
POJO Cache

User Documentation
Ben Wang

Jason Greene
ISBN:

Publication date: March 2008

POJO Cache

POJO Cache: User Documentation
Ben Wang

Jason Greene

POJO Cache

v

Preface .. vii

1. Terminology .. 1

1. Overview ... 1

2. Introduction ... 3

1. Overview ... 3

2. Features ... 5

3. Usage ... 6

4. Requirements .. 7

3. Architecture ... 9

1. POJO Cache interceptor stack ... 9

2. Field interception ... 11

3. Object relationship management ... 12

4. Object Inheritance .. 15

5. Physical object cache mapping model ... 15

6. Collection Mapping .. 19

6.1. Limitations .. 20

4. API Overview .. 23

1. PojoCacheFactory Class .. 23

2. PojoCache Interface .. 24

2.1. Attachment ... 24

2.2. Detachment .. 25

2.3. Query ... 25

3. POJO Annotations ... 26

3.1. @Replicable annotation ... 26

3.2. @Transient annotation .. 26

3.3. @Serializable annotation ... 27

5. Configuration and Deployment ... 29

1. Cache configuration xml file ... 29

2. Passivation .. 29

3. AOP Configuration ... 30

4. Deployment Options .. 30

4.1. Programatic Deployment ... 30

4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x) 31

4.3. Via JBoss Microcontainer (JBoss AS 5.x) ... 32

5. POJO Cache MBeans .. 33

6. Registering the PojoCacheJmxWrapper .. 34

6.1. Programatic Registration ... 34

6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x) 35

6.3. Via JBoss Microcontainer (JBoss AS 5.x) ... 35

7. Runtime Statistics and JMX Notifications ... 37

6. Instrumentation .. 39

1. Load-time instrumentation .. 39

2. Compile-time instrumentation ... 40

3. Understanding the provided AOP descriptor .. 40

POJO Cache

vi

7. TroubleShooting .. 43

8. Appendix ... 45

1. Example POJO .. 45

2. Sample Cache configuration xml .. 46

3. PojoCache configuration xml .. 48

vii

Preface

POJO Cache is an in-memory, transactional, and clustered cache system that allows users to

operate on a POJO (Plain Old Java Object) transparently and without active user management of

either replication or persistence aspects. JBoss Cache, which includes POJO Cache, is a 100%

Java based library that can be run either as a standalone program or inside an application server.

This document is meant to be a user and reference guide to explain the architecture, api,

configuration, and examples for POJO Cache. We assume the readers are familiar with both

JGroups and the core JBoss Cache usages.

If you have questions, use the user forum [http://www.jboss.com/

index.html?module=bb&op=viewforum&f=157] linked on the JBoss Cache website. We also

provide tracking links for tracking bug reports and feature requests on JBoss Jira web site [http:/

/jira.jboss.com] . If you are interested in the development of POJO Cache, post a message on

the forum. If you are interested in translating this documentation into your language, contact us

on the developer mailing list.

JBoss Cache is an open source product, using the business and OEM-friendly OSI-approved

LGPL license. Commercial development support, production support and training for JBoss Cache

is available through JBoss, a division of Red Hat Inc. [http://www.jboss.com]

In some of the example listings, what is meant to be displayed on one line does not fit inside the

available page width. These lines have been broken up. A '\' at the end of a line means that a

break has been introduced to fit in the page, with the following lines indented. So:

 Let's pretend to have an extremely \

 long line that \

 does not fit

 This one is short

Is really:

 Let's pretend to have an extremely long line that does not fit

 This one is short

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://jira.jboss.com
http://jira.jboss.com
http://jira.jboss.com
http://www.jboss.com
http://www.jboss.com

viii

Chapter 1.

1

Terminology

1. Overview

The section lists some basic terminology that will be used throughout this guide.

Aop

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize and

layer your software applications in ways that are impossible with traditional object-oriented

approaches. Aspects allow you to transparently glue functionality together so that you can

have a more layered design. AOP allows you to intercept any event in a Java program and

trigger functionality based on those events.

JBoss Aop

JBoss Aop is an open-source Aop framework library developed by JBoss. It is 100% Java

based and can be run either as a standalone or inside an application server environment.

More details can be found at www.jboss.com. PojoCache uses JBoss Aop library in two ways.

It uses JBoss Aop firstly for its own interceptor-based architecture and secondly to realize the

fine-grained replication aspects.

Dynamic Aop

Dynamic Aop is a feature of JBoss Aop that provides a hook so that a caller can insert event

interception on the POJO at runtime. PojoCache currently uses this feature to perform field

level interception.

JGroups

JGroups is a reliable Java group messaging library that is open-source and LGPL. In addition

to reliable messaging transport, it also performs group membership management. It has been

a de facto replication layer used by numerous open-source projects for clustering purposes.

It is also used by JBossCache for replication layer.

Core Cache

Core Cache is a tree-structured, clustered, transactional cache. Simple and Serializable java

types are stored as key/value pairs on nodes within the tree using a collection-like API. It also

provides a number of configurable aspects such as node locking strategies, data isolation,

eviction, and so on. POJO Cache leverages Core Cache as the underlying data-store in order

to provide the same capabilities.

POJO

Plain old Java object.

Annotation

Annotation is a new feature in JDK5.0. It introduces metadata along side the Java code that

can be accessed at runtime. PojoCache currently uses JDK50 annotation to support POJO

instrumentation (JDK1.4 annotation has been deprecated since release 2.0).

Chapter 1. Terminology

2

Prepare

Prepare is a keyword in JBoss Aop pointcut language used to specify which POJO needs to

be instrumented. It appears in a pojocache-aop.xml file. However, if you can use annotation

to specify the POJO instrumentation, there is no need for a pojocache-aop.xml listing. Note

that When a POJO is declared properly either through the xml or annotation, we consider it

"aspectized".

Instrumentation

Instrumentation is an Aop process that basically pre-processes (e.g., performing byte-code

weaving) on the POJO. There are two modes: compile- or load-time. Compile-time weaving

can be done with an Aop precompiler (aopc) while load-time is done to specify a special

classloader in the run script. This step is necessary for an Aop system to intercept events that

are interesting to users.

Chapter 2.

3

Introduction

1. Overview

JBoss Cache consists of two components, Core Cache, and POJO Cache. Core Cache provides

efficient memory storage, transactions, replication, eviction, persistent storage, and many other

"core" features you would expect from a distributed cache. The Core Cache API is tree based.

Data is arranged on the tree using nodes that each offer a map of attributes. This map-like API is

intuitive and easy to use for caching data, but just like the Java Collection API, it operates only off

of simple and serializable types. Therefore, it has the following constraints:

• If replication or persistence is needed, the object will then need to implement the Serializable

interface. E.g.,

public Class Foo implements Serializable

• If the object is mutable, any field change will require a successive put operation on the cache:

value = new Foo();

cache.put(fqn, key, value);

value.update(); // update value

cache.put(fqn, key, value); // Need to repeat this step again to ask cache to persist or replicate

 the changes

• Java serialization always writes the entire object, even if only one field was changed. Therefore,

large objects can have significant overhead, especially if they are updated frequently:

thousand = new ThousandFieldObject();

cache.put(fqn, key, thousand);

thousand.setField1("blah"); // Only one field was modified

cache.put(fqn, key, thousand); // Replicates 1000 fields

• The object structure can not have a graph relationship. That is, the object can not have

references to objects that are shared (multiple referenced) or to itself (cyclic). Otherwise,

the relationship will be broken upon serialization (e.g., when replicate each parent object

separately). For example, Figure 1 illustrates this problem during replication. If we have two

Person instances that share the same Address , upon replication, it will be split into two separate

Chapter 2. Introduction

4

Address instances (instead of just one). The following is the code snippet using Cache that

illustrates this problem:

joe = new Person("joe");

mary = new Person("mary");

addr = new Address("Taipei");

joe.setAddress(addr);

mary.setAddress(addr);

cache.put("/joe", "person", joe);

cache.put("/mary", "person", mary);

Figure 2.1. Illustration of shared objects problem during replication

POJO Cache attempts to address these issues by building a layer on top of Core Cache which

transparently maps normal Java object model operations to individual Node operations on the

cache. This offers the following improvements:

• Objects do not need to implement Serializable interface. Instead they are instrumented,

allowing POJO Cache to intercept individual operations.

