
Drools User Guide
The Drools Team

Table of Contents
1. Getting Started . 1

1.1. First Rule Project. 1

1.1.1. Prerequisites . 1

1.1.2. Creating a project with maven archetype. 1

2. Drools rule engine . 5

2.1. KIE sessions . 6

2.1.1. Stateless KIE sessions . 6

2.1.2. Stateful KIE sessions. 11

2.1.3. KIE session pools. 15

2.2. Inference and truth maintenance in the Drools rule engine. 16

2.2.1. Government ID example . 20

2.2.2. Fact equality modes in the Drools rule engine . 22

2.3. Execution control in the Drools rule engine . 23

2.3.1. Salience for rules . 24

2.3.2. Agenda groups for rules . 25

2.3.3. Activation groups for rules. 26

2.3.4. Rule execution modes and thread safety in the Drools rule engine. 27

2.3.5. Fact propagation modes in the Drools rule engine. 30

2.3.6. Agenda evaluation filters . 32

2.4. Phreak rule algorithm in the Drools rule engine . 32

2.4.1. Rule evaluation in Phreak . 33

2.4.2. Rule base configuration. 38

2.4.3. Sequential mode in Phreak . 41

2.5. Complex event processing (CEP). 42

2.5.1. Events in complex event processing . 44

2.5.2. Declaring facts as events . 44

2.5.3. Event processing modes in the Drools rule engine. 47

2.5.4. Property-change settings and listeners for fact types . 51

2.5.5. Temporal operators for events . 53

2.5.6. Session clock implementations in the Drools rule engine . 63

2.5.7. Event streams and entry points. 64

2.5.8. Sliding windows of time or length . 66

2.5.9. Memory management for events . 68

2.6. Drools rule engine queries and live queries . 69

2.7. Drools rule engine event listeners and debug logging . 70

2.7.1. Practices for development of event listeners . 72

2.7.2. Configuring a logging utility in the Drools rule engine . 72

2.8. Performance tuning considerations with the Drools rule engine . 73

3. Rule Language Reference. 76

3.1. DRL (Drools Rule Language) rules . 76

3.1.1. Packages in DRL . 77

3.1.2. Import statements in DRL. 78

3.1.3. Functions in DRL. 78

3.1.4. Queries in DRL. 79

3.1.5. Type declarations and metadata in DRL . 83

3.1.6. Global variables in DRL. 98

3.1.7. Rule attributes in DRL . 99

3.1.8. Rule conditions in DRL (WHEN) . 106

3.1.9. Rule actions in DRL (THEN) . 152

3.1.10. Comments in DRL files . 158

3.1.11. Error messages for DRL troubleshooting . 159

3.1.12. Rule units in DRL rule sets . 163

3.1.13. Performance tuning considerations with DRL . 177

3.2. Domain Specific Languages . 180

3.2.1. When to Use a DSL . 181

3.2.2. DSL Basics. 181

3.2.3. Adding Constraints to Facts . 183

3.2.4. Developing a DSL . 185

3.2.5. DSL and DSLR Reference . 185

Chapter 1. Getting Started

1.1. First Rule Project
This guide walks you through the process of creating a simple Drools application project.

1.1.1. Prerequisites

• JDK 8+ with JAVA_HOME configured appropriately

• Apache Maven 3.8.1+

• Optionally, an IDE, such as IntelliJ IDEA, VSCode or Eclipse

1.1.2. Creating a project with maven archetype

Create a project with the following command.

mvn archetype:generate -DarchetypeGroupId=org.kie -DarchetypeArtifactId=kie-drools
-exec-model-ruleunit-archetype -DarchetypeVersion=8.24.1.Beta

During the command execution, input property values interactively.

Define value for property 'groupId': org.example
Define value for property 'artifactId': my-project
Define value for property 'version' 1.0-SNAPSHOT: :
Define value for property 'package' org.example: :
...
 Y: : Y
...
[INFO] BUILD SUCCESS

Now your first rule project is created. Let’s look into the project.

Firstly, pom.xml.

1

https://adoptopenjdk.net/
https://maven.apache.org/download.html

 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-engine</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-ruleunits-impl</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 </dependency>

They are required dependencies for executable model with rule unit use cases.


You can still use traditional Drools 7 style rules without rule unit. In this case, use
kie-drools-exec-model-archetype.

The archetype contains one DRL file as an example src/main/resources/org/example/rules.drl.

package org.example;

unit MeasurementUnit;

rule "will execute per each Measurement having ID color"
when
 /measurements[id == "color", $colorVal : val]
then
 controlSet.add($colorVal);
end

query FindColor
 $m: /measurements[id == "color"]
end

This rule checks incoming Measurement data and stores its value in a global variable controlSet
when it’s color information.

when part implements the pattern matching and then part implements the action when the
conditions are met.

Next, find src/main/java/org/example/MeasurementUnit.java that is specified as unit MeasurementUnit
in the rule. It is called rule unit that groups data sources, global variables and DRL rules.

2

public class MeasurementUnit implements RuleUnitData {

 private final DataStore<Measurement> measurements;
 private final Set<String> controlSet = new HashSet<>();

 ...

/measurements in rules.drl is bound to the measurements field in MeasurementUnit. So you know that
the inserted data type is Measurement. This class also defines a global variable controlSet.

Then, src/main/java/org/example/Measurement.java is a Java bean class used in the rule. Such an
object is called Fact.

Finally, src/test/java/org/example/RuleTest.java is the test case that executes the rule. You can
learn the basic API usage that is used in your own applications.

 MeasurementUnit measurementUnit = new MeasurementUnit();

 RuleUnitInstance<MeasurementUnit> instance = RuleUnitInstanceFactory.instance
(measurementUnit);

Create a MeasurementUnit instance. Then create a RuleUnitInstance with the MeasurementUnit instance
using RuleUnitInstanceFactory.

 measurementUnit.getMeasurements().add(new Measurement("color", "red"));
 measurementUnit.getMeasurements().add(new Measurement("color", "green"));
 measurementUnit.getMeasurements().add(new Measurement("color", "blue"));

Add Measurement facts into measurementUnit.measurements. It means the facts are inserted into Drools
rule engine.

 List<Measurement> queryResult = instance.executeQuery("FindColor").stream()
.map(tuple -> (Measurement) tuple.get("$m")).collect(toList());

Execute a query named FindColor. When you execute a query, rules that are matched with inserted
facts are automatically fired. If you want to only fire rules without a query, you can call
instance.fire() instead.

 instance.dispose();

At the end, call dispose() to release resources retained by the RuleUnitInstance.

Let’s run the test with mvn clean test.

3

[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.example.RuleTest
2022-06-13 12:49:56,499 [main] INFO Creating RuleUnit
2022-06-13 12:49:56,696 [main] INFO Insert data
2022-06-13 12:49:56,700 [main] INFO Run query. Rules are also fired
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.411 s - in
org.example.RuleTest

Now you can add your own rules and facts to this project!


The rule project requires code generation that is triggered by mvn compile phase.
If you directly run RuleTest.java in IDE, you may need to run mvn compile first.

4

Chapter 2. Drools rule engine
The Drools rule engine stores, processes, and evaluates data to execute the business rules or
decision models that you define. The basic function of the Drools rule engine is to match incoming
data, or facts, to the conditions of rules and determine whether and how to execute the rules.

The Drools rule engine operates using the following basic components:

• Rules: Business rules or DMN decisions that you define. All rules must contain at a minimum
the conditions that trigger the rule and the actions that the rule dictates.

• Facts: Data that enters or changes in the Drools rule engine that the Drools rule engine matches
to rule conditions to execute applicable rules.

• Production memory: Location where rules are stored in the Drools rule engine.

• Working memory: Location where facts are stored in the Drools rule engine.

• Agenda: Location where activated rules are registered and sorted (if applicable) in preparation
for execution.

When a business user or an automated system adds or updates rule-related information in Drools,
that information is inserted into the working memory of the Drools rule engine in the form of one
or more facts. The Drools rule engine matches those facts to the conditions of the rules that are
stored in the production memory to determine eligible rule executions. (This process of matching
facts to rules is often referred to as pattern matching.) When rule conditions are met, the Drools
rule engine activates and registers rules in the agenda, where the Drools rule engine then sorts
prioritized or conflicting rules in preparation for execution.

The following diagram illustrates these basic components of the Drools rule engine:

Figure 1. Overview of basic Drools rule engine components

For more details and examples of rule and fact behavior in the Drools rule engine, see Inference
and truth maintenance in the Drools rule engine.

These core concepts can help you to better understand other more advanced components,
processes, and sub-processes of the Drools rule engine, and as a result, to design more effective
business assets in Drools.

5

2.1. KIE sessions
In Drools, a KIE session stores and executes runtime data. The KIE session is created from a KIE
base or directly from a KIE container if you have defined the KIE session in the KIE module
descriptor file (kmodule.xml) for your project.

Example KIE session configuration in a kmodule.xml file

<kmodule>
 ...
 <kbase>
 ...
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 ...
 </kbase>
 ...
</kmodule>

A KIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all in Drools, but does not contain any runtime data.

Example KIE base configuration in a kmodule.xml file

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior=
"equality" declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3"
includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

A KIE session can be stateless or stateful. In a stateless KIE session, data from a previous invocation
of the KIE session (the previous session state) is discarded between session invocations. In a stateful
KIE session, that data is retained. The type of KIE session you use depends on your project
requirements and how you want data from different asset invocations to be persisted.

2.1.1. Stateless KIE sessions

A stateless KIE session is a session that does not use inference to make iterative changes to facts
over time. In a stateless KIE session, data from a previous invocation of the KIE session (the
previous session state) is discarded between session invocations, whereas in a stateful KIE session,
that data is retained. A stateless KIE session behaves similarly to a function in that the results that it
produces are determined by the contents of the KIE base and by the data that is passed into the KIE
session for execution at a specific point in time. The KIE session has no memory of any data that
was passed into the KIE session previously.

Stateless KIE sessions are commonly used for the following use cases:

6

• Validation, such as validating that a person is eligible for a mortgage

• Calculation, such as computing a mortgage premium

• Routing and filtering, such as sorting incoming emails into folders or sending incoming emails
to a destination

For example, consider the following driver’s license data model and sample DRL rule:

Data model for driver’s license application

public class Applicant {
 private String name;
 private int age;
 private boolean valid;
 // Getter and setter methods
}

Sample DRL rule for driver’s license application

package com.company.license

rule "Is of valid age"
when
 $a : Applicant(age < 18)
then
 $a.setValid(false);
end

The Is of valid age rule disqualifies any applicant younger than 18 years old. When the Applicant
object is inserted into the Drools rule engine, the Drools rule engine evaluates the constraints for
each rule and searches for a match. The "objectType" constraint is always implied, after which any
number of explicit field constraints are evaluated. The variable $a is a binding variable that
references the matched object in the rule consequence.


The dollar sign ($) is optional and helps to differentiate between variable names
and field names.

In this example, the sample rule and all other files in the ~/resources folder of the Drools project
are built with the following code:

Create the KIE container

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

This code compiles all the rule files found on the class path and adds the result of this compilation,
a KieModule object, in the KieContainer.

7

Finally, the StatelessKieSession object is instantiated from the KieContainer and is executed against
specified data:

Instantiate the stateless KIE session and enter data

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

In a stateless KIE session configuration, the execute() call acts as a combination method that
instantiates the KieSession object, adds all the user data and executes user commands, calls
fireAllRules(), and then calls dispose(). Therefore, with a stateless KIE session, you do not need to
call fireAllRules() or call dispose() after session invocation as you do with a stateful KIE session.

In this case, the specified applicant is under the age of 18, so the application is declined.

For a more complex use case, see the following example. This example uses a stateless KIE session
and executes rules against an iterable list of objects, such as a collection.

Expanded data model for driver’s license application

public class Applicant {
 private String name;
 private int age;
 // Getter and setter methods
}

public class Application {
 private Date dateApplied;
 private boolean valid;
 // Getter and setter methods
}

8

Expanded DRL rule set for driver’s license application

package com.company.license

rule "Is of valid age"
when
 Applicant(age < 18)
 $a : Application()
then
 $a.setValid(false);
end

rule "Application was made this year"
when
 $a : Application(dateApplied > "01-jan-2009")
then
 $a.setValid(false);
end

Expanded Java source with iterable execution in a stateless KIE session

StatelessKieSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application();

assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] { application, applicant })); ①
assertFalse(application.isValid());

ksession.execute
 (CommandFactory.newInsertIterable(new Object[] { application, applicant })); ②

List<Command> cmds = new ArrayList<Command>(); ③
cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith"));
cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe"));

BatchExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(
cmds));
assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

① Method for executing rules against an iterable collection of objects produced by the
Arrays.asList() method. Every collection element is inserted before any matched rules are
executed. The execute(Object object) and execute(Iterable objects) methods are wrappers
around the execute(Command command) method that comes from the BatchExecutor interface.

② Execution of the iterable collection of objects using the CommandFactory interface.

③ BatchExecutor and CommandFactory configurations for working with many different commands or
result output identifiers. The CommandFactory interface supports other commands that you can
use in the BatchExecutor, such as StartProcess, Query, and SetGlobal.

9

2.1.1.1. Global variables in stateless KIE sessions

The StatelessKieSession object supports global variables (globals) that you can configure to be
resolved as session-scoped globals, delegate globals, or execution-scoped globals.

• Session-scoped globals: For session-scoped globals, you can use the method getGlobals() to
return a Globals instance that provides access to the KIE session globals. These globals are used
for all execution calls. Use caution with mutable globals because execution calls can be
executing simultaneously in different threads.

Session-scoped global

import org.kie.api.runtime.StatelessKieSession;

StatelessKieSession ksession = kbase.newStatelessKieSession();

// Set a global `myGlobal` that can be used in the rules.
ksession.setGlobal("myGlobal", "I am a global");

// Execute while resolving the `myGlobal` identifier.
ksession.execute(collection);

• Delegate globals: For delegate globals, you can assign a value to a global (with
setGlobal(String, Object)) so that the value is stored in an internal collection that maps
identifiers to values. Identifiers in this internal collection have priority over any supplied
delegate. If an identifier cannot be found in this internal collection, the delegate global (if any) is
used.

• Execution-scoped globals: For execution-scoped globals, you can use the Command object to set a
global that is passed to the CommandExecutor interface for execution-specific global resolution.

The CommandExecutor interface also enables you to export data using out identifiers for globals,
inserted facts, and query results:

10

Out identifiers for globals, inserted facts, and query results

import org.kie.api.runtime.ExecutionResults;

// Set up a list of commands.
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople"));

// Execute the list.
ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the `ArrayList`.
results.getValue("list1");
// Retrieve the inserted `Person` fact.
results.getValue("person");
// Retrieve the query as a `QueryResults` instance.
results.getValue("Get People");

2.1.2. Stateful KIE sessions

A stateful KIE session is a session that uses inference to make iterative changes to facts over time. In
a stateful KIE session, data from a previous invocation of the KIE session (the previous session
state) is retained between session invocations, whereas in a stateless KIE session, that data is
discarded.


Ensure that you call the dispose() method after running a stateful KIE session so
that no memory leaks occur between session invocations.

Stateful KIE sessions are commonly used for the following use cases:

• Monitoring, such as monitoring a stock market and automating the buying process

• Diagnostics, such as running fault-finding processes or medical diagnostic processes

• Logistics, such as parcel tracking and delivery provisioning

• Ensuring compliance, such as verifying the legality of market trades

For example, consider the following fire alarm data model and sample DRL rules:

11

Data model for sprinklers and fire alarm

public class Room {
 private String name;
 // Getter and setter methods
}

public class Sprinkler {
 private Room room;
 private boolean on;
 // Getter and setter methods
}

public class Fire {
 private Room room;
 // Getter and setter methods
}

public class Alarm { }

12

Sample DRL rule set for activating sprinklers and alarm

rule "When there is a fire turn on the sprinkler"
when
 Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on == false)
then
 modify($sprinkler) { setOn(true) };
 System.out.println("Turn on the sprinkler for room "+$room.getName());
end

rule "Raise the alarm when we have one or more fires"
when
 exists Fire()
then
 insert(new Alarm());
 System.out.println("Raise the alarm");
end

rule "Cancel the alarm when all the fires have gone"
when
 not Fire()
 $alarm : Alarm()
then
 delete($alarm);
 System.out.println("Cancel the alarm");
end

rule "Status output when things are ok"
when
 not Alarm()
 not Sprinkler(on == true)
then
 System.out.println("Everything is ok");
end

For the When there is a fire turn on the sprinkler rule, when a fire occurs, the instances of the
Fire class are created for that room and inserted into the KIE session. The rule adds a constraint for
the specific room matched in the Fire instance so that only the sprinkler for that room is checked.
When this rule is executed, the sprinkler activates. The other sample rules determine when the
alarm is activated or deactivated accordingly.

Whereas a stateless KIE session relies on standard Java syntax to modify a field, a stateful KIE
session relies on the modify statement in rules to notify the Drools rule engine of changes. The
Drools rule engine then reasons over the changes and assesses impact on subsequent rule
executions. This process is part of the Drools rule engine ability to use inference and truth
maintenance and is essential in stateful KIE sessions.

In this example, the sample rules and all other files in the ~/resources folder of the Drools project

13

are built with the following code:

Create the KIE container

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

This code compiles all the rule files found on the class path and adds the result of this compilation,
a KieModule object, in the KieContainer.

Finally, the KieSession object is instantiated from the KieContainer and is executed against specified
data:

Instantiate the stateful KIE session and enter data

KieSession ksession = kContainer.newKieSession();

String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();
for(String name: names){
 Room room = new Room(name);
 name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room);
 ksession.insert(sprinkler);
}

ksession.fireAllRules();

Console output

> Everything is ok

With the data added, the Drools rule engine completes all pattern matching but no rules have been
executed, so the configured verification message appears. As new data triggers rule conditions, the
Drools rule engine executes rules to activate the alarm and later to cancel the alarm that has been
activated:

Enter new data to trigger rules

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

14

Console output

> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

ksession.delete(kitchenFireHandle);
ksession.delete(officeFireHandle);

ksession.fireAllRules();

Console output

> Cancel the alarm
> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok

In this case, a reference is kept for the returned FactHandle object. A fact handle is an internal
engine reference to the inserted instance and enables instances to be retracted or modified later.

As this example illustrates, the data and results from previous stateful KIE sessions (the activated
alarm) affect the invocation of subsequent sessions (alarm cancellation).

2.1.3. KIE session pools

In use cases with large amounts of KIE runtime data and high system activity, KIE sessions might be
created and disposed very frequently. A high turnover of KIE sessions is not always time
consuming, but when the turnover is repeated millions of times, the process can become a
bottleneck and require substantial clean-up effort.

For these high-volume cases, you can use KIE session pools instead of many individual KIE sessions.
To use a KIE session pool, you obtain a KIE session pool from a KIE container, define the initial
number of KIE sessions in the pool, and create the KIE sessions from that pool as usual:

Example KIE session pool

// Obtain a KIE session pool from the KIE container
KieContainerSessionsPool pool = kContainer.newKieSessionsPool(10);

// Create KIE sessions from the KIE session pool
KieSession kSession = pool.newKieSession();

In this example, the KIE session pool starts with 10 KIE sessions in it, but you can specify the
number of KIE sessions that you need. This integer value is the number of KIE sessions that are
only initially created in the pool. If required by the running application, the number of KIE sessions
in the pool can dynamically grow beyond that value.

15

After you define a KIE session pool, the next time you use the KIE session as usual and call
dispose() on it, the KIE session is reset and pushed back into the pool instead of being destroyed.

KIE session pools typically apply to stateful KIE sessions, but KIE session pools can also affect
stateless KIE sessions that you reuse with multiple execute() calls. When you create a stateless KIE
session directly from a KIE container, the KIE session continues to internally create a new KIE
session for each execute() invocation. Conversely, when you create a stateless KIE session from a
KIE session pool, the KIE session internally uses only the specific KIE sessions provided by the pool.

When you finish using a KIE session pool, you can call the shutdown() method on it to avoid memory
leaks. Alternatively, you can call dispose() on the KIE container to shut down all the pools created
from the KIE container.

2.2. Inference and truth maintenance in the Drools
rule engine
The basic function of the Drools rule engine is to match data to business rules and determine
whether and how to execute rules. To ensure that relevant data is applied to the appropriate rules,
the Drools rule engine makes inferences based on existing knowledge and performs the actions
based on the inferred information.

For example, the following DRL rule determines the age requirements for adults, such as in a bus
pass policy:

Rule to define age requirement

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insert(new IsAdult($p))
end

Based on this rule, the Drools rule engine infers whether a person is an adult or a child and
performs the specified action (the then consequence). Every person who is 18 years old or older has
an instance of IsAdult inserted for them in the working memory. This inferred relation of age and
bus pass can then be invoked in any rule, such as in the following rule segment:

$p : Person()
IsAdult(person == $p)

In many cases, new data in a rule system is the result of other rule executions, and this new data
can affect the execution of other rules. If the Drools rule engine asserts data as a result of executing
a rule, the Drools rule engine uses truth maintenance to justify the assertion and enforce
truthfulness when applying inferred information to other rules. Truth maintenance also helps to
identify inconsistencies and to handle contradictions. For example, if two rules are executed and
result in a contradictory action, the Drools rule engine chooses the action based on assumptions

16

from previously calculated conclusions.

The Drools rule engine inserts facts using either stated or logical insertions:

• Stated insertions: Defined with insert(). After stated insertions, facts are generally retracted
explicitly. (The term insertion, when used generically, refers to stated insertion.)

• Logical insertions: Defined with insertLogical(). After logical insertions, the facts that were
inserted are automatically retracted when the conditions in the rules that inserted the facts are
no longer true. The facts are retracted when no condition supports the logical insertion. A fact
that is logically inserted is considered to be justified by the Drools rule engine.

For example, the following sample DRL rules use stated fact insertion to determine the age
requirements for issuing a child bus pass or an adult bus pass:

Rules to issue bus pass, stated insertion

rule "Issue Child Bus Pass"
when
 $p : Person(age < 18)
then
 insert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person(age >= 18)
then
 insert(new AdultBusPass($p));
end

These rules are not easily maintained in the Drools rule engine as bus riders increase in age and
move from child to adult bus pass. As an alternative, these rules can be separated into rules for bus
rider age and rules for bus pass type using logical fact insertion. The logical insertion of the fact
makes the fact dependent on the truth of the when clause.

The following DRL rules use logical insertion to determine the age requirements for children and
adults:

17

Children and adult age requirements, logical insertion

rule "Infer Child"
when
 $p : Person(age < 18)
then
 insertLogical(new IsChild($p))
end

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insertLogical(new IsAdult($p))
end



For logical insertions, your fact objects must override the equals and hashCode
methods from the java.lang.Object object according to the Java standard. Two
objects are equal if their equals methods return true for each other and if their
hashCode methods return the same values. For more information, see the Java API
documentation for your Java version.

When the condition in the rule is false, the fact is automatically retracted. This behavior is helpful
in this example because the two rules are mutually exclusive. In this example, if the person is
younger than 18 years old, the rule logically inserts an IsChild fact. After the person is 18 years old
or older, the IsChild fact is automatically retracted and the IsAdult fact is inserted.

The following DRL rules then determine whether to issue a child bus pass or an adult bus pass and
logically insert the ChildBusPass and AdultBusPass facts. This rule configuration is possible because
the truth maintenance system in the Drools rule engine supports chaining of logical insertions for a
cascading set of retracts.

Rules to issue bus pass, logical insertion

rule "Issue Child Bus Pass"
when
 $p : Person()
 IsChild(person == $p)
then
 insertLogical(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person()
 IsAdult(person =$p)
then
 insertLogical(new AdultBusPass($p));
end

18

When a person turns 18 years old, the IsChild fact and the person’s ChildBusPass fact is retracted.
To these set of conditions, you can relate another rule that states that a person must return the
child pass after turning 18 years old. When the Drools rule engine automatically retracts the
ChildBusPass object, the following rule is executed to send a request to the person:

Rule to notify bus pass holder of new pass

rule "Return ChildBusPass Request"
when
 $p : Person()
 not(ChildBusPass(person == $p))
then
 requestChildBusPass($p);
end

The following flowcharts illustrate the life cycle of stated and logical insertions:

Figure 2. Stated insertion

19

Figure 3. Logical insertion

When the Drools rule engine logically inserts an object during a rule execution, the Drools rule
engine justifies the object by executing the rule. For each logical insertion, only one equal object can
exist, and each subsequent equal logical insertion increases the justification counter for that logical
insertion. A justification is removed when the conditions of the rule become untrue. When no more
justifications exist, the logical object is automatically retracted.

2.2.1. Government ID example

So now we know what inference is, and have a basic example, how does this facilitate good rule
design and maintenance?

Consider a government ID department that is responsible for issuing ID cards when children
become adults. They might have a decision table that includes logic like this, which says when an
adult living in London is 18 or over, issue the card:

RuleTable ID Card

CONDITION CONDITION ACTION

p : Person

location age >= $1 issueIdCard($1)

Select Person Select Adults Issue ID Card

20

Issue ID Card to Adults London 18 p

However the ID department does not set the policy on who an adult is. That’s done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make sure
their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic" approach to rules
management which is "leaking" information better placed elsewhere. By this I mean that it doesn’t
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

In contrast to this, let’s pursue an approach where we split (de-couple) the authoring
responsibilities, so that both the central government and the ID department maintain their own
rules.

It’s the central government’s job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

RuleTable Age Policy

CONDITION ACTION

p : Person

age >= $1 insert($1)

Adult Age Policy Add Adult Relation

Infer Adult 18 new IsAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.
Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

RuleTable ID Card

CONDITION CONDITION ACTION

p : Person isAdult

location person == $1 issueIdCard($1)

Select Person Select Adults Issue ID Card

Issue ID Card to Adults London p p

While the example is very minimal and trivial it illustrates some important points. We started with
a monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

21

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The use
of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >= 18".

So a general rule of thumb when doing your knowledge engineering is:

• Bad

◦ Monolithic

◦ Leaky

• Good

◦ De-couple knowledge responsibilities

◦ Encapsulate knowledge

◦ Provide semantic abstractions for those encapsulations

2.2.2. Fact equality modes in the Drools rule engine

The Drools rule engine supports the following fact equality modes that determine how the Drools
rule engine stores and compares inserted facts:

• identity: (Default) The Drools rule engine uses an IdentityHashMap to store all inserted facts. For
every new fact insertion, the Drools rule engine returns a new FactHandle object. If a fact is
inserted again, the Drools rule engine returns the original FactHandle object, ignoring repeated
insertions for the same fact. In this mode, two facts are the same for the Drools rule engine only
if they are the very same object with the same identity.

