

JavaTest TM User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054

1-650-960-1300 or
1-800-555-9SUN

Version 3.1.2
October 2002

Table Of Contents
................. 21. What is the JavaTest Harness?
................... 21.1. JavaTest Features
............... 42. Before Starting the JavaTest Harness
................. 43. Starting the JavaTest Harness
.................. 53.1. Welcome Dialog Boxes
................. 53.1.1. Test Suite Dialog Box
................ 53.1.2. Work Directory Dialog Box
................... 74. JavaTest Online Help
.................... 74.1. Accessing Help
..................... 74.2. Navigation
.................. 95. Using the JavaTest Harness
.................. 105.1. Test Manager Window
.................. 115.1.1. Configure Menu
.................. 125.1.2. Run Tests Menu
................... 135.1.3. Report Menu
.................... 135.1.4. View Menu
.................... 145.1.5. Tool Bar
............. 155.2. Displaying JavaTest Help and Information
.................... 155.2.1. Help Menu
................... 155.2.2. Help Buttons
..................... 155.2.3. F1 Key
.................. 155.3. Opening a Test Suite
................. 155.4. Opening a Work Directory
................. 165.5. Creating a Work Directory
................... 176. Configuring a Test Run
.................. 186.1. Configuring All Values
.......... 186.1.1. Using the Configuration Editor: All Values View
................ 18Create or Edit a Configuration
................. 19Searching the Interview
.................. 19Saving the Interview
.................. 196.1.2. Using the Menus
..................... 19File Menu
.................... 20Search Menu
.................... 20View Menu
.................... 20Help Menu
.............. 216.1.3. Using the All Values View Panes
.................... 21Index Pane
.................... 21Question Pane
................... 21More Info Pane
................... 226.1.4. Find Questions
................. 236.2. Changing Standard Values
......... 236.2.1. Using the Configuration Editor: Standard Values View
................. 24Specifying Tests to Run
.................. 24Using Exclude Lists
................. 26Using Keywords as a Filter
................ 27Using Prior Status as a Filter
............... 28Specifying the Test Environment
................ 29Setting Test Execution Values
.............. 316.3. Working with Multiple Configurations
.............. 316.3.1. Creating a New Configuration File
............. 316.3.2. Opening an Existing Configuration File
.............. 316.4. Viewing the Configuration Checklist
................ 326.5. Viewing the Test Environment
............... 326.5.1. Test Environment Dialog Box
.................. 336.6. Viewing Exclude Lists

Table Of Contents i

.................. 336.6.1. Exclude List Dialog Box

................... 33Exclude List Contents

...................... 33Test Details

.................. 336.7. Viewing the Question Log

...................... 357. Running Tests

.................... 367.1. Starting a Test Run

................... 377.2. Monitoring a Test Run

.................... 377.3. Using the Test Tree

................. 387.4. Using the Test Progress Display

.................... 387.4.1. Select a Monitor

..................... 38Elapsed Time

.................... 38Run Progress Meter

.................. 387.5. Using the Progress Monitor

...................... 397.5.1. Progress

...................... 407.5.2. Time

...................... 407.5.3. Memory

.................... 407.5.4. Tests in Progress

.................... 407.6. Stopping a Test Run

.................. 417.7. Troubleshooting a Test Run

...................... 417.7.1. Test Tree

..................... 417.7.2. Folder View

..................... 417.7.3. Test View

................... 438. Browsing Test Information

....................... 438.1. Test Tree

..................... 458.1.1. Folder Icons

..................... 45Result Status

...................... 45Run Status

..................... 468.1.2. Test Icons

..................... 46Result Status

..................... 46Run Indicator

................ 478.1.3. Using the Test Tree Popup Menu

.................. 47"Quick Pick" Test Execution

.................. 48Refresh Test Suite Contents

.................. 48Clear Previous Test Results

...................... 508.2. Folder View

.................. 508.2.1. Summary Information

................... 518.2.2. Status Information

.................... 51 Passed (green)

..................... 52 Failed (red)

..................... 52 Error (blue)

.................... 52 Not Run (white)

..................... 52 Filtered Out

...................... 538.3. Test View

.................... 548.3.1. Test Description

....................... 54Name

....................... 54Value

....................... 548.3.2. Files

.................... 548.3.3. Configuration

....................... 54Name

....................... 54Value

.................... 558.3.4. Test Run Details

....................... 55Name

....................... 55Value

................... 558.3.5. Test Run Messages

..................... 56Message List

..................... 56Message Area

ii JavaTest User’s Guide - Version 3.1.2 October 2002

...................... 578.4. Using Filters

................ 588.4.1. The Current Configuration Filter

................... 598.4.2. The All Tests Filter

................... 598.4.3. The Custom Filter

.................. 59Editing the Custom Filter

.................. 60Using a Custom View Filter

................... 618.5. Test Manager Properties

..................... 618.5.1. Test Suite

.................... 618.5.2. Work Directory

.................... 618.5.3. Configuration

...................... 618.5.4. Plug-Ins

..................... 628.6. Test Suite Errors

..................... 639. Using Test Reports

................... 639.1. Generating New Reports

..................... 649.2. Viewing Reports

............... 649.2.1. View Reports in the Report Browser

................... 659.2.2. View Reports Offline

.................... 669.3. Moving Report Files

.................... 6710. Auditing a Test Run

................... 6710.1. Auditing in GUI Mode

................... 6710.2. Auditing in Batch Mode

................... 6710.3. Setting Audit Options

..................... 6810.3.1. Test Suite

.................... 6810.3.2. Work Directory

................... 6910.3.3. Configuration File

................... 6910.3.4. Start Audit Button

.................... 6910.3.5. Cancel Button

.................... 6910.3.6. Help Button

.................. 6910.4. Audit Test Results Window

..................... 7010.4.1. Summary

.................... 7110.4.2. Bad Result File

.................... 7110.4.3. Bad Checksum

.................. 7110.4.4. Bad Test Description

.................... 7110.4.5. Bad Test Cases

.................. 7111. Customizing the JavaTest GUI

.................... 7211.1. The JavaTest GUI

.................. 7211.2. The JavaTest GUI Windows

..................... 7211.3. JavaTest Menus

..................... 7311.3.1. File Menu

..................... 7411.3.2. Tasks Menu

.................... 7511.3.3. Windows Menu

..................... 7511.3.4. Help Menu

.................. 7511.4. Setting JavaTest Preferences

............... 7611.4.1. Changing Appearance Preferences

.................. 77Changing Window Styles

................... 78Setting Tool Tip Options

................. 78Changing Shutdown Options

............... 7811.4.2. Changing Test Manager Preferences

............. 7911.4.3. Changing Configuration Editor Preferences

.............. 79Set the Configuration Editor Default View

........... 80Display/Hide the Configuration Editor More Info Pane

................. 8011.5. Managing JavaTest Windows

.................... 8112. Using a JavaTest Agent

.................. 8112.1. Choosing the Type of Agent

.................... 8312.2. Starting an Agent

................... 8312.2.1. Agent Application

.................... 8312.2.2. Agent Applet

.................... 8412.2.3. Using The GUI

Table Of Contents iii

................ 8412.2.4. Starting an Agent Application

...................... 85Class Paths

.................... 85Application Classes

..................... 86Agent Options

................. 8612.2.5. Starting an Agent Applet

.................... 86Agent Applet Tag

................ 88Setting Parameters in the Applet Tag

............... 8812.2.6. Specifying Active Agent Options

....................... 88Mode

....................... 89Host

........................ 89Port

............... 8912.2.7. Specifying Passive Agent Options

....................... 89Mode

........................ 90Port

................ 9112.2.8. Specifying Serial Agent Options

....................... 91Mode

........................ 91Port

................ 9212.2.9. Specifying Additional Options

................. 92Options Used to Display Help

.............. 92Options Used to Run and Monitor the Agent

.................. 9412.3. Monitoring JavaTest Agents

.................. 9412.3.1. Agent Monitor Window

...................... 95Agent Pool

................... 95Agents Currently In Use

.................... 9512.3.2. Statistics Pane

.................... 9612.3.3. History Pane

................... 9712.3.4. Selected Task Pane

................ 9912.4. Troubleshooting JavaTest Agents

................ 9912.4.1. Troubleshooting Active Agents

................ 10012.4.2. Troubleshooting Passive Agents

.............. 10012.5. Installing Agent Classes on a Test System

............ 10112.5.1. Classes Required to Run Agents Using a GUI

......... 10212.5.2. Classes Required to Run Agents from the Command Line

............. 10212.5.3. Classes Required to Run Agents as Applets

.................... 10312.6. Creating a Map File

................. 10513. Using the JavaTest Command-Line

.................... 10513.1. Using Batch Mode

................ 10613.1.1. Formatting Batch Commands

..................... 106Batch Options

................... 106Single String Arguments

................... 106Batch Command Files

................ 10713.1.2. Initializing the Configuration

...................... 107open name

.................. 108testSuite testsuite

............... 108workDirectory work-directory

........... 109Shortcuts Used to Initialize the Current Configuration

................. 10913.1.3. Setting the Standard Values

................... 109concurrency number

..................... 109env environment

.................. 109envFile environment-file

................. 110excludeList exclude-list-file

................... 110keywords keyword-expr

.................. 110params parameter-arguments

................. 110priorStatus status-arguments

.................... 110tests test-name

.................. 110timeoutFactor number

............... 11113.1.4. Setting Other Configuration Values

.................. 111set question-tag-name value

iv JavaTest User’s Guide - Version 3.1.2 October 2002

................ 11113.1.5. Running Tests in Batch Mode

................ 11113.1.6. Writing Reports in Batch Mode

.................... 11113.1.7. Auditing Tests

.............. 11213.1.8. Index of Available Batch Commands

................. 11313.2. Specifying Additional Options

................ 11413.2.1. Using Parameter Commands

................ 11513.3. Displaying JavaTest Information

................. 11613.4. Examples of Batch Commands

................ 11613.4.1. Obtaining the Question tag-name

.................. 11713.5. Editing in Batch Commands

.......... 11713.5.1. Open a .jti File and Change Values Before Running Tests

................ 11713.5.2. Create a New Work Directory

............... 11813.6. Modifying Settings in a Configuration

.................. 11813.6.1. Selecting Tests to Run

................. 11913.6.2. Selecting an Exclude List

................ 11913.6.3. Setting Configuration Values

.................... 11913.7. Using a Batch File

................ 12013.7.1. Example of Using a Batch File

................. 12114. Using Additional JavaTest Utilities

............... 12114.1. Monitoring Results with HTTP Server

................. 12114.1.1. HTML Formatted Output

............ 121Accessing HTTP Server HTML Formatted Output

................ 122Viewing HTTP Server Index Page

................ 122Viewing HTTP Server Harness Page

............. 122Viewing HTTP Server Test Result Index Page

............... 122Viewing the Harness Environment Page

................ 123Viewing the Harness Interview Page

............... 123Using HTTP Server to Stop a Test Run

................... 12314.1.2. Plain Text Output

................. 123Accessing Version Information

................. 123Accessing Harness Information

.................. 12514.2. Browsing Result (.jtr) Files

.................. 12514.3. Browsing Exclude List Files

.............. 12514.4. Editing Responses in a Configuration File

................ 12514.4.1. Format of EditJTI Command

................ 12714.4.2. Obtaining the Question tag-name

.................. 12714.5. Examples of Using EditJTI

................. 12714.5.1. Edit a Configuration File

................. 128Generate a Log of All Updates

.................. 128Preview But Not Change

.................. 128Echo Results of Your Edit

.................. 128Show Paths for Debugging

............. 128Change Test Suites or Create a New Interview

....... 12914.5.2. Change the HTTP Port and Overwrite Original Configuration File