• Replication is fine-grained. Only modified fields are replicated, and they can be optionally

batched in a transaction.

• Object identity is preserved, so graphs and cyclical references are allowed.

• Once attached to the cache, all subsequent object operationis will trigger a cache operation

(like replication) automatically:

Features

5

POJO pojo = new POJO();

pojoCache.attach("id", pojo);

pojo.setName("some pojo"); // This will trigger replication automatically.

In POJO Cache, these are the typical development and programming steps:

• Annotate your object with @Replicable

• Use attach() to put your POJO under cache management.

• Operate on the object directly. The cache will then manage the replication or persistence

automatically and transparently.

More details on these steps will be given in later chapters.

Since POJO Cache is a layer on-top of Core Cache, all features available in Core Cache are also

available in POJO Cache. Furthermore, you can obtain an instance to the underlying Core Cache

by calling PojoCache.getCache(). This is useful for resusing the same cache instance to store

custom data, along with the POJO model.

2. Features

Here are the current features and benefits of PojoCache:

• Fine-grained replication. The replication modes supported are the same as that of Core Cache:

LOCAL, REPL_SYNC, REPL_ASYNC, INVALIDATION_SYNC, and INVALIDATION_ASYNC (see the

main JBoss Cache reference documentation for details). The replication level is fine-grained

and is performed automatically once the POJO is mapped into the internal cache store. When a

POJO field is updated, a replication request will be sent out only to the key corresponding to that

modified attribute (instead of the whole object). This can have a potential performance boost

during the replication process; e.g., updating a single key in a big HashMap will only replicate

the single field instead of the whole map!

• Transactions. All attached objects participate in a user transaction context. If a rollback occurs,

the previous internal field state of the object will be restored:

POJO p = new POJO();

p.setName("old value");

pojoCache.attach("id", p);

tx.begin(); // start a user transaction

p.setName("some pojo");

tx.rollback(); // this will cause the rollback

p.getName(); // is "old value"

Chapter 2. Introduction

6

In addition, operations under a transaction is batched. That is, the update is not performed until

the commit phase. Further, if replication is enabled, other nodes will not see the changes until

the transaction has completed successfully.

• Passivation. POJO Cache supports the same passivation provided by Core Cache. When a

node mapped by POJO Cache has reached a configured threshold, it is evicted from memory

and stored using a cache loader. When the node is accessed again, it will be retrieved from the

cache loader and put into memory. The configuration parameters are the same as those of the

Cache counterpart. To configure the passivation, you will need to configure both the eviction

policy and cache loader.

• Object cache by reachability, i.e., recursive object mapping into the cache store. On attach, POJO

Cache will attach all referenced objects as well. This feature is explained in more detail later.

• Natural Object Relationships. Java references are preserved as they were written. That is, a

user does not need to declare any object relationship (e.g., one-to-one, or one-to-many) to use

the cache.

• Object Identity. Object identity is preserved. Not only can a cached object be compared using

equals(), but the comparison operator, ==, can be used as well. For example, an object such as

Address may be multiple referenced by two Persons (e.g., joe and mary). The objects retrieved

from joe.getAddress() and mary.getAddress() should be identicali, when when retrieved

from a different node in the cluster then that which attached them.

• Inheritance. POJO Cache preserves the inheritance hierarchy of any object in the cache. For

example, if a Student class inherits from a Person class, once a Student object is mapped to

POJO Cache (e.g., attach call), the fields in the base class Person are mapped as well.

• Collections. Java Collection types (e.g. List, Set, and Map) are transparently mapped using

Java proxies. Details are described later.

• Annotation based. Starting from release 2.0, JDK 5 annotations are used to indicate that an

object should be instrumented for use under POJO Cache (once attached).

• Transparent. Once a POJO is attached to the cache, subsequent object model changes are

transparently handled. No further API calls are required.

3. Usage

To use POJO Cache, you obtain the instance from the PojoCacheFactory by supplying a config file

that is used by the delegating Cache implementation. Once the PojoCache instance is obtained,

you can call the cache life cycle method to start the cache. Below is a code snippet that creates

and starts the cache:

String configFile = "replSync-service.xml";

Requirements

7

boolean toStart = false;

PojoCache pcache = PojoCacheFactory.createCache(configFiel, toStart);

pcache.start(); // if toStart above is true, it will starts the cache automatically.

pcache.attach(id, pojo);

// ...

pcache.stop(); // stop the cache. This will take PojoCache out of the clustering group, if any, e.g.

4. Requirements

POJO Cache is currently supported on JDK 5 (since release 2.0). It requires the following libraries

(in addition to jboss-cache.jar and the required libraries for Core Cache) to start up:

• Library:

• pojocache.jar. Main POJO Cache library.

• jboss-aop-jdk50.jar. Main JBoss Aop library.

• javassist.jar. Java byte code manipulation library.

• trove.jar. High performance collections for Java.

8

Chapter 3.

9

Architecture
POJO Cache internally uses the JBoss Aop framework to both intercept object field access, and to

provide an internal interceptor stack for centralizing common behavior (e.g. locking, transactions).

The following figure is a simple overview of the POJO Cache architecture. From the top, it can be

can seen that when a call comes in (e.g., attach or detach), it will go through the POJO Cache

interceptor stack first. After that, it will store the object's fields into the underlying Core Cache,

which will be replicated (if enabled) using JGroups.

Figure 3.1. POJO Cache architecture overview

1. POJO Cache interceptor stack

As mentioned, the JBoss Aop framework is used to provide a configurable interceptor stack. In

the current implementation, the main POJO Cache methods have their own independant stack.

These are specified in META-INF/pojocache-aop.xml In most cases, this file should be left alone,

although advanced users may wish to add their own interceptors. The Following is the default

configuration:

 <!-- Check id range validity -->

 <interceptor name="CheckId" class="org.jboss.cache.pojo.interceptors.CheckIdInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Track Tx undo operation -->

 <interceptor name="Undo" class="org.jboss.cache.pojo.interceptors.PojoTxUndoInterceptor"

 scope="PER_INSTANCE"/>

Chapter 3. Architecture

10

 <!-- Begining of interceptor chain -->

 <interceptor name="Start" class="org.jboss.cache.pojo.interceptors.PojoBeginInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Check if we need a local tx for batch processing -->

 <interceptor name="Tx" class="org.jboss.cache.pojo.interceptors.PojoTxInterceptor"

 scope="PER_INSTANCE"/>

 <!--

 Mockup failed tx for testing. You will need to set

 PojoFailedTxMockupInterceptor.setRollback(true)

 to activate it.

 -->

 <interceptor name="MockupTx"

 class="org.jboss.cache.pojo.interceptors.PojoFailedTxMockupInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Perform parent level node locking -->

 <interceptor name="TxLock" class="org.jboss.cache.pojo.interceptors.PojoTxLockInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to perform Pojo level rollback -->

 <interceptor name="TxUndo"

 class="org.jboss.cache.pojo.interceptors.PojoTxUndoSynchronizationInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to used to check recursive field interception. -->

 <interceptor name="Reentrant"

 class="org.jboss.cache.pojo.interceptors.MethodReentrancyStopperInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Whether to allow non-serializable pojo. Default is false. -->

 <interceptor name="MarshallNonSerializable"

 class="org.jboss.cache.pojo.interceptors.CheckNonSerializableInterceptor"

 scope="PER_INSTANCE">

 <attribute name="marshallNonSerializable">false</attribute>

 </interceptor>

 <stack name="Attach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

Field interception

11

 </stack>

 <stack name="Detach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Find">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 </stack>

The stack should be self-explanatory. For example, for the Attach stack, we currently have

Start, CheckId, Tx, TxLock, and TxUndo interceptors. The stack always starts with a Start

interceptor such that initialization can be done properly. CheckId is to ensure the validity of the

Id (e.g., it didn't use any internal Id string). Finally, Tx, TxLock, and TxUndo are handling the the

proper transaction locking and rollback behavior (if needed).

