to a group of users, and to assign future tasks of that swimlame to the user that claimed the first
task. This will also automatically change the assignment of tasks if at some point one of the tasks
is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the
"Swimlane" parameter of the user task node. A process must also define all the swimlanes that
it contains. To do so, open the process properties by clicking on the background of the process
and click on the "Swimlanes" property. You can add new swimlanes there.

145

Chapter 12. Human Tasks

The new BPMN2 Eclipse editor will support a visual representation of swimlanes (as horizontal
lanes), so that it will be possible to define a human task as part of a swimlane simply by dropping
the task in that lane on the process model.

12.1.4. Examples

The jbpm-examples module has some examples that show human tasks in action, like the
evaluation example and the humantask example. These examples show some of the more
advanced features in action, like for example group assignment, data passing in and out of human
tasks, swimlanes, etc. Be sure to take a look at them for more details and a working example.

12.2. Human task service

As far as the jBPM engine is concerned, human tasks are similar to any other external service that
needs to be invoked and are implemented as a domain-specific service. Check out the chapter
on domain-specific services for more detail on how to include a domain- specific service in your
process. Because a human task is an example of such a domain- specific service, the process
itself contains a high-level, abstract description of the human task that need to be executed, and
a work item handler is responsible for binding this abstract tasks to a specific implementation.
Using our pluggable work item handler approach, users can plug in the human task service that
is provided by jBPM, as descrived below, or they may register their own implementation.

The jBPM project provide a default implementation of a human task service based on the WS-
HumanTask specification. If you do not have the requirement to integrate an existing human
task service, you can use this service. It manages the life cycle of the tasks (creation, claiming,
completion, etc.) and stores the state of all the tasks, task lists, etc. It also supports features like
internationalization, calendar integration, different types of assignments, delegation, deadlines,
etc. It is implemented as part of the jopm-human-task module.

The task service implementation is based on the WS-HumanTask (WS-HT) specification.
This specification defines (in detail) the model of the tasks, the life cycle, and a lot
of other features as the ones mentioned above. It is pretty comprehensive and can be
found here [http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpeldpeople/WS-
HumanTask_v1.pdf].

12.2.1. Task life cycle

Looking from the perspective of the process, whenever a user task node is triggered during the
execution of a process instance, a human task is created. The process will only leave that node
when that human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. We will now shortly introduce
this life cycle, as shown in the figure below. For more details, check out the WS-HumanTask
specification.

146

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Task life cycle

Created

Suspended [

Ready

Reserved

InPrograss InPrograss

[Completion wilh fault response]
Send applicabion

4

; ™ e N e N
Completed Failed Error Exitad 1 L Obsolete
d b . PN A A

L

Whenever a task is created, it starts in the "Created" stage. It usually automatically transfers to
the "Ready" state, at which point the task will show up on the task list of all the actors that are
allowed to execute the task. There, it is waiting for one of these actors to claim the task, indicating
that he or she will be executing the task. Once a user has claimed a task, the status is changed
to "Reserved". Note that a task that only has one potential actor will automatically be assigned
to that actor upon creation of that task. After claiming the task, that user can then at some point
decide to start executing the task, in which case the task status is changed to "InProgress". Finally,
once the task has been performed, the user must complete the task (and can specify the result
data related to the task), in which case the status is changed to "Completed". If the task could
not be completed, the user can also indicate this using a fault response (possibly with fault data
associated), in which case the status is changed to "Failed".

The life cycle explained above is the normal life cycle. The service also allows a lot of other life
cycle methods, like:

» Delegating or forwarding a task, in which case it is assigned to another actor

* Revoking a task, so it is no longer claimed by one specific actor but reappears on the task list
of all potential actors

« Temporarly suspending and resuming a task

» Stopping a task in progress

147

Chapter 12. Human Tasks

» Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

12.2.2. Linking the human task service to the |JBPM engine

The human task service needs to be integrated with the jBPM engine just like any other external
service, by registering a work item handler that is responsible for translating the abstract work
item (in this case a human task) to a specific invocation of a service. We have implemented this
work item handler (org.jopm.process.workitem.wsht. WSHumanTaskHandler in the jopm-human-
task module), so you can register this work item handler like this:

St at ef ul Know edgeSessi on ksession = ...;
ksessi on. get Wr ki t emMvanager () . regi st er Wor kI t enHandl| er (" Human
Task", new WsHumanTaskHandl er());

If you are using persistence, you should use the CommandBasedWSHumanTaskHandler instead
(org.jbpm.process.workitem.wsht.CommandBasedWSHumanTaskHandler in the jbpm-human-
task module), like this:

St at ef ul Knowl edgeSessi on ksession = .. .;
ksessi on. get Wor kl t emvanager () . regi st er Wr kl t emHandl er (" Hunan
Task", new CommandBasedWsHunmanTaskHandl er ());

By default, this handler will connect to the human task service on the local machine on port 9123.
You can easily change the address and port of the human task service that should be used by by
invoking the setConnection(ipAddress, port) method on the WSHumanTaskHandler.

The communication between the human task service and the process engine, or any task client,
is done using messages being sent between the client and the server. The implementation allows
different transport mechanisms being plugged in, but by default, Mina (http://mina.apache.org/)
[http://mina.apache.org/] is used for client/server communication. An alternative implementation
using HornetQ is also available.

12.2.3. Interacting with the human task service

The human task service exposes various methods to manage the life cycle of the tasks through
a Java API. This allows clients to integrate (at a low level) with the human task service. Note
that end users should probably will not interact with this low-level API directly but rather use one
of the more user-friendly task clients (see below) that offer a graphical user interface to request
task lists, claim and complete tasks, etc. These task clients internally interact with the human task
service using this APl as well. But the low-level API is also available for developers to interact
with the human task service directly.

148

http://mina.apache.org/
http://mina.apache.org/

Interacting with the human task service

A task client (class org.jbpm.task.service.TaskClient) offers the following methods for managing
the life cycle of human tasks:

public void start(long taskld, String userld, TaskOperationResponseHandl er responseHandl er)
public void stop(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void release(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void suspend(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void resume(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void skip(long taskld, String userld, TaskOperati onResponseHandl er responseHandl er)
public void delegate(|ong taskld, String userld, String targetUserld,

TaskOper at i onResponseHandl er responseHandl er)
public void conplete(|ong taskld, String userld, ContentData outputData,

TaskOper at i onResponseHandl er responseHandl er)

If you take a look a the method signatures you will notice that almost all of these methods take
the following arguments:

 taskld: The id of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

» userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

« responseHandler: Communication with the task service is asynchronous, so you should use
a response handler that will be notified when the results are available.

When you invoke a message on the TaskClient, a message is created that will be sent to the
server, and the server will execute the logic that implements the correct action.

The following code sample shows how to create a task client and interact with the task service
to create, start and complete a task.

