Mobicents JAIN SLEE USSD
Gateway Application User Guide

by Amit Bhayani and Bartosz Baranowski

g (=Y 7= o < v

I o Tox 0 o T=T o | @ 0] 0 1V7=T o1 i o o =P \

1.1. Typographic CONVENLIONScivuuiiiiiieiiiee e e e e e e e e e e e e e e eanas %

1.2. PUll-QUOLE CONVENTIONSiiiiiieieiii ettt ettt vii

1.3. NOteS and WaArNINGSuoviviieiiii e e e e e e e e e e e anes Vi

2. Provide feedback to the authors! ... viii

1. Introduction to Mobicents JAIN SLEE USSD Gateway Applicationccceeevvnnenn. 1
L1.1. USSD GAEBWAYcevuniirieieiee ittt ettt et et e e et e e e e e e e e enes 2

T = A1 o PP 5
2.1. Pre-Install Requirements and PrereqUISItEScoouuiiiiiiiiiiiiiieeeii e 5
2.1.1. Hardware ReqUIFEMENLSuuiiiiieiiii e e e e e e e e e e e e e e e e ees 5

2.1.2. SOftWare Prer@qUISITESc.uuuiiiiiiiieiiii e e 5

2.2. Mobicents JAIN SLEE USSD Gateway Application Source Codeccceeeevnneenn. 5
2.2.1. Release Source Code BUIldINGccocviiiiiiiiiieiiii e 6

2.2.2. Development Trunk Source BUildingc.cccoveviiiiiiiiiiiiiie e, 6

2.3. Folder structure of Mobicents JAIN SLEE USSD Gateway Application 7

2.4. Rule engine CoNfigUIationc.uiieiunieiiieiii e e e e e eeens 7

2.5. GUVNOI CONTIGUIALION .eevuiiiiiii et et e e e e 9
2.5.1. CreatiNg FESOUICESuuiiiteieieeei e et e ettt e et e e et e e e e e et e e et e e et e e et e eaneean s 9

2.5.2. Creating TUIBSi i 11

3. DESIGN OVEIVIEBW ..otuiiiiieiiie it e et e e e e e e e et e ettt e e et e e st e e et e e e e aateeetnaeeanaaees 15
4. SOUICE COUE OVEIVIEW ..euniiiiiii ettt e e et e e et e et e e e e e et e e e e e an e e e et e eeanaaeens 19
I T[T o 11 o = PPN 19

o Y D QS Yo F | (ol PP RPR 22

4.3, SLEE SEIVICE SOUICEciiiiiiieeeiiii e ettt e e e et e et e e et e e e e aan e 26
4.3.1. SErVICE TESCIIPIONiieiiti ettt e e e e e e e e e e e eens 26

4.3.2. SLEE LIBDIAIY ..ottt 27

T I - 1o =T T [N =T 1 = 33
L0 B I =T o] T £ S PP 33

L AN - 1 o 1 S 33

F N =YY YT I 153 (o] AP 35
o 1= P 37

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention
to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://
fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if
the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:
Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight key caps and key-combinations. For example:

To see the contents of the file ny_next _bestsel |i ng_novel in your current
working directory, enter the cat ny_next _best sel | i ng_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced
Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a
key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of
three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono- spaced Bol d. For example:

File-related classes include fi | esyst emfor file systems, fi | e for files, and di r
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application nhames; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.
For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Choose System > Preferences > Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click Close to switch the primary mouse button from the left to the right
(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >
Accessories > Character Map from the main menu bar. Next, choose Search
> Find from the Character Map menu bar, type the name of the character in the
Search field and click Next. The character you sought will be highlighted in the
Character Table. Double-click this highlighted character to place it in the Text
to copy field and then click the Copy button. Now switch back to your document
and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to
avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu
of the main menu bar' approach.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh user nane@onai n. nanme
at a shell prompt. If the remote machine is exanpl e. comand your username on
that machine is john, type ssh j ohn@xanpl e. com

The mount -0 renount file-systemcommand remounts the named file
system. For example, to remount the / hone file system, the command is nount
-0 renount /hone.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package- ver si on-rel ease.

Note the words in bold italics above username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as

vi

Pull-quote Conventions

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from
the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono- spaced Ronan and presented thus:

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{

public static void main(String args[])
throws Exception

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

System.out.printin("Created Echo");

System.out.printin("Echo.echo('Hello") =" + echo.echo("Hello"));

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.

Vii

Preface

E] Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring Important boxes won't cause data loss but may cause irritation
and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data
loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://
code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN SLEE USSD
Gateway Application, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:
USSDGateway_Application_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

viii

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

Introduction to Mobicents JAIN
SLEE USSD Gateway Application

USSD stands for Unstructured Supplementary Service Data what is a capability of GSM mobile
phone much like the Short Message Service (SMS). But there is a difference between USSD and
SMS handling.