2. Field interception

POJO Cache currently uses JBoss AOP to intercept field operations. If a class has been properly

instrumented (by either using the @Replicable annotation, or if the object has already been

advised by JBoss AOP), then a cache interceptor is added during an attach() call. Afterward,

any field modification will invoke the corresponding CacheFieldInterceptor instance. Below is

a schematic illustration of this process.

Only fields, and not methods are intercepted, since this is the most efficient and accurate way to

gaurantee the same data is visible on all nodes in the cluster. Further, this allows for objects that

do not conform to the JavaBean specficiation to be replicable. There are two important aspects

of field interception:

• All access qualifiers are intercepted. In other words, all private, all protected, all default, and

all public fields will be intercepted.

• Any field with final, static, and/or transient qualifiers, will be skipped. Therefore, they will

not be replicated, passivated, or manipulated in any way by POJO Cache.

The figure below illustrates both field read and write operations. Once an POJO is managed

by POJO Cache (i.e., after an attach() method has been called), JBoss Aop will invoke the

CacheFieldInterceptor every time a class operates on a field. The cache is always consulted,

since it is in control of the mapped data (i.e. it gaurantess the state changes made by other nodes

Chapter 3. Architecture

12

in the cluster are visible). Afterwords, the in-memmory copy is updated. This is mainly to allow

transaction rollbacks to restore the previous state of the object.

Figure 3.2. POJO Cache field interception

3. Object relationship management

As previously mentioned, unlike a traditional cache system, POJO Cache preserves object

identity. This allows for any type of object relationship available in the Java language to be

transparently handled.

During the mapping process, all object references are checked to see if they are already stored

in the cache. If already stored, instead of duplicating the data, a reference to the original object is

written in the cache. All referenced objects are reference counted, so they will be removed once

they are no longer referenced.

To look at one example, let's say that multiple Persons ("joe" and "mary") objects can own the

same Address (e.g., a household). The following diagram is a graphical representation of the

pysical cache data. As can be seen, the "San Jose" address is only stored once.

Object relationship management

13

Figure 3.3. Schematic illustration of object relationship mapping

In the following code snippet, we show programmatically the object sharing example.

import org.jboss.cache.pojo.PojoCache;

import org.jboss.cache.pojo.PojoCacheFactory;

import org.jboss.test.cache.test.standAloneAop.Person;

import org.jboss.test.cache.test.standAloneAop.Address;

String configFile = "META-INF/replSync-service.xml";

PojoCache cache = PojoCacheFactory.createCache(configFile); // This will start PojoCache

 automatically

Person joe = new Person(); // instantiate a Person object named joe

joe.setName("Joe Black");

joe.setAge(41);

Person mary = new Person(); // instantiate a Person object named mary

mary.setName("Mary White");

mary.setAge(30);

Address addr = new Address(); // instantiate a Address object named addr

addr.setCity("Sunnyvale");

addr.setStreet("123 Albert Ave");

addr.setZip(94086);

Chapter 3. Architecture

14

joe.setAddress(addr); // set the address reference

mary.setAddress(addr); // set the address reference

cache.attach("pojo/joe", joe); // add aop sanctioned object (and sub-objects) into cache.

cache.attach("pojo/mary", mary); // add aop sanctioned object (and sub-objects) into cache.

Address joeAddr = joe.getAddress();

Address maryAddr = mary.getAddress(); // joeAddr and maryAddr should be the same instance

cache.detach("pojo/joe");

maryAddr = mary.getAddress(); // Should still have the address.

If joe is removed from the cache, mary should still have reference the same Address object in

the cache store.

To further illustrate this relationship management, let's examine the Java code under a replicated

environment. Imagine two separate cache instances in the cluster now (cache1 and cache2). On

the first cache instance, both joe and mary are attached as above. Then, the application fails over

to cache2. Here is the code snippet for cache2 (assume the objects were already attached):

/**

 * Code snippet on cache2 during fail-over

 */

import org.jboss.cache.PropertyConfigurator;

import org.jboss.cache.pojo.PojoCache;

import org.jboss.test.cache.test.standAloneAop.Person;

import org.jboss.test.cache.test.standAloneAop.Address;

String configFile = "META-INF/replSync-service.xml";

PojoCache cache2 = PojoCacheFactory.createCache(configFile); // This will start PojoCache

 automatically

Person joe = cache2.find("pojo/joe"); // retrieve the POJO reference.

Person mary = cache2.find("pojo/mary"); // retrieve the POJO reference.

Address joeAddr = joe.getAddress();

Address maryAddr = mary.getAddress(); // joeAddr and maryAddr should be the same instance!!!

maryAddr = mary.getAddress().setZip(95123);

int zip = joeAddr.getAddress().getZip(); // Should be 95123 as well instead of 94086!

Object Inheritance

15

4. Object Inheritance

POJO Cache preserves the inheritance hierarchy of all attached objects. For example, if a Student

extends Person with an additional field year, then once Student is put into the cache, all the class

attributes of Person are mapped to the cache as well.

Following is a code snippet that illustrates how the inheritance behavior of a POJO is maintained.

Again, no special configuration is needed.

import org.jboss.test.cache.test.standAloneAop.Student;

Student joe = new Student(); // Student extends Person class

joe.setName("Joe Black"); // This is base class attributes

joe.setAge(22); // This is also base class attributes

joe.setYear("Senior"); // This is Student class attribute

cache.attach("pojo/student/joe", joe);

//...

joe = (Student)cache.attach("pojo/student/joe");

Person person = (Person)joe; // it will be correct here

joe.setYear("Junior"); // will be intercepted by the cache

joe.setName("Joe Black II"); // also intercepted by the cache

5. Physical object cache mapping model

The previous sections describe the logical object mapping model. In this section, we will explain

the physical mapping model, that is, how do we map the POJO into Core Cache for transactional

state replication. However, it should be noted that the physical structure of the cache is purely

an internal implementation detail, it should not be treated as an API as it may change in future

releases. This information is provided solely to aid in better understanding the mapping process

in POJO Cache.

When an object is first attached in POJO Cache, the Core Cache node representation is created in

a special internal area. The Id fqn that is passed to attach() is used to create an empty node that

references the internal node. Future references to the same object will point to the same internal

node location, and that node will remain until all such references have been removed (detached).

The example below demonstrates the mapping of the Person object under id "pojo/joe" and "pojo/

mary" as metioned in previous sections. It is created from a two node replication group where one

node is a Beanshell window and the other node is a Swing Gui window (shown here). For clarity,

multiple snapshots were taken to highlight the mapping process.

Chapter 3. Architecture

16

The first figure illustrates the first step of the mapping approach. From the bottom of the

figure, it can be seen that the PojoReference field under pojo/joe is pointing to an internal

location, /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49n5o-2. That is, under the

user-specified Id string, we store only an indirect reference to the internal area. Please note that

Mary has a similar reference.

Figure 3.4. Object cache mapping for Joe

Figure 3.5. Object cache mapping for Mary

Then by clicking on the referenced internal node (from the following figure), it can seen that the

primitive fields for Joe are stored there. E.g., Age is 41 and Name is Joe Black. And similarly for

Mary as well.

Physical object cache mapping model

17

Figure 3.6. Object cache mapping for internal node Joe

Figure 3.7. Object cache mapping for internal node Mary

Under the /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49n5o-2, it can be seen that

there is an Address node. Clicking on the Address node shows that it references another

internal location: /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49ngs-3 as shown in

the following figure. Then by the same token, the Address node under /__JBossInternal__/

5c4o12-lpaf5g-esl49n5e-1-esl49na0-4 points to the same address reference. That is, both

Joe and Mary share the same Address reference.

