POJO Cache

User Documentation

Release 2.0.0
July 2007

Authors:
BenWang(ben.wang@jboss.com)

JasonGreene(jason.greene@jboss.com)

Table of Contents

(= =0 PSP S iv

N I 1 Vo oo Y 1

O V= o RS 1

P28 1 11 11 o 1 o o S UPRER 3

N I @ = oV = PSSR 3

2.2, FEAIUIES ...ttt ettt e e oo e o ettt e et e e e e e e bbb e e e e e e e e e e b e e e e e e e e e e e aannenes 5

PG L U E -2 o = O RTURPPRPRPT 6

A = 11T = 0101 | 6

G TN o g 11 = o 11 = SR 7
3.1. POJO Cache INterceptor SACKceeoiiiiiieiiiiiee ettt 7

I e 1= Lo T g1 o= o (o] o PP PUPPRP PP 9

3.3. Object relationship MaNaAgEMENTueiiiiieiiiiiiiee e e e e e e e e e e e senanees 10

3.4, ODJECE INNEITTANCE ...vvvieiiee e e e e e e e e e e e s s et reeaaeeeaans 11

3.5. Physical object cache mapping MOE! ... 12

RGN ST @0 1= ox Lo o T 1Y/ =0 o1 oo P PR 16

0 1 1 I I g =0 PRSP 17

N IO Y= V1= 1 P EESRSP 18

4.1. POjOCAChEFACOrY ClaSScccviiiiiiiie e e et ettt e e e e e e e e e s e et eeaaeeeaans 18

4.2. POJOCECHE INLEITACE ...oce o a e e e e e s neees 18

A I N A= ot 0011 0 | PRSP 19

A B L o 3T 0| PP 19

B.2.3. QUETY ettt e e e e e e e e e e e s r e e e e e e a s a e rreeeeeaaaan 20

5. Configuration and DEPIOYMENTuuiiiiiiiiie ettt e e e e e e aae 21
5.1. Cache configuration XMl fil€covriiiiiii e 21

I o= S AV 1 o] [PPSR 21

TG T @] = @7 o 8 = (o) o P 22

5.4. DEPIOYMENt OPLIONS ...ceiiieeiiiiiiieiee e e e e et ee e e e e e e e et e e e e aeeeaaanseaeeeeeaeeesaaannseeeeeeaaeeaaaanes 22
5.4.1. ProgramatiC DEPIOYMENTccoiuiiiiiiiiiee et 22

5.4.2. IMX-Based Deployment in JBoss AS (JBOSS AS 5.X aNd 4.X) ..cccovvvveeriiveeeeininnnn. 22

5.4.3. Via JBoss Microcontainer (JBOSS AS 5.X) ..eeeiiurriieiiiiiieeiiiiieessiiiee e sieee e 23

5.5. POJO CaChe MBEANScoiiiiiiiiiiiiiiiie ettt e e s snbneeeeann 25

5.6. Registering the PojoCachedMXWIaPDPESueiiiiiiiiiiiiiiieeee e e e 25

5.6.1. Programatic RegiStration ... 25

5.6.2. IMX-Based Deployment in JBoss AS (JBOSS AS 4.X aNd 5.X) ..ccceveveveeriivieeenninnnn. 26

5.6.3. Via JBoss Microcontaingr (JBOSS AS 5.X) ..eeeviurriieiiiiiieiiiiiieesaiieeeeesneee e s 26

5.7. Runtime Statistics and IMX NOtfiCatiONSccooeiiiiiiiriie e 28

O LS 10101 g1 = o] o PR TPPR 29
L Y T L= o 1 (o ST 29

L2 AN o110 - o) o SRRSO UPRRRR 30
6.2.1. POJO annotation for inStrumentalioncccueeiiiieeii i 30

6.2.2. IDK5.0 field [evel annotationscoevveeeiiiiiiiiiiee e seee e e e 31

RS A VY= V1 oo PP PPP PP 31
6.3.1. Ant target for running load-time instrumentation using specialized class loader...... 32

Release 2.0.0 i

6.3.2. ANt target fOr @0PC ..ovvvviiiiiiiiiieiee e 32

A (018163 g oo 1] oo OSSP PPPRPPPRPPRP 34
8. APPENIX ..ttt h et E e e e e e e e e a b et e e e e b n e e e e nr e e ennes 35
8.1 EXAMPIE POUJO ...ttt 35

8.2. Sample Cache configuration XMloociiiiiiiiee e e e e 36

8.3. PojoCache configuration XMlcoooiiiiiiiiiiiiiee et e e e e 37

Release 2.0.0 ii

Preface

POJO Cacheis an in-memory, transactional, and clustered cache system that allows users to operate on a
POJO (Plain Old Java Object) transparently and without active user management of either replication or
persistence aspects. JBoss Cache, which includes POJO Cache, is a 100% Java based library that can be
run either as a standalone program or inside an application server.

This document is meant to be a user and reference guide to explain the architecture, api, configuration,
and examples for POJO Cache. We assume the readers are familiar with both JGroups and the core JBoss
Cache usages.

If you have guestions, use the user forum [http://mww.jboss.com/
index.html ?modul e=bb& op=viewforum& f=157] linked on the JBoss Cache website. We also provide
tracking links for tracking bug reports and feature requests on JBoss Jira web site [http://jirajboss.com] .
If you areinterested in the development of POJO Cache, post amessage on the forum. If you areinterested
in translating this documentation into your language, contact us on the developer mailing list.

JBoss Cacheisan open source product, using the business and OEM-friendly OSI-approved L GPL license.
Commercia development support, production support and training for JBoss Cache is available through
JBoss, adivision of Red Hat Inc. [http://www.jboss.com]

In some of the example listings, what is meant to be displayed on one line does not fit inside the available
pagewidth. Theselineshavebeen brokenup. A '\' at theend of aline meansthat abreak hasbeenintroduced
to fit in the page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Isredly:

Let's pretend to have an extrenely long |line that does not fit
This one is short

Release 2.0.0 iv

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://jira.jboss.com
http://jira.jboss.com
http://www.jboss.com
http://www.jboss.com

Terminology

1.1. Overview

The section lists some basic terminology that will be used throughout this guide.

Aop
Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and layer your
software applicationsin waysthat are impossible with traditional object-oriented approaches. Aspects
allow you to transparently glue functionality together so that you can have amorelayered design. AOP
allows you to intercept any event in a Java program and trigger functionality based on those events.

JBoss Aop
JBoss Aop is an open-source Aop framework library developed by JBoss. It is 100% Java based and
can be run either as a standalone or inside an application server environment. More details can be
found at www.jboss.com. PojoCache uses JBoss Aop library in two ways. It uses JBoss Aop firstly
for its own interceptor-based architecture and secondly to realize the fine-grained replication aspects.

Dynamic Aop
Dynamic Aopisafeatureof JBossAop that providesahook sothat acaller caninsert event interception
on the POJO at runtime. PojoCache currently uses this feature to perform field level interception.

JGroups
JGroupsisareliable Javagroup messaging library that is open-sourceand LGPL. Inadditiontoreliable
messaging transport, it also performs group membership management. It has been adefacto replication
layer used by numerous open-source projects for clustering purposes. It is aso used by JBossCache
for replication layer.

Core Cache
Core Cache is atree-structured, clustered, transactional cache. Simple and Serializable javatypes are
stored askey/value pairs on nodeswithin thetree using acollection-like API. It also provides anumber
of configurabl e aspects such asnodelocking strategies, dataisolation, eviction, and so on. POJO Cache
leverages Core Cache as the underlying data-store in order to provide the same capabilities.

POJO
Plain old Java object.

Annotation
Annotation is a new feature in JDK5.0. It introduces metadata along side the Java code that can be
accessed at runtime. PojoCache currently uses JDK50 annotation to support POJO instrumentation
(JDK1.4 annotation has been deprecated since release 2.0).

Release 2.0.0 1

Terminology

Prepare
Prepare is a keyword in JBoss Aop pointcut language used to specify which POJO needs to be
instrumented. It appearsin apoj ocache- aop. xm file. However, if you can use annotation to specify
the POJO instrumentation, thereis no need for apoj ocache- aop. xm listing. Note that When a POJO
is declared properly either through the xml or annotation, we consider it "aspectized"”.

Instrumentation
Instrumentation is an Aop process that basically pre-processes (e.g., performing byte-code weaving)
on the POJO. There are two modes. compile- or load-time. Compile-time weaving can be done with
an Aop precompiler (aopc) while load-time is done to specify a special classloader in the run script.
This step is necessary for an Aop system to intercept events that are interesting to users.

Release 2.0.0

Introduction

2.1. Overview

JBoss Cache consists of two components, Core Cache, and POJO Cache. Core Cache provides efficient
memory storage, transactions, replication, eviction, persistent storage, and many other "core" featuresyou
would expect from a distributed cache. The Core Cache API is tree based. Data is arranged on the tree
using nodes that each offer amap of attributes. This map-like API isintuitive and easy to use for caching
data, but just like the Java Collection AP, it operates only off of simple and serializable types. Therefore,
it has the following constraints:

« |If replication or persistence is needed, the object will then need to implement the Seri al i zabl e
interface. E.g.,

public Cass Foo inplenents Serializable

« If the object is mutable, any field change will require a successive put operation on the cache:

val ue = new Foo();

cache. put (fgn, key, val ue);

val ue. update(); // update val ue

cache. put (fgn, key, value); // Need to repeat this step again to ask cache to persijst or repl

» Java seridization always writes the entire object, even if only one field was changed. Therefore, large
objects can have significant overhead, especialy if they are updated frequently:

t housand = new ThousandFi el dObj ect () ;

cache. put (fqgn, key, thousand);

thousand. set Fi el d1("bl ah"); // Only one field was nodified
cache. put (fqn, key, thousand); // Replicates 1000 fi el ds

« The object structure can not have a graph relationship. That is, the object can not have references to
objects that are shared (multiple referenced) or to itself (cyclic). Otherwise, the relationship will be
broken upon serialization (e.g., when replicate each parent object separately). For example, Figure 1
illustrates this problem during replication. If we have two Per son instances that share the same Addr ess
, uponreplication, it will be split into two separate Addr ess instances (instead of just one). Thefollowing
is the code snippet using Cache that illustrates this problem:

joe = new Person("joe");

mary = new Person("nmary");
addr = new Address("Tai pei");
j oe. set Addr ess(addr);

Release 2.0.0 3

Introduction

mary. set Addr ess(addr) ;

cache. put ("/joe", "person", joe);
cache. put ("/mary", "person", mary);
Joe Mary Joe Mary

i @ 9
. N
a , w* v
replication

2 Address
instances!

Figure 2.1. lllustration of shared objects problem during replication

POJO Cache attemptsto address these issues by building alayer on top of Core Cache which transparently
maps normal Java object model operations to individual Node operations on the cache. This offers the
following improvements:

» Objects do not need to implement Seri al i zabl e interface. Instead they are instrumented, allowing
POJO Cacheto intercept individual operations.