TaskCd ient client = new Taskd ient(new M naTaskd i ent Connector("client 1",
new M naTaskd i ent Handl er (Syst enEvent Li st ener Fact ory. get Syst enEvent Li stener())));
client.connect("127.0.0.1", 9123);

/1 adding a task

Bl ocki ngAddTaskResponseHandl er addTaskResponseHandl er = new Bl ocki ngAddTaskResponseHandl er () ;
Task task = ...;

client.addTask(task, null, addTaskResponseHandl er);

| ong taskld = addTaskResponseHandl er. get Taskl d() ;

/1 getting tasks for user "bobba"
Bl ocki ngTaskSunmar yResponseHandl er t askSummar yResponseHandl er =
new Bl ocki ngTaskSummar yResponseHandl er () ;

149

Chapter 12. Human Tasks

client. get TasksAssi gnedAsPot ent i al Omer (" bobba", "en-
UK", taskSummaryResponseHandl er);
Li st <TaskSummary> t asks = taskSunmar yResponseHandl| er. get Resul t s();

/1 starting a task

Bl ocki ngTaskQper at i onResponseHandl er responseHandl er =
new Bl ocki ngTaskOper at i onResponseHandl er () ;

client.start(taskld, "bobba", responseHandl er);

responseHand! er. wai t Ti | | Done(1000) ;

/1l conpleting a task

responseHandl er = new Bl ocki ngTaskQOper at i onResponseHandl er () ;
client.conplete(taskld, "bobba".getld(), null, responseHandl er);
responseHand! er. wai t Ti | | Done(1000) ;

12.2.4. User and group assignment

Tasks can be assigned to one specific user. In that case, the task will show up on the task list of
that specific user only. If a task is assigned to more than one user, any of those users can claim
and execute this task. Tasks can also be assigned to one or more groups. This means that any
user that is part of the group can claim and execute the task.

The human task service needs to know what all the possible valid user and group ids are (to make
sure tasks are assigned to existing users and/or groups to avoid errors and tasks that end up
assigned to non-existing users). You need to make sure to register all users and groups before
tasks can be assigned to them. This can be done dynamically.

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpmtask");

TaskServi ce taskServi ce = new TaskServi ce(enf, SystenEventLi stenerFactory. get Syst enEventLi st ene
TaskSer vi ceSessi on taskSessi on = taskServi ce. creat eSession();

/1 now regi ster new users and groups

t askSessi on. addUser (new User ("krisv"));

t askSessi on. addG oup(new G oup("devel opers"));

The human task service itself does not maintain the relationship between users and groups. This
is considered outside the scope of the human task service, as in general businesses already
have existing services that contain this information (like for example an LDAP service). Therefore,
the human task service also offers you to specify the list of groups that a user is part of, so this
information can also be taken into account when for example requesting the task list or claiming
a task.

For example, if a task is assigned to the group "sales" and the user "sales-rep" that is part of
that group wants to claim that task, he should pass the fact that he is part of that group when
requesting the list of tasks that he is assigned to as potential owner:

150

Starting the human task service

Li st<String> groups = new ArrayList<String>();

groups. add("sal es");

taskd i ent. get TasksAssi gnedAsPot ent i al Omner ("sal es-rep"”, groups, "en-
UK", taskSunmmaryHandl er);

The WS-HumanTask specification also introduces the role of an administrator. An administrator
can manipulate the life cycle of the task, even though he might not be assigned as a potential
owner of that task. By default, jBPM registers a special user with userld "Administrator" as the
administrator of each task. You should therefor make sure that you always define at least a user
"Adminstrator" when registering the list of valid users at the task service.

Future versions of jBPM will provide a callback interface that will simplify the user and group
management. This interface will allow you to validate users and groups without having to register
them all at the task service, and provide a method that you can implement to dynamically resolve
the groups a user is part of (for example by contacting an existing service like LDAP). Users will
then be able to simply register their implementation of this callback interface without having to
provide the list of grouplds the user is part of for all relevent method invocations.

12.2.5. Starting the human task service

The human task service is a completely independent service that the process engine
communicates with. We therefore recommend to start it as a separate service as well. The installer
contains a command to start the task server (in this case using Mina as transport protocol), or you
can use the following code fragment:

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpmtask");

TaskServi ce taskService = new TaskServi ce(enf, SystenEventListenerFactory. get SystenEventLi stene
M naTaskServer server = new M naTaskServer(taskService);

Thread thread = new Thread(server);

thread. start();

The task management component uses the Java Persistence API (JPA) to store all task
information in a persistent manner. To configure the persistence, you need to modify the
persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do
that. The following fragment shows for example how to use the task management component with
hibernate and an in-memory H2 database:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<per si st ence
version="1.0"
Xsi : schemalLocati on=
"http://java. sun. com xm / ns/ persi st ence
http://java. sun. coml xm / ns/ per si st ence/ persi stence_1_0. xsd

151

Chapter 12. Human Tasks

http://java. sun. coml xm / ns/ per si st ence/ orm

http://java. sun. comi xm / ns/ persi stence/ orm 1_0. xsd"
xm ns:orn"http://java. sun. com xm / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://java. sun. com xm / ns/ per si st ence" >

<persi stence-unit nanme="org.j bpmtask">
<provi der >org. hi ber nat e. ej b. H ber nat ePer si st ence</ provi der >
<cl ass>org. j bpm task. Att achnent </ cl ass>
<cl ass>org. j bpm t ask. Cont ent </ cl ass>
<cl ass>org. j bpm t ask. Bool eanExpr essi on</ cl ass>
<cl ass>org. j bpm t ask. Conment </ cl ass>
<cl ass>org. j bpm t ask. Deadl i ne</ cl ass>
<cl ass>org. j bpm t ask. Conment </ cl ass>
<cl ass>org. j bpm t ask. Deadl i ne</ cl ass>
<cl ass>org. j bpm t ask. Del egati on</cl ass>
<cl ass>org. j bpm t ask. Escal ati on</cl ass>
<cl ass>org. j bpm t ask. G oup</ cl ass>
<cl ass>org. j bpm t ask. | 18NText </ cl ass>
<cl ass>org. j bpm task. Notificati on</cl ass>
<cl ass>org. j bpm task. Emai | Noti fi cation</cl ass>
<cl ass>org. j bpm t ask. Emai | Noti fi cati onHeader </ cl ass>
<cl ass>org. j bpm t ask. Peopl eAssi gnnent s</ cl ass>
<cl ass>org. j bpm t ask. Reassi gnment </ cl ass>
<cl ass>org. j bpm task. St at us</ cl ass>
<cl ass>org.j bpm t ask. Task</cl ass>
<cl ass>org. j bpm t ask. TaskDat a</ cl ass>
<cl ass>org. j bpm t ask. SubTasksSt r at egy</ cl ass>
<cl ass>org. j bpm t ask. OnPar ent Abor t Al | SubTasksEndSt r at egy</ cl ass>
<cl ass>org. j bpm t ask. OnAl | SubTasksEndPar ent EndSt r at egy</ cl ass>
<cl ass>org.j bpm t ask. User </ cl ass>

<properties>
<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nanme="hi bernate. connection.driver_class" val ue="org. h2. Driver"/>
<property nane="hi bernate.connection.url" val ue="jdbc: h2: rem nydb" />
<property nane="hi bernate. connection. user nane" val ue="sa"/>
<property nanme="hi bernate. connection. password" val ue="sasa"/>
<property nane="hi bernate. connection. autocomrit" val ue="fal se" />
<property nane="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2ddl . aut 0" val ue="create" />
<property nane="hi bernate.show sql" val ue="true" />
</ properties>
</ per si st ence-uni t >
</ persi st ence>

152

Human task clients

The first time you start the task management component, you need to make sure that all the
necessary users and groups are added to the database. Our implementation requires all users and
groups to be predefined before trying to assign a task to that user or group. So you need to make
sure you add the necessary users and group to the database using the taskSession.addUser(user)
and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user
as all tasks are automatically assigned to this user as the administrator role.

The jbpm-human-task module contains a org.jopm.task.RunTaskService class in the src/test/java
source folder that can be used to start a task server. It automatically adds users and groups as
defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

The jBPM installer automatically starts a human task service (using an in-memory H2 database)
as a separate Java application. This task service is defined in the task-service directory in the
jbpm-installer folder. You can register new users and task by modifying the LoadUsers.mvel and
LoadGroups.mvel scripts in the resources directory.

