
OptaPlanner Workbench and

Execution Server User Guide

The OptaPlanner team [http://www.optaplanner.org/community/team.html]

http://www.optaplanner.org/community/team.html
http://www.optaplanner.org/community/team.html

OptaPlanner Workbench and Execution Server User Guide
by

Version 6.4.0.Final

iii

I. OptaPlanner Engine ... 1

II. OptaPlanner Workbench .. 2

1. Workbench (General) ... 3

1.1. Installation .. 3

1.1.1. War installation .. 3

1.1.2. Workbench data ... 3

1.1.3. System properties .. 4

1.1.4. Trouble shooting .. 5

1.2. Quick Start ... 6

1.2.1. Add repository ... 6

1.2.2. Add project .. 8

1.2.3. Define Data Model ... 12

1.2.4. Define Rule .. 15

1.2.5. Build and Deploy .. 18

1.3. Administration ... 19

1.3.1. Administration overview .. 19

1.3.2. Organizational unit ... 19

1.3.3. Repositories ... 20

1.4. Configuration .. 22

1.4.1. Basic user management ... 22

1.4.2. Roles ... 22

1.4.3. Restricting access to repositories .. 24

1.4.4. Command line config tool ... 24

1.5. Introduction ... 25

1.5.1. Log in and log out .. 25

1.5.2. Home screen ... 26

1.5.3. Workbench concepts .. 26

1.5.4. Initial layout ... 26

1.6. Changing the layout .. 27

1.6.1. Resizing ... 28

1.6.2. Repositioning ... 28

1.7. Authoring (General) ... 30

1.7.1. Artifact Repository .. 30

1.7.2. Asset Editor ... 32

1.7.3. Tags Editor .. 36

1.7.4. Project Explorer ... 38

1.7.5. Project Editor ... 51

1.7.6. Validation ... 58

1.7.7. Data Modeller .. 60

1.7.8. Data Sets .. 100

1.8. User and group management .. 114

1.8.1. Introduction .. 114

1.8.2. Security management providers .. 114

1.8.3. Installation and setup .. 117

OptaPlanner Workbench and

Execution Server User Guide

iv

1.8.4. Usage .. 119

1.9. Embedding Workbench In Your Application ... 129

1.10. Asset Management .. 130

1.10.1. Asset Management Overview .. 130

1.10.2. Managed vs Unmanaged Repositories ... 131

1.10.3. Asset Management Processes .. 131

1.10.4. Usage Flow .. 133

1.10.5. Repository Structure ... 135

1.10.6. Managed Repositories Operations ... 136

1.11. Execution Server Management UI .. 142

1.11.1. Server Templates ... 142

1.11.2. Container ... 144

1.11.3. Remote Server ... 148

2. Authoring Planning Assets .. 150

2.1. Solver Editor ... 150

3. Workbench Integration ... 151

3.1. REST ... 151

3.1.1. Job calls .. 151

3.1.2. Repository calls .. 152

3.1.3. Organizational unit calls .. 155

3.1.4. Maven calls .. 156

3.1.5. REST summary .. 157

3.2. Keycloak SSO integration .. 158

3.2.1. Scenario .. 159

3.2.2. Install and setup a Keycloak server ... 160

3.2.3. Create and setup the demo realm ... 160

3.2.4. Install and setup jBPM Workbench .. 162

3.2.5. Securing workbench remote services via Keycloak 165

3.2.6. Execution server .. 166

3.2.7. Consuming remote services .. 169

4. Workbench High Availability .. 171

4.1. ... 171

4.1.1. VFS clustering .. 171

4.1.2. jBPM clustering .. 174

III. OptaPlanner Execution Server ... 175

5. KIE Execution Server ... 176

5.1. Overview .. 176

5.1.1. Glossary .. 176

5.2. Installing the KIE Server .. 177

5.2.1. Bootstrap switches ... 178

5.2.2. Installation details for different containers 180

5.3. Kie Server setup ... 182

5.3.1. Managed Kie Server ... 182

5.3.2. Unmanaged KIE Execution Server ... 184

OptaPlanner Workbench and

Execution Server User Guide

v

5.4. Creating a Kie Container ... 185

5.5. Managing Containers .. 185

5.5.1. Starting a Container ... 186

5.5.2. Stopping and Deleting a Container .. 186

5.5.3. Updating a Container .. 186

5.6. Kie Server REST API .. 187

5.6.1. [GET] / ... 187

5.6.2. [POST] / .. 187

5.6.3. [GET] /containers ... 188

5.6.4. [GET] /containers/{id} .. 188

5.6.5. [PUT] /containers/{id} .. 189

5.6.6. [DELETE] /containers/{id} .. 189

5.6.7. [POST] /containers/instances/{id} ... 190

5.6.8. [GET] /containers/{id}/release-id .. 190

5.6.9. [POST] /containers/{id}/release-id .. 191

5.6.10. [GET] /containers/{id}/scanner ... 191

5.6.11. [POST] /containers/{id}/scanner ... 192

5.6.12. Native REST client for Execution Server 192

5.7. OptaPlanner REST API ... 193

5.7.1. [GET] /containers/{containerId}/solvers ... 194

5.7.2. [PUT] /containers/{containerId}/solvers/{solverId} 195

5.7.3. [GET] /containers/{containerId}/solvers/{solverId} 196

5.7.4. [POST] /containers/{containerId}/solvers/{solverId} 197

5.7.5. [GET] /containers/{containerId}/solvers/{solverId}/bestsolution 199

5.7.6. [DELETE] /containers/{containerId}/solvers/{solverId} 200

5.8. Controller REST API ... 200

5.8.1. [GET] /management/servers .. 200

5.8.2. [GET] /management/server/{id} .. 201

5.8.3. [PUT] /management/server/{id} .. 202

5.8.4. [DELETE] /management/server/{id} .. 203

5.8.5. [GET] /management/server/{id}/containers 203

5.8.6. [GET] /management/server/{id}/containers/{containerId} 203

5.8.7. [PUT] /management/server/{id}/containers/{containerId} 204

5.8.8. [DELETE] /management/server/{id}/containers/{containerId} 205

5.8.9. [POST] /management/server/{id}/containers/{containerId}/sta-

tus/started ... 205

5.8.10. [POST] /management/server/{id}/containers/{containerId}/sta-

tus/stopped .. 205

5.9. Kie Server Java Client API .. 205

5.9.1. Maven Configuration ... 205

5.9.2. Client Configuration .. 206

5.9.3. Server Response .. 207

5.9.4. Server Capabilities ... 207

5.9.5. Kie Containers ... 207

OptaPlanner Workbench and

Execution Server User Guide

vi

5.9.6. Managing Containers .. 208

5.9.7. Available Clients for the Decision Server .. 208

5.9.8. Sending commands to the server .. 209

5.9.9. Listing available business processes .. 210

Part I. OptaPlanner Engine
See the OptaPlanner docs.

Part II. OptaPlanner Workbench
The OptaPlanner

3

Chapter 1. Workbench (General)

1.1. Installation

1.1.1. War installation

Use the war from the workbench distribution zip that corrsponds to your application server. The

differences between these war files are mainly superficial. For example, some JARs might be

excluded if the application server already supplies them.

• eap6_4: tailored for Red Hat JBoss Enterprise Application Platform 6.4

• tomcat7: tailored for Apache Tomcat 7

Note

Apache Tomcat requires additional configuration to correctly install the Work-

bench. Please consult the README.md in the war for the most up to date proce-

dure.

• was8: tailored for IBM WebSphere Application Server 8

• weblogic12: tailored for Oracle WebLogic Server 12c

Note

Oracle WebLogic requires additional configuration to correctly install the Work-

bench. Please consult the README.md in the war for the most up to date proce-

dure.

• wildfly8: tailored for Red Hat JBoss Wildfly 8

1.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKING_DIRECTORY/.niogit, for

example wildfly-8.0.0.Final/bin/.niogit, but it can be overridden with the system property

-Dorg.uberfire.nio.git.dir.

Note

In production, make sure to back up the workbench data directory.

Workbench (General)

4

1.1.3. System properties

Here's a list of all system properties:

• org.uberfire.nio.git.dir: Location of the directory .niogit. Default: working directory

• org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true

• org.uberfire.nio.git.daemon.host: If git daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.daemon.port: If git daemon enabled, uses this property as port num-

ber. Default: 9418

• org.uberfire.nio.git.ssh.enabled: Enables/disables ssh daemon. Default: true

• org.uberfire.nio.git.ssh.host: If ssh daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.ssh.port: If ssh daemon enabled, uses this property as port number.

Default: 8001

• org.uberfire.nio.git.ssh.cert.dir: Location of the directory .security where local cer-

tificates will be stored. Default: working directory

• org.uberfire.nio.git.ssh.passphrase: Passphrase to access your Operating Systems

public keystore when cloning git repositories with scp style URLs; e.g. git@github.com:user/

repository.git.

• org.uberfire.metadata.index.dir: Place where Lucene .index folder will be stored. De-

fault: working directory

• org.uberfire.cluster.id: Name of the helix cluster, for example: kie-cluster

• org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form

host1:port1,host2:port2,host3:port3, for example: localhost:2188

• org.uberfire.cluster.local.id: Unique id of the helix cluster node, note that ':' is replaced

with '_', for example: node1_12345

• org.uberfire.cluster.vfs.lock: Name of the resource defined on helix cluster, for example:

kie-vfs

• org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully initial-

ized to avoid conflicts when all cluster members create local clones. Default: false

• org.uberfire.sys.repo.monitor.disabled: Disable configuration monitor (do not disable

unless you know what you're doing). Default: false

• org.uberfire.secure.key: Secret password used by password encryption. Default:

org.uberfire.admin

Workbench (General)

5

• org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:

PBEWithMD5AndDES

• org.uberfire.domain: security-domain name used by uberfire. Default: ApplicationRealm

• org.guvnor.m2repo.dir: Place where Maven repository folder will be stored. Default: work-

ing-directory/repositories/kie

• org.guvnor.project.gav.check.disabled: Disable GAV checks. Default: false

• org.kie.example.repositories: Folder from where demo repositories will be cloned. The

demo repositories need to have been obtained and placed in this folder. Demo repositories can

be obtained from the kie-wb-6.2.0-SNAPSHOT-example-repositories.zip artifact. This System

Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

• org.kie.demo: Enables external clone of a demo application from GitHub. This System Prop-

erty takes precedence over org.kie.example. Default: true

• org.kie.example: Enables example structure composed by Repository, Organization Unit and

Project. Default: false

• org.kie.build.disable-project-explorer: Disable automatic build of selected Project in

Project Explorer. Default: false

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

2. Locate the XML elements server that belong to the main-server-group and add a system

property, for example:

<system-properties>

 <property name="org.uberfire.nio.git.dir" value="..." boot-time="false"/>

 ...

</system-properties>

1.1.4. Trouble shooting

1.1.4.1. Loading.. does not disappear and Workbench fails to show

There have been reports that Firewalls in between the server and the browser can interfere with

Server Sent Events (SSE) used by the Workbench.

The issue results in the "Loading..." spinner remaining visible and the Workbench failing to ma-

terialize.

The workaround is to disable the Workbench's use of Server Sent Events by adding file

/WEB-INF/classes/ErraiService.properties to the exploded WAR containing the value

errai.bus.enable_sse_support=false. Re-package the WAR and re-deploy.

Workbench (General)

6

1.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

1.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Figure 1.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Figure 1.2. Creating new repository

Enter the required information.

Workbench (General)

7

Figure 1.3. Entering repository information step 1/2

Workbench (General)

8

Figure 1.4. Entering repository information step 2/2 (only for managed

repositories)

1.2.2. Add project

Select the Authoring Perspective to create a new project.

Workbench (General)

9

Figure 1.5. Selecting Authoring perspective

Select "Project" from the "New Item" menu.

Workbench (General)

10

Figure 1.6. Creating new project

Enter a project name first.

Workbench (General)

11

Figure 1.7. Entering project name

Enter the project details next.

• Group ID follows Maven conventions.

• Artifact ID is pre-populated from the project name.

• Version is set as 1.0 by default.

Workbench (General)

12

Figure 1.8. Entering project details

1.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Object" from the "New Item" menu.

Note

You can also use types contained in existing JARs.

Please consult the full documentation for details.

Workbench (General)

13

Figure 1.9. Creating "Data Object"

Set the name and select a package for the new type.

Workbench (General)

14

Figure 1.10. Creating a new type

Set field name and type and click on "Create" to create a field for the type.

Workbench (General)

15

Figure 1.11. Click "Create" and add the field

Click "Save" to update the model.

Figure 1.12. Clicking "Save"

1.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Workbench (General)

16

Figure 1.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

Workbench (General)

17

Figure 1.14. Entering file name for rule

Enter a definition for the rule.

The definition process differs from asset type to asset type.

The full documentation has details about the different editors.

Figure 1.15. Defining a rule

Once the rule has been defined it will need to be saved.

Workbench (General)

18

Figure 1.16. Saving the rule

1.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the

Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Project" menu.

Figure 1.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact

Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the De-

pendency Management section of the pom in your workbench project. You can edit the pom.xml

file associated with your workbench project under the Repository View of the project explorer. De-

tails on dependency management in maven can be found here : http://maven.apache.org/guides/

introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Figure 1.18. Building and deploying a project

Workbench (General)

19

Now the project has been built and deployed; it can be referenced from your own projects as any

other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.

1.3. Administration

1.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

1.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

Workbench (General)

20

1.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects

and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.

Such setup allows workbench to work with multiple backends and, in the same time, take full

advantage of backend specifics features like in GIT case versioning, branching and even external

access.

Workbench (General)

21

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantage of using GIT as backend is the ability to clone a repository from

external and use your preferred tools to edit and build your assets.

Warning

Never clone your repositories directly from .niogit directory. Use always the avail-

able protocol(s) displayed in repositories editor.

1.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a

previous state. You can do it directly from the repository editor by browsing its commit history and

clicking the Revert button.

Workbench (General)

22

1.4. Configuration

1.4.1. Basic user management

The workbench authenticates its users against the application server's authentication and autho-

rization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOME/bin/add-user.sh (or .bat):

$./add-user.sh

// Type: Application User

// Realm: empty (defaults to ApplicationRealm)

// Role: admin

There is no need to restart the application server.

1.4.2. Roles

The Workbench uses the following roles:

• admin

Workbench (General)

23

• analyst

• developer

• manager

• user

1.4.2.1. Admin

Administrates the BPMS system.

• Manages users

• Manages VFS Repositories

• Has full access to make any changes necessary

1.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

• Manages rules, models, process flows, forms and dashboards

• Manages the asset repository

• Can create, build and deploy projects

• Can use the JBDS connection to view processes

1.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the

ability to deploy projects.

1.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to

continue forward. Works primarily with the task lists.

• Does process management

• Handles tasks and dashboards

1.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their per-

formance, business indicators, and other reporting of the system and people who interact with

the system.

Workbench (General)

24

• Only has access to dashboards

1.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an

user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs

into an orgazinational group that has access to the repository. These restrictions can be managed

with the command line config tool.

1.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository

contains the data about general workbench settings: how editors behave, organizational groups,

security and other settings that are not editable by the user. System repository exists in the .niogit

folder, next to all the repositories that have been created or cloned into the workbench.

1.4.4.1. Config Tool Modes

• Online (default and recommended) - Connects to the Git repository on startup, using Git server

provided by the KIE Workbench. All changes are made locally and published to upstream when:

• "push-changes" command is explicitly executed

• "exit" is used to close the tool

• Offline - Creates and manipulates system repository directly on the server (no discard option)

1.4.4.2. Available Commands

Table 1.1. Available Commands

exit Publishes local changes, cleans up temporary

directories and quits the command line tool

discard Discards local changes without publishing

them, cleans up temporary directories and

quits the command line tool

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment List available deployments

create-org-unit Creates new organizational unit

remove-org-unit Removes existing organizational unit

Workbench (General)

25

add-deployment Adds new deployment unit

remove-deployment Removes existing deployment

create-repo Creates new git repository

remove-repo Removes existing repository (only from con-

fig)

add-repo-org-unit Adds repository to the organizational unit

remove-repo-org-unit Removes repository from the organizational

unit

add-role-repo Adds role(s) to repository

remove-role-repo Removes role(s) from repository

add-role-org-unit Adds role(s) to organizational unit

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only

in online mode)

1.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script

and by default it will start in online mode asking for a Git url to connect to (the default value is

ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate

values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This

will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit

does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

1.5. Introduction

1.5.1. Log in and log out

Create a user with the role admin and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to

review the roles of the current account.

Workbench (General)

26

1.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the

workbench variant (Drools, jBPM, ...).

1.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

• Part

A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer", "Project Editor", "Guided Rule Editor" etc. Parts can be

repositioned.

• Panel

A Panel is a container for one or more Parts.

Panels can be resized.

• Perspective

A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such

as "Home", "Authoring", "Deploy" etc.

1.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be

changed.

Workbench (General)

27

Figure 1.19. The Workbench

The initial Workbench shows the following components:-

• Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in

the above "example" is the Organizational Unit), Repositories (in the above "uf-playground" is

the Repository) and Project (in the above "mortgages" is the Project).

• Problems

This provides the user will real-time feedback about errors in the active Project.

• Empty space

This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

1.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or repo-

sitioned.

This, for example, could be useful when running tests; as the test defintion and rule can be repo-

sitioned side-by-side.

Workbench (General)

28

1.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the

left mouse button and drag the splitter to the required position; then release the left mouse button.

Figure 1.20. Resizing

1.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this ex-

ample).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the

left mouse button. Drag the mouse to the required location. The target position is indicated with

a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

Workbench (General)

29

Figure 1.21. Repositioning - dragging

Workbench (General)

30

Figure 1.22. Repositioning - complete

1.7. Authoring (General)

1.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain

model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote

repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKING_DIRECTORY/repositories/kie, but it

can be overridden with the system property -Dorg.guvnor.m2repo.dir. There is only 1 Maven

repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

Workbench (General)

31

To add a new artifact to that Maven repository, either:

• Use the upload button and select a JAR. If the JAR contains a POM file under META-INF/maven

(which every JAR build by Maven has), no further information is needed. Otherwise, a groupId,

artifactId and version need be given too.

• Using Maven, mvn deploy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

Workbench (General)

32

1.7.2. Asset Editor

The Asset Editor is the principle component of the workbench User-Interface. It consists of two

main views Editor and Overview.

• The views

Figure 1.23. The Asset Editor - Editor tab

• A : The editing area - exactly what form the editor takes depends on the Asset type. An asset

can only be edited by one user at a time to avoid conflicts. When a user begins to edit an

asset, a lock will automatically be acquired. This is indicated by a lock symbol appearing on

the asset title bar as well as in the project explorer view (see Section 1.7.4, “Project Explorer”

for details). If a user starts editing an already locked asset a pop-up notification will appear

to inform the user that the asset can't currently be edited, as it is being worked on by another

user. Changes will be prevented until the editing user saves or closes the asset, or logs out

of the workbench. Session timeouts will also cause locks to be released. Every user further

has the option to force a lock release, if required (see the Metadata section below).

• B : This menu bar contains various actions for the Asset; such as Save, Rename, Copy etc.

Note that saving, renaming and deleting are deactivated if the asset is locked by a different

user.

• C : Different views for asset content or asset information.

• Editor shows the main editor for the asset

Workbench (General)

33

• Overview contains the metadata and conversation views for this editor. Explained in more

detail below.

• Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can

be generated into DRL.

• Data Objects contains the model available for authoring. By default only Data Objects that

reside within the same package as the asset are available for authoring. Data Objects

outside of this package can be imported to become available for authoring the asset.

Figure 1.24. The Asset Editor - Data Objects tab

• Overview

• A : General information about the asset and the asset's description.

"Type:" The format name of the type of Asset.

"Description:" Description for the asset.

"Used in projects:" Names the projects where this rule is used.

"Last Modified:" Who made the last change and when.

"Created on:" Who created the asset and when.

• B : Version history for the asset. Selecting a version loads the selected version into this editor.

Workbench (General)

34

• C : Meta data (from the "Dublin Core" standard)

• D : Comments regarding the development of the Asset can be recorded here.

Figure 1.25. The Asset Editor - Overview tab

• Metadata

• A : Meta data:-

"Tags:" A tagging system for grouping the assets.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"URI:" URI to the asset inside the Git repository.

Workbench (General)

35

"Subject/Type/External link/Source" : Other miscellaneous meta data for the Asset.

"Lock status" : Shows the lock status of the asset and, if locked, allows to force unlocking

the asset.

Figure 1.26. The Metadata tab

• Locking

The Workbench supports pessimistic locking of assets. When one User starts editing an asset

it is locked to change by other Users. The lock is held until a period of inactivity lapses, the

Editor is closed or the application stopped and restarted. Locks can also be forcibly removed

on the MetaData section of the Overview tab.

A "padlock" icon is shown in the Editor's title bar and beside the asset in the Project Explorer

when an asset is locked.

Workbench (General)

36

Figure 1.27. The Asset Editor - Locked assets cannot be edited by other

users

1.7.3. Tags Editor

Tags allow assets to be labelled with any number of tags that you define. These tags can be used

to filter assets on the Project Explorer enabling "Tag filtering".

1.7.3.1. Creating Tags

To create tags you simply have to write them on the Tags input and press the "Add new Tag/s"

button. The Tag Editor allows creating tags one by one or writing more than one separated with

a white space.

Workbench (General)

37

Figure 1.28. Creating Tags

Once you created new Tags they will appear over the Editor allowing you to remove them by

pressing on them if you want.

Figure 1.29. Existing Tags

Workbench (General)

38

1.7.4. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,

Projects and their files.

1.7.4.1. Initial view

The initial view could be empty when first opened.

Figure 1.30. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.

Workbench (General)

39

Figure 1.31. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

Figure 1.32. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been

selected the Project Explorer will show the contents. The exact combination of selections depends

wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files. If a file is currently being edited by another user, a lock symbol will

be displayed in front of the file name. The symbol is blue in case the lock is owned by the currently

authenticated user, otherwise black. Moving the mouse pointer over the lock symbol will display

a tooltip providing the name of the user who is currently editing the file (and therefore owning the

lock). To learn more about locking see Section 1.7.2, “Asset Editor” for details.

Workbench (General)

40

Figure 1.33. Expanded asset group

Workbench (General)

41

1.7.4.2. Different views

Project Explorer supports multiple views.

• Project View

A simplified view of the underlying project structure. Certain system files are hidden from view.

• Repository View

A complete view of the underlying project structure including all files; either user-defined or

system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"

or "Show as Links".