* Replication is fine-grained. Only modified fields are replicated, and they can be optionally batched in
atransaction.

* Object identity is preserved, so graphs and cyclical references are allowed.

* Once attached to the cache, all subsequent object operationis will trigger a cache operation (like
replication) automatically:

PQJO poj o = new PQIQ);
poj oCache. attach("id", pojo);
poj 0. set Nane("sone pojo"); // This will trigger replication autonatically.

In POJO Cache, these are the typical development and programming steps:
¢ Annotate your object with @repl i cabl e
* Useattach() to put your POJO under cache management.

» Operate on the object directly. The cache will then manage the replication or persistence automatically
and transparently.

More details on these steps will be given in later chapters.

Release 2.0.0 4

Introduction

Since POJO Cacheisalayer on-top of Core Cache, al features available in Core Cache are also available
in POJO Cache. Furthermore, you can obtain an instance to the underlying Core Cache by calling
Poj oCache. get Cache() . Thisis useful for resusing the same cache instance to store custom data, along
with the POJO model.

2.2. Features

Here are the current features and benefits of PojoCache:

* Fine-grained replication. The replication modes supported are the same as that of Core Cache:
LOCAL, REPL_SYNC, REPL_ASYNC, | NVALI DATI ON_SYNC, and | NVALI DATI ON_ASYNC (see the main JB0oss
Cache reference documentation for details). The replication level is fine-grained and is performed
automatically once the POJO is mapped into the internal cache store. When a POJO field is updated,
areplication request will be sent out only to the key corresponding to that modified attribute (instead
of the whole object). This can have a potential performance boost during the replication process, e.g.,
updating asingle key in abig HashMap will only replicate the single field instead of the whole map!

« Transactions. All attached objects participate in a user transaction context. If a rollback occurs, the
previous internal field state of the object will be restored:

PQIO p = new PAIQ();

p. set Name("ol d val ue");

poj oCache. attach("id", p);

tx.begin(); // start a user transaction

p. set Name("sone poj 0");

tx.roll back(); // this will cause the roll back
p.getNane(); // is "old value"

In addition, operations under a transaction is batched. That is, the update is not performed until the
conmi t phase. Further, if replication is enabled, other nodeswill not see the changes until the transaction
has completed successfully.

« Passivation. POJO Cache supports the same passivation provided by Core Cache. When a node mapped
by POJO Cache has reached a configured threshold, it is evicted from memory and stored using a
cache loader. When the node is accessed again, it will be retrieved from the cache loader and put into
memory. The configuration parameters are the same as those of the Cache counterpart. To configure
the passivation, you will need to configure both the eviction policy and cache loader.

» Object cache by reachability, i.e., recursive object mapping into the cache store. On attach, PQ1O Cache
will attach all referenced objects as well. This feature is explained in more detail later.

» Natural Object Relationships. Java references are preserved as they were written. That is, a user does
not need to declare any object relationship (e.g., one-to-one, or one-to-many) to use the cache.

« Object Identity. Object identity ispreserved. Not only can a cached object be compared using equal s(),
but the comparison operator, ==, can be used as well. For example, an object such as Addr ess may be
multiple referenced by two Per sons(e.g., j oe and nar y). The objectsretrieved fromj oe. get Addr ess()
and mary. get Addr ess() should beidenticali, when when retrieved from a different node in the cluster
then that which attached them.

Release 2.0.0 5

Introduction

« |Inheritance. POJO Cache preserves the inheritance hierarchy of any object in the cache. For example,
if astudent classinherits from a Person class, once a st udent object is mapped to POJO Cache (e.g.,
att ach call), thefieldsin the base class Per son are mapped as well.

¢ Callections. JavaCollectiontypes(e.g. List, Set, and Map) are transparently mapped using Java proxies.
Details are described later.

» Annotation based. Starting from release 2.0, JDK 5 annotations are used to indicate that an object should
be instrumented for use under POJO Cache (once attached).

» Trangparent. Once a POJO is attached to the cache, subsequent object model changes are transparently
handled. No further API calls are required.

2.3. Usage

To use POJO Cache, you obtain the instance from the PojoCacheFactory by supplying a config filethat is
used by the delegating Cache implementation. Once the PojoCache instance is obtained, you can call the
cache life cycle method to start the cache. Below is a code snippet that creates and starts the cache:

String configFile = "repl Sync-service.xm";

bool ean toStart = fal se;

Poj oCache pcache = Poj oCacheFactory. createCache(configFiel, toStart);
pcache.start(); // if toStart above is true, it will starts the cache automatically.
pcache. attach(id, pojo);

pcache.stop(); // stop the cache. This will take PojoCache out of the clustering group, if any,

2.4. Requirements

PQIO Cache is currently supported on JDK 5 (since release 2.0). It requires the following libraries (in
addition to jboss-cache.jar and the required libraries for Core Cache) to start up:

o Library:

* pojocachejar. Main POJO Cache library.

jboss-aop-jdk50.jar. Main JBoss Aop library.
 javassist.jar. Java byte code manipulation library.

« trovejar. High performance collections for Java.

Release 2.0.0 6

Architecture

POJO Cacheinternally uses the JBoss Aop framework to both intercept object field access, and to provide

an internal interceptor stack for centralizing common behavior (e.g. locking, transactions).

Thefollowing figureisasimple overview of the POJO Cache architecture. From thetop, it can be can seen
that when a call comesin (e.g., att ach or det ach), it will go through the POJO Cache interceptor stack
first. After that, it will store the object's fields into the underlying Core Cache, which will be replicated

(if enabled) using JGroups.

} }

Interceptors| pojocache-aop.xml [ntercepiors
Cache cache-service. xml Cache
JGroups JGroups

1 replication 1

Figure 3.1. POJO Cache ar chitectur e overview

3.1. POJO Cache interceptor stack

Asmentioned, the JBoss Aop framework is used to provide a configurable interceptor stack. In the current

implementation, the main POJO Cache methods have their own independant stack. These are specified i

n

META- | NF/ poj ocache- aop. xn 1N most cases, this file should be Ieft alone, although advanced users may

wish to add their own interceptors. The Following is the default configuration:

<I-- Check id range validity -->
<i ntercept or nane="Checkl d* cl ass="org.] boss. cache. poj o.i nterceptors. Checkl dl nterc
scope="PER_| NSTANCE"/ >

<I-- Track Tx undo operation -->
<i nterceptor nane="Undo" cl ass="org.]boss. cache. pojo.interceptors. Poj oTxUndol nterc
scope="PER_| NSTANCE"/ >

eptor"

eptor"”

Release 2.0.0

Architecture

<l-- Begining of interceptor chain -->
<interceptor nane="Start" class="org.jboss. cache. pojo.interceptors. Poj oBegi nl nterc
scope="PER_| NSTANCE"/ >

<I-- Check if we need a |ocal tx for batch processing -->
<i nterceptor nane="Tx" class="org.jboss. cache. pojo.interceptors. Poj oTxl nterceptor"
scope="PER | NSTANCE"/ >

<l--
Mockup failed tx for testing. You will need to set PojoFail edTxMockupl nt ercepto
to activate it.
-->
<i nterceptor nane="MckupTx" class="org.jboss. cache. pojo.interceptors. PojoFail edTx
scope="PER_| NSTANCE"/ >

<l-- Performparent |evel node |ocking -->
<i ntercept or nane="TxLock" class="org.jboss.cache. pojo.interceptors.PojoTxLocklnte
scope="PER_| NSTANCE"/ >

<I-- Interceptor to performPojo |evel rollback -->
<i nterceptor nane="TxUndo" cl ass="org.jboss. cache. pojo.i nterceptors. Poj oTxUndoSync
scope="PER | NSTANCE"/ >

<I-- Interceptor to used to check recursive field interception. -->
<interceptor nane="Reentrant" class="org.jboss. cache. pojo.interceptors. Met hodReent
scope="PER _| NSTANCE"/ >

<l-- \Wether to allow non-serializable pojo. Default is false. -->
<i ntercept or nane="Marshal | NonSeri al i zabl e" cl ass="org.j boss. cache. poj o.i ntercepto
scope="PER_| NSTANCE" >
<attri bute name="narshal | NonSeri al i zabl e">f al se</attri but e>
</interceptor>

<stack name="Attach">
<interceptor-ref nane="Start"/>
<interceptor-ref nane="Checkld"/>
<interceptor-ref name="Tx"/>
<i nterceptor-ref name="TxLock"/>
<interceptor-ref nane="TxUndo"/>
</ st ack>

<stack name="Detach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref name="Checkld"/>
<interceptor-ref nane="Tx"/>
<i nterceptor-ref name="TxLock"/>
<i nterceptor-ref name="TxUndo"/>
</ st ack>

<stack name="Fi nd">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>
</ st ack>

eptor"

r.set Rol | be

Mockupl nt er

rceptor"

hroni zat i or

rancy St oppe

rs. CheckNor

Release 2.0.0

Architecture

The stack should be self-explanatory. For example, for the Attach stack, we currently have start,
Checkld, Tx, TxLock, and TxUndo interceptors. The stack always starts with a st art interceptor such
that initialization can be done properly. checkl! d is to ensure the validity of the Id (e.g., it didn't use any
internal 1d string). Finally, Tx, TxLock, and TxUndo are handling the the proper transaction locking and
rollback behavior (if needed).

