
1

POJO Cache Tutorial
Ben Wang

Galder Zamarreño

Release 2.2.1

October 2008

1. Introduction ... 1

2. What You Will Learn ... 1

3. Configuration ... 1

4. Script .. 2

5. Example POJOs .. 2

6. Running The Demo GUI .. 3

7. Tutorials .. 4

7.1. POJO Cache API, POJO manipulation, and Replication 4

7.2. Collections .. 6

8. Transactions .. 7

1. Introduction

POJO Cache is an in-memory, transactional, and replicated POJO (plain old Java

object) cache system that allows users to operate on a POJO transparently without

active user management of either replication or persistency aspects. This tutorial

focuses on the usage of the POJO Cache API.

For details of configuration, usage and APIs, please refer to the users manual

[http://labs.jboss.org/portal/jbosscache/docs/index.html].

2. What You Will Learn

• POJO Cache creation and modification

• Replication of POJO fields

• Using Collections in POJO Cache

• Transactions

3. Configuration

First download the JBoss Cache 2.x distribution from the download page

[http://labs.jboss.org/portal/jbosscache/download/index.html] . You probably want

the jbosscache-pojo-2.X.Y.zip distribution. Unzip it, and you will get a directory

http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/download/index.html
http://labs.jboss.org/portal/jbosscache/download/index.html

POJO Cache Tutorial

2

containing the distribution, such as jbosscache-pojo-2.X.Y . For the sake of this

tutorial, I will refer to this as POJO Cache .

The configuration files are located under the jbosscache-pojo/etc directory.

You can modify the behavior of the underlying cache through editing the various

configuration files.

• log4j.xml . Logging output. You can enable logging, specify log levels or change

the name and path to the log file.

• META-INF/replSync-service.xml . Cache configuration file used for this tutorial.

• pojocache-aop.xml . POJO Cache configuration file that contains,

amongst other things, the annotation to use on POJOs so that they're

aspectised. For more information, please the POJO Cache users manual

[http://labs.jboss.org/portal/jbosscache/docs/index.html] .

4. Script

The only script needed for this tutorial is the jbosscache-pojo/build.xml ant

script.

5. Example POJOs

The example POJO classes used for POJO Cache demo are:

org.jboss.cache.pojo.test.Person and org.jboss.cache.pojo.test.Address

. They are located under tests/functional directory.The demo will demonstrate

that once a POJO has been attached to the cache, plain get/set POJO methods will

be intercepted by the cache.

Here is the snippet of the class definition for Person and Address with the

Replicable annotation.

@org.jboss.cache.pojo.annotation.Replicable

public class Person

{

 ...

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name=name;

 }

 // ...

http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html

Running The Demo GUI

3

 public List<String> getLanguages()

 {

 return languages;

 }

 public void setLanguages(List<String> languages)

 {

 this.languages = languages;

 }

 // ...

 public Address getAddress()

 {

 return address;

 }

 public void setAddress(Address address)

 {

 this.address = address;

 }

 // ...

}

@org.jboss.cache.pojo.annotation.Replicable

public class Address

{

 // ...

 public String getStreet()

 {

 return street;

 }

 public void setStreet(String street)

 {

 this.street=street;

 }

 // ...

}

6. Running The Demo GUI

The demo is run by calling the ant script (via the driver) with the run.demo target.

E.g.,

POJO Cache Tutorial

4

ant run.demo

This will cause a GUI window to appear, giving you a tree view of the cache in the

top pane and a BeanShell view of the JVM in the lower pane.

The BeanShell view is preset with the following variables:

• cache - a reference to the POJO Cache interface, used by the GUI instance.

• transactionManager - a reference to the registered transaction manager.

The references made available to the BeanShell window point to the same cache

instance used by the tree view in the GUI above.

To run the demo as a replicated demo, it is useful to start another command line

window and run the ant script again as you did above. Now you will have two cache

instances running in two separate GUIs, replicating state to each other.