Chapter 3. Architecture

18

Figure 3.8. Object cache mapping: Joe's internal address

Figure 3.9. Object cache mapping: Mary's internal address

Finally, the /__JBossInternal__/5c4o12-lpaf5g-esl49n5e-1-esl49ngs-3 node contains the

various various primitive fields of Address, e.g., Street, Zip, and City. This is illustrated in the

following figure.

Collection Mapping

19

Figure 3.10. Object cache mapping: Address fields

6. Collection Mapping

Due to current Java limitations, Collection classes that implement Set, List, and Map are

substituted with a Java proxy. That is, whenever POJO Cache encounters any Collection instance,

it will:

• Create a Collection proxy instance and place it in the cache (instead of the original reference).

The mapping of the Collection elements will still be carried out recursively as expected.

• If the Collection instance is referenced from another object, POJO Cache will swap out the

original reference with the new proxy, so that operations performed by the refering object will

be picked up by the cache.

The drawback to this approach is that the calling application must re-get any collection references

that were attached. Otherwise, the cache will not be aware of future changes. If the collection is

referenced from another object, then the calling app can obtain the proxy by using the publishing

mechanism provided by the object (e.g. Person.getHobbies()). If, however, the collection is directly

attached to the cache, then a subsequent find() call will need to be made to retrieve the proxy.

The following code snippet illustrates obtaining a direct Collection proxy reference:

List list = new ArrayList();

list.add("ONE");

list.add("TWO");

cache.attach("pojo/list", list);

list.add("THREE"); // This won't be intercepted by the cache!

Chapter 3. Architecture

20

List proxyList = cache.find("pojo/list"; // Note that list is a proxy reference

proxyList.add("FOUR"); // This will be intercepted by the cache

This snippet illustrates obtaining the proxy reference from a refering object:

Person joe = new Person();

joe.setName("Joe Black"); // This is base class attributes

List lang = new ArrayList();

lang.add("English");

lang.add("Mandarin");

joe.setLanguages(lang);

// This will map the languages List automatically and swap it out with the proxy reference.

cache.attach("pojo/student/joe", joe);

lang = joe.getLanguages(); // Note that lang is now a proxy reference

lang.add("French"); // This will be intercepted by the cache

Finally, when a Collection is removed from the cache (e.g., via detach), you still can use the proxy

reference. POJO Cache will just redirect the call back to the in-memory copy. See below:

List list = new ArrayList();

list.add("ONE");

list.add("TWO");

cache.attach("pojo/list", list);

List proxyList = cache.find("pojo/list"); // Note that list is a proxy reference

proxyList.add("THREE"); // This will be intercepted by the cache

cache.detach("pojo/list"); // detach from the cache

proxyList.add("FOUR"); // proxyList has 4 elements still.

6.1. Limitations

The current implementation has the following limitations with collections:

• Only List, Set and Map are supported. Also it should be noted that the Java Collection API does

not fully describe the behavior of implementations, so the cache versions may differ slightly from

the common Java implementations (e.g. handling of NULL)

Limitations

21

• As of PojoCache 2.0, HashMap keys must be serializable. Prior to PojoCache 2.0, HashMap

keys were converted to String. This was fixed as you couldn't get the key back in its original

form. See issue JBCACHE-399 for more details.

22

Chapter 4.

23

API Overview
This section provides a brief overview of the POJO Cache APIs. Please consult the javadoc for

the full API.

1. PojoCacheFactory Class

PojoCacheFactory provides a couple of static methods to instantiate and obtain a PojoCache

instance.

/**

 * Create a PojoCache instance. Note that this will start the cache life cycle automatically.

 * @param config A configuration string that represents the file name that is used to

 * configure the underlying Cache instance.

 * @return PojoCache

 */

public static PojoCache createInstance(String config);

/**

 * Create a PojoCache instance.

 * @param config A configuration string that represents the file name that is used to

 * configure the underlying Cache instance.

 * @param start If true, it will start the cache life cycle.

 * @return PojoCache

 */

public static PojoCache createInstance(String config, boolean start);

/**

 * Create a PojoCache instance.

 * @param config A configuration object that is used to configure the underlying Cache instance.

 * @param start If true, it will start the cache life cycle.

 * @return PojoCache

 */

public static PojoCache createInstance(Configuration config, boolean start);

For example, to obtain a PojoCache instance and start the cache lifestyle automatically, we can do:

String configFile = "META-INF/replSync-service.xml";

PojoCache cache = PojoCacheFactory.createInstance(configFile);

Chapter 4. API Overview

24

2. PojoCache Interface

PojoCache is the main interface for POJO Cache operations. Since most of the cache interaction

is performed against the application domain model, there are only a few methods on this interface.

2.1. Attachment

/**

 * Attach a POJO into PojoCache. It will also recursively put any sub-POJO into

 * the cache system. A POJO can be the following and have the consequences when attached:

 *

 * It is PojoCacheable, that is, it has been annotated with

 * {@see org.jboss.cache.aop.annotation.PojoCacheable} annotation (or via XML), and has

 * been "instrumented" either compile- or load-time. The POJO will be mapped recursively to

 * the system and fine-grained replication will be performed.

 *

 * It is Serializable. The POJO will still be stored in the cache system. However, it is

 * treated as an "opaque" object per se. That is, the POJO will neither be intercepted

 * (for fine-grained operation) or object relationship will be maintained.

 *

 * Neither of above. In this case, a user can specify whether it wants this POJO to be

 * stored (e.g., replicated or persistent). If not, a PojoCacheException will be thrown.

 *

 * @param id An id String to identify the object in the cache. To promote concurrency, we

 * recommend the use of hierarchical String separating by a designated separator. Default

 * is "/" but it can be set differently via a System property, jbosscache.separator

 * in the future release. E.g., "/ben", or "/student/joe", etc.

 * @param pojo object to be inserted into the cache. If null, it will nullify the fqn node.

 * @return Existing POJO or null if there is none.

 * @throws PojoCacheException Throws if there is an error related to the cache operation.

 */

 Object attach(String id, Object pojo) throws PojoCacheException;

As described in the above javadoc, this method "attaches" the passed object to the cache at the

specified location (id). The passed in object (pojo) must have been instrumented (using the

@Replicable annotation) or implement the Serializable interface.

If the object is not instrumented, but serializable, POJO Cache will simply treat it as an opaque

"primitive" type. That is, it will simply store it without mapping the object's fields into the cache.

Replication is done on the object wide level and therefore it will not be fine-grained.

If the object has references to other objects, this call will issue attach() calls recursively until the

entire object graph is traversed. In addition, object identity and object references are preserved.

So both circular and multiply referenced objects are mapped as expected.

Detachment

25

The return value after the call is the previous object under id , if any. As a result, a successful

call i will replace that old value with the new instance. Note that a user will only need to issue

this call once for each top-level object. Further calls can be made directly on the graph, and they

will be mapped as expected.

2.2. Detachment

/**

 * Remove POJO object from the cache.

 *

 * @param id Is string that associates with this node.

 * @return Original value object from this node.

 * @throws PojoCacheException Throws if there is an error related to the cache operation.

 */

 Object detach(String id) throws PojoCacheException;

This call will detach the POJO from the cache by removing the contents under id and return the

POJO instance stored there (null if it doesn't exist). If successful, further operations against this

object will not affect the cache. Note this call will also remove everything stored under id even if

you have put other plain cache data there.

2.3. Query

/**

 * Retrieve POJO from the cache system. Return null if object does not exist in the cache.

 * Note that this operation is fast if there is already a POJO instance attached to the cache.

 *

 * @param id that associates with this node.

 * @return Current content value. Null if does not exist.

 * @throws PojoCacheException Throws if there is an error related to the cache operation.

 */

 Object find(String id) throws PojoCacheException;

This call will return the current object content located under id . This method call is useful when

you don't have the exact POJO reference. For example, when you fail over to the replicated node,

you want to get the object reference from the replicated cache instance. In this case, PojoCache

will create a new Java object if it does not exist and then add the cache interceptor such that every

future access will be in sync with the underlying cache store.

