JBPM Form modeller -
Getting Started guide

Version 6.0.0-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

1. What is JBPM FOrm MOGEIEI ... coouniiiiii e e e e 1
2. First steps to create a form driven PrOCESSoviiiiiiiiiiiii et 3
2.1. Configure process and human taskscoiiiuiiiiiiieiiiiic e 5

2.2. Generate forms from task definitionsccooviiiiiiiiii 7

P22 T o 1 A (0] 1 141 TP 10
2.3.1. Form generated deSCrHPLIONc..uuiiiiiiiieiiii e 10

2.3.2. CUStOMIZING fOMM Loeiiii e e 10

2.3.3. Field YPES .. 38

T B - L 2= 1Y (o o L= = PRSP 51
3.1. What is Data MOGEIIEToieiiiiei e e e e e een 51

3.2. First steps to create a data modelcocoiiiiiiiiiii i 51

B T T 11111 PP 55

3.4. Properties & relationShipsco.iiiiiiiii e 58

3.5, AdItIoNAl OPLIONSciiiiiieeee e 60
3.5.1. Additional entity properties ("Data object tab™)ccociiiiiiiiiiiinin . 60

3.5.2. Additional field properties ("Field tab")ccoooiiiiiiiii 61

3.6. Generate data Model COUE.oiiiiiiiiiiiiii e 61

3.7. Using external MOUEIScooouiiiiiiii e 66
3.7.1. Dependency to a JAR file in local M2 repositoryccoeeeviveiiiieiiineeinnns 66

3.7.2. Dependency to a JAR file in current "Guvnor M2 repository”.cc......... 68

3.7.3. Using the external objecCtSccciiiiiii i 72

Drools

Expert

Vi

Chapter 1.

Chapter 1. What is |BPM Form
modeler

jBPM Form modeler is a form engine and editor that enables users to create forms to capture and
display information during task execution, without needing any coding or template markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Key features:

Form Modeling WYSIWYG Ul for forms

« Form autogeneration from data model / Java objects
« Data binding for Java objects

* Formula and expressions

» Customized forms layouts

* Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building
and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior
and look&feel.

This guide intends to describe in a simple ways all the steps required to create a process with
human tasks, generate and modify the forms for these tasks and execute them.

It will provide initial guidance to perform all initial steps, but it will not provide a full description of
all available features.

Chapter 2.

Chapter 2. First steps to create a
form driven process

This guide intends to describe in a simple ways all the steps required to create a process with
human tasks, generate and modify the forms for these tasks and execute them. It will provide initial
guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from
process variables and task definitions. These forms can be later be modified by using the form
editor. In runtime, forms will receive data from process variables, display it to the user and capture
his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task
in the process below.

o Create order ?‘

]

>

k=l

=4

=

wi
L=
Fai
i
[+ K]
=3
(=
[+]
-
sl

c T

=

prar]

S R dministrat >/}3{

eview by administr

E b\f Tt

£

E B

o =

< g
o
<

I

Figure 2.1. Process example

This form must look like the following in execution:

Chapter 2. First steps to cre...

New Task Refresh x i Deta||5 ‘Work Details | Assignments | | Comments

37 - Create order

Actlons

ﬂ \/ O\ Flease, enter all the required information. The instructions to perform this

task can be found here
o v Q

Purchase Crder Header

*Creation date *Customer

00-23-08 D@ | Red Hat

*Project

JBPM

Lines

Actions Description Amount Unit Price Amount
|

M & irhone 10 500 5000

M ¢ Andoidphone 10 400 4000

M & Laptop 3 800 2400

Add purchase line

TOTAL:
11400.0
*Description

1-20f2 MW W M MW

Core rrmalata

Figure 2.2. Process example

Configure process and human tasks

2.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a
simple type like 'String' or a complex type. These complex types can be defined by using the Data
Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po’ of type 'org.jopm.examples.purchases.PurchaseOrder’,
defined with the Data Modeler tool.

AdHoo

Executable
asa ordep— Glabi
) + | o
Editar for Varlable Definitions W Imper:
Aadd Variable - . I
MAme Stancard Type Custom Type ,PI - _ll: 3600
Dbt org g exampls purchasss PurcheseDider (3 "]
1| # | review_admin Eiring IE
3 | revew_contolier Siring) C -
4 | review_clo Sliing G ik M ..:
8 roview_manasger | Sining IE pelanguage T
B 1
Base tima unit
Co JCow]

an

2

Figure 2.3. Process variable definition
This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which
ones will receive the response back from the form and establish the mappings. This is done by
setting the 'DatalnputSet’, 'DataOutputSet' and 'Assignments' properties for any human task. See
screenshots below for detalils.

Chapter 2. First steps to cre...

Figure 2.4. Data input variable definition

Figure 2.5. Data output variable definition

Generate forms from task definitions

Properties (User)

Name

= Core Properties
(™
(p‘\. Actors
Assignments po-8gt;po_in,po_out->po
Rix purchase ordeyi——
DatalnputSet
Editor for Data Assignments * DataQutputSet po
_~| Add Assignment Ces

Na
From Object Assignment Type To Object To Value ame

1 po is mapped to po_in @
2 | po_out is mapped to po @

Task Name

TaskType

= Extra Properties
I | Comment
Content
Created by
Documentati
Locale
Multiple Inst... false
Notifications
On Entry Act
On Exit Acti...

Priority
/ Reassignment

Figure 2.6. Variable mapping definition

2.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically
from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

Bl GG 5 B e 2 b @ 0
|:| Edit Process Form
-] Edit Task Ferm

|£| Generate all Forms

&

Fix purchase 5
order }}i

Figure 2.7. Form automatic generation

You can also click on the icon on top of task to open the form directly.

Chapter 2. First steps to cre...

Figure 2.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-
taskform is defined in the same package as the process, then this form is used by the human task
engine to display and capture information from user.

Also, if a form named Processld-task form is created, it will be used as the initial form when starting
this process.

For example, for our process the following forms would be generated.

Generate forms from task definitions

Explore * NewlItem - Tools =

Project Explorer

Business = Technical ==

Organizational Unit: 4 demo ~
Repository: []Purchases ~
Project: LJPurchases ~

Package: & <default> ~

BUSINESS PROCESSES

FORM DEFINITIONS

CreateOrder-taskform
FixOrder-taskform
Purchases.Purchases-taskform

ReviewAdministration-taskform

D enrisn e BNt acl-fim e

OTHERS
(® WORK ITEM DEFINITIONS

Figure 2.9. Access to form edition

Chapter 2. First steps to cre...

2.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that
are generated in the previous process, but also can be created manually.

2.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data
origins. This allow bind form fields with them, this relation it's linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is
validated and submitted, how the values will update the task outputs.

Form Modeler [CreateOrder-taskform.form]

E Form data origin_| =5 Add fields by origin =~ =51 Add fields by type | % Form properties

. Manage form data origins

Input Id:
List of data sources that will be bound to form fields.

Output Id:
Id Input Id Qutput Id Type Info

Render color: m po po_in po_out dataModelerEntry org.jopm.examples.purchases.PurchaseOrder
Dark Blue |

Type:
From data Model
From java Class
From Basic type
Info:

1
Add data holder

Figure 2.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are
automatically generated. You can have as many data origins as required, and can use a different
colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated
form have a field for each data origin bindable item (view FieldTypes) and this automatic fields
have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to
make easy view if the field is correctly bound and the data origin implied.

2.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different
levels of customization that will allow change it

2.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the
contextual menu of the field and select 'Move field'.

10

Save Delete x

Render color

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =57 Add fields by origin |~ =% Add fields by type = %5 Form properties

o e 100 1E0 200] O =20 400 450
gHTMLIabEl |' El""‘_lllllllll|I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I|
— Separator r 3 edescription(po)
= - =
£ Simple subform RE o
—_— , 3 ‘eheader (po)

Multiple subform E
o P } _q ‘There is no default farm
[Short text r é:ﬁ .@@%‘,{,.
D Long text r E '_'_I'_I]_e_[Mowve field form. :
R
[Float -~
[Decimal r r_

Figure 2.11. Move field option

This will display the different regions of the form where you can place it.