7. Tutorials
It is recommended that you shut down and restart the demo GUI for each of

the following tutorials, to ensure clean caches every time. To inspect POJO

attribute changes via GUI, please refer to the POJO Cache user manual

[http://labs.jboss.org/portal/jbosscache/docs/index.html] to understand how the

POJOs are mapped internally in the cache.

7.1. POJO Cache API, POJO manipulation, and Replication

For this tutorial, start two instance of the demo GUI. In this tutorial, we will:

• Attach POJOs to the cache and see them being replicated.

• After attaching, manipulate the POJOs and see the individual changes replicated.

• Retrieve POJOs from the cache, manipulate them and see the changes replicated.

• Create POJOs that share a common POJO and the consequences of changes to

this.

• Detach POJOs from the cache.

• After detaching, manipulates the POJOs and see how the values in the cache are

unchanged.

1. In the 1st GUI instance, create a POJO, i.e. a Person with an Address:

 joe = new Person();

 joe.setName("Joe Black");

http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html

POJO Cache API, POJO manipulation, and

Replication

5

 joe.setAge(31);

 addr = new Address();

 addr.setCity("Sunnyvale");

 addr.setStreet("123 Albert Ave");

 addr.setZip(94086);

 joe.setAddress(addr);

2. Attach the POJO to the cache:

 cache.attach("pojo/joe", joe);

3. Change attributes of the POJO and see the individual changes being propagated

to the 2nd cache GUI:

 joe.setAge(41);

4. In the 2nd GUI instance, get a reference to the Person in the cache and create a

second Person with the existing Person's Address:

 joe = cache.find("pojo/joe");

 mary = new Person();

 mary.setName("Mary White");

 mary.setAge(30);

 mary.setAddress(joe.getAddress());

5. Attach the new POJO to the cache:

 cache.attach("pojo/mary", mary);

6. Now, change either Person's Address and see how the change applies to both

POJOs and has been propagated to the other cache, visible in the 1st GUI

instance:

POJO Cache Tutorial

6

 mary.getAddress().setZip(95000);

7. Still in the 2nd GUI instance, detach the POJOs from the cache and see how the

POJOs are no longer visible:

 cache.detach("pojo/joe");

 cache.detach("pojo/mary");

8. Finally, in any of GUI instances, change some attributes of the POJO and see

these changes have no effect in the cache:

 joe.setName("Joe White");

7.2. Collections

For this tutorial, start two instances of the demo GUI. In this tutorial, we will:

• Attach a POJO to the cache and see it being replicated.

• Set a Collection attribute in this POJO

• Manipulate this Collection attribute and see the changes visible in the GUI and

being replicated

• Detach a POJO from the cache.

1. In the 1st GUI instance, create a POJO with a Collection attribute:

 joe = new Person();

 joe.setName("Joe Black");

 lang = new ArrayList();

 lang.add("Spanish");

 joe.setLanguages(lang);

2. Attach the POJO to the cache:

 cache.attach("pojo/joe", joe);

Transactions

7

3. Get a proxy reference to the Collection and add a new element to it:

 proxyLang = joe.getLanguages();

 proxyLang.add("English");

4. Detach the pojo from the cache:

 cache.detach("pojo/joe");

5. Use the proxy reference to the Collection to add another element and see how this

does not get added to the cache:

 proxyLang.add("French");

8. Transactions

For this tutorial, start two instances instance of the demo GUI. Repeat the exercises

in the previous tutorial, only starting transactions before attaching/detaching nodes

or modiying the POJOs. This will depict how replication only occurs on transaction

boundaries. Try rolling back a few transactions as well, to see how nothing gets

replicated in these cases.

8

	POJO Cache Tutorial
	Table of Contents
	1. Introduction
	2. What You Will Learn
	3. Configuration
	4. Script
	5. Example POJOs
	6. Running The Demo GUI
	7. Tutorials
	7.1. POJO Cache API, POJO manipulation, and Replication
	7.2. Collections

	8. Transactions

