JBPM User Guide

Version 6.1.0-SNAPSHOT

by The JBPM team [http://www.jboss.org/jopm]

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

R @ T YT PP 1
T o B S 1= o 1Y P 1
@ YT 1= PSP 3
1.3, COrE ENQINE ..ottt et e 4
B o 11 Y=o 1 () (P 5
1.5. Workbench web application ... 6

1.5.1. ProCeSS DESIGNET ..uiiiiiiiiieii ettt et e e e e e e e e e e e e 7
T2 o T 4 I 1Y To o = 1= 7
1.5.3. Process and Task Managementccuveiiieiiiieeiieeiieeeeeeae e e e e e eanas 8
1.5.4. Business ACLIVity MONItOMINGccuuuiiiiiiieiiiie e 9
G T Lo Yot 0 4 [=T0] = L1 T] ISP 10

2. GettiNG SETAMEA ..oveiiiiiii et 13
b2 I B 011/] (o Y= o PP 13
2.2. Use with Maven, Gradle, vy, Buildr or ANT ..o 13
2.3, GEttiNg STAMEAuu i 14
2.4, COMMUIIEY ettt ettt ettt ettt e et et e et et r e et et e e et et e e et et e e e eeaan s 14
2.5, SOUICES ..ttt e 15

T T I o =T o 1 15
PR Yo U o= R oo Lo - PR 15
2.5.3. BUIldING frOM SOUICEcoeviiiiiiiii e 15

G T [1S3 = 11 = PSPPSR 17
3.1. Prer@QUISITES ...ttt et e e et et e naans 17
3.2. DoOwWNIoad the INSLAIIETcocveiiii e 17
3.3, DBIMIO SEIUP ..ieiiiiiie ettt e 17

GRG0 T @40 11 (0] o] o] o] 1= 18
3.4. 10-Minute Tutorial: Using the jBPM CONSOIecccuuiiiiiiiiiiiiiiiiecciieeeeii e 19
3.5. 10-Minute Tutorial: Integrate Eclipse and Web toolingccooeeviiiiiiiiiiines 20
3.6. Using your own database With [BPMc.ccoiiiiiiiiiiiiii e 21
GG 704 I 1o o o 0T 1 o] o R PP 21
3.6.2. DAtADASE SEIUP ..eivtiiiiiiiii et 22
TR T @0 110 [0 - io] o [T 22
3.6.4. Using a different databasecooouiiiiiiiiiiiiii e 25
3.7. BPM data base schema scripts (DDL SCHPLS)cvvuieiiiiiiiieeeiiieiiieeeeeeei e 28
3.8. JBPM INSTAllEr SCIPL . .ceeveiieeiii e e eeeens 28
3.9. What to do if | encounter problems or have questions?cc.ccceveiiieviieeieeeennn. 30
3.10. Frequently asked QUESLIONSooiiiiiiiiiiii e 30

4, COre ENQING: APl oo 33

4.1, The [BPM API ..o 34
4.1.1. KNOWIEAQE BaASEouiieiiiii it 34
o 1= 1= o] o PPN 35
4.1.3. Correlation key and Correlation propertiescoeeveiiviiiiieeiiieiiineeieeeennn, 37
B Y | £ PP 38

4.2, KNowledge-based AP ..o 40

jBPM User Guide

4.3, RUNIMEMAENAGET ... iiiiiiee ettt ettt e et e et eeeaaa s 41
4.4, CONLIOl PArAMELELS ..uuiiii i e e e e e e e e e e e e e aan s 43
5. COre ENQINE: BASICS ..oouuniiiiiii ettt 47
LT O =T i o = T o (Lo = PPN 47
5.1.1. Using the graphical BPMN2 EditOrccuuiviiiiiiiniiiiic e 47
5.1.2. Defining processes USING XMLccouuiiiiiiiiiii e 48
5.1.3. Defining Processes Using the Process APlccooviiiiiiiiiiiiniiiiineceennn, 50

5.2. Details of different process CoONStructs: OVEIVIEWccccuvvveiiieviiieiiieeiineeeeeeennn. 51
5.3. DetailS: ProCeSsS PrOPEITIESciiiiiieiiiii ettt 54
5.4, DELalS: EVENTS ...ouuiiiiiiiii ittt 55
B4 1. STAIT @VENT ..ot 56
Lo o o I YT | £ P 57
5.4.3. Intermediate EVENTScouiiiiiiie e 59

5.5, DetallS: ACLIVILIESuuiiiiiiiiiei it e e et e e 62
B5.5.1. SCHPL TASK et 62
5.5.2. SEIVICE TASK ..iiviiiiiiiii i 63
5.5.3. USEI tASK it 64
5.5.4. Reusable SUD-PrOCESSoiiiiiiiiiiic e 66
5.5.5. BUSINESS FUIE tASK ..oeeniiiii e 67
5.5.6. Embedded SUD-PrOCESSccvviiiiiiiiii e e 68
5.5.7. MUlti-INStanCe SUD-PrOCESSccoovuiiiiiiiiiii e 69

5.6. DEetailS: GAEBWAYSuuiiiiiiiiiiiii et e 70
5.6.1. DIVEIgING QAIEWAYceevvuneiiiiiiee et e ettt e ettt e e e et eeeera e eeees 70
5.6.2. CONVErgiNG QAEWAYc.uuiiiiiieiiiieiiiieeiiee e e e e e e e e e et e e et e e s e e aaeeaanaas 72

5.7. Using a process in your appliCationvieiiiiiiiiiiii e 73
5.8. Other fEALUIESuuiiiiiiii it e e e e s 74
LS T N 7 | - L 74

LR S 0] 01511 7T | £ PP 76
5.8.3. ACLION SCHPLS oeetiiiiiiiie ettt e e 77

D B4, EVENIS Lo 79
LS TS T T2 1T P 80
5.8.6. UPAAtiNg PrOCESSES ..ucvvuiiiiiieiiii ettt et e e e e e e e e e e e et e eeanaaees 81
5.8.7. MUItI-tNre@dinguiiiiiiiiiee e 83

6. Core ENgine: BPMN 2.0 ...uuiiiiiiiiiiiiii e et e e e et e e e e e e e e e e e ea 87
6.1. Business Process Model and Notation (BPMN) 2.0 specificationccc.ue... 87
6.2. Supported elements / attribULEScocuiiiiiiiiii e 92
6.3, EXAMPIES oo 98
7. Core Engine: Persistence and tranSactionsccooevuiiiiiiiiiiii e 99
8 2 0 a1 LTS = (P 99
7.1.1. BiNAry PerSiSIENCEccuuiiiiiiii e e e 100
7.1.2. SaAfE POINIS ... e 103
7.1.3. Configuring PErsiStEBNCEc.uiiiiiiiiii e e 104
0 - g ST Vo 1 o L PN 109
7.1.5. Persistence and CONCUIMENCYccuuriviuneeiiieeiiieeieeeaiieesteesieesanaeeanneenens 111

7.2. Process DefiNItiONScoouiiiiiiii e

0 T 11 (o) Y o o
7.3.1. The jBPM Audit data modelcooooiiiiiiiiiiii e

7.3.2. Storing Process Events in a Databaseccoooeeiiiiiiiiiin i

7.3.3. Storing Process Events in a JMS queue for further processing

8. Core ENQine: EXAMPIES ..ot
8.1. JBPM EXAMPIES ...coeniiiiiii e

8.2. Examples
8.3. Unit tests

Vi

viii

Chapter 1.

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor
business processes throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need
to be executed to achieve those goals, and the order of those goals are depicted using a flow
chart. This process greatly improves the visibility and agility of your business logic. jJBPM focuses
on executable business processes, which are business processes that contain enough detail
so they can actually be executed on a BPM engine. Executable business processes bridge the
gap between business users and developers as they are higher-level and use domain-specific
concepts that are understood by business users but can also be executed directly.

M B L SRR

dva =].. .
Start Gatdyea PM Evaluation Gatjfgvay End

HR Ewvaluation

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

» Eclipse-based and web-based editor to support the graphical creation of your business
processes (drag and drop).

» Pluggable persistence and transactions based on JPA / JTA.

» Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors.

« Complete BPM life cycle management web console that allows:
» Model - author your processes, rules, forms and other assets

» Execute - build and deploy packages to runtime engine

Chapter 1. Overview

» Work - work on assigned task, manage process instances, etc
» Monitor - keep track of the execution using Business Activity Monitoring capabilities
« Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process
management features and tools in a way that both business users and developers like. Domain-
specific nodes can be plugged into the palette, making the processes more easily understood by
business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-
life situations that cannot easily be described using a rigid process. We bring control back to the
end users by allowing them to control which parts of the process should be executed; this allows
dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a
combination of business processes with business rules and complex event processing. jBPM can
be combined with the Drools project to support one unified environment that integrates these
paradigms where you model your business logic as a combination of processes, rules and events.

Apart from the core engine itself, there are quite a few additional (optional) components that you
can use, like an Eclipse-based or web-based designer and a management console.

Overview

1.2. Overview

End User
Fa -
Your N T Task BAM [
Application el Ll List Reporting
. oy
L Core Services
s Y ra ~, _ -
Your | Core History Task
Services Engine Log Service
I\.—.«"I b -
—]_REIFS
Guvnor
Repository
: Web-Based | Farm
Eclipse Modeler Designer Builder
De”emper Rules Editor
Business + Devel
Analyst eveloper
Figure 1.1.

This figure gives an overview of the different components of the jBPM project. jJBPM can integrate
with a lot of other services (and we've shown a few using grey boxes on the figure), but here we
focus on the components that are part of the jBPM project itself.

» The process engine is the core of the project and is required if you want to execute business
processes (all other components are optional, as indicated by the dashed border). Your
application services typically invoke the core engine (to start processes or to signal events)
whenever necessary.

» An optional core service is the history log; this will log all information about the current and
previous state of all your process instances.

» Another optional core service is the human task service that will take care of the human task
life cycle if human actors participate in the process.

Chapter 1. Overview

Two types of graphical editors are supported for defining your business processes:

» The Eclipse plugin is an extension to the Eclipse IDE, targeted towards developers, and
allows you to create business processes using drag and drop, advanced debugging, etc.

» The web-based designer allows business users to manage business processes in a web-
based environment. A web-based form builder also allows you to create, generate or edit
forms related to those processes (to start the process or to complete one of the user tasks).

The Guvnor repository is an optional component that can be used to store all your business
processes. It supports collaboration, versioning, etc. There is integration with both the Eclipse
plugin and web-based designer, supporting round-tripping between the different tools.

The web-based management console allows business users to manage their runtime (manage
business processes like start new processes, inspect running instances, etc.), to manage their
task list and to perform Business Activity Monitoring (BAM) and see reports.

Each of the components are described in more detail below.

1.3. Core Engine

The core |BPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). Its most important features are the following:

Solid, stable core engine for executing your process instances.

Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

Strong focus on performance and scalability.

Light-weight (can be deployed on almost any device that supports a simple Java Runtime
Environment; does not require any web container at all).

(Optional) pluggable persistence with a default JPA implementation.
Pluggable transaction support with a default JTA implementation.

Implemented as a generic process engine, so it can be extended to support new node types
or other process languages.

Listeners to be notified of various events.

Ability to migrate running process instances to a new version of their process definition

The core engine can also be integrated with a few other (independent) core services:

Eclipse Editor

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, rule-based assignments, etc.

« The history log can store all information about the execution of all the processes in the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic states of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Eclipse Editor

The Eclipse editor is a plugin to the Eclipse IDE and allows you to integrate your business
processes in your development environment. It is targeted towards developers and has some
wizards to get started, a graphical editor for creating your business processes (using drag and
drop) and a lot of advanced testing and debugging capabilities.

(3 TIE=1 Y it e deide ei;» LR e L v v 1 e ® o 0 Dabesg)

B TT——

Figure 1.2. Eclipse editor for creating BPMN2 processes

It includes the following features:

» Wizard for creating a new jBPM project
» A graphical editor for BPMN 2.0 processes

» The ability to plug in your own domain-specific nodes

Chapter 1. Overview

« Validation
« Runtime support (so you can select which version of jBPM you would like to use)

» Graphical debugging to see all running process instances of a selected session, to visualize the
current state of one specific process instance, etc.

1.5. Workbench web application

Optionally, you can use one or more knowledge repositories to store your business processes (and
other related artefacts). The web-based designer is integrated in the Guvnor repository, which is
targeted towards business users and allows you to manage your processes separately from your
application. It supports the following:

* A repository service to store your business processes and related artefacts, using a GIT
repository, which supports versioning, remote accessing (as a file system), and using REST
services.

« A web-based user interface to manage your business processes, targeted towards business
users; it also supports the visualization (and editing) of your processes (the web-based designer
is integrated here), but also categorisation, scenario testing, and deployment.

» Collaboration features to have multiple actors (for example business users and developers)
work together on the same process definition.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

The Knowledge Life Cycle

Figure 1.3. KIE workbench application

Process Designer

1.5.1. Process Designer
The web-based designer allows you to model your business processes in a web-based
environment. It is targeted towards business users and offers a graphical editor for viewing and

editing your business processes (using drag and drop), similar to the Eclipse plugin. It supports
round-tripping between the Eclipse editor and the web-based designer.

Workbenc

[—re—— P man Mol ey Fragus as [BFHE fuageam

Figure 1.4. Web-based designer for creating BPMN2 processes

1.5.2. Form Modeler

A web-based form modeler allows you to create, generate and/or edit your form (both for starting
a process or completing a user task) using a WYSIWY G editor. By dragging and dropping various
form elements into a panel and filling in the necessary details, task forms can be created by
non-technical experts. It provides advanced capabilities for data mapping including complex type
support (e.g. map form data to POJO)

Chapter 1. Overview

Explorer “HE Form Modeler [evaluation-taskdorm. form

B A - ol s - i For " . o

mom s

a HE=eo 8000000000

Figure 1.5. Web-based form modeler

1.5.3. Process and Task management

Business processes can be managed through a web-based management console. It is targeted
towards business users and its main features are the following:

» Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances.

« Human task management: being able to get a list of all your current tasks (either assigned to you
or that you might be able to claim), and completing tasks on your task list (using customizable
task forms).

Business Activity Monitoring

Insterca 10 1
Dafesition 1d B

e Mg i b Do
Deploymant

| e - sots Lt o Propcast |t mgm Contract [t Tt __-D Deafiniticon Vermian |

Instare SLate MTh

Curront Acthvities 155y L

Irafance Log 160wy (RS

Figure 1.6. Managing your process instances

1.5.4. Business Activity Monitoring

Business Activity Monitoring (BAM) and Reporting allows to get an overview of the state of your
application and/or system using dynamically generated (customizable) reports, that give you an
overview of your key performance indicators (KPIs). To name few:

» Process instance charts: illustrates what process instances are active in the system process
instances.

* Human task charts: illustrates human interaction within the system (who has been working on
what, how long it took to complete particular tasks, etc)

* and much more

Chapter 1. Overview

Ty

Total Liihi

Tial il i

Sriw] Prpaeis

P v

i) Praaeis B« 5

Fenqunn Lnar o o

] PR L

Fomaunn wrron

- i PR we

Tasa IO

- Swincn Tash 8 -

Fonums IO
= Salnct Prooes 1D -

Tasa
- Sulnct Task -

Tarh S fatr

~ Sulnct Task Siam daiw B

Tarh Lol date

= Sulnct Task End date - 0

InLLERTEt SLErmed by wber

N INSRERCES by prOTELE

e W R e

on £

masmier of LaNE cwind) Mgt o RiTKL [i mpiatend by e || FEihn dhr e | FEihs By b

Humbser of Lagh IAELaAES

ML bstarview | 1

TO

Figure 1.7. Business Activity Monitoring

1

.6. Documentation

The documentation is structured as follows:

Overview: the overview chapter gives an overview of the different components.