• equality: The Drools rule engine uses a HashMap to store all inserted facts. The Drools rule engine
returns a new FactHandle object only if the inserted fact is not equal to an existing fact,
according to the equals() method of the inserted fact. In this mode, two facts are the same for
the Drools rule engine if they are composed the same way, regardless of identity. Use this mode
when you want objects to be assessed based on feature equality instead of explicit identity.

As an illustration of fact equality modes, consider the following example facts:

Example facts

Person p1 = new Person("John", 45);
Person p2 = new Person("John", 45);

In identity mode, facts p1 and p2 are different instances of a Person class and are treated as
separate objects because they have separate identities. In equality mode, facts p1 and p2 are treated
as the same object because they are composed the same way. This difference in behavior affects
how you can interact with fact handles.

For example, assume that you insert facts p1 and p2 into the Drools rule engine and later you want
to retrieve the fact handle for p1. In identity mode, you must specify p1 to return the fact handle for
that exact object, whereas in equality mode, you can specify p1, p2, or new Person("John", 45) to
return the fact handle.

22

Example code to insert a fact and return the fact handle in identity mode

ksession.insert(p1);

ksession.getFactHandle(p1);

Example code to insert a fact and return the fact handle in equality mode

ksession.insert(p1);

ksession.getFactHandle(p1);

// Alternate option:
ksession.getFactHandle(new Person("John", 45));

To set the fact equality mode, use one of the following options:

• Set the system property drools.equalityBehavior to identity (default) or equality.

• Set the equality mode while creating the KIE base programmatically:

KieServices ks = KieServices.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(EqualityBehaviorOption.EQUALITY);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

• Set the equality mode in the KIE module descriptor file (kmodule.xml) for a specific Drools
project:

<kmodule>
 ...
 <kbase name="KBase2" default="false" equalsBehavior="equality" packages=
"org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

2.3. Execution control in the Drools rule engine
When new rule data enters the working memory of the Drools rule engine, rules may become fully
matched and eligible for execution. A single working memory action can result in multiple eligible
rule executions. When a rule is fully matched, the Drools rule engine creates an activation instance,
referencing the rule and the matched facts, and adds the activation onto the Drools rule engine
agenda. The agenda controls the execution order of these rule activations using a conflict resolution
strategy.

23

After the first call of fireAllRules() in the Java application, the Drools rule engine cycles repeatedly
through two phases:

• Agenda evaluation. In this phase, the Drools rule engine selects all rules that can be executed.
If no executable rules exist, the execution cycle ends. If an executable rule is found, the Drools
rule engine registers the activation in the agenda and then moves on to the working memory
actions phase to perform rule consequence actions.

• Working memory actions. In this phase, the Drools rule engine performs the rule consequence
actions (the then portion of each rule) for all activated rules previously registered in the agenda.
After all the consequence actions are complete or the main Java application process calls
fireAllRules() again, the Drools rule engine returns to the agenda evaluation phase to reassess
rules.

Figure 4. Two-phase execution process in the Drools rule engine

When multiple rules exist on the agenda, the execution of one rule may cause another rule to be
removed from the agenda. To avoid this, you can define how and when rules are executed in the
Drools rule engine. Some common methods for defining rule execution order are by using rule
salience, agenda groups, or activation groups.

2.3.1. Salience for rules

Each rule has an integer salience attribute that determines the order of execution. Rules with a
higher salience value are given higher priority when ordered in the activation queue. The default
salience value for rules is zero, but the salience can be negative or positive.

For example, the following sample DRL rules are listed in the Drools rule engine stack in the order
shown:

24

rule "RuleA"
salience 95
when
 $fact : MyFact(field1 == true)
then
 System.out.println("Rule2 : " + $fact);
 update($fact);
end

rule "RuleB"
salience 100
when
 $fact : MyFact(field1 == false)
then
 System.out.println("Rule1 : " + $fact);
 $fact.setField1(true);
 update($fact);
end

The RuleB rule is listed second, but it has a higher salience value than the RuleA rule and is therefore
executed first.

2.3.2. Agenda groups for rules

An agenda group is a set of rules bound together by the same agenda-group rule attribute. Agenda
groups partition rules on the Drools rule engine agenda. At any one time, only one group has a
focus that gives that group of rules priority for execution before rules in other agenda groups. You
determine the focus with a setFocus() call for the agenda group. You can also define rules with an
auto-focus attribute so that the next time the rule is activated, the focus is automatically given to
the entire agenda group to which the rule is assigned.

Each time the setFocus() call is made in a Java application, the Drools rule engine adds the specified
agenda group to the top of the rule stack. The default agenda group "MAIN" contains all rules that do
not belong to a specified agenda group and is executed first in the stack unless another group has
the focus.

For example, the following sample DRL rules belong to specified agenda groups and are listed in the
Drools rule engine stack in the order shown:

25

Sample DRL rules for banking application

rule "Increase balance for credits"
 agenda-group "calculation"
when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $amount : amount)
then
 acc.balance += $amount;
end

rule "Print balance for AccountPeriod"
 agenda-group "report"
when
 ap : AccountPeriod()
 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, the rules in the "report" agenda group must always be executed first and the
rules in the "calculation" agenda group must always be executed second. Any remaining rules in
other agenda groups can then be executed. Therefore, the "report" and "calculation" groups must
receive the focus to be executed in that order, before other rules can be executed:

Set the focus for the order of agenda group execution

Agenda agenda = ksession.getAgenda();
agenda.getAgendaGroup("report").setFocus();
agenda.getAgendaGroup("calculation").setFocus();
ksession.fireAllRules();

You can also use the clear() method to cancel all the activations generated by the rules belonging to
a given agenda group before each has had a chance to be executed:

Cancel all other rule activations

ksession.getAgenda().getAgendaGroup("Group A").clear();

2.3.3. Activation groups for rules

An activation group is a set of rules bound together by the same activation-group rule attribute. In

26

this group, only one rule can be executed. After conditions are met for a rule in that group to be
executed, all other pending rule executions from that activation group are removed from the
agenda.

For example, the following sample DRL rules belong to the specified activation group and are listed
in the Drools rule engine stack in the order shown:

Sample DRL rules for banking

rule "Print balance for AccountPeriod1"
 activation-group "report"
when
 ap : AccountPeriod1()
 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

rule "Print balance for AccountPeriod2"
 activation-group "report"
when
 ap : AccountPeriod2()
 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, if the first rule in the "report" activation group is executed, the second rule in the
group and all other executable rules on the agenda are removed from the agenda.

2.3.4. Rule execution modes and thread safety in the Drools rule engine

The Drools rule engine supports the following rule execution modes that determine how and when
the Drools rule engine executes rules:

• Passive mode: (Default) The Drools rule engine evaluates rules when a user or an application
explicitly calls fireAllRules(). Passive mode in the Drools rule engine is best for applications
that require direct control over rule evaluation and execution, or for complex event processing
(CEP) applications that use the pseudo clock implementation in the Drools rule engine.

27

Example CEP application code with the Drools rule engine in passive mode

KieSessionConfiguration config = KieServices.Factory.get()
.newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);
SessionPseudoClock clock = session.getSessionClock();

session.insert(tick1);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick2);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick3);
session.fireAllRules();

session.dispose();

• Active mode: If a user or application calls fireUntilHalt(), the Drools rule engine starts in
active mode and evaluates rules continually until the user or application explicitly calls halt().
Active mode in the Drools rule engine is best for applications that delegate control of rule
evaluation and execution to the Drools rule engine, or for complex event processing (CEP)
applications that use the real-time clock implementation in the Drools rule engine. Active mode
is also optimal for CEP applications that use active queries.

28

Example CEP application code with the Drools rule engine in active mode

KieSessionConfiguration config = KieServices.Factory.get()
.newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("realtime"));
KieSession session = kbase.newKieSession(conf, null);

new Thread(new Runnable() {
 @Override
 public void run() {
 session.fireUntilHalt();
 }
}).start();

session.insert(tick1);

... Thread.sleep(1000L); ...

session.insert(tick2);

... Thread.sleep(1000L); ...

session.insert(tick3);

session.halt();
session.dispose();

This example calls fireUntilHalt() from a dedicated execution thread to prevent the current
thread from being blocked indefinitely while the Drools rule engine continues evaluating rules.
The dedicated thread also enables you to call halt() at a later stage in the application code.

Although you should avoid using both fireAllRules() and fireUntilHalt() calls, especially from
different threads, the Drools rule engine can handle such situations safely using thread-safety logic
and an internal state machine. If a fireAllRules() call is in progress and you call fireUntilHalt(),
the Drools rule engine continues to run in passive mode until the fireAllRules() operation is
complete and then starts in active mode in response to the fireUntilHalt() call. However, if the
Drools rule engine is running in active mode following a fireUntilHalt() call and you call
fireAllRules(), the fireAllRules() call is ignored and the Drools rule engine continues to run in
active mode until you call halt().

For added thread safety in active mode, the Drools rule engine supports a submit() method that you
can use to group and perform operations on a KIE session in a thread-safe, atomic action:

29

Example application code with submit() method to perform atomic operations in active mode

KieSession session = ...;

new Thread(new Runnable() {
 @Override
 public void run() {
 session.fireUntilHalt();
 }
}).start();

final FactHandle fh = session.insert(fact_a);

... Thread.sleep(1000L); ...

session.submit(new KieSession.AtomicAction() {
 @Override
 public void execute(KieSession kieSession) {
 fact_a.setField("value");
 kieSession.update(fh, fact_a);
 kieSession.insert(fact_1);
 kieSession.insert(fact_2);
 kieSession.insert(fact_3);
 }
});

... Thread.sleep(1000L); ...

session.insert(fact_z);

session.halt();
session.dispose();

Thread safety and atomic operations are also helpful from a client-side perspective. For example,
you might need to insert more than one fact at a given time, but require the Drools rule engine to
consider the insertions as an atomic operation and to wait until all the insertions are complete
before evaluating the rules again.

2.3.5. Fact propagation modes in the Drools rule engine

The Drools rule engine supports the following fact propagation modes that determine how the
Drools rule engine progresses inserted facts through the engine network in preparation for rule
execution:

• Lazy: (Default) Facts are propagated in batch collections at rule execution, not in real time as
the facts are individually inserted by a user or application. As a result, the order in which the
facts are ultimately propagated through the Drools rule engine may be different from the order
in which the facts were individually inserted.

• Immediate: Facts are propagated immediately in the order that they are inserted by a user or

30

application.

• Eager: Facts are propagated lazily (in batch collections), but before rule execution. The Drools
rule engine uses this propagation behavior for rules that have the no-loop or lock-on-active
attribute.

By default, the Phreak rule algorithm in the Drools rule engine uses lazy fact propagation for
improved rule evaluation overall. However, in few cases, this lazy propagation behavior can alter
the expected result of certain rule executions that may require immediate or eager propagation.

For example, the following rule uses a specified query with a ? prefix to invoke the query in pull-
only or passive fashion:

Example rule with a passive query

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule"
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

For this example, the rule should be executed only when a String that satisfies the query is inserted
before the Integer, such as in the following example commands:

Example commands that should trigger the rule execution

KieSession ksession = ...
ksession.insert("1");
ksession.insert(1);
ksession.fireAllRules();

However, due to the default lazy propagation behavior in Phreak, the Drools rule engine does not
detect the insertion sequence of the two facts in this case, so this rule is executed regardless of
String and Integer insertion order. For this example, immediate propagation is required for the
expected rule evaluation.

To alter the Drools rule engine propagation mode to achieve the expected rule evaluation in this
case, you can add the @Propagation(<type>) tag to your rule and set <type> to LAZY, IMMEDIATE, or
EAGER.

In the same example rule, the immediate propagation annotation enables the rule to be evaluated
only when a String that satisfies the query is inserted before the Integer, as expected:

31

Example rule with a passive query and specified propagation mode

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule" @Propagation(IMMEDIATE)
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

2.3.6. Agenda evaluation filters

[AgendaFilter] | rule-engine/AgendaFilter.png

Figure 5. AgendaFilters

The Drools rule engine supports an AgendaFilter object in the filter interface that you can use to
allow or deny the evaluation of specified rules during agenda evaluation. You can specify an
agenda filter as part of a fireAllRules() call.

The following example code permits only rules ending with the string "Test" to be evaluated and
executed. All other rules are filtered out of the Drools rule engine agenda.

Example agenda filter definition

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

2.4. Phreak rule algorithm in the Drools rule engine
The Drools rule engine in Drools uses the Phreak algorithm for rule evaluation. Phreak evolved
from the Rete algorithm, including the enhanced Rete algorithm ReteOO that was introduced in
previous versions of Drools for object-oriented systems. Overall, Phreak is more scalable than Rete
and ReteOO, and is faster in large systems.

While Rete is considered eager (immediate rule evaluation) and data oriented, Phreak is considered
lazy (delayed rule evaluation) and goal oriented. The Rete algorithm performs many actions during
the insert, update, and delete actions in order to find partial matches for all rules. This eagerness of
the Rete algorithm during rule matching requires a lot of time before eventually executing rules,
especially in large systems. With Phreak, this partial matching of rules is delayed deliberately to
handle large amounts of data more efficiently.

The Phreak algorithm adds the following set of enhancements to previous Rete algorithms:

• Three layers of contextual memory: Node, segment, and rule memory types

• Rule-based, segment-based, and node-based linking

32

• Lazy (delayed) rule evaluation

• Stack-based evaluations with pause and resume

• Isolated rule evaluation

• Set-oriented propagations

2.4.1. Rule evaluation in Phreak

When the Drools rule engine starts, all rules are considered to be unlinked from pattern-matching
data that can trigger the rules. At this stage, the Phreak algorithm in the Drools rule engine does not
evaluate the rules. The insert, update, and delete actions are queued, and Phreak uses a heuristic,
based on the rule most likely to result in execution, to calculate and select the next rule for
evaluation. When all the required input values are populated for a rule, the rule is considered to be
linked to the relevant pattern-matching data. Phreak then creates a goal that represents this rule
and places the goal into a priority queue that is ordered by rule salience. Only the rule for which
the goal was created is evaluated, and other potential rule evaluations are delayed. While
individual rules are evaluated, node sharing is still achieved through the process of segmentation.

Unlike the tuple-oriented Rete, the Phreak propagation is collection oriented. For the rule that is
being evaluated, the Drools rule engine accesses the first node and processes all queued insert,
update, and delete actions. The results are added to a set, and the set is propagated to the child
node. In the child node, all queued insert, update, and delete actions are processed, adding the
results to the same set. The set is then propagated to the next child node and the same process
repeats until it reaches the terminal node. This cycle creates a batch process effect that can provide
performance advantages for certain rule constructs.

The linking and unlinking of rules happens through a layered bit-mask system, based on network
segmentation. When the rule network is built, segments are created for rule network nodes that are
shared by the same set of rules. A rule is composed of a path of segments. In case a rule does not
share any node with any other rule, it becomes a single segment.

A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each
segment in the path of the rule according to these requirements:

• If at least one input for a node exists, the node bit is set to the on state.

• If each node in a segment has the bit set to the on state, the segment bit is also set to the on state.

• If any node bit is set to the off state, the segment is also set to the off state.

• If each segment in the path of the rule is set to the on state, the rule is considered linked, and a
goal is created to schedule the rule for evaluation.

The same bit-mask technique is used to track modified nodes, segments, and rules. This tracking
ability enables an already linked rule to be unscheduled from evaluation if it has been modified
since the evaluation goal for it was created. As a result, no rules can ever evaluate partial matches.

This process of rule evaluation is possible in Phreak because, as opposed to a single unit of memory
in Rete, Phreak has three layers of contextual memory with node, segment, and rule memory types.
This layering enables much more contextual understanding during the evaluation of a rule.

33

Figure 6. Phreak three-layered memory system

The following examples illustrate how rules are organized and evaluated in this three-layered
memory system in Phreak.

Example 1: A single rule (R1) with three patterns: A, B and C. The rule forms a single segment, with
bits 1, 2, and 4 for the nodes. The single segment has a bit offset of 1.

Figure 7. Example 1: Single rule

Example 2: Rule R2 is added and shares pattern A.

34

Figure 8. Example 2: Two rules with pattern sharing

Pattern A is placed in its own segment, resulting in two segments for each rule. Those two segments
form a path for their respective rules. The first segment is shared by both paths. When pattern A is
linked, the segment becomes linked. The segment then iterates over each path that the segment is
shared by, setting the bit 1 to on. If patterns B and C are later turned on, the second segment for path
R1 is linked, and this causes bit 2 to be turned on for R1. With bit 1 and bit 2 turned on for R1, the
rule is now linked and a goal is created to schedule the rule for later evaluation and execution.

When a rule is evaluated, the segments enable the results of the matching to be shared. Each
segment has a staging memory to queue all inserts, updates, and deletes for that segment. When R1
is evaluated, the rule processes pattern A, and this results in a set of tuples. The algorithm detects a
segmentation split, creates peered tuples for each insert, update, and delete in the set, and adds
them to the R2 staging memory. Those tuples are then merged with any existing staged tuples and
are executed when R2 is eventually evaluated.

Example 3: Rules R3 and R4 are added and share patterns A and B.

35

Figure 9. Example 3: Three rules with pattern sharing

Rules R3 and R4 have three segments and R1 has two segments. Patterns A and B are shared by R1,
R3, and R4, while pattern D is shared by R3 and R4.

Example 4: A single rule (R1) with a subnetwork and no pattern sharing.

36

Figure 10. Example 4: Single rule with a subnetwork and no pattern sharing

Subnetworks are formed when a Not, Exists, or Accumulate node contains more than one element.
In this example, the element B not(C) forms the subnetwork. The element not(C) is a single
element that does not require a subnetwork and is therefore merged inside of the Not node. The
subnetwork uses a dedicated segment. Rule R1 still has a path of two segments and the subnetwork
forms another inner path. When the subnetwork is linked, it is also linked in the outer segment.

Example 5: Rule R1 with a subnetwork that is shared by rule R2.

Figure 11. Example 5: Two rules, one with a subnetwork and pattern sharing

The subnetwork nodes in a rule can be shared by another rule that does not have a subnetwork.

37

This sharing causes the subnetwork segment to be split into two segments.

Constrained Not nodes and Accumulate nodes can never unlink a segment, and are always
considered to have their bits turned on.

The Phreak evaluation algorithm is stack based instead of method-recursion based. Rule evaluation
can be paused and resumed at any time when a StackEntry is used to represent the node currently
being evaluated.

When a rule evaluation reaches a subnetwork, a StackEntry object is created for the outer path
segment and the subnetwork segment. The subnetwork segment is evaluated first, and when the set
reaches the end of the subnetwork path, the segment is merged into a staging list for the outer node
that the segment feeds into. The previous StackEntry object is then resumed and can now process
the results of the subnetwork. This process has the added benefit, especially for Accumulate nodes,
that all work is completed in a batch, before propagating to the child node.

The same stack system is used for efficient backward chaining. When a rule evaluation reaches a
query node, the evaluation is paused and the query is added to the stack. The query is then
evaluated to produce a result set, which is saved in a memory location for the resumed StackEntry
object to pick up and propagate to the child node. If the query itself called other queries, the
process repeats, while the current query is paused and a new evaluation is set up for the current
query node.

2.4.1.1. Rule evaluation with forward and backward chaining

The Drools rule engine in Drools is a hybrid reasoning system that uses both forward chaining and
backward chaining to evaluate rules. A forward-chaining rule system is a data-driven system that
starts with a fact in the working memory of the Drools rule engine and reacts to changes to that
fact. When objects are inserted into working memory, any rule conditions that become true as a
result of the change are scheduled for execution by the agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion
that the Drools rule engine attempts to satisfy, often using recursion. If the system cannot reach the
conclusion or goal, it searches for subgoals, which are conclusions that complete part of the current
goal. The system continues this process until either the initial conclusion is satisfied or all subgoals
are satisfied.

The following diagram illustrates how the Drools rule engine evaluates rules using forward
chaining overall with a backward-chaining segment in the logic flow:

[RuleEvaluation] | rule-engine/BackwardChaining/RuleEvaluation.png

Figure 12. Rule evaluation logic using forward and backward chaining

2.4.2. Rule base configuration

Drools contains a RuleBaseConfiguration.java object that you can use to configure exception
handler settings, multithreaded execution, and sequential mode in the Drools rule engine.

For the rule base configuration options, see the Drools RuleBaseConfiguration.java page in GitHub.

38

https://github.com/kiegroup/drools/blob/7.59.x/drools-core/src/main/java/org/drools/core/RuleBaseConfiguration.java

The following rule base configuration options are available for the Drools rule engine:

drools.consequenceExceptionHandler

When configured, this system property defines the class that manages the exceptions thrown by
rule consequences. You can use this property to specify a custom exception handler for rule
evaluation in the Drools rule engine.

Default value: org.drools.core.runtime.rule.impl.DefaultConsequenceExceptionHandler

You can specify the custom exception handler using one of the following options:

• Specify the exception handler in a system property:

drools.consequenceExceptionHandler=org.drools.core.runtime.rule.impl.MyCustomCon
sequenceExceptionHandler

• Specify the exception handler while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf
.setOption(ConsequenceExceptionHandlerOption.get(MyCustomConsequenceExceptionHan
dler.class));
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

drools.multithreadEvaluation

When enabled, this system property enables the Drools rule engine to evaluate rules in parallel
by dividing the Phreak rule network into independent partitions. You can use this property to
increase the speed of rule evaluation for specific rule bases.

Default value: false

You can enable multithreaded evaluation using one of the following options:

• Enable the multithreaded evaluation system property:

drools.multithreadEvaluation=true

• Enable multithreaded evaluation while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(MultithreadEvaluationOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

39



Rules that use queries, salience, or agenda groups are currently not supported
by the parallel Drools rule engine. If these rule elements are present in the KIE
base, the compiler emits a warning and automatically switches back to single-
threaded evaluation. However, in some cases, the Drools rule engine might not
detect the unsupported rule elements and rules might be evaluated incorrectly.
For example, the Drools rule engine might not detect when rules rely on
implicit salience given by rule ordering inside the DRL file, resulting in
incorrect evaluation due to the unsupported salience attribute.

drools.sequential

When enabled, this system property enables sequential mode in the Drools rule engine. In
sequential mode, the Drools rule engine evaluates rules one time in the order that they are listed
in the Drools rule engine agenda without regard to changes in the working memory. This means
that the Drools rule engine ignores any insert, modify, or update statements in rules and executes
rules in a single sequence. As a result, rule execution may be faster in sequential mode, but
important updates may not be applied to your rules. You can use this property if you use
stateless KIE sessions and you do not want the execution of rules to influence subsequent rules
in the agenda. Sequential mode applies to stateless KIE sessions only.

Default value: false

You can enable sequential mode using one of the following options:

• Enable the sequential mode system property:

drools.sequential=true

• Enable sequential mode while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

• Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Drools
project:

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages=
"org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

40

2.4.3. Sequential mode in Phreak

Sequential mode is an advanced rule base configuration in the Drools rule engine, supported by
Phreak, that enables the Drools rule engine to evaluate rules one time in the order that they are
listed in the Drools rule engine agenda without regard to changes in the working memory. In
sequential mode, the Drools rule engine ignores any insert, modify, or update statements in rules
and executes rules in a single sequence. As a result, rule execution may be faster in sequential
mode, but important updates may not be applied to your rules.

Sequential mode applies to only stateless KIE sessions because stateful KIE sessions inherently use
data from previously invoked KIE sessions. If you use a stateless KIE session and you want the
execution of rules to influence subsequent rules in the agenda, then do not enable sequential mode.
Sequential mode is disabled by default in the Drools rule engine.

To enable sequential mode, use one of the following options:

• Set the system property drools.sequential to true.

• Enable sequential mode while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

• Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Drools
project:

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

To configure sequential mode to use a dynamic agenda, use one of the following options:

• Set the system property drools.sequential.agenda to dynamic.

• Set the sequential agenda option while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialAgendaOption.DYNAMIC);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

41

When you enable sequential mode, the Drools rule engine evaluates rules in the following way:

1. Rules are ordered by salience and position in the rule set.

2. An element for each possible rule match is created. The element position indicates the
execution order.

3. Node memory is disabled, with the exception of the right-input object memory.

4. The left-input adapter node propagation is disconnected and the object with the node is
referenced in a Command object. The Command object is added to a list in the working memory for
later execution.

5. All objects are asserted, and then the list of Command objects is checked and executed.

6. All matches that result from executing the list are added to elements based on the sequence
number of the rule.

7. The elements that contain matches are executed in a sequence. If you set a maximum number
of rule executions, the Drools rule engine activates no more than that number of rules in the
agenda for execution.

In sequential mode, the LeftInputAdapterNode node creates a Command object and adds it to a list in
the working memory of the Drools rule engine. This Command object contains references to the
LeftInputAdapterNode node and the propagated object. These references stop any left-input
propagations at insertion time so that the right-input propagation never needs to attempt to join the
left inputs. The references also avoid the need for the left-input memory.

All nodes have their memory turned off, including the left-input tuple memory, but excluding the
right-input object memory. After all the assertions are finished and the right-input memory of all
the objects is populated, the Drools rule engine iterates over the list of LeftInputAdatperNode Command
objects. The objects propagate down the network, attempting to join the right-input objects, but
they are not retained in the left input.

The agenda with a priority queue to schedule the tuples is replaced by an element for each rule.
The sequence number of the RuleTerminalNode node indicates the element where to place the match.
After all Command objects have finished, the elements are checked and existing matches are executed.
To improve performance, the first and the last populated cell in the elements are retained.

When the network is constructed, each RuleTerminalNode node receives a sequence number based
on its salience number and the order in which it was added to the network.

The right-input node memories are typically hash maps for fast object deletion. Because object
deletions are not supported, Phreak uses an object list when the values of the object are not
indexed. For a large number of objects, indexed hash maps provide a performance increase. If an
object has only a few instances, Phreak uses an object list instead of an index.

2.5. Complex event processing (CEP)
In Drools, an event is a record of a significant change of state in the application domain at a point in
time. Depending on how the domain is modeled, the change of state may be represented by a single
event, multiple atomic events, or hierarchies of correlated events. From a complex event processing

42

(CEP) perspective, an event is a type of fact or object that occurs at a specific point in time, and a
business rule is a definition of how to react to the data from that fact or object. For example, in a
stock broker application, a change in security prices, a change in ownership from seller to buyer, or
a change in an account holder’s balance are all considered to be events because a change has
occurred in the state of the application domain at a given time.

