Runtime Governance:
Quick Start Guide

IO 1 (o Yo U o {1) o I 1

2. POliCY ENfOIrCERMENT ..ot e e e e e e e e eeees 3
2.1. Synchronous ENfOrCEMENTuiiiiiiiieiiii e 3
0 T I 1= I = o3 PPN 3

A 1153 - = 1T o S 5

2.1.3. RUNNINg the EXamPIEcooiiiii e 6

2. 14, SUMMEIY ©eoeiieii ettt et e e et e ettt e e e e e e e e enes 7

2.2. Asynchronous ENfOrCEMENTuiiiiiiiii e e e e 7
2.2.1. THE POICY et e 7

2.2.2. INSLAHALION ..oeuuiiiiii e 11

2.2.3. RUNNING the EXAMPIEuiiiii e e 12

2.2, SUMIMATY ettt ettt e e e e et e e e et e e e e e et e e e e e eanaanns 14

T Y I PSSP 15
0 I 1Y o T 11 (o] P 15
00 T Y= V1 PP 15

3.1.2. INSLANALION ..eeveiieiii e 17

3.1.3. RUNNINg the EXAMPIEiiiiiiii e 17

IO S 1010] 1 0 = T Y PP 23

Chapter 1.

Chapter 1. Introduction

This guide provides an introduction to the quickstarts that are distributed with the Overlord Runtime
Governance project.

Chapter 2.

Chapter 2. Policy Enforcement

This example, located in the sanpl es/ pol i cy folder, demonstrates two approaches that can
be used to provide "policy enforcement”. This example makes uses of the example Switchyard
application located in the sanpl es/ or der ngnt folder.

2.1. Synchronous Enforcement

The first approach shows how a business policy can be implemented in a synchronous (or inline)
manner, where the decision is taken immediate, and can therefore be used to influence the current
business transaction. The benefit of this approach is that it can ensure only valid transactions are
permitted, as decisions can be immediately enforced, however the disadvantage is the potential
performance impact this may have on the business transaction.

This example will show how:

« activity event analysis, using the Activity Validator mechanism, to implement the business policy

2.1.1. The Policy

The runtime governance infrastructure analyses the activity events generated by an
executing business transaction using one or more Activity Validators. By default,
Activity Validators are not invoked from within the SwitchYard environment. The specific
SwitchYard applications need to be configured to include an interceptor that will invoke
the validation. In the Order Management quickstart, this is achieved using the class
org.overlord.rtgov. qui ckstarts. denps. orders. i nterceptors. ExchangeVal i dat or. This
class is derived from an abstract base class that provides most of the required functionality for
converting an Exchange message into an activity event. For example,

@amed(" ExchangeVal i dat or")
public class ExchangeVal i dator extends Abstract ExchangeValidator inplenents
Exchangel nt er cept or {

@verride
public void before(String target, Exchange exchange) throws
Handl er Excepti on {
i f (exchange. get Phase() == ExchangePhase.|N) {
handl eExchange(exchange) ;

@verride
public void after(String target, Exchange exchange) throws
Handl er Excepti on {
i f (exchange. get Phase() == ExchangePhase. OUT) {
handl eExchange(exchange) ;

Chapter 2. Policy Enforcement

@verride
public List<String> getTargets() {
return Arrays. asLi st (PROVI DER) ;

The following Activity Validator configuration is deployed in the environment responsible for
executing the business transaction, and gets registered with the Activity Collector mechanism:

[{
"nane" : "RestrictUsage",
“version" : "1",
"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . M\ELPr edi cat e",
"expression" : "event instanceof

org.overlord.rtgov. activity. nodel . soa. Request Recei ved && event. servi ceType
== \"{urn:sw tchyard-qui ckstart-deno: orders: 0. 1. 0} O der Service\""

1,
"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep. mvel . WELEvent Processor ",
"script" : "VerifylLastUsage. nvel ",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. common. i nfini span. servi ce. I nfini spanCacheManager"
}
}
}
}H

This Activity Validator receives activity events generated from the executing environment and
applies the optional predicate to determine if they are of interest to the defined event processor.
In this case, the predicate is checking for received requests for the Or der Ser vi ce service.