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =5 Add fields by origin = =5 Add fields by type | 2= Form properties

Lo 50 100 150 200 250 300 350 400 450 500 [
I® HTML label 5
== Separator » = A
3 @ description(pa)
= o £
= Simple subform [EE
& Multiple subform ~ 7
[Short text r 13 @ header (po)
[Long text r : There Is no default form. -
17
[Float ~ g
[Decimal [2_' :o ines (po)
i 'There is no defaultfarm
l—l BI{!DECIITIE| r |:|—_

Figure 2.12. Destination areas to move the field
A field can be moved to the first or the last region with the contextual icons for that purpose.

2.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.

11

Chapter 2. First steps to cre...

| | Form Modeler [CreateOrder-taskform.form]

= Form data origin | =81 Add fields by origin _ =& Add flelds by lype | = Form properties |

I8 HTWL label O BT TR B R PR P R R R R PR
= Separator r~ : ,descrlpucn (po) \
S simple subform r- 3—: |\ ,|
EM.llﬂplewaurrn L _: 'I.'hr‘leer:(::;lefaultfcrm.
[Short text r~ é: elines (po)
[Long text r~ : There is no default form.
[Float r~ é:
O Decimal ™~ 2_:
O BigDecimal SE
[Bigintager ™~ E_:
O Short ~ UE
; O Integer ™~ ?
O Long integer ™~ UE
& E-mail ~ %
@ CheckBox S
I® Rich text r~ §E
E# Timestamp ™~ 4_'
B Short date ™~ 3:
& Link ~ 3_:
=

Figure 2.13.

Customizing form

Form Modeler [HeaderForm.form]
= Form data origin | =% Add flelds by origin | =8 Add fields by type | %5 Form properties |

io |50 |100 |150 |200 |250 |300 ‘350 400 4B = E0 E00 [EED Fon
s B B e B B B B B B B B B B o B i1,

O customer

E creationDate
O project

7 7 7 M
[T A

e
11

=y ==u) =y =on) =ne|
TR T TN I AT T

CISFN

| Form Modeler [HeaderForm.form]

= Form data origin | =5 Add fields by origin | =F Add flelds by type | = Form properties |

' il |50 |100 |15El |200 |250 |3UD |350 00 450 00 EE0
H’Mm r-u... I S N N I N N N N A A N I I AP I I I O N I P I A I P I A A P N I I I I P I I A I I I P I e e
= Separator M~ :
= =
= simple subform N
S Multiple subform 3
O Shorttext r~ E
[Long text ~ 3
IE
[Float N
O Decimal =
nJ
[BigDecimal r- 03
[Biginteger r ;
[Short 3
3 Integer] ﬁ:
O Long integer w1 :
= E-mail SE
@ CheckBox S
4___
N E

13

Chapter 2. First steps to cre...

Now all these properties had to be configured.

2.3.2.3. Field configuration

Field types section

Each field can be configured to enhance performance in the form. There are a group of common
properties, that we call ‘Generic field properties’ and a group of specific properties that depends

on the field type.

2.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 2.1.
Field type Can change the field type to other compatible
field types
Field Name Will be used as identifier in formulas
calculation
Label The text that will be shown as field label

Error message

Label ccs class

When something goes wrong with the
field, like validations,.. this message will be
displayed

Allows enter a class css to apply in label
visualization

Label css style

Help text

Style class

Css style

to enter directly the style to apply to the label.

The text introduced is displayed as
alt attribute to help to the user in data
introduction

Allows enter a class css to apply in field
visualization

to enter directly the style to apply to the label.

14

Customizing form

Read Only When this check is on, the field will be used
only for read

Input binding expression This expression defines the link between field
and process task input variable. It will be used
in runtime to set the field value with that task
input variable data.

Output binding expression This expression defines the link between
field and process task output variable. It will
be used in runtime to set that task output
variable.

2.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

« Short Text (java.lang.String)
» Compatible field type: Long text, E-mail, Rich text
» Specific properties
 Size: input text length.
« MaxLength: Maximum number of characters allowed.
* Required: Indicates if it's mandatory to fill this field.
« Show html: indicates whether the contents of the field is interpreted as html in show mode.

« Formula. to enter expressions that will be evaluated to set the field value. These
expressions are descrived in Formula & expression section .

* Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

< Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

« Default Value formula. Expression to set the field default value.
e Long Text (java.lang.String)
» Compatible field type: Long text, E-mail, Rich text
» Specific properties

e Size: input text length.

15

Chapter 2. First steps to cre...

MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.
Height: The number or rows to show at text area.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

Default Value formula. Expression to set the field default value.

* Float (java.lang.Float)

 Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

Pattern. Allow introduce an expression to specify how the Float value has to be displayed.
The pattern allowed is show in section pattern in http://docs.oracle.com/javase/6/
docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/javaltext/
DecimalFormat.html]

Default Value formula. Expression to set the field default value.

« Decimal (java.lang.Double)

» Specific properties

« Size: input text length.

¢ MaxLength: Maximum number of characters allowed.

16

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Customizing form

Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the Double value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/javaltext/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/
javal/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

« BigDecimal (java.math.BigDecimal)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the BigDecimal value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/javal/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/
java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

 Big integer (java.math.Biginteger)

 Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.

Required: Indicates if it's mandatory to fill this field.

17

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Chapter 2. First steps to cre...

¢ Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

¢ Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.

» Short (java.lang.Short)

 Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Default Value formula. Expression to set the field default value.

« Integer (java.lang.Integer)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Default Value formula. Expression to set the field default value.

* Long Integer (java.lang.Long)

 Specific properties

18

Customizing form

 Size: input text length.
* MaxLength: Maximum number of characters allowed.
« Required: Indicates if it's mandatory to fill this field.

e Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

« Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

« Default Value formula. Expression to set the field default value.
* E-mail (java.lang.String)
» Compatible field type: Short text, Long text, Rich text
» Specific properties

« Size: input text length.

MaxLength: Maximum number of characters allowed.

* Required: Indicates if it's mandatory to fill this field.

Default Value formula. Expression to set the field default value.
» Checkbox (java.lang.Boolean)
» Specific properties
* Required: Indicates if it's mandatory to fill this field.
« Default Value formula. Expression to set the field default value.
* Rich text: (java.lang.String)
» Compatible field type: Short text, Long text, E-mail
 Specific properties

 Size: input text length.

MaxLength: Maximum number of characters allowed.

Required: Indicates if it's mandatory to fill this field.

Height: The number or rows to show at text area.

Default Value formula. Expression to set the field default value.

19

Chapter 2. First steps to cre...

» Timestamp (java.util.Date)
e Compatible field type: Short date
» Specific properties
« Size: input text length.
* Required: Indicates if it's mandatory to fill this field.

e Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

» Default Value formula. Expression to set the field default value.
« Short date (java.util.Date)
e Compatible field type: Timestamp
» Specific properties
« Size: input text length.
* Required: Indicates if it's mandatory to fill this field.

* Formula. to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section .

» Default Value formula. Expression to set the field default value.
« Simple subform (Object)
» For more details see section Simple Object (Subform field Type).
Specific properties

« Default form. Show the list of available forms to select what one will be displayed to show
the object.

e Multiple subform (Multiple Object)
» For more details see section Arrays of objects.(Multiple subform field Type).
Specific properties

« Default form. Show the list of available forms to select what one will be displayed to show
the object when no other form is configured with an specific purpose.

* Preview form. If a form is specified, it will be used to show the item details

« Table form. If a form is specified, it will be used to show the table columns when the item
20 listis showed

Customizing form

* New item text. Text to show at New Item button

« Add item text. Text to show at Add Item button

¢ Cancel text. Text to show at Cancel button

» Allow remove Items. If this check is selected, the form allow remove items in table view.
» Allow edit items. If this check is selected, the form allow edit items in table view.
 Allow preview items. If this check is selected, the form allow preview items in table view.
 Hide creation button. Check to not show the creation button

« Expanded. If is checked, when a new item is being added, the field display the table with
the existing items and the creation form at same time

« Allow data enter in table mode. Allow modify data in table view directly.
2.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an
object array.

Once the field is added to the form, either automatically or manually, it must be configured so that
the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:

« The first thing to do is define how the contained object will be displayed. This is done creating
a form that represents the object.

* In case of the object array, you can define a form to show in preview(edition), or to show when
table is shown

Once the form to represent the object, the parent form has to be configured to use them in the
parent Subform or Multiple subform.

Below we will describe how the setup would be:
2.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and
embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create
a form to enter all the purchase order header data and link it from the parent task form.

We will follow the steps:

21

Chapter 2. First steps to cre...

1. Create new form.

Create new

New resource

* Resource Name

[Heade rForm|

Guided Rule
Guided Rule Template
Guided Score Card

@ MNew Form

default://master@Purchases/Purchases/src/main/resources

© Ok

Figure 2.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.

