
Seam Servlet Module

Reference Guide

Lincoln Baxter III

Nicklas Karlsson

Dan Allen

iii

Introduction ... v

1. Installation ... 1

2. Servlet event propagation ... 3

2.1. Servlet context lifecycle listener ... 3

2.2. Application initialization ... 3

2.3. Servlet request lifecycle listener ... 4

2.4. Servlet response lifecycle listener .. 5

2.5. Session lifecycle listener ... 6

2.6. Session activation listener ... 7

3. Injectable Servlet objects and request state .. 9

3.1. @Inject @RequestParam .. 9

3.2. @Inject ServletContext .. 10

3.3. @Inject HttpSession .. 10

3.4. @Inject HttpServletRequest ... 11

3.5. @Inject @ContextPath .. 11

3.6. @Inject List<Cookie> .. 11

4. Servlet Context attribute BeanManager provider ... 13

iv

v

Introduction

The goal of the Seam Servlet module is to provide portable enhancements to the Servlet API.

Features include producers for implicit Servlet objects and HTTP request state, propagating

Servlet events to the CDI event bus, forwarding uncaught exceptions to the Seam Catch handler

chain (planned) and binding the BeanManager to a Servlet context attribute for convenient access.

vi

Chapter 1.

1

Installation
Most features of Seam Servlet are installed automatically by including the seam-servlet.jar

and seam-servlet-api.jar in the web application library folder. If you are using Maven [http://

maven.apache.org/] as your build tool, you can add the following single dependency to your

pom.xml file:

<dependency>

 <groupId>org.jboss.seam.servlet</groupId>

 <artifactId>seam-servlet-impl</artifactId>

 <version>${seam.servlet.version}</version>

</dependency>

Tip

Substitute the expression ${seam.servlet.version} with the most recent or

appropriate version of Seam Servlet. Alternatively, you can assign the version

number to the property of the same name inside the properties element of your

pom.xml.

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete.

If you are using Servlet 2.5 or Java EE 5, then you need to manually register several Servlet

components in your application's web.xml to activate the features provided by this module:

<listener>

 <listener-class>org.jboss.seam.servlet.event.ServletEventBridgeListener</listener-class>

</listener>

<filter>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.event.ServletEventBridgeFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Servlet Event Bridge Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter>

 <filter-name>Catch Exception Filter</filter-name>

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Chapter 1. Installation

2

 <filter-class>org.jboss.seam.servlet.filter.CatchExceptionFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>Catch Exception Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

You're now ready to dive into the Servlet enhancements provided for you by the Seam Servlet

module!

Chapter 2.

3

Servlet event propagation
By including the Seam 3 Servlet module in your web application (and performing the necessary

listener configuration for pre-Servlet 3.0 environments) you will also have the servlet lifecycle

events propagated to the CDI event bridge so you can observe them in your beans. The event

bridge works by installing a servlet listener and firing events on the BeanManager with associated

qualifiers, passing along the event object.

2.1. Servlet context lifecycle listener

These events correspond to the javax.servlet.ServletContextListener interface. The event

object fired is a javax.servlet.ServletContext (since it's the only relevant information in the

javax.servlet.ServletContextEvent object). There are two qualifiers available that can be

used for selecting the initialization or destruction of the servlet context.

Qualifier Description

@Initialized Qualifies the creation event

@Destroyed Qualifies the destruction event

If you want to listen to both lifecycle events, leave out the qualifiers:

public void observeServletContext(@Observes ServletContext ctx)

{

 // Do something with the "servlet context" object

}

If you are interested in only a particular one, use a qualifer:

public void observeServletContextInitialized(@Observes @Initialized ServletContext ctx)

{

 // Do something with the "servlet context" object upon initialization

}

The name of the observer method is insignificant.

2.2. Application initialization

The ServletContext initialized event provides an excellent opportunity to perform startup logic

as an alterative to using an EJB 3.1 startup singleton. Even better, you can configure the bean

to be destroyed immediately following the initialization routine by leaving it as dependent scoped

(dependent-scoped observers only live for the duration of the observe method invocation).

Chapter 2. Servlet event prop...

4

Here's an example of entering seed data into the database in a development environment (as

indicated by a stereotype annotation named @Development).