......... 12914.5.3. Change the HTTP Port and Create a New Configuration File

................ 12914.5.4. Doing Escapes in a UNIX Shell

................... 13014.6. Moving Test Reports

................ 13014.6.1. Format of EditLinks Command

............... 13114.6.2. Example of EditLinks Command

..................... 13215. Troubleshooting

.................. 13215.1. Problems in Running Tests

................... 13215.2. Problems Using Agents

....................... 13316. Glossary

........................ 14017. Index

Table Of Contents v

Copyright Notice

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All
rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that
is described in this document. In particular, and without limitation, these intellectual property rights may
include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use,
copying, distribution, and decompilation. No part of the product or of this document may be reproduced in
any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaTest, the Duke logo and the Java Coffee Cup logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and
Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis.
Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le
produit qui est décrit dans ce document. En particulier, et sans la limitation, ces droits de propriété
intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut
être reproduite sous aucune forme, parquelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est
protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaTest , le logo Duke et le logo Java Coffee Cup sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS
LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION
PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

Table Of Contents 1

1. What is the JavaTest Harness?

The JavaTest harness is a powerful test harness that can run tests on a variety
of test platforms (such as servers, workstations, browsers, and small devices)
with a variety of test execution models (such as API compatibility tests,
language/compiler tests, and regression tests).

1.1. JavaTest Features

 GUI mode To browse and run test suites and test results. The graphical user interface
provides a set of windows and menus that you use to configure and run
tests, monitor test and agent status, evaluate and analyze test results, and
include or exclude tests from test runs.

 Batch mode Batch mode provides complete test execution functionality without using
the GUI -- this allows you to use the JavaTest harness to run tests in build
scripts and other automated processes.

 HTML reports That summarize test runs. HTML reports for the test run can be generated
in batch mode or from the GUI

 Auditing test runs Auditing test runs can be performed in batch mode or from the GUI

 Web server to monitor
batch mode

The JavaTest harness provides a small web server that you can use to
monitor and control test progress while tests are running.

 Runs tests on small
systems

The JavaTest harness provides an agent (a separate program that works in
conjunction with the JavaTest harness) to run tests on systems that can’t
run the JavaTest harness.

 Online help JavaTest online help describes how to use the JavaTest harness to run test
suites and evaluate test results. It also provides context sensitive help,
full-text search, keyword search, and can be accessed without starting the
JavaTest harness.

.

2 JavaTest User’s Guide - Version 3.1.2 October 2002

Note:

This User’s Guide is a PDF version of the JavaTest HTML online help. It is provided in PDF format so that
users can conveniently view and print the contents of the online help without starting the JavaTest harness.

However, there are several minor differences between the online help and the PDF versions -- for example,
in some cases the contents of the online help have been resequenced to be more useful in book format; in
the PDF format there are numerous page references embedded in the text that are hypertext links in the
online help; and, extensive online help navigation links have been removed from the PDF format.

1.1. JavaTest Features 3

2. Before Starting the JavaTest Harness
Before starting the JavaTest harness, you must have a valid test suite and JDK 1.3 or later installed on your
test system.

Refer to your test suite documentation for information about installing the test suite and JavaTest
harness on your test system.
For information about creating a test suite, refer to the Test Suite Architect’s Guide. The Test Suite
Architect’s Guide is available as part of the Java Compatibility Test Tools.
For information about installing the current JDK on your test system, refer to
http://java.sun.com/products.

3. Starting the JavaTest Harness
Start the JavaTest harness from a writeable directory where you intend to creatre files and store test results.
You can use either a graphical user interface (GUI mode) or a command-line user interface (batch mode) to
start the JavaTest harness. You must include the path of the directory [jt_dir] where the javatest.jar file is
installed. The javatest.jar file is usually installed in the TCK lib directory when the JavaTest harness
bundled with a TCK.

To start the JavaTest harness in GUI mode, you can use any of the following:

Start by: Description

Running a Startup
Script

Use a startup script if your test suite includes one. Refer to your test suite
documentation for details about using a startup script.

Executing the JAR
File

If you have access to a command line you can directly execute the .jar file from the
directory where you intend to create files and store test results. At the command
prompt start the harness:

java -jar [jt_dir]/javatest.jar

Double-Clicking
the Icon

If you are using a GUI, your system may support double clicking the javatest.jar file
icon to launch the harness.

Invoking the Class
Directly

If you have access to a command line and the jar file is on the class path, you can
directly invoke the class from the directory where you intend to create files and store
test results. At the command prompt start the harness:

java com.sun.javatest.tool.Main

If you choose to run tests in the batch mode refer to Using Batch Mode [p 105] .

Unless you are starting the harness for the first time or use a command line option, the JavaTest harness
restores your previous desktop when it starts the GUI. See Specifying Additional Options [p 112] for
information about the optional arguments that can be included in the command string when starting the
JavaTest harness.

If the JavaTest harness cannot restore an existing desktop, it displays a Welcome dialog box that guides you
through the startup. See Welcome Dialog Boxes [p 5] for a detailed description of using the Welcome dialog
box to start the JavaTest harness.

4 JavaTest User’s Guide - Version 3.1.2 October 2002

3.1. Welcome Dialog Boxes
When you start the JavaTest harness for the first time or instruct it to create a new desktop, it checks the
following:

1. Has it been started in a work directory or test suite?
2. Has it been installed with a test suite?

The JavaTest harness then displays an appropriate Welcome to JavaTest dialog box:

If the JavaTest harness is able to open a test suite, it displays a Welcome to JavaTest dialog box that
guides you through the process of opening an existing work directory or creating a new work
directory. Refer to Work Directory Dialog Box [p 5] for a description of this dialog box.
If the JavaTest harness is unable to open a test suite, it displays a Welcome to JavaTest dialog box that
guides you through the process of opening a test suite or work directory. Refer to Test Suite Dialog
Box [p 5] for a description of this dialog box.

Test suites contain the tests that are run on the test system. Work directories are the locations that the
JavaTest harness uses to store test results and other information about a test suite. See the Glossary for
additional information about test suites and work directories.

The next time you start the JavaTest harness it automatically opens the test suite and work directory for
you without displaying the Welcome to JavaTest dialog box.

After you specify a work directory, you can use Test Manager to configure and run tests. Refer to Using the
JavaTest Harness [p 9] for a description of how to begin running tests.

3.1.1. Test Suite Dialog Box

If the JavaTest harness cannot locate and open a test suite when it creates a new desktop, it displays a
dialog box that guides you through the process of opening a test suite or a work directory:

Button Function

Open Test Suite Click this button to locate and use a test suite.

Open Work
Directory

Click this button to use an existing work directory. When you open an existing work
directory, the JavaTest harness also opens the test suite associated with it.

You can also use the Test Manager window to change test suites or work directories after the JavaTest GUI
is running:

Open another test suite [p 15]
Open an existing work directory [p 15]
Create a new work directory [p 16]

3.1.2. Work Directory Dialog Box

If the JavaTest harness can locate and open a test suite when it creates a new desktop, it displays a dialog
box that guides you through the process of either opening or creating a work directory:

3.1. Welcome Dialog Boxes 5

Button Function

Open Work
Directory

Click this button to use an existing work directory. When you open an existing work
directory, the JavaTest harness also opens the test suite associated with it.

Create Work
Directory

Use Create Work Directory when you either do not have or do not want to use an
existing work directory for the test suite.

You can also use the Test Manager window to change test suites or work directories after the JavaTest GUI
is running:

Open another test suite [p 15]
Open an existing work directory [p 15]
Create a new work directory [p 16]

6 JavaTest User’s Guide - Version 3.1.2 October 2002

4. JavaTest Online Help
JavaTest online help describes how to use the JavaTest harness to run test suites and evaluate test results.
This page describes how to access online help and how to navigate through the help topics to find the
information you want.

The JavaTest HTML online help is also provided in PDF format as the JavaTest User’s Guide, available in
your TCK installation directory at:

doc/javatest/javatest.pdf

The User’s Guide is provided in PDF format so that you can use an appropriate viewer, such as Adobe
Acrobat Reader from Adobe at www.adobe.com, to easily view and print the contents of the online help
without starting the JavaTest harness.

4.1. Accessing Help
You can get help and information about the JavaTest harness in the following ways:

Action Description

F1 key Press the F1 key to see information about the JavaTest window that has keyboard focus.

It is very important to establish keyboard focus in a window before pressing the F1 key. In
some cases you may have to highlight something in the window in order to establish focus.

Help
menu

Choose Help > Help to start the Help viewer with this page displayed. Use the navigators in
the left pane to locate information.

Help
buttons

Click the Help button in a dialog box for information about how to use that dialog box

You can also display online help without starting the JavaTest harness. Include the path of the directory
[jt_dir] where the javatest.jar file is installed. The javatest.jar file is usually installed in the TCK lib directory
when the JavaTest harness bundled with a TCK. Type the following at a system prompt:

java -jar [jt_dir]/javatest.jar -onlineHelp

4.2. Navigation
The left pane of the help viewer contains four tabs that can help you navigate through the help information:

4. JavaTest Online Help 7

Icon Description

Table of contents. Topics are organized by task (where possible). Topics displayed in the right
pane are highlighted in the table of contents.

Keyword index. Index entries are listed in alphabetical order. To search for entries, enter a string
of characters in the Find field and press Return -- if the string is found in the index it is
highlighted (press Return again to repeat the search).

Glossary. Glossary entries are listed in alphabetical order. You can scroll through the list or search
for a term. To search for a term, enter a string of characters in the Find field and press Return -- if
the term is found in the glossary it is highlighted in the list and its definition is displayed. Press
Return to repeat the search.