For events that pass this predicate, they are submitted to the business policy, defined using the
MVEL script Veri f yLast Usage. mvel , which is:

String custoner=event. properties.get("custoner");

if (custoner == null) {
return;

}

cm = epc. get Servi ce(" CacheManager");

Installation

/] Attenpt to |ock the entry

if (!cmlock("Principals", custonmer)) {
epc. handl e(new j ava. | ang. Runt i neException("Unable to | ock entry for
princi pal '"+custonmer+"'"));

return;

}

/'l Access the cache of principals
princi pals = cm get Cache("Pri nci pal s");

princi pal = principals. get(custoner);
if (principal == null) {

princi pal = new java.util.HashMap();
}

java. util.Date current=principal.get(event.serviceType+"-|astaccess");
java.util.Date now=new java.util.Date();

if (current !'= null && (now.getTinme()-current.getTinme()) < 2000) {
epc. handl e(new j ava. | ang. Runti neExcepti on(" Cust oner '"+custoner+"' cannot
perform nore than one request every 2 seconds"));

return;

}

princi pal . put (event. servi ceType+"-| astaccess", now);
princi pal s. put (custoner, principal);

epc. | ogDebug(" Updat ed princi pal '"+custonmer+"': "+principal s. get(custoner));

This script uses the CacheManager service, configured within the EventProcessor component,
to obtain a cache called "Principals”. This cache is used to store information about Principals
as a map of properties. The implementation uses Infinispan, to enable the cache to be shared
between other applications, as well as in a distributed/cluster environment (based on the infinispan
configuration).

If a policy violation is detected, the script returns an exception using the handle() method on
the EventProcessor context. This results in the exception being thrown back to the execution
environment, interrupting the execution of the business transaction.

2.1.2. Installation

To install the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

./ st andal one. sh -c standal one-full.xmn

Chapter 2. Policy Enforcement

The next step is to install the example Switchyard application, achieved by running the following
command from the ${rt gov}/ sanpl es/ or der mgnt folder:

nmvn j boss-as: depl oy

Then change to the ${rt gov}/ sanpl es/ pol i cy/ sync folder and run the same command again.

2.1.3. Running the Example

To demonstrate the synchronous policy, we will send the following message twice in less than 2
seconds, to the example Switchyard application at the following URL: http://localhost:8080/demo-
orders/OrderService

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soap: Envel ope xnl ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<orders: subm t Order xmnl ns: orders="urn: switchyard-qui ckstart -
deno: orders: 1. 0">
<or der >
<or der | d>1</ or der | d>
<item d>BUTTER</item d>
<quant i ty>100</ quantity>
<cust oner >Fr ed</ cust oner >
</ order >
</ orders: subm t Or der >
</ soap: Body>
</ soap: Envel ope>

The messages can be sent using an appropriate SOAP client (e.g. SOAP-UI) or by running the
test client available with the Switchyard application, by running the following command from the
${rtgov}/ sanpl es/ order mgnt / app folder:

m/n exec:java -Dreg=order1l - Dcount =2

If the two requests are received within two seconds of each other, this will result in the following
response:

<soap: Envel ope xml ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<soap: Body>
<soap: Faul t >
<f aul t code>soap: Server </ faul t code>
<faul tstring>org.sw tchyard. exception. Swi tchYar dExcepti on: Custoner
'Fred' cannot perform nore than one request every 2 seconds</faultstring>
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

http://localhost:8080/demo-orders/OrderService
http://localhost:8080/demo-orders/OrderService

Summary

2.1.4. Summary

This quickstart example demonstrates how a policy enforcement mechanism can be provided
using the Activity Validator mechanism, to immediately evaluate the business policy and (if
appropriate) block the business transaction.

2.2. Asynchronous Enforcement

The second approach shows how a business policy can be implemented in an asynchronous
(or out-of-band) manner, where the decision is taken after the fact, and can therefore only be
used to influence future business transactions. The benefit of this approach is that the decision
making process does not have to occur immediately and therefore avoids potentially impacting the
performance of the business transaction. The disadvantage is that it does not permit any decision
that is made to be enforced immediately.