SMS uses store and forward method of message delivery. Short Message is delivered first to
Sender's Short Message Service Center (SMSc) which will try to deliver the message to recipient.
So SMS does not guarantee that message will be delivered instantly.

USSD information is sent from mobile handset directly to application platform handling service. So
USSD suppose to establish a real time session between mobile handset and application handling
the service. The concept of real time session is very useful for constructing an interactive menu
driven application.

A user who is dialing USSD service number initiates dialog with USSD handling application
deployed on the Mobicents Platform as depicted on the figure below. The "Network Node" depicted
could be MSC, HLR or VLR. The Mobicents Platform integrates with "Network Node" using MAP
protocol.

Mobile SS7IMAP

General interworking diagram

The detailed description of the allowed MMIs or phone number which user can dial is presented
in 3GPP TS 22. 090. In the user's home network the following number range is defined for USSD
services: 1, 2 or 3 digits fromthe set (*, #) followed by 1X(Y), where X=any
nunber 0-4, Y=any nunber 0-9, then, optionally "*" followed by any nunber of any
characters, and concluding with # SEND

For example user can dial *#122# to reach a specific USSD service which is deployed in the home
network. The application in its order can reply with menu.

One of the biggest benefits is that this service is always available even when user is currently
in roaming.

Chapter 1. Introduction to Mo...

Below diagram depicts typical MAP message flow for implementing data transfer between
"Network Node" and Mobicents platform to implement menu driven application. For more
information on mobile- (and network-) initiated USSD operations and the use of MAP USSD
services, refer to [3GPPTS 24.090] in the References section.

HLR Mobicents
T—

1. User dials

#122# 10 TCAP Begin
MAP_PROCESS_UNSTRUCTURED_SS_REQUEST

2.
—-‘
TCAP Confinue
MAP_UNSTRUCTURED_SS_REQUEST
3. User dials
183 TCAP Confinue
MAP_UNSTRUCTURED_SS_REQUEST
4.

3
TCAP End
MAP_PROCESS_UNSTRUCTURED_SS_REQUEST

Message flow

Mobile initiated USSD service starts when user dials USSD string *#122#.

e The Network sends TCAP Begin message with Component
MAP_PROCESS_UNSTRUCTURED_SS_REQUEST to the Mobicents platform. The
Mobicents platform invokes USSD application logic .

« Application request additional information from user (action one or action two) via
MAP_UNSTRUCTURED_SS_REQUEST encapsulated in TCAP Continue message. At this
time TCAP Dialogue starts.

» Application receives user's selection of the action.

» Application performs its logic and sends a response back to the user. At this time application
do not want to get additional information from the user and it sends response using
MAP_PROCESS_UNSTRUCTURED_SS_REQUEST and terminates TCAP dialogue.

1.1. USSD Gateway

Existing MSC, VLR, and HLR network elements are proprietary and run on non-standard operating
environments located in trusted operator's zones that make it difficult to build and deploy new
applications. Also, these network elements do not provide the tools and interfaces needed to
access and retrieve data from content providers over Internet. The USSD Gateway connects to
the MSC, VLR, or HLR and enables the flow of USSD messages to be extended to an open,

USSD Gateway

standards-based application server located in the IP network. The AS also provides the tools and
interfaces to enable access to the content providers through the Internet.

Mobicents implementation of USSD Gateway is first and only open source USSD Gateway
available as of today. The Mobicents USSD Gateway makes use of SIP and HTTP protocol
between gateway and Value Added Service Modules or third party applications. Mobicents USSD
Gateway receives the USSD request from subscriber handset/device via GSM Signaling network,
these requests are translated to SIP or HTTP depending on the rules set by the user and then
routed to corresponding Value Added Service (VAS) or 3rd party application. JBoss Drools is used
to derive the protocol between Gateway and USSD Application and also the information of the
server (for example IP, port etc) where these applications are deployed.

Chapter 2.

Setup

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

The Application doesn't change the Mobicents JAIN SLEE Hardware Requirements, refer to
Mobicents JAIN SLEE documentation for more information.

2.1.2. Software Prerequisites

The Application requires Mobicents JAIN SLEE properly set, with:

» SIP
e HTTP Client
* MAP

Resource Adaptors deployed.

2.2. Mobicents JAIN SLEE USSD Gateway Application
Source Code

Chapter 2. Setup

2.2.1. Release Source Code Building

1.

Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using
Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://
mobicents.googlecode.com/svn/tags/applications/ussdgateway, then add the specific
release version, lets consider 1.0.0.BETAL.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/applications/
ussdgateway/1.0.0.BETAL slee-application-ussdgateway-1.0.0.BETA1

Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using
Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binary.

[usr]$ cd slee-application-ussdgateway-1.0.0.BETA1
[usr]$ mvn install

Once the process finishes you should have the depl oyabl e-uni t jar file in the target
directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS HOME is
pointing to its underlying JBoss Application Server directory, then the deployable unit jar will
also be deployed in the container.

2.2.2. Development Trunk Source Building

Similar process as for Section 2.2.1, “Release Source Code Building”, the only change is
the SVN source code URL, which is https://mobicents.googlecode.com/svn/trunk/applications/
ussdgateway.

http://svnbook.red-bean.com
http://maven.apache.org

Folder structure of Mobicents JAIN SLEE USSD Gateway Application

2.3. Folder structure of Mobicents JAIN SLEE USSD
Gateway Application

Installing Mobicents USSD Gateway creates a mobicents-ussd-gateway directory that contains
gateway configuration, libraries required for boot and running, example rules definition file (.drl)
etc. You need to know your way around the distribution layout to locate the drools file's to add
new rules. The figure "view of Mobicens USSD Gateway" illustrates the installation directory of
the Gateway.

= P mobicents-ussd-gateway

- “conﬁg

= USSDGatewayChangeSet xml

Pl drools-guvnor.war
- M lib
- antlr-runtirne-3.1.1 jar
drools-api-5.0.1.jar

' drools-compiler-5.0.1 jar
drools-core-5.0.1 jar
 drools-decisiontables-5.0.1 jar
drools-templates-5.0.1.jar
mvel2-2.0.10 jar

ussdgateway-domain-1.0.0 BETAL-SNAPSHOT. jar

- ussdgateway-rules-1.0.0.BETAL-SNAPSHOTjar

- || ‘ META-INF
=] jboss-beans.xml
|=_| jboss-structure xml

- “rules

é‘ USSDGateway.drl

Mobicents USSD Gateway

2.4. Rule engine configuration

Important

USSD Gateway Application uses Drool s as rule engine to perform decisions,
it is important to understand JBoss Drools [http:/downloads.jboss.com/drools/
docs/5.0.1.26597.FINAL/drools-expert/html_single/]

Rule engine (Dr ool s) is configured with USSDGat eway ChangeSet . xni file. Its content alters how
rule set is loaded and maintained within engine. There are two ways of maintaining rules:

locally
rules are loaded from designated file. Configuration file should look as follows:

http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html_single/

Chapter 2. Setup

<change-set xmlns="http://drools.org/drools-5.0/change-set'
xmlIns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemalocation="http://drools.org/drools-5.0/change-set.xsd'>
<add>

o

<resource

source='file:’lhome/baranowb/servers/jboss-5.1.0.GA/server/default
/deploy/mobicents-ussd-gateway/rules/'
type='DRL' />
</add>
</change-set>

£ points to subdirectory in current application which is scanned for rule files.

remotely
rules are managed by Guvnor Configuration file should look as follows:

<change-set xmIns="http://drools.org/drools-5.0/change-set'
xmlins:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemalocation="http://drools.org/drools-5.0/change-set.xsd">
<add>

9

<resource source="http://localhost:8080/drools-guvnor/

org.drools.guvnor.Guvnor/package/ussdGateway/LATEST.drl' type='"DRL' />
</add>

</change-set>

£ points to Guvnor s latest rule file. Note that path after package MUST match your custom
created package inside Guvnor .

Guvnor configuration

2.5. Guvnor configuration

Important

USSD Gateway Application uses Gunvor to manage system wide rule set in
consistent way, it is important to understand Guvnor [http://downloads.jboss.com/
drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/]

Guvnor is deployed along with USSD Gateway Application. To access it simply go to http://
<your server>/drools-guvnor/ . This will bring initial info screen or login screen - depends
on configuration.

If you have not configured the security you can directly login without providing any user id or
password.

2.5.1. Creating resources

@ Note

Guvnor requires upload for fact model and creation of some resources before it
can perform its tasks.

In case Guvnor has not been used(it is a new repository) you will get a message asking if you
would you like to install a sample repository? Its upto you to install the sample repository. If you say
yes, you would get sample repository which you can refer to have better understanding of Guvnor

Once you log-in follow the bellow steps:

1. Create a category specific to USSD gateway.

Goto Administration > Category > New Category . Enter Category name as UssdGat eway .

http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/
http://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-guvnor/html_single/

Chapter 2. Setup

Mavigate “ Find defautPackage morigages Category Manage *
% Brawse | [Edit categaries
B Knowiedge Bases + ‘\('\ -
A7 on :
B || Categories aid In managing large numbers of A shallew hierarehy
Administration
Current categories: o »
& Caingory
Stabss B
5 archive e §
@ EventLog MNew category

8 User permission
([1pears Exprort Create anew top level category. =
{0 About

Calegary name| sc dGateway
Ok

http:ifloc drools.guvnor, htmil#

Guvnor category

Create package for fact model.