Full-text search. Type a natural language phrase in the Find field and press return. A ranked list
of topics are returned with the following information:

The circle in the first column indicates the ranking of the matches for that topic. The more
filled-in the circle is, the higher the ranking. There are five possible rankings (from highest to

lowest):
The number in the second column indicates the number of times the query was matched in
the listed topic.
The title of the topic in which matches are found is listed as it appears in the table of contents.

8 JavaTest User’s Guide - Version 3.1.2 October 2002

5. Using the JavaTest Harness
The JavaTest harness restores your previous desktop unless you are starting the harness for the first time or
include a command line option when starting the harness.

If you do not use an existing desktop, the JavaTest harness displays a Welcome dialog box [p 5] that guides
you through the startup.

When the JavaTest GUI starts, it displays the Test Manager window [p 10] used to configure a test run, run
tests, monitor test runs, browse test information, and troubleshoot a test run.

After you have opened a work directory there are two ways you can start a test run:

You can immediately click the button on the tool bar or choose the Run Tests > Start menu item to
start a test run.

Before it starts the test run, the JavaTest harness checks whether the required configuration
information has been supplied. Refer to Starting a Test Run [p 36] for detailed information.

You can open the configuration editor from the Configure menu [p 11] or click the button on the
tool bar to provide configuration information. Then, click the button or choose the Run Tests >
Start menu item to start a test run [p 36] .

During the test run you will notice that the icons in the test tree change color to reflect their test status. You
can also browse information about the tests by choosing them in the test tree and viewing information in
the Test Manager window.

Information about performing tasks in JavaTest harness can be found in the following topics:

Configuring a Test Run [p 17] - Using the configuration editor.
Running Tests [p 35] - Using the Run Tests menu and Progress Monitor.
Browsing Test Information [p 43] - Using the Test Manager window to view test information.

To locate detailed information about performing a specific task, use the full-text search and keyword search
index tabs. Refer to JavaTest Online Help [p 7] for a description of how to use the full-text search and
keyword search index tabs.

A Glossary of terms used in the documentation is also provided. Refer to JavaTest Online Help [p 7] for a
description of how to use the Glossary tab.

5. Using the JavaTest Harness 9

5.1. Test Manager Window
Use the Test Manager window to run tests and browse test results.

The Test Manager window contains the following:

Configure Menu [p 11]
Run Tests Menu [p 12]
Report Menu [p 13]
View Menu [p 13]
Tool Bar [p 14]
Test tree [p 43]
Folder View [p 50]
Test View [p 53]
Test Progress Display [p 38]

Depending on the window style that you are using, JavaTest standard menus can also be displayed in the
menu bar. See JavaTest Menus [p 72] for a description of the JavaTest standard menus.

10 JavaTest User’s Guide - Version 3.1.2 October 2002

Use the Test Manager to:

Task Description

Configure a test
run

Provide configuration information required to run your test suite. Configuration as
part of running tests is described in Configuring a Test Run [p 17] .

Run tests Start test runs by choosing the Run Tests > Start menu item or click the button on
the tool bar. See Running Tests [p 35] for a detailed description of how to run tests.

Monitor test runs Use the test tree with the folder and test views to monitor the status of the test run.
For more information about monitoring test runs, see Monitoring a Test Run [p 37] .

Browse test
information

Use the test tree with the folder and test views to browse information about overall
test status as well as what occurred during a test run. See Browsing Test Information
[p 43] for details about browsing test run information.

Generate and view
test reports

Use the Report menu to generate and view about test run information. See Using Test
Reports [p 63] for details about generating and viewing test run information.

Troubleshoot a test
run

Use the test tree with the folder and test views to troubleshoot a test run. See
Troubleshooting a Test Run [p 41] for help with troubleshooting test run problems.

5.1.1. Configure Menu

Use the Configure menu to load, create, modify, and view configuration data used for a test run. The
Configure menu contains the following menu items:

5.1.1. Configure Menu 11

Menu Item Description

New
Configuration

Sets the current configuration to an empty configuration and opens the
Configuration Editor.

Use the configuration editor to create configuration data containing the test
environment values and standard values required to run a test suite.

See Configuring a Test Run [p 17] for detailed information.

Load
Configuration

Opens the Load Configuration File dialog box.

Use the dialog box to load an existing configuration interview (.jti) file into the Test
Manager for use in running the test suite. The JavaTest harness does not open the
Configuration Editor when it loads an existing configuration interview.

Edit
Configuration

Opens the configuration editor and the current configuration interview.

Use the configuration editor to edit data in the current configuration interview
required to run a test suite.

See Configuring a Test Run [p 17] for detailed information.

Show Checklist Displays a checklist of tasks to be performed before running tests. See Viewing the
Configuration Checklist [p 31] for detailed information.

Show Exclude
List

Opens an Exclude List dialog box that contains the exclude list used to run the test
suite

You can use the Exclude List dialog box to review but not edit the contents of the
exclude list. Use the configuration editor to add or remove exclude lists. See
Configuring a Test Run [p 17] for detailed information.

See Viewing Exclude Lists [p 32] for detailed information about using the Exclude
List dialog box.

Show Test
Environment

Opens a Test Environment dialog box that contains the environment values used
when running the test suite

You can browse but not edit values in the Test Environment dialog box. Use the
configuration editor to edit the environment values. See Configuring a Test Run [p
17] for detailed information.

See Viewing the Test Environment [p 32] for detailed information about using the
Test Environment dialog box.

Show Question
Log

Displays a log of the current configuration interview questions and answers. See
Viewing the Question Log [p 33] for detailed information.

Configuration
History

Displays a list of configuration interview files that have been opened. Choose a file
from the list to open a new instance of it as the current configuration.

5.1.2. Run Tests Menu

The Run Tests menu is used to start, stop, and monitor a test run. The Run Tests menu contains the
following menu items:

12 JavaTest User’s Guide - Version 3.1.2 October 2002

Menu
Item

Description

 Start When the JavaTest harness is not running tests, it enables the Start menu item. Choose the
Start menu item to start a test run. Only one test run at a time can be active in the Test
Manager window.

See Starting a Test Run [p 36] for detailed information about starting a test run.

 Stop When the JavaTest harness is running tests, it enables the Stop menu item. Choose the Stop
menu item to end a test run after the current test is completed.

See Stopping a Test Run [p 40] for detailed information about stopping a test run.

Monitor
Progress

When the JavaTest harness is running tests you can use the Test Manager Progress Monitor
Dialog box to monitor the progress of the test run and current resource information about
the test system. Choose the Monitor Progress menu item to open the Test Manager Progress
Monitor Dialog box.

See Using the Progress Monitor [p 38] for detailed information about using the Test
Manager Progress Monitor Dialog box.

5.1.3. Report Menu

The Report menu contains menu items that generate and view reports about test run information. The
Report menu contains the following menu items:

Menu Item Description

New
Report

Opens the New Report dialog box used to generate reports of test results after a test run.

See Generating New Reports [p 63] for detailed information.

Open
Report

Opens the Report dialog box used to specify a report.

See Viewing Reports [p 64] for detailed information.

Report
History

Displays a list of reports that have been generated. Choose a report from the list to open a
new instance of it in the Report browser.

See Viewing Reports [p 64] for detailed information about the Report browser.

5.1.4. View Menu

The View menu contains menu items that display information about a test run:

5.1.3. Report Menu 13

Menu Item Description

Filters... Displays the available view filters and allows you to create additional custom view filters.

See Using Filters [p 57] for detailed description.

Properties Click the Properties menu item to display the Test Manager Properties dialog box
containing the current settings of the Test Manager window.

See Test Manager Properties [p 61] for detailed information about using the Test Manager
Properties dialog box.

Test Suite
Errors

The JavaTest harness only enables the Test Suite Errors menu item when it detects errors
in a test suite. Click the Test Suite Errors menu item to display a dialog box containing
current errors detected in the test suite.

See Test Suite Errors [p 62] for detailed information.

5.1.5. Tool Bar

The tool bar contains buttons to perform routine tasks that also available as menu items from the menu bar.
The JavaTest harness provides tooltips describing each button on the tool bar.

14 JavaTest User’s Guide - Version 3.1.2 October 2002

5.2. Displaying JavaTest Help and Information
You can display JavaTest help and information about the JavaTest harness in the following ways:

Help menu
Help buttons
F1 key

5.2.1. Help Menu

The JavaTest desktop provides a Help menu that you can use to open JavaTest online help, open test suite
documentation, display information about the JavaTest harness, display information about the test suite, or
display information about the current Java runtime.

When multiple test suites are opened the Help menu displays a menu item for each document provided by
the test suite. As test suites are closed, their documents are removed from the Help menu.

5.2.2. Help Buttons

The JavaTest GUI provides a Help button on all window tool bars and in all dialog boxes:

Tool bar help buttons open the help viewer and display JavaTest online help for that window.
Help buttons on dialog boxes open the help viewer and display JavaTest online help for that dialog
box.

5.2.3. F1 Key

Press the F1 key to see information about the JavaTest window that has keyboard focus. Establish keyboard
focus in a window before pressing the F1 key. In some cases you may have to highlight something in the
window in order to establish focus.

5.3. Opening a Test Suite
You can open a different test suite after starting the JavaTest harness by choosing File > Open Test Suite
from the menu bar.

The JavaTest harness opens a file chooser dialog box. Use the dialog box to open the test suite.

When you choose a test suite, the JavaTest harness loads the test suite in either a new or empty Test
Manager [p 10] window.

Before running tests you must open or create a work directory for the test suite.

5.4. Opening a Work Directory
You can open an existing work directory after starting the JavaTest harness by choosing File > Open
Directory from the menu bar.

The JavaTest harness opens a file chooser dialog box. Use the dialog box to locate and open the work
directory.

5.2. Displaying JavaTest Help and Information 15

Each work directory is associated with a specific test suite and stores its test result files. The test result files
contain all of the information gathered by the JavaTest harness during test runs.

When you open an existing work directory, the JavaTest harness only associates it with the current test
suite if the test suite is both a match and has no other work directory already open.

If the JavaTest harness cannot associate the work directory with the open test suite, it opens a new Test
Manager window and loads both the work directory and its test suite.

5.5. Creating a Work Directory
You can create a new work directory after starting the JavaTest harness by choosing File > Create
Directory from the menu bar.

The JavaTest harness opens a file chooser dialog box. Use the dialog box to create a new work directory for
the current test suite.

Each work directory is associated with a specific test suite and stores its test result files. The test result files
contain all of the information gathered by the JavaTest harness during test runs.

When you create a new work directory, the JavaTest harness associates it with the current test suite.