Figure 1.34. Switching view

Workbench (General)

42

1.7.4.2.1. Project View examples

Figure 1.35. Project View - Folders

Figure 1.36. Project View - Links

Workbench (General)

43

1.7.4.2.2. Repository View examples

Figure 1.37. Repository View - Folders

Figure 1.38. Repository View - Links

Workbench (General)

44

1.7.4.3. Download Project or Repository

Download Download and Download Repository make it possible to download the project or repos-

itory as a zip file.

Figure 1.39. Repository and Project Downloads

1.7.4.4. Branch selector

A branch selector will be visible if the repository has more than a single branch.

Workbench (General)

45

Figure 1.40. Branch selector

1.7.4.5. Filtering by Tag

To make easy view the elements on packages that contain a lot of assets, is possible to enabling

the Tag filter, whichs allows you to filter the assets by their tags.

To see how to add tags to an asset look at: Section 1.7.3, “Tags Editor”

Workbench (General)

46

Figure 1.41. Enabling Filter by Tag

Workbench (General)

47

Figure 1.42. Filter by Tag

Workbench (General)

48

Figure 1.43. Filtering by Tag

1.7.4.6. Copy, Rename, Delete and Download Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)

and for files and directories as well (in Repository View). Download action is available for directo-

ries. Download downloads the selected the selected directory as a zip file.

• A : Copy

• B : Rename

• C : Delete

• D : Download

Workbench (General)

49

Figure 1.44. Project View - Package actions

Workbench (General)

50

Figure 1.45. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but cur-

renctly doesn't have it. Until both tools are provided make sure that your changes

(copy/rename/delete) on packages, files or directories doesn't have a major impact

on your project.

In cases that your change had an unexcepcted impact, Workbench allows you to

restore your repository using the Repository editor.

Important

Files locked by other users as well as directories that contain such files cannot be

renamed or deleted until the corresponding locks are released. If that is the case

the rename and delete symbols will be deactivated. To learn more about locking

see Section 1.7.2, “Asset Editor” for details.

Workbench (General)

51

1.7.5. Project Editor

The Project Editor screen can be accessed from Project Explorer. Project Editor shows the settings

for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything

that is needed for configuring the KIE project in one place.

Figure 1.46. Project Screen and the different views

1.7.5.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

1.7.5.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

1.7.5.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV

values are used as identifiers to differentiate projects and versions of the same project.

Workbench (General)

52

Figure 1.47. Project Settings

1.7.5.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a

project that has been built and deployed to a Maven repository. Internal dependencies are projects

build and deployed in the same workbench as the project. External dependencies are retrieved

from repositories outside of the current workbench. Each dependency uses the GAV-values to

specify the project name and version that is used by the project.

Figure 1.48. Dependencies

Workbench (General)

53

1.7.5.2.2.1. Package Name White List

Classes and declared types in white listed packages show up as Data Objects that can be imported

in assets. The full list is stored in package-name-white-list file that is stored in each project root.

Package white list has three modes:

• All packages included: Every package defined in this jar is white listed.

• Packages not included: None of the packages listed in this jar are white listed.

• Some packages included: Only part of the packages in the jar are white listed.

1.7.5.2.3. Metadata

Metadata for the pom.xml file.

1.7.5.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Workbench (General)

54

Figure 1.49. Knowledge Base Settings

Workbench (General)

55

Note

For more information about the Knowledge Base properties, check the Drools Ex-

pert documentation for kmodule.xml.

1.7.5.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified

for the project.

1.7.5.3.1.1. Knowledge base list

Lists all the knowledge bases by name. Only one knowledge base can be set as default.

1.7.5.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in

the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are

included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.

Event processing mode is explained in the Drools Fusion part of the documentation.

1.7.5.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one

default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup

that shows more properties for the knowledge session.

1.7.5.3.2. Metadata

Metadata for the kmodule.xml

1.7.5.4. Imports

Settings edits the project.imports file used by the workbench editors.

Workbench (General)

56

Figure 1.50. Imports

1.7.5.4.1. External Data Objects

Data Objects provided by the Java Runtime environment may need to be registered to be available

to rule authoring where such Data Objects are not implicitly available as part of an existing Data

Object defined within the Workbench or a Project dependency. For example an Author may want to

define a rule that checks for java.util.ArrayList in Working Memory. If a domain Data Object

has a field of type java.util.ArrayList there is no need create a registraton.

1.7.5.4.2. Metadata

Metadata for the project.imports file.

1.7.5.5. Duplicate GAV detection

When performing any of the following operations a check is now made against all Maven Reposi-

tories, resolved for the Project, for whether the Project's GroupId, ArtifactId and Version pre-exist.

If a clash is found the operation is prevented; although this can be overridden by Users with the

admin role.

Note

The feature can be disabled by setting the System Property

org.guvnor.project.gav.check.disabled to true.

Resolved repositories are those discovered in:-

• The Project's POM <repositories> section (or any parent POM).

• The Project's POM <distributionManagement> section.

• Maven's global settings.xml configuration file.

Affected operations:-

Workbench (General)

57

• Creation of new Managed Repositories.

• Saving a Project defintion with the Project Editor.

• Adding new Modules to a Managed Multi-Module Repository.

• Saving the pom.xml file.

• Build & installing a Project with the Project Editor.

• Build & deploying a Project with the Project Editor.

• Asset Management operations building, installing or deloying Projects.

• REST operations creating, installing or deploying Projects.

Users with the Admin role can override the list of Repositories checked using the "Repositories"

settings in the Project Editor.

Figure 1.51. Project Editor - Viewing resolved Repositories

Workbench (General)

58

Figure 1.52. Project Editor - The list of resolved Repositories

Figure 1.53. Duplicate GAV detected

1.7.6. Validation

The Workbench provides a common and consistent service for users to understand whether files

authored within the environment are valid.

1.7.6.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

Workbench (General)

59

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation

results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either

new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

Figure 1.54. The Problems Panel

1.7.6.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

Workbench (General)

60

1.7.7. Data Modeller

1.7.7.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of

this tutorial, we will assume that a correctly configured project already exists and the authoring

perspective is open.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective and use the project explorer to browse

to the given project.

Workbench (General)

61

Figure 1.55. Go to authoring perspective and select a project

2. Open the Data Modeller tool by clicking on a Data Object file, or using the "New Item -> Data

Object" menu option.

Figure 1.56. Click on a Data Object

This will start up the Data Modeller tool, which has the following general aspect:

Workbench (General)

62

Figure 1.57. Data modeller overview

The "Editor" tab is divided into the following sections:

• The new field section is dedicated to the creation of new fields, and is opened when the "add

field" button is pressed.

Figure 1.58. New field creation

• The Data Object's "field browser" section displays a list with the data object fields.

Workbench (General)

63

Figure 1.59. The Data Object's field browser

• The "Data Object / Field general properties" section. This is the rightmost section of the Data

Modeller editor and visualizes the "Data Object" or "Field" general properties, depending on

user selection.

Data Object general properties can be selected by clicking on the Data Object Selector.

Figure 1.60. Data Object selector

Workbench (General)

64

Figure 1.61. Data Object general properties

Field general properties can be selected by clicking on a field.

Figure 1.62. Field selector

Workbench (General)

65

Figure 1.63. Field general properties

• On workbench's right side a new "Tool Bar" is provided that enables the selection of different

context sensitive tool windows that will let the user do domain specific configurations. Current-

ly four tool windows are provided for the following domains "Drools & jBPM", "OptaPlanner",

"Persistence" and "Advanced" configurations.

Figure 1.64. Data modeller Tool Bar

Workbench (General)

66

Figure 1.65. Drools & jBPM tool window

Figure 1.66. OptaPlanner tool window

Workbench (General)

67

Note

To see and use the OptaPlanner tool window, the user needs to have the role

plannermgmt.

Figure 1.67. Persistence tool window

Workbench (General)

68

Figure 1.68. Advanced tool window

The "Source" tab shows an editor that allows the visualization and modification of the generated

java code.

• Round trip between the "Editor" and "Source" tabs is possible, and also source code preserva-

tion is provided. It means that not matter where the Java code was generated (e.g. Eclipse,

Data modeller), the data modeller will only update the necessary code blocks to maintain the

model updated.

Workbench (General)

69

Figure 1.69. Source editor

The "Overview" tab shows the standard metadata and version information as the other workbench

editors.

1.7.7.2. Data Objects

A data model consists of data objects which are a logical representation of some real-world data.

Such data objects have a fixed set of modeller (or application-owned) properties, such as its in-

ternal identifier, a label, description, package etc. Besides those, a data object also has a variable

set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical data object represents.

Creating a data object can be achieved using the workbench "New Item - Data Object" menu

option.

Workbench (General)

70

Figure 1.70. New Data Object menu option

Both resource name and location are mandatory parameters. When the "Ok" button is pressed

a new Java file will be created and a new editor instance will be opened for the file edition. The

optional "Persistable" attribute will add by default configurations on the data object in order to

make it a JPA entity. Use this option if your jBPM project needs to store data object's information

in a data base.

1.7.7.3. Properties & relationships

Once the data object has been created, it now has to be completed by adding user-defined prop-

erties to its definition. This can be achieved by pressing the "add field" button. The "New Field" di-

alog will be opened and the new field can be created by pressing the "Create" button. The "Create

and continue" button will also add the new field to the Data Object, but won't close the dialog. In

this way multiple fields can be created avoiding the popup opening multiple times. The following

fields can (or must) be filled out:

• The field's internal identifier (mandatory). The value of this field must be unique per data object,

i.e. if the proposed identifier already exists within current data object, an error message will be

displayed.

• A label (optional): as with the data object definition, the user can define a user-friendly label for

the data object field which is about to be created. This has no further implications on how fields

from objects of this data object will be treated. If a label is defined, then this is how the field will

be displayed throughout the data modeller tool.

• A field type (mandatory): each data object field needs to be assigned with a type.

Workbench (General)

71

This type can be either of the following:

1. A 'primitive java object' type: these include most of the object equivalents of the standard

Java primitive types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal

and BigInteger.

Figure 1.71. Primitive object field types

2. A 'data object' type: any user defined data object automatically becomes a candidate to be

defined as a field type of another data object, thus enabling the creation of relationships

between them. A data object field can be created either in 'single' or in 'multiple' form, the

latter implying that the field will be defined as a collection of this type, which will be indicated

by selecting "List" checkbox.

Figure 1.72. Data object field types

3. A 'primitive java' type: these include java primitive types byte, short, int, long, float, double,

char and boolean.

Workbench (General)

72

Figure 1.73. Primitive field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the data object's fields table below:

Figure 1.74. New field has been created

The new field will also automatically be selected in the data object's field list, and its properties

will be shown in the Field general properties editor. Additionally the field properties will be loaded

in the different tool windows, in this way the field will be ready for edition in whatever selected

tool window.

At any time, any field (without restrictions) can be deleted from a data object definition by clicking

on the corresponding 'x' icon in the data object's fields table.

1.7.7.4. Additional options

As stated before, both Data Objects as well as Fields require some of their initial properties to be

set upon creation. Additionally there are three domains of properties that can be configured for

a given Data Object. A domain is basically a set of properties related to a given business area.

Workbench (General)

73

Current available domains are, "Drools & jJBPM", "Persistence" and the "Advanced" domain. To

work on a given domain the user should select the corresponding "Tool window" (see below)

on the right side toolbar. Every tool window usually provides two editors, the "Data Object" level

editor and the "Field" level editor, that will be shown depending on the last selected item, the Data

Object or the Field.

1.7.7.4.1. Drools & jBPM domain

The Drools & jBPM domain editors manages the set of Data Object or Field properties related

to drools applications.

1.7.7.4.1.1. Drools & jBPM object editor

The Drools & jBPM object editor manages the object level drools properties

Figure 1.75. The data object's properties

• TypeSafe: this property allows to enable/disable the type safe behaviour for current type. By

default all type declarations are compiled with type safety enabled. (See Drools for more infor-

mation on this matter).

Workbench (General)

74

• ClassReactive: this property allows to mark this type to be treated as "Class Reactive" by the

Drools engine. (See Drools for more information on this matter).

• PropertyReactive: this property allows to mark this type to be treated as "Property Reactive" by

the Drools engine. (See Drools for more information on this matter).

• Role: this property allows to configure how the Drools engine should handle instances of this

type: either as regular facts or as events. By default all types are handled as a regular fact, so

for the time being the only value that can be set is "Event" to declare that this type should be

handled as an event. (See Drools Fusion for more information on this matter).

• Timestamp: this property allows to configure the "timestamp" for an event, by selecting one of

his attributes. If set the engine will use the timestamp from the given attribute instead of reading

it from the Session Clock. If not, the engine will automatically assign a timestamp to the event.

(See Drools Fusion for more information on this matter).

• Duration: this property allows to configure the "duration" for an event, by selecting one of his

attributes. If set the engine will use the duration from the given attribute instead of using the

default event duration = 0. (See Drools Fusion for more information on this matter).

• Expires: this property allows to configure the "time offset" for an event expiration. If set, this value

must be a temporal interval in the form: [#d][#h][#m][#s][#[ms]] Where [] means an optional

parameter and # means a numeric value. e.g.: 1d2h, means one day and two hours. (See Drools

Fusion for more information on this matter).

• Remotable: If checked this property makes the Data Object available to be used with jBPM

remote services as REST, JMS and WS. (See jBPM for more information on this matter).

1.7.7.4.1.2. Drools & jJBPM field editor

The Drools & jBPM object editor manages the field level drools properties

Workbench (General)

75

Figure 1.76. The data object's field properties

• Equals: checking this property for a Data Object field implies that it will be taken into account,

at the code generation level, for the creation of both the equals() and hashCode() methods in

the generated Java class. We will explain this in more detail in the following section.

• Position: this field requires a zero or positive integer. When set, this field will be interpreted

by the Drools engine as a positional argument (see the section below and also the Drools

documentation for more information on this subject).

1.7.7.4.2. Persistence domain

The Persistence domain editors manages the set of Data Object or Field properties related to

persistence.

1.7.7.4.2.1. Persistence domain object editor

Persistence domain object editor manages the object level persistence properties

Workbench (General)

76

Figure 1.77. The data object's properties

• Persistable: this property allows to configure current Data Object as persistable.

• Table name: this property allows to set a user defined database table name for current Data

Object.

1.7.7.4.2.2. Persistence domain field editor

The persistence domain field editor manages the field level persistence properties and is divided

in three sections.

Workbench (General)

77

Figure 1.78. Persistence domain field editor sections

1.7.7.4.2.2.1. Identifier:

A persistable Data Object should have one and only one field defined as the Data Object identifier.

The identifier is typically a unique number that distinguishes a given Data Object instance from

all other instances of the same class.

• Is Identifier: marks current field as the Data Object identifier. A persistable Data Object should

have one and only one field marked as identifier, and it should be a base java type, like String,

Integer, Long, etc. A field that references a Data Object, or is a multiple field can not be marked

as identifier. And also composite identifiers are not supported in this version. When a persistable

Data Object is created an identifier field is created by default with the properly initializations, it's

strongly recommended to use this identifier.

• Generation Strategy: the generation strategy establishes how the identifier values will be auto-

matically generated when the Data Object instances are created and stored in a database. (e.g.

by the forms associated to jBPM processes human tasks.) When the by default Identifier field

is created, the generation strategy will be also automatically set and it's strongly recommended

to use this configuration.

Workbench (General)

78

• Sequence Generator: the generator represents the seed for the values that will be used by the

Generation Strategy. When the by default Identifier field is created the Sequence Generator will

be also automatically generated and properly configured to be used by the Generation Strategy.

1.7.7.4.2.2.2. Column Properties:

The column properties section enables the customization of some properties of the database

column that will store the field value.

• Column name: optional value that sets the database column name for the given field.

• Unique: When checked the unique property establishes that current field value should be a

unique key when stored in the database. (if not set the default value is false)

• Nullable: When checked establishes that current field value can be null when stored in a data-

base. (if not set the default value is true)

• Insertable: When checked establishes that column will be included in SQL INSERT statements

generated by the persistence provider. (if not set the default value is true)

• Updatable: When checked establishes that the column will be included SQL UPDATE state-

ments generated by the persistence provider. (if not set the default value is true)

1.7.7.4.2.2.3. Relationship Properties:

Workbench (General)

79

When the field's type is a Data Object type, or a list of a Data Object type a relationship type should

be set in order to let the persistence provider to manage the relation. Fortunately this relation type

is automatically set when such kind of fields are added to an already marked as persistable Data

Object. The relationship type is set by the following popup.

Figure 1.79. Relationship configuration popup

• Relationship type: sets the type of relation from one of the following options:

One to one: typically used for 1:1 relations where "A is related to one instance of B", and B exists

only when A exists. e.g. PurchaseOrder -> PurchaseOrderHeader (a PurchaseOrderHeader

exists only if the PurchaseOrder exists)

One to many: typically used for 1:N relations where "A is related to N instances of B", and the

related instances of B exists only when A exists. e.g. PurchaseOrder -> PurchaseOrderLine (a

PurchaseOrderLine exists only if the PurchaseOrder exists)

Workbench (General)

80

Many to one: typically used for 1:1 relations where "A is related to one instance of B", and B

can exist even without A. e.g. PurchaseOrder -> Client (a Client can exist in the database even

without an associated PurchaseOrder)

Many to many: typically used for N:N relations where "A can be related to N instances of B, and

B can be related to M instances of A at the same time", and both B an A instances can exits in

the database independently of the related instances. e.g. Course -> Student. (Course can be

related to N Students, and a given Student can attend to M courses)

When a field of type "Data Object" is added to a given persistable Data Object, the "Many to

One" relationship type is generated by default.

And when a field of type "list of Data Object" is added to a given persistable Data Object , the

"One to Many" relationship is generated by default.

• Cascade mode: Defines the set of cascadable operations that are propagated to the associated

entity. The value cascade=ALL is equivalent to cascade={PERSIST, MERGE, REMOVE, RE-

FRESH}. e.g. when A -> B, and cascade "PERSIST or ALL" is set, if A is saved, then B will

be also saved.

The by default cascade mode created by the data modeller is "ALL" and it's strongly recom-

mended to use this mode when Data Objects are being used by jBPM processes and forms.

• Fetch mode: Defines how related data will be fetched from database at reading time.

EAGER: related data will be read at the same time. e.g. If A -> B, when A is read from database

B will be read at the same time.

LAZY: reading of related data will be delayed usually to the moment they are required. e.g.

If PurchaseOrder -> PurchaseOrderLine the lines reading will be postponed until a method

"getLines()" is invoked on a PurchaseOrder instance.

The default fetch mode created by the data modeller is "EAGER" and it's strongly recommended

to use this mode when Data Objects are being used by jBPM processes and forms.

• Optional: establishes if the right side member of a relationship can be null.

• Mapped by: used for reverse relations.

1.7.7.4.3. Advanced domain

The advanced domain enables the configuration of whatever parameter set by the other domains

as well as the adding of arbitrary parameters. As it will be shown in the code generation section

every "Data Object / Field" parameter is represented by a java annotation. The advanced mode

enables the configuration of this annotations.

1.7.7.4.3.1. Advanced domain Data Object / Field editor.

The advanced domain editor has the same shape for both Data Object and Field.

Workbench (General)

81

Figure 1.80. Advanced domain editor.

The following operations are available

• delete: enables the deletion of a given Data Object or Field annotation.

• clear: clears a given annotation parameter value.

• edit: enables the edition of a given annotation parameter value.

• add annotation: The add annotation button will start a wizard that will let the addition of whatever

java annotation available in the project dependencies.

Workbench (General)

82

Add annotation wizard step #1: the first step of the wizard requires the entering of a fully qualified

class name of an annotation, and by pressing the "search" button the annotation definition will

be loaded into the wizard. Additionally when the annotation definition is loaded, different wizard

steps will be created in order to enable the completion of the different annotation parameters.

Required parameters will be marked with "*".

Figure 1.81. Annotation definition loaded into the wizard.

Whenever it's possible the wizard will provide a suitable editor for the given parameters.

Workbench (General)

83

Figure 1.82. Automatically generated enum values editor for an

Enumeration annotation parameter.

A generic parameter editor will be provided when it's not possible to calculate a customized

editor

Workbench (General)

84

Figure 1.83. Generic annotation parameter editor

When all required parameters has been entered and validated, the finish button will be enabled

and the wizard can be completed by adding the annotation to the given Data Object or Field.

1.7.7.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data struc-

tures, for them to interact with the Drools Engine on the one hand, and the jBPM platform on

the other. In order for this to become possible, these high-level visual structures have to be trans-

formed into low-level artifacts that can effectively be consumed by these platforms. These artifacts

are Java POJOs (Plain Old Java Objects), and they are generated every time the data model is

saved, by pressing the "Save" button in the top Data Modeller Menu. Additionally when the user

round trip between the "Editor" and "Source" tab, the code is auto generated to maintain the con-

sistency with the Editor view and vice versa.

Workbench (General)

85

Figure 1.84. Save the data model from the top menu

The resulting code is generated according to the following transformation rules:

• The data object's identifier property will become the Java class's name. It therefore needs to

be a valid Java identifier.

• The data object's package property becomes the Java class's package declaration.

• The data object's superclass property (if present) becomes the Java class's extension decla-

ration.

• The data object's label and description properties will translate into the Java annotations

"@org.kie.api.definition.type.Label" and "@org.kie.api.definition.type.Description", respective-

ly. These annotations are merely a way of preserving the associated information, and as yet

are not processed any further.

• The data object's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application plat-

form, in the sense that it marks this Java class as a Drools Event Fact-Type.

• The data object's type safe property (if present) will be translated into the

"@org.kie.api.definition.type.TypeSafe Java annotation. (see Drools)

• The data object's class reactive property (if present) will be translated into the

"@org.kie.api.definition.type.ClassReactive Java annotation. (see Drools)

• The data object's property reactive property (if present) will be translated into the

"@org.kie.api.definition.type.PropertyReactive Java annotation. (see Drools)

• The data object's timestamp property (if present) will be translated into the

"@org.kie.api.definition.type.Timestamp Java annotation. (see Drools)

• The data object's duration property (if present) will be translated into the

"@org.kie.api.definition.type.Duration Java annotation. (see Drools)

• The data object's expires property (if present) will be translated into the

"@org.kie.api.definition.type.Expires Java annotation. (see Drools)

• The data object's remotable property (if present) will be translated into the

"@org.kie.api.remote.Remotable Java annotation. (see jBPM)

Workbench (General)

86

A standard Java default (or no parameter) constructor is generated, as well as a full parameter

constructor, i.e. a constructor that accepts as parameters a value for each of the data object's

user-defined fields.

The data object's user-defined fields are translated into Java class fields, each one of them with

its own getter and setter method, according to the following transformation rules:

• The data object field's identifier will become the Java field identifier. It therefore needs to be

a valid Java identifier.

• The data object field's type is directly translated into the Java class's field type. In case the field

was declared to be multiple (i.e. 'List'), then the generated field is of the "java.util.List" type.