Getting Started: the getting started chapter teaches you where to download the binaries and
sources and contains a lot of useful links.

Installer: the installer helps you setup a running demo, including most of the jJBPM components.
It runs you through the demos using a simple example and some 10-minute tutorials including
screencasts.

Quickstarts: these are tutorials for common tasks you might want to try out after successfully
running the installer.

Core engine: the next 4 chapters describe the core engine: the process engine API, the process
definition language (BPMN 2.0), persistence and transactions, and examples.

Eclipse editor: the next chapter describes the Eclipse plugin for developers.

Designer: describes the web-based designer that allows business users to edit business
processes in a web-based context.

Console: the jBPM console can be used for managing process instances, human task lists and
reports.

10

Documentation

* Important features

» Human tasks: When using human actors, you need a human task service to manage the life
cycle of the tasks, the task lists, etc.

» Domain-specific processes: plug in your own higher-level, domain-specific nodes in your
processes.

e Testing and debugging: how to test and debug your processes.

» Process repository: a process repository used to manage your business processes.
» Advanced concepts

» Business activity monitoring: event processing to monitor the state of your systems.

» Flexible processes: model much more adaptive, flexible processes using advanced process
constructs and integration with business rules and event processing.

* Integration: how to integrate with other technologies like maven, OSGi, Spring, etc.

11

12

Chapter 2.

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artifact you want:

bin: all the jBPM binaries (jars) and their dependencies

« src: the sources of the core components

» docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

* installer: the jppme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Use with Maven, Gradle, Ivy, Buildr or ANT

The jars are also available in the central maven repository [http://search.maven.org/#search|
gall|org.jopm] (and also in the JBoss maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.jopm~~~~]).

If you use Maven, add KIE and jBPM dependencies in your project's pom xm like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>
<artifactld>j bpm bonx/artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpn/ gr oupl d>

13

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://search.maven.org/#search|ga|1|org.jbpm
http://search.maven.org/#search|ga|1|org.jbpm
http://search.maven.org/#search|ga|1|org.jbpm
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jbpm~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jbpm~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.jbpm~~~~

Chapter 2. Getting Started

<artifactld>j bpmflow</artifactld>
<scope>runti nme</ scope>
</ dependency>

<dependenci es>

This is similar for Gradle, lvy and Buildr. To identify the latest version, check the maven repository.

If you're still using ANT (without Ivy), copy all the jars from the download zip's bi nari es directory
and manually verify that your classpath doesn't contain duplicate jars.

2.3. Getting started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes
and integrate the engine with your application. These processes can be started from the installer
or be started from scratch.

2.4. Community

Here are a lot of useful links part of the jBPM community:

A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

» The #jbossjbpm twitter account [http://twitter.com/jbossjbpm].

* A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217] for asking
guestions and giving answers

« A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests
and roadmap

e« A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the
latest snapshots [https://hudson.jboss.org/hudson/job/iBPM/lastSuccessfulBuild/artifact/jopm-
distribution/target/]

14

http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Sources

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most
of the real-time discussion about the project takes place and where you can find most of the
developers most of their time as well. Don't have an IRC client installed? Simply go to http://
webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join
the fun.

2.5. Sources

2.5.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.
« The web-based designer is based on Oryx/Wapama and is MIT License

« The Drools project is Apache License v2.0.

2.5.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jJBPM and Drools project can be found here [https://github.com/
droolsjbpm].

« The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-modeler/
org.eclipse.bpmn2-modeler.git].

» The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

* The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]
note this is an aggragate of other projects (drools-wb, jbpm-console-ng)

2.5.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

15

http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

16

Chapter 3.

Chapter 3. Installer

This guide will assist you in installing and running a demo setup of the various components of the
jBPM project. If you have any feedback on how to improve this guide, if you encounter problems,
or if you want to help out, do not hesitate to contact the jJBPM community as described in the "What
to do if I encounter problems or have questions?" section.

3.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

3.2. Download the installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%206/] the
installer. There are two versions

« full installer - which already contains a lot of the dependencies that are necessary during the
installation

» minimal installer - which only contains the installer and will download all dependencies
In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/iBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo setup

The easiest way to get started is to simply run the installation script to install the demo setup.
Simply go into the install folder and run:

ant install.denp

This will:

« Download JBoss AS
« Download Eclipse

« Install the jBPM console (including repository, designer, BAM) into JBoss AS

17

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

Chapter 3. Installer

* Install the jBPM Eclipse plugin
« Install the Drools Eclipse plugin

This could take a while (REALLY, not kidding, we are downloading an application server and
Eclipse installation, even if you downloaded the full installer). The script however always shows
which file it is downloading (you could for example check whether it is still downloading by checking
the whether the size of the file in question in the jopm-installer/lib folder is still increasing). If
you want to avoid downloading specific components (because you will not be using them or you
already have them installed somewhere else), check below for running only specific parts of the
demo or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.deno

This will:

« Start H2 server
« Start the JBoss AS
 Start Eclipse

Once everything is started, you can start playing with the Eclipse tooling, jBPM console, as
explained in the next three sections.

If you do not wish to use Eclipse in the demo setup, you can use the alternative commands:

ant install.deno. noeclipse
ant start.deno. noecli pse

3.3.1. Control options

jbpm console started by installer will by default bring in sample processes from jbpm demo
repository that is cloned from origin hosted on github. In some cases where access to Internet is
not available or there is a need to start completely clean installation of jopm console the default
behavior can be turned off. To do so following system property needs to be added to startup script
(build.xml -> start.jboss target) or to standalone.xml:

- Dor g. ki e. denp=f al se

18

10-Minute Tutorial: Using the jBPM Console

with this there will not be any organizational unit nor repository created. To be able to start
modeling processes user needs to create:
» Organizational unit

* Repository - brand new or clone existing one

3.4. 10-Minute Tutorial: Using the jBPM Console

Open up the process management console:
http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password. The following screencast [http://
people.redhat.com/kverlaen/iBPM6-console.swf] gives an overview of how to manage your
process instances. It shows you:

¢ How to start a new process

« How to look up the current status of a running process instance

How to look up your tasks
* How to complete a task

« How to generate reports to monitor your process execution

Tha Kneswkedpa LHs Cycla

Figure 3.1.
[http://people.redhat.com/kverlaen/jBPM6-console.swf]

« To manage your process definitions and instances, click on the "Process Management" menu
option at the top menu bar an select one of available options depending on you interest:

19

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/jBPM6-console.swf
http://people.redhat.com/kverlaen/jBPM6-console.swf
http://people.redhat.com/kverlaen/jBPM6-console.swf
http://people.redhat.com/kverlaen/jBPM6-console.swf

Chapter 3. Installer

» Process Definitions - lists all available process definitions

» Process Instances - lists all active process instances (allows to show completed, aborted as
well by changing filter criteria)

» Process definitions panel allow you to start a new process instance by clicking on the "Play"
button. You will see a process form where you need to fill in the necessary information to start the
process. In this case, you need to fill in your username "krisv" and a reason for the request, after
which you can complete the form and close the window. After process form window is closed
process instance details panel will be shown. From there you can access additional details:

» Process model - to visualize current state of the process

» Process variables - to see current values of process variables
The process instance that you just started is first requiring a self-evaluation of the user and is
waiting until the user has completed this task.

» To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top
bar and select "Task List" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation" task for you. You can complete this task
by selecting it and clicking the "View" button. This will open the task form for performance
evaluations. You can fill in the necessary data and then complete the form and close the window.
After completing the task, you could check the "Process Instances" once more to check the
progress of your process instance. You should be able to see that the process is how waiting
for your HR manager and project manager to also perform an evaluation. You could log in as
"john" / "john" and "mary" / "mary" to complete these tasks.

 After starting and/or completing a few process instances and human tasks, you can generate a
report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".
By default, you will see predefined set of charts that allow to directly spot what is going on in
the system. Charts can be customized as well which will be described in following chapters.

3.5. 10-Minute Tutorial: Integrate Eclipse and Web
tooling

The following screencast [http://people.redhat.com/kverlaen/[BPM6-EclipseGitintegration.swf]
gives an overview of how to integrate Web Console and Eclipse. It shows you:

« How to create new project inside web console

* How to create new process inside web console

« How to import an existing project into your workspace
« How to apply changes in Eclipse

* How to push back changes done in Eclipse to Web Console

20

http://people.redhat.com/kverlaen/jBPM6-EclipseGitIntegration.swf
http://people.redhat.com/kverlaen/jBPM6-EclipseGitIntegration.swf

Using your own database with jBPM

Figure 3.2.
[http://people.redhat.com/kverlaen/[BPM6-EclipseGitintegration.swf]

You could also create a new project using the jBPM project wizard. This sample project contains
a simple Helloworld BPMN2 process and an associated Java file to start the process. Simply
select "File - New - jBPM Project" (if you cannot see that (because you're not in the jBPM
perspective) you can do "File - New ... - Project ..." and under the "jBPM" category, select "jBPM
project" and click "Next"). Give the project a name and click "Finish". You should see a new
project containing a "sample.bpmn" process and a "com.sample.ProcessMain" Java class and a
"com.sample.ProcessTest" JUnit test class. You can open the BPMN2 process by double-clicking
it. To execute the process, right-click on ProcessMain.java and select "Run As - Java Application”.
You should see a "Hello World" statement in the output console. To execute the test, right-click on
ProcessTest.java and select "Run As - JUnit Test". You should also see a "Hello World" statement
in the output console, and the JUnit test completion in the JUnit view.

3.6. Using your own database with |BPM

3.6.1. Introduction

In this quickstart, we are going to:

1. modify the persistence settings for the process engine
2. test the startup with our new settings!
You will need a local instance of a database, in this case MySQL in order to complete this quickstart

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there
are following types of persistent entities used by jBPM:

21

http://people.redhat.com/kverlaen/jBPM6-EclipseGitIntegration.swf

Chapter 3. Installer

 entities used for saving the actual session, process and work item information - aka runtime
data.

« entities used for logging and generating Business Activity Monitoring (BAM) information - aka
history log.

* entities used by the task service.

“persistent entities” in this context, are java classes that represent information in the database.

3.6.2. Database setup

In the MySQL database that | use in this quickstart, I've created single user:

 user/schema "jbpm" with password "jbpm" (for all mentioned above entities)

If you end up using different names for your user/schemas, please make a note of where we insert
"jopm" in the configuation files.

If you want to try this quickstart with another database, I've included a section at the end of this
quickstart that describes what you may need to modify.

3.6.3. Configuration

The following files define the persistence settings for the jbpm-installer demo:

« db/jbpm-persistence-JPA2.xml
 Application server configuration
» standalone-as-7.1.1.Final.xml

+ standalone-full-as-7.1.1.Final.xml
There are two standalone.xml files available as jopm allows to use JMS component for integration
and thus requires standalone-full.xml to be configured. Best practice is to update both to
have consistent setup but most important is to have standalone-full-as-7.1.1.Final.xml properly
configured.

Do the following:

» Disable H2 default data base and enable mysql data base in build.properties

default is H2

H2.version=1.3. 168

db. nane=h2

db.driver.jar.name=${db. nane}.j ar

db. driver.downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/
${H2. versi on}/ h2-${H2. versi on}.j ar
#nysql

22

Configuration

db. nanme=nysql

db. dri ver. nodul e. prefi x=com nysql

db. driver.jar.nanme=${db. nane} - connector-j ava.j ar

db. dri ver. downl oad. url =https://repository.jboss. org/ nexus/ service/l ocal /
repositories/central/content/ nmysql/nysql -connector-java/5.1. 18/ nysql -
connector-java-5.1.18.jar

db/j bpm persi st ence- JPA2. xmi :

This is the JPA persistence file that defines the persistence settings used by jBPM for both
the process engine information, the logging/BAM information and task service. The installer ant
script moves this file to the expanded web console war before the war is installed on the server.
So if you have already tried with default settings (H2) best would be to clean and install it again

ant cl ean. deno

this time it will be much faster as it does not have to download anything.
In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. H2Di al ect"/ >

In the case of a MySql database, you need to change it to:

<property nanme="hi bernat e. di al ect"
val ue="org. hi bernate. di al ect. MySQLDi al ect"/ >

For those of you who decided to use another database, a list of the available hibernate
dialect classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/
html/session-configuration.html#configuration-optional-dialects].

st andal one-as-7.1. 1. Final.xm and standal one-full-as-7.1.1.Final.xm:

This file is the configuration for the standalone JBoss AS 7 server. When the installer installs
the demo, it moves these files to the st andal one/ confi gur at i on directory in the jboss server
directory

We need to change datasource configuration in st andal one. xm so that the jBPM process
engine can use our MySQL database

The original file contains the following lines:

23

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

Chapter 3. Installer

<dat asource jndi-nane="j ava:jboss/datasources/jbpnDS' enabl ed="true" use-
java- context ="true" pool - name="H2DS" >
<connection-url >jdbc: h2:tcp://1 ocal host/runtine/jbpm deno</ connecti on-url >
<driver>h2</driver>
<pool ></ pool >
<security>
<user - nanme>sa</ user - nane>
<passwor d></ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver name="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>

Change the lines to the following:

<dat asource | ndi-nane="j ava:j boss/ dat asour ces/j bpnDS" pool - nane="M/SQLDS"
enabl ed="true" use-java-context="true">
<connection-url >j dbc: nysql : //1 ocal host : 3306/ bpnk/ connecti on-url >
<driver>nysql </ driver>
<pool ></ pool >
<security>
<user - nanme>j bpnxk/ user - nane>
<passwor d>j bpnx/ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver name="nysql" nodul e="com nysql ">
<xa- dat asour ce- cl ass>com nmysql . j dbc. j dbc2. opti onal . Mysqgl XADat aSour ce</
xa- dat asour ce- cl ass>
</driver>
</drivers>

e Start the deno

We've modified all the necessary files at this point. Of course, this would be a good time to start
your database up as well!

24

Using a different database

If you haven't installed the demo yet, do that first: If you have already installed and run the
demao, it can't hurt to reinstall the demo:

ant cl ean.denp; ant install.deno

alternatively

ant install.deno. noeclipse

After you've done that, you can finally start the demo using the following command:

ant start.deno

alternatively

ant start.deno. noecli pse

If you're done with the demo, you can stop it using this command:

ant cl ean. deno; ant stop.denp

* Probl ens?
If this isn't working for you, please try the following:

» Please double check the files you've modified: | wrote this, but still made mistakes when
changing files!

» Please make sure that you don't secretly have another instance of jpboss AS running.

« If neither of those work (and you're using MySQL), please do then let us know.

3.6.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when
going through the steps above:

» Change the JDBC URLs, usernames and passwords, and Hibernate dialect lines to match your
database information in the configuration files mentioned above.

25

Chapter 3. Installer

« In order to make sure your driver will be correctly installed in the JBoss AS 7 server, you
can do one of two things. Both ways are explained here [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7].

Install [https://community.jboss.org/wiki/
DataSourceConfigurationinAS7#Installing_a JDBC_driver_as_a_module] the driver jar as a
module, which is what the install script does.

Otherwise, you can modify and install [https://community.jboss.org/
wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the
downloaded jar as a deployment. In this case you will have to copy the jar yourself to the
st andal one/ depl oynent s directory.

If you choose to install driver as JBoss module, please do the following:

 Disable default H2 driver properties

default is H2

H2.version=1. 3. 168

db. name=h2

db.driver.jar.name=${db. nanme}.j ar

db. driver.downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/
${H2. version}/ h2-${H2. versi on}.j ar

Copy one of the example configs (mysqgl or postgresql)

#postresq

db. nane=postresq

db. dri ver. nodul e. prefix=or g/ post gresq

db. driver.jar.name=${db. nanme}-j dbc.j ar

db. driver.downl oad. url =https://repository.jboss. org/ nexus/content/
reposi tories/thirdparty-upl oads/ post gresql/postgresqgl/9.1-902.j dbc4/
post gresql -9. 1-902. j dbc4. j ar

Change the db. nanme property in bui | d. properties to the name of the downloaded jdbc
driver jar you placed in db/ dri vers.