@Stateless

@Development

public class SeedDataImporter

{

 @PersistenceContext

 private EntityManager em;

 public void loadData(@Observes @Initialized ServletContext ctx)

 {

 em.persist(new Product(1, "Black Hole", 100.0));

 }

}

If you'd rather not tie yourself to the Servlet API, you can observe the WebApplication type

instead, which is an informational object provided by Seam Servlet that holds select information

about the ServletContext such as the application name, context path, server info and start time.

public void loadData(@Observes @Initialized WebApplication webapp)

{

 ...

}

2.3. Servlet request lifecycle listener

These events correspond to the javax.servlet.ServletRequestListener inteface. The event

object fired is a javax.servlet.ServletRequest (since it's the only relevant information in the

javax.servlet.ServletRequestEvent object. There are two qualifiers available that can be

used for selecting the initialization or destruction of the request.

Qualifier Description

@Initialized Qualifies the initialization event

@Destroyed Qualifies the destruction event

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeRequest(@Observes ServletRequest request)

{

 // Do something with the servlet "request" object

Servlet response lifecycle listener

5

}

If you are interested in only a particular one, use a qualifer

public void observeRequestInitialized(@Observes @Initialized ServletRequest request)

{

 // Do something with the servlet "request" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletRequest simply by

changing the expected event type.

public void observeRequestInitialized(@Observes @Initialized HttpServletRequest request)

{

 // Do something with the HTTP servlet "request" object upon initialization

}

The name of the observer method is insignificant.

2.4. Servlet response lifecycle listener

The Servlet API does not provide a listener for accessing the lifecycle of a response. Therefore,

Seam Servlet simulates a response lifecycle listener using CDI events. These events parallel

those provided by the javax.servlet.ServletRequestListener inteface. The event object fired

is a javax.servlet.ServletResponse. There are two qualifiers available that can be used for

selecting the initialization or destruction of the response.

Qualifier Description

@Initialized Qualifies the initialization event

@Destroyed Qualifies the destruction event

If you want to listen to both lifecycle events, leave out the qualifiers.

public void observeResponse(@Observes ServletResponse response)

{

 // Do something with the servlet "response" object

}

If you are interested in only a particular one, use a qualifer

Chapter 2. Servlet event prop...

6

public void observeResponseInitialized(@Observes @Initialized ServletResponse response)

{

 // Do something with the servlet "response" object upon initialization

}

You can also listen specifically for a javax.servlet.http.HttpServletResponse simply by

changing the expected event type.

public void observeResponseInitialized(@Observes @Initialized HttpServletResponse response)

{

 // Do something with the HTTP servlet "response" object upon initialization

}

The name of the observer method is insignificant.

2.5. Session lifecycle listener

These events correspond to the javax.servlet.HttpSessionListener interface. The event

object fired is a javax.servlet.http.HttpSession (since it's the only relevant information in the

javax.servlet.http.HttpSessionEvent object). There are two qualifiers available that can be

used for selecting the initialization or destruction of the session.

Qualifier Description

@Initialized Qualifies the creation event

@Destroyed Qualifies the destruction event

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session)

{

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionInitialized(@Observes @Initialized HttpSession session)

{

 // Do something with the "session" object upon being initialized

Session activation listener

7

}

The name of the observer method is insignificant.

2.6. Session activation listener

These events correspond to the javax.servlet.HttpSessionActivationListener interface.

The event object fired is a javax.servlet.http.HttpSession (since it's the only relevant

information in the javax.servlet.http.HttpSessionEvent object). There are two qualifiers

available that can be used for selecting the activation or passivation of the session.

Qualifier Description

@DidActivate Qualifies the activation event

@WillPassivate Qualifies the passivation event

If you want to listen to both lifecycle events, leave out the qualifiers. Note that omitting all qualifiers

will observe all events with a HttpSession as event object.

public void observeSession(@Observes HttpSession session)

{

 // Do something with the "session" object

}

If you are interested in only a particular one, use a qualifer

public void observeSessionCreated(@Observes @WillPassivate HttpSession session)

{

 // Do something with the "session" object when it's being passivated

}

The name of the observer method is insignificant.

8

Chapter 3.

9

Injectable Servlet objects and

request state
Seam Servlet provides producers that expose a wide-range of information available in a Servlet

environment (e.g., implicit objects such as ServletContext and HttpSession and state such as

HTTP request parameters) as beans. You access this information by injecting the beans produced.

This chapter documents the Servlet objects and request state that Seam Servlet exposes and

how to inject them.