This example will show how:

 activity event analysis, using the Event Processor Network mechanism, can be used to
implement business policies

« results from the business policies can be cached for reference by other applications

« platform specific interceptors can reference the results to impact the behavior of the business
transaction (e.g. prevent suspended customers purchasing further items)

2.2.1. The Policy

There are three components that comprise the policy within this example.

2.2.1.1. Event analysis

The runtime governance infrastructure analyses the activity events generated by an executing
business transaction using one or more Event Processor Networks (or EPN).

A standard EPN is deployed within the infrastructure to isolate the SOA events (e.g. request/
responses being sent or received). This quickstart deploys another EPN that subscribes to the
events produced by the standard EPN:

{
"name" : "AssessCreditPolicyEPN',
"version" : "1",
"subscriptions" : [{
"nodeNane" : "AssessCredit",
"subj ect" : "SOAEvents"
Pl
"nodes" : [
{
"name" : "AssessCredit",

Chapter 2. Policy Enforcement

"sourceNodes" : [1,

"destinationSubjects" : [],

"maxRetries" : 3,

"retrylnterval" : O,

"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . M\VELPr edi cat e",
"expression" : "event.serviceProvider & !event.request

&& event . serviceType == \"{urn: sw tchyard-qui ckstart-
deno: orders: 0. 1. 0} Order Service\""

H

"event Processor"” : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELEvent Processor",
"script" : "AssessCredit.mel",
"services" : {

"CacheManager" : {
"@l ass"
"org.overlord. rtgov. conmon. i nfini span. servi ce. I nfini spanCacheManager"
}

}

}

This EPN subscribes to the published SOA events and applies the predicate which ensures that
only events from a service provider interface, that are responses and are associated with the
Or der Ser vi ce service, will be processed. Events that pass this predicate are then submitted to
the business policy (defined in the MVEL script AssessCredit.mvel), which is:

String custoner=event. properties.get("custoner");

if (custonmer == null) {
return;

}

cm = epc. get Servi ce(" CacheManager");

/1 Attenpt to |ock the entry
if ('ecmlock("Principals", customer)) ({
epc. handl e(new Exception("Unable to |l ock entry for principal '"+custonmer

)

return;

}

/'l Access the cache of principals
princi pals = cm get Cache("Pri nci pal s");

princi pal = principals. get(custoner);

The Policy

if (principal == null) {
princi pal = new java.util.HashMap();
}

int current=principal.get("exposure");

if (current == null) {

current = 0;

}

if (event.operation == "submtOrder") {

doubl e total =event. properties.get("total");
i nt newt ot al =current +t ot al ;

if (newtotal > 150 && current <= 150) {
princi pal . put ("suspended”, Bool ean. TRUE);

}
princi pal . put ("exposure", newtotal);

} else if (event.operation == "makePaynment") {
doubl e anpunt =event. properties. get("anount");
i nt newanount =cur r ent - anount ;

i f (newanount <= 150 && current > 150) {
princi pal . put ("suspended”, Bool ean. FALSE);

}

princi pal . put ("exposure", newanount);

princi pal s. put (custoner, principal);

epc. | ogDebug(" Updat ed princi pal '"+custonmer+"': "+principals. get(custoner));

This script uses the CacheManager service, configured within the EPN node, to obtain a cache
called "Principals". This cache is used to store information about Principals as a map of properties.
The implementation uses Infinispan, to enable the cache to be shared between other applications,
as well as in a distributed/cluster environment (based on the infinispan configuration).

2.2.1.2. Result management

As mentioned in the previous section, the results derived from the previous policy are stored in an
Infinispan implemented cache called "Principals”. To make this information available to runtime

Chapter 2. Policy Enforcement

governance clients, we use the Active Collection mechanism - more specifically we define an
Active Collection, as part of the standard installation, that wraps the Infinispan cache.

The configuration of the Active Collection Source is:

{
A
"@l ass"
"org.overlord.rtgov. active. col |l ection. Acti veCol | ecti onSource",
"nanme" : "Principals",
“type" : "Map",
"l azy" : true,
"visibility" : "Private",
"factory" : {
"@l ass"

"org.overlord.rtgov. active. col | ection.infinispan.I|nfinispanActiveCol | ectionFactory",
"cache" : "Principals"

The visibility is marked as private to ensure that exposure information regarding customers is not
publicly available via the Active Collection REST API.