/**

 * Query all managed POJO objects under the id recursively. Note that this will not return

Chapter 4. API Overview

26

 * the sub-object POJOs, e.g., if Person has a sub-object of Address, it

 * won't return Address pojo. Also note also that this operation is not thread-safe

 * now. In addition, it assumes that once a POJO is found with a id, no more POJO is stored

 * under the children of the id. That is, we don't mix the id with different POJOs.

 *

 * @param id The starting place to find all POJOs.

 * @return Map of all POJOs found with (id, POJO) pair. Return size of 0, if not found.

 * @throws PojoCacheException Throws if there is an error related to the cache operation.

 */

 Map findAll(String id) throws PojoCacheException;

This call will return all the managed POJOs under cache with a base Fqn name. It is recursive,

meaning that it will traverse all the sub-trees to find the POJOs under that base. For example, if

you specify the fqn to be root, e.g., "/" , then it will return all the managed POJOs under the cache.

3. POJO Annotations

There are currently three annotations that can be used on attached objects in POJO Cache:

@Replicable , @Transient , and @Serializable . All of which affect how the annotated object

is replicated.

3.1. @Replicable annotation

The @org.jboss.cache.annotation.Replicable annotation is used to mark classes for

instrumentation. Once instrumented, individual field changes can be replicated separately. See

the instrumentation chapter for more information on this process.

The following example will replicate changes to resource and name separately:

@Replicable

public class Gadget

{

 private Resource resource;

 private String name;

}

3.2. @Transient annotation

The @org.jboss.cache.annotation.Transient annotation is used to indicate that a field should

not be replicable. This allows non-transient fields to be included in normal Java serialization output,

but not when replicated by POJO Cache.

The following object will not replicate changes to resource.

@Serializable annotation

27

@Replicable

public class Gadget

{

 // resource won't be replicated

 @Transient

 private Resource resource;

}

3.3. @Serializable annotation

The @org.jboss.cache.annotation.Serializable annotation indicates a field should be

treated as a serialized attribute. This, of course, requires that the type of the field implement

Serializable . If the marked field type has an @Replicable annotation, it will be ignored.

@Replicable

public class Gadget

{

 // resource won't be replicated

 @Transient

 private Resource resource;

 // serialized even if SpecialAddress is @Replicable

 @Serializable

 private SpecialAddress specialAddress;

 // other state variables

}

28

Chapter 5.

29

Configuration and Deployment
Since POJO Cache uses Core Cache for the underlying node replication, transaction, locking,

and passivation behavior, the configuration is mostly the same.

1. Cache configuration xml file

When a PojoCache instance is obtained from a PojoCacheFactory, it is required that the either a

org.jboss.cache.config.Configuration object is passed, or more typically a String indicating

the location on the classpath or filesystem of an xml configuration file is provided. In the latter

case, PojoCacheFactory will parse the xml to create a Configuration. PojoCache will simply

pass the resulting Configuration to the underlying Core Cache implementation. For details on

the configuration please see the "Configuration" chapter in the the JBoss Cache User Guide.

2. Passivation

A common use-case is to configure the underlying Core Cache to enable passivation. Passivation

is a feature used to reduce cache memory usage by evicting stale data that can later be reloaded.

In JBoss Cache, it is done via a combination of an eviction policy and a cache loader. That is,

when a node is evicted from the Cache's in-memory store, it will be stored in a persistent store

by the cache loader. When the node is requested again, it will be loaded from the persistent store

and stored into memory.

There is a restriction, however. Since POJO Cache maps object data into an internal area,

there are two places that have object information. One is under the regular String ID that the

user specifies, and the other is located under /__JBossInternal__. Therefore, to maintain

consistentency, when you specify the eviction region, you can only specify one global (i.e., /

default) region. This way, when the nodes associated with a POJO are passivated, they will

do so across the whole region.

Below is a snippet from a cache configuration xml illustrating how the eviction policy along with

cache loader can be configured. Please note that this is simply an aspect of the underlying Cache.

That is, PojoCache layer is agnostic to this behavior.

<attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <attribute name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">3</attribute>

 </region>

Chapter 5. Configuration and ...

30

 </config>

</attribute>

<attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>true</passivation>

 <preload>/</preload>

 <shared>false</shared>

 <!-- we can now have multiple cache loaders, which get chained -->

 <cacheloader>

 <class>org.jboss.cache.loader.FileCacheLoader</class>

 <!-- whether the cache loader writes are asynchronous -->

 <async>false</async>

 <!-- only one cache loader in the chain may set fetchPersistentState to true.

 An exception is thrown if more than one cache loader sets this to true. -->

 <fetchPersistentState>true</fetchPersistentState>

 <!-- determines whether this cache loader ignores writes - defaults to false. -->

 <ignoreModifications>false</ignoreModifications>

 </cacheloader>

 </config>

</attribute>

Another way to support multiple regions in eviction is to use region-based marshalling. See the

"Architecture" chapter in the JBoss Cache User Guide for more information on region-based

marshalling. When the Cache uses region-based marshalling, POJO Cache will store internal

node data on the region that is specified. This allows for a more flexible eviction policy.

3. AOP Configuration

POJO Cache supplies a pojocache-aop.xml that is required to be set via a system property:

jboss.aop.path during compile- or load-time, or placed in the user's classpath. The file now

consists of the interceptor stack specification, as well as annotations for POJO instrumentation. It

is listed fully in the Appendix section. Note that the file should not normally need to be modified.

Only an advanced use-case would require changes.

4. Deployment Options

There are a number of ways to deploy POJO Cache:

4.1. Programatic Deployment

Simply instantiate a PojoCacheFactory and invoke one of the overloaded createCache methods

shown in the API Overview.

JMX-Based Deployment in JBoss AS (JBoss

AS 5.x and 4.x)

31

4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and

4.x)

If PojoCache is run in JBoss AS then your cache can be deployed as an MBean simply by

copying a standard cache configuration file to the server's deploy directory. The standard format

of PojoCache's standard XML configuration file (as shown in the Appendix) is the same as a JBoss

AS MBean deployment descriptor, so the AS's SAR Deployer has no trouble handling it. Also, you

don't have to place the configuration file directly in deploy; you can package it along with other

services or JEE components in a SAR or EAR.

In AS 5, if you're using a server config based on the standard all config, then that's all you need to

do; all required jars will be on the classpath. Otherwise, you will need to ensure pojocache.jar,

jbosscache.jar and jgroups-all.jar are on the classpath. You may need to add other jars if

you're using things like JdbmCacheLoader. The simplest way to do this is to copy the jars from the

PojoCache distribution's lib directory to the server config's lib directory. You could also package

the jars with the configuration file in Service Archive (.sar) file or an EAR.

It is possible, to deploy a POJO Cache 2.0 instance in JBoss AS 4.x However, the significant API

changes between the 2.x and 1.x releases mean none of the standard AS 4.x clustering services

(e.g. http session replication) that rely on the 1.x API will work with PojoCache 2.x. Also, be aware

that usage of PojoCache 2.x in AS 4.x is not something the cache developers are making any

significant effort to test, so be sure to test your application well (which of course you're doing

anyway.)

Note in the example the value of the mbean element's code attribute:

org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper. This is the class JBoss Cache uses to

handle JMX integration; the PojoCache itself does not expose an MBean interface. See the JBoss

Cache MBeans section for more on the PojoCacheJmxWrapper.

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a JMX proxy

can be used to get a reference to the cache:

 MBeanServer server = MBeanServerLocator.locateJBoss();

 ObjectName on = new ObjectName("jboss.cache:service=PojoCache");

 PojoCacheJmxWrapperMBean cacheWrapper =

 (PojoCacheJmxWrapperMBean) MBeanServerInvocationHandler.newProxyInstance(server,

 on,

 PojoCacheJmxWrapperMBean.class, false);

 PojoCache cache = cacheWrapper.getPojoCache();

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current

JVM. The javax.management.MBeanServerInvocationHandler class' newProxyInstance

Chapter 5. Configuration and ...