22

Customizing form

Form Modeler [HeaderForm.form] Save | Delete |

= Form data origin_| =5 Add fields by origin =~ = Add fields by type = % Form properties

Id:

header Manage form data origins
Input id: . . .
List of dala sources that will be bound to form fields
header_in
Output Id:

header_out id Input Id Output id Type Infa Render color

Render color:
Dark Blue i

Ty
E From data Model
From java Class
) From Basic type
Info:

org jopm p PurchaseOrder
org.joppm.examples.purchases.PurchaseOrderLine
org.jopm.examples purchases.PurchaseOrderHeader

Figure 2.17. Create new data origin

Form Modeler [HeaderFarm.form] Save || Delete | | %

= Form data origin_| =51 Add fields by origin = =¥ Add fields by type = % Form properties

Id:

Manage form data origins
Input Id:

List of dala sources that will be bound to form fields.
‘Qutput Id:

Id Input Id Output Id Type Info Render color
Render color: @ header header_in header_out dataModelerEntry org jopm.examples.purchases.PurchaseOrderHeader |]
Dark Blue |

Type:

From data Model|
From java Class
" From Basic type
Info:

Add data holder

Figure 2.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

23

Chapter 2. First steps to cre...

Form Modeler [HeaderForm.form]

= Form data origin | 5] Add flelds by origin | =57 Add fields by type = %5 Form properties sk
o] [150 200 e 20 EE) 400 40 B =) 00 Bl 700 720 200 Jese
il B B B B B B B B B B G B P B B T B 1
creationDate [B
[customer - =
EE
O project I E
T4
[E
hE
IE
L
i
K
PE
IE
e
)
i
iE
[hE
EE
)
i
Fx
43

Figure 2.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move
them around.

Form Modeler [HeaderForm.form]

= Form data origin | S5 Add fields by origin_| =5 Add fields by type | 2= Form properties

0 |50 |100 |150 |200 |250 200 ZE0 400 4=0 a0 E0 E00 EED 700 750 200
v B B B B B s B e B e b e B B b B b bt B Bt e B e e 1 1 1

[

ecreationDate (header)

Dm

=)

wecustomer (header)

o

eproject (header)

s S|

=

Figure 2.20. All data origin fields added
4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default
form'.

24

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin

% HTML label

I~

= Separator

r

S simple subform

I~

5 Muttiple subform

3 Short text

[0 Long text

3 Float

[Decimal

O3 BigDecimal

[Biginteger

[short

| O Integer

O3 Long integer

B E-mail

B CheckBox

I® Rich text

Timestamp

Short date

& Link

=51 Add fields by origin =] Add fields by lype % Form properties
i] |08 150 220 50 [z
= Bt B B B B G BY

5

40
I

E:)
i

500

EE0 [
AT

sl e SRR ST 2SR S S ST

edescription (po)

@header (po)

There is no default form.
elines (po)

There is no defaultform

Figure 2.21. Configure the parent form

Save

€@ Properties (header (po))
Field type
Simple subform j
Field name:
po_header
Label:
header (po)
Errar message:

Label css class: Label css style:

Help text:
Style class: Css siyle:

"I Required "] Disabled [Read only [Group with previous
Default form:

g

‘ FixOrder-taskiorm form

HeaderForm.form

Purchases.Purchases-taskiorm.form
ReviewAdministration-taskform.form
ReviewCFO-taskform.form
ReviewController-taskform.form
ReviewManager-taskiorm.farm Cancel

{

This will insert the subform inside the parent form, and will be shown as below:

25

Delete

Chapter 2. First steps to cre...

IE1LES U].f L:-rli:llrl =R MU TEUWD Dy Wy == IFLIITI pruperues
|5c| 100 150 200 2En 200 ZE0 400 450
ki IFH FE FE FE ' T T A T R A A T N N
0
4 edescription (po)
HE
......... l:l 7
1 weheaderpo)
--------- 1__ creationDate (header)
_________ E Dm
91 customer (header)
......... i
E]
0
1 project (header)
......... 7 3
0
0
""""" 1 welines (pao)
z .
......... EE There is no default form.
?
0
......... |:|—_

Figure 2.22. Parent form visualization after subform configuration
2.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with
all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,
unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.

26

Customizing form

Create new

New resource

* Resource Name

Purchaselines|

Guided Rule
Guided Rule Template
Guided Score Card

@ New Form

default://master@Purchases/Purchases/src/mainresources

© Ok

Figure 2.23. Create new form

2. Create new data origin.

27

Chapter 2. First steps to cre...

Form Modeler [PurchaseLines.form] Save | Delete X

= Form data origin_| =5 Add fields by origin | =5 Add fields by type = % Form properties

Id:

Manage form data origins
Input kd: . . .

List of data sources that will be bound to form fields
Output Id:

Id Input Id Output kd Type Info Render color
Render color: M ines lines_in lines_out datahodelerEntry org jopm.examples.purchases.PurchaseOrderLine |]
Dark Blue i |

Type:

From data Model

From java Class

From Basic type
Info:

1l
Add data holder

Figure 2.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

Form Modeler [PurchaseLines.form]

= Form data origin | 251 Add fields by origin | =% Add fields by type = 5 Form properties
: 200

[amount [
[description [
O total [
[unitPrice [

Figure 2.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization

28

Customizing form

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate
automatically the total field. This formulas and expressions are described in Formula &
expression section .

Save Delete
=51 Add fields by type | £ Form properties € Properties (total (lines))
I|I|I||]:0IU|I|I|I||]:5IU|I|I|I||2|UIU|I|I|I||2|5IU|I|I|I||3:UIU|I|I|I||3:5IU|Inlnlnl‘?olonlnl|I||‘?5I0|I|I|I||5|UIU|I|I|I| 5|5I0|I|I|I||6|UIU|

Field type
on (lines) eunitPrice (linesmamount (linesetotal (lines)
Decimal j
Field name:
lines_total
Label:
total (lines)

Error message:

Label css class: Label css style:
Help text:
Style class: Css style:
Size:

5 (1]
Max length:

Required [Disabled [@#Read only
Formula:

=({lines_unitPrice}*{lines_amount}

Range value:

Figure 2.26. Configuring formulas

6. Finally, we save the lines form and go back to the parent form and configure all the lines
properties.

29

Chapter 2. First steps to cre...

-taskform.form] Save | | Delete
5 by origin =51 Add fields by type | % Form properties %] Properties (lines (po))
o [|00 Jt=0 2 & 200 £ 400 450] [EE0 J0n
e B B B S S B B I P B B IS
Field type
edescription (po)
e P Multiple subform j
Field name:
eheader (po) .
po_lines
creationDate (header)
=m Label:
lines (po)

customer (header)
Error message:

project (header)

Label css class: Label css style:
elines (po)
There is no default form. Help text:

Style class: Css style:

Required [Disabled ("1 Read only [Group with previous
Default form:

Purchaselines.form j

Preview form:

Purchaselines.form j
Table form:
{ PurchaseLines form j

Figure 2.27. Configure the parent form

2.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.
That Formula engine supports Java and XPATH expressions to access the form fields values.
Let's see some examples.

» Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by
default with the current date. To do that you should edit the field properties and set a Default
value formula like:

=new j ava. util.Date();

30

Customizing form

Form Modeler [PurchaseHeader.form] save
= Formdata origin =~ ©& Add fields by origin _ =) Add fields by type | & Form properties @ Properiies (header creationDale)
E HTML 1abel T JU ‘,U 100 || 0 ‘ 00 ‘le |3u|] ‘:EH 400 450 |s00 S50 600 650 700
el B B B, < T O VA O TV T T T - T e
I ——— T E ®"Creation date ®*Customer Short date =]
B simple subform r~ = Fleld name:
I

Delete

S Mulliple subform ; #°Project header_creationDate
[Short text %: Label:
E Creation date
D Long text E|
I Default error message:
3 Float |
O pecimal —
Label css class: Label css style:
I
[BigDecimal 0] o
O Biginteger T Help text:
O short 3
O Integer ke Style class Css style:
3 [i]
3 Long integer k|
w7 Size:
B E-mail £
3
E 12 [i]
CheckBox E
B o @Required | Read only
2 Rich text LE Formula:
Timestamp 3
73 [i]
Short date 0
? Default value formula:
e —new java.util.Date() (i}
= Input bindi
HE!
3 header/creationDate [i]

Figure 2.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first
time the field will have the specified value.