Change the <dri ver > information in the <dat asour ce> section of st andal one. xnl so that
it refers to the name of your driver module (see next step). For example:

<driver>postgresql </driver>

26

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment

Using a different database

* Further on in st andal one. xm is the <dri ver s> section of the <dat asour ces> (note the
plural: drivers, datasources). We need to do the following with this file:

» Change the name of the driver to match the name in the last step,
« Give an appropriate name to the module,

« And fill in the correct name of the XA datasource class to use.
For example:

<drivers>
<driver name="postgresql" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gresql . xa. PGXADat aSour ce</ xa- dat asour ce-
cl ass>
</driver>
</drivers>

» Change the db.driver.nodul e. prefix property in build.properties to the same
“value” you used for the module name in standal one.xnl . In the example above, |
used “org. post gresql” which means that | should then use org/ postgresqgl for the
db. dri ver. nodul e. prefix property.

 Lastly, you'll have to create the db/ ${ db. name} _nodul e. xn file. As an example you can
use db/mysqgl_module.xml, so just make a copy of it and:

¢ Change the name of the module to match the db. dri ver. nodul e. prefi x property above

¢ Change the name of the module resource to the name of the JDBC driver jar that was
downloaded.
The top of the original file looks like this:

<nodul e xm ns="urn:j boss: nodul e: 1. 0" nanme="com nysql ">
<resour ces>
<resource-root path="nysql-connector-java.jar"/>
</ resources>

Change those lines to look like this, for example:

<nodul e xm ns="urn:j boss: nodul e: 1. 0" nane="org. post gresql ">
<resour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>

27

Chapter 3. Installer

</ resources>

3.7.]BPM data base schema scripts (DDL scripts)

By default demo setup makes use of Hibernate auto ddl generation capabilities to build up
complete data base schema including all tables, sequences, etc for given data base. This is not
always welcome and thus installer provides DDL scripts for most popular data base

Table 3.1. DDL scripts

Data base name Location

db2 jbpme-installer/db/ddI-scripts/db2

derby jbpm-installer/db/ddl-scripts/derby

h2 jbpm-installer/db/ddl-scripts/h2

hsgldb jbpm-installer/db/ddI-scripts/hsqldb
mysql5 jbpm-installer/db/ddI-scripts/mysql5
mysgqlinnodb jbpm-installer/db/ddI-scripts/mysqglinnodb
oracle jbpm-installer/db/ddI-scripts/oracle
postgresq| jbpm-installer/db/ddI-scripts/postgresq|l
sqlserver jbpm-installer/db/ddI-scripts/sqlserver
sqlserver2008 jbpm-installer/db/ddI-scripts/sqlserver2008

DDL scripts are provided for both jJBPM and Quartz schemas although Quartz schema DDL script
is only required when timer service should be configured with Quartz data base job store. See
Timer Service section for additional details.

This can be used to initially create data base schema but it can serve as base for any optimization
that needs to be applied - such as indexes, etc.

3.8. jBPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require
additional attention but in case it does, here is a list of available targets that might be needed to
perform some of the steps manually.

Table 3.2. jBPM installer available targets

Description

clean.db cleans up data base used by jBPM demo
(applies only to H2 data base)

clean.demo cleans up entire installation so new installation
can be performed

28

jBPM installer script

Target Description

clean.demo.noeclipse

clean.eclipse
clean.generated.dd|

clean.jboss

clean.jboss.repository

download.dashboard

download.db.driver

download.ddl.dependencies

download.droolsjbpm.eclipse
download.eclipse
download.jboss

download.jBPM.bin

download.jBPM.console
install.dashboard.into.jboss
install.db.files

install.demo

install.demo.eclipse

install.demo.noeclipse

install.dependencies

install.droolsjbpm-eclipse.into.eclipse
install.eclipse
install.jpboss

install.jBPM-console.into.jboss

same as clean.demo but does not remove
eclipse

removes eclipse and its workspace
removes DDL scripts generated if any

removes application server with all its
deployments

removes repository content for demo setup
(guvnor maven repo, niogit, etc)

downloads jBPM dashboard component (BAM)

downloads db driver configured in
build.properties

downloads all dependencies required to run
DDL script generation tool

downloads drools and jbpm eclipse plugin
downloads eclipse distribution
downloads Jboss Application Server

downloads jBPM binary distribution (jBPM libs
and its dependencies)

downloads jBPM console for JBoss AS
installs jBPM dashboard into JBoss AS
installs db driver as JBoss module
installs complete demo environment

installs Eclipse with all jBPM plugins, no server
installation

similar to install.demo but skips eclipse
installation

installs custom libraries (such as work item
handlers, etc) into the jbpm console

installs droolsjbpm eclipse plugin into eclipse
install eclipse IDE
installs JBoss AS

installs jBPM console application into JBoss
AS

29

Chapter 3. Installer

3.9. What to do if | encounter problems or have
guestions?

You can always contact the jJBPM community for assistance.
IRC: #jbpm at chat.freenode.net
jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

Email: jopm-user@lists.jboss.org

3.10. Frequently asked questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarily
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain jar/war/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console. What can | do?

30

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Frequently asked questions

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/

standalone/log/server.log (for JBoss AS7) or jbpm-installer/jboss-as-{version}/server/default/log/
server.log (for earlier versions).

For all other questions, try contacting the jBPM community as described in the Getting Started
chapter.

31

32

Chapter 4.

Chapter 4. Core Engine: API

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definitions
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

ATy
~

Stateful
Knowledge Knowledge
Base Session

Process

Process
Instance

Definition

For example, imagine you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order
comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

33

Chapter 4. Core Engine: API

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and create one session that you then use to execute all your processes.

4.1. The jBPM API

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal APl might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

4.1.1. Knowledge Base

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a KieHelper to load processes from various resources (for example from the classpath
or from the file system), and then create a new knowledge base from that helper. The following
code snippet shows how to create a knowledge base consisting of only one process definition
(using in this case a resource from the classpath).

Ki eHel per ki eHel per = new Ki eHel per();

Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce(" MyProcess. bpmm"))
.build();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

34

Session

This is considered manual creation of knowledge base and while it is simple it is not recommended
for real application development but more for try outs. Following you'll find recommended
and much more powerful way of building knowledge base, knowledge session and more -
RuntimeManager.

4.1.2. Session

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
shippet shows how easy it is to create a session based on the previously created knowledge base,
and to start a process (by id).

Ki eSessi on ksessi on = kbase. newKi eSessi on();
Processl nstance processlnstance = ksession. startProcess("com sanpl e. M/Process");

The ProcessRunt i ne interface defines all the session methods for interacting with processes, as
shown below.

/**

* Start a new process instance. The process (definition) that shoul d
* be used is referenced by the given process id

*

* processld The id of the process that should be started
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld);

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as name-value pairs), and these will be set

* as variables of the process instance.

* processld the id of the process that should be started

* paranmeters the process variables that should be set when starting the process it
* the Processlnstance that represents the instance of the process that was startec
*/

Processl nstance startProcess(String processld,
Map<String, Object> paraneters);

/**
* Signals the engine that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information
* related to the event. All process instances that are listening to this type

35

Chapter 4. Core Engine: API

*

of (external) event will be notified. For performance reasons, this type of event

* signaling should only be used i f one process i nstance shoul d be able to notify

*

*

*

*

*

*

*/

ot her process instances. For internal event within one process instance, use the
signal Event nethod that al so include the processlnstanceld of the process instance
in question.

@aramtype the type of event
@ar am event the data associated with this event

voi d signal Event(String type,

/**

*

*

*/

oj ect event);

Signal s the process instance that an event has occurred. The type paraneter defines
whi ch type of event and the event paraneter can contain additional information

related to the event. All node instances inside the given process instance that

are listening to this type of (internal) event will be notified. Note that the event
will only be processed inside the given process instance. All other process instances
wai ting for this type of event will not be notified

@aram type the type of event
@aram event the data associated with this event
@ar am processlnstanceld the id of the process instance that shoul d be signal ed

voi d signal Event (String type,

/**

*

*

*

oj ect event,
| ong processlnstancel d);

Returns a collection of currently active process instances. Note that only process
instances that are currently | oaded and active inside the engine will be returned
When using persistence, it is likely not all running process instances will be | oaded

*as their state will be stored persistently. It is recomended not tousethis

*

*

*

met hod to collect informati on about the state of your process instances but to use
a history log for that purpose

* @eturn a collection of process instances currently active in the session

*/

Col | ecti on<Processl nst ance> get Processl nst ances() ;

/**

*

*

*

*

*

Returns the process instance with the given id. Note that only active process instances
will be returned. |If a process instance has been conpleted already, this nmethod will re
nul | .

@aramid the id of the process instance

* @eturn the process instance with the givenidor null if it cannot be found

*/

Processl nst ance get Processl nstance(l ong processl nstancel d);

36

Correlation key and Correlation properties

/**

* Aborts the process instance with the given id. |If the process instance has been conpl et
* (or aborted), or the process instance cannot be found, this nethod will throw an

* ||| egal Argunent Excepti on.

*

* @aramid the id of the process instance
*/
voi d abortProcessl nstance(l ong processl nstancel d);

/**

* Returns the Workltemvanager related to this session. This can be used to
* register new WorkltenHandl ers or to conplete (or abort) Wrkltens.

*

* @eturn the Workltemvanager related to this session
S
Wor kI t emvanager get Wor ki t enVanager () ;

4.1.3. Correlation key and Correlation properties

Common requriement when working with processes is ability to assign given process instance
sort of business identifier that can be later on referenced without knowing the actual (generated)
id of the process instance. To provide such capabilities jBPM allows to use CorrelationKey that is
composed of CorrelationProperties. CorrelationKey can have either single property describing it
(which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface
Correl ati onAwar eProcessRunt i ne

that exposes following methods:

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed

* to the process instance (as nanme-value pairs), and these will be set

* as variables of the process instance.

*

* @aram processld the id of the process that should be started

* @aram correl ati onKey custom correl ati on key that can be used to identify process instz
* @aram paranmeters the process variables that should be set when starting/ the process i
* @eturn the Processlnstance that represents the instance of the process that was starte
*/

Processlnstance startProcess(String processld, Correlati onKey correl ati onKey, Map<Stri ng,

37

Chapter 4. Core Engine: API

/**

* Creates a new process instance (but does not yet start it). The process
* (definition) that should be used is referenced by the given process id.
* Paranmeters can be passed to the process instance (as nane-val ue pairs),
* and these wi || be set as variabl es of the process i nstance. You should only
* use this method if you need a reference to the process instance before actually
* starting it. Oherw se, use startProcess.

*

* processld the id of the process that should be started

* correl ati onKey custom correl ati on key that can be used to identify process inste
* paranmeters the process variables that shoul d be set when creating the process

* the Processlnstance that represents the instance of the process that was createé
*/

Processl nstance createProcessl nstance(String processld, Correl ati onKey correl ati onKey, M

/**

* Returns the process instance with the given correlationKey. Note that only active proc
* will be returned. |f a process instance has been conpl eted already, this nmethod will

* nul |
*

* @aramcorrel ati onKey the customcorrel ati on key assi gned when process instance was Cre
* @eturn the process instance with the givenidor null if it cannot be found

*/

Processl nst ance get Processl nstance(Correl ati onKey correl ati onKey);

Correlation is usually used with long running processes and thus require persistence to be enabled
to be able to permanently store correlation information.

4.1.4. Events

The session provides methods for registering and removing listeners. A Pr ocessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event)

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl et ed(ProcessConpl et edEvent event);
voi d bef oreNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d bef oreNodeLeft (ProcessNodeLeftEvent event);

38

Events

voi d afterNodeLeft(ProcessNodeLeftEvent event);
voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVari abl eChanged(ProcessVari abl eChangedEvent event);

A note about before and after events: these events typically act like a stack, which means that any
events that occur as a direct result of the previous event, will occur between the before and the
after of that event. For example, if a subsequent node is triggered as result of leaving a node, the
node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodelLeftEvent
of the node that is left (as the triggering of the second node is a direct result of leaving the first
node). Doing that allows us to derive cause relationships between events more easily. Similarly,
all node triggered and node left events that are the direct result of starting a process will occur
between the beforeProcessStarted and afterProcessStarted events. In general, if you just want
to be notified when a particular event occurs, you should be looking at the before events only (as
they occur immediately before the event actually occurs). When only looking at the after events,
one might get the impression that the events are fired in the wrong order, but because the after
events are triggered as a stack (after events will only fire when all events that were triggered as
a result of this event have already fired). After events should only be used if you want to make
sure that all processing related to this has ended (for example, when you want to be notified when
starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending
on the type of node, some nodes might only generate node left events, others might only generate
node triggered events. Catching intermediate events for example are not generating triggered
events (they are only generating left events, as they are not really triggered by another node, rather
activated from outside). Similarly, throwing intermediate events are not generating left events
(they are only generating triggered events, as they are not really left, as they have no outgoing
connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

39

Chapter 4. Core Engine: API

The Knowl edgeRunt i neLogger Fact ory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created
must be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

Know edgeRunti neLogger | ogger = Know edgeRunti neLogger Fact ory. newFi | eLogger (ksession, "test"
/1 add invocations to the process engine here
/1 e.g. ksession.startProcess(processld)

| ogger.cl ose();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

~ <. RuleFlow started: ruleflow[com sample ruleflow]
= # RuleFlow node triggered: Start in process ruleflow[com sample ruleflow]
=) RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
+ 4] RuleFlow node triggered: End in process ruleflow[com.sample.ruleflow]

= RuleFlow completed: ruleflow[com.sample.ruleflow]

4.2. Knowledge-based API

As you might have noticed, the API as exposed by the jBPM project is a knowledge API. That
means that it doesn't just focus on processes, but potentially also allows other types of knowledge
to be loaded. The impact for users that are only interested in processes however is very small.
It just means that, instead of having a ProcessBase or a ProcessSession, you are using a
KnowledgeBase and a KnowledgeSession.

However, if you ever plan to use business rules or complex event processing as part of your
application, the knowledge-based API allows users to add different types of resources, such as
processes and rules, in almost identical ways into the same knowledge base. This enables a
user who knows how to use jBPM to start using Drools Expert (for business rules) or Drools
Fusion (for event processing) almost instantaneously (and even to integrate these different types
of Knowledge) as the API and tooling for these different types of knowledge is unified.

40

RuntimeManager

4.3. RuntimeManager

RuntimeManager has been introduced to simplify and empower usage of knowledge API
especially in context of processes. It provides configurable strategies that control actual runtime
execution (how KieSessions are provided) and by default provides following:

 Singleton - runtime manager maintains single KieSession regardless of number of processes
available

» Per Request - runtime manager delivers new KieSession for every request

« Per Process Instance - runtime manager maintains mapping between process instance and
KieSession and always provides same KieSession whenever working with given process
instance

With that the complexity of knowing when to create, dispose, register handlers, etc is taken

away from the end user and moved to the runtime manager that knows when/how to perform

such operations but still allows to have a fine grained control over this process by providing
comprehensive configuration of the RuntimeEnvironment.

public interface RuntinmeEnvironment {
Ki eBase get Ki eBase();
Envi r onnent get Envi ronnent () ;
Ki eSessi onConfi gurati on get Configuration();
bool ean usePersi stence();
Regi st erabl el tensFact ory get Regi sterabl el tensFactory();
Mapper get Mapper () ;
User G oupCal | back get User G oupCal | back();
Cl assLoader get d assLoader();

void close();

While this interface provides mostly access to data kept as part of the runtime environment, the
default implementation that is then considered as base for any extensions allows configuring the
actual environment

41

Chapter 4. Core Engine: API

public class SinpleRuntinmeEnvironment {

public void addToEnvironnent (String nane, Object val ue)

public void addToConfiguration(String name, String val ue)

public void setUser GroupCal | back(User GroupCal | back user GroupCal | back)

public void set Sessi onConfi gProperties(Properties sessionConfigProperties)

public void set UsePersistence(bool ean usePersi stence)

public void setKi eBase(Ki eBase kbase)

public void set Mapper (Mapper mapper)

public void set Schedul er Servi ce(d obal Schedul er Servi ce schedul er Servi ce)

public void setRegi sterabl eltensFactory(Regi sterabl el tenmsFactory registerabl el tenmsFactory)
public void set Enf(EntityManager Factory enf)

public void setC assLoader (Cl assLoader cl assLoader)

Besides KieSession Runtime Manager provides access to TaskService too as integrated
component of a RuntimeEngine that will always be configured and ready for communication
between process engine and task service.