• The equals property: when it is set for a specific field, then this class property will be anno-

tated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the Drools

Engine, and it will 'participate' in the generated equals() method, which overwrites the equals()

method of the Object class. The latter implies that if the field is a 'primitive' type, the equals

method will simply compares its value with the value of the corresponding field in another in-

stance of the class. If the field is a sub-entity or a collection type, then the equals method will

make a method-call to the equals method of the corresponding data object's Java class, or of

the java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the data object's user defined fields, then this also

implies that in addition to the default generated constructors another constructor is generated,

accepting as parameters all of the fields that were marked with Equals. Furthermore, generation

of the equals() method also implies that also the Object class's hashCode() method is overwrit-

ten, in such a manner that it will call the hashCode() methods of the corresponding Java class

types (be it 'primitive' or user-defined types) for all the fields that were marked with Equals in

the Data Model.

• The position property: this field property is automatically set for all user-defined fields, starting

from 0, and incrementing by 1 for each subsequent new field. However the user can freely

changes the position among the fields. At code generation time this property is translated into

the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools

Engine. Also, the established property order determines the order of the constructor parameters

in the generated Java class.

As an example, the generated Java class code for the Purchase Order data object, corresponding

to its definition as shown in the following figure purchase_example.jpg is visualized in the figure at

the bottom of this chapter. Note that the two of the data object's fields, namely 'header' and 'lines'

were marked with Equals, and have been assigned with the positions 2 and 1, respectively).

Workbench (General)

87

Figure 1.85. Purchase Order configuration

 package org.jbpm.examples.purchases;

 /**

 * This class was automatically generated by the data modeler tool.

 */

 @org.kie.api.definition.type.Label("Purchase Order")

 @org.kie.api.definition.type.TypeSafe(true)

 @org.kie.api.definition.type.Role(org.kie.api.definition.type.Role.Type.EVENT)

 @org.kie.api.definition.type.Expires("2d")

 @org.kie.api.remote.Remotable

 public class PurchaseOrder implements java.io.Serializable

 {

 static final long serialVersionUID = 1L;

 @org.kie.api.definition.type.Label("Total")

 @org.kie.api.definition.type.Position(3)

 private java.lang.Double total;

 @org.kie.api.definition.type.Label("Description")

 @org.kie.api.definition.type.Position(0)

 private java.lang.String description;

 @org.kie.api.definition.type.Label("Lines")

 @org.kie.api.definition.type.Position(2)

 @org.kie.api.definition.type.Key

 private java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

 @org.kie.api.definition.type.Label("Header")

 @org.kie.api.definition.type.Position(1)

 @org.kie.api.definition.type.Key

 private org.jbpm.examples.purchases.PurchaseOrderHeader header;

 @org.kie.api.definition.type.Position(4)

 private java.lang.Boolean requiresCFOApproval;

 public PurchaseOrder()

Workbench (General)

88

 {

 }

 public java.lang.Double getTotal()

 {

 return this.total;

 }

 public void setTotal(java.lang.Double total)

 {

 this.total = total;

 }

 public java.lang.String getDescription()

 {

 return this.description;

 }

 public void setDescription(java.lang.String description)

 {

 this.description = description;

 }

 public java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> getLines()

 {

 return this.lines;

 }

 public void setLines(java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines)

 {

 this.lines = lines;

 }

 public org.jbpm.examples.purchases.PurchaseOrderHeader getHeader()

 {

 return this.header;

 }

 public void setHeader(org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.header = header;

 }

 public java.lang.Boolean getRequiresCFOApproval()

 {

 return this.requiresCFOApproval;

 }

 public void setRequiresCFOApproval(java.lang.Boolean requiresCFOApproval)

 {

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(java.lang.Double total, java.lang.String description,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header,

 java.lang.Boolean requiresCFOApproval)

 {

 this.total = total;

Workbench (General)

89

 this.description = description;

 this.lines = lines;

 this.header = header;

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(java.lang.String description,

 org.jbpm.examples.purchases.PurchaseOrderHeader header,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 java.lang.Double total, java.lang.Boolean requiresCFOApproval)

 {

 this.description = description;

 this.header = header;

 this.lines = lines;

 this.total = total;

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.lines = lines;

 this.header = header;

 }

 @Override

 public boolean equals(Object o)

 {

 if (this == o)

 return true;

 if (o == null || getClass() != o.getClass())

 return false;

 org.jbpm.examples.purchases.PurchaseOrder that = (org.jbpm.examples.purchases.PurchaseOrder) o;

 if (lines != null ? !lines.equals(that.lines) : that.lines != null)

 return false;

 if (header != null ? !header.equals(that.header) : that.header != null)

 return false;

 return true;

 }

 @Override

 public int hashCode()

 {

 int result = 17;

 result = 31 * result + (lines != null ? lines.hashCode() : 0);

 result = 31 * result + (header != null ? header.hashCode() : 0);

 return result;

 }

 }

Workbench (General)

90

1.7.7.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current

project context. In order to make those POJOs available a dependency to the given JAR should

be added. Once the dependency has been added the external POJOs can be referenced from

current project data model.

There are two ways to add a dependency to an external JAR file:

• Dependency to a JAR file already installed in current local M2 repository (typically associated

the the user home).

• Dependency to a JAR file installed in current KIE Workbench/Drools Workbench "Guvnor M2

repository". (internal to the application)

1.7.7.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

1.7.7.6.1.1. Open the Project Editor for current project and select the Dependen-

cies view.

Figure 1.86. Project editor.

Workbench (General)

91

1.7.7.6.1.2. Click on the "Add" button to add a new dependency line.

Figure 1.87. New dependency line.

1.7.7.6.1.3. Complete the GAV for the JAR file already installed in local M2 reposi-

tory.

Figure 1.88. Dependency line edition.

1.7.7.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

Workbench (General)

92

Figure 1.89. Save project.

1.7.7.6.2. Dependency to a JAR file in current "Guvnor M2 repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

1.7.7.6.2.1. Open the Maven Artifact Repository editor.

Figure 1.90. Guvnor M2 Repository editor.

Workbench (General)

93

1.7.7.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Figure 1.91. File browser.

1.7.7.6.2.3. Upload the file using the Upload button.

Figure 1.92. File upload success.

1.7.7.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

Workbench (General)

94

Figure 1.93. Files list.

1.7.7.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt

the user in order to provide a GAV for the file to be installed.

Figure 1.94. Not valid POM.

Figure 1.95. Enter GAV manually.

Workbench (General)

95

1.7.7.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR

selector to see all the installed JAR files in current "Guvnor M2 repository". When the desired file

is selected the project should be saved in order to make the new dependency available.

Figure 1.96. Select JAR from "Maven Artifact Repository".

1.7.7.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the

context of current project data model in the following ways:

• External POJOs can be extended by current model data objects.

• External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order

to be quickly identified.

Figure 1.97. Identifying external objects.

Workbench (General)

96

1.7.7.7. Roundtrip and concurrency

Current version implements roundtrip and code preservation between Data modeller and Java

source code. No matter where the Java code was generated (e.g. Eclipse, Data modeller), the

data modeller will only create/delete/update the necessary code elements to maintain the mod-

el updated, i.e, fields, getter/setters, constructors, equals method and hashCode method. Also

whatever Type or Field annotation not managed by the Data Modeler will be preserved when the

Java sources are updated by the Data modeller.

Aside from code preservation, like in the other workbench editors, concurrent modification sce-

narios are still possible. Common scenarios are when two different users are updating the model

for the same project, e.g. using the data modeller or executing a 'git push command' that modifies

project sources.

From an application context's perspective, we can basically identify two different main scenarios:

1.7.7.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,

without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user

tries to make any kind of change, such as add or remove data objects or properties, or change

any of the existing ones, the following pop-up will be shown:

Workbench (General)

97

Figure 1.98. External changes warning

The user can choose to either:

• Re-open the data model, thus loading any external changes, and then perform the modification

he was about to undertake, or

• Ignore any external changes, and go ahead with the modification to the model. In this case,

when trying to persist these changes, another pop-up warning will be shown:

Workbench (General)

98

Figure 1.99. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

Warning

"Force Save" overwrites any external changes!

1.7.7.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user simultane-

ously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset

repository (or e.g. saves the model with the data modeller in a different session), a warning is

issued to the application user:

Workbench (General)

99

Figure 1.100. External changes warning

As with the previous scenario, the user can choose to either:

• Re-open the data model, thus losing any modifications that where made through the application,

or

• Ignore any external changes, and continue working on the model.

One of the following possibilities can now occur:

• The user tries to persist the changes he made to the model by clicking the "Save" button in

the data modeller top level menu. This leads to the following warning message:

Workbench (General)

100

Figure 1.101. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

1.7.8. Data Sets

A data set is basically a set of columns populated with some rows, a matrix of data composed

of timestamps, texts and numbers. A data set can be stored in different systems: a database, an

excel file, in memory or in a lot of other different systems. On the other hand, a data set definition

tells the workbench modules how such data can be accessed, read and parsed.

Notice, it's very important to make crystal clear the difference between a data set and its definition

since the workbench does not take care of storing any data, it just provides an standard way to

define access to those data sets regardless where the data is stored.

Let's take for instance the data stored in a remote database. A valid data set could be, for example,

an entire database table or the result of an SQL query. In both cases, the database will return

a bunch of columns and rows. Now, imagine we want to get access to such data to feed some

charts in a new workbench perspective. First thing is to create and register a data set definition

in order to indicate the following:

Workbench (General)

101

• where the data set is stored,

• how can be accessed, read and parsed and

• what columns contains and of which type.

This chapter introduces the available workbench tools for registering and handling data set defi-

nitions and how this definitions can be consumed in other workbench modules like, for instance,

the Perspective Editor.

Note

For simplicity sake we will be using the term data set to refer to the actual data set

definitions as Data set and Data set definition can be considered synonyms under

the data set authoring context.

1.7.8.1. Data Set Authoring Perspective

Everything related to the authoring of data sets can be found under the Data Set Authoring per-

spective which is accessible from the following top level menu entry: Extensions>Data Sets, as

shown in the following screenshot.

Figure 1.102. Data Set Authoring Perspective

The center panel, shows a welcome screen, whilst the left panel contains the Data Set Explorer

listing all the data sets available

Workbench (General)

102

Note

This perspective is only intended to Administrator users, since defining data sets

can be considered a low level task.

1.7.8.2. Data Set Explorer

The Data Set Explorer list the data sets present in the system. Every time the user clicks on the

data set it shows a brief summary alongside the following information:

Figure 1.103. Data Set Explorer

• (1) A button for creating a new Data set

• (2) The list of currently available Data sets

• (3) An icon that represents the Data set's provider type (Bean, SQL, CSV, etc)

• (4) Details of current cache and refresh policy status

• (5) Details of current size on backend (unit as rows) and current size on client side (unit in bytes)

• (6) The button for editing the Data set. Once clicked the Data set editor screen is opened on

the center panel

Workbench (General)

103

The next sections explains how to create, edit and fine tune data set definitions.

1.7.8.3. Data Set Creation

Clicking on the New Data Set button opens a new screen from which the user is able to create

a new data set definition in three steps:

• Provider type selection

Specify the kind of the remote storage system (BEAN, SQL, CSV, ElasticSearch)

• Provider configuration

Specify the attributes for being able to look up data from the remote system. The configuration

varies depending on the data provider type selected.

• Data set columns & filter

Live data preview, column types and initial filter configuration.

1.7.8.3.1. Step 1: Provider type selection

Allows the user's specify the type of data provider of the data set being created.

This screen lists all the current available data provider types and helper popovers with descrip-

tions. Each data provider is represented with a descriptive image:

Figure 1.104. Provider type selection

Four types are currently supported:

• Bean (Java class) - To generate a data set directly from Java

Workbench (General)

104

• SQL - For getting data from any ANSI-SQL compliant database

• CSV - To upload the contents of a remote or local CSV file

• Elastic Search - To query and get documents stored on Elastic Search nodes as data sets

Once a type is selected, click on Next button to continue with the next workflow step.

1.7.8.3.2. Step 2: Configuration
The screenshot below shows a CSV data set configuration form. Once all the required settings

are filled click on Test button. The system will try to fetch an small amount of data before moving

to the next workflow step.

Figure 1.105. CSV Configuration

The provider type selected in the previous step will determine which configuration settings the

system asks for.

Workbench (General)

105

Figure 1.106. Configuration screen per data set type

Note

The UUID attribute is a read only field as it's generated by the system. It's only

intended for usage in API calls or specific operations.

1.7.8.3.3. Step 3: Data set columns and preview

After clicking on the Test button (see previous step), the system executes a data set lookup test

call in order to check if the remote system is up and the data is available. If everything goes ok

the user will see the following screen:

Workbench (General)

106

Figure 1.107. Data set preview

This screen shows a live data preview along with the columns the user wants to be part of the

resulting data set. The user can also navigate through the data and apply some changes to the

data set structure. Once finished, we can click on the Save button in order to register the new

data set definition.

We can also change the configuration settings at any time just by going back to the configuration

tab. We can repeat the Configuration>Test>Preview cycle as may times as needed until we con-

sider it's ready to be saved.

Columns

In the Columns tab area the user can select what columns are part of the resulting data set de-

finition.

Workbench (General)

107

Figure 1.108. Data set columns

• (1) To add or remove columns. Select only those columns you want to be part of the resulting

data set

• (2) Use the drop down image selector to change the column type

A data set may only contain columns of any of the following 4 types:

• Label - For text values supporting group operations (similar to the SQL "group by" operator)

which means you can perform data lookup calls and get one row per distinct value.

• Text - For text values NOT supporting group operations. Typically for modeling large text

columns such as abstracts, descriptions and the like.

• Number - For numeric values. It does support aggregation functions on data lookup calls: sum,

min, max, average, count, disctinct.

• Date - For date or timestamp values. It does support time based group operations by different

time intervals: minute, hour, day, month, year, ...

No matter which remote system you want to retrieve data from, the resulting data set will always

return a set of columns of one of the four types above. There exists, by default, a mapping between

the remote system column types and the data set types. The user is able to modify the type for

some columns, depending on the data provider and the column type of the remote system. The

system supports the following changes to column types:

• Label <> Text - Useful when we want to enable/disable the categorization (grouping) for the

target column. For instance, imagine a database table called "document" containing a large text

Workbench (General)

108

column called "abstract". As we do not want the system to treat such column as a "label" we

might change its column type to "text". Doing so, we are optimizing the way the system handles

the data set and

• Number <> Label - Useful when we want to treat numeric columns as labels. This can be used

for instance to indicate that a given numeric column is not a numeric value that can be used in

aggregation functions. Despite its values are stored as numbers we want to handle the column

as a "label". One example of such columns are: an item's code, an appraisal id., ...

Note

BEAN data sets do not support changing column types as it's up to the developer

to decide which are the concrete types for each column.

Filter

A data set definition may define a filter. The goal of the filter is to leave out rows the user does

not consider necessary. The filter feature works on any data provider type and it lets the user to

apply filter operations on any of the data set columns available.

Figure 1.109. Data set filter

While adding or removing filter conditions and operations, the preview table on central area is

updated with live data that reflects the current filter status.

There exists two strategies for filtering data sets and it's also important to note that choosing

between the two have important implications. Imagine a dashboard with some charts feeding from

a expense reports data set where such data set is built on top of an SQL table. Imagine also we

only want to retrieve the expense reports from the "London" office. You may define a data set

containing the filter "office=London" and then having several charts feeding from such data set.

This is the recommended approach. Another option is to define a data set with no initial filter and

then let the individual charts to specify their own filter. It's up to the user to decide on the best

approach.

Workbench (General)

109

Depending on the case it might be better to define the filter at a data set level for reusing across

other modules. The decision may also have impact on the performance since a filtered cached

data set will have far better performance than a lot of individual non-cached data set lookup re-

quests. (See the next section for more information about caching data sets).

Note

Notice, for SQL data sets, the user can use both the filter feature introduced or,

alternatively, just add custom filter criteria to the SQL sentence. Although, the first

approach is more appropriated for non technical users since they might not have

the required SQL language skills.

1.7.8.4. Data set editor

To edit an existing data set definition go the data set explorer, expand the desired data set defin-

ition and click on the Edit button. This will cause a new editor panel to be opened and placed on

the center of the screen, as shown in the next screenshot:

Figure 1.110. Data set definition editor

Every time we edit an item its editor is added to the center panel. We can navigate through the

list of opened editors just by clicking on the down arrow icon placed at the editor's toolbar in the

top right corner.

Workbench (General)

110

Figure 1.111. Editor selector

The editor provides all the features described in previous sections. We can change the configu-

ration settings, test our data set definition and modify the resulting data set structure. Additionally,

the editor provides some extra buttons in its toolbar:

• Save - To validate the current changes and store the data set definition.

• Delete - To remove permanently from storage the data set definition. Any client module refer-

encing the data set may be affected.

• Validate - To check that all the required parameters exists and are correct, as well as to validate

the data set can be retrieved with no issues.

• Copy - To create a brand new definition as a copy of the current one.

Note

Data set definitions are stored in the underlying GIT repository as JSON files. Any

action performed is registered in the repository logs so it is possible to audit the

change log later on.

1.7.8.5. Advanced settings

In the Advanced settings tab area the user can specify caching and refresh settings. Those are

very important for making the most of the system capabilities thus improving the performance and

having better application responsive levels.

Workbench (General)

111

Figure 1.112. Advanced settings

• (1) To enable or disable the client cache and specify the maximum size (bytes).

• (2) To enable or disable the backend cache and specify the maximum cache size (number of

rows).

• (3) To enable or disable automatic refresh for the Data set and the refresh period.

• (4) To enable or disable the refresh on stale data setting.

Let's dig into more details about the meaning of these settings.

1.7.8.6. Caching

The system provides caching mechanisms out-of-the-box for holding data sets and performing

data operations using in-memory strategies. The use of these features brings a lot of advantages,

like reducing the network traffic, remote system payload, processing times etc. On the other hand,

it's up to the user to fine tune properly the caching settings to avoid hitting performance issues.

Two cache levels are supported:

• Client level

• Backend level

The following diagram shows how caching is involved in any data set operation:

Workbench (General)

112

Figure 1.113. Data set caching

Any data look up call produces a resulting data set, so the use of the caching techniques deter-

mines where the data lookup calls are executed and where the resulting data set is located.

Client cache

If ON then the data set involved in a look up operation is pushed into the web browser so that

all the components that feed from this data set do not need to perform any requests to the

backend since data set operations are resolved at a client side:

• The data set is stored in the web browser's memory

• The client components feed from the data set stored in the browser

• Data set operations (grouping, aggregations, filters and sort) are processed within the web

browser, by means of a Javascript data set operation engine.

If you know beforehand that your data set will remain small, you can enable the client cache. It

will reduce the number of backend requests, including the requests to the storage system. On the

other hand, if you consider that your data set will be quite big, disable the client cache so as to

not hitting with browser issues such as slow performance or intermittent hangs.

Backend cache

Its goal is to provide a caching mechanism for data sets on backend side.

This feature allows to reduce the number of requests to the remote storage system , by

holding the data set in memory and performing group, filter and sort operations using the in-

memory engine.

It's useful for data sets that do not change very often and their size can be considered acceptable

to be held and processed in memory. It can be also helpful on low latency connectivity issues with

Workbench (General)

113

the remote storage. On the other hand, if your data set is going to be updated frequently, it's better

to disable the backend cache and perform the requests to the remote storage on each look up

request, so the storage system is in charge of resolving the data set lookup request.

Note

BEAN and CSV data providers relies by default on the backend cache, as in both

cases the data set must be always loaded into memory in order to resolve any data

lookup operation using the in-memory engine. This is the reason why the backend

settings are not visible in the Advanced settings tab.

1.7.8.7. Refresh

The refresh feature allows for the invalidation of any cached data when certain conditions are

meet.

Figure 1.114. Refresh settings

• (1) To enable or disable the refresh feature.

• (2) To specify the refresh interval.

• (3) To enable or disable data set invalidation when the data is outdated.

The data set refresh policy is tightly related to data set caching, detailed in previous section. This

invalidation mechanism determines the cache life-cycle.

Depending on the nature of the data there exist three main use cases:

• Source data changes predictable - Imagine a database being updated every night. In that

case, the suggested configuration is to use a "refresh interval = 1 day" and disable "refresh on

stale data". That way, the system will always invalidate the cached data set every day. This is

the right configuration when we know in advance that the data is going to change.

• Source data changes unpredictable - On the other hand, if we do not know whether the

database is updated every day, the suggested configuration is to use a "refresh interval = 1 day"

and enable "refresh on stale data". If so the system, before invalidating any data, will check for

modifications. On data modifications, the system will invalidate the current stale data set so that

the cache is populated with fresh data on the next data set lookup call.

Workbench (General)

114

• Real time scenarios - In real time scenarios caching makes no sense as data is going to be

updated constantly. In this kind of scenarios the data sent to the client has to be constantly

updated, so rather than enabling the refresh settings (remember this settings affect the caching,

and caching is not enabled) it's up to the clients consuming the data set to decide when to

refresh. When the client is a dashboard then it's just a matter of modifying the refresh settings

in the Displayer Editor configuration screen and set a proper refresh period, "refresh interval

= 1 second" for example.

1.8. User and group management

1.8.1. Introduction

This section describes a feature that allows the administration of the application's users and

groups using an intuitive and friendly user interface that comes integrated in both jBPM and Drools

Workbenches.

Figure 1.115.

Before the installation, setup and usage of this feature, this section talks about some previous

concepts that need to be completely understood for the further usage:

• Security management providers and capabilities

• Installation and setup

• Usage

1.8.2. Security management providers

A security environment is usually provided by the use of a realm. Realms are used to restrict the

access for the different application's resources. So realms contains information about the users,

groups, roles, permissions and and any other related information.

In most of the typical scenarios the application's security is delegated to the container's security

mechanism, which consumes a given realm at same time. It's important to consider that there

Workbench (General)

115

exist several realm implementations, for example Wildfly provides a realm based on the appli-

cation-users.properties/application-roles.properties files, Tomcat provides a realm based on the

tomcat-users.xml file, etc. So keep in mind that there is no single security realm to rely on, it can

be different in each installation.

The jBPM and Drools workbenches are not an exception, they're build on top Uberfire framework

(aka UF), which delegates the authorization and authentication to the underlying container's se-

curity environment as well, so the consumed realm is given by the concrete deployment config-

uration.

1.8.2.1. Security management providers

Due to the potential different security environments that have to be supported, the users and

groups management provides a well defined management services API with some default built-in

security management providers. A security management provider is the formal name given to

a concrete user and group management service implementation for a given realm.

At this moment, by default there are two security management providers available:

• Wildfly / EAP security management provider - For Wildfly or EAP realms based on properties

files.