*Creation date *Customer

00-04-13 =1

"Froject

Figure 2.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported
for the field.

Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using
XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,
%...) to operate with them or calls to Java Functions for more complex operations.

To start let's see how you can create a formula to calculate the line_total of a Purchase Order
Line. Look at the image below and look at the formula on the line_total properties.

31

Chapter 2. First steps to cre...

Form Madeler [PurchaseLine.form] save | Delete
= Form data origin =~ S5 Add fields by origin = =5 Add fields by type = 2 Form properties o Properties (line_total)
e B 8 S B PR B B P T B B B P
LE Field type
9 e Description @ Amount @*Unit Price @ Total Amount
3 Decimal j
IE Field name:
line_total
14 Label:
bE|
Total Amount
| Default error message:
8
FE| Label css class: Label css style:
° [i]
bE Help text:
(1]
E Style class: Css style:
s 0
s Size: Max length
i 7 i)
— Required #Read only
E Formula:
' —{line_unitPrice}*{line_amount} -
53
L Range value:
= i}
3
E

Figure 2.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_amount}

we're forcing the Total of the line value to be the result of the the Unit price multiplied by the
Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount
field value is going to be calculated and filled with the operation result;

*Description *Amount “Unit Price Total Amount

3 1.45 4.35

Figure 2.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/ a_subformfield}

Look at the next image to see how it works:

32

Customizing form

Form Modeler [CreateOrder-taskform.form]

Delete x v

= Form dataorigin =~ ®& Add fields by origin _ =5 Add fields by type orm properties €@ Properties (po_description)
jﬂ ‘EG 100 |\5" ‘Zfﬂ ‘le ‘3“0 ‘ 50 [400 50 500 550 [s00 650 |F[IC'
I# HTUL label ot B P P RO B B B B B B B B IR P
E Fleld type
== Separator [3 Please, enter all the required information. The instructions to perform this ng text j
= 7 task can be found here
&3 Simple subform I 5 Field name:
B Mutiple subform r 3 po_description
ePurchase Order Header .
[Short text ¢ Lavel
03
| *Creation date *Customer Description
O Long text E A
LE| 00-04-13 . Default error message:
O Float 33 .
4 "Project You must enter a description
[pecimal —]
Label css class: Label css style:
8
BigDecimal 04
O 1 atres 0
O Biginteger P Help text:
£3 Add purchase line
O short 3
O Integer - TOTAL: Style class: Css style:
EE|
L Li]
[Long integer 4 .e"Description
x| Size:
B E-mail £
3 50 [i]
B CheckBox E . .
73 Height: Max length:
B Rich text 83 3 o
Timestamp = @Required | Read only
Short date i Formula:
ik ~"Customer: " + {po_header/header_customer} + * Project: " +
[{po_header/header_project) 0
Ix I
EE|
£3
1 -

Figure 2.32.

This form has a subform field called po_header that is showing a form with the fields
header_creationDate, header_customer and header_project. We want the Description field
on our parent form to show some information from the header. Look at the Description field
properties formula.

="Customer: " + {po_header/header_customer} +
header _proj ect}

Proj ect: + {po_header/

This formula returns a text when the fields header_customer and header_projects are filled on
the child form, so from now the parent form will be filled like this:

33

Chapter 2. First steps to cre...

Please, enter all the reguired information. The instructions to perform this

task can be found here

Purchase Crder Header

*Creation date *Customer
00-04-13 Dm John R.
*Project

Form Modeler Documentation

Add purchase line

Lines

TOTAL:
0.0

*Description

Customer: John R. Project: Form Modeler Documentation

Figure 2.33.

Ok, you've seen how to create formulas that access to a subform fields values, now we are
going to see how to work with values stored in Multiple Subforms. Imagine that we have a
Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we
want to calculate the total amount of the lines created. Look at the image below and how the
TOTAL field is configured.

34

Customizing form

Form Modeler [CreateOrder-taskform.form]

= Form data origin = ®E Add fields by origin |_ =1 Add fields by type Form propetties

HTML label r Please, enter all the required information. The instructions to perform this
= Separator [~ task can be found here
& simple subform r
B Multiple subform r Purchase Order Header
[Short text I *Creation date *Customer
-04- =o

D Long text r EoETiB

*Project
[Float T
O Decimal T

Lines
O Bigbecimal T
O Biginteger I Add pL line
[Short T TOTAL:
O Integer T

*Description

[Long integer I

B3 E-malil T

@ CheckBox T

Rich text r

Timestamp r

Short date r

Figure 2.34.

On the formula expression:

" + {sum(po_lines/line_total)} + "

Save | Delete

@ Properties (121118573)
Field type

Short text |
Field name:

121118573
Label:

TOTAL:

Default error message:

Label css class: Label css style:

pacding-left:300pxfont-weigntn | €3

Help text:
Style class: Css style:
padding-left:300px; [i]
Size: Max length
Li]

[Required ' Readonly @Show HTMI [Password

Formula:

—"" + {sum(po_lines/line_total]} + ""

Range value:

we are using the XPATH function sum() that is going to sumarize the totals of all the lines. So

after creating some Lines the form will look like this

35

Chapter 2. First steps to cre...

Please, enter all the required information. The instructions to perform this
task can be found here

Purchase Order Header

*Creation date *Customer

00-04-07 0

*Project

Lines

Actions Lines Lines Lines Lines
@ ¢ FormModeler guide 3 3575 107.25
M & Labtop 1 7855 7B5S5

Add purchase line

TOTAL:
892.75

*Description

Figure 2.35.

Note that the line_total child field corresponds with the field line_total field on then form selected
as a Default Form selected on the Lines field configuratio

36

Customizing form

On this sample we are using the sum() XPATH function to calculate the total of the Purchase
Order, but XPATH provides a lot of possibilities to select values from a set of children and also
a lot functions to summarize values (sum, count, avg...). For more information about XPATH
you can take a look at http://www.w3schools.com/xpath/

Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an
specific field, showing it like a select box. It can be used on all simple types except Dates and
Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Form Modeler [ReviewAdministration-taskform.form] Save | Delete | | %
= Form data origin =~ S8 Add fields by origin _ =5 Add flelds bytype %= Form properties © Properties (review)
® LTV label A% B 1 R R B R B B B B P PR R R
= abel 5 Field type
= Separator I3 Please, review and approve of reject oror. —— g
S simple subform P 5 gheader Field name:
& Multiple subform r 3 review
1 Creation date *Customer
E| Label:
O Shorttext ™ 83 [oooa3
3 Long text IR Review stalus
it T ——
[Decimal [B
73 ebines Label css class Label css style:
O BigDecimal I~ 93 @Description
O Biginteger e Help text:
[Short N
O Integer r ?Z Style class: Css style:
O Long integer o
@ E-mall I g_: Review status Size: Max length:
@ Chaokaox 1=7 4 Ptease, enter any ofthe following options: i
e T -3 :;EE"E @Required [Readonly [ShowHTML [Password
jch tex LE tejec
3 ® Request modification Formula:
Timestamp ! T o "Review status
Short date r 3 - o
=]
23 Range value:
1 (approve,Approve orderreject Reject ordermodifications,Request
E Modifications) (]
67’ Pattern
LE! i)

Figure 2.36. Setting default value formula

As you can see that field is being shown as a select box and it has a range formula that specifies
the values like this:

{approve, Approve order;reject, Rej ect order; nodi ficati ons, Request
Modi fi cati ons}

This expression is defining 3 duos of value/"text to show” separated with the character ‘,” and
each of this duos is separated from each other other with the ‘;’ character. So due this formula
the resulting select box will show:

37

http://www.w3schools.com/xpath/

Chapter 2. First steps to cre...

Table 2.2.
Value stored in input Text shown on Select Box
approve Approve order
reject Reject order
modifications Request Modifications

2.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the html that is displayed.
The form modeler provides the ability to edit the html directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form
layout' option and save.

Now the form is displayed with the custom html. To access this html editing we click on the icon
'Edit'

The html editor is displayed, the html code will define how the form has to be shown. In this editor
the user can directly create the html i locate the fields and labels with the syntax described below:

$field{fieldName} for field identified fieldName
$label{fieldName} for field identified fieldName label
These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form html creation.

* 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text
is added to html. These selects only show the form fields haven't been added yet.

» 'Generate template based on'

This functionality generates the html using all fields (default, alignment fields or Not aligned)
depending on the selected value and overwrite the html.