More about RuntimeManager and RuntimeEngine can be found in RuntimeManager chapter just
to give a short preview of how it is used, here is how you can build RuntimeManager and get
RuntimeEngine (that encapsulates KieSession and TaskService) from it:

[l first configure environnent that will be used by Runti nmeManager
Runt i meEnvi ronnent environment = Runti meEnvironnment Bui | der. get Enpt y()
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)

.get();

/1 next create RuntinmeManager - in this case singleton strategy is chosen

42

Control parameters

Runti meManager manager = Runti meManager Factory. Factory. get (). newSi ngl et onRunti neManager (en\

/1 then get RuntinmeEngi ne out of manager - using enpty context as singleton
does not kep track

/] of runtime engine as there is only one

Runti meEngi ne runti me = manager . get Runti meEngi ne(Enpt yCont ext. get());

/1 get KieSession fromruntine runtimeEngine - already initialized with all
handl ers, listeners, etc that were configured

/'l on the environnent

Ki eSessi on ksessi on = runti nmeEngi ne. get Ki eSessi on();

/1 add invocations to the process engine here,
/'l e.g. ksession.startProcess(processld)

/1 and | ast di spose the runtine engine
manager . di sposeRunt i neEngi ne(runti meEngi ne);

4.4. Control parameters

There are several control parameters available to alter engine default behavior. This allows to fine
tune the execution for the environment needs and actual requirements. All of these parameters
are set as JVM system properties, usually with -D when starting program e.g. application server.

Table 4.1. Control parameters

Name Possible values Default value Description

jbpm.ut.jndi.lookup String Alternative JNDI
name to be
used when there
iSs no access
to the default
one (java:comp/
UserTransaction)

jbpm.enable.multi.cioue|false false Enables multiple
incoming/
outgoing
sequence flows
support for
activities
jbpm.business.caleBtiamgproperties | / Allows to provide
jbpm.business.caleatlarnatgerties
classpath
location of

43

Chapter 4. Core Engine: API

NET[E]

Possible values Default value

jbpm.overdue.timerlaelgy

jbpm.process.namestongparator

jopm.loop.level.disdhleffalse

org.kie.mail.sessiarstring

jbpm.usergroup.ca

\|Biaicigproperties

jbpm.user.group.m&iping

2000

true

mail/
jobpmMailSession

/

Description
business
calendar
configuration file

Specifies delay
for overdue
timers to allow
proper

initialization,
milliseconds

in

Allows to provide
alternative
comparator class
to empower start
process by name
feature, if not set
NumberVersionCag
is used

Allows to enable
or disable loop
iteration tracking,

to allow
advanced loop
support when
using XOR
gateways

Allows to provide
alternative JNDI
name for mail
session used by
Task Deadlines

Allows to provide

jbpm.usergroup.calldtarkatioperties

classpath
location for user
group callback
implementation
(LDAP, DB)

${jboss.server.configilidinig to provide

roles.properties

alternative
location
roles.properties

of

mparator

44

Control parameters

NET[E]

Possible values Default value

jbpm.user.info.prop8ttiag

org.jopm.ht.user.sepaiatpr

org.quartz.propert

jopm.data.dir

€3tring

String

org.kie.executor.pobitsiger

org.kie.executor.retigtegant

org.kie.executor.intémteger

/

Description
for

JBossUserGroupCallbackimpl

Allows to provide

jbpm.user.info.propaltiesative

classpath

location of user
info configuration
(used by
LDAPUserInfolmp

Allows to provide

alternative
separator of
actors and

groups for user
tasks, default is
comma (,)

Allows to provide
location of the

quartz config
file to activate
quartz based

timer service

${jboss.server.dataAlidws to provide

is available
otherwise
${java.io.tmpdir}

location where
data files
produced by
jopm should be
stored

Allows to provide
thread pool size
for jopm executor

Allows to provide
number of retries
attempted in
case of error by
jbpm executor

Allows to provide
frequency used
to check for
pending jobs by

)

45

Chapter 4. Core Engine: API

NETIE Possible values Default value Description
jbpm executor, in
seconds

org.kie.executor.disalégthlse true Enables or
disable jbpm
executor

46

Chapter 5.

Chapter 5. Core Engine: Basics

i3]
il
r—»— HR Ewvaluation _-‘
.)
A |8
| Self Evaluation
A
Start Gatdyea PM Evaluation Gai.'af.r End
Figure 5.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

5.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

5.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging
and dropping different nodes on a canvas and editing the properties of these nodes. The
graphical BPMN2 modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/
bpmn2-modeler/] that provides number of contributors where one of them is jBPM project. Once
you have set up a jBPM project (see the installer for creating a working Eclipse environment where
you can start), you can start adding processes. When in a project, launch the "New" wizard (use
CtrlI+N) or right-click the directory you would like to put your process in and select "New", then
"File". Give the file a name and the extension bpmn (e.g. MyProcess.bpmn). This will open up
the process editor (you can safely ignore the warning that the file could not be read, this is just
because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot

47

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/

Chapter 5. Core Engine: Basics

see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

Figure 5.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
palette of the GUI. Clicking on an element in your process allows you to set the properties of that
element. You can connect the nodes (as long as it is permitted by the different types of nodes)
by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

5.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions id="Definition"
tar get Nanespace="htt p://ww. j boss. org/ dr ool s"
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\ 20100524/ MODEL" Rul e Task
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. ong. or g/ spec/ BPM\N/ 20100524/ MODEL
BPMN20. xsd"
xm ns: g="http://ww.jboss. org/drool s/fl ow gpd"

48

Defining processes using XML

xm ns: bpmdi =" ht t p: / / www. ong. or g/ spec/ BPM\N 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"

xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI *

xm ns:tns="http://ww.]j boss. org/drool s">

<processrocessType="Privat e"i sExecut abl e="true"i d="com sanpl e. hel | o"nane="Hel | o
Process" >

<!-- nodes -->
<startEvent id="_1" nane="Start" />
<script Task id="_2" name="Hello" >
<script>Systemout.println("Hello World"); </script>
</ scri pt Task>
<endEvent id="_3" nane="End" >
<t erm nat eEvent Definition/>
</ endEvent >

<!-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmmdi : BPM\Di agr an>
<bpmdi : BPMNPI ane bpmmEl enent =" com sanpl e. hel | 0" >
<bpmmdi : BPMNShape bpmEl enrent =" _1" >
<dc: Bounds x="16" y="16" w dt h="48" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_2" >
<dc: Bounds x="96" y="16" wi dth="80" hei ght="48" />
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_3" >
<dc: Bounds x="208" y="16" wi dth="48" hei ght="48" />
</ bpmmdi : BPMNShape>
<bpmmdi : BPMNEdge bpmEl enent =" _1-_ 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bpmmdi : BPM\NEdge>
<bpmmdi : BPMNEdge bpmEl enent ="_2-_ 3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bpmmdi : BPM\NEdge>
</ bpmmdi : BPM\PI ane>
</ bpmdi : BPMNDi agr an®

</definitions>

49

Chapter 5. Core Engine: Basics

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

5.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kfl ow. core and or g. | bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

5.1.3.1. Example

This is a simple example of a basic process with a script task only:

Rul eFl owPr ocessFactory factory =

Rul eFl owPr ocessFact ory. creat eProcess("org.j bpm Hel | oWor | d");
factory

/| Header

. nanme(" Hel | oWor | dPr ocess")

.version("1.0")

. packageName(" org. j bpnt')

/'l Nodes

.startNode(1).nanme("Start"). done()

.acti onNode(2).name("Action")

.action("java", "Systemout.println(\"Hello Wrld\");").done()

. endNode(3) . nane(" End") . done()

/] Connections

.connection(1, 2)

.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();
Know edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newByt eAr r ayResour ce(

Xm BPMNPr ocessDunper . | NSTANCE. dunp(process) . get Bytes()), ResourceType. BPM\2);
Know edgeBase kbase = kbui |l der. newKnow edgeBase();
St at ef ul Knowl edgeSessi on ksessi on = kbase. newsSt at ef ul Knowl edgeSessi on() ;
ksession. start Process("org.j bpm Hel | oWor | d");

50

Details of different process constructs: Overview

You can see that we start by calling the static createProcess() method from the
Rul eFl owPr ocessFact ory class. This method creates a new process with the given id and returns
the Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the nhame and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(),
actionNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have
finished configuring that specific node, the done() method returns you to the current
Rul eFl owPr ocessFact ory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connecti on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

5.2. Details of different process constructs: Overview

The following chapters will describe the different constructs that you can use to model your
processes (and their properties) in detail. Executable processes in BPMN consist of different
types of nodes being connected to each other using sequence flows. The BPMN 2.0 specification
defines three main types of nodes:

» Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

 Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

» Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

The following sections will describe the properties of the process itself and of each of these
different node types in detail, as supported by the Eclipse plugin and shown in the following figure
of the palette. Note that the Eclipse property editor might show more properties for some of the

51

Chapter 5. Core Engine: Basics

supported node types, but only the properties as defined in this section are supported when using
the BPMN 2.0 XML format.

52

[~ End Events

@ Cancel

&) Compensation
() End Event

(8 Error

@A) Escalation

=) Message

@ Signal

&) Terminate -
= Gateways
[Intermediate Catch Events
Conditional

@ Error

i Escalation
3 Message
% Signal
i) Timer

[Intermediate Throw Events
i) Escalation
) Throw Event
=) Message
() Signal

[~ Start Events
@ Compensation
Conditional
{3 Error
(A Escalation

Start Event
@ Message

@ Signal

€Ty Timer -

[Activities
Sl Ad-Hoc Sub-Process
| Sub-Process

L call Activity
] Task

W Manual Task

5 User Task

& Script Task

54 Business Rule Task

Lervice Task

Send Task
B Receive Task

= Artifacts

[Connections
Association {undirected}
Association {one-way)
—+ Sequence Flow

= Data Objects
[Y Data Object

[~ End Events
[.=- Gateways
{39- Exclusive CGateway
2 Event-Based Gateway
o Inclusive Gateway

@ Parallel Gateway

Figure 5.3. The different types of Figure 5.4. The different types of

BPMN2 events

BPMNZ2 activities and gateways

53

Chapter 5. Core Engine: Basics

5.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

Id: The unique id of the process.

« Name: The display name of the process.

Version: The version number of the process.

» Package: The package (namespace) the process is defined in.

{7 humanTaskSample

Description ~ Attributes
Process
Id | org.jbpm.writedocument
Interfaces
Mame |humanTaskSample
Definitions P
Data Items Version |1

Package Mame | defaultPackage
Ad Hoc

Is Executable @I

Figure 5.5. BPMN2 process properties

In addition to that following can be defined as well:

« Variables: Variables can be defined to store data during the execution of your process. See
section “Data” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“??27?" for details.

54

Details: Events

{7 humanTaskSample

» Clobal List for Process "humanTaskSample"

| = WVariable List for Process "humanTaskSample"

Data ltems
R — MName | Data Type
approval_document String
approval_translatedDocument String
String

approval_reviewComment

Figure 5.6. BPMN2 process variables

5.4. Details: Events

-

55

Chapter 5. Core Engine: Basics

5.4.1. Start event

otart

Figure 5.7. Start event

The start of the process. A process should have exactly one start node (none start node which
does not have event definitions), which cannot have incoming connections and should have
one outgoing connection. Whenever a process is started, execution will start at this node and
automatically continue to the first node linked to this start event, and so on. It contains the following
properties:

« Id: The id of the node (which is unique within one node container).

* Name: The display name of the node.

56

End events

5.4.2. End events

5.4.2.1. End event

End

Figure 5.8. End event

The end of the process. A process should have one or more end events. The End Event
should have one incoming connection and cannot have any outgoing connections. It contains the
following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are cancelled. Non-terminating end events
are simply end for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance

57

Chapter 5. Core Engine: Basics

will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process and top level continues.

5.4.2.2. Throwing error event

Figure 5.9. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

Id: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

FaultName: The name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

58

Intermediate events

Error handlers can be specified using boundary events.
5.4.3. Intermediate events

5.4.3.1. Catching timer event

Figure 5.10. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is cancelled if the timer node is cancelled
(e.g., by completing or aborting the enclosing process instance). Consult the section “Timers” for
more information. The Timer Event contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d][#h] [#n][#s][#[ns]]. This allows you to specify the number
of days, hours, minutes, seconds and milliseconds (which is the default if you don't specify
anything). For example, the expression "1h" will wait one hour before triggering the timer. The
expression could also use #{expr} to dynamically derive the delay based on some process

59

Chapter 5. Core Engine: Basics

variable. Expr in this case could be a process variable, or a more complex expression based
on a process variable (e.g. myVariable.getValue()).

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]]. You
can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if
you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer again. The expression could also use #{expr} to dynamically derive the period based
on some process variable. Expr in this case could be a process variable, or a more complex
expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are
not automatic tasks like script task that have no wait state as timer will not have a change to fire
before task completion.

5.4.3.2. Catching signal event

Figure 5.11. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have one incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

60

Intermediate events

Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.

» EventType: The type of event that is expected.

VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

Itis also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Know edgeRunt i me() . si gnal Event (event Type, dat a,
kcont ext . get Processl nstance().getld());

A throwing signal event could also be used to model the signaling of an event.

61

Chapter 5. Core Engine: Basics

5.5. Details: Activities

5.5.1. Script task

=1

Scnpt Task 1

Figure 5.12. Script task

Represents a script that should be executed in this process. A Script Task should have one
incoming connection and one outgoing connection. The associated action specifies what should
be executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext that
references the ProcessCont ext object (which can, for example, be used to access the current
Processl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession
using kcont ext . get Knowl edgeRunt i me()). When a Script Task is reached in the process, it will
execute the action and then continue with the next node. It contains the following properties:

« Id: The id of the node (which is unique within one node container).

« Name: The display name of the node.

« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do

anything inside such a script node. There are some caveats however:

* When trying to create a higher-level business process, that should also be understood by
business users, it is probably wise to avoid low-level implementation details inside the process,
including inside these script tasks. A Script Task could still be used to quickly manipulate
variables etc. but other concepts like a Service Task could be used to model more complex
behaviour in a higher-level manner.

62

Service task

« Scripts should be immediate. They are using the engine thread to execute the script. Scripts
that could take some time to execute should probably be modeled as an asynchronous Service
Task.

* You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the
knowledge of the engine, which can be problematic, especially when using persistence and
transactions. In general, it is probably wiser to model communication with an external service
using a service task.

» Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

5.5.2. Service task

Sarvice Task 1

Figure 5.13. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a uniqgue name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

 Id: The id of the node (which is unique within one node container).

63

Chapter 5. Core Engine: Basics

* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

* On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

« Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oSt ri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

5.5.3. User task

Figure 5.14. User task

64

User task

Processes can also involve tasks that need to be executed by human actors. A User Task
represents an atomic task to be executed by a human actor. It should have one incoming

connection and one outgoing connection. User Tasks can be used in combination with Swimlanes
to assign multiple human tasks to similar actors. Refer to the chapter on human tasks for more
details. A User Task is actually nothing more than a specific type of service node (of type "Human
Task"). A User Task contains the following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.