3.1. @Inject @RequestParam

The @RequestParam qualifier allows you to inject an HTTP request parameter (i.e., URI query

string or URL form encoded parameter).

Assume a request URL of /book.jsp?id=1.

@Inject @RequestParam("id")

private String bookId;

The value of the specified request parameter is retrieved using the method

HttpServletRequest.getParameter(String). It is then produced as a dependent-scoped bean

of type String qualified @RequestParam.

The name of the request parameter to lookup is either the value of the @RequestParam annotation

or, if the annotation value is empty, the name of the injection point (e.g., the field name).

Here's the example from above modified so that the request parameter name is implied from the

field name:

@Inject @RequestParam

private String id;

If the request parameter is not present, and the injection point is annotated with @DefaultValue,

the value of the @DefaultValue annotation is returned instead.

Here's an example that provides a fall-back value:

@Inject @RequestParam @DefaultValue("25")

private String pageSize;

Chapter 3. Injectable Servlet...

10

If the request parameter is not present, and the @DefaultValue annotation is not present, a null

value is injected.

Warning

Since the bean produced is dependent-scoped, use of the @RequestParam

annotation on class fields and bean properties is only safe for request-scoped

beans. Beans with wider scopes should wrap this bean in an Instance bean and

retrieve the value within context of the thread in which it's needed.

@Inject @RequestParam

private Instance<String> bookIdResolver;

...

String bookId = bookIdResolver.get();

3.2. @Inject ServletContext

The ServletContext is made available as an application-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private ServletContext context;

The producer obtains a reference to the ServletContext by observing the @Initialized

ServletContext event raised by this module's Servlet-to-CDI event bridge.

3.3. @Inject HttpSession

The HttpSession is made available as a request-scoped bean. It can be injected safetly into any

CDI bean as follows:

@Inject

private HttpSession session;

The producer obtains a reference to the HttpSession by observing the @Initialized

HttpServletRequest event raised by this module's Servlet-to-CDI event bridge.

@Inject HttpServletRequest

11

3.4. @Inject HttpServletRequest

The HttpServletRequest is made available as a request-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private HttpServletRequest request;

The producer obtains a reference to the HttpServletRequest by observing the @Initialized

HttpServletRequest event raised by this module's Servlet-to-CDI event bridge.

3.5. @Inject @ContextPath

The context path is made available as a dependent-scoped bean. It can be injected safetly into

any request-scoped CDI bean as follows:

@Inject @ContextPath

private String contextPath;

You can safetly inject the context path into a bean with a wider scope using an instance provider:

@Inject @ContextPath

private Instance<String> contextPathProvider;

...

String contextPath = contextPathProvider.get();

The context path is retrieved from the HttpServletRequest.

3.6. @Inject List<Cookie>

The list of Cookie objects is made available as a request-scoped bean. It can be injected safetly

into any CDI bean as follows:

@Inject

private List<Cookie> cookies;

The producer uses a reference to the request-scoped HttpServletRequest bean to retrieve the

Cookie intances by calling getCookie().

12

Chapter 4.

13

Servlet Context attribute

BeanManager provider
Although discouraged as a general practice, there are circumstances access to

the BeanManager is required outside of the CDI context. Seam Servlet includes a

provider that retrieves the BeanManager from the Servlet context attribute named

javax.enterprise.inject.spi.BeanManager, an alternative to the standard JNDI lookup

mechanism defined in the JSR-299 specification. The Servlet module also handles binding the

BeanManager to this attribute when the application is initialized. The work is performed in a CDI

observer that is notified by the Servlet-CDI bridge provided by this very module.

Refer to the BeanManager provider chapter of the Weld Extensions reference guide for information

on how to leverage the Servlet context provider to access the BeanManager from outside the CDI

environment.

14

	Seam Servlet Module
	Table of Contents
	Introduction
	Chapter 1. Installation
	Chapter 2. Servlet event propagation
	2.1. Servlet context lifecycle listener
	2.2. Application initialization
	2.3. Servlet request lifecycle listener
	2.4. Servlet response lifecycle listener
	2.5. Session lifecycle listener
	2.6. Session activation listener

	Chapter 3. Injectable Servlet objects and request state
	3.1. @Inject @RequestParam
	3.2. @Inject ServletContext
	3.3. @Inject HttpSession
	3.4. @Inject HttpServletRequest
	3.5. @Inject @ContextPath
	3.6. @Inject List<Cookie>

	Chapter 4. Servlet Context attribute BeanManager provider