2.3.3. Field types

There are three types of field types that you can use to model your form:

« Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The
supported Field types are:

38

Field types

Table 2.3.
Name Description Java Type Default on
generated forms

Short Text Simple input to enter | java.lang.String yes
short texts.

Long Text Text area to enter java.lang.String no
long text.

Rich Text HTMLEditor to enter | java.lang.String no
formatted texts .

Email Simple input to enter | java.lang.String no
short text with email
pattern.

Float Input to enter short java.lang.Float yes
decimals.

Decimal Input to enter number | java.lang.Double yes
with decimals.

BigDecimal Input to enter big java.math.BigDecimal | yes
decimal numbers.

Biginteger Input to enter big java.math.Biginteger |yes
integers.

Short Input to enter short java.lang.Short yes
integers

Integer Input to enter java.lang.Integer yes
integers.

Long Integer Input to enter long java.lang.Long yes
integers

Checkbox Checkbox to enter java.lang.Boolean yes
true/false values

Timestamp Input to enter date & | java.util.Date yes
time values

Short Date Input to enter date java.util.Date no

values.

e Complex types

These field types are made to deal with properties that are Java Objects instead of basic types.
These field types need extra forms to be created in order to show and write values onto the

specified Java Object/s

39

Chapter 2. First steps to cre...

Table 2.4.
Name Description Java Type Default on
generated forms
Simple subform Renders the a form, | java.lang.Object yes
it is used to deal with
1:1 relationships.
Multiple subform This field type is java.util.List yes

used to deal with

1:N relationships. It
allows to create, edit
and delete a set child
Objects.Text area to
enter long text.

¢ Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They
can be used with aesthetic purpose

Table 2.5.

Description

HTML label Allows the user to create HTML code that
will be rendered in the form

Separator Renders an HTML separator

2.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any
type) on the form to look and behave totally different than the standard platform fields. On this
section we will take a look on how to create them and how to configure them.

2.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the
org.jopm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside
a jar file that is placed on the Application Server classpath or inside the application War.

Lets take a look at org.jopm.formModeler.core.fieldTypes.CustomFieldType:

package org.j bpm fornibdel er. core. fiel dTypes;

import java.util.Locale;

40

Field types

i mport java.util.Mp;

/**

* Definition interface for customfields

*/
public interface CustonFiel dType {
/**
* This method returns a text definition for the customtype. This/ text will be
* @aram | ocal e The current user |ocale
* @eturn A String that describes the field type on the sj
*/
public String getDescription(Locale |ocale);
/**
* This method returns a string that contains the HTML code that will be used tc¢
* shown on screen
* @aram val ue The current field val ue
* @aram fi el dNane The field nane
* @ar am nanespace The unique id for the rendered form it should t
* @aramrequired Determines if the fieldis required or not
* @aram readonl y Determines if the field nmust be shown on read or
* @ar am par ans A list of configuration parans that can be set ¢
* @eturn The HTML that will be used to show the field val
*/
public String get ShowHTM_(Chj ect value, String fieldNanme, String nanespace, boc
/**
* This method returns a String that contains the HTML code that will show the i
* @aram val ue The current field val ue
* @aram fi el dNanme The field nane
* @ar am nanespace The unique id for the rendered form it should t
* @aramrequired Determines if the fieldis required or not
* @aram readonl y Determines if the field must be shown on read or
* @ar am par ans A list of configuration parans that can be set ¢
* @eturn The HTML code that will be used to| show the inpt
*/
public String getlnput HTM.(Cbj ect value, String fieldNanme, String nanespace, bc
/**
* This method is used to obtain the field value fromthe subnmitted val ues.
* @aram request Paranet ers A Map containing the request paraneters for the
* @aram request Fil es A Map containing the java.io.Files uploaded on t
* @aram fi el dName The field name
* @ar am namespace The unique id for the rendered form it should t
* @ar am previ ousVal ue The previ ous val ue of the current field
* @aramrequired Determnes if the fieldis required or not
* @aram readonl y Determines if the field nust be shown on read or
* @ar am par ans A list of configuration parans that can be set ¢
* @eturn The val ue of the field based on the subnmitted fc

41

Chapter 2. First steps to cre...

*/

public Object getValue(Map requestParaneters, Map requestFiles,

As you can see this Interface defines the methods that determines how the field has to be
shown on the screen for when the form is shown on insert(getinputHTML(...)) or readonly
(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed
parameters from the request and to obtain the correct field value. Te returned value type must
match with the type of the field added on the form. So (for example) you can create a File input
that uploads a file to a server folder and saves a String with the storage path as the field value,
so on your forms you can turn all the text compatible fields (Short Text, Long Text, Rich Text and
Email) on Input File.

To
on

see ho can it be done look at the example
https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jopm-form-modeler-sample-
custom-types/jbpm-form-modeler-custom-file-type.

Please note that this is just a sample and it only should be used with learning purposes.
2.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on
the previous chapter, we have created a File Input type and we have it already installed on our
application. So now we are going to create a new form and add a Short Text property and turn it into
a File Input and edit the field properties changing the Field Type from Short text to Custom field.

Form Modeler [UsingCustomTypes-taskform]
= Formdata origin =~ = Add fields by origin =5 Add fields by type | !5 Form properties
LR B =TT T TP T VO - TV - T T, T
I8 HTML label ~ FroRED
1 'einpuiFile (inpuiFile)

@ Properties (inputFile)

i [0 B

= Separator Shorttext sl

X [short text
Long text

& simple subtorm

I
B Multiple subform r E-malil
i Rich text
Custom field
NpUtFile (IpUtFile)

3 Short text [RLE

D Long text

E
O Float x

Default eror message:

O Decimal

Label css class: Label css style:

[BigDecimal [BLE

O Biginteger r = Help text

O shert

[Integer [RIEE Style class: Css style:

[Long integer

; Size:

o3 i}
X Required
Formula:

Max length:
B3 E-mail

B CheckBox

Read only Show HTML

I® Rich text

Timestamp
Short date

Range value:

Pattern:

Figure 2.37.

42

String fiel dNar

Password

https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type
https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type

Field types

7

After changing the field type a new set of properties will appear:

43

Chapter 2. First steps to cre...

€ Properties (inputFile)

Field type

Custom field j
Field name:

inputFile
Label:

inputFile (inputFile)
Custom field

hd

First Parameter
Second Parameter
Third Parameter
Fourth Parameter
Fifth Parameter

"IRequired | | Read only
Input binding expression:

Output binding expression:
inputFile

Figure 2.38.

44

Field types

Chapter 2. First steps to cre...

So opening the Custom field select box we'll be able to select the File Input from the available
custom types:

46

Field types

€ Properties (inputFile)

Field type

Custom field j
Field name:

inputFile
Label:

inputFile (inputFile)

Custom field

Second Parameter
Third Parameter
Fourth Parameter
Fifth Parameter

"'Required | Read only
Input binding expression:

Output binding expression:
inputFile 1]

Figure 2.39.

47

Chapter 2. First steps to cre...

After selecting the File Input type on the list and saving the field properties the form will look like:

100 TIEIAS DY OFIgIN | =% AGA NEI0S DY lyPe | 5 FOrM properues

Figure 2.40.

If we build a simple process and configure a Short text to be shown as the sample File Input, if
we build the project on runtime the field will behave uploading the choosen files to the server and
allowing the user to download it like this:

2 - Edit File

in_inputFile (inputFile)

fhome/pefernan/| Documents.-‘] Browse...

 Save | Release eylEC

Figure 2.41.

48

Field types

.

2 - Edit File

in_inputFile (inputFile)
D Planning - Jan 25.odt (209.18 Kb) m

[][Browse... J

 Save | Release

Figure 2.42.

If we take a look at what's the process variable value, we'll see that is storing a String with the
file path stored in server.

Process Variables

|

Instance ID 2
Definition Id UsingCustomTypes

Definition Name UsingCustomTypes

Name Value Type Last Modification Actions
inputFile Idocs/e3cab773/b14d/4e19 String 22/10/2013 15:18 @
/8cd0/e61c539a8c06/inputFile/Planning
-Jan 25.0dt
Figure 2.43.

49

50

Chapter 3.

Chapter 3. Data Modeller

3.1. What is Data Modeller

Neither the Drools platform (the rules engine) nor the jBPM platform (the business process engine)
make sense if they do not have some kind of data to work with.