3.2. Field interception

POJO Cache currently uses JBoss AOP to intercept field operations. If a class has been properly
instrumented (by either using the @epl i cabl e annotation, or if the object has already been advised by
JBoss AOP), then a cache interceptor isadded during an at t ach() call. Afterward, any field modification
will invoke the corresponding CachefFi el di nt er cept or instance. Below isa schematic illustration of this
process.

Only fields, and not methods are intercepted, since thisisthe most efficient and accurate way to gaurantee
the same datais visible on all nodes in the cluster. Further, this allows for objects that do not conform to
the JavaBean specficiation to be replicable. There are two important aspects of field interception:

¢ All access qudifiers are intercepted. In other words, al private, al protected, al default, and all
publ i ¢ fieldswill be intercepted.

« Any field withfinal , static, and/or t ransi ent qualifiers, will be skipped. Therefore, they will not
be replicated, passivated, or manipulated in any way by POJO Cache.

Thefigurebelow illustrates both field read and write operations. Once an POJO is managed by POJO Cache
(i.e., afteranat t ach() method hasbeen called), JBossAop will invoketheCachefFi el di nt er cept or every
timeaclass operateson afield. The cacheisalways consulted, sinceit isin control of the mapped data (i.e.
it gaurantessthe state changes made by other nodesinthe cluster arevisible). Afterwords, thein-memmory
copy is updated. Thisis mainly to allow transaction rollbacks to restore the previous state of the object.

1 2
—
[Cachelnterceptor
— A —
6 3
5 4 addr skill lang
In Memory

Figure 3.2. POJO Cachefield interception

Release 2.0.0 9

Architecture

3.3. Object relationship management

As previously mentioned, unlike a traditional cache system, POJO Cache preserves object identity. This
alows for any type of object relationship available in the Java language to be transparently handled.

During the mapping process, all object references are checked to seeif they are already stored in the cache.
If already stored, instead of duplicating the data, a reference to the original object iswritten in the cache.
All referenced objects are reference counted, so they will be removed once they are no longer referenced.

To look at one example, let's say that multiple Per sons ("joe" and "mary") objects can own the same
Addr ess (e.9., ahousehold). Thefollowing diagram isagraphical representation of the pysical cache data.

As can be seen, the "San Jose" addressis only stored once.

Person p (key=rhusband)

name: Joe" name | Joe

Person p (key=lwife)

name: , Mary™

H

addr
< hebbies

addr

hobbies

H

city: ., San Joze®

zip: 95123
city San Jose
zip 95123

Figure 3.3. Schematic illustration of object relationship mapping

In the following code snippet, we show programmatically the object sharing example.

i mport org.jboss. cache. poj 0. Poj oCache;

i mport org.jboss. cache. poj 0. Poj oCacheFact ory;

i mport org.jboss.test.cache.test.standAl oneAop. Person;
i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

String configFile = "META-1 NF/ repl Sync-service. xm ";
Poj oCache cache = Poj oCacheFactory. creat eCache(configFile); // This wll

Person joe = new Person(); // instantiate a Person object naned joe
j oe. set Nanme(" Joe Bl ack");
j oe. set Age(41);

Person mary = new Person(); // instantiate a Person object nanmed nmary
mary. set Nane("Mary Wiite");
mary. set Age(30) ;

Address addr = new Address(); // instantiate a Address object naned addr

start Poj oCache aut omat

Release 2.0.0

10

Architecture

addr.setGity("Sunnyval e");
addr.set Street ("123 Al bert Ave");
addr . set Zi p(94086) ;

j oe.set Address(addr); // set the address reference
mary. set Address(addr); // set the address reference

cache. attach("pojo/joe", joe); // add aop sanctioned object (and sub-objects) into cache.
cache. attach("pojo/mary", mary); // add aop sanctioned object (and sub-objects) into cache.

Address joeAddr = joe.get Address();
Address maryAddr = mary.get Address(); // joeAddr and maryAddr should be the sane instlance

cache. detach("poj o/joe");
mar yAddr = nary. get Address(); // Should still have the address.

If j oe is removed from the cache, mary should still have reference the same Addr ess object in the cache
store.

To further illustrate this relationship management, let's examine the Java code under a replicated
environment. Imagine two separate cache instances in the cluster now (cachel and cache2). On the first
cache instance, both j oe and mar y are attached as above. Then, the application fails over to cache2. Here
is the code snippet for cache2 (assume the objects were already attached):

/**
* Code sni ppet on cache2 during fail-over
*/
i mport org.jboss. cache. PropertyConfigurator;
i mport org.jboss. cache. poj 0. Poj oCache;
i mport org.jboss.test.cache.test.standAl oneAop. Person;
i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

String configFile = "META-1 NF/ repl Sync-service. xm";
Poj oCache cache2 = Poj oCacheFactory. createCache(configFile); // This will start Poj oCache autone

Person joe = cache2.find("pojo/joe"); // retrieve the PQJO reference.
Person mary = cache2.find("pojo/mary"); // retrieve the PQJO reference.

Address joeAddr = joe.getAddress();
Address nmaryAddr = mary.get Address(); // joeAddr and maryAddr should be the sane instlance!!!

mar yAddr = mary. get Addr ess() . set Zi p(95123);
int zip = joeAddr.get Address().getZip(); // Should be 95123 as wel | instead of 94086!

3.4. Object Inheritance

POJO Cache preserves the inheritance hierarchy of all attached objects. For example, if ast udent extends
Per son with an additional field year, then once st udent is put into the cache, all the class attributes of
Per son are mapped to the cache aswell.

Following is a code snippet that illustrates how the inheritance behavior of a POJO is maintained. Again,
no special configuration is needed.

Release 2.0.0 11

Architecture

i mport org.jboss.test.cache.test.standAl oneAop. Student;
Student joe = new Student(); // Student extends Person class
j oe.set Name("Joe Black"); // This is base class attributes
joe.setAge(22); // This is also base class attributes
joe.setYear("Senior"); // This is Student class attribute
cache. attach("poj o/ student/joe", joe);

...

joe = (Student)cache. attach("poj o/ student/joe");

Person person = (Person)joe; // it will be correct here
joe.setYear("Junior"); // will be intercepted by the cache
joe.setNanme("Joe Black I1"); // also intercepted by the cache

3.5. Physical object cache mapping model

The previous sections describe the logical object mapping model. In this section, we will explain the
physical mapping model, that is, how do we map the POJO into Core Cache for transactional state
replication. However, it should be noted that the physical structure of the cache is purely an internal
implementation detail, it should not be treated as an APl as it may change in future releases. This
information is provided solely to aid in better understanding the mapping process in POJO Cache.

When an object isfirst attached in POJO Cache, the Core Cache node representation is created in aspecial
internal area. The 1 d fgn that is passed to at t ach() is used to create an empty node that references the
internal node. Future references to the same object will point to the same internal node location, and that
node will remain until all such references have been removed (detached).

The example below demonstrates the mapping of the Per son object under id "pojo/joe" and "pojo/mary"
as metioned in previous sections. It is created from a two node replication group where one node is a
Beanshell window and the other node isa Swing Gui window (shown here). For clarity, multiple snapshots
were taken to highlight the mapping process.

The first figure illustrates the first step of the mapping approach. From the bottom of the figure,
it can be seen that the Poj oReference field under pojo/joe is pointing to an internal location,
/ __JBosslnternal __/5c4012- 1 paf 5g- esl 49n5e- 1- esl 49n50-2. That is, under the user-specified Id
string, we store only anindirect referenceto the internal area. Please notethat var y hasasimilar reference.

Release 2.0.0 12

Architecture

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

¢ CJ __JBossinternal__
o scdol -Ipafig-esl49nbe-1-e5149n50-2

D address
D acdol 2-lpafag-esld9nie-1-esl49ngs-3
o [5cdol 2-lpafag-esl4dnse-1-es1480a0-4

D address
Marme Walue
lock LOCK |
FojoReference Internal Fgn --=1__JBossinternal__fAcdol 2-Ipafag-esld89nse-1-esl49n50-2 l
—_— —

Figure 3.4. Object cache mapping for Joe

i TreeCacheGui2: mbr=192.168.1.2:2243

Operations
| =R
¢ [pajo
D joe
[fman

¢ [0 __JBossinternal__
9 [] 5cdol2-Ipafag-esld9nse-1-e5149n50-2
D address
D acdol 2-lpafag-esl49nae-1-es/49ngs-3
9 [] 5cdol2-lpafag-esld9nse-1-es/490a0-4

D address
Mame Walue
lack LOCK
PojoReference Internal Fogn --=1__JBossinternal__facdal 2-IpafSg-eslddnde-1-esld9o0a0-4 |
—_—

Figure 3.5. Object cache mapping for mvary

Then by clicking on the referenced internal node (from the following figure), it can seen that the primitive
fieldsfor Joe are stored there. E.g., Age is41 and Nane iSJoe Bl ack. And similarly for vary aswell.

13

Release 2.0.0

Architecture

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

o 3 _JBossinternal__
¢ C3[5e4o1 2-lpafsg-esld9n5e-1-esl48n50-2 |
D address
D acdol 2-lpafag-esld9nie-1-esl49ngs-3
o [5cdol 2-lpafag-esl4dnse-1-es1480a0-4

D address

Marme Walue
age 41 |
Fojolnstance org.jhoss.cache.pojo.Pojoinstance@ra03h9 l
lock LOCK |
name Jng Black |

Figure 3.6. Object cache mapping for internal node Joe

£ TreeCacheGui2: mbr=192.168.1.2:2243
Operations

I
¢ 1 pojo
[joe
[y mary
¢ [0 __JBossinternal__
9 [] 5cdol2-Ipafag-esld9nse-1-e5149n50-2
D address
D acdol 2-lpafag-esl49nae-1-es/49ngs-3
% [[5edo12-Ipafsg-esl49n5e-1-as480a0-4

D address

Mame Walue
ane 30 1
Paojolnstance arg.jhoss.cache.pojo Pojoinstance@addal |
lock LOCK 1
A e Mary Higgins 1

Figure 3.7. Object cache mapping for internal node Mary

Under the / __JBossinternal __/5c4012- | paf 5g- esl 49n5e- 1- esl 49n50- 2, it can be seen that there is
an Address node. Clicking on the Address node shows that it references another internal location: /
__JBosslInternal __/5c4012- | paf 5g- esl 49n5e- 1- esl 49ngs- 3 asshown in thefollowing figure. Then by
the same token, the Addr ess nodeunder / __JBossli nternal __/ 5c4012- | paf 5g- esl 49n5e- 1- es| 49na0- 4
points to the same address reference. That is, both Joe and vary share the same Addr ess reference.