32

method creates a dynamic proxy implementing the given interface and uses JMX to dynamically

dispatch methods invoked against the generated interface to the MBean. The name used to look

up the MBean is the same as defined in the cache's configuration file.

Once the proxy to the PojoCacheJmxWrapper is obtained, the getPojoCache() will return a

reference to the PojoCache itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services via deployment

of a file whose name ends with -beans.xml. A POJO service is one whose implementation is

via a "Plain Old Java Object", meaning a simple java bean that isn't required to implement any

special interfaces or extend any particular superclass. A PojoCache is a POJO service, and all the

components in a Configuration are also POJOS, so deploying a cache in this way is a natural

step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss

AS. JBoss Microcontainer is a sophisticated IOC framework (similar to Spring). A -beans.xml

file is basically a descriptor that tells the IOC framework how to assemble the various beans that

make up a POJO service.

The rules for how to deploy the file, how to package it, how to ensure the required jars are on the

classpath, etc. are the same as for a JMX-based deployment.

Following is an abbreviated example -beans.xml file. The details of building up the Configuration

are omitted; see the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for a more

complete example. If you look in the server/all/deploy directory of an AS 5 installation, you

can find several more examples.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... details omitted

 </bean>

 <!-- The cache itself. -->

 <bean name="ExampleCache" class="org.jboss.cache.pojo.impl.PojoCacheImpl">

 <constructor factoryClass="org.jboss.cache.pojo.PojoCacheFactory

POJO Cache MBeans

33

 factoryMethod="createCache">

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 <parameter>false</false>

 </constructor>

 </bean>

</deployment>

An interesting thing to note in the above example is the difference between POJO Cache

and a plain Cache in the use of a factory to create the cache. (See the "Deploying JBoss

Cache" chapter in the JBoss Cache User Guide for the comparable plain Cache example.) The

PojoCacheFactory exposes static methods for creating a PojoCache; as a result there is no need

to add a separate bean element for the factory. Core Cache's DefaultCacheFactory creates

caches from a singleton instance, requiring a bit more boilerplate in the config file.

5. POJO Cache MBeans

POJO Cache provides an MBean that can be registered with your environment's

JMX server to allow access to the cache instance via JMX. This MBean is the

org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper. It is a StandardMBean, so it's MBean

interface is org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean. This MBean can be

used to:

• Get a reference to the underlying PojoCache.

• Invoke create/start/stop/destroy lifecycle operations on the underlying PojoCache.

• See numerous details about the cache's configuration, and change those configuration items

that can be changed when the cache has already been started.

See the PojoCacheJmxWrapperMBean javadoc for more details.

It is important to note a significant architectural difference between PojoCache 1.x and 2.x. In

1.x, the old TreeCacheAop class was itself an MBean, and essentially exposed the cache's entire

API via JMX. In 2.x, JMX has been returned to it's fundamental role as a management layer.

The PojoCache object itself is completely unaware of JMX; instead JMX functionality is added

through a wrapper class designed for that purpose. Furthermore, the interface exposed through

JMX has been limited to management functions; the general PojoCache API is no longer exposed

through JMX. For example, it is no longer possible to invoke a cache attach or detach via the

JMX interface.

If a PojoCacheJmxWrapper is registered, the wrapper also registers MBeans for the

underlying plain Cache and for each interceptor configured in the cache's interceptor stack.

These MBeans are used to capture and expose statistics related to cache operations;

see the JBoss Cache User Guide for more. They are hierarchically associated with

Chapter 5. Configuration and ...

34

the PojoCacheJmxWrapper MBean and have service names that reflect this relationship.

For example, a plain Cache associated with a jboss.cache:service=PojoCache will be

accessible through an mbean named jboss.cache:service=PojoCache,cacheType=Cache.

The replication interceptor MBean for that cache will be accessible

through the mbean named jboss.cache:service=PojoCache,cacheType=Cache,cache-

interceptor=ReplicationInterceptor.

6. Registering the PojoCacheJmxWrapper

The best way to ensure the PojoCacheJmxWrapper is registered in JMX depends on how you are

deploying your cache:

6.1. Programatic Registration

Simplest way to do this is to create your PojoCache and pass it to the PojoCacheJmxWrapper

constructor.

 // Build but don't start the cache

 // (although it would work OK if we started it)

 PojoCache cache = PojoCacheFactory.createCache("cache-configuration.xml", false);

 PojoCacheJmxWrapperMBean wrapper = new PojoCacheJmxWrapper(cache);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=PojoCache");

 server.registerMBean(wrapper, on);

 // Invoking lifecycle methods on the wrapper results

 // in a call through to the cache

 wrapper.create();

 wrapper.start();

 ... use the cache

 ... on application shutdown

 // Invoking lifecycle methods on the wrapper results

 // in a call through to the cache

 wrapper.stop();

 wrapper.destroy();

Alternatively, build a Configuration object and pass it to the PojoCacheJmxWrapper. The

wrapper will construct the PojoCache:

JMX-Based Deployment in JBoss AS (JBoss

AS 4.x and 5.x)

35

 Configuration config = buildConfiguration(); // whatever it does

 PojoCacheJmxWrapperMBean wrapper = new PojoCacheJmxWrapper(config);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");

 server.registerMBean(wrapper, on);

 // Call to wrapper.create() will build the Cache if one wasn't injected

 wrapper.create();

 wrapper.start();

 // Now that it's built, created and started, get the cache from the wrapper

 PojoCache cache = wrapper.getPojoCache();

 // ... use the cache

 // ... on application shutdown

 wrapper.stop();

 wrapper.destroy();

6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and

5.x)

When you deploy your cache in JBoss AS using a -service.xml file, a PojoCacheJmxWrapper is

automatically registered. There is no need to do anything further. The PojoCacheJmxWrapper is

accessible through the service name specified in the cache configuration file's mbean element.

6.3. Via JBoss Microcontainer (JBoss AS 5.x)

PojoCacheJmxWrapper is a POJO, so the microcontainer has no problem creating one.

The trick is getting it to register your bean in JMX. This can be done by specifying the

org.jboss.aop.microcontainer.aspects.jmx.JMX annotation on the PojoCacheJmxWrapper

bean:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

Chapter 5. Configuration and ...

36

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <!-- The cache itself. -->

 <bean name="ExampleCache" class="org.jboss.cache.pojo.impl.PojoCacheImpl">

 <constructor factoryClass="org.jboss.cache.pojo.PojoCacheFactory

 factoryMethod="createCache">

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 <parameter>false</false>

 </constructor>

 </bean>

 <!-- JMX Management -->

 <bean name="ExampleCacheJmxWrapper" class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(

 name="jboss.cache:service=ExamplePojoCache",

 exposedInterface=org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean.class,

 registerDirectly=true)

 </annotation>

 <constructor>

 <parameter><inject bean="ExampleCache"/></parameter>

 </constructor>

 </bean>

</deployment>

As discussed in the Programatic Registration section, PojoCacheJmxWrapper can do the work of

building, creating and starting the PojoCache if it is provided with a Configuration:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

Runtime Statistics and JMX Notifications

37

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <bean name="ExampleCache" class="org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(

 name="jboss.cache:service=ExamplePojoCache",

 exposedInterface=org.jboss.cache.pojo.jmx.PojoCacheJmxWrapperMBean.class,

 registerDirectly=true)

 </annotation>

 <constructor>

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 </constructor>

 </bean>

</deployment>

7. Runtime Statistics and JMX Notifications

As mentioned above, the cache exposes a variety of statistical information through its MBeans. It

also emits JMX notifications when events occur in the cache. See the JBoss Cache User Guide

for more on the statistics and notifications that are available.

The only PojoCache addition to the plain JBoss Cache behavior described in the User Guide is that

you can register with the PojoCacheJmxWrapper to get the notifications. There is no requirement

to figure out the ObjectName of the underlying cache's CacheJmxWrapper and register with that.