Typically, a business process analyst or data analyst will capture the requirements for a process or
application and turn these into a formal set of interrelated data structures. The new Data Modeller
tool provides an easy, straightforward and visual aid for building both logical and physical data
models, without the need for advanced development skills or explicit coding, and transparently
integrate and avail them for use by both platforms. Its main goals are to make data models into
first class citizens in the process improvement cycle and allow for full process automation through
the integrated use of data structures (and the forms that will be used to interact with them - see
the chapter on the form modeller).

@ Note
The data modeller tool effectively replaces the former Drools Fact Modeller. The
latter is therefore no longer available.

3.2. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this
tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

KIE Workbench

Home Authoring =

Project Authoring
Asset repository

Administration

Figure 3.1. Go to authoring perspective

51

Chapter 3. Data Modeller

2. If not open already, start the Project Explorer panel

KIE Workbench

Mew Item = T

Incoming changes

Recently edited

Recently opered

Figure 3.2. Open project explorer panel

3. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and
the project the data model has to be created for. For this tutorial's example, the values "Tutorial",
"Examples", and "Purchases" were respectively chosen

Business = Technical i

Organizational Unit: | % Tutorial ™
Repository: [Examples ™
Project: CdPurchases =

Package JEs gkl

Figure 3.3. Choose project

4. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the
"Data Modeller" option from the drop-down menu

52

First steps to create a data model

KIE Workbench

Explore = Mew [tem =

Project Explorer Project Editor

Business | Techricd -
Organizational Unit: & Tutorial ™
Repository: [[Examples =~
Project: [dPuchases =

Figure 3.4. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Purchases Data object Field

Identifier
Create new field
. e SEECT el
Furchase Order Header x "d ins ilid Jar lentifier Label nsert 3|
Label Description
Purchase Order Line » *Type j
Description
|
Purchase Order (org.joppm.examples.purchases.PurchaseOrder)
Type String
Position Identifier 4 Label Type
Equals O
-. String .
Fosition 0
1 header Header (@ Purchase Order Header x
2 lines Lines @ Purchase Qrder Line [0 N] x

Figure 3.5. Data modeller overview

The Data Modeller panel is divided into the following sections:

« The leftmost "model browser" section, which shows a list of already existing data entities (if any
are present, as in this example's case). Above the list the project's name and a button for new
object creation are shown. Note that as soon as any changes are applied to the project, an "*' will
be appended to the project's name to notify the user of the existence of non-persisted changes.

53

Chapter 3. Data Modeller

Purchases
Identifier
Purchas
Furchase Order Header x
FPurchase Order Line »

Figure 3.6. The data model browser

» The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and
forth through the data model, when accessing properties that themselves are model entities. The
bread crumb trail shown in the image indicates that the object browser is currently visualizing
the properties of an entity called "Purchase Order Line", which we accessed through another
entity ("Purchase Order"), where it is defined as a field.

Purchase Order - Purchase Order Line

Figure 3.7. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Create new field

"d |insert a valid Java identifiel AR

*Type j

Figure 3.8. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently
selected data object's (in the model browser) fields.

54

Entities

Purchase Order (org.jppm.examples.purchases.PurchaseOrder2)

Position ldentifier & Label
-ll
header Header (i) Purchase Order Header
2 lines Lines @ Purchase Order Line [0.M] b4

Figure 3.9. The entity field browser

e The "entity / field property editor". This is the rightmost section of the Data Modeller screen
which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of
the currently selected entity in the model browser, whilst the Field tab enables edition of the
properties of any of the currently selected object's fields.

Data object | Field

ldentifier pyrchaseOrder

Label Purchase Order

Deseription | This entity models the

client purchase orders.

Package org.jbpm.examples.purchases jg
Superclass Example Parent Class {-::nj

Role EVENT j ©

Figure 3.10. The entity/field property editor

3.3. Entities

A data model consists of data entities which are a logical representation of some real-world data.
Such data entities have a fixed set of modeller (or application-owned) properties, such as its

55

Chapter 3. Data Modeller

internal identifier, a label, description, package etc. Besides those, an entity also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser
section (see fig. "The data model browser" above), or by clicking the one in the top data modeller

menu:

Create Save x X

Data object Field

Figure 3.11. Starting creation of an entity from the top menu

This will pop up the new object screen:

Create new data object

e i

Figure 3.12. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

» The object's internal identifier (mandatory). The value of this field must be unique per package,
i.e. if the object's proposed identifier already exists in the selected package, an error message

will be displayed.

56

Entities

» Alabel (optional): this field allows the user to define a user-friendly label for the data entity about
to be created. This is purely conceptual info that has no further influence on how objects of this
entity will be treated. If a label is defined, then this is how the entity will be displayed throughout
the data modeller tool.

» A package (mandatory): a data entity must always be created within a package (or name space,
in which this entity will be unique at a platform level). By default, the option for selecting an
already existing package will be activated, in which case the corresponding drop-down shows
all the packages that are currently defined. If a new package needs to be defined for this entity,
then the "New package" option should be selected. In this case the new to be created package
should be input into the corresponding text-field. The format for defining new packages is the
same as the one for standard Java packages.

« A superclass (optional): this will indicate that this entity extends from another already existing
one. Since the data modeller entities are translated into standard Java classes, indicating a
superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the
bottom of the screen the new data entity will be created. It will be added to the model browser's
entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition
of the newly created entity, by completing the entity's properties in the Data Object Properties
browser, or by adding new fields.

Purchases* © Create

Identifier
Create new field
Purchase Order o

Purchase Order Header »® *id 1 tif Label
Purchase Order Line x® “Type -
frutorial Exarmple Entity .

Tutorial Example Entity (org.jbpm.examples.Example)

Position Identifier 4 Label Type

The data of

Figure 3.13. New entity has been created

@ Note
As can be seen in the above figure, after performing changes to the data model, the
model name will appear with an ** to alert the user of the existence of un-persisted
changes to the model.

57

Chapter 3. Data Modeller

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'
icon to the right of each entity. If an entity is being referenced from within another entity (as a
field type), then the modeller tool will not allow it to be deleted, and an error message will appear
on the screen.

3.4. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined
properties to its definition. This can be achieved by providing the required information in the
"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when
finished. The following fields can (or must) be filled out:

» The field's internal identifier (mandatory). The value of this field must be unique per data entity,
i.e. if the proposed identifier already exists within current entity, an error message will be
displayed.

« A label (optional): as with the entity definition, the user can define a user-friendly label for the
data entity field which is about to be created. This has no further implications on how fields
from objects of this entity will be treated. If a label is defined, then this is how the field will be
displayed throughout the data modeller tool.

« A field type (mandatory): each entity field needs to be assigned with a type.
This type can be either of the following:

1. A'primitive’ type: these include most of the object equivalents of the standard Java primitive
types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and Biginteger.

-uT.\I. &

BigDecimal
irchas Biginteger
Boolean
Date
Double

Float
. Integer

Lang

Short

String

‘osition

7]

Figure 3.14. Primitive field types

2. An 'entity’ type: any user defined entity automatically becomes a candidate to be defined as
a field type of another entity, thus enabling the creation of relationships between entities. As

58

Properties & relationships

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already
appears in the types list and can be used as a field type, even for a field of itself. An entity
type field can be created either in 'single’ or in 'multiple’ form, the latter implying that the field
will be defined as a collection of this type, which will be indicated by the extension '[0..N]'
in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the
'Purchase Order' entity, for example).

A

Example Parent Class (org.jbpm.examples. purchases. parent)

Example Parant Class (org.jbpm.examples. purchases parent) [0..N]

Purchase Order (org.jbpm.examples purchases. PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases PurchaseOrder) [0..N]

Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader)
Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader) [0..N]
Purchase Order Line (org.jbpm.examples. purchases.PurchaseOrderLing)

Purchase Order Line {org.jbpm.examples, purchases PurchaseOrderLing) [0..N]
Tutorial Example Entity (org.jbpm.examples. Example) |
Tutorial Example Entity l{nrg.jbpm.examples.Exam ple) [0..M] ‘I

Figure 3.15. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add
the newly created field to the end of the entity's fields table below:

Tutorial Example Entity

Purchases* Data object Field

Identifier
Create new field

Purchase Order x ldentifier — jtjq
Purchase Order Header 3¢ bid |insert 2 valid Java identifiet Label |Insert a label
Sl Title
Purchase Order Line x *Type j
Description
Tutorial Example Entity .
Tutorial Example Entity (org.jppm.examples.Example)
Type String j
Position Identifier 4 Label T

ype
Equals O
Position 0 j

Figure 3.16. New field has been created

The new field will also automatically be selected in the entity's field list, and its properties will be
shown in the Field tab of the Property editor. The latter facilitates completion of some additional
properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on
the corresponding 'x' icon in the entity's fields table.