Release 2.0.0 14

Architecture

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

o 3 _JBossinternal__
o [5cdol 2-lpafag-esl49nse-1-es148n50-2
[3 fauiess]
D acdol 2-lpafag-esld9nie-1-esl49ngs-3
o [5cdol 2-lpafag-esl4dnse-1-es1480a0-4

D address
Marme Walue
FojoReference Internal Fgn --=1__JBossinternal__fAcdol 2-Ipafag-esld89nse-1-esl49ngs-3 l
—_— —

Figure 3.8. Object cache mapping: Joe' sinternal address

£ TreeCacheGui2: mbr=192.168.1.2:2243
Operations

| =R
¢ Cd pojo
D joe
D mary
o 3 _JBossinternal__
o [5cdol 2-lpafag-esl49nse-1-es148n50-2
D address
D acdol 2-lpafag-esld9nie-1-esl49ngs-3
o [5cdol 2-lpafag-esl4dnse-1-es1480a0-4

[fausiess|
Marme Walue
FojoReference Internal Fgn --=1__JBossinternal__fAcdol 2-Ipafag-esld89nse-1-esl49ngs-3 l
—_— —

Figure 3.9. Object cache mapping: Mary'sinternal address

Finally, the / __JBosslI nternal __/ 5c4012- 1 paf 5g- esl 49n5e- 1- esl 49ngs- 3 node contains the various
various primitive fields of Addr ess, e.g., Street, zi p, and G ty. Thisisillustrated in the following figure.

Release 2.0.0 15

Architecture

&

{ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

¢ CJ __JBossinternal__

o [5cdol 2-lpafag-esl49nse-1-es148n50-2
D address

D|504012-Ipaf5g-esl49n59-1-esl49ngs-3

o [5cdol 2-lpafag-esl4dnse-1-es1480a0-4

D address

Marme Walue
Fojolnstance org.jhoss.cache.pojo.Pojoinstance @h3cdel l
street 123 Alhert Ave |
zip 04086 |
city Sunmyvale |

Figure 3.10. Object cache mapping: Addressfields

3.6. Collection Mapping

Dueto current Java limitations, Collection classes that implement Set , Li st , and Map are substituted with
aJavaproxy. That is, whenever POJO Cache encounters any Collection instance, it will:

Create a Collection proxy instance and place it in the cache (instead of the original reference). The
mapping of the Collection elements will still be carried out recursively as expected.

If the Collection instance is referenced from another object, POJO Cache will swap out the original
reference with the new proxy, so that operations performed by the refering object will be picked up
by the cache.

The drawback to this approach is that the calling application must re-get any collection references that
were attached. Otherwise, the cache will not be aware of future changes. If the collection is referenced
from another object, then the calling app can obtain the proxy by using the publishing mechanism provided
by the object (e.g. Person.getHobbies()). If, however, the collection is directly attached to the cache, then
asubsequent fi nd() call will need to be made to retrieve the proxy.

The following code snippet illustrates obtaining a direct Collection proxy reference:

List list = new ArrayList();
l'ist.add("ONE");
list.add("TWO'");

cache. attach("pojo/list", list);
list.add("THREE"); // This won't be intercepted by the cache!

Li st proxyList = cache.find("pojo/list"; // Note that list is a proxy reference
proxylList.add("FOUR"); // This will be intercepted by the cache

This snippet illustrates obtaining the proxy reference from arefering object:

Release 2.0.0 16

Architecture

Person joe = new Person();

j oe.set Nanme("Joe Black"); // This is base class attributes
List lang = new ArrayList();

| ang. add("Engl i sh");

| ang. add(" Mandari n");

j oe. set Languages(| ang) ;

/1 This will map the | anguages List automatically and swap it out with the proxy reference.
cache. attach("poj o/ student/joe", joe);
| ang = joe. getLanguages(); // Note that lang is now a proxy reference

| ang. add("French"); // This will be intercepted by the cache

Finaly, when a Collection is removed from the cache (e.g., via det ach), you still can use the proxy
reference. POJO Cache will just redirect the call back to the in-memory copy. See below:

List list = new ArrayList();
list.add("ONE");
l'ist.add("TWO'");

cache. attach("pojo/list", list);
Li st proxyList = cache.find("pojo/list"); // Note that list is a proxy reference
proxyList.add("THREE"); // This will be intercepted by the cache

cache. detach("pojo/list"); // detach fromthe cache
proxyLi st.add("FOUR"'); // proxyList has 4 elenents still.

3.6.1. Limitations
The current implementation has the following limitations with collections.

e Only List, Set and Map are supported. Alsoit should be noted that the Java Collection API doesnot fully
describe the behavior of implementations, so the cache versions may differ slightly from the common
Javaimplementations (e.g. handling of NULL)

« Asof PojoCache 2.0, HashMap keys must be serializable. Prior to PojoCache 2.0, HashMap keys were
converted to String. This was fixed as you couldn't get the key back in its original form. See issue
JBCACHE-399 for more details.

Release 2.0.0 17

APl Overview

Thissection providesabrief overview of the POJO Cache APIs. Please consult thejavadoc for thefull API.

4.1. PojoCacheFactory Class

PojoCacheFactory provides a couple of static methods to instantiate and obtain a PojoCache instance.

/**

* Create a PojoCache instance. Note that this will start the cache |ife cycle automatically.
* @aramconfig A configuration string that represents the file name that is used to

* configure the underlying Cache instance.

* @eturn PojoCache

*/

public static PojoCache createl nstance(String config);

/**

* Create a PojoCache instance.
* @aramconfig A configuration string that represents the file name that is used to
* configure the underlying Cache instance.

* @aramstart If true, it will start the cache life cycle.

* @eturn PojoCache

*/

public static PojoCache createl nstance(String config, boolean start);

/**

* Create a PojoCache instance.
* @aramconfig A configuration object that is used to configure the underlying Cache instar
* @aramstart If true, it will start the cache life cycle.

* @eturn PojoCache

*/

public static PojoCache createlnstance(Configuration config, boolean start);

For example, to obtain a PojoCache instance and start the cache lifestyle automatically, we can do:

String configFile = "META-1 NF/ repl Sync-service. xm";
Poj oCache cache = Poj oCacheFactory. createl nstance(configFile);

4.2. PojoCache Interface

Poj oCache is the main interface for POJO Cache operations. Since most of the cache interaction is
performed against the application domain model, there are only afew methods on this interface.

Release 2.0.0 18

APl Overview

4.2.1. Attachment

/**

* Attach a PQJO into PojoCache. It will also recursively put any sub-PQJO into
* the cache system A PQJO can be the followi ng and have the consequences when attached:

* |t is PojoCacheable, that is, it has been annotated with
* {@ee org.jboss.cache. aop. annot ati on. Poj oCacheabl e} annotation (or via XM.), and has

* been "instrunented" either conpile- or load-time. The PQJO will be mapped recurjsively to
* the systemand fine-grained replication will be perforned.

* |t is Serializable. The PQDOw Il still be stored in the cache system However,| it is
* treated as an "opaque" object per se. That is, the PQIO will neither be intercepted

* (for fine-grained operation) or object relationship will be maintained.

* Neither of above. In this case, a user can specify whether it wants this PQJO tjo be
* stored (e.g., replicated or persistent). If not, a PojoCacheException will be thrown.

* @aramid An id String to identify the object in the cache. To pronbte concurfrency, we

* recommend the use of hierarchical String separating by a designated separator.
* is "/" but it can be set differently via a System property, jbosscache. separ at
& in the future release. E. g., "ben", or "student/joe", etc.

* @aram poj o object to be inserted into the cache. If null, it will nullify the fgn node.

* @eturn Existing PQIO or null if there is none.
* @hrows Poj oCacheException Throws if there is an error related to the cache operation.
*/

bj ect attach(String id, Object pojo) throws PojoCacheException;

As described in the above javadoc, this method "attaches' the passed object to the cache at the specified
location (i d). Thepassedinobject (poj o) must have beeninstrumented (using the @epl i cabl e annotation)
or implement the Seri al i zabl e interface.

If the object isnot instrumented, but serializable, POJO Cache will simply treat it asan opague "primitive"
type. That is, it will simply store it without mapping the object's fields into the cache. Replication is done
on the object wide level and therefore it will not be fine-grained.

If the object has references to other objects, this call will issueatt ach() callsrecursively until the entire
object graph istraversed. In addition, object identity and object references are preserved. So both circular
and multiply referenced objects are mapped as expected.

The return value after the cal is the previous object under i d, if any. As aresult, a successful call i will
replace that old value with the new instance. Note that a user will only need to issue this call once for each
top-level object. Further calls can be made directly on the graph, and they will be mapped as expected.

4.2.2. Detachment

/**

* Renpbve PQJO object fromthe cache.

* @aramid |Is string that associates with this node.
* @eturn Oiginal value object fromthis node.

Release 2.0.0 19

APl Overview

* @hrows PojoCacheException Throws if there is an error related to the cache operation.
*/
Cbj ect detach(String id) throws PojoCacheExcepti on;

This call will detach the POJO from the cache by removing the contents under i d and return the POJO
instance stored there (null if it doesn't exist). If successful, further operations against this object will not
affect the cache. Note this call will also remove everything stored under i d even if you have put other
plain cache data there.

4.2.3. Query

/**

* Retrieve PQJO fromthe cache system Return null if object does not exist in the cache.
* Note that this operation is fast if there is already a PQJO i nstance attached tjo the cache

*

* @aramid that associates with this node.

* @eturn Current content value. Null if does not exist.
* @hrows PojoCacheException Throws if there is an error related to the cache operation.
*/

bject find(String id) throws Poj oCacheExcepti on;

Thiscall will return the current object content located under i d. This method call is useful when you don't
have the exact POJO reference. For example, when you fail over to the replicated node, you want to get
the object reference from the replicated cache instance. In this case, PojoCache will create a new Java
object if it does not exist and then add the cache interceptor such that every future access will be in sync
with the underlying cache store.