TaskName: The name of the human task.

Priority: An integer indicating the priority of the human task.
Comment: A comment associated with the human task.

Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

Content: The data associated with this task.

Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note that
if there is data related to this specific process instance that the end user needs when performing
the task, this data should be passed as the content of the task. The task for example does not

65

Chapter 5. Core Engine: Basics

have access to process variables. Check out the chapter on human tasks to get more detail on
how to pass data between human tasks and the process instance.

5.5.4. Reusable sub-process

Call Activity 1

Figure 5.15. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion (by default true): If this property is true, this sub-process node will only
continue if the child process that was started has terminated its execution (completed or
aborted); otherwise it will continue immediately after starting the subprocess (so it will not wait
for its completion).

Independent (by default true): If this property is true, the child process is started as an
independent process, which means that the child process will not be terminated if this parent
process is completed (or this sub-process node is cancelled for some other reason); otherwise
the active sub-process will be cancelled on termination of the parent process (or cancellation
of the sub-process node). Note that you can only set independent to "false" only when "Wait
for completion” is set to true.

66

Business rule task

« On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

« Parameter infout mapping: A sub-process node can also define in- and out-mappings for
variables. The variables given in the "in" mapping will be used as parameters (with the
associated parameter name) when starting the process. The variables of the child process that
are defined for the "out" mappings will be copied to the variables of this process when the
child process has been completed. Note that you can use "out" mappings only when "Wait for
completion” is set to true.

5.5.5. Business rule task

=

Business Fule Task 1

Figure 5.16. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated
when the node is reached. A Rule Task should have one incoming connection and one outgoing
connection. Rules are defined in separate files using the Drools rule format. Rules can become
part of a specific ruleflow group using the r ul ef | ow gr oup attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of
the corresponding ruleflow-group (if any). Execution will automatically continue to the next node
if there are no more active rules in this ruleflow group. As a result, during the execution of a
ruleflow group, new activations belonging to the currently active ruleflow group can be added
to the Agenda due to changes made to the facts by the other rules. Note that the process will
immediately continue with the next node if it encounters a ruleflow group where there are no active
rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

67

Chapter 5. Core Engine: Basics

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

* RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

5.5.6. Embedded sub-process

Sub Process 1

tzar Task 2

Figure 5.17. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but also
the definition of additional variables that are accessible for all nodes inside this container. A sub-
process should have one incoming connection and one outgoing connection. It should also contain
one start node that defines where to start (inside the Sub-Process) when you reach the sub-
process. It should also contain one or more end events. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process. A sub-process ends when
there are no more active nodes inside the sub-process. It contains the following properties:

« Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Variables: Additional variables can be defined to store data during the execution of this node.
See section “Data” for detalils.

68

Multi-instance sub-process

5.5.7. Multi-instance sub-process

Sub Process 1

Usar Task 2

Figure 5.18. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple
instance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

« CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Coll ection. If the collection expression evaluates to null or an empty collection,
the multiple instances sub-process will be completed immediately and follow its outgoing
connection.

* VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

69

Figure 5.19. Diverging gateway

Diverging gateway

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes
currently supported:

« AND or parallel means that the control flow will continue in all outgoing connections
simultaneously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. The constraint with the lowest priority number that evaluates to true is selected.
Constraints can be specified using different dialects. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the engine will
throw an exception at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the engine will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

71

Figure 5.20. Converging gateway

Using a process in your application

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are three types of splits currently
supported:

« AND or parallel means that is will wait until all incoming branches are completed before
continuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. If it is triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

« OR or inclusive means that it continues as soon as all direct active paths of its incoming
branches has been completed. This is complex merge behaviour that is described in BPMN2
specification but in most cases it means that OR join will wait for all active flows that started
in OR split. Some advanced cases (including other gateways in between or repeatable timers)
will be causing different "direct active path" calculation.

It contains the following properties:

« Id: The id of the node (which is unique within one node container).

* Name: The display name of the node.

« Type: The type of the Join node, i.e. AND, OR or XOR.

5.7. Using a process in your application

As explained in more detail in the API chapter, there are two things you need to do to be able to
execute processes from within your application: (1) you need to create a Knowledge Base that
contains the definition of the process, and (2) you need to start the process by creating a session
to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the
Knowledge Base:

Ki eHel per ki eHel per = new Ki eHel per();
Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce(" MyProcess. bpm2")) ;

After adding all your process (you can add more than one process), you can create a new
knowledge base like this:

73

Chapter 5. Core Engine: Basics

Ki eBase kbase = ki eHel per. buil d();

Note that this will throw an exception if the knowledge base contains errors (because it could
not parse your processes correctly).

2. Starting a process: To start a particular process, you will need to call the st art Pr ocess method
on your session and pass the id of the process you want to start. For example:

Ki eSessi on ksessi on = kbase. newKi eSessi on();
ksessi on. start Process("com sanpl e. hel | 0");

The parameter of the st art Process method is the id of the process that needs to be started.
When defining a process, this process id needs to be specified as a property of the process (as
for example shown in the Properties View in Eclipse when you click the background canvas
of your process).

When you start the process, you may specify additional parameters that are used to pass
additional input data to the process, using the startProcess(String processld, Map
par amet er s) method. The additional set of parameters is a set of hame-value pairs. These
parameters are copied to the newly created process instance as top-level variables of the
process, so they can be accessed in the remainder of your process directly.

5.8. Other features

5.8.1. Data

While the flow chart focuses on specifying the control flow of the process, it is usually also
necessary to look at the process from a data perspective. Throughout the execution of a process,
data can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables
can be defined inside a variable scope. The top-level scope is the variable scope of the process
itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

74

Data

Variables can be used in various ways:

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

» Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

/1 call nethod on the process variable "person"
per son. set Age(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

» Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. getName()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

» Various other nodes can also access data. Event nodes for example can store the data
associated to the event in a variable, etc. Check the properties of the different node types for
more information.

» Process variables can be accessed also from the Java code of your application. It is done by
casting of Processl nst ance to Wor kf | owPr ocessl nst ance. See the following example:

vari abl e = ((Workfl owProcessl nstance) processlnstance).getVariabl e("vari abl eNane");

To list all the process variables see the following code snippet:

75

Chapter 5. Core Engine: Basics

org. j bpm process. i nst ance. Processl nst ance processlnstance = ...;
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nste
Map<String, Ooject> variables = vari abl eScope. get Vari abl es();

Note that when you use persistence then you have to use a command based approach to get
all process variables:

Map<String, Object> variables = ksessi on. execut e(new Generi cCommand<Map<String, oject>>() {
public Map<String, Object> execute(Context context) {
Ki eSessi on ksession = ((Know edgeConmmandCont ext) context). get St at ef ul Knowl edgesessi or
org.j bpm process. i nstance. Processl nst ance processlnstance = (org.jbpm process. i nstanc
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nstance) processlnstance. get Cont
Map<String, Object> variables = vari abl eScope. get Vari abl es();
return vari abl es;

1)

Finally, processes (and rules) all have access to globals, i.e. globally defined variables
and data in the Knowledge Session. Globals are directly accessible in actions just like
variables. Globals need to be defined as part of the process before they can be used. You
can for example define globals by clicking the globals button when specifying an action
script in the Eclipse action property editor. You can also set the value of a global from
the outside using ksessi on. set d obal (nane, val ue) or from inside process scripts using

kcont ext . get Know edgeRunti me() . set d obal (nane, val ue) ; .

5.8.2. Constraints

Constraints can be used in various locations in your processes, for example in a diverging
gateway. jBPM supports two types of constraints:

» Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in
the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

return person.get Age() > 20;

A similar example of a valid MVEL code constraint is:

76

Action scripts

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the Working Memory and matching for the process instance in your
rule constraint. We have added special logic to make sure that a variable processl nst ance of
type Wor kf | owPr ocessl nst ance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to
insert the process instance into the session and, possibly, to update it, for example, using Java
code or an on-entry or on-exit or explicit action in your process. The following example of a rule
constraint will search for a person with the same name as the value stored in the variable "name"
of the process:

processl nstance : Workfl owPr ocessl nst ance()
Person(nane == (processlnstance. getVari abl e("nane")))
add nore constraints here ...

5.8.3. Action scripts

Action scripts can be used in different ways:

« Within a Script Task,
* As entry or exit actions, with a number of nodes.

Actions have access to (globals and the \variables that are defined for
the process and the predefined variable kcontext. This variable is of type
org. ki e. api . runti ne. process. ProcessCont ext and can be used for several tasks:

« Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

77

Chapter 5. Core Engine: Basics

Nodel nst ance node = kcont ext. get Nodel nst ance() ;
String nane = node. get NodeName() ;

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processl nstance proc = kcontext. get Processl nstance();
proc. signal Event (type, event Object);

» Getting or setting the value of variables.

» Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. name instead of person. get Name()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints
out the name of the person in the "requester" variable of the process would look like this:

/1 Java dial ect
System out. println(person.getNanme());

/1 MEL dial ect
Systemout. println(person.nane);

78

Events

5.8.4. Events

® ﬁ
@ _s

Figure 5.21. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are
executed according to the process plan, by requesting the execution of work items and waiting for
the results. However, it is also possible that the process should respond to events that were not
directly requested by the process engine. Explicitly representing these events in a process allows
the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own
event types and their associated data.

A process can specify how to respond to events by using a Message Event. An Event node needs
to specify the type of event the node is interested in. It can also define the name of a variable,
which will receive the data that is associated with the event. This allows subsequent nodes in the
process to access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

« Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or
on-exit action of some node) can signal the occurrence of an internal event to the surrounding
process instance, using code like the following:

kcont ext . get Processl nst ance() . si gnal Event (type, eventData);

» External event: A process instance can be notified of an event from outside using code such as:

79

Chapter 5. Core Engine: Basics

processl nst ance. si gnal Event (type, eventData);

« External event using event correlation: Instead of notifying a process instance directly, it is
also possible to have the engine automatically determine which process instances might be
interested in an event using event correlation, which is based on the event type. A process
instance that contains an event node listening to external events of some type is notified
whenever such an event occurs. To signal such an event to the process engine, write code
such as:

ksessi on. si gnal Event (type, eventData);

Events could also be used to start a process. Whenever a Message Start Event defines an event
trigger of a specific type, a new process instance will be started every time that type of event is
signalled to the process engine.

5.8.5. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

5.8.5.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of O results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify
the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't
specify anything). For example, the expression "1h" will wait one hour before triggering the timer
(again).

5.8.5.2. Configure timer 1ISO-8601 date format

since version 6 timers can be configured with valid 1SO8601 [http://en.wikipedia.org/wiki/
ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can be
defined as data dn time representation, time duration or repeating intervals

e Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM

e Duration - PT1S - fires once after 1 second

» Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5
times every second

80

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Updating processes

5.8.5.3. Configure timer with process variables

In addition to two configuration otpions above timers can be specified using process variable
that can consists of string representation of ether delay and period or 1ISO8601 date format.
By specifying #{variable} engine will dynamically extract process variable and use it as timer
expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

» A Timer Event may be added to the process flow. Its activation starts the timer, and when it
triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing
connection of a timer with a positive period is triggered multiple times. Cancelling a Timer node
also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process or tasks as a boundary event.

5.8.6. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or
due to changing requirements. Actually, you cannot really update a process, you can only deploy
a new version of the process, the old process will still exist. That is because existing process
instances might still need that process definition. So the new process should have a different id,
though the name could be the same, and you can use the version parameter to show when a
process is updated (the version parameter is just a String and is not validated by the process
framework itself, so you can select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already
running process instances. There are various strategies one could consider for each running
instance:

» Proceed: The running process instance proceeds as normal, following the process (definition) as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the
updated process.

» Abort (and restart): The already running instance is aborted. If necessary, the process instance
can be restarted using the new process definition.

« Transfer: The process instance is migrated to the new process definition, meaning that - once it
has been migrated successfully - it will continue executing based on the updated process logic.

By default, jBPM uses the proceed approach, meaning that multiple versions of the same process
can be deployed, but existing process instances will simply continue executing based on the
process definition that was used when starting the process instance. Running process instances
could always be aborted as well of course, using the process management API. Process instance
migration is more difficult and is explained in the following paragraphs.

81

Chapter 5. Core Engine: Basics

5.8.6.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some
later point in time. This includes all the data linked to this process instance (as variables), but also
the current state in the process diagram. For each node that is currently active, a node instance is
used to represent this. This node instance can also contain additional state linked to the execution
of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,
using id references) that represents the process logic that needs to be followed when executing
this process instance (this clear separation of definition and runtime state allows reuse of the
definition across all process instances based on this process and minimizes runtime state). As a
result, updating a running process instance to a newer version so it uses the new process logic
instead of the old one is simply a matter of changing the referenced process id from the old to
the new id.

However, this does not take into account that the state of the process instance (the variable
instances and the node instances) might need to be migrated as well. In cases where the process
is only extended and all existing wait states are kept, this is pretty straightforward, the runtime
state of the process instance does not need to change at all. However, it is also possible that a
more sophisticated mapping is necessary. For example, when an existing wait state is removed,
or split into multiple wait states, an existing process instance that is waiting in that state cannot
simply be updated. Or when a new process variable is introduced, that variable might need to be
initiated correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessinstanceUpgrader can be used to upgrade a workflow process instance to
a newer process instance. Of course, you need to provide the process instance and the new
process id. By default, jBPM will automatically map old node instances to new node instances with
the same id. But you can provide a mapping of the old (unique) node id to the new node id. The
unigue node id is the node id, preceded by the node ids of its parents (with a colon inbetween),
to uniquely identify a node when composite nodes are used (as a node id is only unique within its
node container. The new node id is simply the new node id in the node container (so no unique
node id here, simply the new node id). The following code snippet shows a simple example.

[/l create the session and start the process "com sanpl e. process”
Ki eSessi on ksession = ...
Processl nst ance processl nstance = ksession.startProcess("com sanpl e. process");

/1 add a new version of the process "com sanpl e. process2"
kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(..., ResourceType. BPM\2);

kbase. addKnow edgePackages(kbui | der. get Knowl edgePackages());

/1l mgrate process instance to new version
Map<String, Long> mappi ng = new HashMap<String, Long>();
/1 top level node 2 is nmapped to a new node with id 3

82

Multi-threading

mappi ng. put ("2", 3L);
/1l node 2, which is part of conposite node 5, is mapped to a new node with id 4
mappi ng. put ("5. 2", 4L);
Wor kf | owPr ocessl nst anceUpgr ader . upgr adePr ocessl nst ance(
ksessi on, processlnstance.getld(),
"com sanpl e. process2", mapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for
specific situations. Be sure to first disconnect the process instance, change the state accordingly
and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader
does it.

5.8.7. Multi-threading

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement
brings with it a number of complications. While it might seem that multi-threading would bring
performance benefits with it, the extra logic needed to make sure the different threads work
together well means that this is not guaranteed. There is also the extra overhead incurred because
we need to avoid race conditions and deadlocks.

5.8.7.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread. sl eep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
conpl et eWsrklten(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

83

Chapter 5. Core Engine: Basics

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

5.8.7.2. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the
technology you're using. If you're only using Java, you could execute the actual service in a new
thread:

public class MyServi ceTaskHandl er inplenments WorkltenHandl er {

public void execut eWorkltem Workltem workltem WorkltenMVanager manager) {
new Thr ead(new Runnabl e() {
public void run() {
/] Do the heavy lifting here ...

}
}).start();

public void abortWrkltem(Workltem workltem Wrkltenmvanager manager) {
}

It's advisable to have your handler contact a service that executes the business operation, instead
of having it perform the actual work. If anything goes wrong with a business operation, it doesn't
affect your process. The loose coupling that this provides also gives you greater flexibility in
reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to
add a task there. To implement an asynchronous handler, you usually have to simply do an
asynchronous invocation of this service. This usually depends on the technology you use to do
the communication, but this might be as simple as asynchronously invoking a web service, or
sending a JMS message to the external service.