• Tomcat security management provider - For Tomcat realms based on XML files.

If the built-in providers do not fit with the application's security realm, it is easy to build and register

your own security management provider.

1.8.2.2. Secutiry management provider capabilities

Each security realm can provide support different operations. For example consider the use of a

Wildfly's realm based on properties files, The contents for the applications-users.properties is like:

admin=207b6e0cc556d7084b5e2db7d822555c

salaboy=d4af256e7007fea2e581d539e05edd1b

maciej=3c8609f5e0c908a8c361ca633ed23844

kris=0bfd0f47d4817f2557c91cbab38bb92d

katy=fd37b5d0b82ce027bfad677a54fbccee

john=afda4373c6021f3f5841cd6c0a027244

jack=984ba30e11dda7b9ed86ba7b73d01481

director=6b7f87a92b62bedd0a5a94c98bd83e21

user=c5568adea472163dfc00c19c6348a665

guest=b5d048a237bfd2874b6928e1f37ee15e

kiewb=78541b7b451d8012223f29ba5141bcc2

kieserver=16c6511893651c9b4b57e0c027a96075

Note that it's based on key-value pairs where the key is the username, and the value is the hashed

value for the user's password. So a user is just defined by the key, by its username, it does not

have a name nor address or any other meta information.

Workbench (General)

116

On the other hand, consider the use of a realm provided by a Keycloak server. The information for

a user is composed by more user meta-data, such as surname, address, etc, as in the following

image:

Figure 1.116.

So the different services and client side components from the users and group management API

are based on capabilities.Capabilities are used to expose or restrict the available functionality

provided by the different services and client side components. Examples of capabilities are:

• Create a user

• Update a user

• Delete a user

• Update user's attributes

• Create a group

• Update a group

• Assign groups to a user

• Assign roles to a user

Each security management provider must specify a set of capabilities supported. From the previ-

ous examples you can note that the Wildfly security management provider does not support the

Workbench (General)

117

capability for the management of the attributes for a user - the user is only composed by the user

name. On the other hand the Keycloak provider does support this capability.

The different views and user interface components rely on the capabilities supported by each

provider, so if a capability is not supported by the provider in use, the UI does not provide the

views for the management of that capability. As an example, consider that a concrete provider

does not support deleting users - the delete user button on the user interface will be not available.

Please take a look at the concrete service provider documentation to check all the supported

capabilities for each one, the default ones can be found here [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management].

1.8.3. Installation and setup

Before considering the installation and setup steps please note the following Drools and jBPM

distributions come with built-in, pre-installed security management providers by default:

• Wildfly / EAP distribution - Both distributions use the Wildfly security man-

agement provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-securi-

ty/uberfire-security-management/uberfire-security-management-wildfly] configured for the use

of the default realm files application-users.properties and application-roles.properties

• Tomcat distribution - It uses the Tomcat security management

provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uber-

fire-security-management/uberfire-security-management-tomcat] configured for the use of the

default realm file tomcat-users.xml

Please read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/

master/uberfire-security/uberfire-security-management] in order to apply the concrete settings for

the target deployment environment.

On the other hand, if using a custom security management provider or need to include it on an

existing application, consider the following installation options:

• Enable the security management feature on an existing WAR distribution

• Setup and installation in an existing or new project

NOTE: If no security management provider is installed in the application, there will be no available

user interface for managing the security realm. Once a security management provider is installed

and setup, the user and group management user interfaces are automatically enabled and ac-

cessible from the main menu.

1.8.3.1. Enable the security management feature on an existing WAR

distribution

Given an existing WAR distribution of either Drools and jBPM workbenches, follow these steps in

order to install and enable the user management feature:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

118

• Ensure the following libraries are present on WEB-INF/lib:

• WEB-INF/lib/uberfire-security-management-api-6.4.0.Final..jar

• WEB-INF/lib/uberfire-security-management-backend-6.4.0.Final..jar

• Add the concrete library for the security management provider to use in WEB-INF/lib:

• Eg: WEB-INF/lib/uberfire-security-management-wildfly-6.4.0.Final..jar

• If the concrete provider you're using requires more libraries, add those as well. Please

read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/

master/uberfire-security/uberfire-security-management] for more information

• Replace the whole content for file WEB-INF/classes/security-management.properties, or if not

present, create it. The settings present on this file depend on the concrete implementation you're

using. Please read each provider's documentation [https://github.com/uberfire/uberfire-exten-

sions/tree/master/uberfire-security/uberfire-security-management] for more information.

• If you're deploying on Wildfly or EAP, please check if the WEB-INF/jboss-de-

ployment-structure.xml requires any update. Please read each provider's documen-

tation [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-se-

curity-management] for more information.

1.8.3.2. Setup and installation in an existing or new project

If you're building an Uberfire [http://uberfireframework.org/] based web application and

you want to include the user and group management feature, please read this instruc-

tions [https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-secu-

rity-management/uberfire-security-management-client-wb/README.md].

1.8.3.3. Disabling the security management feature

The security management feature can be disabled, and thus no services or user interface will be

available, by any of:

• Uninstalling the security management provider from the application

When no concrete security management provider installed on the application, the user and

group management feature will be disabled and no services or user interface will be presented

to the user.

• Removing or commenting the security management configuration file

Removing or commenting all the lines in the configuration file located at WEB-INF/classes/se-

curity-management.properties will disable the user and group management feature and no ser-

vices or user interface will be presented to the user.

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
http://uberfireframework.org/
http://uberfireframework.org/
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md

Workbench (General)

119

1.8.4. Usage

The user and group management feature is presented using two different perspectives that are

available from the main Home menu (considering that the feature is enabled) as:

Figure 1.117.

Read the following sections for using both user and group management perspectives.

1.8.4.1. User management

The user management interface is available from the User management menu entry in the Home

menu.

The interface is presented using two main panels: the users explorer on the west panel and the

user editor on the center one:

Figure 1.118.

Workbench (General)

120

The users explorer, on west panel, lists by default all the users present on the application's

security realm:

Figure 1.119.

In addition to listing all users, the users explorer allows:

• Searching for users

When specifying the search pattern in the search box the users list will be reduced and will

display only the users that matches the search pattern.

Workbench (General)

121

Figure 1.120.

Search patterns depend on the concrete security management provider being used by the

application's. Please read each provider's documentation [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management] for more informa-

tion.

• Creating new users

By clicking on the Create new user button, a new screen will be presented on the center panel

to perform a new user creation.

Figure 1.121.

The user editor, on the center panel, is used to create, view, update or delete users. Once creating

a new user o clicking an existing user on the users explorer, the user editor screen is opened.

To view an existing user, click on an existing user in the Users Explorer to open the User Ed-

itor screen. For example, viewing the admin user when using the Wildfly security management

provider results in this screen:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

122

Figure 1.122.

Same admin user view operation but when using the Keycloak security management provider,

instead of the Wildfly's one, results in this screen:

Figure 1.123.

Note that the user editor, when using the Keycloak sec. management provider, includes the user

attributes management section, but it's not present when using the Wildfly's one. So remember that

the information and actions available on the user interface depends on each provider's capabilities

(as explained in previous sections).

Viewing a user in the user editor provides the following information (if provider supports it):

• The user name

Workbench (General)

123

• The user's attributes

• The assigned groups

• The assigned roles

In order to update or delete an existing user, click on the Edit button present near to the user-

name in the user editor screen:

Figure 1.124.

Once the user editor presented in edit mode, different operations can be done (if the security

management provider in use supports it):

• Update the user's attributes

A group selection popup is presented when clicking on Add to groups button:

Figure 1.125.

This popup screen allows the user to search and select or deselect the groups assigned for the

user currently being edited.

Workbench (General)

124

• Update assigned groups

A group selection popup is presented when clicking on Add to groups button:

Figure 1.126.

This popup screen allows the user to search and select or deselect the groups assigned for the

user currently being edited.

• Update assigned roles

A role selection popup is presented when clicking on Add to roles button:

Workbench (General)

125

Figure 1.127.

This popup screen allows the user to search and select or deselect the roles assigned for the

user currently being edited.

• Change user's password

Workbench (General)

126

A change password popup screen is presented when clicking on the Change password button:

Figure 1.128.

• Delete user

The user currently being edited can be deleted from the realm by clicking on the Delete button.

1.8.4.2. Group management

The group management interface is available from the Group management menu entry in the

Home menu.

The interface is presented using two main panels: the groups explorer on the west panel and the

group editor on the center one:

Figure 1.129.

The groups explorer, on west panel, lists by default all the groups present on the application's

security realm:

Workbench (General)

127

Figure 1.130.

In addition to listing all groups, the groups explorer allows:

• Searching for groups

When specifying the search pattern in the search box the users list will be reduced and will

display only the users that matches the search pattern.

Workbench (General)

128

Figure 1.131.

Search patterns depend on the concrete security management provider being used by the

application's. Please read each provider's documentation [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management] for more informa-

tion.

• Create new groups

By clicking on the Create new group button, a new screen will be presented on the center panel

to perform a new group creation. Once the new group has been created, it allows to assign

users to it:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

129

Figure 1.132.

The group editor, on the center panel, is used to create, view or delete groups. Once creating a

new group o clicking an existing group on the groups explorer, the group editor screen is opened.

To view an existing group, click on an existing user in the Groups Explorer to open the Group

Editor screen. For example, viewing the sales group results in this screen:

Figure 1.133.

To delete an existing group just click on the Delete button.

1.9. Embedding Workbench In Your Application

As we already know, Workbench provides a set of editors to author assets in different formats.

According to asset’s format a specialized editor is used.

One additional feature provided by Workbench is the ability to embed it in your own (Web) Appli-

cations thru it's standalone mode. So, if you want to edit rules, processes, decision tables, etc...

in your own applications without switch to Workbench, you can.

Workbench (General)

130

In order to embed Workbench in your application all you'll need is the Workbench application

deployed and running in a web/application server and, from within your own web applications, an

iframe with proper HTTP query parameters as described in the following table.

Table 1.2. HTTP query parameters for standalone mode

Parameter Name Explanation Allow mul-

tiple values

Example

standalone With just the pres-

ence of this parameter

workbench will switch

to standalone mode.

no (none)

path Path to the asset to be

edited. Note that asset

should already exists.

no git://master@uf-

playground/todo.md

perspective Reference to an exist-

ing perspective name.

no org.guvnor.m2repo.client.perspectives.GuvnorM2RepoPerspective

header Defines the name of

the header that should

be displayed (use-

ful for context menu

headers).

yes ComplementNavArea

Note

Path and Perspective parameters are mutual exclusive, so can't be used together.

1.10. Asset Management

1.10.1. Asset Management Overview

This section of the documentation describes the main features included that contribute to the Asset

Management functionality provided in the KIE Workbench and KIE Drools Workbench. All the

features described here are entirely optional, but the usage is recommended if you are planning

to have multiple projects. All the Asset Management features try to impose good practices on

the repository structure that will make the maintainace, versioning and distribution of the projects

simple and based on standards. All the Asset Management features are implemented using jBPM

Business Processes, which means that the logic can be reused for external applications as well

as adapted for domain specific requirements when needed.

Workbench (General)

131

Note

You must set the "kiemgmt" role to your user to be able to use the Asset Manage-

ment Features

1.10.2. Managed vs Unmanaged Repositories

Since the creation of the assets management features repositories can be classified into Managed

or Unmanaged.

1.10.2.1. Managed Repositories

All new assets management features are available for this type of repositories. Additionally a

managed repository can be "Single Project" or "Multi Project".

A "Single Project" managed repository will contain just one Project. And a "Multi Project" managed

repository can contain multiple Projects. All of them related through the same parent, and they

will share the same group and version information.

1.10.2.2. Unmanaged Repositories

Assets management features are not available for this type or repositories and they basically

behaves the same as the repositories created with previous workbench versions.

1.10.3. Asset Management Processes

There are 4 main processes which represent the stages of the Asset Management feature: Con-

figure Repository, Promote Changes, Build and Release.

1.10.3.1. Configure Repository

The Configure Repository process is in charge of the post initialization of the repository. This

process will be automatically triggered if the user selects to create a Managed Repository on the

New repository wizzard. If they decide to use the governance feature the process will kick in and

as soon as the repository is created. A new development and release branches will be created.

Notice that the first time that this process is called, the master branch is picked and both branches

(dev and release) will be based on it.

Workbench (General)

132

By default the asset management feature is not enabled so make sure to select Managed Repos-

itory on the New Repository Wizzard. When we work inside a managed repository, the develop-

ment branch is selected for the users to work on. If multiple dev branches are created, the user

will need to pick one.

1.10.3.2. Promote Changes Process

When some work is done in the developments branch and the users reach a point where the

changes needs to be tested before going into production, they will start a new Promote Changes

process so a more technical user can decide and review what needs to be promoted. The users

belonging to the "kiemgmt" group will see a new Task in their Group Task List which will contain

all the files that had being changed. The user needs to select the assets that will be promoting

via the UI. The underlying process will be cherry-picking the commits selected by the user to the

release branch. The user can specify that a review is needed by a more technical user.

This process can be repeated multiple times if needed before creating the artifacts for the release.

1.10.3.3. Build Process

The Build process can be triggered to build our projects from different branches. This allows us

to have a more flexible way to build and deploy our projects to different runtimes.

Workbench (General)

133

1.10.3.4. Release Process

The release process is triggered at any time when the user decided that it is time to generate a

release of the project that he/she is working on. This process will build the project (calling the Build

Process) and it will update all the maven artifacts to the next version.

1.10.4. Usage Flow

This section describes the common usage flow for the asset management features showing all

the screens involved.

The first contact with the Asset Management features starts on the Repository creation.

Workbench (General)

134

If the user chooses to create a Managed Respository a new page in the wizzard is enabled:

When a managed repository is created the assets management configuration process is automat-

ically launched in order to create the repository branches, and the corresponding project structure

is also created.

Workbench (General)

135

1.10.5. Repository Structure

Once a repository has been created it can be managed through the Repository Structure Screen.

To open the Repository Structure Screen for a given repository open the Project Authoring Per-

spective, browse to the given repository and select the "Repository -> Repository Structure" menu

option.

Figure 1.134. Repository Structure Menu

1.10.5.1. Single Project Managed Repository

The following picture shows an example of a single project managed repository structure.

Figure 1.135. Single Project Managed Repository

1.10.5.2. Multi Project Managed Repository

The following picture shows an example of a multi project managed repository structure.

Workbench (General)

136

Figure 1.136. Multi Project Managed Repository

1.10.5.3. Unmanaged Repository

The following picture shows an example of an unmanaged repository structure.

Figure 1.137. Unmanaged Repository

1.10.6. Managed Repositories Operations

The following picture shows the screen areas related to managed repositories operations.

Workbench (General)

137

Figure 1.138. Managed Repositories Operations

1.10.6.1. Branch Selector

The branch selector lets to switch between the different branches created by the Configure Repos-

itory Process.

Figure 1.139. Branch Selector

1.10.6.2. Project Operations

From the repository structure screen it's also possible to create, edit or delete projects from current

repository.

Workbench (General)

138

Figure 1.140. Add Project to current structure

Figure 1.141. Edit/Delete projects from current structure

1.10.6.3. Launch Assets Management Processes

The assets management processes can also be launched from the Project Structure Screen.

Figure 1.142. Launch Assets Management Processes

1.10.6.3.1. Launch the Configure Repository Process

Filling the parameters bellow a new instance of the Configure Repository can be started. (see

Configure Repository Process)

Workbench (General)

139

Figure 1.143. Configure Repository Process Parameters

1.10.6.3.2. Launch the Promote Changes Process

Filling the parameters bellow a new instance of the Promote Changes Process can be started.

(see Promote Changes Process)

Workbench (General)

140

Figure 1.144. Promote Changes Process Parameters

1.10.6.3.3. Launch the Release Process

Filling the parameters bellow a new instance of the Release Process can be started. (see Release

Process)

Workbench (General)

141

Figure 1.145. Release Process Parameters

Workbench (General)

142

1.11. Execution Server Management UI

The Execution Server Management UI allows users create and modify Server Templates and

Containers, it also allows users manage Remote Servers. This screen is available via Deploy -

> Rule Deployments menu.

Figure 1.146. Execution Server Management

Note

The management UI is only available for KIE Managed Servers.

1.11.1. Server Templates

Server templates are used to define a common configuration that can be used for multiple server,

thus the name: Template.

Server Templates can be created directly from the management UI or it's automatically create

when a server connects to controller and there isn't a template definition for that remote server.

Server templates may have one or more capabilities, such capabilities can't be modified, if you

need modify the capabilities you'll have to create a new template. Here is the list of current ca-

pabilities:

• Rule (Drools)

• Process (jBPM)

Workbench (General)

143

• Planning (Optaplanner)

Note

For Planner capability it's mandatory to enable Rule's capability too.

In order to create a new Server Template you have to click at New Server Template button and

follow the wizard. It's also possible to create a container during Wizard, but for now let's limit to

just the template.

Figure 1.147. New Server Template Wizard

Once created you'll get the new Template listed on the left hand side, with the new Server Tem-

plate highlighted. On the right hand side you get the 2nd level navigation that lists Containers and

Remote Servers that are related to selected Server Template.

Figure 1.148. Server Templates

Workbench (General)

144

On top of the navigation is also possible to delete the current Server Template or create a copy of it.

Figure 1.149. Server Template Actions

1.11.2. Container

A Container is a KIE Container configuration of the Server Template. Click the Add Container

button to create a new container for the current Server Template.

The search area can help users find an specific KJARs that they are looking for.

Workbench (General)

145

Figure 1.150. New Container Wizard

For Server Templates that have Process capabilities enabled, the Wizard has a 2nd optional step

where users can configure some process related behaviors.

Workbench (General)

146

Figure 1.151. Process Configuration

Once created the new Container will be displayed on the containers list just above the list of

remote servers. Just after created a container is by default Stopped which is the only state that

allows users to remove it.

Figure 1.152. Container

A Container has the following tabs available for management and/or configuration:

• Status

• Version Configuration

• Process Configuration

Status tab lists all the Remote Servers that are running the active Container. Each Remote Server

is rendered as a Card, which displays to users status and endpoint.

Note

Only started Containers are deployed to remote servers.

Workbench (General)

147

Figure 1.153. Status Container

Version Configuration tab allow users change the current version of the Container. User's can

upgrade manually to a specific version using the "Upgrade" button, or enable/disable the Scanner.

It's also possible to execute a ScanNow operation, that will scan for new versions only once.

Figure 1.154. Version Configuration

Process Configuration is the same form that is displayed during New Container Wizard for Tem-

plate Servers that have Process Capability. If Template Server doesn't have such capability, the

action buttons will be disabled.

Workbench (General)

148

Figure 1.155. Process Configuration

1.11.3. Remote Server

Remote Server is a Managed KIE Server instance running that has a controller configured.

Note

By default Workbench comes with a Controller embedded.

The list of Remote Servers are displayed just under the list of Containers. Once selected the

screens reveals the Remote Server details and a list of cards, each card represents a running

Container.

Workbench (General)

149

Figure 1.156. Remote Servers

150

Chapter 2. Authoring Planning

Assets

2.1. Solver Editor

The solver editor creates a solver configuration that can be run in the Execution Solver or plain

Java code after the kjar is deployed

Note

To see and use this editor, the user needs to have the role plannermgmt.

Use the Validate button to validate the solver configuration. This will actually build a Solver, so

most issues in your project will present itself then, without the need to deploy and run it.

By default, the solver configuration will automatically scan for all planning entities and a planning

solution classes. If none are found (or too many), validation will fail.

151

Chapter 3. Workbench Integration

3.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and ma-

nipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,

that is, they continue their execution after the call was performed as a job. The job ID is returned

by every calls to allow after the REST API call was performed to request the job status and verify

whether the job finished successfully. Parameters of these calls are provided in the form of JSON

entities.

When using Java code to interface with the REST API, the classes used in

POST operations or otherwise returned by various operations can be found in the

(org.kie.workbench.services:)kie-wb-common-services JAR. All of the classes mentioned

below can be found in the org.kie.workbench.common.services.shared.rest package in that

JAR.

3.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the

calls are asynchronous and you need to be able to reference the job to check its status as it goes

through its lifecycle. During its lifecycle, a job can have the following statuses:

• ACCEPTED: the job was accepted and is being processed

• BAD_REQUEST: the request was not accepted as it contained incorrect content

• RESOURCE_NOT_EXIST: the requested resource (path) does not exist

• DUPLICATE_RESOURCE: the resource already exists

• SERVER_ERROR: an error on the server occurred

• SUCCESS: the job finished successfully

• FAIL: the job failed

• DENIED: the job was denied

• GONE: the job ID could not be found

A job can be GONE in the following cases:

• The job was explicitly removed

• The job finished and has been deleted from the status cache (the job is removed from status

cache after the cache has reached its maximum capacity)

• The job never existed

Workbench Integration

152

The following job calls are provided:

[GET] /jobs/{jobID}

Returns the job status

Returns a JobResult instance

Example 3.1. An example (formatted) response body to the get job call

on a repository clone request

"{

 "status":"SUCCESS",

 "jodId":"1377770574783-27",

 "result":"Alias: testInstallAndDeployProject, Scheme: git, Uri: git://

testInstallAndDeployProject",

 "lastModified":1377770578194,"detailedResult":null

}"

[DELETE] /jobs/{jobID}

Removes the job: If the job is not yet being processed, this will remove the job from the job

queue. However, this will not cancel or stop an ongoing job

Returns a JobResult instance

3.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and their projects.

The following repositories calls are provided:

[GET] /repositories

Gets information about the repositories in the Knowledge Store

Returns a Collection<Map<String, String>> or Collection<RepositoryRequest> in-

stance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the RepositoryRequest class

Example 3.2. An example (formatted) response body to the get

repositories call

[

 {

 "name":"wb-assets",

 "description":"generic assets",

 "userName":null,

 "password":null,

Workbench Integration

153

 "requestType":null,

 "gitURL":"git://bpms-assets"

 },

 {

 "name":"loanProject",

 "description":"Loan processes and rules",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://loansProject"

 }

]

[GET] /repositories/{repositoryName}

Gets information about a repository

Returns a Map<String, String> or RepositoryRequest instance, depending on the JSON

serialization library being used. The keys used in the Map<String, String> instance match

the fields in the RepositoryRequest class

Example 3.3. An example (formatted) response body to the get repository

call

{

 "name":"wb-assets",

 "description":"generic assets",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://bpms-assets"

}

[POST] /repositories

Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a RepositoryRequest instance

Returns a CreateOrCloneRepositoryRequest instance

Example 3.4. An example (formatted) response body to the create

repositories call

{

 "name":"new-project-repo",

 "description":"repo for my new project",

 "userName":null,"password":null,

 "requestType":"new",

 "gitURL":null

}

Workbench Integration

154

[DELETE] /repositories/{repositoryName}

Removes the repository from the Knowledge Store

Returns a RemoveRepositoryRequest instance

[POST] /repositories/{repositoryName}/projects/

Creates a project in the repository

Consumes an Entity instance

Returns a CreateProjectRequest instance

Example 3.5. An example (formatted) request body that defines the

project to be created

{

 "name":"myProject",

 "description": "my project"

}

[DELETE] /repositories/{repositoryName}/projects/

Deletes the project in the repository

Returns a DeleteProjectRequest instance

[GET] /repositories/{repositoryName}/projects/

Gets information about the projects

Returns a Collection<Map<String, String>> or Collection<ProjectResponse> in-

stance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the ProjectResponse class

Example 3.6. An example (formatted) response body to the get projects

call

[

 {

 "name":"wb-assets",

 "description":"generic assets",

 "groupId":"org.test",

 "version":"1.0"

 },

 {

 "name":"loanProject",

 "description":"Loan processes and rules",

 "groupId":"com.bank",

 "version":"3.7"

 }

]

Workbench Integration

155

3.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its organiza-

tional units, so as to organize the connected Git repositories.