Rules need a fact model (object model) to work off, so next you will want to go to the Package
management feature. Go to Knowledge Bases > Create New > New Package . Type
ussdGat eway (note that this name MUST match package in USSDGat eway ChangeSet . xni file).

Narvigate «| | Fid defmitPackage morigages Catagory Manage
% Browse + it categories
o [
Knowledge Bases "
£ = ¥
Create N
3 choges .
sy Categories akd In managing large numbers of rulss/assets. A shallow hisrarchy |s recommended.
=] detsitPackoge
= {f martgages. Current calegories: o
@ 5 Home Morigage

@ S Comn

@ UssdGaimway

cial Martgage Create a new package x|

p—
MNew category | Rename | r Create a new packags

Ocieste new packoge
Impsort from dri fike

Name: | issdGatein ay

Description: [This package is for USSD G

Create package

o
L7 oA
1 Package snapshols

Administration

Guvnor package

Upload fact model.

To upload a model, use ussdgateway-domain-x.y.z.jar which has the fact model (Call.java
API) that you will be using in your rules. When you are in the model editor screen, you can
upload a jar file, choose the package name from the list that you created in the previous step.

10

Creating rules

Go to Knowledge Base > Create New > Upload POJO Model Jar . On the screen enter
name as UssdPoj o , select package ussdGat eway and add the description, click Ok .

Havigate Find defaulPackage crigages Category Manage
o

Erowse Edit eategeries

Categories aid in mansging large nursbers of nilesissssts. A shallow hierarchy is ecommended

New madel archive [Jar} x
Mew model archive (ar}
New category | Rename | |

Package:| ussdGateway x|
wilial doscription [The call paje for SaiGatovay

QK

Guvnor fact model upload

Browse in newly open window and point to ${JBOSS. HOVE}/ ser ver/ def aul t/ depl oy/
nobi cent s- ussd- gat eway/ | i b/ ussdgat eway- domai n-x.y.z.jar

4. Edit your package configuration.

Now edit your package configuration (you just created) to import the fact types you just
uploaded (add import statements), and save the changes. Go to Knowledge Bases and click
on ussdGat eway package. Click on Save and validate configuration button.

This concludes configuration of Guvnor . Note that this has to be done only once.

2.5.2. Creating rules

Guvnor allows to create rules and edit previously existing ones. Changes done with Guvnor are
automaticly propagated to all clients. To create rule follow procedure below:

1. Create rule.

Go to Knowledge Bases> Create New > New Rule. Enter Name as ussd123Si p, click on
UssdGat eway Initial Category. Select DRL Rule (Technical rule - text editor), actually you
can use any editor here that you are comfortable with. Select ussdGat eway as package. Enter
description and click k.

11

Chapter 2. Setup

Eil Edit View History Bookmarks TJools Help

CI hd e X] @n | 4 | http:filocal host:B080/drools-guynoriorg.drools.quynor GuvnorGuynor 37291a8-b135-42d2-Bed
|l Personal Toolbar ...~ (&) National Stock Exch... .. Java Platform SE6 [o] httpoftrading-check... «»Online Dictionary |Mobicents~ |
] JBoss Guvnor | &

Nawigate * Find 2

% Browse +| Mame search ...

I Krowledos Boses o

Create New = - Lo x

Fird ilims wilh & nams ma
=443 Packages o
3} demutPackage nclude archived assets in resuts: — —
mongages Search
& i} ussaGateway .
() Bt the reame o part af & rame, Msnatisly, use Wa e 1235]p
—— Inifal eategory: g v = |
@ =Home Morigage
Attribute search ... =1 caal b |
@ S UssaGateway
Type (famatl of DRL Rule (Technical rule - taxt editor] =|
nule:
Package:| yssdGateway =
Iniial descripsancliule for forwarding request ‘123 to SIF
Bpplication deployed at AS 152,165.0.101
oK
3 on
Package snagshots +
Adriestalion +
Done
Save changes Copy Archive Delete Change status Sist
Fact (hide) when ussd1235ip -
o3 L. . .

e #c : Calli vssdString == "*1238°)
& @ cal then

Tite: uss12381p 7
§o.setsipl true);
§o.setsipProuy | -
$c.setSipTo(" 123"
§c.setSipPort (506

Calegories: |ssaGateway] 4

J168. 001017 1; Iadified an: Manday 31 May 2010 06:39:11 PR IST

Created an; Manday 31 May 2010 06:39:11 P IST
Created by
Farmat: drl
Package:
Is Disatibed: (]

Orther meta data ..