The Drools rule engine in Drools uses complex event processing (CEP) to detect and process
multiple events within a collection of events, to uncover relationships that exist between events,
and to infer new data from the events and their relationships.

CEP use cases share several requirements and goals with business rule use cases.

From a business perspective, business rule definitions are often defined based on the occurrence of
scenarios triggered by events. In the following examples, events form the basis of business rules:

• In an algorithmic trading application, a rule performs an action if the security price increases
by X percent above the day opening price. The price increases are denoted by events on a stock
trading application.

• In a monitoring application, a rule performs an action if the temperature in the server room
increases X degrees in Y minutes. The sensor readings are denoted by events.

From a technical perspective, business rule evaluation and CEP have the following key similarities:

• Both business rule evaluation and CEP require seamless integration with the enterprise
infrastructure and applications. This is particularly important with life-cycle management,
auditing, and security.

• Both business rule evaluation and CEP have functional requirements such as pattern matching,
and non-functional requirements such as response time limits and query-rule explanations.

CEP scenarios have the following key characteristics:

• Scenarios usually process large numbers of events, but only a small percentage of the events are
relevant.

• Events are usually immutable and represent a record of change in state.

• Rules and queries run against events and must react to detected event patterns.

• Related events usually have a strong temporal relationship.

• Individual events are not prioritized. The CEP system prioritizes patterns of related events and
the relationships between them.

• Events usually need to be composed and aggregated.

Given these common CEP scenario characteristics, the CEP system in Drools supports the following
features and functions to optimize event processing:

• Event processing with proper semantics

• Event detection, correlation, aggregation, and composition

• Event stream processing

43

• Temporal constraints to model the temporal relationships between events

• Sliding windows of significant events

• Session-scoped unified clock

• Required volumes of events for CEP use cases

• Reactive rules

• Adapters for event input into the Drools rule engine (pipeline)

2.5.1. Events in complex event processing

In Drools, an event is a record of a significant change of state in the application domain at a point in
time. Depending on how the domain is modeled, the change of state may be represented by a single
event, multiple atomic events, or hierarchies of correlated events. From a complex event processing
(CEP) perspective, an event is a type of fact or object that occurs at a specific point in time, and a
business rule is a definition of how to react to the data from that fact or object. For example, in a
stock broker application, a change in security prices, a change in ownership from seller to buyer, or
a change in an account holder’s balance are all considered to be events because a change has
occurred in the state of the application domain at a given time.

Events have the following key characteristics:

• Are immutable: An event is a record of change that has occurred at some time in the past and
cannot be changed.



The Drools rule engine does not enforce immutability on the Java objects that
represent events. This behavior makes event data enrichment possible. Your
application should be able to populate unpopulated event attributes, and these
attributes are used by the Drools rule engine to enrich the event with inferred
data. However, you should not change event attributes that have already been
populated.

• Have strong temporal constraints: Rules involving events usually require the correlation of
multiple events that occur at different points in time relative to each other.

• Have managed life cycles: Because events are immutable and have temporal constraints, they
are usually only relevant for a specified period of time. This means that the Drools rule engine
can automatically manage the life cycle of events.

• Can use sliding windows: You can define sliding windows of time or length with events. A
sliding time window is a specified period of time during which events can be processed. A
sliding length window is a specified number of events that can be processed.

2.5.2. Declaring facts as events

You can declare facts as events in your Java class or DRL rule file so that the Drools rule engine
handles the facts as events during complex event processing. You can declare the facts as interval-
based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the Drools rule engine until their duration time has lapsed. Point-in-time
events have no duration and are essentially interval-based events with a duration of zero.

44

Procedure

For the relevant fact type in your Java class or DRL rule file, enter the @role(event) metadata tag
and parameter. The @role metadata tag accepts the following two values:

• fact: (Default) Declares the type as a regular fact

• event: Declares the type as an event

For example, the following snippet declares that the StockPoint fact type in a stock broker
application must be handled as an event:

Declare fact type as an event

import some.package.StockPoint

declare StockPoint
 @role(event)
end

If StockPoint is a fact type declared in the DRL rule file instead of in a pre-existing class, you can
declare the event in-line in your application code:

Declare fact type in-line and assign it to event role

declare StockPoint
 @role(event)

 datetime : java.util.Date
 symbol : String
 price : double
end



The examples in this section that refer to the VoiceCall class assume that the
sample application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters
}

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the
Drools rule engine during complex event processing.

45

Default parameter: fact

Supported parameters: fact, event

@role(fact | event)

Example: Declare VoiceCall as event type

declare VoiceCall
 @role(event)
end

@timestamp

This tag is automatically assigned to every event in the Drools rule engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working
memory of the Drools rule engine. You can specify a custom time stamp attribute instead of the
default time stamp added by the session clock.

Default parameter: The time added by the Drools rule engine session clock

Supported parameters: Session clock time or custom time stamp attribute

@timestamp(<attributeName>)

Example: Declare VoiceCall timestamp attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the Drools rule engine. Events can be
interval-based events or point-in-time events. Interval-based events have a duration time and
persist in the working memory of the Drools rule engine until their duration time has lapsed.
Point-in-time events have no duration and are essentially interval-based events with a duration
of zero. By default, every event in the Drools rule engine has a duration of zero. You can specify
a custom duration attribute instead of the default.

Default parameter: Null (zero)

Supported parameters: Custom duration attribute

@duration(<attributeName>)

46

Example: Declare VoiceCall duration attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

@expires

This tag determines the time duration before an event expires in the working memory of the
Drools rule engine. By default, an event expires when the event can no longer match and
activate any of the current rules. You can define an amount of time after which an event should
expire. This tag definition also overrides the implicit expiration offset calculated from temporal
constraints and sliding windows in the KIE base. This tag is available only when the Drools rule
engine is running in stream mode.

Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]

@expires(<timeOffset>)

Example: Declare expiration offset for VoiceCall events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

2.5.3. Event processing modes in the Drools rule engine

The Drools rule engine runs in either cloud mode or stream mode. In cloud mode, the Drools rule
engine processes facts as facts with no temporal constraints, independent of time, and in no
particular order. In stream mode, the Drools rule engine processes facts as events with strong
temporal constraints, in real time or near real time. Stream mode uses synchronization to make
event processing possible in Drools.

Cloud mode

Cloud mode is the default operating mode of the Drools rule engine. In cloud mode, the Drools
rule engine treats events as an unordered cloud. Events still have time stamps, but the Drools
rule engine running in cloud mode cannot draw relevance from the time stamp because cloud
mode ignores the present time. This mode uses the rule constraints to find the matching tuples
to activate and execute rules.

Cloud mode does not impose any kind of additional requirements on facts. However, because

47

the Drools rule engine in this mode has no concept of time, it cannot use temporal features such
as sliding windows or automatic life-cycle management. In cloud mode, events must be explicitly
retracted when they are no longer needed.

The following requirements are not imposed in cloud mode:

• No clock synchronization because the Drools rule engine has no notion of time

• No ordering of events because the Drools rule engine processes events as an unordered
cloud, against which the Drools rule engine match rules

You can specify cloud mode either by setting the system property in the relevant configuration
files or by using the Java client API:

Set cloud mode using system property

drools.eventProcessingMode=cloud

Set cloud mode using Java client API

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.CLOUD);

You can also specify cloud mode using the eventProcessingMode="<mode>" KIE base attribute in the
KIE module descriptor file (kmodule.xml) for a specific Drools project:

Set cloud mode using project kmodule.xml file

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="cloud" packages=
"org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Stream mode

Stream mode enables the Drools rule engine to process events chronologically and in real time
as they are inserted into the Drools rule engine. In stream mode, the Drools rule engine
synchronizes streams of events (so that events in different streams can be processed in
chronological order), implements sliding windows of time or length, and enables automatic life-
cycle management.

48

The following requirements apply to stream mode:

• Events in each stream must be ordered chronologically.

• A session clock must be present to synchronize event streams.


Your application does not need to enforce ordering events between streams, but
using event streams that have not been synchronized may cause unexpected
results.

You can specify stream mode either by setting the system property in the relevant configuration
files or by using the Java client API:

Set stream mode using system property

drools.eventProcessingMode=stream

Set stream mode using Java client API

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.STREAM);

You can also specify stream mode using the eventProcessingMode="<mode>" KIE base attribute in
the KIE module descriptor file (kmodule.xml) for a specific Drools project:

Set stream mode using project kmodule.xml file

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream" packages=
"org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

2.5.3.1. Negative patterns in Drools rule engine stream mode

A negative pattern is a pattern for conditions that are not met. For example, the following DRL rule
activates a fire alarm if a fire is detected and the sprinkler is not activated:

49

Fire alarm rule with a negative pattern

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated())
then
 // Sound the alarm.
end

In cloud mode, the Drools rule engine assumes all facts (regular facts and events) are known in
advance and evaluates negative patterns immediately. In stream mode, the Drools rule engine can
support temporal constraints on facts to wait for a set time before activating a rule.

The same example rule in stream mode activates the fire alarm as usual, but applies a 10-second
delay.

Fire alarm rule with a negative pattern and time delay (stream mode only)

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // Sound the alarm.
end

The following modified fire alarm rule expects one Heartbeat event to occur every 10 seconds. If the
expected event does not occur, the rule is executed. This rule uses the same type of object in both
the first pattern and in the negative pattern. The negative pattern has the temporal constraint to
wait 0 to 10 seconds before executing and excludes the Heartbeat event bound to $h so that the rule
can be executed. The bound event $h must be explicitly excluded in order for the rule to be
executed because the temporal constraint [0s, …] does not inherently exclude that event from
being matched again.

Fire alarm rule excluding a bound event in a negative pattern (stream mode only)

rule "Sound the alarm"
when
 $h: Heartbeat() from entry-point "MonitoringStream"
 not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point
"MonitoringStream")
then
 // Sound the alarm.
end

50

2.5.4. Property-change settings and listeners for fact types

By default, the Drools rule engine does not re-evaluate all fact patterns for fact types each time a
rule is triggered, but instead reacts only to modified properties that are constrained or bound
inside a given pattern. For example, if a rule calls modify() as part of the rule actions but the action
does not generate new data in the KIE base, the Drools rule engine does not automatically re-
evaluate all fact patterns because no data was modified. This property reactivity behavior prevents
unwanted recursions in the KIE base and results in more efficient rule evaluation. This behavior
also means that you do not always need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

• ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

• ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

• DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml
file of your Drools distribution:

Example property reactivity setting in system properties

<system-properties>
 ...
 <property name="drools.propertySpecific" value="ALLOWED"/>
 ...
</system-properties>

The Drools rule engine supports the following property-change settings and listeners for fact
classes or declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the Drools rule engine (all types are property reactive),
this tag disables the default property reactivity behavior for a specific Java class or a declared
DRL fact type. You can use this tag if you want the Drools rule engine to re-evaluate all fact
patterns for the specified fact type each time the rule is triggered, instead of reacting only to
modified properties that are constrained or bound inside a given pattern.

51

Example: Disable default property reactivity in a DRL type declaration

declare Person
 @classReactive
 firstName : String
 lastName : String
end

Example: Disable default property reactivity in a Java class

@classReactive
public static class Person {
 private String firstName;
 private String lastName;
}

@propertyReactive

If property reactivity is set to ALLOWED in the Drools rule engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL
fact type. You can use this tag if you want the Drools rule engine to react only to modified
properties that are constrained or bound inside a given pattern for the specified fact type,
instead of re-evaluating all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is disabled globally)

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@propertyReactive
public static class Person {
 private String firstName;
 private String lastName;
}

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact
patterns in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the
Drools rule engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.

Default parameter: None

52

Supported parameters: Property name, * (all), ! (not), !* (no properties)

<factPattern> @watch (<property>)

Example: Enable or disable property reactivity in fact patterns

// Listens for changes in both `firstName` (inferred) and `lastName`:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for changes in all properties of the `Person` fact:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes in `lastName` and explicitly excludes changes in
`firstName`:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes in all properties of the `Person` fact except `age`:
Person(firstName == $expectedFirstName) @watch(*, !age)

// Excludes changes in all properties of the `Person` fact (equivalent to using
`@classReactivity` tag):
Person(firstName == $expectedFirstName) @watch(!*)

The Drools rule engine generates a compilation error if you use the @watch tag for properties in a
fact type that uses the @classReactive tag (disables property reactivity) or when property
reactivity is set to ALLOWED in the Drools rule engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the Drools rule engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
 @propertyChangeSupport
end

2.5.5. Temporal operators for events

In stream mode, the Drools rule engine supports the following temporal operators for events that
are inserted into the working memory of the Drools rule engine. You can use these operators to
define the temporal reasoning behavior of the events that you declare in your Java class or DRL
rule file. Temporal operators are not supported when the Drools rule engine is running in cloud
mode.

• after

53

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

• before

• coincides

• during

• includes

• finishes

• finished by

• meets

• met by

• overlaps

• overlapped by

• starts

• started by

after

This operator specifies if the current event occurs after the correlated event. This operator
can also define an amount of time after which the current event can follow the correlated
event, or a delimiting time range during which the current event can follow the correlated
event.

For example, the following pattern matches if $eventA starts between 3 minutes and 30
seconds and 4 minutes after $eventB finishes. If $eventA starts earlier than 3 minutes and 30
seconds after $eventB finishes, or later than 4 minutes after $eventB finishes, then the pattern
is not matched.

$eventA : EventA(this after[3m30s, 4m] $eventB)

You can also express this operator in the following way:

3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m

The after operator supports up to two parameter values:

◦ If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

◦ If only one value is defined, the interval starts on the provided value and runs
indefinitely with no end time.

◦ If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no
end time.

The after operator also supports negative time ranges:

54

$eventA : EventA(this after[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the Drools rule engine automatically
reverses them. For example, the following two patterns are interpreted by the Drools rule
engine in the same way:

$eventA : EventA(this after[-3m30s, -2m] $eventB)
$eventA : EventA(this after[-2m, -3m30s] $eventB)

before

This operator specifies if the current event occurs before the correlated event. This operator
can also define an amount of time before which the current event can precede the correlated
event, or a delimiting time range during which the current event can precede the correlated
event.

For example, the following pattern matches if $eventA finishes between 3 minutes and 30
seconds and 4 minutes before $eventB starts. If $eventA finishes earlier than 3 minutes and 30
seconds before $eventB starts, or later than 4 minutes before $eventB starts, then the pattern
is not matched.

$eventA : EventA(this before[3m30s, 4m] $eventB)

You can also express this operator in the following way:

3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m

The before operator supports up to two parameter values:

◦ If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

◦ If only one value is defined, the interval starts on the provided value and runs
indefinitely with no end time.

◦ If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no
end time.

The before operator also supports negative time ranges:

$eventA : EventA(this before[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the Drools rule engine automatically
reverses them. For example, the following two patterns are interpreted by the Drools rule
engine in the same way:

55

$eventA : EventA(this before[-3m30s, -2m] $eventB)
$eventA : EventA(this before[-2m, -3m30s] $eventB)

coincides

This operator specifies if the two events occur at the same time, with the same start and end
times.

For example, the following pattern matches if both the start and end time stamps of $eventA
and $eventB are identical:

$eventA : EventA(this coincides $eventB)

The coincides operator supports up to two parameter values for the distance between the
event start and end times, if they are not identical:

◦ If only one parameter is given, the parameter is used to set the threshold for both the
start and end times of both events.

◦ If two parameters are given, the first is used as a threshold for the start time and the
second is used as a threshold for the end time.

The following pattern uses start and end time thresholds:

$eventA : EventA(this coincides[15s, 10s] $eventB)

The pattern matches if the following conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s


The Drools rule engine does not support negative intervals for the coincides
operator. If you use negative intervals, the Drools rule engine generates an
error.

during

This operator specifies if the current event occurs within the time frame of when the
correlated event starts and ends. The current event must start after the correlated event
starts and must end before the correlated event ends. (With the coincides operator, the start
and end times are the same or nearly the same.)

For example, the following pattern matches if $eventA starts after $eventB starts and ends
before $eventB ends:

56

$eventA : EventA(this during $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp <
$eventB.endTimestamp

The during operator supports one, two, or four optional parameters:

◦ If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

◦ If two values are defined, these values are a threshold between which the current event
start time and end time must occur in relation to the correlated event start and end
times.

For example, if the values are 5s and 10s, the current event must start between 5 and 10
seconds after the correlated event starts and must end between 5 and 10 seconds before
the correlated event ends.

◦ If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

includes

This operator specifies if the correlated event occurs within the time frame of when the
current event occurs. The correlated event must start after the current event starts and must
end before the current event ends. (The behavior of this operator is the reverse of the during
operator behavior.)

For example, the following pattern matches if $eventB starts after $eventA starts and ends
before $eventA ends:

$eventA : EventA(this includes $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp <
$eventA.endTimestamp

The includes operator supports one, two, or four optional parameters:

◦ If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

◦ If two values are defined, these values are a threshold between which the correlated
event start time and end time must occur in relation to the current event start and end

57

times.

For example, if the values are 5s and 10s, the correlated event must start between 5 and
10 seconds after the current event starts and must end between 5 and 10 seconds before
the current event ends.

◦ If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

finishes

This operator specifies if the current event starts after the correlated event but both events
end at the same time.

For example, the following pattern matches if $eventA starts after $eventB starts and ends at
the same time when $eventB ends:

$eventA : EventA(this finishes $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finishes operator supports one optional parameter that sets the maximum time allowed
between the end times of the two events:

$eventA : EventA(this finishes[5s] $eventB)

This pattern matches if these conditions are met:

$eventB.startTimestamp < $eventA.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s


The Drools rule engine does not support negative intervals for the finishes
operator. If you use negative intervals, the Drools rule engine generates an
error.

finished by

This operator specifies if the correlated event starts after the current event but both events
end at the same time. (The behavior of this operator is the reverse of the finishes operator
behavior.)

58

For example, the following pattern matches if $eventB starts after $eventA starts and ends at
the same time when $eventA ends:

$eventA : EventA(this finishedby $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp < $eventB.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finished by operator supports one optional parameter that sets the maximum time
allowed between the end times of the two events:

$eventA : EventA(this finishedby[5s] $eventB)

This pattern matches if these conditions are met:

$eventA.startTimestamp < $eventB.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s


The Drools rule engine does not support negative intervals for the finished
by operator. If you use negative intervals, the Drools rule engine generates
an error.

meets

This operator specifies if the current event ends at the same time when the correlated event
starts.

For example, the following pattern matches if $eventA ends at the same time when $eventB
starts:

$eventA : EventA(this meets $eventB)

You can also express this operator in the following way:

abs($eventB.startTimestamp - $eventA.endTimestamp) == 0

The meets operator supports one optional parameter that sets the maximum time allowed
between the end time of the current event and the start time of the correlated event:

59

$eventA : EventA(this meets[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s


The Drools rule engine does not support negative intervals for the meets
operator. If you use negative intervals, the Drools rule engine generates an
error.

met by

This operator specifies if the correlated event ends at the same time when the current event
starts. (The behavior of this operator is the reverse of the meets operator behavior.)

For example, the following pattern matches if $eventB ends at the same time when $eventA
starts:

$eventA : EventA(this metby $eventB)

You can also express this operator in the following way:

abs($eventA.startTimestamp - $eventB.endTimestamp) == 0

The met by operator supports one optional parameter that sets the maximum distance
between the end time of the correlated event and the start time of the current event:

$eventA : EventA(this metby[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s


The Drools rule engine does not support negative intervals for the met by
operator. If you use negative intervals, the Drools rule engine generates an
error.

overlaps

This operator specifies if the current event starts before the correlated event starts and it
ends during the time frame that the correlated event occurs. The current event must end
between the start and end times of the correlated event.

For example, the following pattern matches if $eventA starts before $eventB starts and then

60

ends while $eventB occurs, before $eventB ends:

$eventA : EventA(this overlaps $eventB)

The overlaps operator supports up to two parameters:

◦ If one parameter is defined, the value is the maximum distance between the start time of
the correlated event and the end time of the current event.

◦ If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the correlated event and the
end time of the current event.

overlapped by

This operator specifies if the correlated event starts before the current event starts and it
ends during the time frame that the current event occurs. The correlated event must end
between the start and end times of the current event. (The behavior of this operator is the
reverse of the overlaps operator behavior.)

For example, the following pattern matches if $eventB starts before $eventA starts and then
ends while $eventA occurs, before $eventA ends:

$eventA : EventA(this overlappedby $eventB)

The overlapped by operator supports up to two parameters:

◦ If one parameter is defined, the value is the maximum distance between the start time of
the current event and the end time of the correlated event.

◦ If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the current event and the
end time of the correlated event.

starts

This operator specifies if the two events start at the same time but the current event ends
before the correlated event ends.

For example, the following pattern matches if $eventA and $eventB start at the same time, and
$eventA ends before $eventB ends:

$eventA : EventA(this starts $eventB)

You can also express this operator in the following way:

61

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp < $eventB.endTimestamp

The starts operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp < $eventB.endTimestamp


The Drools rule engine does not support negative intervals for the starts
operator. If you use negative intervals, the Drools rule engine generates an
error.

started by

This operator specifies if the two events start at the same time but the correlated event ends
before the current event ends. (The behavior of this operator is the reverse of the starts
operator behavior.)

For example, the following pattern matches if $eventA and $eventB start at the same time, and
$eventB ends before $eventA ends:

$eventA : EventA(this startedby $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp > $eventB.endTimestamp

The started by operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

62

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp > $eventB.endTimestamp


The Drools rule engine does not support negative intervals for the started
by operator. If you use negative intervals, the Drools rule engine generates
an error.

2.5.6. Session clock implementations in the Drools rule engine

During complex event processing, events in the Drools rule engine may have temporal constraints
and therefore require a session clock that provides the current time. For example, if a rule needs to
determine the average price of a given stock over the last 60 minutes, the Drools rule engine must
be able to compare the stock price event time stamp with the current time in the session clock.

The Drools rule engine supports a real-time clock and a pseudo clock. You can use one or both clock
types depending on the scenario:

• Rules testing: Testing requires a controlled environment, and when the tests include rules with
temporal constraints, you must be able to control the input rules and facts and the flow of time.

• Regular execution: The Drools rule engine reacts to events in real time and therefore requires
a real-time clock.

• Special environments: Specific environments may have specific time control requirements.
For example, clustered environments may require clock synchronization or Java Enterprise
Edition (JEE) environments may require a clock provided by the application server.

• Rules replay or simulation: In order to replay or simulate scenarios, the application must be
able to control the flow of time.

Consider your environment requirements as you decide whether to use a real-time clock or pseudo
clock in the Drools rule engine.

Real-time clock

The real-time clock is the default clock implementation in the Drools rule engine and uses the
system clock to determine the current time for time stamps. To configure the Drools rule engine
to use the real-time clock, set the KIE session configuration parameter to realtime:

Configure real-time clock in KIE session

import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;

KieSessionConfiguration config = KieServices.Factory.get()
.newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("realtime"));

63

Pseudo clock

The pseudo clock implementation in the Drools rule engine is helpful for testing temporal rules
and it can be controlled by the application. To configure the Drools rule engine to use the pseudo
clock, set the KIE session configuration parameter to pseudo:

Configure pseudo clock in KIE session

import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;

KieSessionConfiguration config = KieServices.Factory.get()
.newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("pseudo"));

You can also use additional configurations and fact handlers to control the pseudo clock:

Control pseudo clock behavior in KIE session

import java.util.concurrent.TimeUnit;

import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.KieSession;
import org.drools.core.time.SessionPseudoClock;
import org.kie.api.runtime.rule.FactHandle;
import org.kie.api.runtime.conf.ClockTypeOption;

KieSessionConfiguration conf = KieServices.Factory.get().
newKieSessionConfiguration();

conf.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);

SessionPseudoClock clock = session.getSessionClock();

// While inserting facts, advance the clock as necessary.
FactHandle handle1 = session.insert(tick1);
clock.advanceTime(10, TimeUnit.SECONDS);

FactHandle handle2 = session.insert(tick2);
clock.advanceTime(30, TimeUnit.SECONDS);

FactHandle handle3 = session.insert(tick3);

2.5.7. Event streams and entry points

The Drools rule engine can process high volumes of events in the form of event streams. In DRL

64

rule declarations, a stream is also known as an entry point. When you declare an entry point in a
DRL rule or Java application, the Drools rule engine, at compile time, identifies and creates the
proper internal structures to use data from only that entry point to evaluate that rule.

Facts from one entry point, or stream, can join facts from any other entry point in addition to facts
already in the working memory of the Drools rule engine. Facts always remain associated with the
entry point through which they entered the Drools rule engine. Facts of the same type can enter the
Drools rule engine through several entry points, but facts that enter the Drools rule engine through
entry point A can never match a pattern from entry point B.

Event streams have the following characteristics:

• Events in the stream are ordered by time stamp. The time stamps may have different semantics
for different streams, but they are always ordered internally.

• Event streams usually have a high volume of events.

• Atomic events in streams are usually not useful individually, only collectively in a stream.

• Event streams can be homogeneous and contain a single type of event, or heterogeneous and
contain events of different types.

2.5.7.1. Declaring entry points for rule data

You can declare an entry point (event stream) for events so that the Drools rule engine uses data
from only that entry point to evaluate the rules. You can declare an entry point either implicitly by
referencing it in DRL rules or explicitly in your Java application.

Procedure

Use one of the following methods to declare the entry point:

• In the DRL rule file, specify from entry-point "<name>" for the inserted fact:

Authorize withdrawal rule with "ATM Stream" entry point

rule "Authorize withdrawal"
when
 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
then
 // Authorize withdrawal.
end

65

Apply fee rule with "Branch Stream" entry point

rule "Apply fee on withdraws on branches"
when
 WithdrawRequest($ai : accountId, processed == true) from entry-point "Branch
Stream"
 CheckingAccount(accountId == $ai)
then
 // Apply a $2 fee on the account.
end

Both example DRL rules from a banking application insert the event WithdrawalRequest with the
fact CheckingAccount, but from different entry points. At run time, the Drools rule engine
evaluates the Authorize withdrawal rule using data from only the "ATM Stream" entry point, and
evaluates the Apply fee rule using data from only the "Branch Stream" entry point. Any events
inserted into the "ATM Stream" can never match patterns for the "Apply fee" rule, and any events
inserted into the "Branch Stream" can never match patterns for the "Authorize withdrawal rule".

• In the Java application code, use the getEntryPoint() method to specify and obtain an EntryPoint
object and insert facts into that entry point accordingly:

Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual.
KieSession session = ...