16 JavaTest User’s Guide - Version 3.1.2 October 2002

6. Configuring a Test Run
In order for the JavaTest harness to execute the test suite, it requires information about how your
computing environment is configured. The JavaTest harness uses the Configuration Editor to interview you
for this information.

Because the quantity and scope of this information depends on the test suite -- some test suites run in
diverse environments (different platforms, networks), while others run in very specific, well defined
environments -- a test suite may include an interview for the Configuration Editor to use.

If your test suite includes a configuration interview, the JavaTest harness uses the Configuration Editor to
interview you for this information.

If your test suite does not include a configuration interview, consult the test suite documentation for
directions about how to supply any required configuration information.

In all cases, you can use the Configuration Editor to specify runtime values that govern which tests in the
test suite are run.

This chapter describes how to use the Configuration Editor, the configuration Checklist, the Exclude List
browser, the Test Environment browser, and the Question Log:

Topic Description

Configuring All Values [p
18]

Describes how to use the Configuration Editor’s All Values view to create a
configuration file for the test run and to search interview titles, questions,
and answers for character strings.

Changing Standard
Values [p 23]

Describes how to use the Configuration Editor’s Standard Values view to
modify specific runtime values.

Working with Multiple
Configurations [p 31]

Describes how use multiple interview files to switch configurations between
test runs

Viewing the
Configuration Checklist
[p 31]

Describes how to display the checklist of items generated by the
configuration editor.

Viewing the Test
Environment [p 32]

Describes how to view the environment variables and values used to run a
test suite.

Viewing Exclude Lists [p
32]

Describes how to view the list of tests excluded from a test run.

Viewing the Question
Log [p 33]

Describes how to browse (in HTML format) the text of all the completed
questions asked in the configuration interview and their answers.

6. Configuring a Test Run 17

6.1. Configuring All Values
The Configuration Editor: All Values view consists of a menu bar and three panes:

File Menu [p 19]
Search Menu [p 20]
View Menu [p 20]
Help Menu [p 20]
Index Pane [p 21]
Question Pane [p 21]
More Info Pane [p 21]

6.1.1. Using the Configuration Editor: All Values View

Use the All Values view to determine the characteristics of the test environment for your product -- these
characteristics are required by the JavaTest harness in order to run the test suite.

You can use the All Values view to:

Create or Edit a Configuration [p 18]
Search an Interview [p 19]
Save an Interview [p 19]

If the JavaTest harness displays the Standard Values view, choose View > All Values from the
configuration editor menu bar.

Create or Edit a Configuration

To create a new configuration for the test run do one of the following:

Choose Configure > New Configuration from the menu bar
Click the button on the tool bar.

The JavaTest harness opens an empty configuration editor for you.

To edit the current configuration do one of the following:

18 JavaTest User’s Guide - Version 3.1.2 October 2002

Choose Configure > Edit Configuration from the menu bar
Click the button on the tool bar.

The JavaTest harness opens the current configuration in the configuration editor.

Questions appear in the main text area of the editor (the Question Pane [p 21]). Answer the questions by
using controls such as text boxes, radio buttons, or combo boxes located beneath the question. After you
answer each question, click the Next button to proceed to the next question.

If you are editing a configuration you can also search the interview for specific characters or character
strings in interview titles, questions, and answers. See Searching the Interview [p 19] for a description.

Some "questions" provide information and do not require an answer. In these cases, click the Next button
to proceed to the next question.

You can go backward and forward to any question to review or change your answer by doing one of the
following:

Clicking the Back button, the Next button, or the Last button
Choosing a question directly from the Index pane [p 21]

As you move backward and forward, answers to questions you previously answered are preserved (until
you change them).

After you complete the interview, click the Done button to save the interview [p 19] .

Searching the Interview

When editing a configuration, you can search for a string of characters in interview titles, questions, and
answers. The search functionality enables you to easily find answers that you want to change.

To find a character string in an interview, use the Search > Find menu item to open the Find Question
dialog box.

Refer to the Find Question dialog box [p 22] for a detailed description.

Saving the Interview

At any point in the interview you can use the File > Save As, or File > Save menu items to save your
answers and your position in the interview. If you are using different configurations to run a test suite, you
can save each interview using different file names. See Working with Multiple Configurations [p 31] for
more information.

6.1.2. Using the Menus

The Configuration Editor: All Values View provides the following menus that you can use to manage the
configuration interview as well as change Configuration Editor views.

File Menu

The File menu contains items to open/save interview files and a log file.

6.1.2. Using the Menus 19

Menu Items Description

New
Configuration

Clears the current interview and starts a new interview from the beginning.

Load Opens and uses a previously saved interview.

Save Saves the current interview.

You can choose File > Save at any point in the interview to save your answers and your
position in the interview. If the configuration is new, the editor opens the file chooser
for you to use in naming and saving the interview. If you do not provide the .jti
extension when you name the file, the editor adds the extension when it saves the file.

Save As Activates a file chooser dialog box that you can use to choose a file in which save the
current interview.

You can use the File > Save As command at any point in the interview to save your
answers and your position in the interview. If you do not provide the .jti extension
when you name the file, the editor adds the extension when it saves the file. When the
editor makes that the default interview.

Revert Discards your changes to the configuration and restores the last saved version of the
current interview.

Close Closes the configuration editor.

Search Menu

Use the Search menu items to find the occurrence in an interview of a specific character string. When
troubleshooting a test run, you can use the Search menu to quickly locate a question whose answer needs
to be changed.

Menu Items Description

Find Opens the Find Question dialog box [p 22] to search for a string:

In question titles
In question text
In your answers
Anywhere (all of the above)

Find Next Repeats the previous search.

View Menu

Use the View menu to display the All Values view or the Standard Values view of the Configuration
Editor. The More Info panels can also be hidden or displayed.

Help Menu

Use the Help menu to display the online help for the All Values view, the Standard Values view, and the
Configuration Editor.

20 JavaTest User’s Guide - Version 3.1.2 October 2002

6.1.3. Using the All Values View Panes

The Configuration Editor: All Values View provides the following panes that you can use to manage and
view the configuration interview.

Index Pane

The Index pane lists the titles of the questions you have answered, are currently answering, or that the
editor determines may need to be answered. The current question is highlighted.

The title is also displayed at the top of the question pane when you are answering a question.

You can click on any question in the list to make it the current question. If you click on a question the list
itself does not change; but, if you change an answer that alters your configuration options in the interview,
the editor updates the list to reflect the change. You can also use the buttons at the bottom of the Question
Pane to navigate through the interview. See Question Pane below for a description of the navigation
buttons.

Answers to previously answered questions are always saved until you change them, even if the question
does not currently appear in the list.

Question Pane

Interview questions appear in the main text area of the editor. You answer the questions using controls
such as text boxes, radio buttons, or combo boxes located beneath the question. After you answer each

question, click at the bottom of the panel to proceed to the next question.

The buttons at the bottom of the Question pane control the following editor functions:

Button Description

Returns to the previous question.

Advances as far as possible through the interview.

Proceeds to the next question.

Saves your interview answers and exits the editor.

For more information about using the Question pane to fill out the interview see Create or Edit a
Configuration [p 18] .

More Info Pane

The More Info pane provides you with additional information about each question, such as:

Background information about the question
Examples of answers
Additional information about choosing an answer

To hide or expose the More Info pane choose View > More Info from the menu bar. By default, the More
Info pane is exposed.

6.1.3. Using the All Values View Panes 21

6.1.4. Find Questions

You can locate and display the interview panes containing a specific character string by choosing Search >
Find. The Configuration Editor opens the Find Question dialog box for you to use in locating and
displaying interview panes containing a specified character string.

The JavaTest harness can search interview titles, questions, and answers for matching characters.

Item Description

Find text Enter the character string that you are trying to find.

Search type Choose the items in the interview that you want to search:

In titles
In text of questions
In answers
Anywhere

Consider Case Specifies that the search pattern match the case of the characters in the Find text field.

Whole Words Specifies that the search pattern only match whole words from the Find text field.

Click the Find button to search the interview for the character string.

To repeat the search, either click the Find button again or use the Search > Find Next menu item from the
configuration editor menu bar.

Click the Help button to display context sensitive help.

22 JavaTest User’s Guide - Version 3.1.2 October 2002

6.2. Changing Standard Values
The standard values in a configuration govern the tests in the test suite are run and can change from test
run to test run. You can use the Configuration Editor: Standard Values view to quickly view and modify all
runtime values in the current configuration.

To use the Configuration Editor: Standard Values View, you must have a current configuration loaded in
the configuration editor.

6.2.1. Using the Configuration Editor: Standard Values View

You can use the Standard Values view to quickly change the runtime values of a test run.

Depending on you test suite, the Standard Values view can contain either five or six tabbed panes:

Tests [p 24]
Exclude List [p 24]
Keywords [p 26]
Prior Status [p 27]
Environment [p 28] (displayed if required by the test suite)
Execution [p 29]

Choose Configure > Edit Configuration from the menu bar or click the button on the tool bar. The
JavaTest harness opens the configuration editor and loads the current configuration for you.

If the JavaTest harness displays the Full Values view, choose View > Standard Values from the
configuration editor menu bar.

The Standard Values View allows you to change or specify the following:

Specifying Tests to Run [p 24]
Using the Exclude List [p 24]
Using Keywords as a Filter [p 26] (only when provided by the test suite)
Using Prior Status as a Filter [p 27]
Specifying the Test Environment [p 28] (only when required by the test suite)
Setting Test Execution Values [p 29]

6.2. Changing Standard Values 23

Specifying Tests to Run

You can use the Tests pane in the Standard Values view [p 23] to specify which tests in a test suite are run.

You can choose to run tests in one of the following:

All Tests (default setting)
Specify

If you choose Specify, you can use the test tree in the Tests pane to choose tests or folders containing
groups of tests for the JavaTest harness to run. The JavaTest harness walks the test tree starting with the
sub-branches and/or tests you specify and executes all tests that it finds (unless they are filtered out).

Restrictions are applied cumulatively. For example, you can specify the tests in a test suite, then restrict the
set of tests using an exclude list, and then further restrict the set to only those tests that passed on a prior
run.

If you choose a test folder, the JavaTest harness selects all tests in the test suite under that location for the
test run.

If you choose one or more individual tests, the JavaTest harness selects those individual tests for the test
run.

When a test or folder is highlighted, it indicates that it has been selected for the test run. You can make
individual selections in the test tree by pressing the Control key when you click an icon or name in the test
tree.

To select a series or sequence of tests or folders, press the Shift key and then click the first and the last icon
or name in the sequence.

If a test folder is partially highlighted it indicates that you have selected some (but not all) of the tests
beneath it.