2.2.1.3. The enforcer

The enforcement is provided by a specific Switchyard exchange interceptor implementation
(PolicyEnforcer) that is included with the order management application. The main part of this
interceptor is:

public void before(String call, Exchange exch) throws Handl er Exception {

if (_principals !'= null) {
org.sw tchyard. Message nesg=exch. get Message();

if (mesg == null) {
LOG severe("Coul d not obtain nessage for phase ("+phase+")
and exchange: "+exch);
return;

org. swi tchyard. Cont ext cont ext =exch. get Cont ext ();

Property p=cont ext. get Property(Exchange. CONTENT TYPE,
org. swi t chyard. Scope. MESSAGE) ;

10

Installation

if (LOG islLoggabl e(Level.FINER)) {
LOG finer (" Content type="+(p==null ?null:p.getValue()));

if (p!=null &% p.getValue().toString().equal s(
"java:org.overlord.rtgov. qui ckstarts. denos. orders. Order")) {
String custoner =get Cust oner (nesg) ;

if (custoner !'= null) {
if (_principals.containsKey(custoner)) ({

@uppr essWar ni ngs(" unchecked")
java.util.Map<String,java.io. Serializabl e> props=
(java.util.Map<String,java.io. Serializabl e>)
_principals.get(custoner);

/1 Check if custonmer is suspended
i f (props.containsKey("suspended")
&&
props. get ("suspended") . equal s(Bool ean. TRUE)) {
t hr ow new Handl er Excepti on(" Cust oner '"+cust omner
+"' has been suspended");

if (LOG isLoggabl e(Level.FINE)) {
LOG fine("*****x**x*x%* pg|jcy Enforcer: custoner '"
+cust oner +"' has not been suspended");
LOG fine("*****x**x*x*x Prijncjpal:
"+ principals.get(custoner));

}

} else {
LOG war ni ng("Unabl e to find custonmer nane");

The variable _principals refers to an Active Map used to maintain information about the principal
(i.e. the customer in this case). This information is updated using the policy rule defined in the
previous section.

2.2.2. Installation

To install the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

11

Chapter 2. Policy Enforcement

./ st andal one. sh -c standal one-ful | .xmn

The next step is to install the example Switchyard application, achieved by running the following
command from the ${rt gov}/ sanpl es/ or der ngnt folder:

nmvn j boss-as: depl oy

Then change to the ${rt gov}/ sanpl es/ pol i cy/ async folder and run the same command again.

2.2.3. Running the Example

To demonstrate the asynchronous policy enforcement, we will send the following message
to the example Switchyard application at the following URL: http://localhost:8080/demo-orders/
OrderService

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soap: Envel ope xnl ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<orders: subm t Order xnl ns: orders="urn: switchyard-qui ckstart -
deno: orders: 1. 0">
<or der >
<or der | d>1</ or der | d>
<item d>BUTTER</it em d>
<quantity>100</ quantity>
<cust oner >Fr ed</ cust oner >
</ order >
</ orders: subm t Order >
</ soap: Body>
</ soap: Envel ope>

The message can be sent using an appropriate SOAP client (e.g. SOAP-UI) or by running the
test client available with the Switchyard application, by running the following command from the
${rtgov}/sanpl es/ or der ngnt / app folder:

m/n exec:java -Dreq=orderl

This will result in the following response, indicating that the purchase was successful, as well as
identifying the total cost of the purchase (i.e. 125).

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xml soap. or g/ soap/
envel ope/ ">

<SOAP- ENV: Header / >

<SQAP- ENV: Body>

<orders: subm t Or der Response xnl ns: order s="urn: sw t chyar d- qui ckst art -
deno: orders: 1.0">
<or der Ack>
<or der | d>1</ or der | d>

12

http://localhost:8080/demo-orders/OrderService
http://localhost:8080/demo-orders/OrderService

Running the Example

<accept ed>t rue</ accept ed>
<status>Order Accept ed</ st atus>
<cust oner >Fr ed</ cust oner >
<total >125. 0</tot al >
</ or der Ack>
</ orders: subm t O der Response>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

You may recall from the overview above that if the customer’s debt exceeds the threshold of 150
then the customer would be suspended. Therefore if the same request is issued again, resulting
in another total of 125, then the overall exposure regarding this customer is now 250.