12.3. Human task clients

12.3.1. Eclipse demo task client

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug
processes using human tasks. In contains a Human Task View that can connect to a running task
management component, request the relevant tasks for a particular user (i.e. the tasks where the
user is either a potential owner or the tasks that the user already claimed and is executing). The
life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping
the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown
below. You can configure which task management component to connect to in the Drools Task
preference page (select Window -> Preferences and select Drools Task). Here you can specify
the url and port (default = 127.0.0.1:9123).

Hurman Task View £ i ¥ =0
Userld sales-rep Refresh | | Create
Narne Status Owner Created On Cofnrment
Some Task InFrogress sales-rep r31, 2009 4:44:32
Some other task Reservad sales-rep r 31, 2008 4:45:02

Stop | | Release | | Suspend Skip | Complete | | Fail

Notice that this task client only supports a (small) sub-set of the features provided the human task
service. But in general this is sufficient to do some initial testing and debugging or demoing inside
the Eclipse IDE.

153

Chapter 12. Human Tasks

12.3.2. Web-based task client in jBPM Console

The jBPM console also contains a task view for looking up task lists and managing the life cycle
of tasks, task forms to complete the tasks, etc. See the chapter on the jBPM console for more
information.

154

Chapter 13.

Chapter 13. Domain-specific
processes

13.1. Introduction

One of the goals of jBPM is to allow users to extend the default process constructs with domain-
specific extensions that simplify development in a particular application domain. This tutorial
describes how to take your first steps towards domain-specific processes. Note that you don't
need to be a jBPM expert to define your own domain-specific nodes, this should be considered
integration code that a normal developer with some experience in jBPM can do himself.

Most process languages offer some generic action (node) construct that allows plugging in custom
user actions. However, these actions are usually low-level, where the user is required to write
custom code to implement the work that should be incorporated in the process. The code is also
closely linked to a specific target environment, making it difficult to reuse the process in different
contexts.

Domain-specific languages are targeted to one particular application domain and therefore can
offer constructs that are closely related to the problem the user is trying to solve. This makes
the processes and easier to understand and self-documenting. We will show you how to define
domain-specific work items (also called service nodes), which represent atomic units of work that
need to be executed. These service nodes specify the work that should be executed in the context
of a process in a declarative manner, i.e. specifying what should be executed (and not how) on
a higher level (no code) and hiding implementation details.

So we want service nodes that are:

1. domain-specific

2. declarative (what, not how)
3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific service nodes and integrate them in our
process language. For example, the next figure shows an example of a process in a healthcare
context. The process includes domain-specific service nodes for ordering nursing tasks (e.qg.
measuring blood pressure), prescribing medication and notifying care providers.

155

Chapter 13. Domain-specific p...

®

@ BP Medicatinn]

= Blood Pressure

a

N\ NN

o)@
e

= BP Fnllnw-up}

13.2. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work
item represent an atomic unit of work in a declarative way. It is defined by a unique name and
additional parameters that can be used to describe the work in more detail. Work items can also
return information after they have been executed, specified as results. Our notification work item
could thus be defined using a work definition with four parameters and no results:

Nanme: "Notification"
Par anet ers
From [Stri ng]

To [String]

Message [String]
Priority [String]

13.2.1. Creating the work definition

All work definitions must be specified in one or more configuration files in the project classpath,
where all the properties are specified as hame-value pairs. Parameters and results are maps
where each parameter name is also mapped to the expected data type. Note that this configuration
file also includes some additional user interface information, like the icon and the display name

of the work item.

156

Registering the work definition

In our example we will use MVEL for reading in the configuration file, which allows us to do more
advanced configuration files. This file must be placed in the project classpath in a directory called
META-INF. Our MyWorkDefinitions.wid file looks like this:

i nport org.drools. process. core. datatype.inpl.type. StringDataType;
[

/1l the Notification work item

[
"nanme" : "Notification",
"paraneters” : |
"Message" : new StringDataType(),
"From' : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),

1.
"di spl ayName" : "Notification",
"icon" : "icons/notification.gif"

The project directory structure could then look something like this:

proj ect/src/ mai n/ resour ces/ META- | NF/ MyWor kDef i ni tions. w d

You might now want to create your own icons to go along with your new work definition. To add
these you will need .gif or .png images with a pixel size of 16x16. Place them in a directory outside
of the META-INF directory, for example as follows:

proj ect/src/ mai n/resources/icons/notification.gif

13.2.2. Registering the work definition

The configuration APl can be used to register work definition files for your project using
the drools.workDefinitions property, which represents a list of files containing work definitions
(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF
directory of your project and add the following line:

157

Chapter 13. Domain-specific p...

drool s. workDefinitions = M/WirkDefinitions.wd

This will replace the default domain specific node types EMAIL and LOG with the newly defined
NOTIFICATION node in the process editor. Should you wish to just add a newly created node
definition to the existing palette nodes, adjust the drools.workDefinitions property as follows
including the default set configuration file:

drool s. workDefinitions = M/WorkDefinitions.conf WrkDefinitions.conf

13.2.3. Using your new work item in your processes

Once our work definition has been created and registered, we can start using it in our processes.
The process editor contains a separate section in the palette where the different service nodes
that have been defined for the project appear.

158

Using your new work item in your processes

[% Select

| Marquee

—+ Sequence Flow

== Components <0

Start Event

® End Event

Rule Task

@ Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

) Timer Event

®) Error Event

[Message Event

User Task

(=) Embedded Sub-Process

(w] Multiple Instances

= Service Tasks £

§ Notification h

Using drag and drop, a notification node can be created inside your process. The properties can
be filled in using the properties view.

Apart from the properties defined by this work item, all work items also have these three properties:

1. Parameter Mapping: Allows you to map the value of a variable in the process to a parameter
of the work item. This allows you to customize the work item based on the current state of
the actual process instance (for example, the priority of the natification could be dependent of
some process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to
a variable of the process. This allows you to use results in the remainder of the process.

159

Chapter 13. Domain-specific p...

3. Wait for completion: By default, the process waits until the requested work item has been
completed before continuing with the process. It is also possible to continue immediately
after the work item has been requested (and not waiting for the results) by setting "wait for
completion” to false.

Here is an example that creates a domain specific node to execute Java, asking for the class
and method parameters. It includes a custom java.gif icon and consists of the following files and
resulting screenshot:

i nport org.drools. process. core. datatype.inpl.type. StringDat aType;
[

/1 the Java Node work item |l ocated in:
/'l project/src/min/resources/ META- | NF/ JavaNodeDef i ni ti on. conf
[

"nane" : "JavaNode",
"paraneters" : [
"class" : new StringDataType(),
"met hod" : new StringDataType(),
1,
"di spl ayNanme" : "Java Node",
"icon" : "icons/java.gif"

/'l located in: project/src/min/resources/ META-1NF/ drool s. rul ebase. conf
/1

dr ool s. wor kDefinitions = JavaNodeDefinition.conf WorkDefinitions. conf

/1 icon for java.gif |located in:
/'l project/src/min/resources/icons/java.gif

160

Using your new work item in your processes

[+ Select

' Marquee O

— Sequence

Flow l

= Components < r - \i

N . ava Node =
) Start Event L@J J
@® End Event)

Rule Task

'
@ Gateway O

[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task
) Timer Event
@ Error Event

Message
Event

User Task

(=) Embedded
Sub-Process

(w) Multiple

(= Service Ta... <«
= Log
= Email
% Java Node

161

Chapter 13. Domain-specific p...