The following organizationalUnits calls are provided:

[POST] /organizationalunits

Creates an organizational unit in the Knowledge Store

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 3.7. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[GET] /organizationalunits/{orgUnitName}

Creates an organizational unit

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 3.8. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[POST] /organizationalunits/{orgUnitName}

Creates an organizational unit in the Knowledge Store

Consumes an UpdateOrganizationalUnit instance

Returns a UpdateOrganizationalUnitRequest instance

Workbench Integration

156

Example 3.9. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[DELETE] /organizationalunits/{organizationalUnitName}

Deletes a organizational unit

Returns a RemoveOrganizationalUnitRequest instance

[POST] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}

Adds the repository to the organizational unit

Returns a AddRepositoryToOrganizationalUnitRequest instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}

Removes the repository from the organizational unit

Returns a RemoveRepositoryFromOrganizationalUnitRequest instance

3.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the

Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile

Compiles the project (equivalent to mvn compile)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a CompileProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install

Installs the project (equivalent to mvn install)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a InstallProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test

Compiles the project runs a test as part of compilation

Workbench Integration

157

Consumes a BuildConfig instance

Returns a TestProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy

Deploys the project (equivalent to mvn deploy)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a DeployProjectRequest instance

3.1.5. REST summary

The URL templates in the table below are relative the following URL:

• http://server:port/business-central/rest

Table 3.1. Knowledge Store REST calls

URL Template Type Description

/jobs/{jobID} GET return the job status

/jobs/{jobID} DELETEremove the job

/organizationalunits GET return a list of organiza-

tional units

/organizationalunits POST create an organization-

al unit in the Knowledge

Store described by the

JSON OrganizationalU-

nit entity

/organizationalunits/{organizationalUnitName}/reposito-

ries/{repositoryName}

POST add a repository to an or-

ganizational unit

/organizationalunits/{organizationalUnitName}/reposito-

ries/{repositoryName}

DELETEremove a repository from

an organizational unit

/repositories/ POST add the repository to the

organizational unit de-

scribed by the JSON

RepositoryReqest entity

/repositories GET return the repositories in

the Knowledge Store

/repositories/{repositoryName} DELETEremove the repository

from the Knowledge Store

/repositories/ POST create or clone the repos-

itory defined by the JSON

RepositoryRequest entity

Workbench Integration

158

URL Template Type Description

/repositories/{repositoryName}/projects/ POST create the project defined

by the JSON entity in the

repository

/repositories/{repositoryName}/projects/{project-

Name}/maven/compile/

POST compile the project

/repositories/{repositoryName}/projects/{project-

Name}/maven/install

POST install the project

/repositories/{repositoryName}/projects/{project-

Name}/maven/test/

POST compile the project and

run tests as part of compi-

lation

/repositories/{repositoryName}/projects/{project-

Name}/maven/deploy/

POST deploy the project

3.2. Keycloak SSO integration

Single Sign On (SSO) and related token exchange mechanisms are becoming the most common

scenario for the authentication and authorization in different environments on the web, specially

when moving into the cloud.

This section talks about the integration of Keycloak with jBPM or Drools applications in order to

use all the features provided on Keycloak. Keycloak is an integrated SSO and IDM for browser

applications and RESTful web services. Lean more about it in the Keycloak's home page [http://

keycloak.jboss.org/].

The result of the integration with Keycloak has lots of advantages such as:

• Provide an integrated SSO and IDM environment for different clients, including jBPM and Drools

workbenches

• Social logins - use your Facebook, Google, Linkedin, etc accounts

• User session management

• And much more...

Next sections cover the following integration points with Keycloak:

• Workbench authentication through a Keycloak server

It basically consists of securing both web client and remote service clients through the Keycloak

SSO. So either web interface or remote service consumers (whether a user or a service) will

authenticate into trough KC.

• Execution server authentication through a Keycloak server

http://keycloak.jboss.org/
http://keycloak.jboss.org/
http://keycloak.jboss.org/

Workbench Integration

159

Consists of securing the remote services provided by the execution server (as it does not pro-

vides web interface). Any remote service consumer (whether a user or a service) will authen-

ticate trough KC.

• Consuming remote services

This section describes how a third party clients can consume the remote service endpoints

provided by both Workbench and Execution Server.

3.2.1. Scenario

Consider the following diagram as the environment for this document's example:

Keycloak is a standalone process that provides remote authentication, authorization and admin-

istration services that can be potentially consumed by one or more jBPM applications over the

network.

Figure 3.1.

Consider these main steps for building this environment:

• Install and setup a Keycloak server

• Create and setup a Realm for this example - Configure realm's clients, users and roles

• Install and setup the SSO client adapter & jBPM application

Note: The resulting environment and the different configurations for this document are based on

the jBPM (KIE) Workbench, but same ones can also be applied for the KIE Drools Workbench

as well.

Workbench Integration

160

3.2.2. Install and setup a Keycloak server

Keycloak provides an extensive documentation and several articles about the installation on

different environments. This section describes the minimal setup for being able to build the

integrated environment for the example. Please refer to the Keycloak documentation [http://

keycloak.jboss.org/docs] if you need more information.

Here are the steps for a minimal Keycloak installation and setup:

• Download latest version of Keycloak from the Downloads [http://keycloak.jboss.org/downloads]

section. This example is based on Keycloak 1.9.0.Final

• Unzip the downloaded distribution of Keycloak into a folder, let's refer it as

$KC_HOME

• Run the KC server - This example is based on running both Keycloak and jBPM on same host.

In order to avoid port conflicts you can use a port offset for the Keycloak's server as:

$KC_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=100

• Create a Keycloak's administration user - Execute the following command to create an admin

user for this example:

$KC_HOME/bin/add-user.sh -r master -u 'admin' -p 'admin'

The Keycloak administration console will be available at http://localhost:8180/auth/admin (use the

admin/admin for login credentials).

3.2.3. Create and setup the demo realm

Security realms are used to restrict the access for the different application's resources.

Once the Keycloak server is running next step is about creating a realm. This realm will provide

the different users, roles, sessions, etc for the jBPM application/s.

Keycloak provides several examples for the realm creation and management, from the official

examples [https://github.com/keycloak/keycloak/tree/master/examples] to different articles with

more examples.

Follow these steps in order to create the demo realm used later in this document:

• Go to the Keycloak administration console [http://localhost:8180/auth/admin] and click on Add

realm button. Give it the name demo.

http://keycloak.jboss.org/docs
http://keycloak.jboss.org/docs
http://keycloak.jboss.org/docs
http://keycloak.jboss.org/downloads
http://keycloak.jboss.org/downloads
http://localhost:8180/auth/admin
https://github.com/keycloak/keycloak/tree/master/examples
https://github.com/keycloak/keycloak/tree/master/examples
https://github.com/keycloak/keycloak/tree/master/examples
http://localhost:8180/auth/admin
http://localhost:8180/auth/admin

Workbench Integration

161

• Go to the Clients section (from the main admin console menu) and create a new client for the

demo realm:

• Client ID: kie

• Client protocol: openid-connect

• Acces type: confidential

• Root URL: http://localhost:8080

• Base URL: /kie-wb-6.4.0.Final

• Redirect URIs: /kie-wb-6.4.0.Final/*

The resulting kie client settings screen:

Figure 3.2.

Workbench Integration

162

Note: As you can see in the above settings it's being considered the value kie-wb-6.4.0.Final for

the application's context path. If your jbpm application will be deployed on a different context path,

host or port, just use your concrete settings here.

Last step for being able to use the demo realm from the jBPM workbench is create the application's

user and roles:

• Go to the Roles section and create the roles admin, kiemgmt and rest-all

• Go to the Users section and create the admin user. Set the password with value "password" in

the credentials tab, unset the temporary switch.

• In the Users section navigate to the Role Mappings tab and assign the admin, kiemgmt and

rest-all roles to the admin user

Figure 3.3.

At this point a Keycloak server is running on the host, setup with a minimal configuration set. Let's

move to the jBPM workbench setup.

3.2.4. Install and setup jBPM Workbench

For this tutorial let's use a Wildfly as the application server for the jBPM workbench, as the jBPM

installer does by default.

Let's assume, after running the jBPM installer, the $JBPM_HOME as the root path for the Wildfly

server where the application has been deployed.

3.2.4.1. Install the KC adapter

In order to use the Keycloak's authentication and authorization modules from the jBPM application,

the Keycloak adapter [https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html]

for Wildfly must be installed on our server at $JBPM_HOME. Keycloak provides multiple adapters

for different containers out of the box, if you are using another container or need to use another

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html

Workbench Integration

163

adapter, please take a look at the adapters configuration [https://keycloak.github.io/docs/user-

guide/keycloak-server/html/ch08.html]from Keycloak docs. Here are the steps to install and setup

the adapter for Wildfly 8.2.x:

• Download the adapter from here [https://repository.jboss.org/nexus/service/local/reposito-

ries/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-

dist-1.9.0.Final.zip]

• Execute the following commands on your shell:

cd $JBPM_HOME/unzip keycloak-wf8-adapter-dist.zip // Install the KC client adaptercd

 $JBPM_HOME/bin./standalone.sh -c standalone-full.xml // Setup the KC client adapter.// **

 Once server is up, open a new command line terminal and run:cd $JBPM_HOME/bin./jboss-cli.sh

 -c --file=adapter-install.cli

client adaptercd

 $JBPM_HOME/bin./standalone.sh -c standalone-full.xml // Setup the KC

client adapter.// ** Once server is up, open a new command line terminal

and run:cd

 $JBPM_HOME/bin./jboss-cli.sh -c

3.2.4.2. Configure the KC adapter

Once installed the KC adapter into Wildfly, next step is to configure the adapter in order to specify

different settings such as the location for the authentication server, the realm to use and so on.

Keycloak provides two ways of configuring the adapter:

• Per WAR configuration

• Via Keycloak subsystem

In this example let's use the second option, use the Keycloak subsystem, so our WAR is free from

this kind of settings. If you want to use the per WAR approach, please take a look here [https://

keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932].

Edit the configuration file $JBPM_HOME/standalone/configuration/standalone-full.xml and locate

the subsystem configuration section. Add the following content:

<subsystem xmlns="urn:jboss:domain:keycloak:1.1"> <secure-deployment name="kie-wb-6.4.0-

Final.war"> <realm>demo</realm> <realm-public-key>MIIBIjANBgkqhkiG9w0BAQEFAAOCA...</

realm-public-key> <auth-server-url>http://localhost:8180/auth</auth-server-url> <ssl-

required>external</ssl-required> <resource>kie</resource> <enable-basic-auth>true</enable-

basic-auth> <credential name="secret">925f9190-a7c1-4cfd-8a3c-004f9c73dae6</credential>

 <principal-attribute>preferred_username</principal-attribute> </secure-deployment></

subsystem>

 xmlns="urn:jboss:domain:keycloak:1.1"> <secure-deployment name="kie-

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932

Workbench Integration

164

wb-6.4.0-Final.war">

<realm>demo</realm> <realm-public-key>MIIBIjANBgkqhkiG9w0BAQEFAAOCA...</realm-

public-key> <auth-server-url>http://localhost:8180/auth</auth-

server-url> <ssl-required>external</

ssl-required>

<resource>kie</resource> <enable-basic-auth>true</enable-

basic-auth> <credential name="secret">925f9190-

a7c1-4cfd-8a3c-004f9c73dae6</credential> <principal-attribute>preferred_username</

principal-attribute> </

secure-deployment>

If you have imported the example json files from this document in step 2, you can just use same

configuration as above by using your concrete deployment name . Otherwise please use your

values for these configurations:

• Name for the secure deployment - Use your concrete application's WAR file name

• Realm - Is the realm that the applications will use, in our example, the demo realm created the

previous step.

• Realm Public Key - Provide here the public key for the demo realm. It's not mandatory, if it's not

specified, it will be retrieved from the server. Otherwise, you can find it in the Keycloak admin

console -> Realm settings (for demo realm) -> Keys

• Authentication server URL - The URL for the Keycloak's authentication server

• Resource - The name for the client created on step 2. In our example, use the value kie.

• Enable basic auth - For this example let's enable Basic authentication mechanism as well, so

clients can use both Token (Baerer) and Basic approaches to perform the requests.

• Credential - Use the password value for the kie client. You can find it in the Keycloak admin

console -> Clients -> kie -> Credentials tab -> Copy the value for the secret.

For this example you have to take care about using your concrete values for secure-deployment

name, realm-public-key and credential password. You can find detailed information about the

KC adapter configurations here [https://keycloak.github.io/docs/userguide/keycloak-server/html/

ch08.html#adapter-config].

3.2.4.3. Run the environment

At this point a Keycloak server is up and running on the host, and the KC adapter is installed and

configured for the jBPM application server. You can run the application using:

$JBPM_HOME/bin/standalone.sh -c standalone-full.xml

You can navigate into the application once the server is up at:

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config

Workbench Integration

165

 http://localhost:8080/kie-wb-6.4.0.Final

Figure 3.4.

Use your Keycloak's admin user credentials to login: admin/password.

3.2.5. Securing workbench remote services via Keycloak

Both jBPM and Drools workbenches provides different remote service endpoints that can be

consumed by third party clients using the remote API [http://docs.jboss.org/jbpm/v6.3/user-

guide/ch17.html].

In order to authenticate those services thorough Keycloak the BasicAuthSecurityFilter must be

disabled, apply those modifications for the the WEB-INF/web.xml file (app deployment descriptor)

from jBPM's WAR file:

• Remove the following filter from the deployment descriptor:

<filter> <filter-name>HTTP Basic Auth Filter</filter-name> <filter-

class>org.uberfire.ext.security.server.BasicAuthSecurityFilter</filter-class> <init-param>

 <param-name>realmName</param-name> <param-value>KIE Workbench Realm</param-value> </

init-param></filter><filter-mapping> <filter-name>HTTP Basic Auth Filter</filter-name> <url-

pattern>/rest/*</url-pattern> <url-pattern>/maven2/*</url-pattern> <url-pattern>/ws/*</url-

pattern></filter-mapping>

 <filter-name>HTTP Basic Auth Filter</filter-

name> <filter-class>org.uberfire.ext.security.server.BasicAuthSecurityFilter</filter-

class> <init-

param> <param-name>realmName</param-

name> <param-value>KIE Workbench Realm</param-

value> </init-

param></

filter><filter-

mapping> <filter-name>HTTP Basic Auth Filter</filter-

name> <url-pattern>/rest/*</url-

http://localhost:8080/kie-wb-6.4.0.Final
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html

Workbench Integration

166

pattern> <url-pattern>/maven2/*</url-

pattern> <url-pattern>/ws/*</url-

pattern></filter-

• Constraint the remote services URL patterns as:

<security-constraint> <web-resource-collection> <web-resource-name>remote-services</web-

resource-name> <url-pattern>/rest/*</url-pattern> <url-pattern>/maven2/*</url-pattern>

 <url-pattern>/ws/*</url-pattern> </web-resource-collection> <auth-constraint> <role-

name>rest-all</role-name> </auth-constraint></security-constraint>

rity-constraint>

 <web-resource-collection> <web-resource-name>remote-

services</web-resource-name> <url-pattern>/

rest/*</url-pattern> <url-pattern>/

maven2/*</url-pattern> <url-pattern>/

ws/*</url-pattern>

</web-resource-collection>

 <auth-constraint> <role-

name>rest-all</role-name>

 </auth-

Important note: The user that consumes the remote services must be member of role rest-all. As

on described previous steps, the admin user in this example it's already a member of the rest-

all role.

3.2.6. Execution server

The KIE Execution Server provides a REST API [https://docs.jboss.org/drools/release/lat-

est/drools-docs/html/ch22.html] than can be consumed for any third party clients,. This this section

is about how to integration the KIE Execution Server with the Keycloak SSO in order to delegate

the third party clients identity management to the SSO server.

Consider the above environment running, so consider having:

• A Keycloak server running and listening on http://localhost:8180/auth

• A realm named demo with a client named kie for the jBPM Workbench

• A jBPM Workbench running at http://localhost:8080/kie-wb-6.4.0-Final

Follow these steps in order to add an execution server into this environment:

• Create the client for the execution server on Keycloak

• Install setup and the Execution server (with the KC client adapter)

3.2.6.1. Create the execution server's client on Keycloak

As per each execution server is going to be deployed, you have to create a new client on the

demo realm in Keycloak.:

https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html
https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html
https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html

Workbench Integration

167

• Go to the KC admin console [https://mojo.redhat.com/external-link.jspa?url=http%3A%2F

%2Flocalhost%3A8180%2Fauth%2Fadmin] -> Clients -> New client

• Name: kie-execution-server

• Root URL: http://localhost:8280/

• Client protocol: openid-connect

• Access type: confidential (or public if you want so, but not recommended for production envi-

ronments)

• Valid redirect URIs: /kie-server-6.4.0.Final/*

• Base URL: /kie-server-6.4.0.Final

In this example the admin user already created on previous steps is the one used for the client

requests. So ensure that the admin user is member of the role kie-server in order to use the

execution server's remote services. If the role does not exist, create it.

Note: This example considers that the execution server will be configured to run using a port offset

of 200, so the HTTP port will be available at localhost:8280.

3.2.6.2. Install and setup the KC adapter on the execution server

At this point, a client named kie-execution-server is ready on the KC server to use from the exe-

cution server.

Let's install, setup and deploy the execution server:

• Install another Wildfly server to use for the execution server and the KC client adapter as well.

You can follow above instructions for the Workbench or follow the official adapters documenta-

tion [https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html]

• Edit the standalone-full.xml file from the Wildfly server's configuration path and configure the

KC subsystem adapter as:

<secure-deployment name="kie-server-6.4.0.Final.war"> <realm>demo</realm>

 <realm-public-key>MIGfMA0GCSqGSIb...</realm-public-key> <auth-server-url>http://

localhost:8180/auth</auth-server-url> <ssl-required>external</ssl-required>

 <resource>kie-execution-server</resource> <enable-basic-auth>true</enable-basic-auth>

 <credential name="secret">e92ec68d-6177-4239-be05-28ef2f3460ff</credential> <principal-

attribute>preferred_username</principal-attribute></secure-deployment>

 name="kie-server-6.4.0.Final.war">

 <realm>demo</realm> <realm-public-key>MIGfMA0GCSqGSIb...</

realm-public-key> <auth-server-url>http://localhost:8180/auth</

auth-server-url> <ssl-

required>external</ssl-required> <resource>kie-

execution-server</resource> <enable-basic-auth>true</

enable-basic-auth> <credential

https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html

Workbench Integration

168

name="secret">e92ec68d-6177-4239-be05-28ef2f3460ff</credential> <principal-

attribute>preferred_username</principal-attribute>

Consider your concrete environment settings if different from this example:

• Secure deployment name -> use the name of the execution server war file being deployed

• Public key -> Use the demo realm public key or leave it blank, the server will provide one if so

• Resource -> This time, instead of the kie client used in the WB configuration, use the kie-

execution-server client

• Enable basic auth -> Up to you. You can enable Basic auth for third party service consumers

• Credential -> Use the secret key for the kie-execution-server client. You can find it in the Cre-

dentialstab of the KC admin console

3.2.6.3. Deploy and run the execution server

Just deploy the execution server in Wildfly using any of the available mechanisms. Run the exe-

cution server using this command:

$EXEC_SERVER_HOME/bin/standalone.sh -c standalone-full.xml -Djboss.socket.binding.port-

offset=200 -Dorg.kie.server.id=<ID> -Dorg.kie.server.user=<USER> -

Dorg.kie.server.pwd=<PWD> -Dorg.kie.server.location=<LOCATION_URL> -

Dorg.kie.server.controller=<CONTROLLER_URL> -Dorg.kie.server.controller.user=<CONTROLLER_USER>

 -Dorg.kie.server.controller.pwd=<CONTOLLER_PASSWORD>

Example:

$EXEC_SERVER_HOME/bin/standalone.sh -c standalone-full.xml -Djboss.socket.binding.port-

offset=200 -Dorg.kie.server.id=kieserver1 -Dorg.kie.server.user=admin -

Dorg.kie.server.pwd=password -Dorg.kie.server.location=http://localhost:8280/kie-

server-6.4.0.Final/services/rest/server -Dorg.kie.server.controller=http://localhost:8080/kie-

wb-6.4.0.Final/rest/controller -Dorg.kie.server.controller.user=admin -

Dorg.kie.server.controller.pwd=password

mportant note: The users that will consume the execution server remote service endpoints must

have the role kie-server assigned. So create and assign this role in the KC admin console for the

users that will consume the execution server remote services.

Once up, you can check the server status as (considered using Basic authentication for this re-

quest, see nextConsuming remote services for more information):

curl http://admin:password@localhost:8280/kie-server-6.4.0.Final/services/rest/server/

Workbench Integration

169

3.2.7. Consuming remote services

In order to use the different remote services provided by the Workbench or by an Execution Server,

your client must be authenticated on the KC server and have a valid token to perform the requests.

Remember that in order to use the remote services, the authenticated user must have assigned:

• The role rest-all for using the WB remote services

• The role kie-server for using the Execution Server remote services

Please ensure necessary roles are created and assigned to the users that will consume the remote

services on the Keycloak admin console.

You have two options to consume the different remove service endpoints:

• Using basic authentication, if the application's client supports it

• Using Bearer (token) based authentication

3.2.7.1. Using basic authentication

If the KC client adapter configuration has the Basic authentication enabled, as proposed in this

guide for both WB (step 3.2) and Execution Server, you can avoid the token grant/refresh calls

and just call the services as the following examples.