// Create a reference to the entry point.
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point.
atmStream.insert(aWithdrawRequest);

Any DRL rules that specify from entry-point "ATM Stream" are then evaluated based on the data
in this entry point only.

2.5.8. Sliding windows of time or length

In stream mode, the Drools rule engine can process events from a specified sliding window of time
or length. A sliding time window is a specified period of time during which events can be
processed. A sliding length window is a specified number of events that can be processed. When
you declare a sliding window in a DRL rule or Java application, the Drools rule engine, at compile
time, identifies and creates the proper internal structures to use data from only that sliding
window to evaluate that rule.

For example, the following DRL rule snippets instruct the Drools rule engine to process only the
stock points from the last 2 minutes (sliding time window) or to process only the last 10 stock points

66

(sliding length window):

Process stock points from the last 2 minutes (sliding time window)

StockPoint() over window:time(2m)

Process the last 10 stock points (sliding length window)

StockPoint() over window:length(10)

2.5.8.1. Declaring sliding windows for rule data

You can declare a sliding window of time (flow of time) or length (number of occurrences) for
events so that the Drools rule engine uses data from only that window to evaluate the rules.

Procedure

In the DRL rule file, specify over window:<time_or_length>(<value>) for the inserted fact.

For example, the following two DRL rules activate a fire alarm based on an average temperature.
However, the first rule uses a sliding time window to calculate the average over the last 10 minutes
while the second rule uses a sliding length window to calculate the average over the last one
hundred temperature readings.

Average temperature over sliding time window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:time(10m),
 average($temp))
then
 // Sound the alarm.
end

Average temperature over sliding length window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:length(100),
 average($temp))
then
 // Sound the alarm.
end

The Drools rule engine discards any SensorReading events that are more than 10 minutes old or that

67

are not part of the last one hundred readings, and continues recalculating the average as the
minutes or readings "slide" forward in real time.

The Drools rule engine does not automatically remove outdated events from the KIE session
because other rules without sliding window declarations might depend on those events. The Drools
rule engine stores events in the KIE session until the events expire either by explicit rule
declarations or by implicit reasoning within the Drools rule engine based on inferred data in the
KIE base.

2.5.9. Memory management for events

In stream mode, the Drools rule engine uses automatic memory management to maintain events
that are stored in KIE sessions. The Drools rule engine can retract from a KIE session any events
that no longer match any rule due to their temporal constraints and release any resources held by
the retracted events.

The Drools rule engine uses either explicit or inferred expiration to retract outdated events:

• Explicit expiration: The Drools rule engine removes events that are explicitly set to expire in
rules that declare the @expires tag:

DRL rule snippet with explicit expiration

declare StockPoint
 @expires(30m)
end

This example rule sets any StockPoint events to expire after 30 minutes and to be removed from
the KIE session if no other rules use the events.

• Inferred expiration: The Drools rule engine can calculate the expiration offset for a given
event implicitly by analyzing the temporal constraints in the rules:

DRL rule with temporal constraints

rule "Correlate orders"
when
 $bo : BuyOrder($id : id)
 $ae : AckOrder(id == $id, this after[0,10s] $bo)
then
 // Perform an action.
end

For this example rule, the Drools rule engine automatically calculates that whenever a BuyOrder
event occurs, the Drools rule engine needs to store the event for up to 10 seconds and wait for
the matching AckOrder event. After 10 seconds, the Drools rule engine infers the expiration and
removes the event from the KIE session. An AckOrder event can only match an existing BuyOrder
event, so the Drools rule engine infers the expiration if no match occurs and removes the event
immediately.

68

The Drools rule engine analyzes the entire KIE base to find the offset for every event type and to
ensure that no other rules use the events that are pending removal. Whenever an implicit
expiration clashes with an explicit expiration value, the Drools rule engine uses the greater time
frame of the two to store the event longer.

2.6. Drools rule engine queries and live queries
You can use queries with the Drools rule engine to retrieve fact sets based on fact patterns as they
are used in rules. The patterns might also use optional parameters.

To use queries with the Drools rule engine, you add the query definitions in DRL files and then
obtain the matching results in your application code. While a query iterates over a result collection,
you can use any identifier that is bound to the query to access the corresponding fact or fact field
by calling the get() method with the binding variable name as the argument. If the binding refers
to a fact object, you can retrieve the fact handle by calling getFactHandle() with the variable name
as the parameter.

[QueryResults] | rule-engine/QueryResults.png

Figure 13. QueryResults

[QueryResultsRow] | rule-engine/QueryResultsRow.png

Figure 14. QueryResultsRow

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain and iterate over query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

System.out.println("These people are under the age of 21:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

Invoking queries and processing the results by iterating over the returned set can be difficult when
you are monitoring changes over time. To alleviate this difficulty with ongoing queries, Drools
provides live queries, which use an attached listener for change events instead of returning an
iterable result set. Live queries remain open by creating a view and publishing change events for
the contents of this view.

To activate a live query, start your query with parameters and monitor changes in the resulting

69

view. You can use the dispose() method to terminate the query and discontinue this reactive
scenario.

Example query definition in a DRL file

query colors(String $color1, String $color2)
 TShirt(mainColor = $color1, secondColor = $color2, $price: manufactureCost)
end

Example application code with an event listener and a live query

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArrayList();

ViewChangedEventListener listener = new ViewChangedEventListener() {
 public void rowUpdated(Row row) {
 updated.add(row.get("$price"));
 }

 public void rowRemoved(Row row) {
 removed.add(row.get("$price"));
 }

 public void rowAdded(Row row) {
 added.add(row.get("$price"));
 }
};

// Open the live query:
LiveQuery query = ksession.openLiveQuery("colors",
 new Object[] { "red", "blue" },
 listener);
...
...

// Terminate the live query:
query.dispose()

For more live query examples, see Glazed Lists examples for Drools Live Queries.

2.7. Drools rule engine event listeners and debug
logging
The Drools rule engine generates events when performing activities such as fact insertions and rule
executions. If you register event listeners, the Drools rule engine calls every listener when an
activity is performed.

70

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

Event listeners have methods that correspond to different types of activities. The Drools rule engine
passes an event object to each method; this object contains information about the specific activity.

Your code can implement custom event listeners and you can also add and remove registered event
listeners. In this way, your code can be notified of Drools rule engine activity, and you can separate
logging and auditing work from the core of your application.

The Drools rule engine supports the following event listeners with the following methods:

Agenda event listener

public interface AgendaEventListener
 extends
 EventListener {
 void matchCreated(MatchCreatedEvent event);
 void matchCancelled(MatchCancelledEvent event);
 void beforeMatchFired(BeforeMatchFiredEvent event);
 void afterMatchFired(AfterMatchFiredEvent event);
 void agendaGroupPopped(AgendaGroupPoppedEvent event);
 void agendaGroupPushed(AgendaGroupPushedEvent event);
 void beforeRuleFlowGroupActivated(RuleFlowGroupActivatedEvent event);
 void afterRuleFlowGroupActivated(RuleFlowGroupActivatedEvent event);
 void beforeRuleFlowGroupDeactivated(RuleFlowGroupDeactivatedEvent event);
 void afterRuleFlowGroupDeactivated(RuleFlowGroupDeactivatedEvent event);
}

Rule runtime event listener

public interface RuleRuntimeEventListener extends EventListener {
 void objectInserted(ObjectInsertedEvent event);
 void objectUpdated(ObjectUpdatedEvent event);
 void objectDeleted(ObjectDeletedEvent event);
}

For the definitions of event classes, see the GitHub repository.

Drools includes default implementations of these listeners: DefaultAgendaEventListener and
DefaultRuleRuntimeEventListener. You can extend each of these implementations to monitor specific
events.

For example, the following code extends DefaultAgendaEventListener to monitor the
AfterMatchFiredEvent event and attaches this listener to a KIE session. The code prints pattern
matches when rules are executed (fired):

71

https://github.com/kiegroup/drools/tree/7.59.0.Final/drools-core/src/main/java/org/drools/core/event

Example code to monitor and print AfterMatchFiredEvent events in the agenda

ksession.addEventListener(new DefaultAgendaEventListener() {
 public void afterMatchFired(AfterMatchFiredEvent event) {
 super.afterMatchFired(event);
 System.out.println(event);
 }
});

Drools also includes the following Drools rule engine agenda and rule runtime event listeners for
debug logging:

• DebugAgendaEventListener

• DebugRuleRuntimeEventListener

These event listeners implement the same supported event-listener methods and include a debug
print statement by default. You can add additional monitoring code for a specific supported event.

For example, the following code uses the DebugRuleRuntimeEventListener event listener to monitor
and print all working memory (rule runtime) events:

Example code to monitor and print all working memory events

ksession.addEventListener(new DebugRuleRuntimeEventListener());

2.7.1. Practices for development of event listeners

The Drools rule engine calls event listeners during rule processing. The calls block the execution of
the Drools rule engine. Therefore, the event listener can affect the performance of the Drools rule
engine.

To ensure minimal disruption, follow the following guidelines:

• Any action must be as short as possible.

• A listener class must not have a state. The Drools rule engine can destroy and re-create a
listener class at any time.

• Do not use logic that relies on the order of execution of different event listeners.

• Do not include interactions with different entities outside the Drools rule engine within a
listener. For example, do not include REST calls for notification of events. An exception is the
output of logging information; however, a logging listener must be as simple as possible.

• You can use a listener to modify the state of the Drools rule engine, for example, to change the
values of variables.

2.7.2. Configuring a logging utility in the Drools rule engine

The Drools rule engine uses the Java logging API SLF4J for system logging. You can use one of the
following logging utilities with the Drools rule engine to investigate Drools rule engine activity, such

72

as for troubleshooting or data gathering:

• Logback

• Apache Commons Logging

• Apache Log4j

• java.util.logging package

Procedure

For the logging utility that you want to use, add the relevant dependency to your Maven project or
save the relevant XML configuration file in the org.drools package of your Drools distribution:

Example Maven dependency for Logback

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
</dependency>

Example logback.xml configuration file in org.drools package

<configuration>
 <logger name="org.drools" level="debug"/>
 ...
<configuration>

Example log4j.xml configuration file in org.drools package

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <category name="org.drools">
 <priority value="debug" />
 </category>
 ...
</log4j:configuration>


If you are developing for an ultra light environment, use the slf4j-nop or slf4j-
simple logger.

2.8. Performance tuning considerations with the
Drools rule engine
The following key concepts or suggested practices can help you optimize Drools rule engine
performance. These concepts are summarized in this section as a convenience and are explained in
more detail in the cross-referenced documentation, where applicable. This section will expand or
change as needed with new releases of Drools.

73

Use sequential mode for stateless KIE sessions that do not require important Drools rule
engine updates

Sequential mode is an advanced rule base configuration in the Drools rule engine that enables
the Drools rule engine to evaluate rules one time in the order that they are listed in the Drools
rule engine agenda without regard to changes in the working memory. As a result, rule
execution may be faster in sequential mode, but important updates may not be applied to your
rules. Sequential mode applies to stateless KIE sessions only.

To enable sequential mode, set the system property drools.sequential to true.

For more information about sequential mode or other options for enabling it, see Sequential
mode in Phreak.

Use simple operations with event listeners

Limit the number of event listeners and the type of operations they perform. Use event listeners
for simple operations, such as debug logging and setting properties. Complicated operations,
such as network calls, in listeners can impede rule execution. After you finish working with a
KIE session, remove the attached event listeners so that the session can be cleaned, as shown in
the following example:

Example event listener removed after use

Listener listener = ...;
StatelessKnowledgeSession ksession = createSession();
try {
 ksession.insert(fact);
 ksession.fireAllRules();
 ...
} finally {
 if (session != null) {
 ksession.detachListener(listener);
 ksession.dispose();
 }
}

For information about built-in event listeners and debug logging in the Drools rule engine, see
Drools rule engine event listeners and debug logging.

Configure LambdaIntrospector cache size for an executable model build

You can configure the size of LambdaIntrospector.methodFingerprintsMap cache, which is used in
an executable model build. The default size of the cache is 32. When you configure smaller value
for the cache size, it reduces memory usage. For example, you can configure system property
drools.lambda.introspector.cache.size to 0 for minimum memory usage. Note that smaller
cache size also slows down the build performance.

Use lambda externalization for executable model

Enable lambda externalization to optimize the memory consumption during runtime. It rewrites
lambdas that are generated and used in the executable model. This enables you to reuse the
same lambda multiple times with all the patterns and the same constraint. When the rete or

74

phreak is instantiated, the executable model becomes garbage collectible.

To enable lambda externalization for the executable model, include the following property:

-Ddrools.externaliseCanonicalModelLambda=true

Configure alpha node range index threshold

Alpha node range index is used to evaluate the rule constraint. You can configure the threshold
of the alpha node range index using the drools.alphaNodeRangeIndexThreshold system property.
The default value of the threshold is 9, indicating that the alpha node range index is enabled
when a precedent node contains more than nine alpha nodes with inequality constraints. For
example, when you have nine rules similar to Person(age > 10), Person(age > 20), …, Person(age
> 90), then you can have similar nine alpha nodes.

The default value of the threshold is based on the related advantages and overhead. However, if
you configure a smaller value for the threshold, then the performance can be improved
depending on your rules. For example, you can configure the
drools.alphaNodeRangeIndexThreshold value to 6, enabling the alpha node range index when you
have more than six alpha nodes for a precedent node. You can set a suitable value for the
threshold based on the performance test results of your rules.

Enable join node range index

The join node range index feature improves the performance only when there is a large number
of facts to be joined, for example, 256*16 combinations. When your application inserts a large
number of facts, you can enable the join node range index and evaluate the performance
improvement. By default, the join node range index is disabled.

Example kmodule.xml file

<kbase name="KBase1" betaRangeIndex="enabled">

System property for BetaRangeIndexOption

drools.betaNodeRangeIndexEnabled=true

75

Chapter 3. Rule Language Reference

3.1. DRL (Drools Rule Language) rules
DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These
DRL files are the source in which all other rule assets in {CENTRAL} are ultimately rendered. You
can create and manage DRL files within the {CENTRAL} interface, or create them externally as part
of a Maven or Java project using Red Hat CodeReady Studio or another integrated development
environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule
conditions (when) and actions (then). The DRL designer in {CENTRAL} provides syntax highlighting
for Java, DRL, and XML.

DRL files consist of the following components:

Components in a DRL file

package

import

function // Optional

query // Optional

declare // Optional

global // Optional

rule "rule name"
 // Attributes
 when
 // Conditions
 then
 // Actions
end

rule "rule2 name"

...

The following example DRL rule determines the age limit in a loan application decision service:

76

Example rule for loan application age limit

rule "Underage"
 salience 15
 agenda-group "applicationGroup"
 when
 $application : LoanApplication()
 Applicant(age < 21)
 then
 $application.setApproved(false);
 $application.setExplanation("Underage");
end

A DRL file can contain single or multiple rules, queries, and functions, and can define resource
declarations such as imports, globals, and attributes that are assigned and used by your rules and
queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed
last. All other DRL components can follow any order.

Each rule must have a unique name within the rule package. If you use the same rule name more
than once in any DRL file in the package, the rules fail to compile. Always enclose rule names with
double quotation marks (rule "rule name") to prevent possible compilation errors, especially if you
use spaces in rule names.

All data objects related to a DRL rule must be in the same project package as the DRL file in
{CENTRAL}. Assets in the same package are imported by default. Existing assets in other packages
can be imported with the DRL rule.

3.1.1. Packages in DRL

A package is a folder of related assets in Drools, such as data objects, DRL files, decision tables, and
other asset types. A package also serves as a unique namespace for each group of rules. A single
rule base can contain multiple packages. You typically store all the rules for a package in the same
file as the package declaration so that the package is self-contained. However, you can import
objects from other packages that you want to use in the rules.

The following example is a package name and namespace for a DRL file in a mortgage application
decision service:

Example package definition in a DRL file

package org.mortgages;

The following railroad diagram shows all the components that may make up a package:

77

Figure 15. Package

Note that a package must have a namespace and be declared using standard Java conventions for
package names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of
elements, they can appear in any order in the rule file, with the exception of the package statement,
which must be at the top of the file. In all cases, the semicolons are optional.

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute’s default value. The modified default may still be replaced
by an attribute setting within a rule.

3.1.2. Import statements in DRL

Figure 16. Import

Similar to import statements in Java, imports in DRL files identify the fully qualified paths and type
names for any objects that you want to use in the rules. You specify the package and data object in
the format packageName.objectName, with multiple imports on separate lines. The Drools rule engine
automatically imports classes from the Java package with the same name as the DRL package and
from the package java.lang.

The following example is an import statement for a loan application object in a mortgage
application decision service:

Example import statement in a DRL file

import org.mortgages.LoanApplication;

3.1.3. Functions in DRL

78

Figure 17. Function

Functions in DRL files put semantic code in your rule source file instead of in Java classes.
Functions are especially useful if an action (then) part of a rule is used repeatedly and only the
parameters differ for each rule. Above the rules in the DRL file, you can declare the function or
import a static method from a helper class as a function, and then use the function by name in an
action (then) part of the rule.

The following examples illustrate a function that is either declared or imported in a DRL file:

Example function declaration with a rule (option 1)

function String hello(String applicantName) {
 return "Hello " + applicantName + "!";
}

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

Example function import with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

3.1.4. Queries in DRL

79

Figure 18. Query

Queries in DRL files search the working memory of the Drools rule engine for facts related to the
rules in the DRL file. You add the query definitions in DRL files and then obtain the matching
results in your application code. Queries search for a set of defined conditions and do not require
when or then specifications. Query names are global to the KIE base and therefore must be unique
among all other rule queries in the project. To return the results of a query, you construct a
QueryResults definition using ksession.getQueryResults("name"), where "name" is the query name.
This returns a list of query results, which enable you to retrieve the objects that matched the query.
You define the query and query results parameters above the rules in the DRL file.

The following example is a query definition in a DRL file for underage applicants in a mortgage
application decision service, with the accompanying application code:

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

You can also iterate over the returned QueryResults using a standard for loop. Each element is a
QueryResultsRow that you can use to access each of the columns in the tuple.

80

Example application code to obtain and iterate over query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

System.out.println("These people are under the age of 21:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

Support for positional syntax has been added for more compact code. By default the declared type
order in the type declaration matches the argument position. But it possible to override these using
the @position annotation. This allows patterns to be used with positional arguments, instead of the
more verbose named arguments.

declare Cheese
 name : String @position(1)
 shop : String @position(2)
 price : int @position(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces or methods. The isContainedIn query below demonstrates
the use of positional arguments in a pattern; Location(x, y;) instead of Location(thing == x,
location == y).

Queries can now call other queries, this combined with optional query arguments provides
derivation query style backward chaining. Positional and named syntax is supported for
arguments. It is also possible to mix both positional and named, but positional must come first,
separated by a semi colon. Literal expressions can be passed as query arguments, but at this stage
you cannot mix expressions with variables. Here is an example of a query that calls another query.
Note that 'z' here will always be an 'out' variable. The '?' symbol means the query is pull only, once
the results are returned you will not receive further results as the underlying data changes.

declare Location
 thing : String
 location : String
end

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and ?isContainedIn(x, z;))
end

81

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule calls
the query without using '?'.

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

rule look when
 Person($l : likes)
 isContainedIn($l, 'office';)
then
 insertLogical($l 'is in the office');
end

Drools supports unification for derivation queries, in short this means that arguments are optional.
It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at
compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

results = ksession.getQueryResults("isContainedIn", new Object[] { Variable.v,
"office" });
l = new ArrayList<List<String>>();
for (QueryResultsRow r : results) {
 l.add(Arrays.asList(new String[] { (String) r.get("x"), (String) r.get("y")
}));
}

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

It is also possible to use as input argument for a query both the field of a fact as in:

query contains(String $s, String $c)
 $s := String(this.contains($c))
end

rule PersonNamesWithA when
 $p : Person()
 contains($p.name, "a";)
then
end

and more in general any kind of valid expression like in:

82

query checkLength(String $s, int $l)
 $s := String(length == $l)
end

rule CheckPersonNameLength when
 $i : Integer()
 $p : Person()
 checkLength($p.name, 1 + $i + $p.age;)
then
end

The following is not yet supported:

• List and Map unification

• Expression unification - pred(X, X + 1, X * Y / 7)

3.1.5. Type declarations and metadata in DRL

Figure 19. Type declaration

83

Figure 20. Metadata

Declarations in DRL files define new fact types or metadata for fact types to be used by rules in the
DRL file:

• New fact types: The default fact type in the java.lang package of Drools is Object, but you can
declare other types in DRL files as needed. Declaring fact types in DRL files enables you to
define a new fact model directly in the Drools rule engine, without creating models in a lower-
level language like Java. You can also declare a new type when a domain model is already built
and you want to complement this model with additional entities that are used mainly during
the reasoning process.

• Metadata for fact types: You can associate metadata in the format @key(value) with new or
existing facts. Metadata can be any kind of data that is not represented by the fact attributes
and is consistent among all instances of that fact type. The metadata can be queried at run time
by the Drools rule engine and used in the reasoning process.

3.1.5.1. Type declarations without metadata in DRL

A declaration of a new fact does not require any metadata, but must include a list of attributes or
fields. If a type declaration does not include identifying attributes, the Drools rule engine searches
for an existing fact class in the classpath and raises an error if the class is missing.

The following example is a declaration of a new fact type Person with no metadata in a DRL file:

Example declaration of a new fact type with a rule

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

84

In this example, the new fact type Person has the three attributes name, dateOfBirth, and address.
Each attribute has a type that can be any valid Java type, including another class that you create or
a fact type that you previously declared. The dateOfBirth attribute has the type java.util.Date, from
the Java API, and the address attribute has the previously defined fact type Address.

To avoid writing the fully qualified name of a class every time you declare it, you can define the full
class name as part of the import clause:

Example type declaration with the fully qualified class name in the import

import java.util.Date

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

When you declare a new fact type, the Drools rule engine generates at compile time a Java class
representing the fact type. The generated Java class is a one-to-one JavaBeans mapping of the type
definition.

For example, the following Java class is generated from the example Person type declaration:

Generated Java class for the Person fact type declaration

public class Person implements Serializable {
 private String name;
 private java.util.Date dateOfBirth;
 private Address address;

 // Empty constructor
 public Person() {...}

 // Constructor with all fields
 public Person(String name, Date dateOfBirth, Address address) {...}

 // If keys are defined, constructor with keys
 public Person(...keys...) {...}

 // Getters and setters
 // `equals` and `hashCode`
 // `toString`
}

You can then use the generated class in your rules like any other fact, as illustrated in the previous
rule example with the Person type declaration:

85

Example rule that uses the declared Person fact type

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

3.1.5.2. Enumerative type declarations in DRL

DRL supports the declaration of enumerative types in the format declare enum <factType>, followed
by a comma-separated list of values ending with a semicolon. You can then use the enumerative list
in the rules in the DRL file.

For example, the following enumerative type declaration defines days of the week for an employee
scheduling rule:

Example enumerative type declaration with a scheduling rule

declare enum DaysOfWeek

SUN("Sunday"),MON("Monday"),TUE("Tuesday"),WED("Wednesday"),THU("Thursday"),FRI("Frida
y"),SAT("Saturday");

 fullName : String
end

rule "Using a declared Enum"
when
 $emp : Employee(dayOff == DaysOfWeek.MONDAY)
then
 ...
end

3.1.5.3. Extended type declarations in DRL

DRL supports type declaration inheritance in the format declare <factType1> extends <factType2>.
To extend a type declared in Java by a subtype declared in DRL, you repeat the parent type in a
declaration statement without any fields.

For example, the following type declarations extend a Student type from a top-level Person type, and
a LongTermStudent type from the Student subtype:

86

Example extended type declarations

import org.people.Person

declare Person end

declare Student extends Person
 school : String
end

declare LongTermStudent extends Student
 years : int
 course : String
end

3.1.5.4. Type declarations with metadata in DRL

You can associate metadata in the format @key(value) (the value is optional) with fact types or fact
attributes. Metadata can be any kind of data that is not represented by the fact attributes and is
consistent among all instances of that fact type. The metadata can be queried at run time by the
Drools rule engine and used in the reasoning process. Any metadata that you declare before the
attributes of a fact type are assigned to the fact type, while metadata that you declare after an
attribute are assigned to that particular attribute.

In the following example, the two metadata attributes @author and @dateOfCreation are declared for
the Person fact type, and the two metadata items @key and @maxLength are declared for the name
attribute. The @key metadata attribute has no required value, so the parentheses and the value are
omitted.

Example metadata declaration for fact types and attributes

import java.util.Date

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)
 dateOfBirth : Date
 address : Address
end

For declarations of metadata attributes for existing types, you can identify the fully qualified class
name as part of the import clause for all declarations or as part of the individual declare clause:

87

Example metadata declaration for an imported type

import org.drools.examples.Person

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

Example metadata declaration for a declared type

declare org.drools.examples.Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

3.1.5.5. Metadata tags for fact type and attribute declarations in DRL

Although you can define custom metadata attributes in DRL declarations, the Drools rule engine
also supports the following predefined metadata tags for declarations of fact types or fact type
attributes.



The examples in this section that refer to the VoiceCall class assume that the
sample application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters
}

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the
Drools rule engine during complex event processing.

Default parameter: fact

Supported parameters: fact, event

@role(fact | event)

88

Example: Declare VoiceCall as event type

declare VoiceCall
 @role(event)
end

@timestamp

This tag is automatically assigned to every event in the Drools rule engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working
memory of the Drools rule engine. You can specify a custom time stamp attribute instead of the
default time stamp added by the session clock.

Default parameter: The time added by the Drools rule engine session clock

Supported parameters: Session clock time or custom time stamp attribute

@timestamp(<attributeName>)

Example: Declare VoiceCall timestamp attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the Drools rule engine. Events can be
interval-based events or point-in-time events. Interval-based events have a duration time and
persist in the working memory of the Drools rule engine until their duration time has lapsed.
Point-in-time events have no duration and are essentially interval-based events with a duration
of zero. By default, every event in the Drools rule engine has a duration of zero. You can specify
a custom duration attribute instead of the default.

Default parameter: Null (zero)

Supported parameters: Custom duration attribute

@duration(<attributeName>)

Example: Declare VoiceCall duration attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

89

@expires

This tag determines the time duration before an event expires in the working memory of the
Drools rule engine. By default, an event expires when the event can no longer match and
activate any of the current rules. You can define an amount of time after which an event should
expire. This tag definition also overrides the implicit expiration offset calculated from temporal
constraints and sliding windows in the KIE base. This tag is available only when the Drools rule
engine is running in stream mode.

Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]

@expires(<timeOffset>)

Example: Declare expiration offset for VoiceCall events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

@typesafe

This tab determines whether a given fact type is compiled with or without type safety. By
default, all type declarations are compiled with type safety enabled. You can override this
behavior to type-unsafe evaluation, where all constraints are generated as MVEL constraints and
executed dynamically. This is useful when dealing with collections that do not have any generics
or mixed type collections.

Default parameter: true

Supported parameters: true, false

@typesafe(<boolean>)

Example: Declare VoiceCall for type-unsafe evaluation

declare VoiceCall
 @role(fact)
 @typesafe(false)
end

@serialVersionUID

This tag defines an identifying serialVersionUID value for a serializable class in a fact
declaration. If a serializable class does not explicitly declare a serialVersionUID, the serialization

90

run time calculates a default serialVersionUID value for that class based on various aspects of
the class, as described in the Java Object Serialization Specification. However, for optimal
deserialization results and for greater compatibility with serialized KIE sessions, set the
serialVersionUID as needed in the relevant class or in your DRL declarations.

Default parameter: Null

Supported parameters: Custom serialVersionUID integer

@serialVersionUID(<integer>)

Example: Declare serialVersionUID for a VoiceCall class

declare VoiceCall
 @serialVersionUID(42)
end

@key

This tag enables a fact type attribute to be used as a key identifier for the fact type. The
generated class can then implement the equals() and hashCode() methods to determine if two
instances of the type are equal to each other. The Drools rule engine can also generate a
constructor using all the key attributes as parameters.

Default parameter: None

Supported parameters: None

<attributeDefinition> @key

Example: Declare Person type attributes as keys

declare Person
 firstName : String @key
 lastName : String @key
 age : int
end

For this example, the Drools rule engine checks the firstName and lastName attributes to
determine if two instances of Person are equal to each other, but it does not check the age
attribute. The Drools rule engine also implicitly generates three constructors: one without
parameters, one with the @key fields, and one with all fields:

91

https://docs.oracle.com/javase/10/docs/specs/serialization/index.html

Example constructors from the key declarations

Person() // Empty constructor

Person(String firstName, String lastName)

Person(String firstName, String lastName, int age)

You can then create instances of the type based on the key constructors, as shown in the
following example:

Example instance using the key constructor

Person person = new Person("John", "Doe");

@position

This tag determines the position of a declared fact type attribute or field in a positional
argument, overriding the default declared order of attributes. You can use this tag to modify
positional constraints in patterns while maintaining a consistent format in your type
declarations and positional arguments. You can use this tag only for fields in classes on the
classpath. If some fields in a single class use this tag and some do not, the attributes without this
tag are positioned last, in the declared order. Inheritance of classes is supported, but not
interfaces of methods.

Default parameter: None

Supported parameters: Any integer

<attributeDefinition> @position (<integer>)

Example: Declare a fact type and override declared order

declare Person
 firstName : String @position(1)
 lastName : String @position(0)
 age : int @position(2)
 occupation: String
end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName

2. firstName

3. age

4. occupation

92

In positional arguments, you do not need to specify the field name because the position maps to
a known named field. For example, the argument Person(lastName == "Doe") is the same as
Person("Doe";), where the lastName field has the highest position annotation in the DRL
declaration. The semicolon ; indicates that everything before it is a positional argument. You can
mix positional and named arguments on a pattern by using the semicolon to separate them. Any
variables in a positional argument that have not yet been bound are bound to the field that
maps to that position.

The following example patterns illustrate different ways of constructing positional and named
arguments. The patterns have two constraints and a binding, and the semicolon differentiates
the positional section from the named argument section. Variables and literals and expressions
using only literals are supported in positional arguments, but not variables alone.

Example patterns with positional and named arguments

Person("Doe", "John", $a;)

Person("Doe", "John"; $a : age)

Person("Doe"; firstName == "John", $a : age)

Person(lastName == "Doe"; firstName == "John", $a : age)

Positional arguments can be classified as input arguments or output arguments. Input arguments
contain a previously declared binding and constrain against that binding using unification.
Output arguments generate the declaration and bind it to the field represented by the positional
argument when the binding does not yet exist.

In extended type declarations, use caution when defining @position annotations because the
attribute positions are inherited in subtypes. This inheritance can result in a mixed attribute
order that can be confusing in some cases. Two fields can have the same @position value and
consecutive values do not need to be declared. If a position is repeated, the conflict is solved
using inheritance, where position values in the parent type have precedence, and then using the
declaration order from the first to last declaration.

For example, the following extended type declarations result in mixed positional priorities:

93

Example extended fact type with mixed position annotations

declare Person
 firstName : String @position(1)
 lastName : String @position(0)
 age : int @position(2)
 occupation: String
end

declare Student extends Person
 degree : String @position(1)
 school : String @position(0)
 graduationDate : Date
end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName (position 0 in the parent type)

2. school (position 0 in the subtype)

3. firstName (position 1 in the parent type)

4. degree (position 1 in the subtype)

5. age (position 2 in the parent type)

6. occupation (first field with no position annotation)

7. graduationDate (second field with no position annotation)

3.1.5.6. Property-change settings and listeners for fact types

By default, the Drools rule engine does not re-evaluate all fact patterns for fact types each time a
rule is triggered, but instead reacts only to modified properties that are constrained or bound
inside a given pattern. For example, if a rule calls modify() as part of the rule actions but the action
does not generate new data in the KIE base, the Drools rule engine does not automatically re-
evaluate all fact patterns because no data was modified. This property reactivity behavior prevents
unwanted recursions in the KIE base and results in more efficient rule evaluation. This behavior
also means that you do not always need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

• ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

• ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

• DISABLED: No types are property reactive. All property-change listeners are ignored.

94

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml
file of your Drools distribution:

Example property reactivity setting in system properties

<system-properties>
 ...
 <property name="drools.propertySpecific" value="ALLOWED"/>
 ...
</system-properties>

The Drools rule engine supports the following property-change settings and listeners for fact
classes or declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the Drools rule engine (all types are property reactive),
this tag disables the default property reactivity behavior for a specific Java class or a declared
DRL fact type. You can use this tag if you want the Drools rule engine to re-evaluate all fact
patterns for the specified fact type each time the rule is triggered, instead of reacting only to
modified properties that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

declare Person
 @classReactive
 firstName : String
 lastName : String
end

Example: Disable default property reactivity in a Java class

@classReactive
public static class Person {
 private String firstName;
 private String lastName;
}

@propertyReactive

If property reactivity is set to ALLOWED in the Drools rule engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL
fact type. You can use this tag if you want the Drools rule engine to react only to modified

95

properties that are constrained or bound inside a given pattern for the specified fact type,
instead of re-evaluating all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is disabled globally)

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@propertyReactive
public static class Person {
 private String firstName;
 private String lastName;
}

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact
patterns in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the
Drools rule engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.

Default parameter: None

Supported parameters: Property name, * (all), ! (not), !* (no properties)

<factPattern> @watch (<property>)

96

Example: Enable or disable property reactivity in fact patterns

// Listens for changes in both `firstName` (inferred) and `lastName`:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for changes in all properties of the `Person` fact:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes in `lastName` and explicitly excludes changes in
`firstName`:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes in all properties of the `Person` fact except `age`:
Person(firstName == $expectedFirstName) @watch(*, !age)

// Excludes changes in all properties of the `Person` fact (equivalent to using
`@classReactivity` tag):
Person(firstName == $expectedFirstName) @watch(!*)

The Drools rule engine generates a compilation error if you use the @watch tag for properties in a
fact type that uses the @classReactive tag (disables property reactivity) or when property
reactivity is set to ALLOWED in the Drools rule engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the Drools rule engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
 @propertyChangeSupport
end

3.1.5.7. Access to DRL declared types in application code

Declared types in DRL are typically used within the DRL files while Java models are typically used
when the model is shared between rules and applications. Because declared types are generated at
KIE base compile time, an application cannot access them until application run time. In some cases,
an application needs to access and handle facts directly from the declared types, especially when
the application wraps the Drools rule engine and provides higher-level, domain-specific user
interfaces for rules management.

To handle declared types directly from the application code, you can use the
org.drools.definition.type.FactType API in Drools. Through this API, you can instantiate, read, and
write fields in the declared fact types.

The following example code modifies a Person fact type directly from an application:

97

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

Example application code to handle a declared fact type through the FactType API

import java.util.Date;

import org.kie.api.definition.type.FactType;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

...

// Get a reference to a KIE base with the declared type:
KieBase kbase = ...

// Get the declared fact type:
FactType personType = kbase.getFactType("org.drools.examples", "Person");

// Create instances:
Object bob = personType.newInstance();

// Set attribute values:
personType.set(bob, "name", "Bob");
personType.set(bob, "dateOfBirth", new Date());
personType.set(bob, "address", new Address("King's Road","London","404"));

// Insert the fact into a KIE session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();

// Read attributes:
String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");

The API also includes other helpful methods, such as setting all the attributes at once, reading
values from a Map collection, or reading all attributes at once into a Map collection.

Although the API behavior is similar to Java reflection, the API does not use reflection and relies on
more performant accessors that are implemented with generated bytecode.

3.1.6. Global variables in DRL

Figure 21. Global

Global variables in DRL files typically provide data or services for the rules, such as application
services used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. You set the global value in the working memory of the Drools rule engine through a
KIE session configuration or REST operation, declare the global variable above the rules in the DRL
file, and then use it in an action (then) part of the rule. For multiple global variables, use separate

98

lines in the DRL file.

The following example illustrates a global variable list configuration for the Drools rule engine and
the corresponding global variable definition in the DRL file:

Example global list configuration for the Drools rule engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

Example global variable definition with a rule

global java.util.List myGlobalList;

rule "Using a global"
 when
 // Empty
 then
 myGlobalList.add("My global list");
end



Do not use global variables to establish conditions in rules unless a global variable
has a constant immutable value. Global variables are not inserted into the working
memory of the Drools rule engine, so the Drools rule engine cannot track value
changes of variables.

Do not use global variables to share data between rules. Rules always reason and
react to the working memory state, so if you want to pass data from rule to rule,
assert the data as facts into the working memory of the Drools rule engine.

A use case for a global variable might be an instance of an email service. In your integration code
that is calling the Drools rule engine, you obtain your emailService object and then set it in the
working memory of the Drools rule engine. In the DRL file, you declare that you have a global of
type emailService and give it the name "email", and then in your rule consequences, you can use
actions such as email.sendSMS(number, message).

If you declare global variables with the same identifier in multiple packages, then you must set all
the packages with the same type so that they all reference the same global value.

3.1.7. Rule attributes in DRL

99

Figure 22. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule
behavior. In DRL files, you typically define rule attributes above the rule conditions and actions,
with multiple attributes on separate lines, in the following format:

rule "rule_name"
 // Attribute
 // Attribute
 when
 // Conditions
 then
 // Actions
end

The following table lists the names and supported values of the attributes that you can assign to
rules:

Table 1. Rule attributes

Attribute Value

salience An integer defining the priority of the rule. Rules with a higher
salience value are given higher priority when ordered in the
activation queue.

Example: salience 10

100

Attribute Value

enabled A Boolean value. When the option is selected, the rule is enabled.
When the option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be
activated only if the current date and time is after a date-effective
attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be
activated if the current date and time is after the date-expires
attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be
reactivated (looped) if a consequence of the rule re-triggers a
previously met condition. When the condition is not selected, the
rule can be looped in these circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign
the rule. Agenda groups allow you to partition the agenda to provide
more execution control over groups of rules. Only rules in an
agenda group that has acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want
to assign the rule. In activation groups, only one rule can be
activated. The first rule to fire will cancel all pending activations of
all rules in the activation group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds
after which the rule can be activated, if the rule conditions are still
met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definitions for
scheduling the rule.

Example: timer (cron:* 0/15 * * * ?) (every 15 minutes)

101

Attribute Value

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business
hours)

auto-focus A Boolean value, applicable only to rules within agenda groups.
When the option is selected, the next time the rule is activated, a
focus is automatically given to the agenda group to which the rule is
assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or
agenda groups. When the option is selected, the next time the
ruleflow group for the rule becomes active or the agenda group for
the rule receives a focus, the rule cannot be activated again until the
ruleflow group is no longer active or the agenda group loses the
focus. This is a stronger version of the no-loop attribute, because the
activation of a matching rule is discarded regardless of the origin of
the update (not only by the rule itself). This attribute is ideal for
calculation rules where you have a number of rules that modify a
fact and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can
fire only when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect
specified at the package level. Any dialect specified here overrides
the package dialect setting for the rule.

Example: dialect "JAVA"



When you use Drools without the executable
model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information
about executable models, see [executable-model-
con_packaging-deploying].

3.1.7.1. Timer and calendar rule attributes in DRL

Timers and calendars are DRL rule attributes that enable you to apply scheduling and timing
constraints to your DRL rules. These attributes require additional configurations depending on the
use case.

102

http://www.quartz-scheduler.org/

The timer attribute in DRL rules is a string identifying either int (interval) or cron timer definitions
for scheduling a rule and supports the following formats:

Timer attribute formats

timer (int: <initial delay> <repeat interval>)

timer (cron: <cron expression>)

Example interval timer attributes

// Run after a 30-second delay
timer (int: 30s)

// Run every 5 minutes after a 30-second delay each time
timer (int: 30s 5m)

Example cron timer attribute

// Run every 15 minutes
timer (cron:* 0/15 * * * ?)

Interval timers follow the semantics of java.util.Timer objects, with an initial delay and an
optional repeat interval. Cron timers follow standard Unix cron expressions.

The following example DRL rule uses a cron timer to send an SMS text message every 15 minutes:

Example DRL rule with a cron timer

rule "Send SMS message every 15 minutes"
 timer (cron:* 0/15 * * * ?)
 when
 $a : Alarm(on == true)
 then
 channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on.");
end

Generally, a rule that is controlled by a timer becomes active when the rule is triggered and the rule
consequence is executed repeatedly, according to the timer settings. The execution stops when the
rule condition no longer matches incoming facts. However, the way the Drools rule engine handles
rules with timers depends on whether the Drools rule engine is in active mode or in passive mode.

By default, the Drools rule engine runs in passive mode and evaluates rules, according to the
defined timer settings, when a user or an application explicitly calls fireAllRules(). Conversely, if a
user or application calls fireUntilHalt(), the Drools rule engine starts in active mode and evaluates
rules continually until the user or application explicitly calls halt().

When the Drools rule engine is in active mode, rule consequences are executed even after control

103

returns from a call to fireUntilHalt() and the Drools rule engine remains reactive to any changes
made to the working memory. For example, removing a fact that was involved in triggering the
timer rule execution causes the repeated execution to terminate, and inserting a fact so that some
rule matches causes that rule to be executed. However, the Drools rule engine is not continually
active, but is active only after a rule is executed. Therefore, the Drools rule engine does not react to
asynchronous fact insertions until the next execution of a timer-controlled rule. Disposing a KIE
session terminates all timer activity.

When the Drools rule engine is in passive mode, rule consequences of timed rules are evaluated
only when fireAllRules() is invoked again. However, you can change the default timer-execution
behavior in passive mode by configuring the KIE session with a TimedRuleExecutionOption option, as
shown in the following example:

KIE session configuration to automatically execute timed rules in passive mode

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration
();
ksconf.setOption(TimedRuleExecutionOption.YES);
KSession ksession = kbase.newKieSession(ksconf, null);

You can additionally set a FILTERED specification on the TimedRuleExecutionOption option that
enables you to define a callback to filter those rules, as shown in the following example:

KIE session configuration to filter which timed rules are automatically executed

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration
();
conf.setOption(new TimedRuleExecutionOption.FILTERED(new TimedRuleExecutionFilter() {
 public boolean accept(Rule[] rules) {
 return rules[0].getName().equals("MyRule");
 }
}));

For interval timers, you can also use an expression timer with expr instead of int to define both the
delay and interval as an expression instead of a fixed value.

The following example DRL file declares a fact type with a delay and period that are then used in
the subsequent rule with an expression timer:

104

Example rule with an expression timer

declare Bean
 delay : String = "30s"
 period : long = 60000
end

rule "Expression timer"
 timer (expr: $d, $p)
 when
 Bean($d : delay, $p : period)
 then
 // Actions
end

The expressions, such as $d and $p in this example, can use any variable defined in the pattern-
matching part of the rule. The variable can be any String value that can be parsed into a time
duration or any numeric value that is internally converted in a long value for a duration in
milliseconds.

Both interval and expression timers can use the following optional parameters:

• start and end: A Date or a String representing a Date or a long value. The value can also be a
Number that is transformed into a Java Date in the format new Date(((Number) n).longValue()).

• repeat-limit: An integer that defines the maximum number of repetitions allowed by the timer.
If both the end and the repeat-limit parameters are set, the timer stops when the first of the two
is reached.

Example timer attribute with optional start, end, and repeat-limit parameters

timer (int: 30s 1h; start=3-JAN-2020, end=4-JAN-2020, repeat-limit=50)

In this example, the rule is scheduled for every hour, after a delay of 30 seconds each hour,
beginning on 3 January 2020 and ending either on 4 January 2020 or when the cycle repeats 50
times.

If the system is paused (for example, the session is serialized and then later deserialized), the rule is
scheduled only one time to recover from missing activations regardless of how many activations
were missed during the pause, and then the rule is subsequently scheduled again to continue in
sync with the timer setting.

The calendar attribute in DRL rules is a Quartz calendar definition for scheduling a rule and
supports the following format:

Calendar attribute format

calendars "<definition or registered name>"

105

http://www.quartz-scheduler.org/

Example calendar attributes

// Exclude non-business hours
calendars "* * 0-7,18-23 ? * *"

// Weekdays only, as registered in the KIE session
calendars "weekday"

You can adapt a Quartz calendar based on the Quartz calendar API and then register the calendar
in the KIE session, as shown in the following example:

Adapting a Quartz Calendar

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar
quartzCal)

Registering the calendar in the KIE session

ksession.getCalendars().set("weekday", weekDayCal);

You can use calendars with standard rules and with rules that use timers. The calendar attribute
can contain one or more comma-separated calendar names written as String literals.

The following example rules use both calendars and timers to schedule the rules:

Example rules with calendars and timers

rule "Weekdays are high priority"
 calendars "weekday"
 timer (int:0 1h)
 when
 Alarm()
 then
 send("priority high - we have an alarm");
end

rule "Weekends are low priority"
 calendars "weekend"
 timer (int:0 4h)
 when
 Alarm()
 then
 send("priority low - we have an alarm");
end

3.1.8. Rule conditions in DRL (WHEN)

106

Figure 23. Rule

Figure 24. Conditional element in a rule

The when part of a DRL rule (also known as the Left Hand Side (LHS) of the rule) contains the
conditions that must be met to execute an action. Conditions consist of a series of stated patterns
and constraints, with optional bindings and supported rule condition elements (keywords), based
on the available data objects in the package. For example, if a bank requires loan applicants to have
over 21 years of age, then the when condition of an "Underage" rule would be Applicant(age < 21).



DRL uses when instead of if because if is typically part of a procedural execution
flow during which a condition is checked at a specific point in time. In contrast,
when indicates that the condition evaluation is not limited to a specific evaluation
sequence or point in time, but instead occurs continually at any time. Whenever
the condition is met, the actions are executed.

If the when section is empty, then the conditions are considered to be true and the actions in the then
section are executed the first time a fireAllRules() call is made in the Drools rule engine. This is
useful if you want to use rules to set up the Drools rule engine state.

The following example rule uses empty conditions to insert a fact every time the rule is executed:

107

Example rule without conditions

rule "Always insert applicant"
 when
 // Empty
 then // Actions to be executed once
 insert(new Applicant());
end

// The rule is internally rewritten in the following way:

rule "Always insert applicant"
 when
 eval(true)
 then
 insert(new Applicant());
end

If rule conditions use multiple patterns with no defined keyword conjunctions (such as and, or, or
not), the default conjunction is and:

Example rule without keyword conjunctions

rule "Underage"
 when
 application : LoanApplication()
 Applicant(age < 21)
 then
 // Actions
end

// The rule is internally rewritten in the following way:

rule "Underage"
 when
 application : LoanApplication()
 and Applicant(age < 21)
 then
 // Actions
end

3.1.8.1. Patterns and constraints

A pattern in a DRL rule condition is the segment to be matched by the Drools rule engine. A pattern
can potentially match each fact that is inserted into the working memory of the Drools rule engine.
A pattern can also contain constraints to further define the facts to be matched.

The railroad diagram below shows the syntax for this:

108

Figure 25. Pattern

In the simplest form, with no constraints, a pattern matches a fact of the given type. In the
following example, the type is Person, so the pattern will match against all Person objects in the
working memory of the Drools rule engine:

Example pattern for a single fact type

Person()

The type does not need to be the actual class of some fact object. Patterns can refer to superclasses
or even interfaces, potentially matching facts from many different classes. For example, the
following pattern matches all objects in the working memory of the Drools rule engine:

Example pattern for all objects

Object() // Matches all objects in the working memory

The parentheses of a pattern enclose the constraints, such as the following constraint on the
person’s age:

Example pattern with a constraint

Person(age == 50)

A constraint is an expression that returns true or false. Pattern constraints in DRL are essentially
Java expressions with some enhancements, such as property access, and some differences, such as
equals() and !equals() semantics for == and != (instead of the usual same and not same semantics).

Any JavaBeans property can be accessed directly from pattern constraints. A bean property is
exposed internally using a standard JavaBeans getter that takes no arguments and returns
something. For example, the age property is written as age in DRL instead of the getter getAge():

DRL constraint syntax with JavaBeans properties

Person(age == 50)

// This is the same as the following getter format:

Person(getAge() == 50)

Drools uses the standard JDK Introspector class to achieve this mapping, so it follows the standard
JavaBeans specification. For optimal Drools rule engine performance, use the property access
format, such as age, instead of using getters explicitly, such as getAge().

109



Do not use property accessors to change the state of the object in a way that might
affect the rules because the Drools rule engine caches the results of the match
between invocations for higher efficiency.

For example, do not use property accessors in the following ways:

public int getAge() {
 age++; // Do not do this.
 return age;
}

public int getAge() {
 Date now = DateUtil.now(); // Do not do this.
 return DateUtil.differenceInYears(now, birthday);
}

Instead of following the second example, insert a fact that wraps the current date
in the working memory and update that fact between fireAllRules() as needed.

However, if the getter of a property cannot be found, the compiler uses the property name as a
fallback method name, without arguments:

Fallback method if object is not found

Person(age == 50)

// If `Person.getAge()` does not exist, the compiler uses the following syntax:

Person(age() == 50)

You can also nest access properties in patterns, as shown in the following example. Nested
properties are indexed by the Drools rule engine.

Example pattern with nested property access

Person(address.houseNumber == 50)

// This is the same as the following format:

Person(getAddress().getHouseNumber() == 50)

110



In stateful KIE sessions, use nested accessors carefully because the working
memory of the Drools rule engine is not aware of any of the nested values and
does not detect when they change. Either consider the nested values immutable
while any of their parent references are inserted into the working memory, or, if
you want to modify a nested value, mark all of the outer facts as updated. In the
previous example, when the houseNumber property changes, any Person with that
Address must be marked as updated.

You can use any Java expression that returns a boolean value as a constraint inside the parentheses
of a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

Example pattern with a constraint using property access and Java expression

Person(age == 50)

You can change the evaluation priority by using parentheses, as in any logical or mathematical
expression:

Example evaluation order of constraints

Person(age > 100 && (age % 10 == 0))

You can also reuse Java methods in constraints, as shown in the following example:

Example constraints with reused Java methods

Person(Math.round(weight / (height * height)) < 25.0)



Do not use constraints to change the state of the object in a way that might affect
the rules because the Drools rule engine caches the results of the match between
invocations for higher efficiency. Any method that is executed on a fact in the rule
conditions must be a read-only method. Also, the state of a fact should not change
between rule invocations unless those facts are marked as updated in the working
memory on every change.

For example, do not use a pattern constraint in the following ways:

Person(incrementAndGetAge() == 10) // Do not do this.

Person(System.currentTimeMillis() % 1000 == 0) // Do not do this.

Standard Java operator precedence applies to constraint operators in DRL, and DRL operators
follow standard Java semantics except for the == and != operators.

111

The == operator uses null-safe equals() semantics instead of the usual same semantics. For example,
the pattern Person(firstName == "John") is similar to
java.util.Objects.equals(person.getFirstName(), "John"), and because "John" is not null, the
pattern is also similar to "John".equals(person.getFirstName()).

The != operator uses null-safe !equals() semantics instead of the usual not same semantics. For
example, the pattern Person(firstName != "John") is similar to
!java.util.Objects.equals(person.getFirstName(), "John").

If the field and the value of a constraint are of different types, the Drools rule engine uses type
coercion to resolve the conflict and reduce compilation errors. For instance, if "ten" is provided as a
string in a numeric evaluator, a compilation error occurs, whereas "10" is coerced to a numeric 10.
In coercion, the field type always takes precedence over the value type:

Example constraint with a value that is coerced

Person(age == "10") // "10" is coerced to 10

For groups of constraints, you can use a delimiting comma , to use implicit and connective
semantics:

Example patterns with multiple constraints

// Person is at least 50 years old and weighs at least 80 kilograms:
Person(age > 50, weight > 80)

// Person is at least 50 years old, weighs at least 80 kilograms, and is taller than 2
meters:
Person(age > 50, weight > 80, height > 2)



Although the && and , operators have the same semantics, they are resolved with
different priorities. The && operator precedes the || operator, and both the && and
|| operators together precede the , operator. Use the comma operator at the top-
level constraint for optimal Drools rule engine performance and human
readability.

You cannot embed a comma operator in a composite constraint expression, such as in parentheses:

Example of misused comma in composite constraint expression

// Do not use the following format:
Person((age > 50, weight > 80) || height > 2)

// Use the following format instead:
Person((age > 50 && weight > 80) || height > 2)

112

3.1.8.2. Bound variables in patterns and constraints

You can bind variables to patterns and constraints to refer to matched objects in other portions of a
rule. Bound variables can help you define rules more efficiently or more consistently with how you
annotate facts in your data model. To differentiate more easily between variables and fields in a
rule, use the standard format $variable for variables, especially in complex rules. This convention
is helpful but not required in DRL.