Wiew source | Validate

The rule for USSD *123¢ to forward request to 45 102.168.0.100 as SIP protocel
Guvnor edit rule
3. Acceptrule.

Click on Validate to validate the Rules you just defined. Once done with rule editing, you can
check in the changes (save) by clicking on Save Changes

12

Creating rules

4.

Rebuild and validate package

After you have edited some rules in ussdGateway package, you can click on the
ussdGateway package, open the package, and build the whole package.

Hawigate <«| Find 4| ussdGateway =

— n———
bl & ﬁ Copy Rename | Archive
3 Knowsesgs B
Create New =
35 Packages Configuration

i i defmitPackags

= Hl mortgages
=} ussaGateway

Configurston: Imsceled typss

Globals
omg.meblcents.ussdgateway.mules.Call =90 *

Advanced view

Descrighon: This package is for USSD Gateway

Category Fues: Je(T)

save and validate configuration
Buikd and validate

Build b

ary package: Build package | (Crtans) sakfor name: @

Sk 0 packnon il Cotec ot

Take snapshot Create snapshot for deployment

[, P R —

Informaticn and Impaortant URLs
Lasst Modified: Monday 31 May 2010 063245 PM ST
Last contribulor:
Dt crested: Monday 31 May 2010 06.24:56 PMIST
Shaw pRckage souce: show package SoUre
URL for package source: ifpeiiocahosl:BOBMGr ootk Sorg droois
URL for package bnary:

ATESTAN(T)
Aron -

TESTT)
RIDSTY

Srg,drocls genor,
4 Package s ot -~ URL for running bests: hitootlecal fora.drocks

5 Administration *

Guvnor new rule

13

14

Chapter 3.

Design Overview

USSD Gateway Application is JAIN SLEE 1.1 Application. It is capable of forwarding USSD
messages to desired peer. Application can be divided into logical modules:

rules
this module is responsible for configuration. Based on user defined rules file, it chooses peer
and means of establishing session with it.

jmx
this module is responsible only for managing and exposing rules engine to SLEE Service
SLEE

this module is consumer of rules. Based on rules output, it is responsible for relying USSD
messages between originator and consumer peer.

Following diagram depicts top design overview:

Management
Cperations

JLE

Rules

#1203+
HTTP: Peerl

XNZ
RA
F1z245+*
SIP: Peerz
XY ZiPeerlz

Peerl Peerz Peer..n

RA

USSD Gateway Design overview

15

Chapter 3. Design Overview

SLEE Service consists of two basic elements: parent and children SBBs. Parent SBB is root SBB
in USSD Gateway Application service. Children serve logic to proxy USSD data to desired peer
by means of specific protocol.

Overview of relation is depicted on diagram below:

USSD Gateway Design Service SBB relation overview

Parent receives initial USSD message within MAP message. It consults configured rules to make
decision on fate of received message. Subsequent messages are handled by children. Flow for
both operations is depicted on diagram below:

16

Ussh: #123+%

USSD Gateway SBB Flow diagram

Important

Currently gateway supports following protocols for proxying:

* SIP

e HTTP

17

18

Chapter 4.

Source Code Overview

Important

To obtain the application's complete source code please refer to Section 2.2,
“Mobicents JAIN SLEE USSD Gateway Application Source Code”.

This chapter explains how components perform their tasks. For more detailed explanation of
JSLEE related source code and xml descriptors, please refer to simple examples, like si p-
wakeup. Also for detailed description of r ul es source code please refer to Dr ool s documentation

4.1. Rules Source

USSD Gateway Application makes use of Dr ool s as rules engine.

Engine is configured with DRL files. DRL file contains set of rules which perform operations on facts
passed into engine. USSD Gateway Application DRL file defines rules to match initial USSD string
to set of values identifying protocol and address of peer to which messages should be forwarded.
Rule file name is USSDGat eway. dr | . File content looks as follows:

package org.mobicents.ussdgateway.rules
o
import org.mobicents.ussdgateway.rules.Call;
k2]
rule "USSDGateway1"
3
when
$c : Call(ussdString == "*123#")
then®
$c.setSip(true);
$c.setSipProxy("192.168.0.101");
$c.setSipTo("123");
$c.setSipPort(5060);
(5]

end

® import of fact POJO

19

Chapter 4. Source Code Overview

@ definition of rule

A condition to enter rule clause. It accesses fact property ussdSt ri ng and matches it against
#123* value, if it matches engine jumps to t hen part
7 rule part which sets defined SIP peer as destination for messages