Using Exclude Lists

Exclude list files contain a list of tests in a test suite that are not run by the JavaTest harness. You can use
the Exclude Lists pane in the Standard Values view [p 23] to specify one or more exclude list files.

24 JavaTest User’s Guide - Version 3.1.2 October 2002

Use the following to specify the exclude list option used to run tests:

None - an Exclude List is not used
Initial - enabled if the test suite provides an exclude list. If you choose Initial, the tests are run using the
exclude list provided by the test suite.
Latest - enabled if the test suite provides a location for the test suite. If you choose Latest, additional
options are displayed. See Latest Exclude List [p 25] below for detailed information.
Other - a custom exclude list can be used. See Other Exclude List [p 26] below for detailed information.

If a complete test is added to the exclude list, the JavaTest harness updates the test result status without
requiring that the test be rerun. However, if only a test case from a test is added to the exclude list, the
JavaTest harness requires that you rerun the test using the updated exclude list before it updates the test
result status.

Latest Exclude List

When you choose Latest, the text field displays the following:

Text and Controls Description

Location: Displays the location of the exclude list specified by the test suite. This is a
non-editable field.

Last updated: Displays the date that the exclude list was last updated.This is a non-editable field.

Check For
Updates
Automatically

When checked the JavaTest harness automatically checks the location of the
exclude list and compares the date/time stamps of the remote and local exclude
lists. The Javatest harness then displays a dialog box advising you of the results. If a
new exclude list is available, you can choose to download it.

Every _ Days Allows you to choose an interval for the JavaTest harness to automatically check
the remote location of the exclude list for updates.

Every Test Run Allows you to have the JavaTest harness automatically check the remote location of
the exclude list for updates before each test run.

Check Now Click the Check Now button to have the JavaTest harness check the remote location
of the exclude list for an update.

6.2.1. Using the Configuration Editor: Standard Values View 25

Other Exclude List

When you choose Other, the text field displays the following:

Button Description

Add To select an exclude list file for your test suite, click Add. As you make selections with the
file chooser dialog box, they are added to the list. After you have added an exclude list, you
can modify the list.

Remove Clears an item from the list. Select an item in the list and click Remove.

Move Up Moves an item one position higher in the list. Select an item in the list and click Move Up.

Move
Down

Moves an item one position lower in the list. Select an item in the list and click Move Down.

Using Keywords as a Filter

The JavaTest harness does not display this tab if your test suite does not provide keywords. If you test suite
does provide keywords, you can use the Keywords pane in the Standard Values view [p 23] to restrict the
set of tests to be run.

To specify the keywords and how they are used to restrict the tests in a test run click Select tests that match.
The JavaTest harness enables the Expression, and Insert Operator buttons.

Because The keywords in a test suite are project specific, the JavaTest harness disables the Insert Keyword
button if your test suite does not use keywords. When the Insert Keyword button is enabled, you can click
it to display the list of the keywords you can use with the tests in the test suite.

The Insert Operator button displays a list of operators that you can choose from when constructing a
boolean expression in the text field.

The following table describes the expressions that can be constructed:

26 JavaTest User’s Guide - Version 3.1.2 October 2002

Expression Description

Any Of Runs all tests in the test suite having any of the keywords entered in the text field.

Example:

A test suite uses the keyword "interactive" to identify tests that require human interaction,
and "color" to identify tests that require a color display.

To execute only the tests containing the "interactive" keyword, choose Any Of and then use
the Insert Keyword button to choose the interactive keyword.

All Of Runs all tests in the test suite having all of the keywords entered in the text field.

Example:

To execute only the tests containing both the "interactive" and "color" keywords, choose All
Of and then use the Insert Keyword button to choose the interactive and color keyword.

Expression Runs all tests in the test suite having the expression entered in the text field

Use the Insert Keyword and the Insert Operator buttons to construct a boolean expression
in the text field. Keywords stand as boolean predicates that are true if, and only if, the
keyword is present in the test being considered. A test is accepted if the overall value of the
expression is true; all other tests are rejected by the restriction.

Example:

A test suite uses the keyword "interactive" to identify tests that require human interaction,
and "color" to identify tests that require a color display.

To execute only the tests with the "color" keyword that do not also contain the "interactive"
keyword, choose Expression and then use the Insert Keyword button to choose the color
keyword, the Insert Operator button to choose the ! operator, and the Insert Keyword
button to choose the interactive keyword,

Using Prior Status as a Filter

You can use the Prior Status pane in the Standard Values view [p 23] to restrict the set of tests to be run.

By choosing Select tests that match, you can run tests with restrictions based on their result from a prior
test run:

6.2.1. Using the Configuration Editor: Standard Values View 27

Prior
Status

Action

Passed Selects tests that passed the last time the test was executed.

Failed Selects tests that failed the last time the test was executed.

Error Selects tests that the JavaTest harness could not execute the last time it was included in a
test run.

Not Run Selects tests without results in the current work directory.

If a Prior Status filter is selected and the Current Configuration view filter is set, the test tree only displays
the status of tests and folders that match the Prior Status filter. The test tree displays all other tests and
folders as gray status icons.

During a test run, when the status of a test or folder changes and no longer matches the Prior Status filter,
the test tree displays it as a gray icon.

Example:

A test run has failed tests. You set the Prior Status filter to "any of failed" and repeat the test run. As tests
pass, the test tree displays gray folder and test status icons, indicating that they no longer match the "any of
failed" Prior Status filter.

It is often useful to choose all of the status values except "passed" for the first few test runs, then refine the
filtering to reduce the number of tests in subsequent runs.

Prior status is evaluated on a test-by-test basis using information stored in result files (.jtr) written in the
work directory. Unless overridden by a test suite, a result file is written in the work directory for every test
that is executed.

If you change the work directory between test runs, the result files will not be found. If the new work
directory is empty, the JavaTest harness behaves as if the test suite was never run.

Specifying the Test Environment

NOTE: The JavaTest harness does not display this tab if your test suite does not use a test environment
(.jte) file.

You can use the Test Environment pane in the Standard Values view to create or modify the list of
environment files used to run tests in your computing environment.

28 JavaTest User’s Guide - Version 3.1.2 October 2002

The Test Environment pane contains two areas:

Files [p 29]
Name [p 29]

Files

Use the buttons in the Files area to create or modify a list of environment files used to run tests in your
computing environment:

Button Description

Add Adds an environment file to the list. Select an environment file (.jte) for your test suite,
click Add. As you make selections with the file chooser dialog box, they are added to the list.
After you have added an environment file, you can modify the list.

Remove Clears an item from the list. Select it in the list and click Remove.

Move Up Moves an environment file one position higher in the list. Select it in the list and click Move
Up.

Move
Down

Moves an environment file one position lower in the list. Select it in the list and click Move
Down.

Name

Click the drop-down arrow on this field to see the list of test environments in the environment file(s) listed
in the Env Files list. Click the Show button to view the contents of the selected test environment.

Setting Test Execution Values

You can use the Execution pane in the Standard Values view [p 23] to specify how tests in a test suite are
run.

6.2.1. Using the Configuration Editor: Standard Values View 29

Use the Execution pane to set:

Concurrency [p 30]
Time Factor [p 30]

Concurrency

The JavaTest harness can run tests concurrently. If you are running the tests on a multi-processor computer
or are using multiple agents on a test system, concurrency can speed up your test runs. Refer to Using a
JavaTest Agent [p 81] for detailed information about using agents to run tests.

When using multiple agents to run tests, the concurrency value must not exceed the number of agents. If
the concurrency value exceeds the total number of available agents, an error will occur in the test run.

If you have unexpected test failures, run the tests again, one at a time. Some test suites may not work
correctly if you run tests concurrently.

For your first test run you should leave this field set to "1." After you have the tests running properly you
can experiment with increasing this value.

Time Factor

To prevent a stalled test from stopping a test run, most test suites use a timeout limit for each test. The
timeout limit is the amount of time that the JavaTest harness waits for a test to complete before moving on
to the next test.

If you are running the tests on a particularly slow CPU or slow network, you can increase the time limit by
specifying a value in the time factor field. Each test’s timeout limit is multiplied by the time factor value.

Example:

If you specify a value of "2", the timeout limit for tests with a 10 minute basic time limit becomes 20
minutes.

Try running without a time factor first and increase the value as necessary.

30 JavaTest User’s Guide - Version 3.1.2 October 2002

6.3. Working with Multiple Configurations
In some testing situations it is useful to use multiple configuration files to switch between different
configurations for different test runs.

For example, if you test your product under different versions of the JVM you could specify a different Java
launcher command in each configuration.

6.3.1. Creating a New Configuration File

Use the editor’s File > Save As command to save a configuration to a file name of your choosing. You can
save the configuration file anywhere in your file system. Generally, however, the work directory should
not be used to save configuration files. Clearing the work directory would also result in deleting the
configuration file.

6.3.2. Opening an Existing Configuration File

Use the editor’s File > Load command to load a previously saved configuration file into the configuration
editor. Click the Done button at the bottom of the panel to make that file the new default configuration and
use it for test runs. If the Done button is not enabled, you must complete the interview before making it the
new default configuration.

6.4. Viewing the Configuration Checklist
Configuration interviews may produce a checklist of steps that must be performed before running tests.
The checklist is dynamically generated by the JavaTest harness according to the current interview path
and/or the answers on the interview path. Questions on the current path may generate items to go on the
checklist while different paths through the interview may produce different checklist items.

To view the Configuration Checklist of the current configuration interview choose Configure > Show
Checklist. If the interview does not produce a checklist, the JavaTest harness disables the Show Checklist
menu item.

To close both the Configuration Checklist and the viewer, click the Close button at the bottom of the
window.

6.3. Working with Multiple Configurations 31

6.5. Viewing the Test Environment
During troubleshooting you can view the test environment attributes, values, and sources that the JavaTest
harness used to run a test suite.

To view the contents of a test environment, open the Test Environment dialog box from the Test Manager
window by choosing:

Configure > Show Test Environment

The JavaTest harness opens the Test Environment dialog box [p 32] containing the environment values
used to run the tests.

6.5.1. Test Environment Dialog Box

To browse the environment variables and values used to run a test suite, open the Test Environment dialog
box [p 32] .

The Test Environment dialog box contains a four column table that displays the test environment variables,
values, and files used in configuring the test suite. You can rearrange the order and change the size of the
columns by clicking and dragging the column headers or their separators.

The Test Environment dialog box contains:

Name Description

Entry Name Provides a list of the environment variables specified by the configuration data and
used to run the tests.

Value Provides a list of environment variable values specified by the configuration data
and used to run the tests.

Defined in file Identifies the path and name of the file containing the environment variable
information used to run the tests.

Defined in
environment

Identifies the environment containing the variables and values used to run the
tests.