Example for a WB remote repositories endpoint:

curl http://admin:password@localhost:8080/kie-wb-6.4.0.Final/rest/repositories

Example to check the status for the Execution Server:

curl http://admin:password@localhost:8280/kie-server-6.4.0.Final/services/rest/server/

3.2.7.2. Using token based authentication

First step is to create a new client on Keycloak that allows the third party remote service clients

to obtain a token. It can be done as:

• Go to the KC admin console and create a new client using this configuration:

• Client id: kie-remote

• Client protocol: openid-connect

Workbench Integration

170

• Access type: public

• Valid redirect URIs: http://localhost/

• As we are going to manually obtain a token and invoke the service let's increase the lifespan

of tokens slightly. In production access tokens should have a relatively low timeout, ideally less

than 5 minutes:

• Go to the KC admin console

• Click on your Realm Settings

• Click on Tokens tab

• Change the value for Access Token Lifespan to 15 minutes (That should give us plenty of

time to obtain a token and invoke the service before it expires)

Once a public client for our remote clients has been created, you can now obtain the token by

performing an HTTP request to the KC server's tokens endpoint. Here is an example for command

line:

RESULT=`curl --data "grant_type=password&client_id=kie-

remote&username=admin&passwordpassword=<the_client_secret>" http://localhost:8180/auth/realms/

demo/protocol/openid-connect/token`

TOKEN=`echo $RESULT | sed 's/.*access_token":"//g' | sed 's/".*//g'`

At this point, if you echo the $TOKEN it will output the token string obtained from the KC server,

that can be now used to authorize further calls to the remote endpoints. For exmple, if you want

to check the internal jBPM repositories:

curl -H "Authorization: bearer $TOKEN" http://localhost:8080/kie-wb-6.4.0.Final/rest/reposito

ries

171

Chapter 4. Workbench High

Availability

4.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,

process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in

sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is

the cluster management component that registers all cluster details (nodes, resources and the

cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide

VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/].

2. Install both:

a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).

b. In $ZOOKEEPER_HOME, copy zoo_sample.conf to zoo.conf

c. Edit zoo.conf. Adjust the settings if needed. Usually only these 2 properties are relevant:

the directory where the snapshot is stored.dataDir=/tmp/zookeeper# the port at which the

 clients will connectclientPort=2181

 is

stored.dataDir=/tmp/zookeeper# the port at which the clients

d. Unzip Helix into a directory ($HELIX_HOME).

3. Configure the cluster in Zookeeper:

a. Go to its bin directory:

$ cd $ZOOKEEPER_HOME/bin

b. Start the Zookeeper server:

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Workbench High Availability

172

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dataDir (as specified in zoo.conf) is accessible.

c. To review Zookeeper's activities, open zookeeper.out:

$ cat $ZOOKEEPER_HOME/bin/zookeeper.out

4. Configure the cluster in Helix:

a. Go to its bin directory:

$ cd $HELIX_HOME/bin

b. Create the cluster:

$./helix-admin.sh --zkSvr localhost:2181 --addCluster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (kie-cluster)

can be changed as needed.

c. Add nodes to the cluster:

Node 1

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster nodeOne:12345

Node 2

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster nodeTwo:12346

...

Usually the number of nodes a in cluster equal the number of application servers in the

cluster. The node names (nodeOne:12345 , ...) can be changed as needed.

Note

nodeOne:12345 is the unique identifier of the node, which will be referenced

later on when configuring application servers. It is not a host and port number,

but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

Workbench High Availability

173

$./helix-admin.sh --zkSvr localhost:2181 --addResource kie-cluster vfs-repo 1 LeaderS

tandby AUTO_REBALANCE

The resource name (vfs-repo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-admin.sh --zkSvr localhost:2181 --rebalance kie-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr localhost:2181 --cluster kie-cluster 2>&1 > /tmp/

controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and

JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/domain.xml.

For simplicity sake, presume we use the default domain configuration which uses the profile

full that defines two server nodes as part of main-server-group.

b. Locate the profile full and add a new security domain by copying the other security domain

already defined there by default:

<security-domain name="kie-ide" cache-type="default"> <authentication> <login-

module code="Remoting" flag="optional"> <module-option name="password-stacking"

 value="useFirstPass"/> </login-module> <login-module code="RealmDirect"

 flag="required"> <module-option name="password-stacking" value="useFirstPass"/

> </login-module> </authentication></security-domain>

ide" cache-type="default">

 <authentication> <login-module

 code="Remoting" flag="optional"> <module-option name="password-

stacking" value="useFirstPass"/>

 </login-module> <login-module

 code="RealmDirect" flag="required"> <module-option name="password-

stacking" value="useFirstPass"/>

 </login-module>

 </

Important

The security-domain name is a magic value.

Workbench High Availability

174

6. Configure the system properties for the cluster on the application server. For example on Wild-

Fly and JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

b. Locate the XML elements server that belong to the main-server-group and add the nec-

essary system property.

For example for nodeOne:

<system-properties>

 <property name="jboss.node.name" value="nodeOne" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodeone" boot-time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/nodeone" boot-

time="false"/>

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeOne_12345" boot-time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9418" boot-time="false"/>

</system-properties>

And for nodeTwo:

<system-properties>

 <property name="jboss.node.name" value="nodeTwo" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodetwo" boot-time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/nodetwo" boot-

time="false"/>

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeTwo_12346" boot-time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9419" boot-time="false"/>

</system-properties>

Make sure the cluster, node and resource names match those configured in Helix.

4.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this

blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the

database etc correctly.

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

Part III. OptaPlanner

Execution Server
The KIE Server is a standalone execution server for rules, planning and workflows.

176

Chapter 5. KIE Execution Server

5.1. Overview

The Kie Server is a modular, standalone server component that can be used to instantiate and

execute rules and processes. It exposes this functionality via REST, JMS and Java interfaces to

client application. It also provides seamless integration with the Kie Workbench.

At its core, the Kie Server is a configurable web application packaged as a WAR file. Distributions

are availables for pure web containers (like Tomcat) and for JEE 6 and JEE 7 containers.

Most capabilities on the Kie Server are configurable, and based on the concepts of extensions.

Each extension can be enabled/disabled independently, allowing the user to configure the server

to its need.

The current version of the Kie Server ships with two default extensions:

• BRM: provides support for the execution of Business Rules using the Drools rules engine.

• BPM: provides support for the execution of Business Processes using the jBPM process engine.

It supports:

• process execution

• task execution

• assynchronous job execution

Both extensions enabled by default, but can be disabled by setting the corresponding property

(see configuration chapter for details).

This server was designed to have a low footprint, with minimal memory consumption, and there-

fore, to be easily deployable on a cloud environment. Each instance of this server can open and

instantiate multiple Kie Containers which allows you to execute multiple services in parallel.

5.1.1. Glossary

• Kie Server: execution server purely focusing on providing runtime environment for both rules

and processes. These capabilities are provided by Kie Server Extensions. More capabilities

can be added by further extensions (e.g. customer could add his own extensions in case of

missing functionality that will then use infrastructure of the KIE Server). A Kie Server instance

is a standalone Kie Server executing on a given application server/web container. A Kie Server

instantiates and provides support for multiple Kie Containers.

• Kie Server Extension: a "plugin" for the Kie Server that adds capabilities to the server. The

Kie Server ships with two default kie server extensions: BRM and BPM.

KIE Execution Server

177

• Kie Container: an in-memory instantiation of a kjar, allowing for the instantiation and usage of

its assets (domain models, processes, rules, etc). A Kie Server exposes Kie Containers through

a standard API over transport protocols like REST and JMS.

• Controller: a server-backed REST endpoint that will be responsible for managing KIE Server

instances. Such end point must provide following capabilities:

• respond to connect requests

• sync all registered containers on the corresponding Kie Server ID

• respond to disconnect requests

• Kie Server state: currently known state of given Kie Server instance. This is a local storage (by

default in file) that maintains the following information:

• list of registered controllers

• list of known containers

• kie server configuration

The server state is persisted upon receival of events like: Kie Container created, Kie Container

is disposed, controller accepts registration of Kie Server instance, etc.

• Kie Server ID: an arbitrary assigned identifier to which configurations are assigned. At boot,

each Kie Server Instance is assigned an ID, and that ID is matched to a configuration on the

controller. The Kie Server Instance fetches and uses that configuration to setup itself.

5.2. Installing the KIE Server

The KIE Server is distributed as a web application archive (WAR) file. The WAR file comes in

three different packagings:

• webc - WAR for ordinary Web (Servlet) containers like Tomcat

• ee6 - WAR for JavaEE 6 containers like JBoss EAP 6.x

• ee7 - WAR for JavaEE 7 containers like WildFly 8.x

To install the KIE Execution Server and verify it is running, complete the following steps:

1. Deploy the WAR file into your web container.

2. Create a user with the role of kie-server on the container.

3. Test that you can access the execution engine by navigating to the endpoint in a browser

window: http://SERVER:PORT/CONTEXT/services/rest/server/.

4. When prompted for username/password, type in the username and password that you created

in step 2.

5. Once authenticated, you will see an XML response in the form of engine status, similar to this:

KIE Execution Server

178

Example 5.1. Sample handshaking server response

<response type="SUCCESS" msg="KIE Server info">

 <kie-server-info>

 <version>6.4.0.Final</version>

 </kie-server-info>

</response>

5.2.1. Bootstrap switches

The Kie Server accepts a number of bootstrap switches (system properties) to configure the be-

haviour of the server. The following is a table of all the supported switches.

Table 5.1. Kie Server bootstrap switches

Property Value Description Re-

quired

org.drools.server.ext.disabledboolean (default is

"false")

If true, disables the BRM support (i.e.

rules support).

No

org.jbpm.server.ext.disabledboolean (default is

"false")

If true, disables the BPM support (i.e.

processes support)

No

org.kie.server.id string An arbitrary ID to be assigned to this

server. If a remote controller is config-

ured, this is the ID under which the server

will connect to the controller to fetch the

kie container configurations.

No. If

not pro-

vided, an

ID is au-

tomati-

cally gen-

erated.

org.kie.server.user string (default is

"kieserver")

User name used to connect with the

kieserver from the controller, required

when running in managed mode

No

org.kie.server.pwd string (default is

"kieserver1!")

Password used to connect with the

kieserver from the controller, required

when running in managed mode

No

org.kie.server.controllercomma separated

list of urls

List of urls to controller REST endpoint.

E.g.: http://localhost:8080/kie-

wb/rest

Yes

when us-

ing a con-

troller

org.kie.server.controller.userstring (default is

"kieserver")

Username used to connect to the con-

troller REST api

Yes

when us-

ing a con-

troller

KIE Execution Server

179

Property Value Description Re-

quired

org.kie.server.controller.pwdstring (default is

"kieserver1!")

Password used to connect to the con-

troller REST api

Yes

when us-

ing a con-

troller

org.kie.server.locationURL location of kie

server instance

The URL used by the con-

troller to call back on this serv-

er. E.g.: http://localhost:8230/kie-

server/services/rest/server

Yes

when us-

ing a con-

troller

org.kie.server.domainstring JAAS LoginContext domain that shall be

used to authenticate users when using

JMS

No

org.kie.server.bypass.auth.userboolean (default is

"false")

Allows to bypass the authenticated user

for task related operations e.g. queries

No

org.kie.server.repo valid file system

path (default is ".")

Location on local file system where kie

server state files will be stored

No

org.kie.server.persistence.dsstring Datasource JNDI name Yes

when

BPM

support

enabled

org.kie.server.persistence.tmstring Transaction manager platform for Hiber-

nate properties set

Yes

when

BPM

support

enabled

org.kie.server.persistence.dialectstring Hibernate dialect to be used Yes

when

BPM

support

enabled

org.jbpm.ht.callbackstring One of supported callbacks for Task Ser-

vice (default jaas)

No

org.jbpm.ht.custom.callbackstring Custom implementation of UserGroup-

Callback in case org.jbpm.ht.callback

was set to ‘custom’

No

kie.maven.settings.customvalid file system

path

Location of custom settings.xml for

maven configuration

No

org.kie.executor.intervalinteger (default is

3)

Number of time units between polls by

executor

No

KIE Execution Server

180

Property Value Description Re-

quired

org.kie.executor.pool.sizeinteger (default is

1)

Number of threads in the pool for async

work

No

org.kie.executor.retry.countinteger (default is

3)

Number of retries to handle errors No

org.kie.executor.timeunitTimeUnit (default is

"SECONDS")

TimeUnit representing interval No

org.kie.executor.disabledboolean (default is

"false")

Disables executor completely No

kie.server.jms.queues.responsestring (default is

"queue/

KIE.SERVER.RESPONSE")

JNDI name of response queue for JMS No

org.kie.server.controller.connectlong (default is

10000)

Waiting time in milliseconds between re-

peated attempts to connect kie server to

controller when kie server starts up

No

org.drools.server.filter.classesboolean (default is

"false")

If true, accept only class-

es which are annotated

with @org.kie.api.remote.Remotable or

@javax.xml.bind.annotation.XmlRootElement

as extra JAXB classes

No

Important

If you are running both KIE Server and KIE Workbench you must config-

ure KIE Server to use a different Data Source to KIE Workbench using the

org.kie.server.persistence.ds property. KIE Workbench uses a jBPM Executor

Service that can conflict with KIE Server if they share the same Data Source.

5.2.2. Installation details for different containers

5.2.2.1. Tomcat 7.x/8.x

1. Download and unzip the Tomcat distribution. Let's call the root of the distribution TOMCAT_HOME.

This directory is named after the Tomcat version, so for example apache-tomcat-7.0.55.

2. Download kie-server-6.4.0.Final-webc.war and place it into TOMCAT_HOME/webapps.

3. Configure user(s) and role(s). Make sure that file TOMCAT_HOME/conf/tomcat-users.xml con-

tains the following username and role definition. You can of course choose different username

and password, just make sure that the user has role kie-server:

KIE Execution Server

181

Example 5.2. Username and role definition for Tomcat

<role rolename="kie-server"/>

<user username="serveruser" password="my.s3cr3t.pass" roles="kie-server"/>

4. Start the server by running TOMCAT_HOME/bin/startup.[sh|bat]. You can check out the

Tomcat logs in TOMCAT_HOME/logs to see if the application deployed successfully. Please read

the table above for the bootstrap switches that can be used to properly configure the instance.

For instance:

./startup.sh -Dorg.kie.server.id=first-kie-server -Dorg.kie.server.location=http://

localhost:8080/kie-server/services/rest/server

 -Dorg.kie.server.location=http://localhost:8080/kie-server/services/rest/

5. Verify the server is running. Go to http://SERVER:PORT/CONTEXT/services/rest/server/

and type the specified username and password. You should see simple XML message with

basic information about the server.

Important
You can not leverage the JMS interface when running on Tomcat, or any other

Web container. The Web container version of the WAR contains only the REST

interface.

5.2.2.2. WildFly 8.x

1. Download and unzip the WildFly distribution. Let's call the root of the distribution WILDFLY_HOME.

This directory is named after the WildFly version, so for example wildfly-8.2.0.Final.

2. Download kie-server-6.4.0.Final-ee7.war and place it into WILDFLY_HOME/standalone/de-

ployments.

3. Configure user(s) and role(s). Execute the following command WILDFLY_HOME/bin/add-

user.[sh|bat] -a -u 'kieserver' -p 'kieserver1!' -ro 'kie-server'. You can of

course choose different username and password, just make sure that the user has role kie-

server.

4. Start the server by running WILDFLY_HOME/bin/standalone.[sh|bat] -c stand-

alone-full.xml <bootstrap_switches>. You can check out the standard output or Wild-

Fly logs in WILDFLY_HOME/standalone/logs to see if the application deployed successfully.

Please read the table above for the bootstrap switches that can be used to properly configure

the instance. For instance:

KIE Execution Server

182

./standalone.sh --server-config=standalone-full.xml -Djboss.socket.binding.port-

offset=150 -Dorg.kie.server.id=first-kie-server -

Dorg.kie.server.location=http://localhost:8230/kie-server/services/rest/server

 -Djboss.socket.binding.port-

offset=150 -Dorg.kie.server.id=first-kie-server

 -Dorg.kie.server.location=http://localhost:8230/kie-server/services/rest/

5. Verify the server is running. Go to http://SERVER:PORT/CONTEXT/services/rest/server/

and type the specified username and password. You should see simple XML message with

basic information about the server.

5.3. Kie Server setup

Important

Server setup and registration changed significantly from versions 6.2 and before.

The following applies only to version 6.3 and forward.

5.3.1. Managed Kie Server

A managed instance is one that requires a controller to be available to properly startup the Kie

Server instance.

A Controller is a component responsible for keeping and managing a Kie Server Configuration

in centralized way. Each controller can manager multiple configurations at once and there can

be multiple controllers in the environment. Managed KIE Servers can be configured with a list of

controllers but will connect to only one at a time.

Note
It's important to mention that even though there can be multiple controllers they

should be kept in sync to make sure that regardless which one of them is contacted

by KIE Server instance it will provide same set of configuration.

At startup, if a Kie Server is configured with a list of controllers, it will try succesivelly to connect

to each of them until a connection is successfully stablished with one of them. If for any reason

a connection can't be stablished, the server will not start, even if there is local storage available

with configuration. This happens by design in order to ensure consistency. For instance, if the Kie

Server was down and the configuration has changed, this restriction guarantees that it will run

with up to date configuration or not at all.

KIE Execution Server

183

Note
In order to run the Kie Server in standalone mode, without connecting to any con-

trollers, please see "Unmanaged Kie Server".

The configuration sets, among other things:

• kie containers to be deployed and started

• configuration items - currently this is a place holder for further enhancements that will allow

remotely configure KIE Execution Server components - timers, persistence, etc

The Controller, besides providing configuration management, is also responsible for overall man-

agement of Kie Servers. It provides a REST api that is divided into two parts:

• the controller itself that is exposed to interact with KIE Execution Server instances

• an administration API that allows to remotely manage Kie Server instances:

• add/remove servers

• add/remove containers to/from the servers

• start/stop containers on servers

The controller deals only with the Kie Server configuration or definition to put it differently. It does

not handle any runtime components of KIE Execution Server instances. They are always consid-

ered remote to controller. The controller is responsible for persisting the configuration to preserve

restarts of the controller itself. It should manage the synchronization as well in case multiple con-

trollers are configured to keep all definitions up to date on all instances of the controller.

By default controller is shipped with Kie Workbench and provides a fully featured management

interface (both REST api and UI). It uses underlying git repository as persistent store and thus

when GIT repositories are clustered (using Apache Zookeeper and Apache Helix) it will cover the

controllers synchronization as well.

The diagram above illustrates the single controller (workbench) setup with multiple Kie Server

instances managed by it.

The diagram bellow illustrates the clustered setup where there are multiple instances of controller

synchronized over Zookeeper.

In the above diagram we can see that the Kie Server instances are capable of connecting to any

controllers, but they will connect to only one. Each instance will attempt to connect to controller

KIE Execution Server

184

as long as it can reach one. Once connection is established with one of the controllers it will skip

the others.

5.3.1.1. Working with managed servers

There are two approaches that users can take when working with managed KIE Server instances:

• Configuration first: with this approach, a user will start working with the controller (either UI

or REST api) and create and configure Kie Server definitions. That consists basically of an

identification for the server definition (id and name + optionally version for improved readability)

and the configuration for the Kie Containers to run on the server.

• Registration first: with this approach, the Kie Server instances are started first and auto register

themselves on controller. The user then can configure the Kie Containers. This option simply

skips the registration step done in the first approach and populates it with server id, name

and version directly upon auto registration. There are no other differences between the two

approaches.

5.3.2. Unmanaged KIE Execution Server

An unmanaged Kie Server is in turn just a standalone instance, and thus must be configured

individually using REST/JMS api from the Kie Server itself. There is no controller involved. The

configuration is automatically persisted by the server into a file and that is used as the internal

server state, in case of restarts.

The configuration is updated during the following operations:

• deploy Kie Container

• undeploy Kie Container

• start Kie Container

• stop Kie Container

Note
if the Kie Server is restarted, it will try to restablish the same state that was persisted

before shutdown. That means that Kie Containers that were running, will be started,

but the ones that were stopped/disposed before, will not.

In most use cases, the Kie Server should be executed in managed mode as that provides some

benefits, like a web user interface (if using the workbench as a controller) and some facilities for

clustering.

KIE Execution Server

185

5.4. Creating a Kie Container

Once your Execution Server is registered, you can start adding Kie Containers to it.

Kie Containers are self contained environments that have been provisioned to hold instances of

your packaged and deployed rule instances.

1. Start by clicking the + icon next to the Execution Server where you want to deploy your Con-

tainer. This will bring up the New Container screen.

2. If you know the Group Name, Artifact Id and Version (GAV) of your deployed package, then

you can enter those details and click the Ok button to select that instance (and provide a name

for the Container);

3. If you don't know these values, you can search KIE Workbench for all packages that can be

deployed. Click the Search button without entering any value in the search field (you can narrow

your search by entering any term that you know exists in the package that you want to deploy).

Important

INSERT SCREENSHOT HERE

The figure above shows that there are three deployable packages available to be used as

containers on the Execution Server. Select the one that you want by clicking the Select button.

This will auto-populate the GAV and you can then click the Ok button to use this deployable

as the new Container.

4. Enter a name for this Container at the top and then press the Ok button.

Important

The Container name must be unique inside each execution server and must not

contain any spaces.

Note

Just below the GAV row, you will see an uneditable row that shows you the URL

for your Container against which you will be able to execute REST commands.

5.5. Managing Containers

Containers within the Execution Server can be started, stopped and updated from within KIE

Workbench.

KIE Execution Server

186

5.5.1. Starting a Container

Once registered, a Container is in the 'Stopped' mode. It can be started by first selecting it and

then clicking the Start button. You can also select multiple Containers and start them all at the

same time.

Once the Container is in the 'Running' mode, a green arrow appears next to it. If there are any

errors starting the Container(s), red icons appear next to Containers and the Execution Server

that they are deployed on.

You should check the logs of both the Execution Server and the current Business Central to see

what the errors are before redeploying the Containers (and possibly the Execution Server).

5.5.2. Stopping and Deleting a Container

Similar to starting a Container, select the Container(s) that you want to stop (or delete) and click the

Stop button (which replaces the Start button for that Container once it has entered the 'Running'

mode) or the Delete button.

5.5.3. Updating a Container

You can update deployed KieContainers without restarting the Execution Server. This is useful

in cases where the Business Rules change, creating new versions of packages to be provisioned.

You can have multiple versions of the same package provisioned and deployed, each to a different

KieContainer.

To update deployments in a KieContainer dynamically, click on the icon next to the Container.