® end of USSDGat eway1 rule

Rules are fed with facts on which engine performs matching operations(in general). Facts are
simple POJO classes. This applications fact looks as follows:

package org.mobicents.ussdgateway.rules;

import java.io.Serializable;

/**

* Acts as Fact for Rules

* amit bhayani

*

*/

public class Call implements Serializable {
[lnitial string, its like #123*
private String ussdString;

private boolean isSip;
private boolean isHttp;
private boolean isSmpp;

private String sipProxy;
private String sipTo;
private int sipPort;

/Ito be used with other protocols
private String genericUrl;

public Call(String ussdString){

this.ussdString = ussdString;

public String getUssdString() {
return ussdsString;

public boolean isSip() {
return isSip;

20

Rules Source

public void setSip(boolean isSip) {
this.isSip = isSip;

public boolean isHttp() {
return isHttp;

public void setHttp(boolean isHttp) {
this.isHttp = isHttp;

public boolean isSmpp() {
return isSmpp;

public void setSmpp(boolean isSmpp) {
this.isSmpp = isSmpp;

public String getSipProxy() {
return sipProxy;

public void setSipProxy(String sipProxy) {

this.sipProxy = sipProxy;

public String getSipTo() {
return sipTo;

public void setSipTo(String sipTo) {
this.sipTo = sipTo;

public int getSipPort() {
return sipPort;

public void setSipPort(int sipPort) {
this.sipPort = sipPort;

21

Chapter 4. Source Code Overview

/**

* the genericUrl

*/

public String getGenericUrl() {
return genericUrl;

/**

* genericUrl the genericUrl to set

*/

public void setGenericUrl(String genericUrl) {
this.genericUrl = genericUrl;

4.2. IMX Source

JMX part of USSD Gateway Application is responsible for initiating rules engine and exposing
management methods. Single JMX bean is defined with XML descriptor file j boss- beans. xm .
Descriptor content looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:jboss:bean-deployer:2.0 bean-deployer_2_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<bean name="RulesService" class="org.mobicents.ussdgateway.rules.RulesService">
<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(
name="org.mobicents.ussdgateway:service=RulesService"
,exposedIinterface=org.mobicents.ussdgateway.rules.RulesServiceMBean.class
,registerDirectly=true)
</annotation>
</bean>
</deployment>

22

JMX Source

JMX interface is defined as follows:

package org.mobicents.ussdgateway.rules;

import javax.naming.NamingException;

/**

*

* amit bhayani

*

*/

public interface RulesServiceMBean extends org.jboss.system.ServiceMBean {
o

String getJndiName();
void setJndiName(String jndiName) throws NamingException;

2

void startService() throws Exception;
void stopService() throws Exception;

It defines following:

#® management method. This method controls JNDI name under which rule engine is made
available to SLEE Service
A regular lifecycle methods

Implementation of above interface fulfills defined contracts in following way:

void startService() throws Exception

public void startService() throws Exception {
D
setupRule();

23

Chapter 4. Source Code Overview

2
rebind();
this.logger.info("Started Rules Service");
}
private void setupRule() {
3]
Resource resource = ResourceFactory.newUrIResource(CHANGESET_FILE_PATH);
L4]
kagent = KnowledgeAgentFactory.newKnowledgeAgent("UssdGatewayAgent");
kagent.applyChangeSet(resource);
ResourceFactory.getResourceChangeNotifierService().start();
ResourceFactory.getResourceChangeScannerService().start();
}

private void rebind() throws NamingException {

InitialContext rootCtx = new InitialContext();
/I Get the parent context into which we are to bind
Name fullName = rootCtx.getNameParser("").parse(jndiName);
System.out.printin("fullName=" + fullName);
Name parentName = fullName;
if (fullName.size() > 1)

parentName = fullName.getPrefix(fullName.size() - 1);
else

parentName = new CompositeName();
Context parentCtx = createContext(rootCtx, parentName);
Name atomName = fullName.getSuffix(fullName.size() - 1);
String atom = atomName.get(0);
NonSerializableFactory.rebind(parentCtx, atom, kagent);

private static Context createContext(Context rootContext, Name name)
throws NamingException {
Context subctx = rootContext;
for (int n = 0; n < name.size(); n++) {
String atom = name.get(n);
try {
Object obj = subctx.lookup(atom);
subctx = (Context) obj;
} catch (NamingException e) { // No binding exists, create a

24

JMX Source

/I subcontext
subctx = subctx.createSubcontext(atom);

return subctx;

load rules into engine
bind rule engine to specified JNDI name

load ChangeSet as rule resource

Q0 0Oe

create rule engine and initiate it

void stopService() throws Exception

public void stopService() throws Exception {
o
unbind(jndiName);