32 JavaTest User’s Guide - Version 3.1.2 October 2002

6.6. Viewing Exclude Lists
You can use the Exclude List dialog box to view the list of tests that were excluded from a test run. The
dialog box also displays details about individual tests selected in the list.

Open the Exclude List dialog box from the Test Manager window by choosing:

Configure > Show Exclude List

JavaTest opens the Exclude List dialog box [p 33] containing the list of tests excluded from the test run.

6.6.1. Exclude List Dialog Box

To view the list of tests that were excluded from a test run, open the Exclude List dialog box [p 32] from the
Test Manager window. You can view but not edit the contents of the exclude list.

To add or remove exclude lists in a configuration, use the configuration editor. See Configuring a Test Run
[p 17] for detailed information.

Exclude List Contents

Individual tests in the exclude list are displayed in a single column. Click a test in the list to display its
details in the text fields at the bottom of the panel.

Test Details

The JavaTest harness displays the following details about individual tests highlighted in the Exclude List
contents area:

Field Description

Synopsis Provides annotated information about the excluded test

Platforms Provides a list of keywords that describe why the test was excluded

Bug Ids Lists the bug tracking ids for the excluded test

6.7. Viewing the Question Log
The JavaTest harness creates a log file of all the completed questions asked in the current, saved
configuration interview with their answers. The JavaTest harness does not update the question log with
changes to a configuration interview until you save the interview or click the Done button in the

6.6. Viewing Exclude Lists 33

Configuration Editor.

Choose Configure > Show Question Log to view the Question Log of the current, saved configuration
interview.

The log provides a list of all questions in the saved configuration interview with links to the following
details about each question:

Interview question
Question tag
Question description
Response (if appropriate)

34 JavaTest User’s Guide - Version 3.1.2 October 2002

7. Running Tests
You can use the Run Tests menu, Test Manager tool bar, or the test tree popup menu to start a test run. To
stop a test run, use either the Run Tests menu or the Test Manager tool bar.

See the Test Manager window [p 10] for a description of the Run Tests menu, Test Manager tool bar, and
the test tree popup menu.

This chapter contains the following sections, presented in a sequence that you can use when running tests:

 Starting a Test Run [p 36]

 Monitoring a Test Run [p 37]

 Stopping a Test Run [p 40]

 Troubleshooting a Test Run [p 41]

7. Running Tests 35

7.1. Starting a Test Run
When the JavaTest harness is not running tests, it enables both the button on the tool bar and the Run
Tests > Start menu item.

Only one test run at a time can be active in a Test Manager window.

To start a test run using the current configuration data, test suite, and work directory, either click the
button on the tool bar or choose Run Tests > Start in the menu bar. You can also use the test tree popup
menu to run a specific test or group of tests in a folder. See Using the Test Tree Popup Menu [p 47] .

Before the JavaTest harness attempts to run the test suite, it determines whether the required configuration
information has been supplied. You can view the configuration state in the Test Manger Properties [p 61]
dialog box:

If the configuration state is complete, the JavaTest harness displays a dialog box that identifies the
configuration used and allows you to start or cancel the test run. To use a different configuration,
choose Cancel and perform Configuring a Test Run [p 17] .
If the configuration information is not provided or the state is incomplete, the JavaTest harness starts
the configuration editor for you to use in Configuring a Test Run. You can also open the configuration
editor directly from the Configure menu [p 11] .

To change the test suite or work directory before running tests, refer to:

Opening a Test Suite [p 15]
Opening a Work Directory [p 15]
Creating a Work Directory [p 16]

If the JavaTest Agent [p 81] is used to run the tests for your product, you must start the agent before you
begin the test run.

If the JavaTest harness issues a request before the active agent is started, the harness waits for an available
agent until its timeout period ends. If the timeout period ends before an agent is available, the JavaTest
harness reports an error for the test.

36 JavaTest User’s Guide - Version 3.1.2 October 2002

7.2. Monitoring a Test Run
After the test run begins, the Test Manager window displays the progress of the test run in the following
areas:

Area Description

Test Tree The test tree uses colored icons to display the current run and test results status of the
folders and tests. As individual tests are completed, the JavaTest harness changes the
color of each test tree icon to indicate its status.

See Using the Test Tree [p 37] for additional information about using the test tree to
monitor the progress of the test run.

Test Progress
Display

The test progress display (located at the bottom of the Test Manager window) contains
two fields that monitor the progress of the test run.

See Using the Test Progress Display [p 38] for detailed information about using the
test progress display to monitor the progress of the test run.

Progress
Monitor dialog
box

The Progress Monitor dialog box displays current, detailed information about the
progress of the test run.

See Progress Monitor [p 38] for detailed information.

Information
Area

As tests run, you can display information about the run in the information area to the
right of the test tree. The information area provides two views:

Folder view - displays information about a folder and its descendents when you
click its folder icon in the test tree. The JavaTest harness displays a pane
containing a Summary tab, five status tabs, and a status field. For detailed
information about browsing folder information see Folder View [p 50] .
Test view - displays information about a specific test when you click its icon in the
test tree or double-click its name in the information pane. For detailed
information about browsing test information see Test View [p 53] .

7.3. Using the Test Tree
After the test run begins, you can track its progress using the test tree. The test tree uses specific icons to
display the current run and test results status of the folders and tests. As individual tests are completed, the
JavaTest harness changes the icons of the test tree to indicate its status.

See Test Tree [p 43] for detailed information about the icons and other features used in the test tree.

The goal of a test run is for the root test suite folder to become signifying all tests in the test suite (that
are not filtered out) have passed. This may require multiple runs. Use the Current Configuration or your
test suite specific filter if one is provided.

You can click the test suite icon in the test tree to display information about the run in the Test Manager
information area. By browsing the tabbed pane and the test tree, you can find all folders that contain tests
that have not passed.

7.2. Monitoring a Test Run 37

Select a view filter [p 57] from the test tree pane to filter the displayed test tree icons.

7.4. Using the Test Progress Display
The test progress display located at the bottom of the Test Manager window contains (from left to right)
two areas and two buttons:

The resizable text area displays information about Test Manager activities, such as the state of the test
run and the name of the test being run.
The monitor area displays either a run progress meter or the elapsed time of the test run, the button
and the button.
The button opens a drop-down list used to select a monitor for display. See Select a Monitor [p 38]
for a detailed description.

The button opens or closes the Progress Monitor dialog box. See Using the Progress Monitor [p 38]
for a detailed description.

7.4.1. Select a Monitor

Click the button to open a drop-down list of monitors you can use in the test progress display. You can
display either the elapsed time of the test run or a run progress meter.

Elapsed Time

Displays the time since the start of the current test run.

Run Progress Meter

A colored progress bar of the tests in the test suite. As tests are run, they are displayed as colored segments
in the progress bar.

The colors used in the progress bar represent the relative quantities of completed tests by their status. The
test results are displayed from left to right in the following order:

Color Status Description

Green Passed Tests with passing results when they were executed.

Red Failed Tests with failed results when they were executed.

Blue Error The JavaTest harness could not execute these tests.

Errors usually occur because the test environment is not properly configured.

White Not
run

Tests that are not yet executed by the JavaTest harness and are not excluded from the
test run.

7.5. Using the Progress Monitor
The JavaTest harness displays the Test Manager: Progress Monitor dialog box when you choose Run Tests
> Monitor Progress from the Test Manager menu bar or click the icon in the test status display.

38 JavaTest User’s Guide - Version 3.1.2 October 2002

The following information is displayed:

Progress [p 39]
Time [p 40]
Memory [p 40]
Tests in Progress [p 40]

The information in the dialog box is only for the current configuration and is not changed by the view filter
settings. The dialog box only displays information when the harness is running tests.

7.5.1. Progress

The Progress area contains the following information:

Name Description

Passed Displays the number of tests in the test suite that were run and had passing results

Failed Displays the number of tests in the test suite that were run and had failing results

Errors Displays the number of tests in the test suite could not be run

Not Run Displays the number of tests in the test suite have not yet been run

Test
Results

A colored progress bar representing the results of the tests in the test suite

As tests are completed, they are displayed as colored segments in the progress bar. The
colors used in the progress bar represent the current status of the tests. The progress bar is
the same as that displayed at the bottom of the Test Manager window.

The colors used in the progress bar are displayed from left to right in the following order:

7.5.1. Progress 39

Color Status Description

Green Passed Tests that passed when they were executed

Red Failed Tests that failed when they were executed

Blue Error The JavaTest harness could not execute these tests.

Errors usually occur because the test environment is not properly configured.

White Not yet run Tests that have not yet been executed and are not excluded from the test run.

You can also display the progress bar in the test progress display by clicking the button and then
choosing Run Progress Meter from the selectable list. See Using the Test Progress Display [p 38] for
detailed description.

7.5.2. Time

The Time area contains two fields that are continuously updated throughout a test run:

Name Description

Elapsed: The actual elapsed time from the start of the test run

Remaining: The estimated time required to run the remaining tests.

These numbers can be adversely affected by tests that timeout or have execution times much longer relative
to the the other tests being run.

7.5.3. Memory

The Memory area contains two text fields and a bar graph.

Name Description

Used: The memory used to run the test

Total: The total memory available for use by the Java virtual machine

7.5.4. Tests in Progress

The Tests in Progress text box displays the names of the tests that the JavaTest harness is currently running.
The text box is empty when idle. The number of items displayed is directly affected by concurrency settings
and /or agents.

You can click on this list to display the appropriate test view in the Test Manager window.

7.6. Stopping a Test Run
When the JavaTest harness is running tests, it enables both the button on the tool bar and the Stop menu
item.

40 JavaTest User’s Guide - Version 3.1.2 October 2002

Either click the button or choose Run Tests > Stop to stop a test run.

The JavaTest harness displays a confirmation dialog box, and after it receives your confirmation, finishes
currently running tests before stopping the test run.

As it completes each test, the JavaTest harness writes the test results (.jtr files) in the work directory.

Stopping a test run may cause the tests in progress to indicate an error.

7.7. Troubleshooting a Test Run
Normally, the goal of a test run is for all tests in the test suite that are not filtered out to have passing
results. If the root test suite folder contains tests with errors or failing results, you must troubleshoot and
correct the cause to satisfactorily complete the test run.

Tests with errors are tests that could not be executed by JavaTest. These errors usually occur because the
test environment is not properly configured or the software under test is defective.

Tests that failed are tests that were executed but had failing results.

The Test Manager window provides you with the following facilities for effectively troubleshooting a test
run:

Test Tree
Folder View
Test View

7.7.1. Test Tree

Use the test tree [p 43] and view filters to identify specific folders and tests that had errors or failing results.

Open the red and blue folders until the specific tests that failed or had errors are displayed.