13.2.4. Executing service nodes

The jBPM engine contains a WorkltemManager that is responsible for executing work items
whenever necessary. The WorkltemManager is responsible for delegating the work items to
WorkltemHandlers that execute the work item and notify the WorkltemManager when the work
item has been completed. For executing notification work items, a NotificationWorkltemHandler
should be created (implementing the WorkltemHandler interface):

package com sanpl e;

i nport org.drools.runtime. process. Wrkltem
i nport org.drools.runtine.process. WrkltenHandl er;
i mport org.drools.runtime. process. Wr kl t emvanager ;

public class NotificationWrkltenHandl er inplenments WorkltenHandl er {

public void execut eWrkltem Workltem workltem Wrkltenmvanager nanager) {
/] extract paraneters
String from= (String) workltem getParameter("Froni);
String to = (String) workltem getParaneter("To");
String message = (String) workltem getParaneter (" Mssage");
String priority = (String) workltem getParameter("Priority");
/'l send email
Enmi | Servi ce service = ServiceRegistry. getlnstance().getEmail Service();
service.sendEmail (from to, "Notification", nessage);
/1 notify manager that work item has been conpl et ed
manager . conpl et eWbrkl tem(workltem get1d(), null);

public void abortWrkltem Wrkltem workltem WrkltenVanager manager) {
/1 Do nothing, notifications cannot be aborted

This WorkltemHandler sends a notification as an email and then immediately notifies the
WorkltemManager that the work item has been completed. Note that not all work items can be
completed directly. In cases where executing a work item takes some time, execution can continue
asynchronously and the work item manager can be notified later. In these situations, it might also
be possible that a work item is being aborted before it has been completed. The abort method
can be used to specify how to abort such work items.

WorkltemHandlers should be registered at the WorkltemManager, using the following API:

ksessi on. get Wor kI t emvanager () . regi st er Wr kl t emHandl er (

162

Executing service nodes

"Notification", new NotificationWrkltemHandl er());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The
process itself should not be changed. It is also possible to use the same process in different
environments, where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more
difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during
testing or simulation, it might not be necessary to actually execute the work items. In this case
specialized dummy work item handlers could be used during testing.

163

164

Chapter 14.

Chapter 14. Testing and debugging

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

14.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific
use cases, for example test the output based on the existing input. To simplify unit testing, jBPM
includes a helper class called JbpmJUnitTestCase (in the jopm-bpmn2 test module) that you can
use to greatly simplify your junit testing, by offering:

 helper methods to create a new knowledge base and session for a given (set of) process(es)
» you can select whether you want to use persistence or not

« assert statements to check

the state of a process instance (active, completed, aborted)

which node instances are currently active

» which nodes have been triggered (to check the path that has been followed)

get the value of variables
. etc.

For example, conside the following hello world process containing a start event, a script task and
an end event. The following junit test will create a new session, start the process and then verify
whether the process instance completed successfully and whether these three nodes have been

executed.

public class MyProcessTest extends JbpmlUnit Test Case {

public void testProcess() {
/'l create your session and | oad the given process(es)
St at ef ul Knowl edgeSessi on ksessi on = cr eat eKnow edgeSessi on("sanpl e. bprm") ;

165

Chapter 14. Testing and debugging

/| start the process
Processl nstance processl nstance = ksession.startProcess("com sanpl e. bprm. hel | 0");
/'l check whet her the process instance has conpl eted successfully
assert Processl nst anceConpl et ed(processl nstance. getld(), ksession);
/'l check whet her the gi ven nodes were executed during the process execution
assert NodeTri gger ed(processl nstance. getld(), "StartProcess", "Hello", "EndProcess");

14.1.1. Helper methods to create your session

Several methods are provided to simplify the creation of a knowledge base and a session to
interact with the engine.

» createKnowledgeBase(String... process): Returns a new knowledge base containing all the
processes in the given filenames (loaded from classpath)

« createKnowledgeBase(Map<String, ResourceType> resources) :Returns a new knowledge
base containing all the resources (not limited to processes but possibly also including other
resource types like rules, decision tables, etc.) from the given filenames (loaded from classpath)

» createKnowledgeBaseGuvnor(String... packages): Returns a new knowledge base containing
all the processes loaded from Guvnor (the process repository) from the given packages

« createKnowledgeSession(KnowledgeBase kbase): Creates a new statefull knowledge session
from the given knowledge base

« restoreSession(StatefulKnowledgeSession ksession, boolean noCache) : completely restores
this session from database, can be used to recreate a session to simulate a critical failure and
to test recovery, if noCache is true, the existing persistence cache will not be used to restore
the data

14.1.2. Assertions

The following assertions are added to simplify testing the current state of a process instance:

» assertProcessinstanceActive(long processinstanceld, StatefulKnowledgeSession ksession):
check whether the process instance with the given id is still active

 assertProcessinstanceCompleted(long processlinstanceld, StatefulKnowledgeSession
ksession): check whether the process instance with the given id has completed successfully

 assertProcessinstanceAborted(long processinstanceld, StatefulkKnowledgeSession ksession):
check whether the process instance with the given id was aborted

166

Testing integration with external services

» assertNodeActive(long processinstanceld, StatefulKnowledgeSession ksession, String...
name): check whether the process instance with the given id contains at least one active node
with the given node name (for each of the given names)

« assertNodeTriggered(long processinstanceld, String... nodeNames) : check for each given
node name whether a node instance was triggered (but not necessarily active anymore) during
the execution of the process instance with the given

» getVariableValue(String name, long processinstanceld, StatefulkKnowledgeSession ksession):
retrieves the value of the variable with the given name from the given process instance, can
then be used to check the value of process variables

14.1.3. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the
advantages of our domain-specific process approach is that you can specify yourself how to
actually execute your own domain-specific nodes, by registering a handler. And this handler can
be different depending on your context, allowing you to use testing handlers for unit testing your
process. When you are unit testing your business process, you can register test handlers that
then verify whether specific services are requested correctly, and provide test responses for those
services. For example, imagine you have an email node or a human task as part of your process.
When unit testing, you don't want to send out an actual email but rather test whether the email
that is requested contains the correct information (for example the right to email, a personalized
body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associcated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

167

Chapter 14. Testing and debugging

Q;{ e]_>®sent

failed

5| Failed

public void testProcess2() {

/'l create your session and | oad the given process(es)
St at ef ul Knowl edgeSessi on ksession = creat eKnow edgeSessi on("sanpl e2. bprm") ;
/'l register a test handler for "Enmil"
Test Wr kl t enHandl er testHandl er = new Test Wor kl t enHandl er () ;

ksessi on. get Wor kl t emvanager (). regi st er Wrkl t enHandl er ("Enmi | ", testHandl er);
[/ start the process
Processl nst ance processlnstance = ksession. startProcess("com sanpl e. bpmrm. hel | 02");
assert Processl nst anceActi ve(processl nstance. getld(), ksession);
assert NodeTri gger ed(processl nstance.getld(), "StartProcess", "Email");
/'l check whether the enmil has been requested
Wor kltem workl tem = t est Handl er. get Wor kl t en() ;
assert Not Nul | (workl ten;
assert Equal s("Emai | ", workltem get Name());
assert Equal s(" nme@rai | . cont', workltem get Paranet er (" Fron'));
assert Equal s("you@ai | . cont', workltem get Paraneter ("To"));
/1 notify the engine the email has been sent
ksessi on. get Wr kI t emvanager () . abort Workl t en{wor kl tem get1d());
assert Processl nst anceAbort ed(processl nstance. getl1d(), ksession);
assert NodeTri gger ed(processlnstance.getld(), "Gateway", "Failed", "Error");

14.1.4. Configuring persistence

You can configure whether you want to execute the junit tests using persistence or not. By default,
the junit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the junit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

By default, persistence is turned on. To turn off persistence, simply pass a boolean to the super
constructor when creating your test case, as shown below:

168

Debugging

public class MyProcessTest extends JbpmlUnit Test Case {

public MyProcessTest() {
/1 configure this tests to not use persistence in this case
super (fal se);

14.2. Debugging

This section describes how to debug processes using the Eclipse plugin. This means that the
current state of your running processes can be inspected and visualized during the execution.
Note that we currently don't allow you to put breakpoints on the nodes within a process directly.
You can however put breakpoints inside any Java code you might have (i.e. your application code
that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be
evaluated in the context of a process). At these breakpoints, you can then inspect the internal
state of all your process instances.