® unbind rule engine from JNDI

void setJndiName(String jndiName) throws NamingException

public void setIndiName(String jndiName) throws NamingException {
]
String oldName = this.jndiName;
this.jndiName = jndiName;
2]
if (getState() == STARTED) {
unbind(oldName);
try {
rebind();
} catch (Exception e) {
NamingException ne = new NamingException(

25

Chapter 4. Source Code Overview

"Failed to update jndiName");
ne.setRootCause(e);
throw ne;

) set property and retain old value

© rebind rule engine in JNDI in case bean is running

JMX bean loads change set file USSDGat eway ChangeSet . xm . This file controls how rules set is
loaded and maintained by rule engine. Please refer to Section 2.4, “Rule engine configuration”
for details.

4.3. SLEE Service Source

4.3.1. Service descriptor

Mobicents USSD Gateway Application is build with single SLEE service. Service is defined
with single XML descriptor. Descriptor file name is cal | shb-servi ce. xm . It contains following
information:

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE service-xml PUBLIC "-//Sun Microsystems, Inc.//DTD JAIN SLEE Service 1.1//EN"
"http://java.sun.com/dtd/slee-service-xml_1 1.dtd">

<service-xml>

<service>
<service-name>mobicents-ussdgateway</service-name>
<service-vendor>org.mobicents</service-vendor>
<service-version>1.0</service-version>

<root-sbb>®
<sbb-name>ParentSbb</sbb-name>
<sbbh-vendor>org.mobicents</sbb-vendor>
<shb-version>1.0</sbb-version>

</root-sbb>®

<default-priority>50</default-priority>

</service>
</service-xml>

26

SLEE Library

f definition of service ID
A definition of root SBB . SBB is referenced by its ID

o definition of services priority - it affects order of event routing in container

4.3.2. SLEE Library

Since there is no standard defined for communication between USSD gateway and service
providing peers, Mobicents USSD Gateway Application defines its own standard for encoding.

This SLEE library contains all classes required to properly encode and decode messages
exchanged between Mobicents USSD Gateway and service providing peers. Library itself is built
on top of JAXB framework.

@ Note

Library is SLEE component, in other environments it is possible that it wont work
properly.

Standard is defined with single XSD file ussd. xsd. This file defines three types of encoded data:

USSDDialogMessage
This structure is base for all messages exchanged between Gateway and application server.
It conveys parameter which help to identify dialog and resources it addresses.

US5DDialogMessage =] (invokeldType)
(8] invokeld [1.1] (invokeldType)
[e] dialogld [1.1] leng
[&] mzizdn [0.1] string
[&] imsi [0.1] string
[8] orignatingAddress [0.1] string
[e] destinationAddress [0.1] string

USSD Dialog Message

USSDMessage
This structure is base for all USSD messages exchanged between Gateway and application
server. It adds USSD specific data.

27

Chapter 4. Source Code Overview

USSDDialogMessage

(] invokeld [1.1] (invokeldType]
(e] dialogld [1.1] leng
(8] msisdn [0.1] string

= [&] imsi [0.1] string

(8] crignatingAddress [0.1] string
(8] destinationAddress [0.1] string

USSDMeszage

(8] ussd5String [1.1] string
(8] ussdCoding [1.1] int

USSD Message

USSDRequest
This structure conveys data sent from between peers, for instance: #123* or just simply 3 as
subsequent request. It has fields to indicate relevant metadata to conveyed string.

28

SLEE Library

USSDResponse

US5DMessage

|8| ussd5tring [1.1] string
18| ussdCeding [1.1] int

£

USSDRequest

|&| result boolean

|€| lastResult boolean

USSD Request

This structure indicates last message exchanged in dialog. It is standard USSD Message,
however semantically it ends dialog. Its invoke ID MUST match invoke id from dialog initiating

request.

USSDMeszage

18| ussd5tring [1.1] string
18| ussdCeoding [1.1] int

£

USSDRezponse

29

Chapter 4. Source Code Overview

USSD Response

USSDAbort
Abor t is used to indicate some sort of error. Its content MUST provide clue on error origination.
USSDDialogMessage AbortReason
[e] invokeld [L.1] (invokeldType) [€] userSpecific string
[] dialogld [1.1] long _ €] userResourcelimitation string

=
(€] msisdn [0.1] string 17 [l resourceUnavailable (resourceUnavailableType)

T msi 10.1] string [¢] spplicationProcedureCancellation (applicationProcedureCancellationType)