38

Chapter 6.

39

Instrumentation
In order to store an object in POJO Cache, it must be either instrumented or made serializable.

Instrumentation is the most optimal approach since it preserves object identity and provides

field granular replication. POJO Cache currently uses the JBoss AOP project to provide

instrumentation, so the same processes described in the AOP documentation are used with POJO

Cache.

The primary input to JBoss AOP is the AOP binding file, which is responsible for specifying which

classes should be instrumented. POJO Cache provides a binding file, pojocache-aop.xml ,

which matches all classes that have been annotated with the @Replicable annotation. Advanced

users may choose to alter this definition to instrument classes in other various interesting ways.

However, it is recommended to just stick with the default annotation binding.

The instrumentation process can be executed at either load-time, or compile-time. Load-time

instrumentation uses a Java agent to intercept and modify classes as they are loaded; whereas

compile-time instrumentation requires running aopc as part of the compilation process.

Note

Load-time is the recommended approach, since compile-time instrumentation adds

hard dependencies to the weaved bytecode which ties the output to a particular

version of JBoss AOP.

1. Load-time instrumentation

Load-time instrumentation uses a Java agent to intercept all classes loaded by the JVM. As they

are loaded JBoss AOP instruments them, allowing POJO Cache to monitor field changes. To

enable load time instrumentation the JVM must be started with the following specified:

1. The jboss.aop.path system property set to the location of pojocache-aop.xml

2. A javaagent argument which includes jboss-aop-jdk50.jar

These requirements lead to the following example ant task:

<java classname="Foo" fork="yes">

 <jvmarg value="-javaagent:lib/jboss-aop.jar"/>

 <jvmarg value="-Djboss.aop.path=etc/META-INF/pojocache-aop.xml"/>

 <classpath refid="test.classpath"/>

</java>

Chapter 6. Instrumentation

40

There is also a pojo-run command line script in the POJO Cache distribution that passes the

proper arguments to the JVM for you.

$ pojo-run -classpath myclasses org.foo.Bar

Once the JVM is executed in this manner, any class with the @Replicable annotation will be

instrumented when it is loaded.

2. Compile-time instrumentation

While load-time is the preferred approach, it is also possible to instrument classes at compile-time.

To do this, the aopc tool is used, with the following requirements:

1. The aoppath option must point to the location of pojocache-aop.xml

2. The src option must point to the location of your class files that are to be instrumented. This

is typically the output folder of a javac run.

The following is an example ant task which performs compile-time instrumentation:

<taskdef name="aopc" classname="org.jboss.aop.ant.AopC" classpathref="aop.classpath"/>

<target name="aopc" depends="compile" description="Precompile aop class">

 <aopc compilerclasspathref="aop.classpath" verbose="true">

 <src path="${build}"/>

 <include name="org/jboss/cache/aop/test/**/*.class"/>

 <aoppath path="${output}/resources/pojocache-aop.xml"/>

 <classpath path="${build}"/>

 <classpath refid="lib.classpath"/>

 </aopc>

</target>

In this example, once the aopc target is executed the classes in the build directory are modified.

They can then be packaged in a jar and loaded using the normal Java mechanisms.

3. Understanding the provided AOP descriptor

The advanced user might decide to alter the provided AOP descriptor. In order to do this, it is

important to understand the reasons behind what is provided, and what is required by POJO

Cache. Previous sections have mentioned that any class with the @Replicable annotation will be

instrumented. This happens, because the provided AOP descriptor, pojocache-aop.xml , has a

prepare statement which matches any class (or subclass) using the annotation. This is shown in

the following snippet:

Understanding the provided AOP descriptor

41

<prepare expr="field(* $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)"/>

More specifically, any code which accesses a field on a class which has been annotated with

@Replicable , will be instrumented: The "field" pointcut in the expression matches both read

and write operations. The wildcard "*" indicates that all java protection modes are intercepted

(private, package, protected, public). The $instanceof expression refers to any annotation that

subclasses @Replicable . Finally, the ending wildcard allows the matched field to have any name.

42

Chapter 7.

43

TroubleShooting
We have maintained a PojoCache wiki troubleshooting page [http://wiki.jboss.org/wiki/

Wiki.jsp?page=PojoCacheTroubleshooting]. Please refer it first. We will keep adding

troubleshooting tips there.

All the current outstanding issues are documented in JBossCache Jira page [http://jira.jboss.com/

jira/secure/BrowseProject.jspa?id=10051] . Please check it for details. If you have discovered

additional issues, please report it there as well.

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051

44

Chapter 8.

45

Appendix

1. Example POJO

The example POJO classes used for are: Person, Student, and Address. Below are their

definition (note that neither class implements Serializable) along with the annotation.

@org.jboss.cache.pojo.annotation.Replicable

public class Person {

 String name=null;

 int age=0;

 Map hobbies=null;

 Address address=null;

 Set skills;

 List languages;

 public String getName() { return name; }

 public void setName(String name) { this.name=name; }

 public int getAge() { return age; }

 public void setAge(int age) { this.age = age; }

 public Map getHobbies() { return hobbies; }

 public void setHobbies(Map hobbies) { this.hobbies = hobbies; }

 public Address getAddress() { return address; }

 public void setAddress(Address address) { this.address = address; }

 public Set getSkills() { return skills; }

 public void setSkills(Set skills) { this.skills = skills; }

 public List getLanguages() { return languages; }

 public void setLanguages(List languages) { this.languages = languages; }

}

public class Student extends Person {

 String year=null;

 public String getYear() { return year; }

Chapter 8. Appendix

46

 public void setYear(String year) { this.year=year; }

}

 @org.jboss.cache.pojo.annotation.Replicable

 public class Address {

 String street=null;

 String city=null;

 int zip=0;

 public String getStreet() { return street; }

 public void setStreet(String street) { this.street=street; }

 // ...

}

2. Sample Cache configuration xml

Below is a sample xml configuration for Cache that you can use for PojoCache creation.

<?xml version="1.0" encoding="UTF-8" ?>

<server>

 <mbean code="org.jboss.cache.pojo.jmx.PojoCacheJmxWrapper"

 name="jboss.cache:service=PojoCache">

 <depends>jboss:service=TransactionManager</depends>

 <!-- Configure the TransactionManager -->

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.transaction.DummyTransactionManagerLookup

 </attribute>

 <!-- Isolation level : SERIALIZABLE

 REPEATABLE_READ (default)

 READ_COMMITTED

 READ_UNCOMMITTED

 NONE

 -->

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

Sample Cache configuration xml

47

 <!-- Valid modes are LOCAL, REPL_ASYNC and REPL_SYNC -->

 <attribute name="CacheMode">REPL_SYNC</attribute>

 <!-- Name of cluster. Needs to be the same for all caches,

 in order for them to find each other

 -->

 <attribute name="ClusterName">PojoCacheCluster</attribute>

 <!-- JGroups protocol stack properties. -->

 <attribute name="ClusterConfig">

 <config>

 <!-- UDP: if you have a multihomed machine, set the bind_addr

 attribute to the appropriate NIC IP address -->

 <!-- UDP: On Windows machines, because of the media sense feature

 being broken with multicast (even after disabling media sense)

 set the loopback attribute to true -->

 <UDP mcast_addr="228.1.2.3" mcast_port="48866"

 ip_ttl="64" ip_mcast="true"

 mcast_send_buf_size="150000" mcast_recv_buf_size="80000"

 ucast_send_buf_size="150000" ucast_recv_buf_size="80000"

 loopback="false"/>

 <PING timeout="2000" num_initial_members="3"/>

 <MERGE2 min_interval="10000" max_interval="20000"/>

 <FD shun="true"/>

 <FD_SOCK/>

 <VERIFY_SUSPECT timeout="1500"/>

 <pbcast.NAKACK gc_lag="50" retransmit_timeout="600,1200,2400,4800"

 max_xmit_size="8192"/>

 <UNICAST timeout="600,1200,2400",4800/>

 <pbcast.STABLE desired_avg_gossip="400000"/>

 <FC max_credits="2000000" min_threshold="0.10"/>

 <FRAG2 frag_size="8192"/>

 <pbcast.GMS join_timeout="5000" join_retry_timeout="2000"

 shun="true" print_local_addr="true"/>

 <pbcast.STATE_TRANSFER/>

 </config>

 </attribute>

 <!-- Whether or not to fetch state on joining a cluster -->

 <attribute name="FetchInMemoryState">true</attribute>

 <!-- The max amount of time (in milliseconds) we wait until the

 initial state (ie. the contents of the cache) are retrieved from

 existing members in a clustered environment

Chapter 8. Appendix

48

 -->

 <attribute name="InitialStateRetrievalTimeout">15000</attribute>

 <!-- Number of milliseconds to wait until all responses for a

 synchronous call have been received.