84

Multi-threading

jbpm-executor component provides advanced capabilities for asynchronous execution to ease the
development efforts to empower solution when using jBPM. It provides out of the box

 persistent storage of the requested operations
 retry mechanism

« error handling

* history log of executions
See chapter jopm executor for more details.

5.8.7.3. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session.
However, there are cases in which it's necessary to run multiple processes in different knowledge
sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple
knowledge sessions (and processes), there is a guideline that users should be aware of. The
following paragraphs explain why this guideline is important to follow.

* Please make sure to use a database that allows row-level locks as well as table-level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each
with its own knowledge session instance. On each thread, jBPM processes are being started using
the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally
simultaneously finished a process. At this point, because persistence is being used, both thread
A and B will be commiting changes to the databse. If row-level locks are not possible, then the
following situation can occur:

e Thread A has a lock on the Processl nst ancel nf o table, having just committed a change to
that table.
« Thread A wants a lock on the Sessi onl nf o table in order to commit a change there.

» Thread B has the opposite situation: it has a lock on the Sessi onl nf o table, having just
committed a change there.

» Thread B wants a lock on the Pr ocessl nst ancel nf o table, even though Thread A already has
a lock on it
This is a deadlock situation which the database and application will not be able to solve.

However, if row-level locks are posible (and enabled!!) in the database (and tables used), then
this situation will not occur.

85

86

Chapter 6.

Chapter 6. Core Engine: BPMN 2.0

6.1. Business Process Model and Notation (BPMN) 2.0
specification

@ Note
"The primary goal of BPMN is to provide a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts
of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people
who will manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means
that you can use all the different BPM6 tooling to model, execute, manage and monitor
your business processes using the BPMN 2.0 format for specifying your executable business
processes. Actually, the full BPMN 2.0 specification also includes details on how to represent
things like choreographies and collaboration. The jBPM project however focuses on that part of
the specification that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

 Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

» Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be
used inside executable processes. This includes (almost) all elements and attributes as defined in

87

Chapter 6. Core Engine: BPMN 2.0

the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional
elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:
» Flow objects
* Events

« Start Event (None, Conditional, Signal, Message, Timer)

« End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

« Intermediate Catch Event (Signal, Timer, Conditional, Message)

« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

< Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

* Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message,
Compensation)

* Activities
e Script Task
* Task
» Service Task
» User Task
* Business Rule Task
* Manual Task
e Send Task
* Receive Task
* Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
* Event Sub-Process
» Ad-Hoc Sub-Process
« Data-Object
* Gateways

« Diverging

88

Business Process Model and Notation (BPMN) 2.0 specification

* Exclusive

* Inclusive

Parallel

Event-Based
e Converging
» Exclusive
* Inclusive
 Parallel
* Lanes
» Data
» Java type language

 Process properties

Embedded Sub-Process properties

Activity properties
« Connecting objects
e Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

Hallo

(-~ =]

StartProcess EndProcess

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

89

Chapter 6. Core Engine: BPMN 2.0

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions id="Definition"

tar get Nanespace="htt p: // www. exanpl e. or g/ M ni
typeLanguage="http://ww. j ava. com j avaTypes"
expr essi onLanguage="http://ww. nvel . org/ 2. 0"

mal Exanpl e"

xm ns="http://ww. ong. or g/ spec/ BPM\/ 20100524/ MODEL"

xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i

nst ance"

xs: schemalLocati on="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL

BPM\20. xsd"

xm ns: bpmdi ="ht t p: / / www. ong. or g/ spec/ BPMN 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"

xm ns: di ="http://ww. ong. or g/ spec/ DD 2010052
xm ns:tns="http://ww.]j boss. org/drool s">

4/ D1 "

<procegw ocessType="Pri vat @"'sExecut abl e="t r ua"d="com sanpl e. Hel | oWor | dfane="Hel | o
world" >

<l-- nodes -->
<startEvent id="_1" name="StartProcess" />
<script Task id="_2" name="Hel |l 0" >
<script>Systemout.println("Hello Wirld"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t erm nat eEvent Defi ni ti on/ >
</ endEvent >

<l-- connections -->

<sequenceFl ow i d="_1- 2" sourceRef="_1" target Ref="_2"
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3"

</ process>

<bpmmdi : BPM\Di agr an

<bpmdi : BPMNPI ane bpmmEl enent ="M ni mal " >

<bpmdi : BPMNShape bpmmEl enent ="_1" >

<dc: Bounds x="15" y="91" wi dt h="48" hei ght="48" /
</ bpmdi : BPMNShape>
<bpmdi : BPMNShape bpmmEl enent ="_2" >

<dc: Bounds x="95" y="88" wi dth="83" hei ght="48" /
</ bpmdi : BPMNShape>
<bpmmdi : BPMNShape bpmmEl enent ="_3" >

<dc: Bounds x="258" y="86" wi dth="48" hei ght="48"
</ bpmdi : BPMNShape>
<bpmmdi : BPMNEdge bpméEl enent =" _1- 2" >

<di : waypoi nt x="39" y="115" />

<di : waypoi nt x="75" y="46" />

<di : waypoi nt x="136" y="112" />
</ bpmmdi : BPM\NEdge>

/>
/>

>

>

/>

90

Business Process Model and Notation (BPMN) 2.0 specification

<bpmdi : BPMNEdge bpmEl erent ="_2- _3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bpmdi : BPM\Edge>
</ bpmmdi : BPM\PI ane>
</ bpmmdi : BPM\Di agr an»

</definitions>

To create your own process using BPMN 2.0 format, you can

« The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.
We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You
could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes
and then export them to BPMN 2.0 format or save them into repository and import them so they
can be executed.

* A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

« You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

@ Note
Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler
for process modeling. It can still be used for limited number of supported
elements but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the
wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using
the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Ki eHel per ki eHel per = new Ki eHel per();
Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newCl assPat hResour ce("sanpl e. bprm2"))

91

Chapter 6. Core Engine: BPMN 2.0

build();

return ki eBase;

... and how to execute this process ...

Ki eBase kbase = creat eKnowl edgeBase();
Ki eSessi on ksessi on = kbase. newKi eSessi on();
ksessi on. start Process("com sanpl e. Hel | oWor | d");

For more detail, check out the chapter on the API and the basics.

6.2. Supported elements / attributes

Table 6.1. Keywords

Element Supported Supported Extension Extension
attributes elements attributes elements
definitions * rootElement
 BPMNDiagram
process e processType |+ property » packageName ¢ import
» isExecutable » laneSet « adHoc ¢ global
* name » flowElement version
e id
sequenceFlow e sourceRef ¢ conditionExpresstompriority

* targetRef
* isimmediate

* name

interface e name e operation

e implementationRef

operation * name * inMessageRef

e id

92

Supported elements / attributes

Element Supported Supported Extension Extension

attributes elements attributes elements

* implementationRef

laneSet ¢ lane
lane * name ¢ flowNodeRef

e id
import* * name
global* * identifier

* type

Events
startEvent * name dataOutput

e id dataOutputAssociation

e isInterrupting | ¢ outputSet

» eventDefinition

endEvent e name ¢ datalnput
e id ¢ datalnputAssociation
* inputSet

» eventDefinition

intermediateCatchEverame » dataOutput
e id » dataOutputAssociation
e outputSet

* eventDefinition

intermediate ThrowkEveame datalnput
e id datalnputAssociation
* inputSet

» eventDefinition

boundaryEvent |« cancelActivity |+ eventDefinition
 attachedToRef

* name

93

Chapter 6. Core Engine: BPMN 2.0

Element

Supported

attributes

Extension
attributes

Supported
elements

Extension
elements

terminateEventDe

compensateEvent

conditionalEventD
errorEventDefinitic

error

escalationEventDe

escalation

messageEventDetf

message

signalEventDefinit

timerEventDefiniti

Activities

task

scriptTask

script

userTask

e id

finition

DefattioityRef

efinition
n errorRef

* errorCode

e id
>finiéscalationRef
* escalationCode
e id
imitimessageRef

o itemRef
e id
onsignalRef

N

* name

¢ scriptFormat

* nhame

e documentation

» extensionElements

» condition

 timeCycle
» timeDuration

» timerDate

 ioSpecification < taskName
 datalnputAssociation

 dataOutputAssociation

* script

* text[mixed

content]

* joSpecification

 datalnputAssociation

* onEntry-script

* onExit-script

94

Supported elements / attributes

Element

Supported

attributes

Supported
elements

Extension
attributes

Extension
elements

potentialOwner
resourceAssignme

businessRuleTask

manualTask

sendTask

receiveTask

serviceTask

subProcess

adHocSubProcess

callActivity

ntExpression

name

id

name
id

messageRef
name

id

messageRef
name

id

operationRef
name

id
implementation
name

id
triggeredByEver
cancelRemainin
name

id

calledElement

name

14

dataOutputAssociation
resourceRole

loopCharacteristics

resourceAssignmentExpression

expression

ioSpecification
datalnputAssociation

dataOutputAssociation

ioSpecification
datalnputAssociation

loopCharacteristics

ioSpecification
dataOutputAssociation

loopCharacteristics

ioSpecification
datalnputAssociation
dataOutputAssociation

loopCharacteristics

flowElement

property

loopCharacteristics

ginstanpkionCondition

 datalnputAssociatiandependent .

flowElement

property

ioSpecification

* ruleFlowGroup

» waitForComplet

onEntry-script

onExit-script

onEntry-script

onExit-script

onEntry-script

onExit-script

onEntry-script

onExit-script

onEntry-script

onExit-script

on onEntry-script

onExit-script

95

Chapter 6. Core Engine: BPMN 2.0

Element

Supported

attributes

Extension
attributes

Supported
elements

Extension
elements

multilnstanceLoop

onEntry-script*

onExit-script*

Gateways

parallelGateway

eventBasedGatew

exclusiveGateway

inclusiveGateway

Data
property

dataObject

e id

Characteristics

¢ scriptFormat

 scriptFormat

« gatewayDirectio
* name

e id

ay gatewayDirectio
* name
e id
 default
« gatewayDirectio
* name
e id

o default
< gatewayDirectio

* name

* id

¢ itemSubjectRef
e id
* name

* itemSubjectRef

¢ dataOutputAssociation

¢ loopDatalnputRef
¢ inputDataltem
¢ |loopDataOutputRef

» outputDataltem
* script

 script

=]

=}

>

=]

96

Supported elements / attributes

Element

itemDefinition

ioSpecification

datalnput

datalnputAssociat

dataOutput

dataOutputAssoci

inputSet

outputSet

assignment

formalExpression

BPMNDI
BPMNDiagram
BPMNPIane

BPMNShape
BPMNEdge

Supported

attributes
e id
¢ structureRef

* id

* name
e id

ation

« language

* bpmnElement

* bpmnElement

¢ bpmnElement

Extension
attributes

Supported
elements

 datalnput
 dataOutput
* inputSet

* outputSet

» sourceRef
* targetRef

» assignment

¢ sourceRef
* targetRef

» assignment
 datalnputRefs
» dataOutputRefs

* from

* to

* text[mixed
content]

 BPMNPIlane
 BPMNEdge

* BPMNShape
* Bounds

e waypoint

Extension
elements

97

Chapter 6. Core Engine: BPMN 2.0

Element Supported Supported Extension Extension

attributes elements attributes elements

Bounds ¢ X

+ width

* height

waypoint e X

6.3. Examples

The BPMN 2.0 specification defines the attributes and semantics of each of the node types (and
other elements).
TODO: provide more examples with more advanced constructs

The jbpm-bpmn2 module contains a lot of junit tests for each of the different node types. These
test processes can also serve as simple examples: they don't really represent an entire real life
business processes but can definitely be used to show how specific features can be used. For
example, the following figures shows the flow chart of a few of those examples. The entire list can
be found in the src/test/resources folder for the jopm-bpmn2 module like here [http://github.com/
droolsjbpm/jbpm/tree/master/jopm-bpmn2/src/test/resources/].

98

http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/
http://github.com/droolsjbpm/jbpm/tree/master/jbpm-bpmn2/src/test/resources/

Chapter 7.

Chapter 7. Core Engine:
Persistence and transactions

jBPM allows the persistent storage of certain information. This chapter describes these different
types of persistence, and how to configure them. An example of the information stored is the
process runtime state. Storing the process runtime state is necessary in order to be able to
continue execution of a process instance at any point, if something goes wrong. Also, the process
definitions themselves, and the history information (logs of current and previous process states
already) can also be persisted.

7.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution
of the process in that specific context. For example, when executing a process that specifies
how to process a sales order, one process instance is created for each sales request. The
process instance represents the current execution state in that specific context, and contains all
the information related to that process instance. Note that it only contains the (minimal) runtime
state that is needed to continue the execution of that process instance at some later time, but it
does not include information about the history of that process instance if that information is no
longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the
database. You do not have to trigger persistence yourself, the engine will take care of this when
persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are
stored at the end of that invocation, at so-called safe points. Whenever something goes wrong
and you restore the engine from the database, you also should not reload the process instances
and trigger them manually to resume execution, as process instances will automatically resume
execution if they are triggered, like for example by a timer expiring, the completion of a task that
was requested by that process instance, or a signal being sent to the process instance. The engine
will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably
should not try to access these database tables directly and especially not try to modify these
directly (as changing the runtime state of process instances without the engine knowing might
have unexpected side-effects). In most cases where information about the current execution state
of process instances is required, the use of a history log is mostly recommended (see below). In
some cases, it might still be useful to for example query the internal database tables directly, but
you should only do this if you know what you are doing.

99

Chapter 7. Core Engine: Persi...

7.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the
state of the process instance into a binary dataset. When you use persistence with jBPM, this
mechanism is used to save or retrieve the process instance state from the database. The same
mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

« First, the process instance information is transformed into a binary blob. For performance
reasons, a custom serialization mechanism is used and not normal Java serialization.

« This blob is then stored, alongside other metadata about this process instance. This metadata
includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the
state of timer jobs, or the session data that any business rules would be evaluated over. This
session state is stored separately as a binary blob, along with the id of the session and some
metadata. You can always restore session state by reloading the session with the given id. The
session id can be retrieved using ksessi on. get 1 d() .

Note that the process instance binary datasets are usually relatively small, as they only contain
the minimal execution state of the process instance. For a simple process instance, this usually
contains one or a few node instances, i.e., any node that is currently executing, and any existing
variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

_| Workiteminfo v _] Sessioninfo v "] Processinstancelnfo v "] EventTypes v
workltem|d BIGINT{20) id INT{11) InstanceId BIGINT{20) & Instanceld BIGINT|20)
creationDate DATETIME lastModfficationDate DATETIME lastModificationDate DATETIME aventTypes VARCHAR(255)
name VARCHAR(255) rulesByteArray LONGBLOB lastReadDate DATETIME

» processinstanceld BIGINT(20) stariDate DATETIME processld VARGHAR(255)

» state BIGINT(20) OPTLOCK INT{11) processinstanceByteArray LONGBLOB ==
OPTLOCK INT{11) startDate DATETIME
workltemn ByteArray LONGBLOB state INT(11)

OPTLOCK INT(11)
> > > >

] CorrelationPropertyinfo ¥ | CorrelationKeyinfo v | ContextMappinginfo ¥

propertyld BIGINT(20) kayld BIGINT(20) mappingld BIGINT{20)

name VARCHAR(255) name VARCHAR|255) » CONTEXT_ID VARCHAR(255)

value VARCHAR(255) L L1 1 » processinstanceld BIGINT(20) » KSESSION_ID INT(11)

OPTLOCK INT(11) OPTLOCK INT{11) OPTLOCK INT{11)
» comelationkey_keyld BIGINT(20)

> > >

Figure 7.1. JBPM data model

100

Binary Persistence

[images/Chapter-Persistence/jbpm_schema.png]

The sessi oni nf o entity contains the state of the (knowledge) session in which the jBPM process

instance is running.