[€] orignatingAddress [0.1] string
[€] destinationAddress [0.1] string

[USSDAbort |
| [€] userSpecificReason [1.1] AbortReason |

USSD Abort

Error details are encoded within abort reason as one of its values(exlusive):
 userSpecific - simple string explaining application level error
» userResourceLimitation - simple string explaining application level out of resource error
 resourceUnavailable - enumeration type. It can have one of following values:

» shortTermResourceLimitation

» longTermResourceLimitation
 applicationProcedureCancellation - enumeration type. It can have one of following values:

» handoverCancellation

 radioChannelRelease

» networkPathRelease

+ callRelease

 associatedProcedureFailure

« tandemDialogueRelease

» remoteOperationsFailure

Library classes are plain JAXB POJOs. They are marshalled to XML form in standard way:

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

30

SLEE Library

import org.mobicents.ussdgateway.ObjectFactory;
import org.mobicents.ussdgateway.USSDADbort;
import org.mobicents.ussdgateway.USSDRequest;
import org.mobicents.ussdgateway.USSDResponse;

JAXBContext jJAXBContext = JAXBContext.newlnstance("org.mobicents.ussdgateway");
ObjectFactory objectFactory = new ObjectFactory();

USSDRequest req = this.objectFactory.createUSSDRequest();
req.setinvokeld(1);

req.setUssdCoding(OxFF);

req.setUssdString("#112*");

ByteArrayOutputStream bos = new ByteArrayOutputStream();

JAXBElement<USSDRequest> jxb = this.objectFactory.createRequest(req);
JAXBContext.createMarshaller().marshal(jxb, bos);

String xmIRequest = new String(bos.toByteArray());

Unmarshaller um = this.jJAXBContext.createUnmarshaller();
JAXBElement o = (JAXBElement) um
.unmarshal(new ByteArraylnputStream(xmIRequest));
if (0.getDeclaredType().equals(USSDRequest.class)) {
//do something
} else if (0.getDeclaredType().equals(USSDResponse.class)) {
//do something
} else if (0.getDeclaredType().equals(USSDAbort.class)) {
//do something

@ Note

Invokeld has constaraint on its value <- 128, 127>

In SLEE components library is referenced as follows:

31

Chapter 4. Source Code Overview

<library-ref>
<library-name=>library-ussdgateway</library-name>
<library-vendor>org.mobicents</library-vendor>
<library-version>2.0</library-version>

</library-ref>

32

Chapter 5.

Traces and Alarms

5.1. Tracers
USSD Gateway USSD Gateway Application creates following tracers:

Table 5.1. USSD Gateway Application Tracer and Log Categories

Shb Tracer name LOG4J category

ParentSbhb USSD-Parent javax.slee.SbbNotification[seraine=8wwiceil-
ussdgateway,vendor=org.mobicents,
version=1.0],sbb=SbblD[name=ParentSbb,
vendor=org.mobicents,version=1.0]].USSD-
Parent

SipSbhb USSD-CHILD-SipSbb javax.slee.SbbNotification[seraine=8erviceils-
ussdgateway,vendor=org.mobicents,
version=1.0],sbb=SbblD[name=SipSbb,
vendor=org.mobicents,version=1.0]].USSD-

CHILD-SipSbb
HttpClientSbb USSD-CHILD- javax.slee.SbbNoatification[seraine=8erbiceil-
HttpClientSbb ussdgateway,vendor=org.mobicents,

version=1.0],sbb=SbbID[name=HttpClientSbb,
vendor=org.mobicents,version=1.0]].USSD-
CHILD-HttpClientSbb

Important

Spaces where introduced in LOG4J cat egory column values, to correctly render
the table. Please remove them when using copy/paste.

5.2. Alarms

Mobicents USSD Gateway Application does not rise any alarms.

33

34

Appendix A. Revision History

Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski
Creation of the Mobicents JAIN SLEE USSD Gateway Application User Guide.

35

36

Index

F

feedback, viii

37

38

	Mobicents JAIN SLEE USSD Gateway Application User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE USSD Gateway Application
	1.1. USSD Gateway

	Chapter 2. Setup
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. Mobicents JAIN SLEE USSD Gateway Application Source Code
	2.2.1. Release Source Code Building
	2.2.2. Development Trunk Source Building

	2.3. Folder structure of Mobicents JAIN SLEE USSD Gateway Application
	2.4. Rule engine configuration
	2.5. Guvnor configuration
	2.5.1. Creating resources
	2.5.2. Creating rules

	Chapter 3. Design Overview
	Chapter 4. Source Code Overview
	4.1. Rules Source
	4.2. JMX Source
	4.3. SLEE Service Source
	4.3.1. Service descriptor
	4.3.2. SLEE Library

	Chapter 5. Traces and Alarms
	5.1. Tracers
	5.2. Alarms

	Appendix A. Revision History
	Index