 -->

 <attribute name="SyncReplTimeout">15000</attribute>

 <!-- Max number of milliseconds to wait for a lock acquisition -->

 <attribute name="LockAcquisitionTimeout">10000</attribute>

 </mbean>

</server>

3. PojoCache configuration xml

Attached is a full listing for pojocache-aop.xml.

 <?xml version="1.0" encoding="UTF-8"?>

 <!--

 This is the PojoCache configuration file that specifies:

 1. Interceptor stack for API

 2. Annotation binding for POJO (via "prepare" element)

 Basically, this is a variant of jboss-aop.xml. Note that

 except for the customization of interceptor stack, you should

 not need to modify this file.

 To run PojoCache, you will need to define a system property:

 jboss.aop.path that contains the path to this file such that JBoss Aop

 can locate it.

 -->

 <aop>

 <!--

 This defines the PojoCache 2.0 interceptor stack. Unless necessary, don't modify the stack

 here!

 -->

 <!-- Check id range validity -->

 <interceptor name="CheckId" class="org.jboss.cache.pojo.interceptors.CheckIdInterceptor"

 scope="PER_INSTANCE"/>

PojoCache configuration xml

49

 <!-- Track Tx undo operation -->

 <interceptor name="Undo" class="org.jboss.cache.pojo.interceptors.PojoTxUndoInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Begining of interceptor chain -->

 <interceptor name="Start" class="org.jboss.cache.pojo.interceptors.PojoBeginInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Check if we need a local tx for batch processing -->

 <interceptor name="Tx" class="org.jboss.cache.pojo.interceptors.PojoTxInterceptor"

 scope="PER_INSTANCE"/>

 <!--

 Mockup failed tx for testing. You will need to set

 PojoFailedTxMockupInterceptor.setRollback(true)

 to activate it.

 -->

 <interceptor name="MockupTx"

 class="org.jboss.cache.pojo.interceptors.PojoFailedTxMockupInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Perform parent level node locking -->

 <interceptor name="TxLock"

 class="org.jboss.cache.pojo.interceptors.PojoTxLockInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to perform Pojo level rollback -->

 <interceptor name="TxUndo"

 class="org.jboss.cache.pojo.interceptors.PojoTxUndoSynchronizationInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Interceptor to used to check recursive field interception. -->

 <interceptor name="Reentrant"

 class="org.jboss.cache.pojo.interceptors.MethodReentrancyStopperInterceptor"

 scope="PER_INSTANCE"/>

 <!-- Whether to allow non-serializable pojo. Default is false. -->

 <interceptor name="MarshallNonSerializable"

 class="org.jboss.cache.pojo.interceptors.CheckNonSerializableInterceptor"

 scope="PER_INSTANCE">

 <attribute name="marshallNonSerializable">false</attribute>

 </interceptor>

Chapter 8. Appendix

50

 <!-- This defines the stack macro -->

 <stack name="Attach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="MarshallNonSerializable"/>

 <interceptor-ref name="Tx"/>

 <!-- NOTE: You can comment this out during production although leaving it here is OK. -->

 <interceptor-ref name="MockupTx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Detach">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 <interceptor-ref name="Tx"/>

 <!-- NOTE: You can comment this out during production although leaving it here is OK. -->

 <interceptor-ref name="MockupTx"/>

 <interceptor-ref name="TxLock"/>

 <interceptor-ref name="TxUndo"/>

 </stack>

 <stack name="Find">

 <interceptor-ref name="Start"/>

 <interceptor-ref name="CheckId"/>

 </stack>

 <!--

 The following section should be READ-ONLY!! It defines the annotation binding to the stack.

 -->

 <!-- This binds the jointpoint to specific in-memory operations. Currently in PojoUtil. -->

 <bind pointcut="execution(*

 @org.jboss.cache.pojo.annotation.Reentrant->toString())">

 <interceptor-ref name="Reentrant"/>

 </bind>

 <bind pointcut="execution(*

 org.jboss.cache.pojo.PojoUtil->@org.jboss.cache.pojo.annotation.TxUndo(..))">

 <interceptor-ref name="Undo"/>

 </bind>

 <bind pointcut="execution(* org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Attach(..))">

PojoCache configuration xml

51

 <stack-ref name="Attach"/>

 </bind>

 <bind pointcut="execution(* org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Detach(..))">

 <stack-ref name="Detach"/>

 </bind>

 <bind pointcut="execution(* org.jboss.cache.pojo.impl.PojoCacheImpl-

>@org.jboss.cache.pojo.annotation.Find(..))">

 <stack-ref name="Find"/>

 </bind>

 <!--

 Following is declaration for JDK50 annotation. You use the specific annotation on your

 POJO such that it can be instrumented. Idea is user will then need only to annotate like:

 @org.jboss.cache.pojo.annotation.Replicable

 in his POJO. There will be no need of jboss-aop.xml from user's side.

 -->

 <!-- If a POJO has PojoCachable annotation, it will be asepctized. -->

 <prepare expr="field(* $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)" />

 <!-- Observer and Observable to monitor field modification -->

 <bind pointcut="

 set(* $instanceof{@org.jboss.cache.pojo.annotation.Replicable}->*)

 ">

 <interceptor class="org.jboss.cache.pojo.observable.SubjectInterceptor"/>

 </bind>

 <introduction class="$instanceof{@org.jboss.cache.pojo.annotation.Replicable}">

 <mixin>

 <interfaces>org.jboss.cache.pojo.observable.Subject</interfaces>

 <class>org.jboss.cache.pojo.observable.SubjectImpl</class>

 <construction>new org.jboss.cache.pojo.observable.SubjectImpl(this)</construction>

 </mixin>

 </introduction>

 </aop>

52

	POJO Cache
	Table of Contents
	Preface
	Chapter 1. Terminology
	1. Overview

	Chapter 2. Introduction
	1. Overview
	2. Features
	3. Usage
	4. Requirements

	Chapter 3. Architecture
	1. POJO Cache interceptor stack
	2. Field interception
	3. Object relationship management
	4. Object Inheritance
	5. Physical object cache mapping model
	6. Collection Mapping
	6.1. Limitations

	Chapter 4. API Overview
	1. PojoCacheFactory Class
	2. PojoCache Interface
	2.1. Attachment
	2.2. Detachment
	2.3. Query

	3. POJO Annotations
	3.1. @Replicable annotation
	3.2. @Transient annotation
	3.3. @Serializable annotation

	Chapter 5. Configuration and Deployment
	1. Cache configuration xml file
	2. Passivation
	3. AOP Configuration
	4. Deployment Options
	4.1. Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5. POJO Cache MBeans
	6. Registering the PojoCacheJmxWrapper
	6.1. Programatic Registration
	6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	6.3. Via JBoss Microcontainer (JBoss AS 5.x)

	7. Runtime Statistics and JMX Notifications

	Chapter 6. Instrumentation
	1. Load-time instrumentation
	2. Compile-time instrumentation
	3. Understanding the provided AOP descriptor

	Chapter 7. TroubleShooting
	Chapter 8. Appendix
	1. Example POJO
	2. Sample Cache configuration xml
	3. PojoCache configuration xml