When debugging the application, you can use the following debug views to track the execution
of the process:

1. The process instances view, showing all running process instances (and their state). When
double-clicking a process instance, the process instance view visually shows the current state
of that process instance at that point in time.

2. The human task view, showing the task list of the given user (fill in the user id of the actor and
click refresh to view all the tasks for the given actor), where you can then control the life cycle
of the task, for example start and complete it.

3. The audit view, showing the audit log (note that you should probably use a threaded file logger
if you want to session to save the audit event to the file system on regular intervals, so the audit
view can be update to show the latest state).

4. The global data view, showing the globals.

5. Other views related to rule execution like the working memory view (showing the contents (data)
in the working memory related to rule execution), the agenda view (showing all activated rules),
etc.

14.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows
that there is currently one running process (instance), currently executing one node instance, i.e.

169

Chapter 14. Testing and debugging

business rule task. When double-clicking a process instance, the process instance viewer will
graphically show the progress of the process instance. An example where the process instance
is waiting for a human actor to perform a self-evaluation task is shown below.

| Console | ¥ Tasks | 4 Agenda View | 9] Global Data View | -] Process Instances View &3 9 Working Memory Vi

- & [1]=RuleFlowProcessInstance (id=2087)
& id=1

4 & processMame= Truleflow”

4 & processld= "com.sample.ruleflow”™

= & nodelnstances= Object[] (id=2092)

+- & [1]=RuleSetModelnstance (id=2093)
When you double-click a process instance in the process instances view and the process instance
view complains that it cannot find the process, this means that the plugin wasn't able to find the
process definition of the selected process instance in the cache of parsed process definitions. To
solve this, simply change the process definition in question and save again (so it will be parsed)
or rebuild the project that contains the process definition in question.
) Process Instance 52 .) Audt| OF Outiine — B

1 = Evaluation[com.sample. evaluation] 22

2% HR. Evaluation

OO H-@

,}Q PM Evaluation

14.2.2. The Human Task View

The Human Task View can connect to a running human task service and request the relevant
tasks for a particular user (i.e. the tasks where the user is either a potential owner or the tasks that
the user already claimed and is executing). The life cycle of these tasks can then be executed, i.e.
claiming or releasing a task, starting or stopping the execution of a task, completing a task, etc.
A screenshot of this Human Task View is shown below. You can configure which task service to
connect to in the Drools Task preference page (select Window -> Preferences and select Drools
Task). Here you can specify the url and port (default = 127.0.0.1:9123).

170

The Audit View

Global Data '|:| Worling Memary ﬂ Process Instances | % Human Task View -

Status Chvner Creabed On Comment

-2009 1:28:09 Self evaluation

14.2.3. The Audit View

The audit view, showing the audit log, which is a log of all events that were logged from the session.
To create a logger, use the KnowledgeRuntimeLoggerFactory to create a new logger and attach
it to a session. Note that you should probably use a threaded file logger if you want to session
to save the audit event to the file system on regular intervals, so the audit view can be update to
show the latest state. When creating a threaded file logger, you can specify the name of the file
where the audit log should be created and the interval after which event should be saved to the
file (in milliseconds). Be sure to close the logger after usage.

Knowl edgeRunt i neLogger | ogger = Knowl edgeRunti neLogger Fact ory
. newThr eadedFi | eLogger (ksession, "logdir/nmylogfile", 1000);

/1 do sonmething with the session here

| ogger. cl ose();

To open up an audit tree in the audit view, open the selected log file in the audit view or simply
drag the file into the audit view. A tree-based view is generated based on the audit log. An event
is shown as a subnode of another event if the child event is caused by (a direct consequence of)
the parent event. An example is shown below.

= e; RuleFlow started: ruleflow[com.sample.ruleflow]
= #] RuleFlow node triggered: Start in process ruleflow[com.sample ruleflow]
= #] RuleFlow node triggered: Hello in process ruleflow[com . sample ruleflow]
= 4 RuleFlow node triggered: End in process ruleflow[corm.sample. ruleflow]

=2 RuleFlow completed: ruleflow[com.sample.ruleflow]

171

172

Chapter 15.

Chapter 15. Process Repository

A process repository is an important part of your BPM architecture if you start using more and
more business processes in your applications and especially if you want to have the ability to
dynamically update them. The process repository is the location where you store and manage
your business processes. Because they are not deployed as part of your application, they have
their own life cycle, meaning you can update your business processes dynamically, without having
to change the application code.

Note that a process repository is a lot more than simply a database to store your process
definitions. It almost acts as a combination of a source code management system, content
management system, collaboration suite and development and testing environment. These are
the kind of features you can expect from a process repository:

 Persistent storage of your processes so the latest version can always easily be accessed from
anywhere, including versioning

 Build and deploy selected processes

» User-friendly (web-based) interface to manage, update and deploy your processes (targeted to
business users, not just developers)

« Authentication / authorization to make sure only people that have the right role can see and/
or edit your processes

» Categorization and searching

« Scenario testing to make sure you don't break anything when you change your process
» Collaboration and other social features like comments, notifications on change, etc.

« Synchronization with your development environment

Actually, it would be better to talk about a knowledge repository, as the repository will not only store
your process definitions, but possibly also other related artefacts like task forms, your domain
model, associated business rules, etc. Luckily, we don't have to reinvent the wheel for this, as the
Guvnor project acts as a generic knowledge repository to store any type of artefacts and already
supports most of these features.

The following screencast shows how you can upload your process definition to Guvnor, along
with the process form (that is used when you try to start a new instance of that process to collect
the necessary data), task forms (for the human tasks inside the process), and the process image
(that can be annotated to show runtime progress). The jBPM-console is configured to get all this
information from Guvnor whenever necessary and show them in the console.

173

Chapter 15. Process Repository

[http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf]

Figure 15.1.

If you use the installer, that should automatically download and install the latest version of Guvnor
as well. So simply deploy your assets (for example using the Guvnor Eclipse integration as shown
in the screencast, also automatically installed) to Guvnor (taking some naming conventions into
account, as explained below), build the package and start up the console.

The current integration of jBPM-console with Guvnor uses the following conventions to find the
artefacts it needs:

» jBPM-console looks up artefacts from all available Guvnor packages (it does not look for
assets in the Global Area). You can alternatively modify the guvnor.packages property in
jBPM.console.properties to limit the lookup to only the packages you need, for example:
guvnor.packages=defaultPackage, myPackageA, myPackageB

A process should define the correct package name attribute, which needs to match the Guvnor
package name it belongs to (otherwise you won't be able to build your package in Guvnor)

» Don't forget to build all of your packages in Guvnor before trying to view available processes in
the console. Otherwise jBPM-console will not be able to retrieve the pkg from Guvnor.