If we then attempt to issue the same request a third time, this time we will receive a SOAP fault
from the server. This is due to the fact that the PolicyEnforcer has intercepted the request, and
detected that the customer is now suspended.

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xm soap. or g/ soap/
envel ope/ ">
<SOAP- ENV: Header / >
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Custoner 'Fred" has been suspended</faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If we now send a "makePayment" request as follows to the same URL:

<soapenv: Envel ope xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: urn="urn: swi tchyard- qui ckstart-deno: orders: 1. 0" >
<soapenv: Header/ >
<soapenv: Body>
<ur n: makePaynent >
<paynent >
<cust oner >Fr ed</ cust oner >
<anount >200</ anpunt >
</ paynent >
</ ur n: makePaynent >
</ soapenv: Body>
</ soapenv: Envel ope>

This can be sent using a suitable SOAP client (e.g. SOAP-UI) or the test client in the order
management app:

m/n exec: java - Dreq=fredpay

13

Chapter 2. Policy Enforcement

This will result in the customer being unsuspended, as it removes 200 from their current exposure
(leaving 50). To confirm this, try sending the "submitOrder" request again.

2.2.4. Summary

This quickstart example demonstrates how a policy enforcement mechanism can be provided
using a combination of the Runtime Governance infrastructure and platform specific interceptors.

This particular example uses an asynchronous approach to evaluate the business policies, only
enforcing the policy based on a summary result from the decision making process. The benefit of
this approach is that it can be more efficient, and reduce the performance impact on the business
transaction being policed. The disadvantage is that decisions are made after the fact, so leaves
a tiny window of opportunity for invalid transactions to be performed.

14

Chapter 3.

Chapter 3. SLA

3.1. Monitor

This example, located in the sanpl es/ sl a/ noni t or folder, demonstrates an approach to provide
"Service Level Agreement" monitoring. This example makes uses of the example Switchyard
application located in the sanpl es/ or der ngnt folder.

3.1.1. Overview

This example will show how:
e activity event analysis, using the Event Processor Network mechanism, can be used to
implement Service Level Agreements
» uses the Complex Event Processing (CEP) based event processor (using Drools Fusion)
» impending or actual SLA violations can be reported for the attention of end users, via
» JMX notifications
* REST service
« to build a custom application to access the analysis results

This example shows a simple Service Level Agreement that checks whether a service response
time exceeds expected levels. The CEP rule detects whether a situation of interest has
occurred, and if so, creates a org. overl ord.rtgov. anal ytics. situation. Situation object
and initializes it with the appropriate description/severity information, before forwarding it back into
the EPN. This results in the "Situation" object being published as a notification on the "Situations"
subject.

The CEP rule is:

i mport org.overlord.rtgov. anal ytics. servi ce. ResponseTi nme
i mport org.overlord.rtgov. anal ytics.situation.Situation

gl obal org.overlord.rtgov. ep. EPCont ext epc

decl are ResponseTi ne
@ol e(event)
end

rule "check for SLA violations"
when

$rt : ResponseTinme() from entry-point "ServiceResponseTi nes"
t hen

15

Chapter 3. SLA

if ($rt.getAverage() > 200) {
epc. logError ("\r\n\r\n**** RESPONSE TI ME "+$rt. get Aver age() +"ns EXCEEDED
SLA FOR "+$rt. get Servi ceType() +" ****\r\n");

Situation situati on=new Situation();

situation. set Type("SLA Viol ation");
si tuati on. set Subj ect (Si tuati on. creat eSubj ect ($rt. get Servi ceType(),
$rt. get Qperation(),
$rt.getFault()));
situation. set Ti nestanp(System currentTimeM | lis());

situation.getProperties().putAll ($rt.getProperties());

if ($rt.getRequestid() !'= null) {
situation.getActivityTypelds().add($rt.get Requestid());

}

if ($rt.getResponseld() !'= null) {
situation.getActivityTypelds().add($rt.get Responseld());