* Query all managed PQJO objects under the id recursively. Note that this will not return
* the sub-object PQICs, e.g., if Person has a sub-object of Address, it
* won't return Address pojo. Also note also that this operation is not thread-saffe
* now In addition, it assumes that once a PQJOis found with a id, no nore PQJO|is stored
* under the children of the id. That is, we don't mix the id with different PQICs|.

* @aramid The starting place to find all PQICs.
* @eturn Map of all PQIGs found with (id, PQJO pair. Return size of 0, if not flound.
* @hrows Poj oCacheException Throws if there is an error related to the cache operation.
*/

Map findAll (String id) throws PojoCacheExcepti on;

This call will return all the managed POJOs under cache with a base Fgn name. It is recursive, meaning
that it will traverse all the sub-treesto find the POJOs under that base. For example, if you specify the fgn
to beroot, eg., "/ , thenit will return al the managed POJOs under the cache.

Release 2.0.0 20

Configuration and Deployment

Since POJO Cache uses Core Cache for the underlying node replication, transaction, locking, and
passivation behavior, the configuration is mostly the same.

5.1. Cache configuration xml file

When a PojoCache instance is obtained from a PojoCacheFactory, it is required that the either a
org. j boss. cache. confi g. Confi guration object is passed, or more typically a String indicating the
location on the classpath or filesystem of an xml configuration file is provided. In the latter case,
PojoCacheFactory will parse the xml to create aConf i gur at i on. PojoCache will simply passthe resulting
Confi gur at i on to the underlying Core Cache implementation. For details on the configuration please see
the "Configuration” chapter in the the JBoss Cache User Guide.

5.2. Passivation

A common use-case is to configure the underlying Core Cache to enable passivation. Passivation is a
feature used to reduce cache memory usage by evicting stale data that can later be reloaded. In JBoss
Cache, it isdone viaacombination of an eviction policy and acacheloader. That is, when anodeisevicted
from the Cache's in-memory store, it will be stored in a persistent store by the cache loader. When the
node is requested again, it will be loaded from the persistent store and stored into memory.

There is aredtriction, however. Since POJO Cache maps abject data into an internal area, there are two
places that have object information. One is under the regular String 1D that the user specifies, and the
other islocated under / __JBossl nt er nal __. Therefore, to maintain consistentency, when you specify the
eviction region, you can only specify one global (i.e., / _defaul t _) region. This way, when the nodes
associated with a POJO are passivated, they will do so across the whole region.

Below is a snippet from a cache configuration xml illustrating how the eviction policy along with cache
loader can be configured. Please note that this is ssmply an aspect of the underlying Cache. That is,
PojoCache layer is agnostic to this behavior.

<attribute name="EvictionPolicyConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<attribute name="policyC ass">org.jboss. cache. evi ction. LRUPol i cy</attri bute>
<I-- Cache wide default -->
<regi on name="/_default ">
<attri bute name="naxNodes">5000</attri bute>

Release 2.0.0 21

Configuration and Deployment

<attribute name="ti neToLi veSeconds">3</attri bute>
</regi on>
</ confi g>
</attribute>

<attribute name="CachelLoader Confi gurati on">
<confi g>
<passi vati on>t r ue</ passi vati on>
<pr el oad>/ </ pr el oad>
<shar ed>f al se</ shar ed>

<I-- we can now have mnul tiple cache | oaders, which get chained -->
<cachel oader >
<cl ass>org. j boss. cache. | oader. Fi | eCachelLoader </ cl ass>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<l-- only one cache | oader in the chain may set fetchPersistentState to true.

An exception is thrown if nmore than one cache | oader sets this to true.| --
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>

<l-- determnmi nes whether this cache | oader ignores wites - defaults to false. --

<i gnor eModi fi cati ons>f al se</i gnoreMbdi fi cati ons>
</ cachel oader >
</ confi g>
</attribute>

Another way to support multiple regions in eviction is to use region-based marshalling. See the
"Architecture" chapter in the JBoss Cache User Guide for more information on region-based marshalling.
When the Cache uses region-based marshalling, POJO Cache will store internal node data on the region
that is specified. This allows for amore flexible eviction policy.

5.3. AOP Configuration

POJO Cache supplies a poj ocache-aop. xm that is required to be set via a system property:
j boss. aop. pat h during compile- or load-time, or placed in the user's classpath. The file now consists of
the interceptor stack specification, aswell as annotations for POJO instrumentation. Itislisted fully in the
Appendix section. Note that the file should not normally need to be modified. Only an advanced use-case
would require changes.

5.4. Deployment Options
There are a number of ways to deploy POJO Cache:

5.4.1. Programatic Deployment

Simply instantiate a PojoCacheFactory and invoke one of the overloaded cr eat eCache methods shown
inthe APl Overview.

5.4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)

If PojoCache is run in JBoss AS then your cache can be deployed as an MBean simply by copying a
standard cache configuration file to the server's depl oy directory. The standard format of PojoCache's

Release 2.0.0 22

Configuration and Deployment

standard XML configurationfile (asshown inthe Appendix) isthe sameasa JBoss AS M Bean deployment
descriptor, so the ASs SAR Deployer has no trouble handling it. Also, you don't have to place the
configuration file directly in depl oy; you can package it along with other services or JEE componentsin
aSAR or EAR.

In AS5, if you're using a server config based on the standard al | config, then that's all you need to do; all
required jarswill be on the classpath. Otherwise, you will need to ensure poj ocache. j ar, j bosscache. j ar
and j groups-al | .jar are on the classpath. You may need to add other jars if you're using things like
JdbnCacheLoader . The simplest way to do thisis to copy the jars from the PojoCache distribution's | i b
directory to the server config's!i b directory. You could aso package the jars with the configuration file
in Service Archive (.sar) file or an EAR.

Itispossible, to deploy a POJO Cache 2.0 instance in JBoss AS 4.x However, the significant API changes
between the 2.x and 1.x releases mean none of the standard AS 4.x clustering services (e.g. http session
replication) that rely on the 1.x API will work with PojoCache 2.x. Also, be aware that usage of PojoCache
2.xin AS4.x isnot something the cache devel opers are making any significant effort to test, so be sureto
test your application well (which of course you're doing anyway.)

Note in the example the vaue of the nbean element's code attribute
org. j boss. cache. poj 0. j mx. Poj oCacheJmxW apper . This is the class JBoss Cache uses to handle IMX
integration; the PojoCacheitself doesnot expose an MBean interface. Seethe JBoss Cache M Beans section
for more on the PojoCacheJmxWrapper.

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a JIMX proxy can
be used to get areference to the cache:

MBeanServer server = MBeanServerlLocator. | ocateJBoss();
Ohj ect Namre on = new Obj ect Nanme("j boss. cache: servi ce=Poj oCache") ;
Poj oCacheJnxW apper MBean cacheW apper =
(Poj oCacheJnmxW apper MBean) MBeanSer ver | nvocati onHandl er. newPr oxyl nst ance(ser ver,
Poj oCacheJmxW apper MBean. cl ass, fal se);
Poj oCache cache = cacheW apper. get Poj oCache();

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current
JVM. Thej avax. managenent . MBeanSer ver | nvocat i onHand| er €lass newPr oxyl nst ance method creates
adynamic proxy implementing the giveninterface and uses JIM X to dynamically dispatch methodsinvoked
against the generated interface to the MBean. The name used to look up the MBean is the same as defined
in the cache's configuration file.

Once the proxy to the Poj oCacheJmxW apper is obtained, the get Poj oCache() will return a reference to
the PojoCache itself.

5.4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS aso supports deployment of POJO services via deployment of a file
whose name ends with - beans. xni . A POJO serviceisone whose implementationisviaa"Plain Old Java

Release 2.0.0 23

Configuration and Deployment

Object”, meaning a simple java bean that isn't required to implement any special interfaces or extend any
particular superclass. A PojoCacheisaPOJO service, and al the componentsin acConfi gur ati on areaso
POJOS, so deploying a cache in thisway is anatural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss AS. JBoss
Microcontainer is a sophisticated 10C framework (similar to Spring). A -beans. xm file is basically a
descriptor that tells the IOC framework how to assemble the various beans that make up a POJO service.

Therulesfor how to deploy thefile, how to packageit, how to ensure the required jars are on the classpath,
etc. are the same as for a IM X -based deployment.

Following is an abbreviated example - beans. xni file. The details of building up the Configuration are
omitted; see the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for a more complete
example. If you look in the server/al | / depl oy directory of an AS 5 installation, you can find several
more examples.

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oynent xm ns="urn:j boss: bean-depl oyer: 2. 0">
<I-- First we create a Configuration object for the cache -->
<bean name="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">
. details onmtted

</ bean>

<!-- The cache itself. -->
<bean name="Exanpl eCache" cl ass="org.j boss. cache. poj o. i npl . Poj oCachel npl ">

<constructor factoryC ass="org.jboss. cache. poj 0. Poj oCacheFact ory
fact oryMet hod="cr eat eCache" >
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ constructor >

</ bean>

</ depl oynent >

Aninteresting thing to note in the above exampleis the difference between POJO Cache and aplain Cache
in the use of afactory to create the cache. (See the "Deploying JBoss Cache" chapter in the JBoss Cache
User Guide for the comparable plain Cache example.) The PojoCacheFactory exposes static methods for
creating a PojoCache; as a result there is no need to add a separate bean element for the factory. Core
Cache's Def aul t CacheFact ory creates caches from a singleton instance, requiring a bit more boilerplate
in the config file.

Release 2.0.0 24

Configuration and Deployment

5.5. POJO Cache MBeans

POJO Cache provides an MBean that can be registered with your environment's
JMX server to alow access to the cache instance via IJMX. This MBean is the
org. j boss. cache. poj 0. j mx. Poj oCacheJnxW apper . It is a StandardMBean, so it's MBean interface is
org.j boss. cache. poj o. j nx. Poj oCacheJmxW apper MBean. This MBean can be used to:

» Get areference to the underlying PojoCache.
 Invoke create/start/stop/destroy lifecycle operations on the underlying PojoCache.