59

Chapter 3. Data Modeller

3.5. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be
set upon creation. These are by no means the only properties entities and fields have. Below we
will give a detailed description of the additional entity and field properties.

3.5.1. Additional entity properties ("Data object tab")

Data object | Field

ldentifier prchaseOrder

Label Purchase Order

Deseription | This entity models the
client purchase orders.
Package org.jbpm.examples.purchases j o

Superclass Example Parent Class ujmj

Role EVENT j @

Figure 3.17. The entity's properties

 Description: this field allows the user to introduce some kind of description for the current entity,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

* Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited
from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity
that is designated with this value will be treated by the rules engine as an event type Fact (See
Drools Fusion for more information on this matter).

60

Additional field properties ("Field tab")

3.5.2. Additional field properties ("Field tab")

Diata object Fiald

Identifier header

Labal

Description

—.J.I.l_ -

Equals o

Pasition

Figure 3.18. The entity's field properties

 Description: this field allows the user to introduce some kind of description for the current field,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

« Equals: checking this property for an entity field implies that it will be taken into account, at
the code generation level, for the creation of both the equals() and hashCode() methods in the
generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

3.6. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data
structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform
on the other. In order for this to become possible, these high-level visual structures have to be
transformed into low-level artifacts that can effectively be consumed by these platforms. These
artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data
model is saved, by pressing the "Save" button in the top Data Modeller Menu.

61

Chapter 3. Data Modeller

Create Save x

Data ohject Field

Figure 3.19. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,
according to the following transformation rules:

The entity's identifier property will become the Java class's name. It therefore needs to be a
valid Java identifier.

The entity's package property becomes the Java class's package declaration.
The entity's superclass property (if present) becomes the Java class's extension declaration.

The entity's label and description properties will translate into the Java
annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and
"@org.kie.workbench.common.services.datamodeller.annotations.Description”, respectively.
These annotations are merely a way of preserving the associated information, and as yet are
not processed any further.

The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-
defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own
getter and setter method, according to the following transformation rules:

The entity field's identifier will become the Java field identifier. It therefore needs to be a valid
Java identifier.

The entity field's type is directly translated into the Java class's field type. In case the entity field
was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

The equals property: when it is set for a specific field, then this class property will be
annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the
Drools Engine, and it will 'participate’ in the generated equals() method, which overwrites the
equals() method of the Object class. The latter implies that if the field is a 'primitive’ type, the
equals method will simply compares its value with the value of the corresponding field in another

62

Generate data model code.

instance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding entity's Java class, or of the
java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies
thatin addition to the default generated constructors another constructor is generated, accepting
as parameters all of the fields that were marked with Equals. Furthermore, generation of the
equals() method also implies that also the Object class's hashCode() method is overwritten, in
such a manner that it will call the hashCode() methods of the corresponding Java class types
(be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in the Data
Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
changes the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

e The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to
its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines’ were
marked with Equals, and have been assigned with the positions 2 and 1, respectively).

| Dataohject | Field

Create new field !
Identifier | pyrehaseOrder

“id: [inser Label

*Type j

L Purchase Order

Descriplion | This entity models the

client purchase orders.

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)
Package | org.jbpm.examples purchases j o

Position Identifier a Label Type
Superclass Example Parent Class njmj
description Description String
Rale EVENT -|e
O o
lines Lines (@ Purchase Order Ling [0..N]

Figure 3.20. Purchase Order configuration

63

Chapter 3. Data Modeller

package org.j bpm exanpl es. pur chases;

/**
* This class was automatically generated by the data nodel er tool.
*/
@rg. kie.api.definition.type. Rol e(val ue =
org. ki e. api . definition.type. Rol e. Type. EVENT)
@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Purchase Order")
@r g. ki e. wor kbench. conmon. servi ces. dat anbdel | er. annot ati ons. Descri ption(val ue =
"This entity nodels the client purchase orders.")
public class PurchaseOrder extends org.jbpm exanpl es. purchases. par ent
inmpl enents java.io.Serializable {

static final long serial VersionU D = 1L;

@r g. ki e. wor kbench. common. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Descri ption")

@rg. kie.api.definition.type.Position(value = 0)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"A description for this purchase order.")

private java.lang. String description;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Label (val ue =
"Li nes")
@rg. kie.api.definition.type. Position(value = 1)
@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"The purchase order itens (collection of Purchase Order Line sub-entities).")
@rg. ki e.api . definition.type. Key
private java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Header")

@rg. kie.api.definition.type. Position(value = 2)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri ption(val ue =
"The purchase order header (Purchase Order Header sub-entity).")

@rg. ki e.api.definition.type. Key

private org.jbpm exanpl es. purchases. PurchaseO der Header header;

public PurchaseOrder() {}

publi ¢ PurchaseOr der(
java.lang. String description,
java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)

thi s.description = description;
this.lines = |ines;
thi s. header = header;

64

Generate data model code.

publ i ¢ PurchaseOrder (
java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)
this.lines = |ines;

t hi s. header = header;

public java.lang. String getDescription() {
return this.description;

public void setDescription(java.lang.String description) {
thi s.description = description;

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne>

get Li nes()

return this.lines;

public void setLines(

java. util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines)

this.lines = |ines;

public org.jbpm exanpl es. purchases. Pur chaseOr der Header get Header () {
return this. header;

public void setHeader(org.jbpm exanpl es. purchases. PurchaseOr der Header
header)

{
thi s. header = header;
}
@verride
publi ¢ bool ean equal s(Obj ect 0) {
if (this == 0) return true;
if (o ==null || getdass() != o.getClass()) return fal se;

org. j bpm exanpl es. purchases. Pur chaseOrder that =
(org.j bpm exanpl es. pur chases. Pur chaseOr der) o;

if (lines !'= null ? Ilines.equals(that.lines) : that.lines !'= null)
return fal se;
if (header !'= null ? !'header.equal s(that.header) : that.header != null)

65

Chapter 3. Data Modeller

return fal se;
return true;

@verride

public int hashCode() {
int result = 17;
result = 13 * result + (lines !'=null ? lines.hashCode() : 0);
result = 13 * result + (header != null ? header.hashCode() : 0);
return result;

3.7. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

« Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

« Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

3.7.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

66

Dependency to a JAR file in local M2 repository

3.7.1.1. Open the Project Editor for current project and select the
Dependencies view.

File Edit View History Bookmarks Tools Help
| © KIE Workbench | #+]

%o localhost

KIE Workbench

Explore ~ NewlItem ~ Tools
File ™ | | Build & Deploy | | x | ¥

Project Explorer x |~ Project Screen

Business Technical <
Dependencies: Dependencies list ~

Organizational Unit: i demo ™

Repository: []ke-examples ~ Dependencles Add Add from
reposttory

Project: | (Jpurchases ~ "

Package: | & org;jbpm.examples purchases ¥
Group ID Artifact ID Verslon ID

3.7.1.2. Click on the "Add" button to add a new dependency line.

File Edit View History Bookmarks Tools Help
| © KIE Workbench | #+]

&= localhost

KIE Workbench

Explore ~ NewlItem ~ Tools
File ™ | | Build & Deploy | | % | ¥

Project Explorer x |~ Project Screen

Business = Technical &
Dependencies: Dependencies list ~

Organizational Unit: & demo ~

Repository: []ke-examples ~ Dependencles Mﬂ Add from
o reposttory

Project: | (Jpurchases ~ "

Package: | & orgjbpm.examples.purchases ¥
Group ID Artifact ID Verslon ID

w

javascript:;

67

Chapter 3. Data Modeller

3.7.1.3. Complete the GAV for the JAR file already installed in local
M2 repository.

File Edit View History Bookmarks Tools Help

| KIE Workbench | +]
~ @] [B¥ Google a ¥ @

e localhost

KIE Workbench

Explore ~ NewlItem ~ Tools
File ™ | | Build & Deploy | | x | ¥

Project Explorer x |~ Project Screen

Business Technical <
Dependencies: Dependencies list ~

Organizational Unit: i demo ™

Repository: []ke-examples ~ Dependencles Add Add from
reposttory

Project: | (Jpurchases ~ "

Package: | & org;jbpm.examples purchases ¥
Group ID Artifact ID Verslon ID

el 1.0 T mJ

3.7.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

File Edit View History Bookmarks Tools Help

| @ KIE Workbench |+
v @/ |Bv Google Q J\-/L iy

& localhost:

KIE Workbench

Explore ~ NewlItem ~ Tools ~

Project Explorer = |~ Project Screen File ™ || Build &Deploy | % | T

Business = Technical =
Dependencies: Dependencies list v

Organizational Unit: demo ~

Repository: [kie-examples ¥ Dependencles Add Add from
repository

Project: | CJPurchases ~ I

Package: 8 orgjbpm.examplespurchases ¥

Group ID Artifact ID Verslon ID
termal-model n el 10 T

javascript:;

3.7.2. Dependency to a JAR file in current "Guvnor M2
repository"”.

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

68

Dependency to a JAR file in current "Guvnor M2 repository".