7.7.2. Folder View

When you click a folder [p 50] icon in the test tree pane, the JavaTest harness displays the contents of the
folder in the Test Manager information area.

Click the Error and the Failed tabs to display the lists of all tests in and under a folder that were not
successfully run. You can double-click a test in the lists to view its detailed test information. Refer to Test
View below for a description of the test information that the JavaTest harness displays.

7.7.3. Test View

When you click a test icon in the test tree or double-click its name in the folder view, the JavaTest harness
displays detailed information about the test in the information area.

The test view contains detailed test information [p 53] and a brief status message at the bottom of the pane
that identifies the type of result. This message may be sufficient for you to identify the cause of the error or
failure.

If you need more information to identify the cause of the error or failure, use the following panes listed in
order of their importance:

Test Run Messages [p 55] contains a Message list and a Message pane that display the messages
produced during the test run
Test Run Details [p 55] contains a two column table of name/value pairs recorded when the test was
run

7.7. Troubleshooting a Test Run 41

Configuration [p 54] contains a two column table of the test environment name/value pairs actually
used to run the test derived from the configuration data

42 JavaTest User’s Guide - Version 3.1.2 October 2002

8. Browsing Test Information
You can quickly browse test information in the Test Manager window by clicking folder and test icons in
the test tree.

This chapter is divided into the following topics:

Topic Description

Test Tree [p 43] Describes the test tree and the view filter combo box used to display the test
suite, its folders, tests and status icons

Folder View [p 50] Describes how to display folder information in the Test Manager window

Test View [p 53] Describes how to display test information in the Test Manager window

Test Manager
Properties [p 61]

Describes how to use the View menu to display the Test Manager Properties
dialog box

Test Suite Errors [p 62] Describes how to use the View menu to display the Test Suite Errors dialog
box

8.1. Test Tree
Use the test tree to view run and test result status of folders and tests in a test suite. The JavaTest harness
uses colored icons in the test tree to indicate both the current run status and the test result status of the:

Folders [p 45]
Tests [p 46]

The goal of a test run is for the root test suite folder to become green signifying all tests in the test suite that
are not filtered out have passed. Use the filters [p 57] to specify tests or groups of tests whose results are
displayed in the test tree. Using filters when browsing the tree makes it possible to easily monitor folders
containing tests that have not passed.

8. Browsing Test Information 43

When you click a folder icon [p 50] in the test tree, the JavaTest harness displays its folder view in the Test
Manager information area. The information in the folder view is changed by the view filter.

When you click a test icon [p 53] in the test tree, the JavaTest harness displays its test view in the Test
Manager information area. The information in the test view is changed by the view filter.

The test tree also provides a popup menu for each folder and test icon, that allows you to:

Execute these tests
Performs a "quick pick" execution of the folder or test.

Refresh
Performs an "on-demand" refresh scans for new folders, new tests and updated test descriptions.

Clear Results
Performs an "on-demand" clearing of the contents of the selected folder, test, or entire work directory

Folders and tests do not have to be highlighted in the test tree for you to use the popup menu.

See Using the Test Tree Popup Menu [p 47] for additional information.

44 JavaTest User’s Guide - Version 3.1.2 October 2002

8.1.1. Folder Icons

The test tree uses colored icons to indicate folder run status and result status. The folder icon displayed in
the test tree is determined by the result of all its tests (see Test Icons [p 46]) and by the selected view filter
(see Using Filters [p 57]). Folder icons are updated as individual tests are completed.

Result Status

The folder icons displayed in the test tree indicate the highest priority result of any test hierarchically
beneath it. The priority order is:

Icon Result Color and Description

Error A blue folder containing a ! symbol indicates that it and/or one or more of its child
folders contains tests with a result of error. Note that this folder may also contain tests
and folders that are Failed, Not Run, Passed, and Filtered out.

Failed A red folder containing a x symbol indicates that it and/or one or more of its child
folders contains tests with a result of failed. Note that this folder may also contain tests
and folders that are Not Run, Passed, and Filtered out.

Not run A white folder containing a - symbol indicates that it and/or one or more of its child
folders contains tests with a result of not run. Note that this folder may also contain
tests and folders that are Passed and Filtered out.

Passed A green folder containing a symbol indicates that it and all of its children have a
result of passed. Note that this folder may also contain tests and folders that are Filtered
out.

Filtered
out

A gray folder containing no symbols indicates that it and all of its children have been
filtered out.

Run Status

When activity is occurring in a folder such as loading or running tests, the JavaTest harness displays an
arrow over the folder icon. The folder icon used indicates the last known test result and does not change
until its tests are completed.

After the JavaTest harness completes the tests in a folder, it displays the appropriate result status icon.

8.1.1. Folder Icons 45

8.1.2. Test Icons

The JavaTest harness uses icons to indicate test result status. The color of the icon is determined by the test
status and the selected view filter (see Using Filters [p 57]).

Result Status

The JavaTest harness uses colored test icons to indicate the result of each test:

Icon Result Color and Description

Error A blue icon containing a ! symbol indicates that the test is not filtered out and that
JavaTest could not execute it. These errors usually occur because the test environment
is not properly configured.

Failed A red icon containing a x symbol indicates that the test is not filtered out and failed
the last time it was executed.

Not run A white icon containing a - symbol indicates that the test is not filtered out but has not
yet been executed.

Passed A green icon containing a symbol indicates that the test is not filtered out and
passed the last time it was executed.

Filtered
out

A gray icon containing no symbols indicates that the test is currently not selected to be
run.

Run Indicator

When running a test, the JavaTest harness displays an arrow over the test icon. The test icon used indicates
the last known test result and does not change until the test is completed.

After the JavaTest harness completes the test, it displays the appropriate result status icon.

46 JavaTest User’s Guide - Version 3.1.2 October 2002

8.1.3. Using the Test Tree Popup Menu

The test tree provides a popup menu for each folder and test icon.

Execute these tests
Performs a "quick pick" execution of the folder or test.

Refresh
Performs an "on-demand" refresh scans for new folders, new tests and updated test descriptions.

Clear Results
Performs an "on-demand" clearing of the contents of the selected folder, test, or entire work directory

Operations using the popup menu are not allowed when the JavaTest harness is running tests. The
JavaTest harness displays an error dialog box if you attempt to perform an operation using the popup
menu when tests are running.

"Quick Pick" Test Execution

You can use the Execute these tests menu item to run either a single test or all of the tests in a folder.
However, multiple tests and multiple folders cannot be run using the popup menu.

To perform a "Quick Pick" test execution of a folder or test:

1. Display the popup menu for the folder or test. This is a platform specific operation (such as right
clicking on the folder or test icon in the test tree).

Selecting a single test executes only that test.
Selecting a folder executes all tests currently known to the test manager in and below that folder.

2. Choose Execute these tests from the test tree popup menu.

Except for the initial tests setting, which is overridden by using the "Quick Pick" test tree selection, the
JavaTest harness uses the current configuration to run the tests.

If the test manager does not contain a completed configuration interview, the JavaTest harness
displays an advisory message and does not start the test run.
If the test manager contains a completed configuration interview, the JavaTest harness displays an
advisory message to confirm the execute operation.

3. The JavaTest harness updates all icons and progress monitors during test execution, as it does during a
normal test run.

The JavaTest harness does not automatically perform a refresh operation before running the tests. If
changes have been made to a test suite, you must perform a refresh before running tests. See Refresh Test
Suite Contents [p 48] for a description of the refresh operation.

8.1.3. Using the Test Tree Popup Menu 47

Refresh Test Suite Contents

When developing tests, changes in a test suite are not automatically detected by the JavaTest harness. The
first time tests are run, the JavaTest harness uses the test finder to read test descriptions. If the harness
loads tests from an existing work directory, the test descriptions contained in those results will be used by
default.

The refresh operation allows test developers to load changes they may have made in a test suite without
restarting the JavaTest harness or reloading the test suite.

The JavaTest harness does not require a work directory to perform a refresh of the test suite.

If you are viewing the test panel after refreshing a test or folder, you must choose a different test or folder
icon and then repeat your test tree choice to update the test tree.

Refreshing a Single Test

To refresh the contents of a test:

1. Display the popup menu for a test. This is a platform specific operation (such as right clicking on a test
icon).

2. Choose Refresh from the popup menu.
3. The JavaTest harness checks the time stamp of the file containing the test description.
4. If the time stamp has changed, it compares the test descriptions.
5. If the properties of the test descriptions are different, the JavaTest harness:

Removes the test result from the work directory and the test manager.
Loads a test containing the new test description into the test manager and displays it in the "not
run" state.

Refreshing a Folder

To refresh the contents of a folder:

1. Display the popup menu for a folder. This is a platform specific operation (such as right clicking on a
folder icon).

2. Choose Refresh from the test tree popup menu.
3. The JavaTest harness scans for new folders and tests. This operation may take place on any folder,

including the root folder.
4. The JavaTest harness checks the time stamps of the files in a folder.
5. If a time stamp has changed, the JavaTest harness compares the test descriptions.
6. If the properties of the test descriptions are different, the JavaTest harness:

Removes the test result from the work directory and the test manager.
Loads the test containing the new test description into the test manager and displays it in the "not
run" state.

Clear Previous Test Results

You can use the Clear Results menu item to remove existing test results for a single test or for all of the tests
in and below a folder.

To clear test results, you must have an open work directory.

Clear a Single Test Result

To clear a test result:

48 JavaTest User’s Guide - Version 3.1.2 October 2002

1. Display the popup menu for a test. This is a platform specific operation (such as right clicking on a test
icon).

2. Choose Clear Results from the test tree popup menu.
3. The JavaTest harness:

Removes the .jtr file from the work directory for that test.
Refreshes the test description for that test.
Displays the test in the "not run" state.

Clear Test Results in a Folder

To clear the test result in a folder:

1. Display the popup menu for a folder. This is a platform specific operation (such as right clicking on a
folder icon in the test tree).

2. Choose Clear Results from the test tree popup menu.
3. The JavaTest harness:

Removes all .jtr files from the work directory for all tests in and below that folder.
Deletes all other files in and below the folder in the work directory.
Deletes all other directories corresponding to the folders in and below the folder in the work
directory.
Displays the folder and its tests in the "not run" state.

The JavaTest harness does not display an error message if it is unable to delete a folder or file from the
work directory.

8.1.3. Using the Test Tree Popup Menu 49

8.2. Folder View
Click a folder icon in the test tree [p 43] to display its information in the information pane. The folder view
displays a Summary tab, five status tabs, and a status display.

During a test run, you can use the folder view to monitor the status of a folder and its tests. You can also
use the folder view during troubleshooting to quickly locate and open individual tests that had errors or
failed during the test run. When a status pane is empty, the JavaTest harness disables its tab.

