OptaWeb Employee Rostering User
Guide

The OptaPlanner Team

Version 7.30.0-SNAPSHOT

Table of Contents

1. OptaWeb Employee Rostering Introduction
1.1. What is OptaWeb Employee Rostering?
1.2. Build and Run the Application
1.3. System Properties

2. Architecture

3. Features in OptaWeb Employee Rostering
3.1. Test the JPA Database with H2
3.2. Test the REST API

A O OO W k===

Chapter 1. OptaWeb Employee Rostering
Introduction

1.1. What is OptaWeb Employee Rostering?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). One such planning problem is
employee shift rostering: assigning shifts to employees. OptaWeb is a web application and REST
service that solves employee shift rostering problems using the OptaPlanner engine.

1.2. Build and Run the Application

To build the project with Maven, run the following command in the project’s root directory:
mvn clean install -DskipTests
After building the project, run the application with:
java -jar employee-rostering-distribution/target/employee-rostering-distribution-*.jar

Then open http://localhost:8080/ to see the web application.

Alternatively, run npm start in the employee-rostering-frontend directory to start the frontend in
one terminal, and run mvn spring-boot:run in the employee-rostering-backend directory to start the
backend in another terminal.

To run on another port, use --server.port=---:

java -jar employee-rostering-distribution/target/employee-rostering-distribution-*.jar
--server.port=18080

1.3. System Properties

These system properties can overwrite default properties of the application, for example, by
passing -Doptaweb.generator.zoneId="America/New_York" to Spring Boot. These system properties
might also be exposed as OpenShift template parameters.

» optaweb.generator.timeZoneld: The time zone ID for the automatically generated tenants. For
example America/New_York. This defaults to the system default Zone ID.

* optaweb.generator.initial.data: What data to initially put in the database. Supported values
are: EMPTY (no data) and DEMO_DATA (several tenants of various sizes). This defaults to DEMO_DATA

The OpenShift docker image also supports these parameters:

https://www.optaplanner.org
http://localhost:8080/

org.optaweb.employeerostering.persistence.datasource
org.optaweb.employeerostering.persistence.dialect
org.optaweb.employeerostering.persistence.hbm2ddl.auto

org.optaweb.employeerostering.persistence.id.generator

Chapter 2. Architecture

OptaWeb Employee Rostering Architecture

Use the powerful REST interface or the user friendly web interface.

Browser
] e — WT ;
Your middleware - G & Errai
F\\ !(/ To exclude, use
\3; /:»7 -DwithoutGwt

| Swagger |

| REST service I

JAX-RS & Jackson

OptaPlanner&

) \\
Hb"‘\f||ld|:|'l,i\"2>?l'::" JPA, ((€HIBERNATE)

0 @ Relational database

Q

OptaWeb Employee Rostering class diagram

| Skill |
| name |
. * ShiftTemplate
startDayOffset
« | requiredSkillSet] startTime
Spot » enleayOffset
name endTime
: Shift
startDateTime
endDateTime
= | skillSet
Employee

name

employee

Solving with OptaPlanner

OptaPlanner automatically assigns the shifts, according to our constraints.

Mon | Tue | Wed
6 1 22 8 w = & 14 2
1 L 1 1 1 1 1 1 1
&
: . * Mon | Tue | Wed
= [y 6 14 2| & 14 22| B 14 2
1 1 1 1 1 | l 1 1
[+ [+
f_! '_I [= [=]
‘_', ‘_l =] -] _‘;1-

Problem OptaPlanner Solution

Chapter 3. Features in OptaWeb Employee
Rostering

3.1. Test the JPA Database with H2

Before testing the database, make sure the application backend is running. If the application isn’t
running, run the following in the "employee-rostering-backend " directory:

mvn spring-boot:run

Go to http://localhost:8080/h2-console to view the H2 database console. Enter org.h2.Driver in the
Driver (lass field and jdbc:h2:mem:testdb in the JDBC URL field, and keep the other default values.
Connect, and click on the entities on the left to run SQL statements. This console allows you to view
and modify the application database.

3.2. Test the REST API

As with testing the database, make sure the application backend is running to test the REST APIL. Go
to http://localhost:8080/swagger-ui.html to view documentation and test the REST methods.

http://localhost:8080/h2-console
http://localhost:8080/swagger-ui.html

	OptaWeb Employee Rostering User Guide
	Table of Contents
	Chapter 1. OptaWeb Employee Rostering Introduction
	1.1. What is OptaWeb Employee Rostering?
	1.2. Build and Run the Application
	1.3. System Properties

	Chapter 2. Architecture
	Chapter 3. Features in OptaWeb Employee Rostering
	3.1. Test the JPA Database with H2
	3.2. Test the REST API