» See numerous details about the cache's configuration, and change those configuration items that can be
changed when the cache has aready been started.
See the Poj oCacheJmxW apper MBean javadoc for more details.

It is important to note a significant architectural difference between PojoCache 1.x and 2.x. In 1.x, the
old Tr eeCacheAop class wasitself an MBean, and essentially exposed the cache's entire APl viaJMX. In
2.X, IMX has been returned to it's fundamental role as a management layer. The PojoCache object itself
is completely unaware of IMX; instead IM X functionality is added through a wrapper class designed for
that purpose. Furthermore, the interface exposed through JIM X has been limited to management functions;
the general PojoCache API is no longer exposed through IMX. For example, it is no longer possible to
invoke acache at t ach or det ach viathe IMX interface.

If a Poj oCachedmxW apper is registered, the wrapper also registers MBeans for the underlying plain
Cache and for each interceptor configured in the cache's interceptor stack. These MBeans are used to
capture and expose statistics related to cache operations; see the JBoss Cache User Guide for more.
They are hierarchically associated with the Poj oCacheJmxW apper MBean and have service names that
reflect this relationship. For example, aplain Cache associated with aj boss. cache: servi ce=Poj oCache
will be accessible through an mbean named j boss. cache: servi ce=Poj oCache, cacheType=Cache.
The replication interceptor MBean for that cache will be accessible through the mbean named

j boss. cache: servi ce=Poj oCache, cacheType=Cache, cache-i nt er cept or =Repl i cati onl nt er cept or.

5.6. Registering the PojoCacheJmxWrapper

The best way to ensure the Poj oCacheJmxW apper isregistered in IM X depends on how you are deploying
your cache;

5.6.1. Programatic Registration

Simplest way to do thisisto create your Poj oCache and passit to the Poj oCacheJnmxW apper constructor.

/1 Build but don't start the cache
/1 (although it would work OK if we started it)
Poj oCache cache = Poj oCacheFactory. creat eCache("cache-configuration.xm",| fal se);

Poj oCacheJmxW apper MBean wr apper = new Poj oCacheJmxW apper (cache);
MBeanServer server = get MBeanServer(); // however you do it

Cbj ect Nane on = new Obj ect Narme("] boss. cache: servi ce=Poj oCache");
server. regi st er MBean(w apper, on);

Release 2.0.0 25

Configuration and Deployment

/1 Invoking |lifecycle nethods on the w apper
/1 in a call through to the cache

wr apper.create();

wr apper.start();

use the cache

on application shutdown
/1 Invoking |lifecycle nethods on the w apper
/1 in a call through to the cache

wr apper. stop();
wr apper . destroy();

results

results

Alternatively, build a Confi gur ati on object and pass it to the Poj oCacheJmxW apper . The wrapper will

construct the Poj oCache:

Configuration config = buildConfiguration();

/1 whatever it does

Poj oCacheJnxW apper MBean wr apper = new Poj oCacheJnxW apper (confi g);
MBeanServer server = get MBeanServer(); // however you do it
Obj ect Nane on = new Obj ect Name("] boss. cache: servi ce=TreeCache");

server.regi st er MBean(w apper, on);

/1 Call to wapper.create() will build the Cache if one wasn't injected

wr apper.create();
wr apper.start();

/1 Now that it's built, created and started, get the cache fromthe w apper

Poj oCache cache = wr apper. get Poj oCache();
use the cache
on application shutdown

wr apper . stop();
wr apper . destroy();

5.6.2. JIMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cache in JBoss AS using a -servicexml file, a Poj oCacheJnmxW apper iS
automatically registered. Thereisno need to do anything further. The Poj oCacheJmxW apper isaccessible
through the service name specified in the cache configuration file's nbean element.

5.6.3. Via JBoss Microcontainer (JBoss AS 5.x)

Poj oCacheJmxW apper iS a POJO, so the microcontainer has no problem creating one. The
trick is getting it to register your bean in JMX. This can be done by specifying the
org. j boss. aop. ni crocont ai ner. aspect s. j mx. JMX annotation on the Poj oCacheJnxW apper bean:

Release 2.0.0

26

Configuration and Deployment

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

build up the Configuration
</ bean>

<l-- The cache itself. -->
<bean name="Exanpl eCache" cl ass="org.j boss. cache. poj o. i npl . Poj oCachel npl ">

<constructor factoryC ass="org.]j boss. cache. poj 0. Poj oCacheFact ory
fact oryMet hod="cr eat eCache" >
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ constructor>

</ bean>

<l-- JMX Managenent -->
<bean name="Exanpl eCacheJnxW apper" cl ass="org. | boss. cache.j nx. CacheJnxW apper " >

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j mx. JMX(
nanme="j boss. cache: servi ce=Exanpl ePoj oCache"
exposedl nt er f ace=or g. j boss. cache. poj 0. j nx. Poj oCacheJnxW apper MBean. cl ass,
regi sterDirectly=true)

</ annot ati on>

<const ruct or >
<par anet er ><i nj ect bean="Exanpl eCache"/ ></ par anet er >
</ constructor>

</ bean>

</ depl oynent >

Asdiscussed in the Programatic Registration section, Poj oCacheJnxW apper can do the work of building,
creating and starting the PojoCache if it is provided with aConf i gur at i on:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">
<I-- First we create a Configuration object for the cache -->

<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

Release 2.0.0 27

Configuration and Deployment

build up the Configuration

</ bean>
<bean nane="Exanpl eCache" cl ass="org.j boss. cache. poj 0. j nx. Poj oCacheJnxW apper ">

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j mx. JMX(
nane="j boss. cache: servi ce=Exanpl ePoj oCache"
exposedl nt er f ace=or g. j boss. cache. poj 0. j nx. Poj oCacheJnxW apper MBean. cl ass,
regi sterDirectly=true)

</ annot ati on>

<construct or>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/></ par anet er >
</ constructor >

</ bean>

</ depl oyment >

5.7. Runtime Statistics and JMX Notifications

As mentioned above, the cache exposes a variety of statistical information through its MBeans. It aso
emits IM X notifications when events occur in the cache. See the JBoss Cache User Guide for more on the
statistics and notifications that are available.

The only PojoCache addition to the plain JBoss Cache behavior described in the User Guide is that you
can register with the PojoCacheJmxWrapper to get the notifications. There is no requirement to figure out
the ObjectName of the underlying cache's CacheJmxWrapper and register with that.

Release 2.0.0 28

Instrumentation

In this chapter, we explain how to instrument (or "aspectize") the POJOs via JBoss Aop. There are two
steps needed by JBoss Aop: 1) POJO declaration, 2) instrumentation. But depends on the instrumentation
mode that you are using, you may not need to pre-process your POJO at all. That is, if you use JDK5.0
(required) and load-time mode, then all you need to do is annotating your POJO (or declare it in a xml
file). This makes your PojoCache programming nearly transparent.

For the first step, since we are using the dynamic Aop feature, a POJO is only required to be declared
"prepare”. Basically, there are two waysto do this: either viaexplicit xml or annotation.

As for the second step, either we can ask JBoss Aop to do load-time (through a special class loader,
so-caled load-time mode) or compile-time instrumentation (use of an aopc pre-compiler, so-called
precompiled mode). Reader can read the JBoss Aop introduction chapter for more details.

6.1. XML descriptor

To declare a POJO via XML configuration file, you will need a META- I NF/ j boss- aop. xm (Or in the
PojoCache case, it is the equivalent poj ocache- servi ce. xni file located under the class path or listed in
the j boss. aop. pat h system property. JBoss AOP framework will read this file during startup to make
necessary byte code manipulation for advice and introduction. Or you can pre-compile it using a pre-
compiler called aopc such that you won't need the XML file during load time. JBoss Aop provides a so-
called poi nt cut language where it consists of aregular expression set to specify the interception points
(or j oi nt poi nt in aop parlance). The jointpoint can be constructor, method call, or field. You will need
to declare any of your POJO to be "prepared” so that AOP framework knows to start intercepting either
method, field, or constructor invocations using the dynamic Aop.

For PojoCache, we only allow all the fields (both read and write) to be intercepted. That is, we don't care
for the method level interception since it is the state that we are interested in. So you should only need to
change your POJO class name. For details of the pointcut language, please refer to JBoss Aop.

The standalone JBoss Cache distribution package provides an example declaration for the tutorial classes,
namely, Person and Addr ess . Detailed class declaration for Person and Address are provided in the
Appendix section. But here is the snippet for poj ocache- aop. xm :

<aop>
<prepare expr="field(* $instanceof{@rg.jboss.cache. pojo.annotation.Replicable}->*)"
</ aop>

and then notice the annotation @Replicable used in the Person and Address POJOs. Also note that
@Replicableis now inheritant. For example, sub-class of Per son such as st udent will also be aspectized

Release 2.0.0 29

Instrumentation

by JBoss Aop as well. If you want to stop this inheritance behavior, you can simply remove the
$i nst anceof declaration in the prepare statement, e.g.,

<aop>
<prepare expr="field(* @rg.jboss.cache. pojo.annotation. Replicable->*)" />
</ aop>

Detailed semantics of poj ocache-aop. xn (or equivaently poj ocache- aop. xni) can again be found in
JBoss Aop. But above statements basically declare al field read and write operations in classes Addr ess
and Per son will be "prepared” (or "aspectized"). Note that:

« Thewildcard at the end of the expression signifies al fields in the POJO

* You can potentially replace specific class name with wildcard that includes all the POJOs inside the
same package space

e The instanceof operator declares any sub-type or sub-class of the specific POJO will also be
"aspectized". For example, if a student class is a subclass of Person , JBossAop will automatically
instrument it as well!

« Weintercept the field of all access levels (i.e., private , protected , public , €tc.) The main reason
being that we consider all fields as stateful data. However, we can relax this requirement in the future
if thereisause casefor it.

* We don't intercept field modifiers of fi nal andtransi ent though. That is, field with these modifiers
are not stored in cache and is not replicated either. If you don't want your field to be managed by the
cache, you can declare them with these modifiers, e.g., transient.

6.2. Annotation

Annotation is a new feature in Java 5.0 that when declared can contain metadata at compile and run time.
Itiswell suited for aop declaration since there will be no need for external metadata xml descriptor.