« Currently, the console will load the process definitions the first time the list of processes is
requested in the console. At this point, automatic updating from Guvnor when the package is

174

http://people.redhat.com/kverlaen/jBPM5-guvnor-integration.swf

rebuilt is turned off by default, so you will have to either configure this or restart the application
server to get the latest versions.

» Task forms that should be associated with a specific process definition should have the name
"{processDefinitionld}.ftl" or "{processDefinitionld}-taskform.ftl"

« Task forms for a specific human task should have the name "{taskName}.ftl" or "{taskName}-
taskform.ftl"

« The process diagram for a specific process should have the name "{processDefinitionld}-
image.png"

* By default jBPM-console looks up your Guvnor instance under http://localhost:8080/drools-
guvnor. To change this, locate jbpm.console.properties and modify the guvnor.protocol,
guvnor.host, and guvnor.subdomain property values as needed

* jBPM-console communicates with Guvnor via its REST api. The default connect and read
timeouts for this communication are set to 10 seconds via the guvnor.connect.timeout,
and guvnor.read.timeout properties in jopm.console.properties. You can edit values of these
properties to set your specific timeout values (in milliseconds)

« Ifyou are using Guvnor with JAAS authentication enabled, jBPM-console uses by default admin/
admin credentials. To change this information again locate jopm.console.properties and change
the guvnor.usr, and guvnor.pwd property values.

If you follow these rules, your processes, forms and images should show up without any issues
in the jBPM-console.

175

176

Chapter 16.

Chapter 16. Business Activity
Monitoring

You need to actively monitor your processes to make sure you can detect any anomalies and
react to unexpected events as soon as possible. Business Activity Monitoring (BAM) is concerned
with real-time monitoring of your processes and the option of intervening directly, possibly even
automatically, based on the analysis of these events.

jBPM allows users to define reports based on the events generated by the process engine, and
possibly direct intervention in specific situations using complex event processing rules (Drools
Fusion), as described in the next two sections. Future releases of the jBPM platform will include
support for all requirements of Business Activity Monitoring, including a web-based application
that can be used to more easily interact with a running process engine, inspect its state, generate
reports, etc.

16.1. Reporting

By adding a history logger to the process engine, all relevant events are stored in the database.
This history log can be used to monitor and analyze the execution of your processes. We are
using the Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key
performance indicators. Its easy to define your own reports yourself, using the predefined data
sets containing all process history information, and any other data sources you might want to add
yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview
your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to
define your own reports.) The following screen shot shows a sample on how to create such a chart.

177

Chapter 16. Business Activity...

i Edit Chart 3

Edit Chart

Select the data to display in the chart and bind it to the series. ols

lii¥ Select Chart Type | B Select Data [lgf Format Chart

Chart Preview

Average Completion Time (seconds)
100
m B0 ‘
Value (Y) Series U
[Ser\es 0 =] 0 ‘ Optional Y Series Grouping:
F|| B
% = |DateTimeSpan.seconds(ro| 40 Sl] .
‘ J
(.
20 ‘ 0.5
o
2/12/08 12:00 PM 2/12/08 400 PM
L Category (X) Series: [row["STARTiDATE"]] J
Select Data
) Inherit Data from Container
@ Use Data from |m E]|
Data Preview
Use the right-click menu or drag the column into series fields
PROCESSINSTANCE\D][PROCESSID HSTARTiDATE HENDiDATE l
1 org drools exanFeb 12, 2009 5: Feb 12, 2009 5:
2 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4:
3 org.drools.exanFeb 12, 2009 4: Feb 12, 2009 4: [FIES]
4 org.drools.exanFeb 12, 2009 2: Feb 12, 2009 2: []
Parameters
5 org.drools.exanFeb 12, 2009 1ZFeb 12, 2009 1z
" - — """|) [Data Binding]
@ [< Back l [Mext > l [Finish l [Cancel

Figure 16.1. Creating areport using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of
requests per hour and the average completion time of the request during that hour. These charts
could be used to check for an unexpected drop or rise of requests, an increase in the average
processing time, etc. These charts could signal possible problems before the situation really gets
out of hand.

178

Direct Intervention

9Procls

Eventing Report

Number of Requests

1 1

February 12, 2009 February 12, 2009 February 12, 2009 February 12, 2009
1200 14:00 15:00 17:00

Average Completion Time (seconds)

505

30.5
o 1 1
2012000 12:00 PM 2/12/06 2:00 PM 2112405 4:00 PM 2/12/05 500 PM

Feb 13, 2009 12:56 AM

Figure 16.2. The eventing report

16.2. Direct Intervention

Reports can be used to visualize an overview of the current state of your processes, but they
rely on a human actor to take action based on the information in these charts. However, we allow
users to define automatic responses to specific circumstances.

Drools Fusion provides numerous features that make it easy to process large sets of events. This
can be used to monitor the process engine itself. This can be achieved by adding a listener to
the engine that forwards all related process events, such as the start and completion of a process
instance, or the triggering of a specific node, to a session responsible for processing these events.
This could be the same session as the one executing the processes, or an independent session
as well. Complex Event Processing (CEP) rules could then be used to specify how to process
these events. For example, these rules could generate higher-level business events based on a
specific occurrence of low-level process events. The rules could also specify how to respond to
specific situations.

The next section shows a sample rule that accumulates all start process events for one specific
order process over the last hour, using the "sliding window" support. This rule prints out an error

179

Chapter 16. Business Activity...

message if more than 1000 process instances were started in the last hour (e.g., to detect a
possible overload of the server). Note that, in a realistic setting, this would probably be replaced
by sending an email or other form of notification to the responsible instead of the simple logging.

decl are ProcessStartedEvent
@ol e(event)
end

di al ect "nvel "

rul e "Nunber of process instances above threshol d"
when
Nunmber (nbProcesses : intValue > 1000)
from accumul at e(
e: ProcessSt art edEvent (processl nst ance. processl d ==
"com sanpl e. order. Order Process")
over w ndow: si ze(1h),
count(e))
t hen
Systemerr.println("WARNING Nunber of order processes in the | ast hour above
1000: " +
nbProcesses);
end

These rules could even be used to alter the behavior of a process automatically at runtime,
based on the events generated by the engine. For example, whenever a specific situation is
detected, additional rules could be added to the Knowledge Base to modify process behavior. For
instance, whenever a large amount of user requests within a specific time frame are detected, an
additional validation could be added to the process, enforcing some sort of flow control to reduce
the frequency of incoming requests. There is also the possibility of deploying additional logging
rules as the consequence of detecting problems. As soon as the situation reverts back to normal,
such rules would be removed again.

180

Chapter 17.

Chapter 17. Flexible Processes

Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be
a growing need amongst end users for more flexible and adaptive business processes, without
ending up with overly complex solutions. Everyone seems to agree that using a process-centric
approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge
workers" no longer want to be locked into rigid processes but wants to have the power and flexibility
to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition
of what it might or might not mean, as this has been a hot topic for discussion, it refers to the
basic idea that many applications in the real world cannot really be described completely from
start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes
a different approach: instead of trying to model what should happen from start to finish, let's give
the end user the flexibility to decide what should happen at runtime. In its most extreme form for
example, case management doesn't even require any process definition at all. Whenever a new
case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where
care plans can be used to describe how patients should be treated in specific circumstances,
but people like general practitioners still need to have the flexibility to add additional steps and
deviate from the proposed plan, as each case is unique. And there are similar examples in claim
management, helpdesk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where we
don't model any process up front), you still need a lot of the other features a BPM system (usually)
provides: there still is a clear need for audit logs, monitoring, coordinating various services,
human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cases are
somewhere in between, or might even evolve from case management to more structured business
process over time (when we for example try to extract common approaches from many cases).
If we can offer flexibility as part of our processes, can't we let the users decide how and where
they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your
processes. The first example shows a care plan that shows the tasks that should be performed
when a patient has high blood pressure. While a large part of the process is still well-structured,
the general practitioner can decide himself which tasks should be performed as part of the sub-
process. And he also has the ability to add new tasks during that period, tasks that were not
defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc
sub-process to model this kind of flexibility, possibly augmented with rules or event processing to
help in deciding which fragments to execute.