}

si tuation. get Context ().addAl | ($rt. get Context());

String servi ceName=$rt. get Servi ceType();

if (serviceNane.startsWth("{")) {
servi ceNane =
j avax. xm . namespace. QNane. val ueOf (ser vi ceNane) . get Local Part () ;

}

if ($rt.getAverage() > 400) {
situation. set Description(servi ceNane+" exceeded nmaxi mum response tinme of
400 ns");
situation.setSeverity(Situation.Severity.Critical);
} else if ($rt.getAverage() > 320) {
situation. setDescription(servi ceNane+" exceeded response tine of 320
ms");
situation. set Severity(Situation. Severity. Hi gh);
} else if ($rt.getAverage() > 260) {
situation. setDescription(servi ceNane+" exceeded response tine of 260
nms");
situation. setSeverity(Situation. Severity. Mediun;
} else {
situation. setDescription(servi ceNane+" exceeded response tine of 200
nms");
situation. setSeverity(Situation. Severity.Low);

}

epc. handl e(situation);

16

Installation

end

The "out of the box" active collection configuration is pre-initialized with a collection
for the org.overlord.rtgov. anal ytics. situation.Situation objects, subscribing to the
"Situations" subject from the Event Processor Network. Therefore any detected SLA violations
will automatically be stored in this collection (accessible via a RESTful service), and reported to
the associated JMX notifier.

3.1.2. Installation

To install the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

./ st andal one. sh -c standal one-full.xmn

The next step is to install the example Switchyard application, achieved by running the following
command from the ${rt gov}/ sanpl es/ or der ngnt folder:

nmvn j boss-as: depl oy

Then run the same command from the ${rt gov}/sanpl es/ sl a/ epn and ${rt gov}/sanpl es/
sl a/ moni t or folders.

3.1.3. Running the Example

To demonstrate a Service Level Agreement violation, we will send the following message to
the example Switchyard application at the following URL: http://localhost:8080/demo-orders/
OrderService

<soap: Envel ope xm ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<orders: subm t Order xm ns: orders="urn: switchyard-qui ckstart -
deno: orders: 1. 0">
<or der >
<or der | d>3</ order | d>
<item d>JAMK/i tenl d>
<quantity>400</ quantity>
<cust oner >Fr ed</ cust oner >
</ or der >
</ orders: submi t O der >
</ soap: Body>
</ soap: Envel ope>

17

http://localhost:8080/demo-orders/OrderService
http://localhost:8080/demo-orders/OrderService

Chapter 3. SLA

The message can be sent using an appropriate SOAP client (e.g. SOAP-UI) or by running the
test client available with the Switchyard application, by running the following command from the
${rtgov}/ sanpl es/ order ngnt / app folder:

m/n exec:j ava - Dreqg=order3

The itemld of "JAM" causes a delay to be introduced in the service, resulting in a SLA violation
being detected. This violation can be viewed using two approaches:

3.1.3.1. REST Service

Using a suitable REST client, send the following POST to: http://localhost:8080/overlord-rtgov/
acm/query (using content-type of "application/json”, username is admin and password is overlord)

"collection" : "Situations"

This will result in the following response:

18

http://localhost:8080/overlord-rtgov/acm/query
http://localhost:8080/overlord-rtgov/acm/query

Running the Example

&b Postman
& v Ga e =
Normal 4 Mo environment - *
http-//localhost:8080/overlard-rtgov/acmiquery POST v | @ URL params & Headers (1)
Authorization Basic YWRtaW4EbaZlcmxvemQ=) Manage presets
Header Value

form-data X-www-form-urlencoded raw JSOM -

1{
2 "collection' : "Situations"

[Tv)

2
Sawve Preview Add to collection

Body STATUS ELR+La TIME F-R05

Pretty | Raw = Preview u = JSOM | XML

10

2 {

3 "description": "OrderService exceeded maximum response time of 400 ms",
4 "severity": "Critical",

5

" act%vityTypeIds" s [

7 "unitId": "6c0aS049- aelb- 4393- 8279-6b1bodoob7E1",
8 "unitIndex": O

"unitId": "6c0aS049- aelh- 4393-8279-6blbodoohrel,
"unitIndex": 12

i Context: [

"timeframe": O
"yalue": "ID- gﬁrown— redhat-41725- 1374230843674-0- 1",
"type": "Message"

"timeframe": O,
”VB.LUE": =1 B
"type": "Conversation"

"timeframe": 0
"yalue": "ID- gBrown- redhat-41725- 1374230643674-0-9",
"type": "Message"

1,

"subject": "{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService|submitorder®,

"propert1$s": {
o piain. uog

Figure 3.1.