Table 7.1. SessionInfo

Field
id

Description

The primary key.

Nullable
NOT NULL

| ast nodi ficati ondate

rul esbyt earray

startdate

opt | ock

The last time that the entity
was saved to the database

The binary dataset containing NOT NULL

the state of the session
The start time of the session

The version field that serves
as its optimistic lock value

The processi nst ancei nf o entity contains the state of the jBPM process instance.

Table 7.2. Processinstancelnfo

Field Description Nullable
i nstanceid The primary key NOT NULL
| ast nodi fi cati ondate The last time that the entity
was saved to the database
| astreaddat e The last time that the entity
was retrieved (read) from the
database
processi d The name (id) of the process
processi nst ancebyt earray | This is the binary dataset NOT NULL
containing the state of the
process instance
startdate The start time of the process
state An integer representing the NOT NULL
state of the process instance
opt | ock The version field that serves

as its optimistic lock value

The event t ypes entity contains information about events that a process instance will undergo

or has undergone.

101

images/Chapter-Persistence/jbpm_schema.png

Chapter 7. Core Engine: Persi...

Table 7.3. EventTypes

Field Description Nullable

i nstancei d This references the NOT NULL
processi nst ancei nfo

primary key and there is a

foreign key constraint on this

column.

event Types A text field related to an
event that the process has
undergone.

The wor ki t eni nf o entity contains the state of a work item.

Table 7.4. WorkltemInfo

Field Description Nullable
wor ki teni d The primary key NOT NULL
creationDate The name of the work item

nane The name of the work item

processi nstancei d The (primary key) id of the NOT NULL

process: there is no foreign
key constraint on this field.

state An integer representing the NOT NULL
state of the work item

opt | ock The version field that serves
as its optimistic lock value

wor Ki t enbyt ear ay This is the binary dataset NOT NULL
containing the state of the
work item

The Correl ati onKeyl nf o entity contains information about correlation keys assigned to given
process instance - loose relationship as this table is considered optional used only when
correlation capabilities are required.

Table 7.5. CorrelationKeylInfo

Field Description Nullable
‘ keyi d ‘ The primary key NOT NULL
nanme assigned name of the

correlation key

Safe Points

Field Description Nullable

processi nst ancei d The id of the process instance NOT NULL
which is assigned to this

correlation key

The version field that serves
as its optimistic lock value

opt | ock

The Correl ati onPropertyl nf o entity contains information about correlation properties for given
correlation key that is assigned to given process instance.

Table 7.6. CorrelationPropertyInfo

Field Description Nullable
propertyid The primary key NOT NULL
nane The name of the property
val ue The value of the property NOT NULL
opt | ock The version field that serves
as its optimistic lock value
correl ati onKey- keyi d Foregin key to map to NOT NULL
correlation key

The Cont ext Mappi ngl nf o entity contains information about contextual information mapped to
ksession. This is an internal part of RuntimeManager and can be considered optional when
RuntimeManager is not used.

Table 7.7. ContextMappingInfo

Field Description Nullable

mappi ngi d The primary key NOT NULL
context _id Identifier of the context NOT NULL
ksessi on?id Identifier of the ksession NOT NULL

mapped to this context

opt | ock

The version field that serves

as its optimistic lock value

7.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of
the process engine. Whenever a process instance is executing (for example when it started or
continuing from a previous wait state, the engine executes the process instance until no more
actions can be performed (meaning that the process instance either has completed (or was
aborted), or that it has reached a wait state in all of its parallel paths). At that point, the engine has
reached the next safe state, and the state of the process instance (and all other process instances
that might have been affected) is stored persistently.

103

Chapter 7. Core Engine: Persi...

7.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. This means you can use the engine
completely without persistence (so not even requiring an in memory database) if necessary, for
example for performance reasons, or when you would like to manage persistence yourself. It is,
however, possible to configure the engine to do use persistence by configuring it to do so. This
usually requires adding the necessary dependencies, configuring a datasource and creating the
engine with persistence configured.

7.1.3.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your
application if you want to user persistence. By default, persistence is based on the Java
Persistence API (JPA) and can thus work with several persistence mechanisms. We are using
Hibernate by default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary
jars are added to your jBPM runtime directory. You don't really need to do anything (as the
necessary dependencies should already be there) if you are using the jBPM runtime that is
configured by default when using the jBPM installer, or if you downloaded and unzipped the jBPM
runtime artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you
need the jar file j bpm persi stence-jpa.jar, as that contains code for saving the runtime
state whenever necessary. Next, you also need various other dependencies, depending on the
persistence solution and database you are using. For the default combination with Hibernate as
the JPA persistence provider and using an H2 in-memory database and Bitronix for JTA-based
transaction management, the following list of additional dependencies is needed:

» jbpm-persistence-jpa (org.jopm)

- drools-persistence-jpa (org.drools)

* persistence-api (javax.persistence)

« hibernate-entitymanager (org.hibernate)

« hibernate-annotations (org.hibernate)

« hibernate-commons-annotations (org.hibernate)
* hibernate-core (org.hibernate)

» commons-collections (commons-collections)

e dom4j (dom4))

* jta (javax.transaction)

* btm (org.codehaus.btm)

104

Configuring Persistence

 javassist (javassist)

slf4j-api (org.slf4j)

slf4j-jdk14 (org.slf4))

h2 (com.h2database)

jbpm-test (org.jopm) for testing only, do not include it in the actual application
7.1.3.2. Manually configuring the engine to use persistence

You can use the JPAKnow edgeSer vi ce to create your knowledge session. This is slightly more
complex, but gives you full access to the underlying configurations. You can create a new
knowledge session using JPAKnow edgeServi ce based on a knowledge base, a knowledge
session configuration (if necessary) and an environment. The environment needs to contain a
reference to your Entity Manager Factory. For example:

/]l create the entity manager factory and register it in the environnment
EntityManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persistence.jpa");
Envi ronnent env = Know edgeBaseFact ory. newEnvi ronnent () ;
env. set (Envi ronnent Nane. ENTI TY_MANAGER _FACTCRY, enf);

/1 create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newst at ef ul Know edgeSessi on(kbase, nul
int sessionld = ksession.getld();

/1 invoke methods on your nethod here
ksession. start Process("M/Process");
ksessi on. di spose();

You can also use the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

/] recreate the session from database using the sessionld
ksessi on = JPAKnow edgeServi ce. | oadSt at ef ul Knowl edgeSessi on(sessi onld, kbase, null, env);

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate
and the H2 database (or your own preference), called persistence. xm in the META-INF
directory, as shown below. For more details on how to change this for your own configuration, we
refer to the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

105

Chapter 7. Core Engine: Persi...

<per si st ence
versi on="2.0"
xsi : schemaLocation="http://java. sun. conf xm / ns/ persi stence http://
j ava. sun. coml xm / ns/ per si st ence/ persi stence_2_0. xsd
http://java. sun. conl xm / ns/ persi stence/orm http://java. sun. com xm / ns/
persi stence/ orm 2_0. xsd"
xm ns="http://java. sun. com xm / ns/ per si st ence"
xm ns:orm="http://java. sun. com xm / ns/ per si st ence/ or nf'
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance>

<persi stence-unit nane="org.j bpm persi stence.jpa" transaction-type="JTA">
<provi der >or g. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</j t a- dat a- sour ce>
<mappi ng-fi | e>META- | NF/ JBPMor m xm </ mappi ng-fil e>
<cl ass>org. drool s. persi st ence. i nfo. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nf o</cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onKeyl nfo</cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti nme. manager. i nmpl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<properties>
<property nane="hi bernate. di al ect” val ue="org. hi bernate. di al ect. H2Di al ect "/

>

<property nane="hi bernate. nax_fetch_depth" val ue="3"/>

<property nane="hi bernate. hbn2ddl . aut 0" val ue="update"/ >

<property nane="hi bernate. show _sql" value="true"/>

<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate.service.jta.platforminternal.BitronixJtaPl atforni/
>

</ properties>
</ persi stence-unit>
</ per si st ence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in
an application server (like for example JBoss AS), these containers typically allow you to easily set
up data sources using some configuration (like for example dropping a datasource configuration
file in the deploy directory). Please refer to your application server documentation to know how
to do this.

For example, if you're deploying to JBoss Application Server v5.X, you can create a datasource
by dropping a configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<l ocal -t x- dat asour ce>

106

Configuring Persistence

<j ndi - name>j dbc/ j bpm ds</j ndi - nanme>
<connection-url >jdbc: h2:tcp://| ocal host/~/test</connection-url>
<driver-class>org. h2.jdbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nane>sa</ user - nane>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

If you are however executing in a simple Java environment, you can use the JBPMHel per class
to do this for you (see below for tests only) or the following code fragment could be used to set
up a data source (where we are using the H2 in-memory database in combination with Bitronix
in this case).

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce() ;

ds. set Uni queNane("j dbc/j bpm ds");

ds. set G assNane("bi troni x.tmresource.jdbc.|rc.LrcXADat aSource");
ds. set MaxPool Si ze(3);

ds. set Al | owlLocal Transacti ons(true);

ds. getDriverProperties().put("user", "sa");
ds. getDriverProperties().put("passwrd", "sasa");
ds. getDriverProperties().put("URL", "jdbc:h2:memjbpm db");

ds. getDriverProperties().put("driverC assNane", "org.h2.Driver");
ds.init();

7.1.3.3. Configuring the engine to use persistence using JBPMHel per -
for tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate
constructor when creating your session. There are various ways to create a session (as we have
tried to make this as easy as possible for you and have several utility classes for you, depending
for example if you are trying to write a process junit test).

The easiest way to do this is to use the j bpm t est module that allows you to easily create and test
your processes. The JBPMHel per class has a method to create a session, and uses a configuration
file to configure this session, like whether you want to use persistence, the datasource to use, etc.
The helper class will then do all the setup and configuration for you.

To configure persistence, create a j BPM properti es file and configure the following properties
(note that the example below are the default properties, using an H2 in-memory database with
persistence enabled, if you are fine with all of these properties, you don't need to add new
properties file, as it will then use these properties by default):

107

Chapter 7. Core Engine: Persi...

for creating a datasource

persi st ence. dat asour ce. nane=j dbc/j bpm ds

per si st ence. dat asour ce. user =sa

per si st ence. dat asour ce. passwor d=

per si st ence. dat asour ce. url =j dbc: h2: tcp://1 ocal host/~/j bpm db
per si st ence. dat asour ce. dri ver Cl assNane=or g. h2. Dri ver

for configuring persistence of the session

per si st ence. enabl ed=t r ue

persi st ence. persi st enceuni t. name=or g. j bpm persi stence. j pa

per si st ence. persi st enceuni t. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

for configuring the human task service

t askservi ce. enabl ed=true

t askservi ce. dat asour ce. name=or g. j bpm t ask

t askservi ce. usergroupcal | back=org. j bpm servi ces. task.identity.JBossUser G oupCal | backl npl
t askservi ce. user gr oupmappi ng=cl asspat h: / user groups. properties

If you want to use persistence, you must make sure that the datasource (that you specified in
the j BPM properti es file) is initialized correctly. This means that the database itself must be up
and running, and the datasource should be registered using the correct name. If you would like
to use an H2 in-memory database (which is usually very easy to do some testing), you can use
the JBPMHel per class to start up this database, using:

JBPMHel per. st art H2Ser ver () ;

To register the datasource (this is something you always need to do, even if you're not using H2
as your database, check below for more options on how to configure your datasource), use:

JBPMHel per . set upDat aSour ce() ;

Next, you can use the JBPM-el per class to create your session (after creating your knowledge
base, which is identical to the case when you are not using persistence):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. newsSt at ef ul Know edgeSessi on(kbase) ;

108

Transactions

Once you have done that, you can just call methods on this ksession (like st ar t Pr ocess) and the
engine will persist all runtime state in the created datasource.

You can also use the JBPMHel per class to recreate your session (by restoring its state from the
database, by passing in the session id (that you can retrieve using ksessi on. get 1 d())):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. | oadSt at ef ul Knowl edgeSessi on(kbase, sessionld);

7.1.4. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using
Spring. It does not support pure local transactions at the moment. For more information about
using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this
behavior is acceptable, you don't need to do anything else. You can, however, also specify the
transaction boundaries yourself. This allows you, for example, to combine multiple commands
into one transaction.

You need to register a transaction manager at the environment before using user-defined
transactions. The following sample code uses the Bitronix transaction manager. Next, we use the
Java Transaction API (JTA) to specify transaction boundaries, as shown below:

/]l create the entity manager factory and register it in the environnment

EntityManager Factory enf = Persistence.createEntityManagerFactory("org.jbpm persistence.jpa")
Envi ronnment env = Know edgeBaseFact ory. newEnvi r onnent () ;

env. set (Envi ronnent Narme. ENTI TY_MANAGER _FACTCRY, enf);

env. set (Envi r onnent Narme. TRANSACTI ON_MANAGER, Transacti onManager Servi ces. get Tr ansact i onManager (

/'l create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeServi ce. newSt at ef ul Knowl edgeSessi on(kbase, nul

/1 start the transaction

User Transacti on ut = (UserTransaction) new Initial Context().|ookup("java:conp/
User Transacti on");

ut . begi n();

/1 performnultiple commands inside one transaction
ksession.insert(new Person("John Doe"));

ksession. startProcess("M/Process");

// commt the transaction

109

Chapter 7. Core Engine: Persi...

ut.comit();

Note that, if you use Bitronix as the transaction manager, you should also add a simple
j ndi . properti es file in you root classpath to register the Bitronix transaction manager in JNDI. If
you are using the jppm-test module, this is already included by default. If not, create a file named
j ndi . properties with the following content:

java. nam ng. factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

If you would like to use a different JTA transaction manager, you can change the
persi stence. xn file to use your own transaction manager. For example, when running inside
JBoss Application Server v5.x or v7.x, you can use the JBoss transaction manager. You need to
change the transaction manager property in per si st ence. xn to:

<property nanme="hi bernate.transaction.jta.platfornt
val ue="or g. hi bernate. transacti on. JBossTransact i onManager Lookup" />

7.1.4.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that executes
in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies
to application servers that does not allow accessing UserTransaction instance from JNDI when
being part of container managed transaction, e.g. WebSphere Application Server. Since default
implementation of transaction manager in jBPM is based on UserTransaction to get transaction
status which is used to decide if transaction should be started or not, in environments that prevent
accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a
dedicated transaction manager implementation is provided:

org.j bpm persi stence. jta. Contai ner ManagedTr ansact i onManager

This transaction manager expects that transaction is active and thus will always return ACTIVE
when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as
transaction manager runs under managed transaction and can't affect it.

110

Persistence and concurrency

@ Note
To make sure that container is aware of any exceptions that happened during
process instance execution, user needs to ensure that exceptions thrown by the
engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

« Insert transaction manager and persistence context manager into environment prior to creating/
loading session

Envi ronnent env = Environnent Fact ory. newenvi r onnment () ;
env. set (Envi ronnent Nane. ENTI TY_MANAGER_FACTORY, enf);

env. set (Envi ronment Name. TRANSACTI ON_MANAGER, new
Cont ai ner ManagedTr ansact i onManager ()) ;
env. set (Envi r onment Name. PERSI STENCE_CONTEXT_MANAGER, new

JpaPr ocessPer si st enceCont ext Manager (env)) ;

 configure JPA provider (example hibernate and WebSphere)

<property nane="hi ber nat e. transaction. factory_cl ass"
val ue="org. hi bernate. transacti on. CMI'Tr ansact i onFactory"/ >
<property nanme="hi ber nat e. transacti on. manager _| ookup_cl ass"

val ue="org. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookup"/ >

With following configuration jBPM should run properly in CMT environment.
7.1.4.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession directly
will cause exceptions on transaction completion as there are some transaction
synchronization registered by jBPM to clean up the state after invocation is
finished. To overcome this problem specialized command has been provided
org. j bpm persi stence. jta. Cont ai ner ManagedTr ansact i onDi sposeConmand which allows to
simply execute this command instead of refular ksessi on. di spose which will ensure that
ksession will be disposed at the transaction completion.