For example, the following DRL rule uses the variable $p for a pattern with the Person fact:

Pattern with a bound variable

rule "simple rule"
 when
 $p : Person()
 then
 System.out.println("Person " + $p);
end

Similarly, you can also bind variables to properties in pattern constraints, as shown in the following
example:

// Two persons of the same age:
Person($firstAge : age) // Binding
Person(age == $firstAge) // Constraint expression

113



Constraint binding considers only the first atomic expression that follows it. In the
following example the pattern only binds the age of the person to the variable $a:

Person($a : age * 2 < 100)

For clearer and more efficient rule definitions, separate constraint bindings and
constraint expressions. Although mixed bindings and expressions are supported,
which can complicate patterns and affect evaluation efficiency.

// Do not use the following format:
Person($a : age * 2 < 100)

// Use the following format instead:
Person(age * 2 < 100, $a : age)

In the preceding example, if you want to bind to the variable $a the double of the
person’s age, you must make it an atomic expression by wrapping it in parentheses
as shown in the following example:

Person($a : (age * 2))

The Drools rule engine does not support bindings to the same declaration, but does support
unification of arguments across several properties. While positional arguments are always
processed with unification, the unification symbol := exists for named arguments.

The following example patterns unify the age property across two Person facts:

Example pattern with unification

Person($age := age)
Person($age := age)

Unification declares a binding for the first occurrence and constrains to the same value of the
bound field for sequence occurrences.

3.1.8.3. Nested constraints and inline casts

In some cases, you might need to access multiple properties of a nested object, as shown in the
following example:

Example pattern to access multiple properties

Person(name == "mark", address.city == "london", address.country == "uk")

You can group these property accessors to nested objects with the syntax .(<constraints>) for

114

more readable rules, as shown in the following example:

Example pattern with grouped constraints

Person(name == "mark", address.(city == "london", country == "uk"))

 The period prefix . differentiates the nested object constraints from a method call.

When you work with nested objects in patterns, you can use the syntax <type>#<subtype> to cast to a
subtype and make the getters from the parent type available to the subtype. You can use either the
object name or fully qualified class name, and you can cast to one or multiple subtypes, as shown in
the following examples:

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

// Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

// Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population >
10000000)

These example patterns cast Address to LongAddress, and additionally to DetailedCountry in the last
example, making the parent getters available to the subtypes in each case.

You can use the instanceof operator to infer the results of the specified type in subsequent uses of
that field with the pattern, as shown in the following example:

Person(name == "mark", address instanceof LongAddress, address.country == "uk")

If an inline cast is not possible (for example, if instanceof returns false), the evaluation is
considered false.

3.1.8.4. Date literal in constraints

By default, the Drools rule engine supports the date format dd-mmm-yyyy. You can customize the date
format, including a time format mask if needed, by providing an alternative format mask with the
system property drools.dateformat="dd-mmm-yyyy hh:mm". You can also customize the date format by
changing the language locale with the drools.defaultlanguage and drools.defaultcountry system
properties (for example, the locale of Thailand is set as drools.defaultlanguage=th and
drools.defaultcountry=TH).

115

Example pattern with a date literal restriction

Person(bornBefore < "27-Oct-2009")

3.1.8.5. Auto-boxing and primitive types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable
bound to an int primitive when used in a code block or expression will no longer need manual
unboxing; unlike early Drools versions where all primitives were autoboxed, requiring manual
unboxing. A variable bound to an object wrapper will remain as an object; the existing JDK 1.5 and
JDK 5 rules to handle auto-boxing and unboxing apply in this case. When evaluating field
constraints, the system attempts to coerce one of the values into a comparable format; so a
primitive is comparable to an object wrapper.

3.1.8.6. Supported operators in DRL pattern constraints

DRL supports standard Java semantics for operators in pattern constraints, with some exceptions
and with some additional operators that are unique in DRL. The following list summarizes the
operators that are handled differently in DRL constraints than in standard Java semantics or that
are unique in DRL constraints.

.(), #

Use the .() operator to group property accessors to nested objects, and use the # operator to cast
to a subtype in nested objects. Casting to a subtype makes the getters from the parent type
available to the subtype. You can use either the object name or fully qualified class name, and
you can cast to one or multiple subtypes.

Example patterns with nested objects

// Ungrouped property accessors:
Person(name == "mark", address.city == "london", address.country == "uk")

// Grouped property accessors:
Person(name == "mark", address.(city == "london", country == "uk"))


The period prefix . differentiates the nested object constraints from a method
call.

116

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

// Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

// Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population >
10000000)

!.

Use this operator to dereference a property in a null-safe way. The value to the left of the !.
operator must be not null (interpreted as != null) in order to give a positive result for pattern
matching.

Example constraint with null-safe dereferencing

Person($streetName : address!.street)

// This is internally rewritten in the following way:

Person(address != null, $streetName : address.street)

[]

Use this operator to access a List value by index or a Map value by key.

Example constraints with List and Map access

// The following format is the same as `childList(0).getAge() == 18`:
Person(childList[0].age == 18)

// The following format is the same as `credentialMap.get("jdoe").isValid()`:
Person(credentialMap["jdoe"].valid)

<, <=, >, >=

Use these operators on properties with natural ordering. For example, for Date fields, the <
operator means before, and for String fields, the operator means alphabetically before. These
properties apply only to comparable properties.

Example constraints with before operator

Person(birthDate < $otherBirthDate)

Person(firstName < $otherFirstName)

117

==, !=

Use these operators as equals() and !equals() methods in constraints, instead of the usual same
and not same semantics.

Example constraint with null-safe equality

Person(firstName == "John")

// This is similar to the following formats:

java.util.Objects.equals(person.getFirstName(), "John")
"John".equals(person.getFirstName())

Example constraint with null-safe not equality

Person(firstName != "John")

// This is similar to the following format:

!java.util.Objects.equals(person.getFirstName(), "John")

&&, ||

Use these operators to create an abbreviated combined relation condition that adds more than
one restriction on a field. You can group constraints with parentheses () to create a recursive
syntax pattern.

Example constraints with abbreviated combined relation

// Simple abbreviated combined relation condition using a single `&&`:
Person(age > 30 && < 40)

// Complex abbreviated combined relation using groupings:
Person(age ((> 30 && < 40) || (> 20 && < 25)))

// Mixing abbreviated combined relation with constraint connectives:
Person(age > 30 && < 40 || location == "london")

Figure 26. Abbreviated combined relation condition

Figure 27. Abbreviated combined relation condition withparentheses

matches, not matches

Use these operators to indicate that a field matches or does not match a specified Java regular

118

expression. Typically, the regular expression is a String literal, but variables that resolve to a
valid regular expression are also supported. These operators apply only to String properties. If
you use matches against a null value, the resulting evaluation is always false. If you use not
matches against a null value, the resulting evaluation is always true. As in Java, regular
expressions that you write as String literals must use a double backslash \\ to escape.

Example constraint to match or not match a regular expression

Person(country matches "(USA)?\\S*UK")

Person(country not matches "(USA)?\\S*UK")

contains, not contains

Use these operators to verify whether a field that is an Array or a Collection contains or does not
contain a specified value. These operators apply to Array or Collection properties, but you can
also use these operators in place of String.contains() and !String.contains() constraints checks.

Example constraints with contains and not contains for a Collection

// Collection with a specified field:
FamilyTree(countries contains "UK")

FamilyTree(countries not contains "UK")

// Collection with a variable:
FamilyTree(countries contains $var)

FamilyTree(countries not contains $var)

Example constraints with contains and not contains for a String literal

// Sting literal with a specified field:
Person(fullName contains "Jr")

Person(fullName not contains "Jr")

// String literal with a variable:
Person(fullName contains $var)

Person(fullName not contains $var)


For backward compatibility, the excludes operator is a supported synonym for
not contains.

memberOf, not memberOf

Use these operators to verify whether a field is a member of or is not a member of an Array or a

119

Collection that is defined as a variable. The Array or Collection must be a variable.

Example constraints with memberOf and not memberOf with a Collection

FamilyTree(person memberOf $europeanDescendants)

FamilyTree(person not memberOf $europeanDescendants)

soundslike

Use this operator to verify whether a word has almost the same sound, using English
pronunciation, as the given value (similar to the matches operator). This operator uses the
Soundex algorithm.

Example constraint with soundslike

// Match firstName "Jon" or "John":
Person(firstName soundslike "John")

str

Use this operator to verify whether a field that is a String starts with or ends with a specified
value. You can also use this operator to verify the length of the String.

Example constraints with str

// Verify what the String starts with:
Message(routingValue str[startsWith] "R1")

// Verify what the String ends with:
Message(routingValue str[endsWith] "R2")

// Verify the length of the String:
Message(routingValue str[length] 17)

in, notin

Use these operators to specify more than one possible value to match in a constraint (compound
value restriction). This functionality of compound value restriction is supported only in the in
and not in operators. The second operand of these operators must be a comma-separated list of
values enclosed in parentheses. You can provide values as variables, literals, return values, or
qualified identifiers. These operators are internally rewritten as a list of multiple restrictions
using the operators == or !=.

120

Figure 28. compoundValueRestriction

Example constraints with in and notin

Person($color : favoriteColor)
Color(type in ("red", "blue", $color))

Person($color : favoriteColor)
Color(type notin ("red", "blue", $color))

3.1.8.7. Operator precedence in DRL pattern constraints

DRL supports standard Java operator precedence for applicable constraint operators, with some
exceptions and with some additional operators that are unique in DRL. The following table lists
DRL operator precedence where applicable, from highest to lowest precedence:

Table 2. Operator precedence in DRL pattern constraints

Operator type Operators Notes

Nested or null-safe
property access

., .(), !. Not standard Java semantics

List or Map access [] Not standard Java semantics

Constraint binding : Not standard Java semantics

Multiplicative *, /%

Additive +, -

Shift >>, >>>, <<

Relational <, <=, >, >=, instanceof

Equality == != Uses equals() and !equals() semantics,
not standard Java same and not same
semantics

Non-short-circuiting AND &

Non-short-circuiting
exclusive OR

^

121

Operator type Operators Notes

Non-short-circuiting
inclusive OR

|

Logical AND &&

Logical OR ||

Ternary ? :

Comma-separated AND , Not standard Java semantics

3.1.8.8. Supported rule condition elements in DRL (keywords)

DRL supports the following rule condition elements (keywords) that you can use with the patterns
that you define in DRL rule conditions:

and

Use this to group conditional components into a logical conjunction. Infix and prefix and are
supported. You can group patterns explicitly with parentheses (). By default, all listed patterns
are combined with and when no conjunction is specified.

Figure 29. infixAnd

Figure 30. prefixAnd

Example patterns with and

//Infix `and`:
Color(colorType : type) and Person(favoriteColor == colorType)

//Infix `and` with grouping:
(Color(colorType : type) and (Person(favoriteColor == colorType) or Person(
favoriteColor == colorType))

// Prefix `and`:
(and Color(colorType : type) Person(favoriteColor == colorType))

// Default implicit `and`:
Color(colorType : type)
Person(favoriteColor == colorType)

122



Do not use a leading declaration binding with the and keyword (as you can with
or, for example). A declaration can only reference a single fact at a time, and if
you use a declaration binding with and, then when and is satisfied, it matches
both facts and results in an error.

Example misuse of and

// Causes compile error:
$person : (Person(name == "Romeo") and Person(name == "Juliet"))

or

Use this to group conditional components into a logical disjunction. Infix and prefix or are
supported. You can group patterns explicitly with parentheses (). You can also use pattern
binding with or, but each pattern must be bound separately.

Figure 31. infixOr

Figure 32. prefixOr

Example patterns with or

//Infix `or`:
Color(colorType : type) or Person(favoriteColor == colorType)

//Infix `or` with grouping:
(Color(colorType : type) or (Person(favoriteColor == colorType) and Person(
favoriteColor == colorType))

// Prefix `or`:
(or Color(colorType : type) Person(favoriteColor == colorType))

Example patterns with or and pattern binding

pensioner : (Person(sex == "f", age > 60) or Person(sex == "m", age > 65))

(or pensioner : Person(sex == "f", age > 60)
 pensioner : Person(sex == "m", age > 65))

The Drools rule engine does not directly interpret the or element but uses logical
transformations to rewrite a rule with or as a number of sub-rules. This process ultimately
results in a rule that has a single or as the root node and one sub-rule for each of its condition
elements. Each sub-rule is activated and executed like any normal rule, with no special behavior
or interaction between the sub-rules.

123

Therefore, consider the or condition element a shortcut for generating two or more similar rules
that, in turn, can create multiple activations when two or more terms of the disjunction are true.

exists

Use this to specify facts and constraints that must exist. This option is triggered on only the first
match, not subsequent matches. If you use this element with multiple patterns, enclose the
patterns with parentheses ().

Figure 33. Exists

Example patterns with exists

exists Person(firstName == "John")

exists (Person(firstName == "John", age == 42))

exists (Person(firstName == "John") and
 Person(lastName == "Doe"))

not

Use this to specify facts and constraints that must not exist. If you use this element with multiple
patterns, enclose the patterns with parentheses ().

Figure 34. Not

Example patterns with not

not Person(firstName == "John")

not (Person(firstName == "John", age == 42))

not (Person(firstName == "John") and
 Person(lastName == "Doe"))

forall

Use this to verify whether all facts that match the first pattern match all the remaining patterns.
When a forall construct is satisfied, the rule evaluates to true. This element is a scope delimiter,
so it can use any previously bound variable, but no variable bound inside of it is available for
use outside of it.

Figure 35. Forall

124

Example rule with forall

rule "All full-time employees have red ID badges"
 when
 forall($emp : Employee(type == "fulltime")
 Employee(this == $emp, badgeColor = "red"))
 then
 // True, all full-time employees have red ID badges.
end

In this example, the rule selects all Employee objects whose type is "fulltime". For each fact that
matches this pattern, the rule evaluates the patterns that follow (badge color) and if they match,
the rule evaluates to true.

To state that all facts of a given type in the working memory of the Drools rule engine must
match a set of constraints, you can use forall with a single pattern for simplicity.

Example rule with forall and a single pattern

rule "All full-time employees have red ID badges"
 when
 forall(Employee(badgeColor = "red"))
 then
 // True, all full-time employees have red ID badges.
end

You can use forall constructs with multiple patterns or nest them with other condition
elements, such as inside a not element construct.

Example rule with forall and multiple patterns

rule "All employees have health and dental care programs"
 when
 forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp)
)
 then
 // True, all employees have health and dental care.
end

125

Example rule with forall and not

rule "Not all employees have health and dental care"
 when
 not (forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp))
)
 then
 // True, not all employees have health and dental care.
end


The format forall(p1 p2 p3 …) is equivalent to not(p1 and not(and p2 p3 …
)).

from

Use this to specify a data source for a pattern. This enables the Drools rule engine to reason over
data that is not in the working memory. The data source can be a sub-field on a bound variable
or the result of a method call. The expression used to define the object source is any expression
that follows regular MVEL syntax. Therefore, the from element enables you to easily use object
property navigation, execute method calls, and access maps and collection elements.

Figure 36. from

Example rule with from and pattern binding

rule "Validate zipcode"
 when
 Person($personAddress : address)
 Address(zipcode == "23920W") from $personAddress
 then
 // Zip code is okay.
end

Example rule with from and a graph notation

rule "Validate zipcode"
 when
 $p : Person()
 $a : Address(zipcode == "23920W") from $p.address
 then
 // Zip code is okay.
end

126

Example rule with from to iterate over all objects

rule "Apply 10% discount to all items over US$ 100 in an order"
 when
 $order : Order()
 $item : OrderItem(value > 100) from $order.items
 then
 // Apply discount to `$item`.
end



For large collections of objects, instead of adding an object with a large graph
that the Drools rule engine must iterate over frequently, add the collection
directly to the KIE session and then join the collection in the condition, as
shown in the following example:

when
 $order : Order()
 OrderItem(value > 100, order == $order)

Example rule with from and lock-on-active rule attribute

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
 when
 $p : Person()
 $a : Address(state == "NC") from $p.address
 then
 modify ($p) {} // Assign the person to sales region 1.
end

rule "Apply a discount to people in the city of Raleigh"
 ruleflow-group "test"
 lock-on-active true
 when
 $p : Person()
 $a : Address(city == "Raleigh") from $p.address
 then
 modify ($p) {} // Apply discount to the person.
end

127



Using from with lock-on-active rule attribute can result in rules not being
executed. You can address this issue in one of the following ways:

• Avoid using the from element when you can insert all facts into the working
memory of the Drools rule engine or use nested object references in your
constraint expressions.

• Place the variable used in the modify() block as the last sentence in your
rule condition.

• Avoid using the lock-on-active rule attribute when you can explicitly
manage how rules within the same ruleflow group place activations on one
another.

The pattern that contains a from clause cannot be followed by another pattern starting with a
parenthesis. The reason for this restriction is that the DRL parser reads the from expression as
"from $l (String() or Number())" and it cannot differentiate this expression from a function
call. The simplest workaround to this is to wrap the from clause in parentheses, as shown in the
following example:

Example rules with from used incorrectly and correctly

// Do not use `from` in this way:
rule R
 when
 $l : List()
 String() from $l
 (String() or Number())
 then
 // Actions
end

// Use `from` in this way instead:
rule R
 when
 $l : List()
 (String() from $l)
 (String() or Number())
 then
 // Actions
end

entry-point

Use this to define an entry point, or event stream, corresponding to a data source for the pattern.
This element is typically used with the from condition element. You can declare an entry point
for events so that the Drools rule engine uses data from only that entry point to evaluate the
rules. You can declare an entry point either implicitly by referencing it in DRL rules or explicitly
in your Java application.

128

Example rule with from entry-point

rule "Authorize withdrawal"
 when
 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
 then
 // Authorize withdrawal.
end

Example Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual:
KieSession session = ...

// Create a reference to the entry point:
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point:
atmStream.insert(aWithdrawRequest);

collect

Use this to define a collection of objects that the rule can use as part of the condition. The rule
obtains the collection either from a specified source or from the working memory of the Drools
rule engine. The result pattern of the collect element can be any concrete class that implements
the java.util.Collection interface and provides a default no-arg public constructor. You can use
Java collections like List, LinkedList, and HashSet, or your own class. If variables are bound
before the collect element in a condition, you can use the variables to constrain both your
source and result patterns. However, any binding made inside the collect element is not
available for use outside of it.

Figure 37. Collect

129

Example rule with collect

import java.util.List

rule "Raise priority when system has more than three pending alarms"
 when
 $system : System()
 $alarms : List(size >= 3)
 from collect(Alarm(system == $system, status == 'pending'))
 then
 // Raise priority because `$system` has three or more `$alarms` pending.
end

In this example, the rule assesses all pending alarms in the working memory of the Drools rule
engine for each given system and groups them in a List. If three or more alarms are found for a
given system, the rule is executed.

You can also use the collect element with nested from elements, as shown in the following
example:

Example rule with collect and nested from

import java.util.LinkedList;

rule "Send a message to all parents"
 when
 $town : Town(name == 'Paris')
 $mothers : LinkedList()
 from collect(Person(children > 0)
 from $town.getPeople()
)
 then
 // Send a message to all parents.
end

accumulate

Use this to iterate over a collection of objects, execute custom actions for each of the elements,
and return one or more result objects (if the constraints evaluate to true). This element is a more
flexible and powerful form of the collect condition element. You can use predefined functions
in your accumulate conditions or implement custom functions as needed. You can also use the
abbreviation acc for accumulate in rule conditions.

Use the following format to define accumulate conditions in rules:

Preferred format for accumulate

accumulate(<source pattern>; <functions> [;<constraints>])

130

Figure 38. Accumulate


Although the Drools rule engine supports alternate formats for the accumulate
element for backward compatibility, this format is preferred for optimal
performance in rules and applications.

The Drools rule engine supports the following predefined accumulate functions. These functions
accept any expression as input.

• average

• min

• max

• count

• sum

• collectList

• collectSet

In the following example rule, min, max, and average are accumulate functions that calculate the
minimum, maximum, and average temperature values over all the readings for each sensor:

Example rule with accumulate to calculate temperature values

rule "Raise alarm"
 when
 $s : Sensor()
 accumulate(Reading(sensor == $s, $temp : temperature);
 $min : min($temp),
 $max : max($temp),
 $avg : average($temp);
 $min < 20, $avg > 70)
 then
 // Raise the alarm.
end

131

The following example rule uses the average function with accumulate to calculate the average
profit for all items in an order:

Example rule with accumulate to calculate average profit

rule "Average profit"
 when
 $order : Order()
 accumulate(OrderItem(order == $order, $cost : cost, $price : price);
 $avgProfit : average(1 - $cost / $price))
 then
 // Average profit for `$order` is `$avgProfit`.
end

To use custom, domain-specific functions in accumulate conditions, create a Java class that
implements the org.kie.api.runtime.rule.AccumulateFunction interface. For example, the
following Java class defines a custom implementation of an AverageData function:

Example Java class with custom implementation of average function

// An implementation of an accumulator capable of calculating average values

public class AverageAccumulateFunction implements org.kie.api.runtime.rule
.AccumulateFunction<AverageAccumulateFunction.AverageData> {

 public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {

 }

 public void writeExternal(ObjectOutput out) throws IOException {

 }

 public static class AverageData implements Externalizable {
 public int count = 0;
 public double total = 0;

 public AverageData() {}

 public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {
 count = in.readInt();
 total = in.readDouble();
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(count);
 out.writeDouble(total);
 }

132

 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#createContext()
 */
 public AverageData createContext() {
 return new AverageData();
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#init(java.io.Serializable)
 */
 public void init(AverageData context) {
 context.count = 0;
 context.total = 0;
 }

 /* (non-Javadoc)
 * @see
org.kie.api.runtime.rule.AccumulateFunction#accumulate(java.io.Serializable,
java.lang.Object)
 */
 public void accumulate(AverageData context,
 Object value) {
 context.count++;
 context.total += ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see
org.kie.api.runtime.rule.AccumulateFunction#reverse(java.io.Serializable,
java.lang.Object)
 */
 public void reverse(AverageData context, Object value) {
 context.count--;
 context.total -= ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see
org.kie.api.runtime.rule.AccumulateFunction#getResult(java.io.Serializable)
 */
 public Object getResult(AverageData context) {
 return new Double(context.count == 0 ? 0 : context.total / context.count
);
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#supportsReverse()
 */

133

 public boolean supportsReverse() {
 return true;
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#getResultType()
 */
 public Class< ? > getResultType() {
 return Number.class;
 }

}

To use the custom function in a DRL rule, import the function using the import accumulate
statement:

Format to import a custom function

import accumulate <class_name> <function_name>

Example rule with the imported average function

import accumulate AverageAccumulateFunction.AverageData average

rule "Average profit"
 when
 $order : Order()
 accumulate(OrderItem(order == $order, $cost : cost, $price : price);
 $avgProfit : average(1 - $cost / $price))
 then
 // Average profit for `$order` is `$avgProfit`.
end



For backward compatibility, the Drools rule engine also supports the
configuration of accumulate functions through configuration files and system
properties, but this is a deprecated method. To configure the average function
from the previous example using the configuration file or system property, set a
property as shown in the following example:

drools.accumulate.function.average =
AverageAccumulateFunction.AverageData

Note that drools.accumulate.function is a required prefix, average is how the
function is used in the DRL files, and AverageAccumulateFunction.AverageData is
the fully qualified name of the class that implements the function behavior.

134

accumulate alternate syntax for a single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and
expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility
purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may add
a pattern for the result object and use the "from" keyword to link it to the accumulate result.

Example: a rule to apply a 10% discount on orders over $100 could be written in the following
way:

rule "Apply 10% discount to orders over US$ 100,00"
when
 $order : Order()
 $total : Number(doubleValue > 100)
 from accumulate(OrderItem(order == $order, $value : value),
 sum($value))
then
 // apply discount to $order
end

In the previous example, the accumulate element is using only one function (sum), and so, the
rules author opted to explicitly write a pattern for the result type of the accumulate function
(Number) and write the constraints inside it. There are no problems in using this syntax over the
compact syntax presented before, except that is is a bit more verbose. Also note that it is not
allowed to use both the return type and the functions binding in the same accumulate statement.

Compile-time checks are performed in order to ensure the pattern used with the "from" keyword
is assignable from the result of the accumulate function used.


With this syntax, the "from" binds to the single result returned by the
accumulate function, and it does not iterate.

In the previous example, "$total" is bound to the result returned by the accumulate sum()
function.

As another example however, if the result of the accumulate function is a collection, "from" still
binds to the single result and it does not iterate:

rule "Person names"
when
 $x : Object() from accumulate(MyPerson($val : name);
 collectList($val))
then
 // $x is a List
end

The bound "$x : Object()" is the List itself, returned by the collectList accumulate function used.

135

This is an important distinction to highlight, as the "from" keyword can also be used separately of
accumulate, to iterate over the elements of a collection:

rule "Iterate the numbers"
when
 $xs : List()
 $x : Integer() from $xs
then
 // $x matches and binds to each Integer in the collection
end

While this syntax is still supported for backward compatibility purposes, for this and other
reasons we encourage rule authors to make use instead of the preferred accumulate syntax
(described previously), to avoid any potential pitfalls.

accumulate with inline custom code

Another possible syntax for the accumulate is to define inline custom code, instead of using
accumulate functions.



The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them,
as well as the inability of reusing that code. Implementing your own
accumulate functions is very simple and straightforward, they are easy to unit
test and to use. This form of accumulate is supported for backward
compatibility only.

Only limited support for inline accumulate is provided while using the
executable model. For example, you cannot use an external binding in the code
while using the MVEL dialect:

rule R
dialect "mvel"
when
 String($l : length)
 $sum : Integer() from accumulate (
 Person(age > 18, $age : age),
 init(int sum = 0 * $l;),
 action(sum += $age;),
 reverse(sum -= $age;),
 result(sum)
)

The general syntax of the accumulate CE with inline custom code is:

136

<result pattern> from accumulate(<source pattern>,
 init(<init code>),
 action(<action code>),
 reverse(<reverse code>),
 result(<result expression>))

The meaning of each of the elements is the following:

• <source pattern>: the source pattern is a regular pattern that the Drools rule engine will try
to match against each of the source objects.

• <init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

• <action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

• <reverse code>: this is an optional semantic block of code in the selected dialect that if
present will be executed for each source object that no longer matches the source pattern.
The objective of this code block is to undo any calculation done in the <action code> block, so
that the Drools rule engine can do decremental calculation when a source object is modified
or deleted, hugely improving performance of these operations.