3.1.3.2. JIMX Console

The Situations active collection source also generates JMX notifications that can be subscribed
to using a suitable JMX management application. For example, using JConsole we can view the
SLA violation:

19

Chapter 3. SLA

Connection Window Help

Overview| Memory | Threads Classesl VM Summary| MBeans | =l=

P IMImplementation Motification buffer

E comisunmanaqement [TimeSramp I[T\,rpe][SeqNum][Messaqe I[Evenr][Sour.]
iava lana

I java nio 17:55:45:519 |SLA Violation | |2 |OrderService.fInventorvService exceeded maximum respons... |iavax ...|loverl...

P iava util loaaing 17:55:45:503 |SLA Violation | |1 |OrderSer\.r|ce exceeded maximum response time of 400 ms ||avax .. loverl...
jboss as

P iboss.as.expr

b iboss isr77

P iboss jta

P iboss modules
P iboss.msc
P iboss.remoting.handler
boss.ws
net.sf.ehcache
org.apache.camel
org.infinispan
org.switchyard.admin
overlord rtgov.collections
overlord .rtgov.collector
overlord rtgov.networks
~ overlord rtgov.services
P @ SituationManaqer
¥ @ Situations
P Attributes

TV VYWV W

D [Eubscribe] [Qnsubscribel

[Iﬁl pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo l

(<] i

Figure 3.2.

3.1.3.3. Accessing results within a custom application

As well as having access to the information via REST or JMX, it may also be desirable to have
more direct access to the active collection results. This section describes the custom app defined
in the ${rt gov}/ sanpl es/ sl a/ noni t or folder.

The following code shows how the custom application initializes access to the relevant active
collections:

@rat h("/monitor")
@\ppl i cati onScoped
public class SLAMonitor {

private static final String SERVI CE_RESPONSE Tl MES =
" Servi ceResponseTi nes";

private static final String SI TUATIONS = "Situations";

private static final Logger
LOG=Logger . get Logger (SLAMbni t or. cl ass. get Nane()) ;

private ActiveCol | ecti onManager _acnmvanager=nul |l ;

20

Running the Example

private Activelist _serviceResponseTi ne=nul | ;
private Activelist _situations=null;

/**

* This is the default constructor.
=

public SLAMonitor() {

try {
_acmvanager =
ActiveCol | ecti onManager Accessor . get Acti veCol | ecti onManager () ;

_servi ceResponseTi ne = (Activeli st)
_acnVanager . get Acti veCol | ecti on(SERVI CE_RESPONSE_TI MVES) ;

_situations = (Activelist)
_acnVanager . get Acti veCol | ecti on(SI TUATI ONS) ;

} catch (Exception e) {
LOG | og(Level . SEVERE, "Failed to initialize active collection
manager", e);

}

Then when the REST request is received (e.g. for SLA violations defined as Situations),

@EET

@rat h("/situations")

@Pr oduces("application/json")

public java.util.List<Situation> getSituations() {
java.util.List<Situation> ret=new java.util.ArrayList<Situation>();

for (Object obj : _situations) {

if (obj instanceof Situation) {
ret.add((Situation)obj);

return (ret);

To see the SLA violations, send a REST GET request to: http://localhost:8080/slamonitor-monitor/
monitor/situations

This will return the following information:

21

http://localhost:8080/slamonitor-monitor/monitor/situations
http://localhost:8080/slamonitor-monitor/monitor/situations

Chapter 3. SLA

" act%vityTypeIds" H

&b Postman
o gla e =
Normal 4 Mo environment = E *
hitp:/flocalhost:8080/slamonitor-monitor/monitor/situations GET v @ URL params @ Headers (0)
Header Value Manage presets
- Save Preview Add to collection
Body 200 ok [0 135 ms
Pretty | Raw | Preview - =3 JSON | XML