6.2.1. POJO annotation for instrumentation

To support annotation (in order to simplify user's development effort), the JBoss Cache distribution ships
with a poj ocache- aop. xmi under the resour ces directory. For reference, here is annotation definition
from poj ocache- aop. xni again :

<aop>
<prepare expr="field(* @rg.]jboss.cache. pojo.annotation. Replicable->*)" />
</ aop>

Basicaly, it simply statesthat any annotation with both marker interfaceswill be"aspectized" accordingly.

Here is acode snippet that illustrate the declaration:

Release 2.0.0 30

Instrumentation

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Person {...}

The above declaration will instrument the class Per son and all of its sub-classes. That is, if St udent sub-
class from Per sonal , then it will get instrumented automatically without further annotation declaration.

6.2.2. JDK5.0 field level annotations

In Release 2.0, we have added two additional field level annotations for customized behavior. The first
one is @r g. j boss. cache. poj 0. annot ati on. Transi ent . When applied to a field variable, it has the
same effect as the Javalanguage t ransi ent keyword. That is, PojoCache won't put this field into cache

management (and therefore no replication).

Thesecond oneis @r g. j boss. cache. poj o. annot at i on. Seri al i zabl e, when appliedto afield variable,
PojoCache will treat this variable as Seri al i zabl e, even when it is Repl i cabl e. However, the field will

need to implement the Seri al i zabl e interface such that it can be replicated.

Here is a code snippet that illustrates usage of these two annotations. Assuming that you have a Gadget

class:

public class Gadget
{
/'l resource won't be replicated
@r ansi ent Resource resource;
/'l special Address is treated as a Serializable object but still
@peri al i zabl e Speci al Addr ess speci al Addr ess;
/1 other state variables

}

has obj ect

rel ationship

Then when we do:

Gadget gadget = new Gadget ();
Resource resource = new Resource();
Sepci al Addr ess speci al Address = new Speci al Address();

Il setters
gadget . set Resour ce(resource);
gadget . set Speci al Addr ess(speci al Addr ess) ;

cachel. put Ooj ect ("/gadget”, gadget); // put into PojoCache managenent

Gadget g2 = (Gadget)cache2.get Cbject("/gadget"); // retrieve it from another cache instance

g2. get Resource(); // This is should be null because of @ransient tag so it

Sepci al Address d2 = g2. get Speci al Address();

i's not| replicatec

d2.set Nane("inet"); // This won't get replicated automatically because of @erializable tag

ge. set Speci al Address(d2); // Now this wll.

6.3. Weaving

Asalready mentioned, auser can usethe aop precompiler (aopc) to precompile the POJO classes such that,
during runtime, thereisno additional system classloader needed. The precompiler will read in poj ocache-

Release 2.0.0

31

Instrumentation

aop. xnt and weave the POJO byte code at compile time. This is a convenient feature to make the aop
lessintrusive.

Below isan Ant snippet that definesthe library needed for the various Ant targets that we are listing here.
User can refer to the bui | d. xni in the distribution for full details.

<pat h i d="aop. cl asspath"/>
<fileset dir="${lib}"/>
<i ncl ude name="**/*_jar" //>
<excl ude nane="**/j boss-cache.jar" //>
<exclude nane="**/j*unit.jar" //>
<excl ude nanme="**/bsh*.jar" //>
</fileset/>
</ pat h/ >

6.3.1. Ant target for running load-time instrumentation using specialized class
loader

In JDK5.0, you can use the j avaagent option that does not require a separate Classloader. Here are the
ant snippet from one- t est - poj o, for example.

<target nane="one.test.pojo" depends="conpile" description="run one junit test casle."
<junit printsummary="yes" timeout="${junit.timeout}" fork="yes">
<jvmarg val ue="-Dj boss. aop. pat h=${ out put }/ r esour ces/ poj ocache- aop. xm "/ >
<jvmarg val ue="-j avaagent: ${1i b}/ boss-aop-j dk50.jar"/>
<cl asspath pat h="${output}/etc" />
<sysproperty key="log4j.configuration" value="file:${output}/etc/logdj.xm" />
<cl asspath refid="lib.classpath"/>
<cl asspath refid="buil d. cl asspath"/>
<formatter type="xm" usefile="true"/>
<test name="${test}" todir="${reports}"/>
</junit>
</target>

6.3.2. Ant target for aopc

Below is the code snippet for the aopc Ant target. Running this target will do compile-time weaving of
the POJO classes specified.

<t askdef nanme="aopc" cl assnane="org.j boss. aop. ant. AopC' cl asspat hr ef ="aop. cl asspat|h"/ >

<t arget name="aopc" depends="conpile" description="Preconpile aop cl ass">
<aopc conpil ercl asspat hr ef =" aop. cl asspat h" verbose="true">
<src path="${build}"/>
<i ncl ude nanme="or g/ boss/cache/aop/test/**/*.cl ass"/>
<aoppat h pat h="${out put}/resources/ poj ocache-aop. xm "/ >
<cl asspath pat h="${buil d}"/>
<cl asspath refid="Iib.classpath"/>
</ aopc>
</target>

Release 2.0.0 32

I nstrumentation

Below isasnapshot of filesthat are generated when aopc is applied. Notice that couple extra classes have
been generated because of aopc.

¥ test r-_ |E| ﬁ|

Wiew Favortes Toos Hep

¥ | O search (i roders | [T >

Be Edk

iBeck -)

Agddress |2 Eryjboas\BossCache\nutputirest-risdsssiong Joosscar helanp test

Foidars
output
I‘j ap
| clessas
T R
b3 resources
0T) test-classes
> ;3 1]
3) Jboss
= £ cache
& (23 a0p
1) colecton
(Ca integrated
|53 loader
u 0
&3 vt
(1 banchmark
3 eviction
25) oader
) ock
3 marshal

T

| »

3

e

a [M|Address
— || adaressscry Ger

) AddressSohy_Sat

Sl AdiessSsreet_Get

| Ak essgsirest_Sel

|| Addresssrip Gat

|l Adcresssp Ser

[Perscn

= Persongaddress_Get

| Persong acdress_Ser

|| Perscmgage Gat
|"Persongzge set

™| PersongcurmentStatus_iet
=l Persong cormentStatus_Sct
%] Persong o biies_Get

|| Perscmghnbnias et
|"PersondlEnguages Get
ﬂPerso1$h1guages_Set

~ [BlPersongmedication_tet

] Persongmedicalion_Set
[*|Persongname_Gat

|| Persomgname_Set

=l Persondskds_cet

+ |FlPersongskds_set

£

S
GEB
2KB
2KB
2 KB
2KB
2EB
2KB
13 KB
2 KB
2KB
2EB
2KB
2KB
2 KB
2KB
2EB
2KB
2KB
2 KB
KB
JKB
3KB
KB
3 KB

~| B

Type

CLASS Fie
CLASS Fle
CLASS Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fle
CLASS Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fle
CLASS Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fle
CLASS Fle
CLASS Fie
CLASS Fie
CLASS Fie
CLASS Fle
CLASS Fl2
CLASS Fie

Figure 6.1. Classes generated after aopc

Release 2.0.0

33

TroubleShooting

We have maintained a PojoCache wiki troubleshooting page [http://wiki.jboss.org/wiki/

Wiki.jsp?page=PojoCacheTroubleshooting]. Pleaserefer it first. Wewill keep adding troubleshooting tips
there.

All the current outstanding issues are documented in JBossCache Jira page [http://jira.jboss.com/jira/

secure/BrowseProject.jspa?id=10051] . Pleasecheck it for details. If you have discovered additional issues,
please report it there as well.

Release 2.0.0 34

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051

Appendix

8.1. Example POJO

The example POJO classes used for are: Per son, Student, and Addr ess. Below are their definition (note
that neither class implements Seri al i zabl e) along with the annotation.

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Person {

String name=nul | ;

i nt age=0;

Map hobbi es=nul | ;

Addr ess address=nul | ;

Set skills;

Li st | anguages;

public String getName() { return name; }
public void setNane(String nane) { this.name=nane; }

public int getAge() { return age; }
public void setAge(int age) { this.age = age; }

public Map get Hobbi es() { return hobbies; }
public void set Hobbi es(Map hobbi es) { this.hobbies = hobbies; }

public Address get Address() { return address; }
public void set Address(Address address) { this.address = address; }

public Set getSkills() { return skills; }
public void setSkills(Set skills) { this.skills = skills; }

public List getlLanguages() { return |anguages; }
public void setlLanguages(List |anguages) { this.|anguages = | anguages; }

public class Student extends Person {
String year=null;

public String getYear() { return year; }
public void setYear(String year) { this.year=year; }

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e

Release 2.0.0 35

Appendix

public class Address {
String street=null;
String city=null;

int zip=0;

public String getStreet() { return street; }
public void setStreet(String street) { this.street=street; }

8.2. Sample Cache configuration xml

Below isasample xml configuration for Cache that you can use for PojoCache creation.