181

Chapter 17. Flexible Processes

AR Sl PV

| B Moaors SP | |

- |:fhaan'.umrm]
0= -0
-6

mO _{

'

®

Figure 17.1.

The second example actually goes a lot further than that. In this example, an internet provider
could define how cases about internet connectivity problems will be handled by the internet
provider. There are a number of actions the case worker can select from, but those are simply
small process fragments. The case worker is responsible for selecting what to do next and can
even add new tasks dynamically. As you can see, there is not process from start to finish anymore,
but the user is responsible for selecting which process fragments to execute.

O —{ Crieabe Probdem Eme]

I Update Probilem Dtscrp‘ﬂun]

[B Perfarrn Systern Diagnostics]—{Aﬂ.ﬂy‘!ﬂ- CHagnastics H.:l ieepnet DIE-QI'IGS-{H'.S]

B Comtact Cursman

——@®
sodvid
[U Reguiost Techaician H I Technician Hsn}—~®
\—{_ | Lipdate c;seJ—-[i Folow LIpJ
®

@] @

Figure 17.2.

182

And in its most extreme form, we even allow you to create case instances without a process
definition, where what needs to be performed is selected purely at runtime. This however doesn't
mean you can't figure out anymore what 's actually happening. For example, meetings can be
very adhoc and dynamic, but we usually want a log of what was actually discussed. The following
screenshot shows how our regular audit view can still be used in this case, and the end user
could then for example get a lot more info about what actually happened by looking at the data
associated with each of those steps. And maybe, over time, we can even automate part of that
by using a semi-structured process.

— = started: Company Meeting
= 4] List Attendees
#1 Agenda Overview

#] Agenda Topic: New Hires

+#] Agenda Topic: Customer Feedback
] Agenda Topic Moved to Next Meeting: Company Party

] Questions?

=] Question: Fix Problems with Coffee Machine?

=«_ completed: Company Meeting

Figure 17.3.

183

184

Chapter 18.

Chapter 18. Integration with Maven,
OSGi, Spring, etc.

jBPM can be integrated with a lot of other technologies. This chapter gives an overview of a few
of those that are supported out-of-the-box. Most of these modules are developed as part of the
droolsjbpme-integration module, so they work not only for your business processes but also for
business rules and complex event processing.

18.1. Maven

By using a Maven pom.xml to define your project dependencies, you can let maven get your
dependencies for you. The following pom.xml is an example that could for example be used to
create a new Maven project that is capable of executing a BPMN2 process:

<?xm version="1.0" encodi ng="utf-8"?>
<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>or g. j bpn/ gr oupl d>
<artifact!|d>j bpm maven- exanpl e</artifact|d>
<nanme>j BPM Maven Proj ect </ nane>

<ver si on>1. 0- SNAPSHOT</ ver si on>

<repositories>
<l-- use this repository for stable rel eases -->
<r eposi tory>
<i d>j boss- publ i c-repository-group</id>
<name>JBoss Public Maven Repository G oup</nanme>
<url >https://repository.jboss. org/ nexus/ content/groups/ public/</url>
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
<l-- use this repository for snapshot rel eases -->
<reposi tory>
<i d>j boss-snapshot - reposi t ory- group</i d>

185

Chapter 18. Integration with ...

<nanme>JBoss SNAPSHOT Maven Repository G oup</nane>
<url >https://repository.|boss. org/ nexus/content/repositories/snapshots/</
url >
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>f al se</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>t rue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
</ snapshot s>
</repository>

</repositories>

<dependenci es>
<dependency>
<groupl d>or g. j bpnx/ gr oupl d>
<artifactld> bpm bpm2</artifactld>
<ver si on>5. 0. 0</ ver si on>
</ dependency>
</ dependenci es>

</ pr oj ect >

To use this as the basis for your project in Eclipse, either use M2Eclipse or use "mvn
eclipse:eclipse" to generate eclipse .project and .classpath files based on this pom.

18.2. OSGi

All core jbpm jars (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These
manifest files are automatically generated by the build. You can plug these jars directly into an
OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each jar
in OSGi is called a bundle and has it's own Classloader. Each bundle specifies the packages it
exports (makes publicly available) and which packages it imports (external dependencies). OSGi
will use this information to wire the classloaders of different bundles together; the key distinction is
you don't specify what bundle you depend on, or have a single monolithic classpath, instead you
specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed
and it'll wire up the correct one. Further to this Bundles can register services for other bundles to
use. These services need initialisation, which can cause ordering problems - how do you make
sure you don't consume a service before its registered? OSGi has a number of features to help
with service composition and ordering. The two main ones are the programmatic ServiceTracker

186

OSGi

and the xml based Declarative Services. There are also other projects that help with this; Spring

DM, iPOJO, Gravity.

The following jBPM jars are OGSi-enabled:

e jbpm-flow
¢ jbpm-flow-builder

e jbpm-bpmn2

For example, the following code example shows how you can look up the necessary services in
an OSGi environment using the service registry and create a session that can then be used to

start processes, signal events, etc.

Ser vi ceRef er ence servi ceRef =

bundl eCont ext . get Ser vi ceRef erence(Servi ceRegi stry. cl ass. get Name());
Servi ceRegi stry registry = (Servi ceRegi stry)
bundl eCont ext . get Servi ce(serviceRef);

Know edgeBui | der Fact oryServi ce know edgeBui | der Fact oryServi ce =

regi stry. get(Know edgeBui | der Fact oryServi ce. cl ass);

Know edgeBaseFact oryServi ce know edgeBaseFact or yServi ce =

regi stry. get(Know edgeBaseFact oryServi ce. cl ass);

Resour ceFact or ySer vi ce resour ceFact orySer vi ce =

regi stry. get(ResourceFactoryService.class);

Knowl edgeBaseConfi gurati on kbaseConf =

know edgeBaseFact or ySer vi ce. newkKnow edgeBaseConfi gurati on(
get Cl ass(). get d assLoader ());

Knowl edgeBui | der Confi gurati on kbConf =

know edgeBui | der Fact or ySer vi ce. newkKnow edgeBui | der Confi gur ati on(
get Cl ass() . get d assLoader ());

Knowl edgeBui | der kbui | der =

know edgeBui | der Fact or ySer vi ce. newkKnow edgeBui | der (kbConf);
kbui | der. add(resourceFactoryService. newd assPat hResource("MProcess. bpmm",
Dumy. cl ass), ResourceType. BPM\2);

kbaseConf = know edgeBaseFact oryServi ce. newknow edgeBaseConfi guration(null,
get C ass().get d assLoader ());

Knowl edgeBase kbase = know edgeBaseFact or ySer vi ce. newkKnowl edgeBase(kbaseConf);

kbase. addKnow edgePackages(kbuil der. get Know edgePackages());

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;

187

nul |,

nul |,

Chapter 18. Integration with ...

18.3. Spring

A Spring XML configuration file can be used to easily define and configure knowledge bases
and sessions in a Spring environment. This allows you to simply access a session and invoke
processes from within your Spring application.