3.7.2.1. Open the Guvnor M2 Repository editor.

File Edit View History Bookmarks Tools Help

| Q KIE Workbench | #|
e localhost:B080/kie-wh-6.1.0- HOT-eap-6_1 E E tml P4FileE v @/ [Bv Google a & o
KIE Workbench
Authoring ~
Explore. Project Authoring Q
File Explor administration x|~ Guvnor M2 REPOSITORY x|~

HiRepositorles

Browse... | upload
Upload new Jar:

Find items with a name matching:
Search
I
Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detail Download

W 4 00f0 » L]

javascripts;

3.7.2.2. Browse your local file system and select the JAR file to be
uploaded using the Browse button.

File Edit View History Bookmarks Tools Help

© KIE Workbench | #]
& localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1 E E tml24Fil eE [€ Google a 4 @
7 < wmedvede | development | projects | external-model ' target
Explore ~ Q
File Explorer x - | Guvnor M2 REPOSITORY Places Hame v | Size | Modifiad x| -
HRepastiories T Qsearch 3 classes 10:29
Upload new Jor fhome/wmedvede/developmen| Browse... 'O Recently Used 4 maven-archiver 10:29
wmedvede 0 surefire 10:29

@I Desktop B external-model jar 13kB 12:03

{J File System

Find items with a name matching:
0 Search
& - All Files v
Refresh | Delete selected jar

m Cancel Open

Name Path LastModified View Artifact Detail Download

M 4 0of0 » M

69

Chapter 3. Data Modeller

3.7.2.3. Upload the file using the Upload button.

File Edit View History Bookmarks Tools Help
[@ KiE Workbench [+]

& | @ lLocalhost:3080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Bv Google a & o

Uploaded successfully

0Ky ||

3.7.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }
& | @ Localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench. KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Av Google a I @
Explore ~ search. Q
File Explorer = |~ Guvnor M2 REPOSITORY x v

HiRepositories

T
Upload new Jar:

Find items with a name matching:

. Search
Refresh | Delete selected jar
m
Name Path LastModifled View Artifact Detall Download
1 extemal-model-1.0jar extemal-modeliextemal-model/1.O/extemal-model-1.0jar \2013 Sep 27 12:17:30 | Open Download

W o4 1of1 » » M

3.7.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

70

Dependency to a JAR file in current "Guvnor M2 repository".

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }

@“ | @ tocalhost:8080/kie-wb-6 1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html ?#M2RepoEditor ~ @ 8- Google Q @ r_@]‘

The Jar does not contain a valid POM file. Please specify GAV info manually.

File Edit View History Bookmarks Tools Help

| @ KiE Workbencn |[+ }
[= | 1 s
& | @ localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6. 1/org.kie.workbench. KIEWebapp/KIEWebapp.htm| 24M2RepoEditor v @| |Bv Google a & @
Explore - search, Q
File Explorer x ~ Guvnor M2 REPOSITORY x| v

HiRepositories

/home/wmedvede/developmen| Browse... | upload

GroupID: external-model

Upload new Jar: pieacyy. external-model

version{ 10 T

Find items with a name matching:

Search

Refresh | Delete selected jar

3.7.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

71

Chapter 3. Data Modeller

File Edit View History Bookmarks Tools Help
| 9 KIE Workbench |+

& localhost: v @ |[Bv Google Q J\'/L @

KIE Workbench

Explore + NewItem ~ Tools ~ (search... . Q

|
Project Explorer x|~ Project Screen File™ || Buld&Desloy| x| 7|

Busness m’“‘il | Dependencies: Dependencies list ~ |

Organizational Unit: demo ~
Repository: [ke-eamples ¥ | Depel ® il ‘
Project: | L) Purchases ~ | n Name Path LastModified View Artifact Detail g

Package: | 8 orgjopm.examples purchases | ~ | extemal-model-1.0jar extemal-model/extemal-model/1.0/extemal-model-1.0 jar 2013 Sep 27 12:56:44 | Seleciyy
Group ID -

4 4 10of1 » L
JAVA SOURCE FILES

3.7.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

« External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

File Edit View History Bookmarks Tools Help
| © KIE Workbench |+

$ Localhost ~ @| |8 Google Q J\'/L =

KIE Workbench

Explore * Newltem ~ Tools v Q
Project Explorer x|~ Data modeler Create || Save | | x || ™
Business = Technical | &

Purchases Data object ~ Field
Identifier

Organizational Unit: fgdemo ~

Create new field
Identifier
Repository: | [kie-examples |~ [z e . PurchaseQrder

Project: [JPurchases |~ Purchase Order x 1d |useExternalType Label Laper

Header .
Package: | # org jopm xampiles.purchases | Type[- ext - externaimodel Produd
Description

Purchase Order Line %

Purchase Order

BigDecimal

Purchas| gg;‘r\el:ger

! Date Package | org.jbpm.examples.purchases .| g
Positiof o 1o
Superclass

’ ol :
Integer
Role j)

Long
! Short
String
2 Purchase Order (org.jppm.examples.purchases.PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder) [0..N]

Purchase Order Header (org.jppm.examples.purchases.PurchaseOrderHeader)
Purchase Order Header (org.joppm.examples.purchases.PurchaseOrderHeader) [0..N]
Purchase Order Line (org.jopm.examples.purchases.PurchaseOrderLine)

Purchase Order Line (org.jppm.examples.purchases.PurchaseOrderLine) [0..N]

- ext - externalmodel.Product

- ext - externalmodel.Product [0..N]

72

	jBPM Form modeller - Getting Started guide
	Table of Contents
	
	Chapter 1. What is jBPM Form modeler
	Chapter 2. First steps to create a form driven process
	2.1. Configure process and human tasks
	2.2. Generate forms from task definitions
	2.3. Edit forms
	2.3.1. Form generated description
	2.3.2. Customizing form
	2.3.2.1. Moving fields
	2.3.2.2. Adding new fields
	2.3.2.3. Field configuration
	2.3.2.3.1. Generic field properties
	2.3.2.3.2. Specific field properties
	2.3.2.3.3. Complex Fields Configuration
	2.3.2.3.3.1. Simple Object (Subform field Type)
	2.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

	2.3.2.3.4. Formulas

	2.3.2.4. Customizing form layout

	2.3.3. Field types
	2.3.3.1. Custom Field Types
	2.3.3.1.1. How to create Custom Field Types
	2.3.3.1.2. Configuring and using Custom Field Types

	Chapter 3. Data Modeller
	3.1. What is Data Modeller
	3.2. First steps to create a data model
	3.3. Entities
	3.4. Properties & relationships
	3.5. Additional options
	3.5.1. Additional entity properties ("Data object tab")
	3.5.2. Additional field properties ("Field tab")

	3.6. Generate data model code.
	3.7. Using external models
	3.7.1. Dependency to a JAR file in local M2 repository
	3.7.1.1. Open the Project Editor for current project and select the Dependencies view.
	3.7.1.2. Click on the "Add" button to add a new dependency line.
	3.7.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	3.7.1.4. Save the project to update its dependencies.

	3.7.2. Dependency to a JAR file in current "Guvnor M2 repository".
	3.7.2.1. Open the Guvnor M2 Repository editor.
	3.7.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	3.7.2.3. Upload the file using the Upload button.
	3.7.2.4. Guvnor M2 repository files.
	3.7.2.5. Provide a GAV for the uploaded file (optional).
	3.7.2.6. Add dependency from repository.

	3.7.3. Using the external objects