This will open up the Container Info screen. An example of this screen is shown here:

Important

INSERT SCREENSHOT HERE

The Container Info screen is a useful tool because it not only allows you to see the endpoint for

this KieContainer, but it also allows you to either manually or automatically refresh the provision

if an update is available. The update can be manual or automatic:

Manual Update: To manually update a KieContainer, enter the new Version number in the

Version box and click on the Update button. You can of course, update the Group Id or the Artifact

Id , if these have changed as well. Once updated, the Execution server updates the container

and shows you the resolved GAV attributes at the bottom of the screen in the Resolved Release

Id section.

Automatic Update: If you want a deployed Container to always have the latest version of your

deployment without manually editing it, you will need to set the Version property to the value of

KIE Execution Server

187

LATEST and start a Scanner. This will ensure that the deployed provision always contains the latest

version. The Scanner can be started just once on demand by clicking the Scan Now button or you

can start it in the background with scans happening at a specified interval (in seconds).You can

also set this value to LATEST when you are first creating this deployment. The Resolved Release

Id in this case will show you the actual, latest version number.

5.6. Kie Server REST API

The Execution Server supports the following commands via the REST API.

Please note the following before using these commands:

• The base URL for these will remain as the endpoint defined earlier (for example: http://

SERVER:PORT/CONTEXT/services/rest/server/)

• All requests require basic HTTP Authentication for the role kie-server as indicated earlier.

5.6.1. [GET] /

Returns the Execution Server information

Example 5.3. Example Server Response

<response type="SUCCESS" msg="KIE Server info">

 <kie-server-info>

 <version>6.2.0.redhat-1</version>

 </kie-server-info>

</response>

5.6.2. [POST] /

Using POST HTTP method, you can execute various commands on the Execution Server. E.g:

create-container, list-containers, dispose-container and call-container.

Following is the full list of commands:

• CreateContainerCommand

• GetServerInfoCommand

• ListContainersCommand

• CallContainerCommand

• DisposeContainerCommand

• GetContainerInfoCommand

• GetScannerInfoCommand

KIE Execution Server

188

• UpdateScannerCommand

• UpdateReleaseIdCommand

The commands itself can be found in the org.kie.server.api.commands package.

5.6.3. [GET] /containers

Returns a list of containers that have been created on this Execution Server.

Example 5.4. Example Server Response

<response type="SUCCESS" msg="List of created containers">

 <kie-containers>

 <kie-container container-id="MyProjectContainer" status="STARTED">

 <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </release-id>

 <resolved-release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </resolved-release-id>

 </kie-container>

 </kie-containers>

</response>

5.6.4. [GET] /containers/{id}

Returns the status and information about a particular container. For example, executing http://

SERVER:PORT/CONTEXT/services/rest/server/containers/MyProjectContainer could re-

turn the following example container info.

Example 5.5. Example Server Response

`<response type="SUCCESS" msg="Info for container MyProjectContainer">

 <kie-container container-id="MyProjectContainer" status="STARTED">

 <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </release-id>

 <resolved-release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </resolved-release-id>

 </kie-container>

</response>

KIE Execution Server

189

5.6.5. [PUT] /containers/{id}

Allows you to create a new Container in the Execution Server. For example, to create a Contain-

er with the id of MyRESTContainer the complete endpoint will be: http://SERVER:PORT/CON-

TEXT/services/rest/server/containers/MyRESTContainer. An example of request is:

Example 5.6. Example Request to create a container

<kie-container container-id="MyRESTContainer">

 <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </release-id>

</kie-container>

And the response from the server, if successful, would be be:

Example 5.7. Example Server Response when creating a container

<response type="SUCCESS" msg="Container MyRESTContainer successfully deployed with module

 com.redhat:Project1:1.0">

 <kie-container container-id="MyProjectContainer" status="STARTED">

 <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </release-id>

 <resolved-release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </resolved-release-id>

 </kie-container>

</response>

5.6.6. [DELETE] /containers/{id}

Disposes the Container specified by the id. For example, executing http://SERVER:PORT/

CONTEXT/services/rest/server/containers/MyProjectContainer using the DELETE HTTP

method will return the following server response:

Example 5.8. Example Server Response disposing a container

<response type="SUCCESS" msg="Container MyProjectContainer successfully disposed."/>

KIE Execution Server

190

5.6.7. [POST] /containers/instances/{id}

Executes operations and commands against the specified Container. You can send commands

to this Container in the body of the POST request. For example, to fire all rules for Container

with id MyRESTContainer (http://SERVER:PORT/CONTEXT/services/rest/server/contain-

ers/instances/MyRESTContainer), you would send the fire-all-rules command to it as shown

below (in the body of the POST request):

Example 5.9. Example Server Request to fire all rules

<fire-all-rules/>

Following is the list of supported commands:

• AgendaGroupSetFocusCommand

• ClearActivationGroupCommand

• ClearAgendaCommand

• ClearAgendaGroupCommand

• ClearRuleFlowGroupCommand

• DeleteCommand

• InsertObjectCommand

• ModifyCommand

• GetObjectCommand

• InsertElementsCommand

• FireAllRulesCommand

• QueryCommand

• SetGlobalCommand

• GetGlobalCommand

• GetObjectsCommand

• BatchExecutionCommand

These commands can be found in the org.drools.core.command.runtime package.

5.6.8. [GET] /containers/{id}/release-id

Returns the full release id for the Container specified by the id.

KIE Execution Server

191

Example 5.10. Example Server Response

`<response type="SUCCESS" msg="ReleaseId for container MyProjectContainer">

 <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

 </release-id>

</response>

5.6.9. [POST] /containers/{id}/release-id

Allows you to update the release id of the container deployment. Send the new complete release

id to the Server.

Example 5.11. Example Server Request

<release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.1</version>

</release-id>

The Server will respond with a success or error message, similar to the one below:

Example 5.12. Example Server Response

<response type="SUCCESS" msg="Release id successfully updated."> <release-id> <artifact-

id>Project1</artifact-id> <group-id>com.redhat</group-id> <version>1.0</version> </

release-id> </response>

fully up

dated."> <release-id>

 <artifact-id>Project1</artifact-id>

 <group-id>com.redhat</group-id>

 <version>1.0</version>

5.6.10. [GET] /containers/{id}/scanner

Returns information about the scanner for this Container's automatic updates.

Example 5.13. Example Server Response

<response type="SUCCESS" msg="Scanner info successfully retrieved">

 <kie-scanner status="DISPOSED"/>

KIE Execution Server

192

</response>

5.6.11. [POST] /containers/{id}/scanner

Allows you to start or stop a scanner that controls polling for updated Container deployments.

To start the scanner, send a request similar to: http://SERVER:PORT/CONTEXT/services/rest/

server/containers/{container-id}/scanner with the following POST data.

Example 5.14. Example Server Request to start the scanner

<kie-scanner status="STARTED" poll-interval="20"/>

The poll-interval attribute is in seconds. The response from the server will be similar to:

Example 5.15. Example Server Response

<response type="SUCCESS" msg="Kie scanner successfully created.">

 <kie-scanner status="STARTED"/>

</response>

To stop the Scanner, replace the status with DISPOSED and remove the poll-interval attribute.

5.6.12. Native REST client for Execution Server

Commands outlined in this section can be sent with any REST client, whether it is curl, RESTEasy

or .NET based application. However, when sending requests from Java based application, users

can utilize out of the box native client for remote communication with Execution Server. This client

is part of the org.kie:kie-server-client project. It doesn't allow creating XML request, therefore it

is necessary generate them before, for example, using Drools API.

Example 5.16. Generate XML request

import java.util.ArrayList;

import java.util.List;

import org.drools.core.command.impl.GenericCommand;

import org.drools.core.command.runtime.BatchExecutionCommandImpl;

import org.drools.core.command.runtime.rule.FireAllRulesCommand;

import org.drools.core.command.runtime.rule.InsertObjectCommand;

import org.kie.api.command.BatchExecutionCommand;

import org.kie.internal.runtime.helper.BatchExecutionHelper;

public class DecisionClient {

public static void main(String args[]) {

KIE Execution Server

193

 Bean1 bean1 = new Bean1();

 bean1.setName("Robert");

 InsertObjectCommand insertObjectCommand = new InsertObjectCommand(bean1, "f1");

 FireAllRulesCommand fireAllRulesCommand = new FireAllRulesCommand("myFireCommand");

 List<GenericCommand<?>> commands = new ArrayList<GenericCommand<?>>();

 commands.add(insertObjectCommand);

 commands.add(fireAllRulesCommand);

 BatchExecutionCommand command = new BatchExecutionCommandImpl(commands);

 String xStreamXml = BatchExecutionHelper.newXStreamMarshaller().toXML(command); //

 actual XML request

 }

}

Once the request is generated it can be sent using kie-server-client as follows:

Example 5.17. Sending XML request with kie-server-client

import org.kie.server.api.model.ServiceResponse;

import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;

import org.kie.server.client.KieServicesFactory;

//user "anton" must have role "kie-server" assigned

KieServicesConfiguration config = KieServicesFactory.

 newRestConfiguration("http://localhost:8080/kie-server/services/rest/server",

 "anton",

 "password1!");

 KieServicesClient client = KieServicesFactory.newKieServicesClient(config);

// the request "xStreamXml" we generated in previous step

// "ListenerReproducer" is the name of the Container

ServiceResponse<String> response = client.executeCommands("ListenerReproducer", xStreamXml);

System.out.println(response.getResult());

5.7. OptaPlanner REST API

When the Planner capability is enabled, the Kie Server supports the following additional REST

APIs. As usual, all these APIs are also available through JMS and the Java client API. Please

also note:

• The base URL for these will remain as the endpoint defined earlier (for example http://

SERVER:PORT/CONTEXT/services/rest/server/).

• All requests require basic HTTP Authentication for the role kie-server as indicated earlier.

• To get a specific marshalling format, add the HTTP headers Content-Type and optional X-

KIE-ContentType in the HTTP request. For example:

KIE Execution Server

194

Content-Type: application/xmlX-KIE-ContentType: xstream

plication/xmlX-

The example requests and responses used below presume that a kie container is build using

the optacloud example of OptaPlanner Workbench, by calling a PUT on /services/rest/serv-

er/containers/optacloud-kiecontainer-1 with this content:

<kie-container container-id="optacloud-kiecontainer-1">

 <release-id>

 <group-id>opta</group-id>

 <artifact-id>optacloud</artifact-id>

 <version>1.0.0</version>

 </release-id>

</kie-container>

5.7.1. [GET] /containers/{containerId}/solvers

Returns the list of solvers created in the container.

Example 5.18. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solvers list successfully retrieved from container 'optacloud-kiecontainer-1'</msg>

 <result class="org.kie.server.api.model.instance.SolverInstanceList">

 <solvers>

 <solver-instance>

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>NOT_SOLVING</status>

 </solver-instance>

 <solver-instance>

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver2</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>NOT_SOLVING</status>

 </solver-instance>

 </solvers>

 </result>

</org.kie.server.api.model.ServiceResponse>

Example 5.19. Example Server Response (JSON)

{

 "type" : "SUCCESS",

 "msg" : "Solvers list successfully retrieved from container 'optacloud-kiecontainer-1'",

KIE Execution Server

195

 "result" : {

 "solver-instance-list" : {

 "solver" : [{

 "status" : "NOT_SOLVING",

 "container-id" : "optacloud-kiecontainer-1",

 "solver-id" : "solver1",

 "solver-config-file" : "opta/optacloud/cloudSolverConfig.solver.xml"

 }, {

 "status" : "NOT_SOLVING",

 "container-id" : "optacloud-kiecontainer-1",

 "solver-id" : "solver2",

 "solver-config-file" : "opta/optacloud/cloudSolverConfig.solver.xml"

 }]

 }

 }

}

5.7.2. [PUT] /containers/{containerId}/solvers/{solverId}

Creates a new solver with the given {solverId} in the container {containerId}. The request's

body is a marshalled SolverInstance entity that must specify the solver configuration file.

The following is an example of the request and the corresponding response.

Example 5.20. Example Server Request (XStream)

<solver-instance>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

</solver-instance>

Example 5.21. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solver 'solver1' successfully created in container 'optacloud-kiecontainer-1'</msg>

 <result class="solver-instance">

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>NOT_SOLVING</status>

 </result>

</org.kie.server.api.model.ServiceResponse>

Example 5.22. Example Server Request (JSON)

{

 "solver-config-file" : "opta/optacloud/cloudSolverConfig.solver.xml"

}

KIE Execution Server

196

Example 5.23. Example Server Response (JSON)

{

 "type" : "SUCCESS",

 "msg" : "Solver 'solver1' successfully created in container 'optacloud-kiecontainer-1'",

 "result" : {

 "solver-instance" : {

 "container-id" : "optacloud-kiecontainer-1",

 "solver-id" : "solver1",

 "solver-config-file" : "opta/optacloud/cloudSolverConfig.solver.xml",

 "status" : "NOT_SOLVING"

 }

 }

}

5.7.3. [GET] /containers/{containerId}/solvers/{solverId}

Returns the current state of the solver {solverId} in container {containerId}.

Example 5.24. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solver 'solver1' state successfully retrieved from container 'optacloud-kiecontainer-

1'</msg>

 <result class="solver-instance">

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>NOT_SOLVING</status>

 </result>

</org.kie.server.api.model.ServiceResponse>

Example 5.25. Example Server Response (JSON)

{

 "type" : "SUCCESS",

 "msg" : "Solver 'solver1' state successfully retrieved from container 'optacloud-

kiecontainer-1'",

 "result" : {

 "solver-instance" : {

 "container-id" : "optacloud-kiecontainer-1",

 "solver-id" : "solver1",

 "solver-config-file" : "opta/optacloud/cloudSolverConfig.solver.xml",

 "status" : "NOT_SOLVING"

 }

 }

}

KIE Execution Server

197

5.7.4. [POST] /containers/{containerId}/solvers/{solverId}

Updates the state of the {solverId} in container {containerId}, most notably to start solving. The

request's body is a marshalled SolverInstance and can either request the solver to solve a

planning problem or to stop solving one. The SolverInstance state determines which operation

should be executed and can be set one of two possible values:

• SOLVING: starts the solver if it is not executing yet. The request's body must also contain the

problem's data to be solved.

• NOT_SOLVING: requests the solver to terminate early, if it is running. All other attributes are

ignored.

5.7.4.1. Start solving

For example, to solve an optacloud problem with 2 computers and 1 process:

Example 5.26. Example Server Request (XStream)

<solver-instance>

 <status>SOLVING</status>

 <planning-problem class="opta.optacloud.CloudSolution">

 <computerList>

 <opta.optacloud.Computer>

 <cpuPower>10</cpuPower>

 <memory>4</memory>

 <networkBandwidth>100</networkBandwidth>

 <cost>1000</cost>

 </opta.optacloud.Computer>

 <opta.optacloud.Computer>

 <cpuPower>20</cpuPower>

 <memory>8</memory>

 <networkBandwidth>100</networkBandwidth>

 <cost>3000</cost>

 </opta.optacloud.Computer>

 </computerList>

 <processList>

 <opta.optacloud.Process>

 <requiredCpuPower>1</requiredCpuPower>

 <requiredMemory>7</requiredMemory>

 <requiredNetworkBandwidth>1</requiredNetworkBandwidth>

 </opta.optacloud.Process>

 </processList>

 </planning-problem>

</solver-instance>

Notice that the response does not contain the best solution yet, because solving can take seconds,

minutes, hours or days and this would time out the HTTP request:

KIE Execution Server

198

Example 5.27. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solver 'solver1' from container 'optacloud-kiecontainer-1' successfully updated.</msg>

 <result class="solver-instance">

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>SOLVING</status>

 </result>

</org.kie.server.api.model.ServiceResponse>

Instead, it's solving asynchronously and you need to call the bestsolution URL to get the best

solution.

5.7.4.2. Terminate solving

For example, to terminate solving:

Example 5.28. Example Server Request (XStream)

<solver-instance>

 <status>NOT_SOLVING</status>

</solver-instance>

Example 5.29. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solver 'solver1' from container 'optacloud-kiecontainer-1' successfully updated.</msg>

 <result class="solver-instance">

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>TERMINATING_EARLY</status>

 <score class="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore">

 <hardScore>0</hardScore>

 <softScore>-3000</softScore>

 </score>

 </result>

</org.kie.server.api.model.ServiceResponse>

This doesn't delete the solver, the best solution can still be retrieved.

KIE Execution Server

199

5.7.5. [GET] /containers/{containerId}/solvers/{solverId}/bestso-

lution

Returns the best solution found at the time the request is made. If the solver hasn't terminated

yet (so the status field is still SOLVING), it will return the best solution found up to then, but later

calls can return a better solution.

For example, the problem submitted above would return this solution, with the process assigned

to the second computer (because the first one doesn't have enough memory).

Example 5.30. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Best computed solution for 'solver1' successfully retrieved from container 'optacloud-

kiecontainer-1'</msg>

 <result class="solver-instance">

 <container-id>optacloud-kiecontainer-1</container-id>

 <solver-id>solver1</solver-id>

 <solver-config-file>opta/optacloud/cloudSolverConfig.solver.xml</solver-config-file>

 <status>SOLVING</status>

 <score class="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore">

 <hardScore>0</hardScore>

 <softScore>-3000</softScore>

 </score>

 <best-solution class="opta.optacloud.CloudSolution">

 <score class="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore" reference="../../

score" />

 <computerList>

 <opta.optacloud.Computer>

 <cpuPower>10</cpuPower>

 <memory>4</memory>

 <networkBandwidth>100</networkBandwidth>

 <cost>1000</cost>

 </opta.optacloud.Computer>

 <opta.optacloud.Computer>

 <cpuPower>20</cpuPower>

 <memory>8</memory>

 <networkBandwidth>100</networkBandwidth>

 <cost>3000</cost>

 </opta.optacloud.Computer>

 </computerList>

 <processList>

 <opta.optacloud.Process>

 <requiredCpuPower>1</requiredCpuPower>

 <requiredMemory>7</requiredMemory>

 <requiredNetworkBandwidth>1</requiredNetworkBandwidth>

 <computer reference="../../../computerList/opta.optacloud.Computer[2]" />

 </opta.optacloud.Process>

 </processList>

 </best-solution>

 </result>

</org.kie.server.api.model.ServiceResponse>

KIE Execution Server

200

5.7.6. [DELETE] /containers/{containerId}/solvers/{solverId}

Disposes the solver {solverId} in container {containerId}. If it hasn't terminated yet, it termi-

nates it first.

Example 5.31. Example Server Response (XStream)

<org.kie.server.api.model.ServiceResponse>

 <type>SUCCESS</type>

 <msg>Solver 'solver1' successfully disposed from container 'optacloud-kiecontainer-1'</msg>

</org.kie.server.api.model.ServiceResponse>

Example 5.32. Example Server Response (JSON)

{

 "type" : "SUCCESS",

 "msg" : "Solver 'solver1' successfully disposed from container 'optacloud-kiecontainer-1'"

}

5.8. Controller REST API

When you have Managed Kie Server setup, you need to manage Kie Servers and Containers via

a Controller. Generally, it's done by workbench UI but you may also use Controller REST API.

• The controller base URL is provided by kie-wb war deployment, which would be the same as

org.kie.server.controller property. (for example: http://localhost:8080/kie-wb/rest/con-

troller)

• All requests require basic HTTP Authentication for the role kie-server as indicated earlier.

5.8.1. [GET] /management/servers

Returns a list of Kie Server templates

Example 5.33. Example Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<server-template-list>

 <server-template>

 <server-id>demo</server-id>

 <server-name>demo</server-name>

 <container-specs>

 <container-id>hr</container-id>

 <container-name>hr</container-name>

 <server-template-key>

 <server-id>demo</server-id>

KIE Execution Server

201

 </server-template-key>

 <release-id>

 <artifact-id>HR</artifact-id>

 <group-id>org.jbpm</group-id>

 <version>1.0</version>

 </release-id>

 <configs>

 <entry>

 <key>RULE</key>

 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <scanner-status>STOPPED</scanner-status>

 </value>

 </entry>

 <entry>

 <key>PROCESS</key>

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

 <strategy>Singleton</strategy>

 <kie-base-name></kie-base-name>

 <kie-session-name></kie-session-name>

 <merge-mode>Merge Collections</merge-mode>

 </value>

 </entry>

 </configs>

 <status>STARTED</status>

 </container-specs>

 <configs/>

 <server-instances>

 <server-instance-id>demo@localhost:8230</server-instance-id>

 <server-name>demo@localhost:8230</server-name>

 <server-template-id>demo</server-template-id>

 <server-url>http://localhost:8230/kie-server/services/rest/server</server-url>

 </server-instances>

 <capabilities>RULE</capabilities>

 <capabilities>PROCESS</capabilities>

 <capabilities>PLANNING</capabilities>

 </server-template>

</server-template-list>

5.8.2. [GET] /management/server/{id}

Returns a Kie Server template

Example 5.34. Example Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<server-template-details>

 <server-id>product-demo</server-id>

 <server-name>product-demo</server-name>

 <container-specs>

 <container-id>hr</container-id>

 <container-name>hr</container-name>

 <server-template-key>

 <server-id>demo</server-id>

KIE Execution Server

202

 </server-template-key>

 <release-id>

 <artifact-id>HR</artifact-id>

 <group-id>org.jbpm</group-id>

 <version>1.0</version>

 </release-id>

 <configs>

 <entry>

 <key>RULE</key>

 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <scanner-status>STOPPED</scanner-status>

 </value>

 </entry>

 <entry>

 <key>PROCESS</key>

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <strategy>Singleton</strategy>

 <kie-base-name></kie-base-name>

 <kie-session-name></kie-session-name>

 <merge-mode>Merge Collections</merge-mode>

 </value>

 </entry>

 </configs>

 <status>STARTED</status>

 </container-specs>

 <configs/>

 <server-instances>

 <server-instance-id>demo@localhost:8230</server-instance-id>

 <server-name>demo@localhost:8230</server-name>

 <server-template-id>demo</server-template-id>

 <server-url>http://localhost:8230/kie-server/services/rest/server</server-url>

 </server-instances>

 <capabilities>RULE</capabilities>

 <capabilities>PROCESS</capabilities>

 <capabilities>PLANNING</capabilities>

</server-template-details>

5.8.3. [PUT] /management/server/{id}

Creates a new Kie Server template with the specified id

Example 5.35. Example Request to create a new Kie Server template

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<server-template-details>

 <server-id>test-demo</server-id>

 <server-name>test-demo</server-name>

 <configs/>

 <capabilities>RULE</capabilities>

 <capabilities>PROCESS</capabilities>

 <capabilities>PLANNING</capabilities>

</server-template-details>

KIE Execution Server

203

5.8.4. [DELETE] /management/server/{id}

Deletes a Kie Server template with the specified id

5.8.5. [GET] /management/server/{id}/containers

Returns all containers on given server

Example 5.36. Example Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<container-spec-list>

 <container-spec>

 <container-id>hr</container-id>

 <container-name>hr</container-name>

 <server-template-key>

 <server-id>demo</server-id>

 </server-template-key>

 <release-id>

 <artifact-id>HR</artifact-id>

 <group-id>org.jbpm</group-id>

 <version>1.0</version>

 </release-id>

 <configs>

 <entry>

 <key>RULE</key>

 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <scanner-status>STOPPED</scanner-status>

 </value>

 </entry>

 <entry>

 <key>PROCESS</key>

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <strategy>Singleton</strategy>

 <kie-base-name></kie-base-name>

 <kie-session-name></kie-session-name>

 <merge-mode>Merge Collections</merge-mode>

 </value>

 </entry>

 </configs>

 <status>STARTED</status>

 </container-spec>

</container-spec-list>

5.8.6. [GET] /management/server/{id}/containers/{containerId}

Returns the Container information including its release id and configuration

Example 5.37. Example Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

KIE Execution Server

204

<container-spec-details>

 <container-id>hr</container-id>

 <container-name>hr</container-name>

 <server-template-key>

 <server-id>demo</server-id>

 </server-template-key>

 <release-id>

 <artifact-id>HR</artifact-id>

 <group-id>org.jbpm</group-id>

 <version>1.0</version>

 </release-id>

 <configs>

 <entry>

 <key>PROCESS</key>

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <strategy>Singleton</strategy>

 <kie-base-name></kie-base-name>

 <kie-session-name></kie-session-name>

 <merge-mode>Merge Collections</merge-mode>

 </value>

 </entry>

 <entry>

 <key>RULE</key>

 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <scanner-status>STOPPED</scanner-status>

 </value>

 </entry>

 </configs>

 <status>STARTED</status>

</container-spec-details>

5.8.7. [PUT] /management/server/{id}/containers/{containerId}

Creates a new Container with the specified containerId and the given release id and optionally

configuration

Example 5.38. Example Server Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<container-spec-details>

 <container-id>hr</container-id>

 <container-name>hr</container-name>

 <server-template-key>

 <server-id>demo</server-id>

 </server-template-key>

 <release-id>

 <artifact-id>HR</artifact-id>

 <group-id>org.jbpm</group-id>

 <version>1.0</version>

 </release-id>

 <configs>

 <entry>

 <key>PROCESS</key>

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <strategy>Singleton</strategy>

KIE Execution Server

205

 <kie-base-name></kie-base-name>

 <kie-session-name></kie-session-name>

 <merge-mode>Merge Collections</merge-mode>

 </value>

 </entry>

 <entry>

 <key>RULE</key>

 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <scanner-status>STOPPED</scanner-status>

 </value>

 </entry>

 </configs>

 <status>STARTED</status>

</container-spec-details

5.8.8. [DELETE] /management/server/{id}/containers/{contain-

erId}

Disposes a Container with the specified containerId

5.8.9. [POST] /management/server/{id}/containers/{contain-

erId}/status/started

Starts the Container. No request body required

5.8.10. [POST] /management/server/{id}/containers/{contain-

erId}/status/stopped

Stops the Container. No request body required

5.9. Kie Server Java Client API

The Kie Server has a great Java API to wrap REST or JMS requests to be sent to the server. In

this section we will explore some of the possibilities of this API.