For example, the following configuration file sets up a new session based on a knowledge base
with one process definition (loaded from the classpath).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns:j bpme"http://drools. org/ schema/ drool s-spring”

xsi : schemalLocati on="http://wwmv. spri ngfranework. org/ schena/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd

http://drool s. org/ schema/ dr ool s-spring org/drool s/

cont ai ner/spring/ drool s-spring-1.2.0.xsd>

<j bpm kbase i d="kbase" >
<j bpm r esour ces>
<j bpm resource type="BPM\2" source="cl asspat h: Hel | oWor | d. bprm2"/ >
</j bpm r esour ces>
</j bpm kbase>

<j bpm ksessi on i d="ksession" type="stateful" kbase="kbase" />

</ beans>

The following piece of code can be used to load the above Spring configuration, retrieve the
session and start the process.

Cl assPat hXm Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onCont ext ("spri ng-conf.xm");
St at ef ul Knowl edgeSessi on ksessi on = (St at ef ul Knowl edgeSessi on)
cont ext . get Bean(" ksessi on");
ksession. start Process("com sanpl e. Hel | oWwori d");

Note that you can also inject the session in one of your domain objects, for example by adding
the following fragment in the configuration file.

<bean id="nmyCbject" class="org.jbpm sanpl e. MyQbj ect ">
<property nane="session" ref="ksession" />

188

Spring

</ bean>

As a result, the session will be injected in your domain object can then be accessed directly. For
example:

public class Mybject {
private Stateful Know edgeSessi on ksessi on;
public void set Sessi on(St at ef ul Know edgeSessi on ksession) {
this. ksession = ksessi on
}
public void doSoret hi ng() {
ksession. start Process("com sanpl e. Hel | owori d");

189

190

Index

191

192

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Eclipse Editor
	1.5. Web-based Designer
	1.6. jBPM Console
	1.7. Documentation

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	Chapter 3. Installer
	3.1. Prerequisites
	3.2. Download the installer
	3.3. Demo setup
	3.4. 10-Minute Tutorial: Using the Eclipse tooling
	3.5. 10-Minute Tutorial: Using the jBPM Console
	3.6. 10-Minute Tutorial: Using Guvnor repository and Designer
	3.7. What to do if I encounter problems or have questions?
	3.8. Frequently asked questions

	Chapter 4. Core Engine: API
	4.1. The jBPM API
	4.1.1. Knowledge Base
	4.1.2. Session
	4.1.3. Events

	4.2. Knowledge-based API

	Chapter 5. Core Engine: Basics
	5.1. Creating a process
	5.1.1. Using the graphical BPMN2 Editor
	5.1.2. Defining processes using XML
	5.1.3. Defining Processes Using the Process API
	5.1.3.1. Example

	5.2. Details of different process constructs: Overview
	5.3. Details: Process properties
	5.4. Details: Events
	5.4.1. Start event
	5.4.2. End events
	5.4.2.1. End event
	5.4.2.2. Throwing error event

	5.4.3. Intermediate events
	5.4.3.1. Catching timer event
	5.4.3.2. Catching signal event

	5.5. Details: Activities
	5.5.1. Script task
	5.5.2. Service task
	5.5.3. User task
	5.5.4. Reusable sub-process
	5.5.5. Business rule task
	5.5.6. Embedded sub-process
	5.5.7. Multi-instance sub-process

	5.6. Details: Gateways
	5.6.1. Diverging gateway
	5.6.2. Converging gateway

	5.7. Using a process in your application
	5.8. Other features
	5.8.1. Data
	5.8.2. Constraints
	5.8.3. Action scripts
	5.8.4. Events
	5.8.5. Timers
	5.8.6. Updating processes
	5.8.6.1. Process instance migration

	5.8.7. Multi-threading
	5.8.7.1. Asynchronous handlers

	Chapter 6. Core Engine: BPMN 2.0
	6.1. Business Process Model and Notation (BPMN) 2.0 specification
	6.2. Examples
	6.3. Supported elements / attributes

	Chapter 7. Core Engine: Persistence and transactions
	7.1. Runtime State
	7.1.1. Binary Persistence
	7.1.2. Safe Points
	7.1.3. Configuring Persistence
	7.1.4. Transactions

	7.2. Process Definitions
	7.3. History Log
	7.3.1. Storing Process Events in a Database

	Chapter 8. Core Engine: Examples
	8.1. jBPM Examples
	8.2. Examples
	8.3. Unit tests

	Chapter 9. Eclipse BPMN 2.0 Plugin
	9.1. Installation
	9.2. Creating your BPMN 2.0 processes
	9.3. Filtering elements and attributes

	Chapter 10. Designer
	10.1. Installation
	10.2. Source code
	10.3. Designer UI Explained
	10.4. Support for Domain-specific service nodes
	10.5. Configuring Designer
	10.5.1. Changing the default configuration in Designer
	10.5.2. Changing the default configuration in Guvnor

	10.6. Generation of process and task forms
	10.7. View processes as PDF and PNG
	10.8. Viewing process BPMN2 source
	10.9. Embedding designer in your own application
	10.10. Migrating existing jBPM 3.2 based processes to BPMN2
	10.11. Visual Process Validation
	10.12. Integration with the jBPM Service Repository
	10.13. Generating code to share the process image, PDF, and embedded process editor
	10.14. Importing existing BPMN2 processes
	10.15. Viewing Process Information
	10.16. Requirements

	Chapter 11. Console
	11.1. Installation
	11.1.1. Authorization
	11.1.2. User and group management
	11.1.3. Registering your own service handlers

	11.2. Running the process management console
	11.2.1. Managing process instances
	11.2.1.1. Inspecting process definitions
	11.2.1.2. Starting new process instances
	11.2.1.3. Managing process instances
	11.2.1.4. Inspecting process instance state
	11.2.1.5. Inspecting process instance variables

	11.2.2. Human task lists
	11.2.3. Reporting

	11.3. Adding new process / task forms
	11.4. REST interface

	Chapter 12. Human Tasks
	12.1. Human tasks inside processes
	12.1.1. User and group assignment
	12.1.2. Data mapping
	12.1.2.1. Task parameters
	12.1.2.2. Task results

	12.1.3. Swimlanes
	12.1.4. Examples

	12.2. Human task service
	12.2.1. Task life cycle
	12.2.2. Linking the human task service to the jBPM engine
	12.2.3. Interacting with the human task service
	12.2.4. User and group assignment
	12.2.5. Starting the human task service

	12.3. Human task clients
	12.3.1. Eclipse demo task client
	12.3.2. Web-based task client in jBPM Console

	Chapter 13. Domain-specific processes
	13.1. Introduction
	13.2. Example: Notifications
	13.2.1. Creating the work definition
	13.2.2. Registering the work definition
	13.2.3. Using your new work item in your processes
	13.2.4. Executing service nodes

	Chapter 14. Testing and debugging
	14.1. Unit testing
	14.1.1. Helper methods to create your session
	14.1.2. Assertions
	14.1.3. Testing integration with external services
	14.1.4. Configuring persistence

	14.2. Debugging
	14.2.1. The Process Instances View
	14.2.2. The Human Task View
	14.2.3. The Audit View

	Chapter 15. Process Repository
	Chapter 16. Business Activity Monitoring
	16.1. Reporting
	16.2. Direct Intervention

	Chapter 17. Flexible Processes
	Chapter 18. Integration with Maven, OSGi, Spring, etc.
	18.1. Maven
	18.2. OSGi
	18.3. Spring

	Index