<?xm version="1.0" encodi ng="UTF-8" ?>

<server >

<nmbean code="org.jboss. cache. poj o.j nx. Poj oCacheJnxW apper "
nane="j boss. cache: servi ce=Poj oCache" >

<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<l-- Configure the Transacti onManager -->
<attribute name="Transacti onManager LookupC ass" >

org.j boss. cache. transacti on. DunmmyTr ansact i onManager Lookup
</attribute>

<I-- Isolation |level : SERI ALI ZABLE
REPEATABLE_READ (def aul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE
-->
<attribute name="I|sol ati onLevel ">REPEATABLE _READ</ attri but e>

<l-- Valid nodes are LOCAL, REPL_ASYNC and REPL_SYNC -->
<attri bute name="CacheMode" >REPL_SYNC</attri but e>

<!-- Nane of cluster. Needs to be the sane for all caches,
in order for themto find each other

-->

<attribute name="d ust er Nane" >Poj oCached uster</attri but e>

<I-- JGoups protocol stack properties. -->
<attribute name="d usterConfig">
<confi g>
<I-- UDP: if you have a multihonmed machi ne, set the bind_addr
attribute to the appropriate NIC | P address -->
<l-- UDP: On Wndows nachi nes, because of the nedia sense feature

bei ng broken with nmulticast (even after disabling nmedia sense)
set the | oopback attribute to true -->
<UDP ntast _addr="228.1.2. 3" ntast_port="48866"
ip_ttl="64" ip_nctast="true"
ncast _send_buf _si ze="150000" ntast _recv_buf_si ze="80000"

Release 2.0.0

36

Appendix

ucast _send_buf _si ze="150000" ucast _recv_buf_si ze="80000"
| oopback="fal se"/>
<PI NG ti neout ="2000" num. ni tial _nenbers="3"/>
<MERGE2 mi n_interval ="10000" max_i nt erval ="20000"/ >
<FD shun="true"/>
<FD_SOCK/ >
<VERI FY_SUSPECT ti nmeout =" 1500"/ >
<pbcast. NAKACK gc_| ag="50" retransmt_ti neout="600, 1200, 2400, 4800"
max_xmt_size="8192"/>
<UNI CAST ti nmeout =" 600, 1200, 2400", 4800/ >
<pbcast. STABLE desired_avg_gossi p="400000"/ >
<FC max_credits="2000000" m n_threshol d="0.10"/>
<FRAK2 frag_size="8192"/>
<pbcast. GVS joi n_ti neout ="5000" join_retry_ timeout="2000"
shun="true" print_|local _addr="true"/>
<pbcast . STATE_TRANSFEFR/ >
</ confi g>
</attribute>

<l-- \Wether or not to fetch state on joining a cluster -->
<attribute name="Fetchl nMenoryState">true</attribute>

<l-- The max amount of tinme (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

--2>

<attribute name="Initial StateRetrieval Ti neout">15000</attri bute>

<l-- Nunber of mlliseconds to wait until all responses for a
synchronous call have been received.
-->

<attri bute name="SyncRepl Ti meout">15000</attri but e>

<I-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<attribute name="LockAcqui sitionTi meout">10000</attri bute>

</ mbean>
</ server>

8.3. PojoCache configuration xml

Attached isafull listing for poj ocache- aop. xni .

<?xm version="1.0" encodi ng="UTF-8""?>
<l--
This is the PojoCache configuration file that specifies:
1. Interceptor stack for API
2. Annotation binding for PQIO (via "prepare" el enent)

Basically, this is a variant of jboss-aop.xm . Note that
except for the custom zation of interceptor stack, you should
not need to nodify this file.

Release 2.0.0

Appendix

>
<ao

To run PojoCache, you will need to define a system property:
j boss. aop. path that contains the path to this file such that JBoss Aop
can locate it.

P>

<l--

Thi s defines the PojoCache 2.0 interceptor stack. Unl ess necessary,
-->

don't nodif

<l-- Check id range validity -->
<i nt ercept or nane="Checkl d" cl ass="org.] boss. cache. poj o.i nterceptors. Checkl dl nt

scope="PER_| NSTANCE"/ >

<I-- Track Tx undo operation -->

<i nterceptor nane="Undo" cl ass="org.jboss. cache. poj o.interceptors. Poj oTxUndol nt
scope="PER | NSTANCE"/ >

<l-- Begining of interceptor chain -->

<interceptor nane="Start" class="org.|boss. cache. pojo.interceptors. Poj oBegi nl nt
scope="PER _| NSTANCE"/ >

<l-- Check if we need a | ocal

<i nterceptor

tx for batch processing -->
nanme="Tx" cl ass="org.jboss. cache. pojo.interceptors. Poj oTx| nt er cept
scope="PER_| NSTANCE" / >

<l--
Mockup failed tx for testing. You wll
to activate it.

-->

<i nt erceptor

need to set PojoFail edTxMockupl nterce

name="MckupTx" cl ass="org. | boss. cache. pojo.interceptors. PojoFaile

scope="PER | NSTANCE"/ >

<l-- Performparent |evel node |ocking -->

<interceptor nane="TxLock" class="org.jboss.cache. pojo.interceptors. PojoTxLockl
scope="PER _| NSTANCE"/ >

<l-- Interceptor to performPojo |evel rollback -->

<i ntercept or nane="TxUndo" cl ass="org.jboss. cache. pojo.i nterceptors. Poj oTxUndoS
scope="PER_| NSTANCE"/ >

<I-- Interceptor to used to check recursive field interception. -->

<interceptor nane="Reentrant" class="org.boss.cache. pojo.interceptors. Met hodRe

scope="PER | NSTANCE"/ >

Def aul t -->

<l-- \Wether to allow non-serializable pojo. is fal se.
<i nterceptor nane="Marshal | NonSeri al i zabl e"
cl ass="org.j boss. cache. poj 0. i nterceptors. CheckNonSeri al i zabl el nter
scope="PER_| NSTANCE" >
<attribute name="narshal | NonSeri al i zabl e">f al se</attri but e>
</interceptor>
<I-- This defines the stack macro -->
<stack nane="Attach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>

<i nterceptor-ref name="Marshal | NonSeri al i zabl e"/>

y the stack

erceptor"

erceptor”

erceptor™”

pt or . set Rol

dTxMockupl 1

nt er cept or’

ynchr oni zat

entrancySt

ceptor"

Release 2.0.0

38

Appendix

<interceptor-ref nane="Tx"/>

<l-- NOTE: You can comment this out during production although leaving it here is OK -

<i nterceptor-ref name="MckupTx"/>

<interceptor-ref nane="TxLock"/>

<i nterceptor-ref name="TxUndo"/>
</ st ack>

<stack name="Detach">
<interceptor-ref nane="Start"/>
<interceptor-ref nane="Checkld"/>
<interceptor-ref name="Tx"/>
<I-- NOTE: You can comment this out during production although |leaving it here is OK -
<interceptor-ref nane="MckupTx"/>
<i nterceptor-ref name="TxLock"/>
<i nterceptor-ref name="TxUndo"/>

</ st ack>

<stack name="Fi nd">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>
</ st ack>

& oc

The follow ng section should be READ-ONLY!! It defines the annotation binding to the st
-->

<I-- This binds the jointpoint to specific in-nenory operations. Currently in PojoUtil. --
<bi nd poi nt cut ="execution(*
@r g. j boss. cache. poj 0. annot ati on. Reentrant->toString())">
<interceptor-ref name="Reentrant"/>
</ bi nd>

<bi nd poi nt cut =" executi on(*
org.j boss. cache. poj 0. PojolUti | ->@rg. j boss. cache. poj 0. annot ati on. TxUndo(. .))
<i nterceptor-ref nanme="Undo"/>

</ bi nd>

\

<bi nd poi nt cut ="execution(* org.jboss. cache. pojo.i npl. Poj oCachel npl ->@r g.j boss|. cache. poj ¢
<stack-ref name="Attach"/>
</ bi nd>

<bi nd poi nt cut ="execution(* org.]jboss. cache. poj o.i npl . Poj oCachel npl ->@r g. j boss|. cache. poj ¢
<stack-ref name="Detach"/>
</ bi nd>

<bi nd poi nt cut ="execution(* org.]jboss. cache. poj o.i npl. Poj oCachel npl ->@r g.] boss|. cache. poj ¢
<stack-ref name="Find"/>
</ bi nd>

<l--
Follow ng is declaration for JDK50 annotation. You use the specific annotatijon on your
PQJO such that it can be instrunented. lIdea is user will then need only to annotate Iil
@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
in his PQDO There will be no need of jboss-aop.xm fromuser's side.
-->

Release 2.0.0 39

Appendix

<I-- If a PQJO has Poj oCachabl e annotation, it will be asepctized. -->
<prepare expr="field(* $instanceof{@rg.|boss.cache. pojo.annotation.Replicable}->*)" />

<l-- Cbserver and Cbservable to nonitor field nodification -->

<bi nd poi nt cut ="
set (* $i nstanceof { @r g.j boss. cache. poj 0. annot ati on. Repl i cabl e} ->*)
">

<interceptor class="org.jboss.cache. pojo. observabl e. Subj ect| nterceptor"/>
</ bi nd>

<i ntroduction cl ass="$i nstanceof { @r g.] boss. cache. poj 0. annot ati on. Repl i cabl e}" >
<m Xi n>
<i nterfaces>org.jboss. cache. poj 0. observabl e. Subj ect</i nterfaces>
<cl ass>org. j boss. cache. poj 0. obser vabl e. Subj ect | npl </ cl ass>
<construction>new org.j boss. cache. poj 0. obser vabl e. Subj ect | npl (t hi s) </ consftruction>
</ m xi n>
</introduction>
</ aop>

Release 2.0.0 40

	POJO Cache
	Table of Contents
	Preface
	Chapter 1. Terminology
	1.1. Overview

	Chapter 2. Introduction
	2.1. Overview
	2.2. Features
	2.3. Usage
	2.4. Requirements

	Chapter 3. Architecture
	3.1. POJO Cache interceptor stack
	3.2. Field interception
	3.3. Object relationship management
	3.4. Object Inheritance
	3.5. Physical object cache mapping model
	3.6. Collection Mapping
	3.6.1. Limitations

	Chapter 4. API Overview
	4.1. PojoCacheFactory Class
	4.2. PojoCache Interface
	4.2.1. Attachment
	4.2.2. Detachment
	4.2.3. Query

	Chapter 5. Configuration and Deployment
	5.1. Cache configuration xml file
	5.2. Passivation
	5.3. AOP Configuration
	5.4. Deployment Options
	5.4.1. Programatic Deployment
	5.4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	5.4.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5.5. POJO Cache MBeans
	5.6. Registering the PojoCacheJmxWrapper
	5.6.1. Programatic Registration
	5.6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	5.6.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5.7. Runtime Statistics and JMX Notifications

	Chapter 6. Instrumentation
	6.1. XML descriptor
	6.2. Annotation
	6.2.1. POJO annotation for instrumentation
	6.2.2. JDK5.0 field level annotations

	6.3. Weaving
	6.3.1. Ant target for running load-time instrumentation using specialized class loader
	6.3.2. Ant target for aopc

	Chapter 7. TroubleShooting
	Chapter 8. Appendix
	8.1. Example POJO
	8.2. Sample Cache configuration xml
	8.3. PojoCache configuration xml