7.1.5. Persistence and concurrency

Please see the Multi-threading section for more information.

111

Chapter 7. Core Engine: Persi...

7.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a
file system during development. However, whenever you want to make your knowledge accessible
to one or more engines in production, we recommend using a knowledge repository that (logically)
centralizes your knowledge in one or more knowledge repositories.

jBPM comes with web tooling that allows to author various business assets such as processes,
rules, decision tables, etc and then store them in GIT repository. Next you can directly build and
deploy your packages (kjars - knowledge archives) to the runtime engine ir get access to the GIT
repository with your favourite GIT tool e.g. eGit plugin for eclipse.

Since kjars are essentially maven artifacts they can be simply build with maven and deployed to
remote repository for deployment to the process engine. More on this in deployment chapter

7.3. History Log

In many cases it will be useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards. For example, sometimes we want to
verify which actions have been executed for a particular process instance, or in general, we want
to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size, not to mention the fact that monitoring and analysis queries might influence
the performance of your runtime engine. This is why process execution history information can
be stored separately.

This history log of execution information is created based on events that the process engine
generates during execution. This is possible because the jBPM runtime engine provides a generic
mechanism to listen to events. The necessary information can easily be extracted from these
events and then persisted to a database. Filters can also be used to limit the scope of the logged
information.

7.3.1. The |BPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information in a
database using JPA or Hibernate directly. The data model itself contains three entities, one for
process instance information, one for node instance information, and one for (process) variable
instance information.

112

The jBPM Audit data model

—| Processinstancel.og v
id BIGINT{20)

> duration BIGINT{20)

»end_date DATETIME

»extemalld VARCHAR(255)

> user_identity VARCHAR(255)

> outcome VARCHARI255)

» parentP rocessInstance ld BIGINT(20)

> processld VARCHAR(255)

» processinstanceld BIGINT(20)

» processMame VARCHAR(255)

s processVersion VARCHAR(255)

o start_date DATETIME

> status INT(11)

~] NodelnstanceLog v
id BIGINT{20)

» connection VARCHAR(255)

»log_date DATETIME

»extemalld VARCHAR(255)

» nodeld VARCHAR(255)

» nodelnstanceld VARCHAR(255)

» nodeName VARCHAR(255)

» nodeType VARCHAR(255)

» processld VARCHAR(255)

2 proce ssinstanceld BIGINT(20)

o type INT(11)

> workltemid BIGINT(20)

Figure 7.2. JBPM Audit data model

_| VvariableinstanceLog v
id BIGINT{20)

» log_date DATETIME

»axtemalld VARCHAR(255)

> oldValue VARCHAR(255)

» processld VARCHAR(255)

» processinstanceld BIGINT(20)

> value VARCHAR(255)

»vanableld VARCHAR(255)

»vanablelnstanceld VARCHAR|255)

The Processl nst ancelog table contains the basic log information about a process instance.

Table 7.8. ProcessinstancelLog

Field Description Nullable
id The primary key and id of the NOT NULL
log entity
duration Actual duration of this
process instance since its
start date
end_dat e When applicable, the end

date of the process instance

external I d Optional external identifier
used to correlate to some

elements - e.g. deployment id

user _identity Optional identifier of the user
who started the process

instance

out come The outcome of the process
instance, for instance error
code in case of process
instance was finished with

error event

par ent Processl nstancel d | The process instance id of the

parent process instance if any

113

Chapter 7. Core Engine: Persi...

Field Description Nullable
processid The id of the process
processi nstancei d The process instance id NOT NULL
pr ocessnamne The name of the process
processversi on The version of the process
start_date The start date of the process
instance
st at us The status of process
instance that maps to process
instance state

The Nodel nst anceLog table contains more information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incoming
connections or is exited through one of its outgoing connections, that information is stored in this
table.

Table 7.9. NodelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

connection Actual identifier of the

sequence flow that led to this
node instance

| og_date The date of the event

external I d Optional external identifier
used to correlate to some
elements - e.g. deployment id

nodei d The node id of the
corresponding node in the
process definition

nodei nst ancei d The node instance id
nodenane The name of the node

nodet ype The type of the node
processid The id of the process that the

process instance is executing
processi nstancei d The process instance id NOT NULL

type The type of the event (0 = NOT NULL
enter, 1 = exit)

114

Storing Process Events in a Database

Field Description Nullable
wor kl tem d Optional - only for certain

node types - The identifier of

work item

The Vvari abl el nst anceLog table contains information about changes in variable instances. The
default is to only generate log entries when (after) a variable changes. It's also possible to log
entries before the variable (value) changes.

Table 7.10. VariablelnstancelLog

Field Description Nullable

id The primary key and id of the NOT NULL
log entity

external I d Optional external identifier

used to correlate to some
elements - e.g. deployment id

| og_date The date of the event

processi d The id of the process that the
process instance is executing

processi nstancei d The process instance id NOT NULL
ol dval ue The previous value of the

variable at the time that the

log is made
val ue The value of the variable at

the time that the log is made

vari abl ei d The variable id in the process
definition
vari abl ei nst ancei d The id of the variable instance

7.3.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your
session (or working memory) like this:

Entit yManager Factory enf = ...;

St at ef ul Know edgeSessi on ksession = ...;

Abstract Audi t Logger auditLogger = AuditLogger Fact ory. newJPAI nst ance(enf);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/1 1nvoke nmet hods one your session here

115

Chapter 7. Core Engine: Persi...

Note that this logger is like any other audit logger, which means that you can add one or more
filters by calling the method addFi | t er to ensure that only relevant information is stored in the
database. Only information accepted by all your filters will appear in the database.

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstanceLog, NodelnstanceLog and
VariablelnstancelLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<per si st ence
versi on="2.0"
xsi : schemaLocation="http://java. sun. com xm / ns/ per si st ence http://
java. sun. com xm / ns/ per si st ence/ persi stence_2_0. xsd
http://java. sun. conl xm / ns/ persi stence/orm http://java. sun. coni xm / ns/
persi stence/ orm 2_0. xsd"
xm ns="http://java. sun. com xm / ns/ per si st ence"
xm ns:orme"http://java. sun. com xm / ns/ per si st ence/ or ni
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance>

<persi stence-unit nane="org.j bpm persi stence.jpa" transaction-type="JTA">
<provi der >org. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<j ta- dat a- sour ce>j dbc/j bpm ds</ | t a- dat a- sour ce>
<mappi ng-fi | e>META- | NF/ JBPMor m xm </ mappi ng-fi |l e>
<cl ass>org. drool s. persi st ence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm persi st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nfo</cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onKeyl nfo</cl ass>
<cl ass>org. j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org. j bpm runti me. manager . i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<cl ass>org. j bpm process. audi t. Processl nst ancelLog</ cl ass>
<cl ass>org. j bpm process. audi t . Nodel nst anceLog</ cl ass>
<cl ass>org. j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nane="hi ber nate. di al ect"” val ue="org. hi bernate. di al ect. H2Di al ect"/

<property nane="hi bernate. max_fetch_depth" val ue="3"/>

<property nane="hi bernate. hbn2ddl . aut 0" val ue="update"/ >

<property nane="hi bernate. show _sql" value="true"/>

<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate. service.jta.platforminternal.Bitroni xJtaPl atforni/>
</ properties>

116

Storing Process Events in a JMS queue for further processing

</ persi stence-unit>
</ per si st ence>

All this information can easily be queried and used in a lot of different use cases, ranging
from creating a history log for one specific process instance to analyzing the performance of all
instances of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

7.3.3. Storing Process Events in a JMS queue for further
processing

Process events are stored in data base synchronously and within the same transaction as actual
process instance execution. That obviously takes some time especially in highly loaded systems
and might have some impact on data base when both history log and runtime data are kept in the
same data base. To provide alternative option for storing process events a JMS based logger has
been provided. It allows to be configured to submit messages to JMS queue instead of directly
persisting them in data base. It can be configured to be transactional as well to avoid issues with
inconsistent data in case of process engine transaction is rolled back.

ConnectionFactory factory = ...;

Queue queue = ...;

St at ef ul Know edgeSessi on ksession = ...;

Map<String, Cbject> jnsProps = new HashMap<String, Object>();

jmsProps. put ("jbpmaudit.jns.transacted", true);

jmeProps. put ("jbpm audit.jns.connection.factory", factory);

jmsProps. put ("j bpm audi t.j nms. queue”, queue);

Abstract Audi t Logger auditLogger = AuditLogger Factory. newl nstance(Type.JMS, session, jnmsProps);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/1 invoke nethods one your session here

This is just one of possible ways to configure JMS audit logger, see javadocs for
AuditLoggerFactory for more details.

117

118

Chapter 8.

Chapter 8. Core Engine: Examples

8.1. JBPM Examples

There is a separate jBPM examples module that contains a set of example processes that show
how to use the jBPM engine and the behavior or the different process constructs as defined by
the BPMN 2.0 specification.

To start using these, simply unzip the file somewhere and open up your Eclipse development
environment with all required plugins installed. If you don't know how to do this yet, take a look
at the installer chapter, where you can learn how to create a demo environment, including a fully
configured Eclipse IDE, using the jBPM installer. You can also take a look at the Eclipse plugin
chapter if you want to learn how to manually install and configure this.

To take a look at the examples, simply import the downloaded examples project into Eclipse (File
-> Import ... -> Under General: Existing Projects into Workspace), browse to the folder where you
unzipped the jBPM examples artifact and click finish. This should import the examples project in
your workspace, so you can start looking at the processes and executing the classes.

8.2. Examples

The examples module contains a number of examples, from basic to advanced:

« Looping: An example that shows how you can use exclusive gateways to loop a part your
process until the loop condition is no longer valid. The process takes the 'count’ (the number of
times the loop needs to be repeated) as input and simply prints out a statement during every
loop until the process is completed.

* Multiinstance: This example shows how to execute a sub-process for each element in a
collection. The process takes a collection of names as input and creates a review task for a
sales representative for each person in that list. The process completes if the task has been
executed for every person on that list.

« Evaluation: A performance evaluation process that shows how to integrate human actors in the
process. While the basic example simply shows tasks assigned to predefined users, the more
advanced version shows data passing from the process to the task and back, group assignment,
task delegation, etc.

« HumanTask: An advanced example when using human tasks. It shows how to do data passing
between tasks, task forms, swimlanes, etc. This example can also be deployed to the Guvnor
repository (including all the forms etc.) and executed on the jBPM console out-of-the-box.

* Request: An advanced example that shows various ways in which processes and rules can
work together, like a rule task for invoking validation rules, rules as expression language for

119

Chapter 8. Core Engine: Examples

constraints inside the process, rules for exception handling, event processing for monitoring,
ad hoc rules for more flexible processes, etc.

8.3. Unit tests

The examples project contains a large number of simple BPMN2 processes for each of the
different node types that are supported by jBPM5. In the junit folder under src/main/resources
you can for example find process examples for constructs like a conditional start event, exclusive
diverging gateways using default connections, etc. So if you're looking for a simple working
example that shows the behavior of one specific element, you can probably find one here. The
folder already contains well over 50 sample processes. Simply double-click them to open them
in the graphical editor.

Each of those processes is also accompanied by a small junit test that tests the implementation
of that construct. The org.joppm.examples.junit. BPMN2JUnitTests class contains one test for each
of the processes in the junit resources folder. You can execute these tests yourself by selecting
the method you want to execute (or the entire class) and right-click and then Run as -> JUnit test.

Check out the chapter on testing and debugging if you want to learn more how to debug these
example processes.

120

	jBPM User Guide
	Table of Contents
	
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Eclipse Editor
	1.5. Workbench web application
	1.5.1. Process Designer
	1.5.2. Form Modeler
	1.5.3. Process and Task management
	1.5.4. Business Activity Monitoring

	1.6. Documentation

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Use with Maven, Gradle, Ivy, Buildr or ANT
	2.3. Getting started
	2.4. Community
	2.5. Sources
	2.5.1. License
	2.5.2. Source code
	2.5.3. Building from source

	Chapter 3. Installer
	3.1. Prerequisites
	3.2. Download the installer
	3.3. Demo setup
	3.3.1. Control options

	3.4. 10-Minute Tutorial: Using the jBPM Console
	3.5. 10-Minute Tutorial: Integrate Eclipse and Web tooling
	3.6. Using your own database with jBPM
	3.6.1. Introduction
	3.6.2. Database setup
	3.6.3. Configuration
	3.6.4. Using a different database

	3.7. jBPM data base schema scripts (DDL scripts)
	3.8. jBPM installer script
	3.9. What to do if I encounter problems or have questions?
	3.10. Frequently asked questions

	Chapter 4. Core Engine: API
	4.1. The jBPM API
	4.1.1. Knowledge Base
	4.1.2. Session
	4.1.3. Correlation key and Correlation properties
	4.1.4. Events

	4.2. Knowledge-based API
	4.3. RuntimeManager
	4.4. Control parameters

	Chapter 5. Core Engine: Basics
	5.1. Creating a process
	5.1.1. Using the graphical BPMN2 Editor
	5.1.2. Defining processes using XML
	5.1.3. Defining Processes Using the Process API
	5.1.3.1. Example

	5.2. Details of different process constructs: Overview
	5.3. Details: Process properties
	5.4. Details: Events
	5.4.1. Start event
	5.4.2. End events
	5.4.2.1. End event
	5.4.2.2. Throwing error event

	5.4.3. Intermediate events
	5.4.3.1. Catching timer event
	5.4.3.2. Catching signal event

	5.5. Details: Activities
	5.5.1. Script task
	5.5.2. Service task
	5.5.3. User task
	5.5.4. Reusable sub-process
	5.5.5. Business rule task
	5.5.6. Embedded sub-process
	5.5.7. Multi-instance sub-process

	5.6. Details: Gateways
	5.6.1. Diverging gateway
	5.6.2. Converging gateway

	5.7. Using a process in your application
	5.8. Other features
	5.8.1. Data
	5.8.2. Constraints
	5.8.3. Action scripts
	5.8.4. Events
	5.8.5. Timers
	5.8.5.1. Configure timer with delay and period
	5.8.5.2. Configure timer ISO-8601 date format
	5.8.5.3. Configure timer with process variables

	5.8.6. Updating processes
	5.8.6.1. Process instance migration

	5.8.7. Multi-threading
	5.8.7.1. Engine execution
	5.8.7.2. Asynchronous handlers
	5.8.7.3. Multiple knowledge sessions and persistence

	Chapter 6. Core Engine: BPMN 2.0
	6.1. Business Process Model and Notation (BPMN) 2.0 specification
	6.2. Supported elements / attributes
	6.3. Examples

	Chapter 7. Core Engine: Persistence and transactions
	7.1. Runtime State
	7.1.1. Binary Persistence
	7.1.2. Safe Points
	7.1.3. Configuring Persistence
	7.1.3.1. Adding dependencies
	7.1.3.2. Manually configuring the engine to use persistence
	7.1.3.3. Configuring the engine to use persistence using JBPMHelper - for tests only

	7.1.4. Transactions
	7.1.4.1. Container managed transaction
	7.1.4.1.1. CMT dispose ksession command

	7.1.5. Persistence and concurrency

	7.2. Process Definitions
	7.3. History Log
	7.3.1. The jBPM Audit data model
	7.3.2. Storing Process Events in a Database
	7.3.3. Storing Process Events in a JMS queue for further processing

	Chapter 8. Core Engine: Examples
	8.1. jBPM Examples
	8.2. Examples
	8.3. Unit tests