• <result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

• <result pattern>: this is a regular pattern that the Drools rule engine tries to match against
the object returned from the <result expression>. If it matches, the accumulate conditional
element evaluates to true and the Drools rule engine proceeds with the evaluation of the
next CE in the rule. If it does not matches, the accumulate CE evaluates to false and the Drools
rule engine stops evaluating CEs for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% discount to orders over US$ 100,00"
when
 $order : Order()
 $total : Number(doubleValue > 100)
 from accumulate(OrderItem(order == $order, $value : value),
 init(double total = 0;),
 action(total += $value;),
 reverse(total -= $value;),
 result(total))
then
 // apply discount to $order
end

In the previous example, for each Order in the Working Memory, the Drools rule engine will
execute the init code initializing the total variable to zero. Then it will iterate over all OrderItem
objects for that order, executing the action for each one (in the example, it will sum the value of

137

all items into the total variable). After iterating over all OrderItem objects, it will return the value
corresponding to the result expression (in the previous example, the value of variable total).
Finally, the Drools rule engine will try to match the result with the Number pattern, and if the
double value is greater than 100, the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an
expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply to
that dialect’s specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and delete.

The accumulate CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rule "Accumulate using custom objects"
when
 $person : Person($likes : likes)
 $cheesery : Cheesery(totalAmount > 100)
 from accumulate($cheese : Cheese(type == $likes),
 init(Cheesery cheesery = new Cheesery();),
 action(cheesery.addCheese($cheese);),
 reverse(cheesery.removeCheese($cheese);),
 result(cheesery));
then
 // do something
end

eval

The conditional element eval is essentially a catch-all which allows any semantic code (that
returns a primitive boolean) to be executed. This code can refer to variables that were bound in
the conditions of the rule and functions in the rule package. Overuse of eval reduces the
declarativeness of your rules and can result in a poorly performing Drools rule engine. While
eval can be used anywhere in the patterns, it is typically added as the last conditional element in
the conditions of a rule.

Figure 39. Eval

Instances of eval cannot be indexed and thus are not as efficient as Field Constraints. However
this makes them ideal for being used when functions return values that change over time, which
is not allowed within Field Constraints.

For those who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags
are equivalent to binding a variable to an appropriate type, and then using it in an eval node.

138

p1 : Parameter()
p2 : Parameter()
eval(p1.getList().containsKey(p2.getItem()))

p1 : Parameter()
p2 : Parameter()
// call function isValid in the LHS
eval(isValid(p1, p2))

3.1.8.9. OOPath syntax with graphs of objects in DRL rule conditions

OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of
objects in DRL rule condition constraints. OOPath uses the compact notation from XPath for
navigating through related elements while handling collections and filtering constraints, and is
specifically useful for graphs of objects.

When the field of a fact is a collection, you can use the from condition element (keyword) to bind
and reason over all the items in that collection one by one. If you need to browse a graph of objects
in the rule condition constraints, the extensive use of the from condition element results in a
verbose and repetitive syntax, as shown in the following example:

Example rule that browses a graph of objects with from

rule "Find all grades for Big Data exam"
 when
 $student: Student($plan: plan)
 $exam: Exam(course == "Big Data") from $plan.exams
 $grade: Grade() from $exam.grades
 then
 // Actions
end

In this example, the domain model contains a Student object with a Plan of study. The Plan can have
zero or more Exam instances and an Exam can have zero or more Grade instances. Only the root object
of the graph, the Student in this case, needs to be in the working memory of the Drools rule engine
for this rule setup to function.

As a more efficient alternative to using extensive from statements, you can use the abbreviated
OOPath syntax, as shown in the following example:

139

Example rule that browses a graph of objects with OOPath syntax

rule "Find all grades for Big Data exam"
 when
 Student($grade: /plan/exams[course == "Big Data"]/grades)
 then
 // Actions
end

Formally, the core grammar of an OOPath expression is defined in extended Backus-Naur form
(EBNF) notation in the following way:

EBNF notation for OOPath expressions

OOPExpr = [ID (":" | ":=")] ("/" | "?/") OOPSegment { ("/" | "?/" | ".")
OOPSegment } ;
OOPSegment = ID ["#" ID] ["[" (Number | Constraints) "]"]

In practice, an OOPath expression has the following features and capabilities:

• Starts with a forward slash / or with a question mark and forward slash ?/ if it is a non-reactive
OOPath expression (described later in this section).

• Can dereference a single property of an object with the period . operator.

• Can dereference multiple properties of an object with the forward slash / operator. If a
collection is returned, the expression iterates over the values in the collection.

• Can filter out traversed objects that do not satisfy one or more constraints. The constraints are
written as predicate expressions between square brackets, as shown in the following example:

Constraints as a predicate expression

Student($grade: /plan/exams[course == "Big Data"]/grades)

• Can downcast a traversed object to a subclass of the class declared in the generic collection.
Subsequent constraints can also safely access the properties declared only in that subclass, as
shown in the following example. Objects that are not instances of the class specified in this
inline cast are automatically filtered out.

Constraints with downcast objects

Student($grade: /plan/exams#AdvancedExam[course == "Big Data", level > 3]/grades
)

• Can backreference an object of the graph that was traversed before the currently iterated
graph. For example, the following OOPath expression matches only the grades that are above
the average for the passed exam:

140

Constraints with backreferenced object

Student($grade: /plan/exams/grades[result > ../averageResult])

• Can recursively be another OOPath expression, as shown in the following example:

Recursive constraint expression

Student($exam: /plan/exams[/grades[result > 20]])

• Can access objects by their index between square brackets [], as shown in the following
example. To adhere to Java convention, OOPath indexes are 0-based, while XPath indexes are 1-
based.

Constraints with access to objects by index

Student($grade: /plan/exams[0]/grades)

OOPath expressions can be reactive or non-reactive. The Drools rule engine does not react to
updates involving a deeply nested object that is traversed during the evaluation of an OOPath
expression.

To make these objects reactive to changes, modify the objects to extend the class
org.drools.core.phreak.ReactiveObject. After you modify an object to extend the ReactiveObject
class, the domain object invokes the inherited method notifyModification to notify the Drools rule
engine when one of the fields has been updated, as shown in the following example:

Example object method to notify the Drools rule engine that an exam has been moved to a different course

public void setCourse(String course) {
 this.course = course;
 notifyModification(this);
 }

With the following corresponding OOPath expression, when an exam is moved to a different
course, the rule is re-executed and the list of grades matching the rule is recomputed:

Example OOPath expression from "Big Data" rule

Student($grade: /plan/exams[course == "Big Data"]/grades)

You can also use the ?/ separator instead of the / separator to disable reactivity in only one sub-
portion of an OOPath expression, as shown in the following example:

Example OOPath expression that is partially non-reactive

Student($grade: /plan/exams[course == "Big Data"]?/grades)

141

With this example, the Drools rule engine reacts to a change made to an exam or if an exam is
added to the plan, but not if a new grade is added to an existing exam.

If an OOPath portion is non-reactive, all remaining portions of the OOPath expression also become
non-reactive. For example, the following OOPath expression is completely non-reactive:

Example OOPath expression that is completely non-reactive

Student($grade: ?/plan/exams[course == "Big Data"]/grades)

For this reason, you cannot use the ?/ separator more than once in the same OOPath expression.
For example, the following expression causes a compilation error:

Example OOPath expression with duplicate non-reactivity markers

Student($grade: /plan?/exams[course == "Big Data"]?/grades)

Another alternative for enabling OOPath expression reactivity is to use the dedicated
implementations for List and Set interfaces in Drools. These implementations are the ReactiveList
and ReactiveSet classes. A ReactiveCollection class is also available. The implementations also
provide reactive support for performing mutable operations through the Iterator and ListIterator
classes.

The following example class uses these classes to configure OOPath expression reactivity:

Example Java class to configure OOPath expression reactivity

public class School extends AbstractReactiveObject {
 private String name;
 private final List<Child> children = new ReactiveList<Child>(); ①

 public void setName(String name) {
 this.name = name;
 notifyModification(); ②
 }

 public void addChild(Child child) {
 children.add(child); ③
 // No need to call `notifyModification()` here
 }
 }

① Uses the ReactiveList instance for reactive support over the standard Java List instance.

② Uses the required notifyModification() method for when a field is changed in reactive support.

③ The children field is a ReactiveList instance, so the notifyModification() method call is not
required. The notification is handled automatically, like all other mutating operations
performed over the children field.

142

3.1.8.10. Railroad diagrams for rule condition elements in DRL

143

144

145

146

147

148

149

150

151

3.1.9. Rule actions in DRL (THEN)

The then part of the rule (also known as the Right Hand Side (RHS) of the rule) contains the actions
to be performed when the conditional part of the rule has been met. Actions consist of one or more
methods that execute consequences based on the rule conditions and on available data objects in
the package. For example, if a bank requires loan applicants to be over 21 years of age (with a rule
condition Applicant(age < 21)) and a loan applicant is under 21 years old, the then action of an
"Underage" rule would be setApproved(false), declining the loan because the applicant is under
age.

The main purpose of rule actions is to insert, delete, or modify data in the working memory of the
Drools rule engine. Effective rule actions are small, declarative, and readable. If you need to use
imperative or conditional code in rule actions, then divide the rule into multiple smaller and more
declarative rules.

Example rule for loan application age limit

rule "Underage"
 when
 application : LoanApplication()
 Applicant(age < 21)
 then
 application.setApproved(false);
 application.setExplanation("Underage");
end

3.1.9.1. Supported rule action methods in DRL

DRL supports the following rule action methods that you can use in DRL rule actions. You can use
these methods to modify the working memory of the Drools rule engine without having to first
reference a working memory instance. These methods act as shortcuts to the methods provided by
the RuleContext class in your Drools distribution.

For all rule action methods, see the Drools RuleContext.java page in GitHub.

set

Use this to set the value of a field.

set<field> (<value>)

152

https://github.com/kiegroup/droolsjbpm-knowledge/blob/7.59.x/kie-api/src/main/java/org/kie/api/runtime/rule/RuleContext.java

Example rule action to set the values of a loan application approval

$application.setApproved (false);
$application.setExplanation("has been bankrupt");

modify

Use this to specify fields to be modified for a fact and to notify the Drools rule engine of the
change. This method provides a structured approach to fact updates. It combines the update
operation with setter calls to change object fields.

modify (<fact-expression>) {
 <expression>,
 <expression>,
 ...
}

Example rule action to modify a loan application amount and approval

modify(LoanApplication) {
 setAmount(100),
 setApproved (true)
}

update

Use this to specify fields and the entire related fact to be updated and to notify the Drools rule
engine of the change. After a fact has changed, you must call update before changing another fact
that might be affected by the updated values. To avoid this added step, use the modify method
instead.

update (<object, <handle>) // Informs the Drools rule engine that an object has
changed

update (<object>) // Causes `KieSession` to search for a fact handle of the
object

Example rule action to update a loan application amount and approval

LoanApplication.setAmount(100);
update(LoanApplication);


If you provide property-change listeners, you do not need to call this method
when an object changes. For more information about property-change listeners,
see [property-change-listeners-con_decision-engine].

153

insert

Use this to insert a new fact into the working memory of the Drools rule engine and to define
resulting fields and values as needed for the fact.

insert(new <object>);

Example rule action to insert a new loan applicant object

insert(new Applicant());

insertLogical

Use this to insert a new fact logically into the Drools rule engine. The Drools rule engine is
responsible for logical decisions on insertions and retractions of facts. After regular or stated
insertions, facts must be retracted explicitly. After logical insertions, the facts that were inserted
are automatically retracted when the conditions in the rules that inserted the facts are no longer
true.

insertLogical(new <object>);

Example rule action to logically insert a new loan applicant object

insertLogical(new Applicant());

delete

Use this to remove an object from the Drools rule engine. The keyword retract is also supported
in DRL and executes the same action, but delete is typically preferred in DRL code for
consistency with the keyword insert.

delete(<object>);

Example rule action to delete a loan applicant object

delete(Applicant);

3.1.9.2. Other rule action methods from drools variable

In addition to the standard rule action methods, the Drools rule engine supports methods in
conjunction with the predefined drools variable that you can also use in rule actions.

You can use the drools variable to call methods from the org.kie.api.runtime.rule.RuleContext
class in your Drools distribution, which is also the class that the standard rule action methods are
based on. For all drools rule action options, see the Drools RuleContext.java page in GitHub.

The drools variable contains methods that provide information about the firing rule and the set of

154

https://github.com/kiegroup/droolsjbpm-knowledge/blob/7.59.x/kie-api/src/main/java/org/kie/api/runtime/rule/RuleContext.java

facts that activated the firing rule:

• drools.getRule().getName(): Returns the name of the currently firing rule.

• drools.getMatch(): Returns the Match that activated the currently firing rule. It contains
information that is useful for logging and debugging purposes, for instance
drools.getMatch().getObjects() returns the list of objects, enabling rule to fire in the proper
tuple order.

From the drools variable, you can also obtain a reference to the KieRuntime providing useful
methods to interact with the running session, for example:

• drools.getKieRuntime().halt(): Terminates rule execution if a user or application previously
called fireUntilHalt(). When a user or application calls fireUntilHalt() method, the Drools rule
engine starts in active mode and evaluates rules until the user or application explicitly calls
halt() method. Otherwise, by default, the Drools rule engine runs in passive mode and
evaluates rules only when a user or an application explicitly calls fireAllRules() method.

• drools.getKieRuntime().getAgenda(): Returns a reference to the KIE session Agenda, and in turn
provides access to rule activation groups, rule agenda groups, and ruleflow groups.

Example call to access agenda group "CleanUp" and set the focus

drools.getKieRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

+ This example sets the focus to a specified agenda group to which the rule belongs.

• drools.getKieRuntime().setGlobal(), ~.getGlobal(), ~.getGlobals(): Sets or retrieves global
variables.

• drools.getKieRuntime().getEnvironment(): Returns the runtime Environment, similar to your
operating system environment.

• drools.getKieRuntime().getQueryResults(<string> query): Runs a query and returns the results.

3.1.9.3. Advanced rule actions with conditional and named consequences

In general, effective rule actions are small, declarative, and readable. However, in some cases, the
limitation of having a single consequence for each rule can be challenging and lead to verbose and
repetitive rule syntax, as shown in the following example rules:

155

Example rules with verbose and repetitive syntax

rule "Give 10% discount to customers older than 60"
 when
 $customer : Customer(age > 60)
 then
 modify($customer) { setDiscount(0.1) };
end

rule "Give free parking to customers older than 60"
 when
 $customer : Customer(age > 60)
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
end

A partial solution to the repetition is to make the second rule extend the first rule, as shown in the
following modified example:

Partially enhanced example rules with an extended condition

rule "Give 10% discount to customers older than 60"
 when
 $customer : Customer(age > 60)
 then
 modify($customer) { setDiscount(0.1) };
end

rule "Give free parking to customers older than 60"
 extends "Give 10% discount to customers older than 60"
 when
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
end

As a more efficient alternative, you can consolidate the two rules into a single rule with modified
conditions and labelled corresponding rule actions, as shown in the following consolidated
example:

156

Consolidated example rule with conditional and named consequences

rule "Give 10% discount and free parking to customers older than 60"
 when
 $customer : Customer(age > 60)
 do[giveDiscount]
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
 then[giveDiscount]
 modify($customer) { setDiscount(0.1) };
end

This example rule uses two actions: the usual default action and another action named
giveDiscount. The giveDiscount action is activated in the condition with the keyword do when a
customer older than 60 years old is found in the KIE base, regardless of whether or not the
customer owns a car.

You can configure the activation of a named consequence with an additional condition, such as the
if statement in the following example. The condition in the if statement is always evaluated on the
pattern that immediately precedes it.

Consolidated example rule with an additional condition

rule "Give free parking to customers older than 60 and 10% discount to golden ones
among them"
 when
 $customer : Customer(age > 60)
 if (type == "Golden") do[giveDiscount]
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
 then[giveDiscount]
 modify($customer) { setDiscount(0.1) };
end

You can also evaluate different rule conditions using a nested if and else if construct, as shown in
the following more complex example:

157

Consolidated example rule with more complex conditions

rule "Give free parking and 10% discount to over 60 Golden customer and 5% to Silver
ones"
 when
 $customer : Customer(age > 60)
 if (type == "Golden") do[giveDiscount10]
 else if (type == "Silver") break[giveDiscount5]
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
 then[giveDiscount10]
 modify($customer) { setDiscount(0.1) };
 then[giveDiscount5]
 modify($customer) { setDiscount(0.05) };
end

This example rule gives a 10% discount and free parking to Golden customers over 60, but only a
5% discount without free parking to Silver customers. The rule activates the consequence named
giveDiscount5 with the keyword break instead of do. The keyword do schedules a consequence in the
Drools rule engine agenda, enabling the remaining part of the rule conditions to continue being
evaluated, while break blocks any further condition evaluation. If a named consequence does not
correspond to any condition with do but is activated with break, the rule fails to compile because the
conditional part of the rule is never reached.

3.1.10. Comments in DRL files

DRL supports single-line comments prefixed with a double forward slash // and multi-line
comments enclosed with a forward slash and asterisk /* … */. You can use DRL comments to
annotate rules or any related components in DRL files. DRL comments are ignored by the Drools
rule engine when the DRL file is processed.

Example rule with comments

rule "Underage"
 // This is a single-line comment.
 when
 $application : LoanApplication() // This is an in-line comment.
 Applicant(age < 21)
 then
 /* This is a multi-line comment
 in the rule actions. */
 $application.setApproved(false);
 $application.setExplanation("Underage");
end

Figure 40. Multi-line comment

158

 The hash symbol # is not supported for DRL comments.

3.1.11. Error messages for DRL troubleshooting

Drools provides standardized messages for DRL errors to help you troubleshoot and resolve
problems in your DRL files. The error messages use the following format:

Figure 41. Error message format for DRL file problems

• 1st Block: Error code

• 2nd Block: Line and column in the DRL source where the error occurred

• 3rd Block: Description of the problem

• 4th Block: Component in the DRL source (rule, function, query) where the error occurred

• 5th Block: Pattern in the DRL source where the error occurred (if applicable)

Drools supports the following standardized error messages:

101: no viable alternative

Indicates that the parser reached a decision point but could not identify an alternative.

Example rule with incorrect spelling

1: rule "simple rule"
2: when
3: exists Person()
4: exits Student() // Must be `exists`
5: then
6: end

Error message

[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule "simple rule"

Example rule without a rule name

1: package org.drools.examples;
2: rule // Must be `rule "rule name"` (or `rule rule_name` if no spacing)
3: when
4: Object()
5: then
6: System.out.println("A RHS");
7: end

159

Error message

[ERR 101] Line 3:2 no viable alternative at input 'when'

In this example, the parser encountered the keyword when but expected the rule name, so it flags
when as the incorrect expected token.

Example rule with incorrect syntax

1: rule "simple rule"
2: when
3: Student(name == "Andy) // Must be `"Andy"`
4: then
5: end

Error message

[ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule "simple rule" in
pattern Student


A line and column value of 0:-1 means the parser reached the end of the source
file (<eof>) but encountered incomplete constructs, usually due to missing
quotation marks "…", apostrophes '…', or parentheses (…).

102: mismatched input

Indicates that the parser expected a particular symbol that is missing at the current input
position.

Example rule with an incomplete rule statement

1: rule simple_rule
2: when
3: $p : Person(
 // Must be a complete rule statement

Error message

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule "simple rule" in
pattern Person


A line and column value of 0:-1 means the parser reached the end of the source
file (<eof>) but encountered incomplete constructs, usually due to missing
quotation marks "…", apostrophes '…', or parentheses (…).

160

Example rule with incorrect syntax

1: package org.drools.examples;
2:
3: rule "Wrong syntax"
4: when
5: not(Car((type == "tesla", price == 10000) || (type == "kia", price ==
1000)) from $carList)
 // Must use `&&` operators instead of commas `,`
6: then
7: System.out.println("OK");
8: end

Error messages

[ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule "Wrong syntax" in
pattern Car
[ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Wrong syntax"
[ERR 102] Line 5:106 mismatched input ')' expecting 'then' in rule "Wrong syntax"

In this example, the syntactic problem results in multiple error messages related to each other.
The single solution of replacing the commas , with && operators resolves all errors. If you
encounter multiple errors, resolve one at a time in case errors are consequences of previous
errors.

103: failed predicate

Indicates that a validating semantic predicate evaluated to false. These semantic predicates are
typically used to identify component keywords in DRL files, such as declare, rule, exists, not,
and others.

Example rule with an invalid keyword

 1: package nesting;
 2:
 3: import org.drools.compiler.Person
 4: import org.drools.compiler.Address
 5:
 6: Some text // Must be a valid DRL keyword
 7:
 8: rule "test something"
 9: when
10: $p: Person(name=="Michael")
11: then
12: $p.name = "other";
13: System.out.println(p.name);
14: end

161

Error message

[ERR 103] Line 6:0 rule 'rule_key' failed predicate:
{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

The Some text line is invalid because it does not begin with or is not a part of a DRL keyword
construct, so the parser fails to validate the rest of the DRL file.


This error is similar to 102: mismatched input, but usually involves DRL
keywords.

104: trailing semi-colon not allowed

Indicates that an eval() clause in a rule condition uses a semicolon ; but must not use one.

Example rule with eval() and trailing semicolon

1: rule "simple rule"
2: when
3: eval(abc();) // Must not use semicolon `;`
4: then
5: end

Error message

[ERR 104] Line 3:4 trailing semi-colon not allowed in rule "simple rule"

105: did not match anything

Indicates that the parser reached a sub-rule in the grammar that must match an alternative at
least once, but the sub-rule did not match anything. The parser has entered a branch with no
way out.

Example rule with invalid text in an empty condition

1: rule "empty condition"
2: when
3: None // Must remove `None` if condition is empty
4: then
5: insert(new Person());
6: end

Error message

[ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'WHEN' in
rule "empty condition"

In this example, the condition is intended to be empty but the word None is used. This error is
resolved by removing None, which is not a valid DRL keyword, data type, or pattern construct.

162

3.1.12. Rule units in DRL rule sets

 Rule units are experimental in Drools 7. Only supported in {KOGITO}.

Rule units are groups of data sources, global variables, and DRL rules that function together for a
specific purpose. You can use rule units to partition a rule set into smaller units, bind different data
sources to those units, and then execute the individual unit. Rule units are an enhanced alternative
to rule-grouping DRL attributes such as rule agenda groups or activation groups for execution
control.

Rule units are helpful when you want to coordinate rule execution so that the complete execution
of one rule unit triggers the start of another rule unit and so on. For example, assume that you have
a set of rules for data enrichment, another set of rules that processes that data, and another set of
rules that extract the output from the processed data. If you add these rule sets into three distinct
rule units, you can coordinate those rule units so that complete execution of the first unit triggers
the start of the second unit and the complete execution of the second unit triggers the start of third
unit.

To define a rule unit, implement the RuleUnit interface as shown in the following example:

163

Example rule unit class

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 private int adultAge;
 private DataSource<Person> persons;

 public AdultUnit() { }

 public AdultUnit(DataSource<Person> persons, int age) {
 this.persons = persons;
 this.age = age;
 }

 // A data source of `Persons` in this rule unit:
 public DataSource<Person> getPersons() {
 return persons;
 }

 // A global variable in this rule unit:
 public int getAdultAge() {
 return adultAge;
 }

 // Life-cycle methods:
 @Override
 public void onStart() {
 System.out.println("AdultUnit started.");
 }

 @Override
 public void onEnd() {
 System.out.println("AdultUnit ended.");
 }
}

In this example, persons is a source of facts of type Person. A rule unit data source is a source of the
data processed by a given rule unit and represents the entry point that the Drools rule engine uses
to evaluate the rule unit. The adultAge global variable is accessible from all the rules belonging to
this rule unit. The last two methods are part of the rule unit life cycle and are invoked by the Drools
rule engine.

The Drools rule engine supports the following optional life-cycle methods for rule units:

Table 3. Rule unit life-cycle methods

Method Invoked when

onStart() Rule unit execution starts

onEnd() Rule unit execution ends

164

Method Invoked when

onSuspend() Rule unit execution is suspended (used only with
runUntilHalt())

onResume() Rule unit execution is resumed (used only with
runUntilHalt())

onYield(RuleUnit other) The consequence of a rule in the rule unit
triggers the execution of a different rule unit

You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically
associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file
is in the same package and has the same name as a class that implements the RuleUnit interface,
then all of the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in
the AdultUnit.drl file in the org.mypackage.myunit package are automatically part of the rule unit
org.mypackage.myunit.AdultUnit.

To override this naming convention and explicitly declare the rule unit that the rules in a DRL file
belong to, use the unit keyword in the DRL file. The unit declaration must immediately follow the
package declaration and contain the name of the class in that package that the rules in the DRL file
are part of.

Example rule unit declaration in a DRL file

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : Person(age >= adultAge) from persons
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end


Do not mix rules with and without a rule unit in the same KIE base. Mixing two
rule paradigms in a KIE base results in a compilation error.

You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown
in the following example:

165

Example rule unit declaration in a DRL file that uses OOPath notation

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : /persons[age >= adultAge]
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end



OOPath is an object-oriented syntax extension of XPath that is designed for
browsing graphs of objects in DRL rule condition constraints. OOPath uses the
compact notation from XPath for navigating through related elements while
handling collections and filtering constraints, and is specifically useful for graphs
of objects.

In this example, any matching facts in the rule conditions are retrieved from the persons data
source defined in the DataSource definition in the rule unit class. The rule condition and action use
the adultAge variable in the same way that a global variable is defined at the DRL file level.

To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor class bound
to the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:

Example rule unit execution

// Create a `RuleUnitExecutor` class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

// Create the `AdultUnit` rule unit using the `persons` data source and run the
executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run(adultUnit);

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions
and adds the required DataSource objects to those sessions, and then executes the rules based on the
RuleUnit that is passed as a parameter to the run() method.

The example execution code produces the following output when the relevant Person facts are
inserted in the persons data source:

166

Example rule unit execution output

org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.

Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the
executor and pass to the executor the rule unit class that you want to run, and then the executor
creates an instance of the rule unit. You can then set the DataSource definition and other variables
as needed before running the rule unit.

Alternate rule unit execution option with registered variables

executor.bindVariable("persons", persons);
 .bindVariable("adultAge", 18);
executor.run(AdultUnit.class);

The name that you pass to the RuleUnitExecutor.bindVariable() method is used at run time to bind
the variable to the field of the rule unit class with the same name. In the previous example, the
RuleUnitExecutor inserts into the new rule unit the data source bound to the "persons" name and
inserts the value 18 bound to the String "adultAge" into the fields with the corresponding names
inside the AdultUnit class.