5.9.1. Maven Configuration

if you are a Maven user, make sure you have at least the following dependencies in the project's

pom.xml

Example 5.39. Maven Dependencies

<dependency> <groupId>org.kie.server</groupId> <artifactId>kie-server-client</artifactId>

 <version>${kie.api.version}</version></dependency><!-- Logging --><dependency>

 <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.1.2</

version></dependency><!-- Drools Commands --><dependency> <groupId>org.drools</

groupId> <artifactId>drools-compiler</artifactId> <scope>runtime</scope> <version>

${kie.api.version}</version></dependency>

KIE Execution Server

206

pendency>

 <groupId>org.kie.server</groupId> <artifactId>kie-

server-client</artifactId>

<version>${kie.api.version}</

version></dependency><!-- Logging

--><dependency>

 <groupId>ch.qos.logback</groupId>

<artifactId>logback-classic</artifactId>

 <version>1.1.2</

version></dependency><!-- Drools Commands

--><dependency>

 <groupId>org.drools</groupId>

<artifactId>drools-compiler</artifactId>

 <scope>runtime</scope>

<version>${kie.api.version}</

The version kie.api.version depends on the Kie Server version you are using. For jBPM 6.3, for

example, you can use 6.3.1-SNAPSHOT.

5.9.2. Client Configuration

The client requires a configuration object where you set most of the server communication aspects,

such as the protocol (REST and JMS) credentials and the payload format (XStream, JAXB and

JSON are the supported formats at the moment). The first thing to do is create your configuration

then create the KieServicesClient object, the entry point for starting the server communication.

See the source below where we use a REST client configuration:

Example 5.40. Client Configuration Example

import org.kie.server.api.marshalling.MarshallingFormat;

import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;

import org.kie.server.client.KieServicesFactory;

public class DecisionServerTest {

 private static final String URL = "http://localhost:8080/kie-server/services/rest/server";

 private static final String USER = "kieserver";

 private static final String PASSWORD = "kieserver1!";

 private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

 private KieServicesConfiguration conf;

 private KieServicesClient kieServicesClient;

 public void initialize() {

 conf = KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);

 conf.setMarshallingFormat(FORMAT);

 kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

 }

KIE Execution Server

207

5.9.3. Server Response

All the service responses are represented by the object

org.kie.server.api.model.ServiceResponse<T> where T is the type of the payload. It has

the following attributes:

String msg: The response message;

org.kie.server.api.model.ServiceResponse.ResponseType type: the response type enum,

which can be SUCCESS or FAILURE;

T result: The actual payload of the response, the requested object.

Notice that this is the same object returned if you are using REST or JMS, in another words it

is agnostic to protocol.

5.9.4. Server Capabilities

Decision Server initially only supported rules execution, starting in version 6.3 it started supporting

business process execution. To know what exactly your server support, you can list the server ca-

pabilities by accessing the object org.kie.server.api.model.KieServerInfo using the client:

Example 5.41. Listing Server capabilities

public void listCapabilities() {

 KieServerInfo serverInfo = kieServicesClient.getServerInfo().getResult();

 System.out.print("Server capabilities:");

 for(String capability: serverInfo.getCapabilities()) {

 System.out.print(" " + capability);

 }

 System.out.println();

}

If the server supports rules and process, the following should be printed when you run the code

above:

Server capabilities: BRM KieServer BPM

5.9.5. Kie Containers

If you want to publish a kjar to receive requests, you must publish it in a container. The container

is represented in the client by the object org.kie.server.api.model.KieContainerResource,

and a list of resources is org.kie.server.api.model.KieContainerResourceList. Here's an

example of how to print a list of containers:

Example 5.42. Listing Kie Containers

public void listContainers() {

 KieContainerResourceList containersList = kieServicesClient.listContainers().getResult();

KIE Execution Server

208

 List<KieContainerResource> kieContainers = containersList.getContainers();

 System.out.println("Available containers: ");

 for (KieContainerResource container : kieContainers) {

 System.out.println("\t" + container.getContainerId() + " (" + container.getReleaseId() + ")");

 }

}

5.9.6. Managing Containers

You can use the client to dispose and create containers. If you dispose a containers, a ServiceRe-

sponse will be returned with Void payload(no payload) and if you create it, the KieContainerRe-

source object itself will be returned in the response. Sample code:

Example 5.43. Disposing and creating containers

public void disposeAndCreateContainer() {

 System.out.println("== Disposing and creating containers ==");

 List<KieContainerResource> kieContainers = kieServicesClient.listContainers().getResult().getContainers();

 if (kieContainers.size() == 0) {

 System.out.println("No containers available...");

 return;

 }

 KieContainerResource container = kieContainers.get(0);

 String containerId = container.getContainerId();

 ServiceResponse<Void> responseDispose = kieServicesClient.disposeContainer(containerId);

 if (responseDispose.getType() == ResponseType.FAILURE) {

 System.out.println("Error disposing " + containerId + ". Message: ");

 System.out.println(responseDispose.getMsg());

 return;

 }

 System.out.println("Success Disposing container " + containerId);

 System.out.println("Trying to recreate the container...");

 ServiceResponse<KieContainerResource> createResponse = kieServicesClient.createContainer(containerId, container);

 if(createResponse.getType() == ResponseType.FAILURE) {

 System.out.println("Error creating " + containerId + ". Message: ");

 System.out.println(responseDispose.getMsg());

 return;

 }

 System.out.println("Container recreated with success!");

}

5.9.7. Available Clients for the Decision Server

The KieServicesClient is also the entry point for others clients to perform specific operations, such

as send BRMS commands and manage processes. Currently from the KieServicesClient you can

have access to the following services available in org.kie.server.client package:

• JobServicesClient: This client allows you to schedule, cancel, requeue and get job requests;

• ProcessServicesClient: Allows you to start, signal abort process; complete and abort work items

among other capabilities;

KIE Execution Server

209

• QueryServicesClient: The powerful query client allows you to query process, process nodes

and process variables;

• RuleServicesClient: The simple, but powerful rules client can be used to send commands to

the server to perform rules related operations(insert objects in the working memory, fire rules,

get globals...);

• UserTaskServicesClient: Finally, the user tasks clients allows you to perform all operations with

an user tasks(start, claim, cancel, etc) and query tasks by certain fields(process instances id,

user, etc).

For further information about these interfaces check github: https://github.com/droolsjbpm/drool-

sjbpm-integration/tree/master/kie-server-parent/kie-server-remote/kie-server-client/src/main/

java/org/kie/server/client

You can have access to any of these clients using the method getServicesClient

in the KieServicesClient class. For example: RuleServicesClient rulesClient =

kieServicesClient.getServicesClient(RuleServicesClient.class);

5.9.8. Sending commands to the server

To build commands to the server you must use the class org.kie.api.command.KieCommands,

that can be created using org.kie.api.KieServices.get().getCommands(). The command to

be send must be a BatchExecutionCommand or a single command(if a single command is sent,

the server wraps it into a BatchExecutionCommand):

Example 5.44. Sending commands to a container

public void executeCommands() {

 System.out.println("== Sending commands to the server ==");

 RuleServicesClient rulesClient = kieServicesClient.getServicesClient(RuleServicesClient.class);

 KieCommands commandsFactory = KieServices.Factory.get().getCommands();

 Command<?> insert = commandsFactory.newInsert("Some String OBJ");

 Command<?> fireAllRules = commandsFactory.newFireAllRules();

 Command<?> batchCommand = commandsFactory.newBatchExecution(Arrays.asList(insert, fireAllRules));

 ServiceResponse<String> executeResponse = rulesClient.executeCommands("hello", batchCommand);

 if(executeResponse.getType() == ResponseType.SUCCESS) {

 System.out.println("Commands executed with success! Response: ");

 System.out.println(executeResponse.getResult());

 }

 else {

 System.out.println("Error executing rules. Message: ");

 System.out.println(executeResponse.getMsg());

 }

}

The result in this case is a String with the command execution result. In our case it will print the

following:

KIE Execution Server

210

 == Sending commands to the server == Commands executed with success! Response:

 { "results" : [], "facts" : [] }

== Commands executed with success! Response:

{ "results" : [

], "facts" : [

]

* You must add org.drools:drools-compiler dependency to have this part working

5.9.9. Listing available business processes

To list process definitions we use the QueryClient. The methods of the QueryClient usually uses

pagination, which means that besides the query you are making, you must also provide the current

page and the number of results per page. In the code below the query for process definitions from

the given container starts on page 0 and list 1000 results, in another words, the 1000 first results.

Example 5.45. Listing Business Processes Definitions Example

public void listProcesses() {

 System.out.println("== Listing Business Processes ==");

 QueryServicesClient queryClient = kieServicesClient.getServicesClient(QueryServicesClient.class);

 List<ProcessDefinition> findProcessesByContainerId = queryClient.findProcessesByContainerId("rewards", 0, 1000);

 for (ProcessDefinition def : findProcessesByContainerId) {

 System.out.println(def.getName() + " - " + def.getId() + " v" + def.getVersion());

 }

}

	OptaPlanner Workbench and Execution Server User Guide
	Table of Contents
	Part I. OptaPlanner Engine
	Part II. OptaPlanner Workbench
	Chapter 1. Workbench (General)
	1.1. Installation
	1.1.1. War installation
	1.1.2. Workbench data
	1.1.3. System properties
	1.1.4. Trouble shooting
	1.1.4.1. Loading.. does not disappear and Workbench fails to show

	1.2. Quick Start
	1.2.1. Add repository
	1.2.2. Add project
	1.2.3. Define Data Model
	1.2.4. Define Rule
	1.2.5. Build and Deploy

	1.3. Administration
	1.3.1. Administration overview
	1.3.2. Organizational unit
	1.3.3. Repositories
	1.3.3.1. Repository Editor

	1.4. Configuration
	1.4.1. Basic user management
	1.4.2. Roles
	1.4.2.1. Admin
	1.4.2.2. Developer
	1.4.2.3. Analyst
	1.4.2.4. Business user
	1.4.2.5. Manager/Viewer-only User

	1.4.3. Restricting access to repositories
	1.4.4. Command line config tool
	1.4.4.1. Config Tool Modes
	1.4.4.2. Available Commands
	1.4.4.3. How to use

	1.5. Introduction
	1.5.1. Log in and log out
	1.5.2. Home screen
	1.5.3. Workbench concepts
	1.5.4. Initial layout

	1.6. Changing the layout
	1.6.1. Resizing
	1.6.2. Repositioning

	1.7. Authoring (General)
	1.7.1. Artifact Repository
	1.7.2. Asset Editor
	1.7.3. Tags Editor
	1.7.3.1. Creating Tags

	1.7.4. Project Explorer
	1.7.4.1. Initial view
	1.7.4.2. Different views
	1.7.4.2.1. Project View examples
	1.7.4.2.2. Repository View examples

	1.7.4.3. Download Project or Repository
	1.7.4.4. Branch selector
	1.7.4.5. Filtering by Tag
	1.7.4.6. Copy, Rename, Delete and Download Actions
	1.7.4.7.
	1.7.4.7.1.

	1.7.5. Project Editor
	1.7.5.1. Build & Deploy
	1.7.5.2. Project Settings
	1.7.5.2.1. Project General Settings
	1.7.5.2.2. Dependencies
	1.7.5.2.2.1. Package Name White List

	1.7.5.2.3. Metadata

	1.7.5.3. Knowledge Base Settings
	1.7.5.3.1. Knowledge bases and sessions
	1.7.5.3.1.1. Knowledge base list
	1.7.5.3.1.2. Knowledge base properties
	1.7.5.3.1.3. Knowledge sessions

	1.7.5.3.2. Metadata

	1.7.5.4. Imports
	1.7.5.4.1. External Data Objects
	1.7.5.4.2. Metadata

	1.7.5.5. Duplicate GAV detection

	1.7.6. Validation
	1.7.6.1. Problem Panel
	1.7.6.2. On demand validation

	1.7.7. Data Modeller
	1.7.7.1. First steps to create a data model
	1.7.7.2. Data Objects
	1.7.7.3. Properties & relationships
	1.7.7.4. Additional options
	1.7.7.4.1. Drools & jBPM domain
	1.7.7.4.1.1. Drools & jBPM object editor
	1.7.7.4.1.2. Drools & jJBPM field editor

	1.7.7.4.2. Persistence domain
	1.7.7.4.2.1. Persistence domain object editor
	1.7.7.4.2.2. Persistence domain field editor
	1.7.7.4.2.2.1. Identifier:
	1.7.7.4.2.2.2. Column Properties:
	1.7.7.4.2.2.3. Relationship Properties:

	1.7.7.4.3. Advanced domain
	1.7.7.4.3.1. Advanced domain Data Object / Field editor.

	1.7.7.5. Generate data model code.
	1.7.7.6. Using external models
	1.7.7.6.1. Dependency to a JAR file in local M2 repository
	1.7.7.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	1.7.7.6.1.2. Click on the "Add" button to add a new dependency line.
	1.7.7.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	1.7.7.6.1.4. Save the project to update its dependencies.

	1.7.7.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	1.7.7.6.2.1. Open the Maven Artifact Repository editor.
	1.7.7.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	1.7.7.6.2.3. Upload the file using the Upload button.
	1.7.7.6.2.4. Guvnor M2 repository files.
	1.7.7.6.2.5. Provide a GAV for the uploaded file (optional).
	1.7.7.6.2.6. Add dependency from repository.

	1.7.7.6.3. Using the external objects

	1.7.7.7. Roundtrip and concurrency
	1.7.7.7.1. No changes have been undertaken through the application
	1.7.7.7.2. Changes have been undertaken through the application

	1.7.8. Data Sets
	1.7.8.1. Data Set Authoring Perspective
	1.7.8.2. Data Set Explorer
	1.7.8.3. Data Set Creation
	1.7.8.3.1. Step 1: Provider type selection
	1.7.8.3.2. Step 2: Configuration
	1.7.8.3.3. Step 3: Data set columns and preview

	1.7.8.4. Data set editor
	1.7.8.5. Advanced settings
	1.7.8.6. Caching
	1.7.8.7. Refresh

	1.8. User and group management
	1.8.1. Introduction
	1.8.2. Security management providers
	1.8.2.1. Security management providers
	1.8.2.2. Secutiry management provider capabilities

	1.8.3. Installation and setup
	1.8.3.1. Enable the security management feature on an existing WAR distribution
	1.8.3.2. Setup and installation in an existing or new project
	1.8.3.3. Disabling the security management feature

	1.8.4. Usage
	1.8.4.1. User management
	1.8.4.2. Group management

	1.9. Embedding Workbench In Your Application
	1.10. Asset Management
	1.10.1. Asset Management Overview
	1.10.2. Managed vs Unmanaged Repositories
	1.10.2.1. Managed Repositories
	1.10.2.2. Unmanaged Repositories

	1.10.3. Asset Management Processes
	1.10.3.1. Configure Repository
	1.10.3.2. Promote Changes Process
	1.10.3.3. Build Process
	1.10.3.4. Release Process

	1.10.4. Usage Flow
	1.10.5. Repository Structure
	1.10.5.1. Single Project Managed Repository
	1.10.5.2. Multi Project Managed Repository
	1.10.5.3. Unmanaged Repository

	1.10.6. Managed Repositories Operations
	1.10.6.1. Branch Selector
	1.10.6.2. Project Operations
	1.10.6.3. Launch Assets Management Processes
	1.10.6.3.1. Launch the Configure Repository Process
	1.10.6.3.2. Launch the Promote Changes Process
	1.10.6.3.3. Launch the Release Process

	1.11. Execution Server Management UI
	1.11.1. Server Templates
	1.11.2. Container
	1.11.3. Remote Server

	Chapter 2. Authoring Planning Assets
	2.1. Solver Editor

	Chapter 3. Workbench Integration
	3.1. REST
	3.1.1. Job calls
	3.1.2. Repository calls
	3.1.3. Organizational unit calls
	3.1.4. Maven calls
	3.1.5. REST summary

	3.2. Keycloak SSO integration
	3.2.1. Scenario
	3.2.2. Install and setup a Keycloak server
	3.2.3. Create and setup the demo realm
	3.2.4. Install and setup jBPM Workbench
	3.2.4.1. Install the KC adapter
	3.2.4.2. Configure the KC adapter
	3.2.4.3. Run the environment

	3.2.5. Securing workbench remote services via Keycloak
	3.2.6. Execution server
	3.2.6.1. Create the execution server's client on Keycloak
	3.2.6.2. Install and setup the KC adapter on the execution server
	3.2.6.3. Deploy and run the execution server

	3.2.7. Consuming remote services
	3.2.7.1. Using basic authentication
	3.2.7.2. Using token based authentication

	Chapter 4. Workbench High Availability
	4.1.
	4.1.1. VFS clustering
	4.1.2. jBPM clustering

	Part III. OptaPlanner Execution Server
	Chapter 5. KIE Execution Server
	5.1. Overview
	5.1.1. Glossary

	5.2. Installing the KIE Server
	5.2.1. Bootstrap switches
	5.2.2. Installation details for different containers
	5.2.2.1. Tomcat 7.x/8.x
	5.2.2.2. WildFly 8.x

	5.3. Kie Server setup
	5.3.1. Managed Kie Server
	5.3.1.1. Working with managed servers

	5.3.2. Unmanaged KIE Execution Server

	5.4. Creating a Kie Container
	5.5. Managing Containers
	5.5.1. Starting a Container
	5.5.2. Stopping and Deleting a Container
	5.5.3. Updating a Container

	5.6. Kie Server REST API
	5.6.1. [GET] /
	5.6.2. [POST] /
	5.6.3. [GET] /containers
	5.6.4. ⁠[GET] /containers/{id}
	5.6.5. [PUT] /containers/{id}
	5.6.6. [DELETE] /containers/{id}
	5.6.7. [POST] /containers/instances/{id}
	5.6.8. [GET] /containers/{id}/release-id
	5.6.9. [POST] /containers/{id}/release-id
	5.6.10. [GET] /containers/{id}/scanner
	5.6.11. [POST] /containers/{id}/scanner
	5.6.12. Native REST client for Execution Server

	5.7. OptaPlanner REST API
	5.7.1. [GET] /containers/{containerId}/solvers
	5.7.2. [PUT] /containers/{containerId}/solvers/{solverId}
	5.7.3. [GET] /containers/{containerId}/solvers/{solverId}
	5.7.4. [POST] /containers/{containerId}/solvers/{solverId}
	5.7.4.1. Start solving
	5.7.4.2. Terminate solving

	5.7.5. [GET] /containers/{containerId}/solvers/{solverId}/bestsolution
	5.7.6. [DELETE] /containers/{containerId}/solvers/{solverId}

	5.8. Controller REST API
	5.8.1. [GET] /management/servers
	5.8.2. [GET] /management/server/{id}
	5.8.3. [PUT] /management/server/{id}
	5.8.4. [DELETE] /management/server/{id}
	5.8.5. [GET] /management/server/{id}/containers
	5.8.6. [GET] /management/server/{id}/containers/{containerId}
	5.8.7. [PUT] /management/server/{id}/containers/{containerId}
	5.8.8. [DELETE] /management/server/{id}/containers/{containerId}
	5.8.9. [POST] /management/server/{id}/containers/{containerId}/status/started
	5.8.10. [POST] /management/server/{id}/containers/{containerId}/status/stopped

	5.9. Kie Server Java Client API
	5.9.1. Maven Configuration
	5.9.2. Client Configuration
	5.9.3. Server Response
	5.9.4. Server Capabilities
	5.9.5. Kie Containers
	5.9.6. Managing Containers
	5.9.7. Available Clients for the Decision Server
	5.9.8. Sending commands to the server
	5.9.9. Listing available business processes