10
2 i . .
3 "description”: "OrderService exceeded maximum response time of 400 ms",
4 "severity': "Critical",
5

" Unl‘tId" : "ad75hesf - 42e0- 48fa-boo2- 950ddecod00a” ,
"unitIndex": 1

"unitId": "ad7SbeSf-42e0- 48fa-bo02- 990ddecod00a",
) "unitIndex": 13

1,
"con%ext": [
"timeframe": 0

"yalue": "ID- gBrown- redhat- 41725- 1374230643574-0- 19",
"type": "Message"

e

"timeframe": O,
nvalueu: w3)
"type": "Conversation"

e

"timeframe": O
"yalue": "ID- gﬁrown— redhat-41725- 1374230643674-0- 27",
3 "type": "Message"

"subject": "{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService|submitOrder",
"properties": {

"total "240.0",

"node": "gbrown-redhat",

"host": "gbrown-redhat",

"customer®: "Fred",

"Ltem': 'JAM

1,
"type": "SLA Violation",
"timestamp": 1374231062450

"description": '_'Orde_li'Ser\rlce,-‘In\rentoryService exceeded maximum response time of 400 ms", =
ri1t

i W updtn u

Figure 3.3.

It is also possible to request the list of response time information from the same
custom service, using the URL: http://localhost:8080/slamonitor-monitor/monitor/responseTimes?
operation=submitOrder

22

http://localhost:8080/slamonitor-monitor/monitor/responseTimes?operation=submitOrder
http://localhost:8080/slamonitor-monitor/monitor/responseTimes?operation=submitOrder

Summary

&b Postman
& g e =
Normal «® Mo environment - E *
http://localhost:8080/slamonitor-monitor/monitorrespanseTimes ?operation=submitOrder GET v @ URL params & Headers (0)
| |
Header Value

Manage presets
[Se———

m Save Preview Add to collection
| Il Il |
Body STATUS ELUReL 4N TIME -85

| Pretty Raw Preview - \ JSON | XML
| J

10
2 i
= “average": 932,
4 "requestId": null
5 "responseld": null, .
5] "interface": "{urn:switchyard-quickstart-demo:orders:1.0}0rderService",
7 "context': [],
8 "fault": null, . . .
g "serviceType": "{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService”,
10 "operation": "submitOrder",
11 "min": 832,
12 "max": 932,
13 "properties": {},
14 "timestamp": 1374230740129
15 1,
16 1
17 "average": 542,
18 "requestId": null
19 "responseId": null, .
20 "interface": "{urn:switchyard-quickstart-demo:orders:1.0}0rderService",
21 "context': [],
22 "fault": null, . . .
23 "serviceType": "{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService",
24 "operation": *submitOrder®,
25 "min': 542,
26 "max": 542,
27 "properties": {},
28 "timestamp": 1374231063128
29 1
30]

Figure 3.4.

*

3.1.4. Summary

This quickstart demonstrates how Service Level Agreements can be policed using rules defined
in an Event Processor Network, and reporting to end users using the pre-configured "Situations"
active collection.

The rule used in this example is simple, detecting whether the response time associated with an
operation on a service exceeds a particular level. However more complex temporal rules could
be defined to identify the latency between any two points in a business transaction flow.

23

24

	Runtime Governance: Quick Start Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Policy Enforcement
	2.1. Synchronous Enforcement
	2.1.1. The Policy
	2.1.2. Installation
	2.1.3. Running the Example
	2.1.4. Summary

	2.2. Asynchronous Enforcement
	2.2.1. The Policy
	2.2.1.1. Event analysis
	2.2.1.2. Result management
	2.2.1.3. The enforcer

	2.2.2. Installation
	2.2.3. Running the Example
	2.2.4. Summary

	Chapter 3. SLA
	3.1. Monitor
	3.1.1. Overview
	3.1.2. Installation
	3.1.3. Running the Example
	3.1.3.1. REST Service
	3.1.3.2. JMX Console
	3.1.3.3. Accessing results within a custom application

	3.1.4. Summary