To override this default variable-binding behavior, use the @UnitVar annotation to explicitly define
a logical binding name for each field of the rule unit class. For example, the field bindings in the
following class are redefined with alternative names:

Example code to modify variable binding names with @UnitVar

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 @UnitVar("minAge")
 private int adultAge = 18;

 @UnitVar("data")
 private DataSource<Person> persons;
}

You can then bind the variables to the executor using those alternative names and run the rule
unit:

Example rule unit execution with modified variable names

executor.bindVariable("data", persons);
 .bindVariable("minAge", 18);
executor.run(AdultUnit.class);

167

You can execute a rule unit in passive mode by using the run() method (equivalent to invoking
fireAllRules() on a KIE session) or in active mode using the runUntilHalt() method (equivalent to
invoking fireUntilHalt() on a KIE session). By default, the Drools rule engine runs in passive mode
and evaluates rule units only when a user or an application explicitly calls run() (or fireAllRules()
for standard rules). If a user or application calls runUntilHalt() for rule units (or fireUntilHalt()
for standard rules), the Drools rule engine starts in active mode and evaluates rule units continually
until the user or application explicitly calls halt().

If you use the runUntilHalt() method, invoke the method on a separate execution thread to avoid
blocking the main thread:

Example rule unit execution with runUntilHalt() on a separate thread

new Thread(() -> executor.runUntilHalt(adultUnit)).start();

3.1.12.1. Data sources for rule units

A rule unit data source is a source of the data processed by a given rule unit and represents the
entry point that the Drools rule engine uses to evaluate the rule unit. A rule unit can have zero or
more data sources and each DataSource definition declared inside a rule unit can correspond to a
different entry point into the rule unit executor. Multiple rule units can share a single data source,
but each rule unit must use different entry points through which the same objects are inserted.

You can create a DataSource definition with a fixed set of data in a rule unit class, as shown in the
following example:

Example data source definition

DataSource<Person> persons = DataSource.create(new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

Because a data source represents the entry point of the rule unit, you can insert, update, or delete
facts in a rule unit:

Example code to insert, modify, and delete a fact in a rule unit

// Insert a fact:
Person john = new Person("John", 42);
FactHandle johnFh = persons.insert(john);

// Modify the fact and optionally specify modified properties (for property
reactivity):
john.setAge(43);
persons.update(johnFh, john, "age");

// Delete the fact:
persons.delete(johnFh);

168

3.1.12.2. Rule unit execution control

Rule units are helpful when you want to coordinate rule execution so that the execution of one rule
unit triggers the start of another rule unit and so on.

To facilitate rule unit execution control, the Drools rule engine supports the following rule unit
methods that you can use in DRL rule actions to coordinate the execution of rule units:

• drools.run(): Triggers the execution of a specified rule unit class. This method imperatively
interrupts the execution of the rule unit and activates the other specified rule unit.

• drools.guard(): Prevents (guards) a specified rule unit class from being executed until the
associated rule condition is met. This method declaratively schedules the execution of the other
specified rule unit. When the Drools rule engine produces at least one match for the condition
in the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple
guarding rules.

As an example of the drools.run() method, consider the following DRL rules that each belong to a
specified rule unit. The NotAdult rule uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit:

Example DRL rules with controlled execution using drools.run()

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 Person(age >= 18, $name : name) from persons
 then
 System.out.println($name + " is adult");
end

package org.mypackage.myunit
unit NotAdultUnit

rule NotAdult
 when
 $p : Person(age < 18, $name : name) from persons
 then
 System.out.println($name + " is NOT adult");
 modify($p) { setAge(18); }
 drools.run(AdultUnit.class);
end

The example also uses a RuleUnitExecutor class created from the KIE base that was built from these
rules and a DataSource definition of persons bound to it:

169

Example rule executor and data source definitions

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

In this case, the example creates the DataSource definition directly from the RuleUnitExecutor class
and binds it to the "persons" variable in a single statement.

The example execution code produces the following output when the relevant Person facts are
inserted in the persons data source:

Example rule unit execution output

Sally is NOT adult
John is adult
Jane is adult
Sally is adult

The NotAdult rule detects a match when evaluating the person "Sally", who is under 18 years old.
The rule then modifies her age to 18 and uses the drools.run(AdultUnit.class) method to trigger
the execution of the AdultUnit rule unit. The AdultUnit rule unit contains a rule that can now be
executed for all of the 3 persons in the DataSource definition.

As an example of the drools.guard() method, consider the following BoxOffice class and
BoxOfficeUnit rule unit class:

Example BoxOffice class

public class BoxOffice {
 private boolean open;

 public BoxOffice(boolean open) {
 this.open = open;
 }

 public boolean isOpen() {
 return open;
 }

 public void setOpen(boolean open) {
 this.open = open;
 }
}

170

Example BoxOfficeUnit rule unit class

public class BoxOfficeUnit implements RuleUnit {
 private DataSource<BoxOffice> boxOffices;

 public DataSource<BoxOffice> getBoxOffices() {
 return boxOffices;
 }
}

The example also uses the following TicketIssuerUnit rule unit class to keep selling box office
tickets for the event as long as at least one box office is open. This rule unit uses DataSource
definitions of persons and tickets:

Example TicketIssuerUnit rule unit class

public class TicketIssuerUnit implements RuleUnit {
 private DataSource<Person> persons;
 private DataSource<AdultTicket> tickets;

 private List<String> results;

 public TicketIssuerUnit() { }

 public TicketIssuerUnit(DataSource<Person> persons, DataSource<AdultTicket>
tickets) {
 this.persons = persons;
 this.tickets = tickets;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public DataSource<AdultTicket> getTickets() {
 return tickets;
 }

 public List<String> getResults() {
 return results;
 }
}

The BoxOfficeUnit rule unit contains a BoxOfficeIsOpen DRL rule that uses the drools.guard(
TicketIssuerUnit.class) method to guard the execution of the TicketIssuerUnit rule unit that
distributes the event tickets, as shown in the following DRL rule examples:

171

Example DRL rules with controlled execution using drools.guard()

package org.mypackage.myunit;
unit TicketIssuerUnit;

rule IssueAdultTicket when
 $p: /persons[age >= 18]
then
 tickets.insert(new AdultTicket($p));
end
rule RegisterAdultTicket when
 $t: /tickets
then
 results.add($t.getPerson().getName());
end

package org.mypackage.myunit;
unit BoxOfficeUnit;

rule BoxOfficeIsOpen
 when
 $box: /boxOffices[open]
 then
 drools.guard(TicketIssuerUnit.class);
end

In this example, so long as at least one box office is open, the guarded TicketIssuerUnit rule unit is
active and distributes event tickets. When no more box offices are in open state, the guarded
TicketIssuerUnit rule unit is prevented from being executed.

The following example class illustrates a more complete box office scenario:

172

Example class for the box office scenario

DataSource<Person> persons = executor.newDataSource("persons");
DataSource<BoxOffice> boxOffices = executor.newDataSource("boxOffices");
DataSource<AdultTicket> tickets = executor.newDataSource("tickets");

List<String> list = new ArrayList<>();
executor.bindVariable("results", list);

// Two box offices are open:
BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert(office1);
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert(office2);

persons.insert(new Person("John", 40));

// Execute `BoxOfficeIsOpen` rule, run `TicketIssuerUnit` rule unit, and execute
`RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("John", list.get(0));
list.clear();

persons.insert(new Person("Matteo", 30));

// Execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Matteo", list.get(0));
list.clear();

// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office1);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Mark", list.get(0));
list.clear();

// All box offices are closed:
office2.setOpen(false);
boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution

assertEquals(0, list.size());

173

3.1.12.3. Rule unit identity conflicts

In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at
the same time a rule unit can be guarded and then activated by multiple rules. For these two-way
guarding scenarios, rule units must have a clearly defined identity to avoid identity conflicts.

By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by
the RuleUnitExecutor. This identification behavior is encoded in the getUnitIdentity() default
method of the RuleUnit interface:

Default identity method in the RuleUnit interface

default Identity getUnitIdentity() {
 return new Identity(getClass());
}

In some cases, you may need to override this default identification behavior to avoid conflicting
identities between rule units.

For example, the following RuleUnit class contains a DataSource definition that accepts any kind of
object:

Example Unit0 rule unit class

public class Unit0 implements RuleUnit {
 private DataSource<Object> input;

 public DataSource<Object> getInput() {
 return input;
 }
}

This rule unit contains the following DRL rule that guards another rule unit based on two
conditions (in OOPath notation):

Example GuardAgeCheck DRL rule in the rule unit

package org.mypackage.myunit
unit Unit0

rule GuardAgeCheck
 when
 $i: /input#Integer
 $s: /input#String
 then
 drools.guard(new AgeCheckUnit($i));
 drools.guard(new AgeCheckUnit($s.length()));
end

174

The guarded AgeCheckUnit rule unit verifies the age of a set of persons. The AgeCheckUnit contains a
DataSource definition of the persons to check, a minAge variable that it verifies against, and a List for
gathering the results:

Example AgeCheckUnit rule unit

public class AgeCheckUnit implements RuleUnit {
 private final int minAge;
 private DataSource<Person> persons;
 private List<String> results;

 public AgeCheckUnit(int minAge) {
 this.minAge = minAge;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public int getMinAge() {
 return minAge;
 }

 public List<String> getResults() {
 return results;
 }
}

The AgeCheckUnit rule unit contains the following DRL rule that performs the verification of the
persons in the data source:

Example CheckAge DRL rule in the rule unit

package org.mypackage.myunit
unit AgeCheckUnit

rule CheckAge
 when
 $p : /persons{ age > minAge }
 then
 results.add($p.getName() + ">" + minAge);
end

This example creates a RuleUnitExecutor class, binds the class to the KIE base that contains these
two rule units, and creates the two DataSource definitions for the same rule units:

175

Example executor and data source definitions

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

DataSource<Object> input = executor.newDataSource("input");
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Sally", 4));

List<String> results = new ArrayList<>();
executor.bindVariable("results", results);

You can now insert some objects into the input data source and execute the Unit0 rule unit:

Example rule unit execution with inserted objects

ds.insert("test");
ds.insert(3);
ds.insert(4);
executor.run(Unit0.class);

Example results list from the execution

[Sally>3, John>3]

In this example, the rule unit named AgeCheckUnit is considered a singleton class and then executed
only once, with the minAge variable set to 3. Both the String "test" and the Integer 4 inserted into the
input data source can also trigger a second execution with the minAge variable set to 4. However, the
second execution does not occur because another rule unit with the same identity has already been
evaluated.

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit
class to include also the minAge variable in the rule unit identity:

Modified AgeCheckUnit rule unit to override the getUnitIdentity() method

public class AgeCheckUnit implements RuleUnit {

 ...

 @Override
 public Identity getUnitIdentity() {
 return new Identity(getClass(), minAge);
 }
}

With this override in place, the previous example rule unit execution produces the following
output:

176

Example results list from executing the modified rule unit

[John>4, Sally>3, John>3]

The rule units with minAge set to 3 and 4 are now considered two different rule units and both are
executed.

3.1.13. Performance tuning considerations with DRL

The following key concepts or suggested practices can help you optimize DRL rules and Drools rule
engine performance. These concepts are summarized in this section as a convenience and are
explained in more detail in the cross-referenced documentation, where applicable. This section will
expand or change as needed with new releases of Drools.

Define the property and value of pattern constraints from left to right

In DRL pattern constraints, ensure that the fact property name is on the left side of the operator
and that the value (constant or a variable) is on the right side. The property name must always
be the key in the index and not the value. For example, write Person(firstName == "John")
instead of Person("John" == firstName). Defining the constraint property and value from right
to left can hinder Drools rule engine performance.

For more information about DRL patterns and constraints, see Rule conditions in DRL (WHEN).

Use equality operators more than other operator types in pattern constraints when possible

Although the Drools rule engine supports many DRL operator types that you can use to define
your business rule logic, the equality operator == is evaluated most efficiently by the Drools rule
engine. Whenever practical, use this operator instead of other operator types. For example, the
pattern Person(firstName == "John") is evaluated more efficiently than Person(firstName !=
"OtherName"). In some cases, using only equality operators might be impractical, so consider all
of your business logic needs and options as you use DRL operators.

List the most restrictive rule conditions first

For rules with multiple conditions, list the conditions from most to least restrictive so that the
Drools rule engine can avoid assessing the entire set of conditions if the more restrictive
conditions are not met.

For example, the following conditions are part of a travel-booking rule that applies a discount to
travelers who book both a flight and a hotel together. In this scenario, customers rarely book
hotels with flights to receive this discount, so the hotel condition is rarely met and the rule is
rarely executed. Therefore, the first condition ordering is more efficient because it prevents the
Drools rule engine from evaluating the flight condition frequently and unnecessarily when the
hotel condition is not met.

Preferred condition order: hotel and flight

when
 $h:hotel() // Rarely booked
 $f:flight()

177

Inefficient condition order: flight and hotel

when
 $f:flight()
 $h:hotel() // Rarely booked

For more information about DRL patterns and constraints, see Rule conditions in DRL (WHEN).

Avoid iterating over large collections of objects with excessive from clauses

Avoid using the from condition element in DRL rules to iterate over large collections of objects, as
shown in the following example:

Example conditions with from clause

when
 $c: Company()
 $e : Employee (salary > 100000.00) from $c.employees

In such cases, the Drools rule engine iterates over the large graph every time the rule condition
is evaluated and impedes rule evaluation.

Alternatively, instead of adding an object with a large graph that the Drools rule engine must
iterate over frequently, add the collection directly to the KIE session and then join the collection
in the condition, as shown in the following example:

Example conditions without from clause

when
 $c: Company();
 Employee (salary > 100000.00, company == $c)

In this example, the Drools rule engine iterates over the list only one time and can evaluate rules
more efficiently.

For more information about the from element or other DRL condition elements, see Supported
rule condition elements in DRL (keywords).

Use Drools rule engine event listeners instead of System.out.println statements in rules for
debug logging

You can use System.out.println statements in your rule actions for debug logging and console
output, but doing this for many rules can impede rule evaluation. As a more efficient alternative,
use the built-in Drools rule engine event listeners when possible. If these listeners do not meet
your requirements, use a system logging utility supported by the Drools rule engine, such as
Logback, Apache Commons Logging, or Apache Log4j.

For more information about supported Drools rule engine event listeners and logging utilities,
see [engine-event-listeners-con_decision-engine].

178

Use the drools-metric module to identify the obstruction in your rules

You can use the drools-metric module to identify slow rules especially when you process many
rules. The drools-metric module can also assist in analyzing the Drools rule engine performance.
Note that the drools-metric module is not for production environment use. However, you can
perform the analysis in your test environment.

To analyze the Drools rule engine performance using drools-metric, first add drools-metric to
your project dependencies:

Example project dependency for drools-metric

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-metric</artifactId>
</dependency>

If you want to use drools-metric to enable trace logging, configure a logger for
org.drools.metric.util.MetricLogUtils as shown in the following example:

Example logback.xml configuration file

<configuration>
 <logger name="org.drools.metric.util.MetricLogUtils" level="trace"/>
 ...
<configuration>

Alternatively, you can use drools-metric to expose the data using Micrometer. To expose the
data, enable the Micrometer registry of your choice as shown in the following example:

Example project dependency for Micrometer

<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-jmx</artifactId> <!-- Discover more registries at
micrometer.io. -->
</dependency>

Example Java code for Micrometer

 Metrics.addRegitry(new JmxMeterRegistry(s -> null, Clock.SYSTEM));

Regardless of whether you want to use logging or Micrometer, you need to enable
MetricLogUtils by setting the system property drools.metric.logger.enabled to true. Optionally,
you can change the microseconds threshold of metric reporting by setting the
drools.metric.logger.threshold system property.


Only node executions exceeding the threshold are reported. The default value is
500.

179

https://asciidoctor.org

After configuring the drools-metric to use logging, rule execution produces logs as shown in the
following example:

Example rule execution output

TRACE [JoinNode(6) - [ClassObjectType class=com.sample.Order]], evalCount:1000,
elapsedMicro:5962
TRACE [JoinNode(7) - [ClassObjectType class=com.sample.Order]], evalCount:100000,
elapsedMicro:95553
TRACE [AccumulateNode(8)], evalCount:4999500, elapsedMicro:2172836
TRACE [EvalConditionNode(9)]:
cond=com.sample.Rule_Collect_expensive_orders_combination930932360Eval1Invoker@ee2a
6922], evalCount:49500, elapsedMicro:18787

This example includes the following key parameters:

• evalCount is the number of constraint evaluations against inserted facts during the node
execution. When evalCount is used with Micrometer, a counter with the data is called
org.drools.metric.evaluation.count.

• elapsedMicro is the elapsed time of the node execution in microseconds. When elapsedMicro is
used with Micrometer, look for a timer called org.drools.metric.elapsed.time.

If you find an outstanding evalCount or elapsedMicro log, correlate the node name with
ReteDumper.dumpAssociatedRulesRete() output to identify the rule associated with the node.

Example ReteDumper usage

ReteDumper.dumpAssociatedRulesRete(kbase);

Example ReteDumper output

[AccumulateNode(8)] : [Collect expensive orders combination]
...

3.2. Domain Specific Languages
Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to your
problem domain. A set of DSL definitions consists of transformations from DSL "sentences" to DRL
constructs, which lets you use of all the underlying rule language and engine features. Given a DSL,
you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS, and you
can use those as well, although they may not provide you with the full DSL functionality.

180

3.2.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the technical
intricacies resulting from the modelling of domain object and the Drools rule engine’s native
language and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates" for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the Drools rule engine at runtime, they are just a compile time feature,
requiring a special parser and transformer.

3.2.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 1. Example DSL mapping

[when]Something is {colour}=Something(colour=="{colour}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid for
the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you use in
the rule; typically a natural language expression, but it doesn’t have to be. The part to the right of
the equal sign ("=") is the mapping of the expression into the rule language. The form of this string
depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term according to
the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {colour}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed in
braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as regular
expressions in a pattern matching operation against a line of the DSL rule file, matching all or part
of a line. This means you can use (for instance) a '?' to indicate that the preceding character is
optional. One good reason to use this is to overcome variations in natural language phrases of your
DSL. But, given that these expressions are regular expression patterns, this also means that all
"magic" characters of Java’s pattern syntax have to be escaped with a preceding backslash ('\').

It is important to note that the compiler transforms DSL rule files line by line. In the previous
example, all the text after "Something is " to the end of the line is captured as the replacement value
for "{colour}", and this is used for interpolating the target string. This may not be exactly what you

181

want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way to
achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Something is "green" and another solid thing
is now correctly expanded.

Example 2. Example with quotes

[when]something is "{colour}"=Something(colour=="{colour}")
[when]another {state} thing=OtherThing(state=="{state})"

It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions as
much as possible. The main reason is that punctuation is easy to forget for rule authors using your
DSL. Another reason is that parentheses, the period and the question mark are magic characters,
requiring escaping in the DSL definition.

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then]do something= if (foo) \{ doSomething(); \}


If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\').

Example 3. Examples of DSL mapping entries

This is a comment to be ignored.
[when]There is a person with name of "{name}"=Person(name=="{name}")
[when]Person is at least {age} years old and lives in "{location}"=
 Person(age >= {age}, location=="{location}")
[then]Log "{message}"=System.out.println("{message}");
[when]And = and

Given the above DSL examples, the following examples show the expansion of various DSLR
snippets:

182

Example 4. Examples of DSL expansions

There is a person with name of "Kitty"
 ==> Person(name="Kitty")
Person is at least 42 years old and lives in "Atlanta"
 ==> Person(age >= 42, location="Atlanta")
Log "boo"
 ==> System.out.println("boo");
There is a person with name of "Bob" And Person is at least 30 years old and lives
in "Utah"
 ==> Person(name="Bob") and Person(age >= 30, location="Utah")


Don’t forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where one
ends and the next one begins and where the text representing a parameter ends. (Otherwise you
risk getting all the text until the end of the line as a parameter value.) The DSL expressions are
tried, one after the other, according to their order in the DSL definition file. After any match, all
remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text are
written as \n.

3.2.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL
expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and country.
We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

183

[when]There is a Cheese with=Cheese()
[when]- age is less than {age}=age<{age}
[when]- type is '{type}'=type=='{type}'
[when]- country equal to '{country}'=country=='{country}'

You can then write rules with conditions like the following:

There is a Cheese with
 - age is less than 42
 - type is 'stilton'

 The parser will pick up a line beginning with "-" and add it as a constraint to the
preceding pattern, inserting a comma when it is required.
For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all numeric fields with all relational operators (according to the DSL expression "age is
less than…" in the preceding example) produces an unwieldy amount of DSL entries. But you can
define DSL phrases for the various operators and even a generic expression that handles any field
constraint, as shown below. (Notice that the expression definition contains a regular expression in
addition to the variable name.)

[when][]is less than or equal to=<=
[when][]is less than=<
[when][]is greater than or equal to=>=
[when][]is greater than=>
[when][]is equal to===
[when][]equals===
[when][]There is a Cheese with=Cheese()
[when][]- {field:\w*} {operator} {value:\d*}={field} {operator} {value}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
 - age is less than 42
 - rating is greater than 50
 - type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches the
last DSL entry. This removes the hyphen, but the final result is still added as a constraint to the
preceding pattern. After processing all of the lines, the resulting DRL text is:

184

Cheese(age<42, rating > 50, type=='stilton')


The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

3.2.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional
elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to the
data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model’s types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy DSL
entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and base
your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

3.2.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

• A line starting with " " or "//" (with or without preceding white space) is treated as a comment. A
comment line starting with "/" is scanned for words requesting a debug option, see below.

• Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

• Any other line is appended to the preceding DSL entry definition, with the line end replaced by
a space.

A DSL entry consists of the following four parts:

• A scope definition, written as one of the keywords "when" or "condition", "then" or
"consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the

185

DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication of
"keyword" means that the entry has global significance, i.e., it is recognized anywhere in a DSLR
file.

• A type definition, written as a Java class name, enclosed in brackets. This part is optional unless
the next part begins with an opening bracket. An empty pair of brackets is valid, too.

• A DSL expression consists of a (Java) regular expression, with any number of embedded
variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces
("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a
preceding backslash ("\") if they should occur literally within the expression.

• The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output is
written to standard output.

Table 4. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and
consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*".

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

usage Displays a usage statistic of all DSL entries.

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

186

Comment: DSL examples

#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"
[keyword][]regula=rule

conditional element: "T" or "t", "a" or "an", convert matched word
[when][][Tt]here is an? {entity:\w+}=
 ${entity!lc}: {entity!ucfirst} ()

consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=modify(${entity!lc})\{ \}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line’s section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the
string transformation function given in the variable reference; see below for details.

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one of
the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint) is
simply inserted, otherwise a comma (",") is inserted beforehand.

187

If a DSLR line in a consequence is written with a leading hyphen, the expanded result is
inserted into the last line, which should contain a "modify" statement, ending in a pair of braces
("{" and "}"). If this pair is empty, the expanded line (which should contain a valid method call)
is simply inserted, otherwise a comma (",") is inserted beforehand.


It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the
first insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 5. String transformation functions

Name Description

uc Converts all letters to upper case.

lc Converts all letters to lower case.

ucfirst Converts the first letter to upper case, and all
other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded
by "." or ",", a decimal period is inserted in the
corresponding position.

a?b/c Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But c can be another triplet a, b, c, so that the
entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions
[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()
[when][]- with an? {attr} greater than {amount}={attr} <= {amount!num}
[when][]- with a {what} {attr}={attr} {what!positive?>0/negative?%lt;0/zero?==0/ERROR}

A file containing a DSL definition has to be put under the resources folder or any of its subfolders
like any other drools artifact. It must have the extension .dsl, or alternatively be marked with type
ResourceType.DSL. when programmatically added to a KieFileSystem. For a file using DSL definition,
the extension .dslr should be used, while it can be added to a KieFileSystem with type
ResourceType.DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule language
expressions.

188

	Drools User Guide
	Table of Contents
	Chapter 1. Getting Started
	1.1. First Rule Project
	1.1.1. Prerequisites
	1.1.2. Creating a project with maven archetype

	Chapter 2. Drools rule engine
	2.1. KIE sessions
	2.1.1. Stateless KIE sessions
	2.1.2. Stateful KIE sessions
	2.1.3. KIE session pools

	2.2. Inference and truth maintenance in the Drools rule engine
	2.2.1. Government ID example
	2.2.2. Fact equality modes in the Drools rule engine

	2.3. Execution control in the Drools rule engine
	2.3.1. Salience for rules
	2.3.2. Agenda groups for rules
	2.3.3. Activation groups for rules
	2.3.4. Rule execution modes and thread safety in the Drools rule engine
	2.3.5. Fact propagation modes in the Drools rule engine
	2.3.6. Agenda evaluation filters

	2.4. Phreak rule algorithm in the Drools rule engine
	2.4.1. Rule evaluation in Phreak
	2.4.2. Rule base configuration
	2.4.3. Sequential mode in Phreak

	2.5. Complex event processing (CEP)
	2.5.1. Events in complex event processing
	2.5.2. Declaring facts as events
	2.5.3. Event processing modes in the Drools rule engine
	2.5.4. Property-change settings and listeners for fact types
	2.5.5. Temporal operators for events
	2.5.6. Session clock implementations in the Drools rule engine
	2.5.7. Event streams and entry points
	2.5.8. Sliding windows of time or length
	2.5.9. Memory management for events

	2.6. Drools rule engine queries and live queries
	2.7. Drools rule engine event listeners and debug logging
	2.7.1. Practices for development of event listeners
	2.7.2. Configuring a logging utility in the Drools rule engine

	2.8. Performance tuning considerations with the Drools rule engine

	Chapter 3. Rule Language Reference
	3.1. DRL (Drools Rule Language) rules
	3.1.1. Packages in DRL
	3.1.2. Import statements in DRL
	3.1.3. Functions in DRL
	3.1.4. Queries in DRL
	3.1.5. Type declarations and metadata in DRL
	3.1.6. Global variables in DRL
	3.1.7. Rule attributes in DRL
	3.1.8. Rule conditions in DRL (WHEN)
	3.1.9. Rule actions in DRL (THEN)
	3.1.10. Comments in DRL files
	3.1.11. Error messages for DRL troubleshooting
	3.1.12. Rule units in DRL rule sets
	3.1.13. Performance tuning considerations with DRL

	3.2. Domain Specific Languages
	3.2.1. When to Use a DSL
	3.2.2. DSL Basics
	3.2.3. Adding Constraints to Facts
	3.2.4. Developing a DSL
	3.2.5. DSL and DSLR Reference