See Summary Information [p 50] for a description of the information displayed in the Summary pane.

See Status Information [p 51] for a description of the folder information displayed by clicking the following
status tabs:

 Passed (green)

 Failed (red)

 Error (blue)

 Not Run (white)

 Filtered Out (gray)

The status display at the bottom of the pane displays messages about the selected tab. The messages may
indicate that tests in the folder are loading or may provide detailed status information about a selected test.

8.2.1. Summary Information

When you click the Summary tab, it displays the following information about the tests in a folder that are
selected by the current configuration:

50 JavaTest User’s Guide - Version 3.1.2 October 2002

Field Description

Passed The number of tests in a folder and all of its subordinate folders that were run and passed

Failed The number of tests in a folder and all of its subordinate folders that were run and failed

Error The number of tests in a folder and all of its subordinate folders that were run but had
errors

Not run The number of tests in a folder and all of its subordinate folders that have not been run and
were not filtered out

Sub-Total The total number of tests that were selected to run

Filtered
Out

The total number of tests in a folder and all of its subordinate folders that were filtered out.
Tests that were filtered out include tests that you omitted from the test run by using
keywords, prior status, or exclude lists.

Total Total number of tests in a folder and its subordinate folders.

When using the Current Configuration view filter, the numbers are recalculated anytime you use the
configuration editor to make a change that effects the view filter. Click the appropriate status information
[p 51] tab to identify the individual tests in a category.

The default view filter is Current Configuration. If you set Prior Status as a filter in the Current
Configuration or are using a custom filter with "Prior Status" set as a filter, tests will "move" during test
execution from their previous status (i.e. failed) to the filtered out category, not to their new status (i.e.
passed). This is the correct, expected behavior because the GUI only displays those tests that match your
view filter setting.

Example:
If you choose to run only the failed tests, the tree and statistics show you only the tests currently in the
failed state. When tests are no longer in the failed state, they move to the filtered out category.
Consequently, when you choose to run only failed tests, as each test passes, it is moved to the filtered out
category and the appropriate nodes in the tree turn grey.

To avoid this behavior and view all test results, you should use a different view filter:

The All Tests view filter displays all test results in the tree and in the Summary tab statistics.
If your TCK provides a certification filter you can use it to display all test results in the tree and
Summary tab statistics.
You can also configure a Custom view filter to display the same view as the Current Configuration
without using the prior status filter.

8.2.2. Status Information

In addition to Summary information, the folder view [p 50] contains five status tabs that group and list the
tests by their results.

 Passed (green)

Displays the test names of all tests in the folder and all of its subordinate folders that had passing results
when they were run.

8.2.2. Status Information 51

Click a test in the list to display its test status message in the status display at the bottom of the pane.
Double-click a test in the list to display it in the test tree and view its detailed test information [p 53] .

 Failed (red)

Displays the path names of all tests in the folder and all of its subordinate folders that were run and had
failing results.

Click a test in the list to display its test status message in the status display at the bottom of the pane.
Double-click a test in the list to display it in the test tree and view its detailed test information [p 53] .

 Error (blue)

Displays the path names of all tests in the folder and all of its subordinate folders with errors that
prevented them from being executed.

Click a test in the list to display its test message in the status display at the bottom of the pane. Double-click
a test in the list to display it in the test tree and view its detailed test information [p 53] .

 Not Run (white)

Displays the path names of all tests in the folder and all of its subordinate folders that are selected by the
view filter but have not been run.

Click a test in the list to display its test result message in the status display at the bottom of the pane.
Double-click a test in the list to display it in the test tree and view its detailed test information [p 53] .

 Filtered Out

Displays the path names of all tests in the folder and all of its subordinate folders that were omitted from
the test run by the view filter.

Click a test in the list to display its test status message in the status display at the bottom of the pane.
Double-click a test in the list to display it in the test tree and view its detailed test information [p 53] .

52 JavaTest User’s Guide - Version 3.1.2 October 2002

8.3. Test View
Click a test icon in the test tree [p 43] or double-click a test name in the information pane [p 51] to display
detailed test information in the information pane. The information pane displays the test view, which
contains five tabs and a colored test status message display.

The color of the message display matches the colored test result icon [p 46] and displays a description of
the test result. The status field is visible in all of the following:

Tab Description

Test Description
[p 54]

Displays the name/value pairs contained in the test description. The contents are
input data and always available.

Files [p 54] Contains a drop down list of source files from the test description. Click a file name
from the drop down list to display its contents. The contents are input data and
always available.

Configuration [p
54]

Displays a table of JavaTest environment values used to run a specific test. The
contents are output data and only enabled if the test has been run.

Test Run Details
[p 55]

Displays the name/value pairs that were recorded when the test was run. The
contents are output data and only enabled if the test has been run.

Test Run
Messages [p 55]

Contains a tree and message panel of output from sections of the test. Click a name
to display its contents. The contents are output data and only enabled if the test has
been run.

When an information pane is empty, the JavaTest harness disables it.

8.3. Test View 53

8.3.1. Test Description

Click the Test Description tab to display a two column table of name/value pairs derived from the test
descriptions cached in the work directory. Each test in a test suite has a test description.

When you open the test suite in the JavaTest harness, the test finder reads the test descriptions and caches
them in the work directory. Test descriptions in the cache and the Test Description pane are not updated
until you close and reopen the test suite.

Name

The names displayed in the table identify the attributes and properties contained in the test description.

Value

The values displayed in the table are the attribute and property values that the JavaTest harness used to
run the test. The values are read from the files in the test suite.

Refer to your test suite documentation for detailed descriptions of the name/value pairs contained in the
Test Description pane.

8.3.2. Files

Click the Files tab to display a drop down list of source files and the test description file for the test:

For compiler tests, the source files are those files that were compiled during the test run.
For runtime tests, the source files are those files that were previously compiled to create the test class
files.

Choose a file from the drop down list to display its contents. You can browse but not edit source files in
this panel.

8.3.3. Configuration

Click the Configuration tab to display a two column table of test environment name/value pairs derived
from the configuration data actually used to run the test.

Because the table contains values that were used when the test was run, it may provide valuable
information when troubleshooting a test run.

Name

The names in the table identify the test environment properties used by the JavaTest harness to run the test.

Because the test environment properties are a function of the configuration data, the contents of this pane
vary for each test suite.

Value

The values displayed in the table are the test environment values that the JavaTest harness used to run the
test.

Refer to your test suite documentation for detailed descriptions of the environment name/value pairs for
your test.

54 JavaTest User’s Guide - Version 3.1.2 October 2002

8.3.4. Test Run Details

Click the Test Run Details tab to display a two column table of name/value pairs that were recorded when
the test was run and may provide valuable information when troubleshooting a test run.

Name

The JavaTest harness derives property names from the test results file and displays them in the table:

Information about the version of the JavaTest harness used to run the test
Information about the operating system used to run the test
Date and time the test started
Date and time the test ended
Additional details recorded by the test script used to run the test

Because the properties listed in the table are a function of the test script that you are running, the contents
vary for each test suite.

Information written by commands, tests, and scripts as they are executing are displayed in the Test Run
Messages pane [p 55] .

Value

The values displayed in the table are from the test results file created by JavaTest after running the test.

Refer to your test suite documentation for detailed descriptions of the result property name/value pairs for
your test.

8.3.5. Test Run Messages

Click the Test Run Messages tab to display detailed messages describing what happened during the
running of each section of the test. This information is especially useful when troubleshooting a test run.

8.3.4. Test Run Details 55

The Test Run Messages tab contains the following:

Message List [p 56]
Message Area [p 56]
Summary Message [p 56]
Output Summary and Result Messages [p 56]
Test Result Message [p 57]

Message List

The message list provides a detailed list of messages issued during a test run. Click an item in the list to
display its contents in the messages area.

Message Area

Displays the messages issued during a test run. The number, names, and content vary for each test suite
and may also vary for different tests in the same test suite.

Summary Message

Only one per test, summarizes all of the messages generated during a test run and provides hypertext links
to their detailed contents:

The test script used to run the test
The messages logged by the test script
The individual test result sections
The test result and its result icon

Script Messages

Only one per tests, passed up from the Script that executed the test. Script messages vary for each test
script. Refer to your test suite documentation for detailed descriptions of its script messages when
troubleshooting a test run.

Output Summary and Result Messages

Each test result section has an Output Summary and Result message that provides summary messages and
hypertext links to its detailed messages. The name of the Output Summary message is a function of the test
suite and varies for each test suite.

Some tests have only one result section, while others have multiple sections. Refer to your test suite
documentation for detailed descriptions of the tests when troubleshooting a test run.

The following lists and describes the message types:

56 JavaTest User’s Guide - Version 3.1.2 October 2002

Message
Type

Description

Output
Summary

A two column table listing the name and size of each output section. Each output section
contains text generated while executing the test section:

Name Description

messages Provides the command string used by the test script to run the test section

ref Can provide standard output information from the test section

log Can provide standard error information from the test section

The ref and the log output are two streams that a test can use when writing test
information. These are only example names, although the messages filed always exists in a
section.

Many tests only use the log stream and include tracing as well as standard error
information when writing to the log output. If there are no details in an output section, the
JavaTest harness does not create its hypertext link and indicates in the Size (chars) column
that it is "empty."

The contents of each output section varies from test suite to test suite. Refer to your test
suite documentation for detailed descriptions of the test section messages when
troubleshooting a test run.

Result Contains a colored status icon and a brief description of the results of the specific test
section. The color of the circle indicates the result of the test section.

Test Result Message

Only one per test, the Test Result Message indicates the cumulative result of the test, determined by the test
script from the results of the preceding test sections (if any).

For negative tests, the Test Result correctly indicates "passed" when all of its test sections have failed.

8.4. Using Filters
The JavaTest harness provides a special filtering facility that allows you to filter both the folders and tests
displayed by the test tree and the test results printed in the reports. See Generating New Reports [p 63] for
a description of using the filters when generating reports.

8.4. Using Filters 57

To select the status of the folders and tests displayed by the test tree, either choose View > Filters from the
menu bar or select a view filter from the list at the bottom of the test tree.

Selecting a view filter only filters the status (the colors and counters of the folders and their tests) displayed
in the Test Manager window, not the tests that are run. You must use the configuration editor [p 24] to
specify the tests that are run.

The JavaTest harness provides three filters:

Current Configuration [p 58]
All Tests [p 58]
Custom [p 59]

Edit the Custom filter by choosing View > Configure Filters and using the Filter Editor. See Custom Filter
[p 59] for a description of how to edit the custom filter.

Additional filters, such as certification filters, can also be added to the list by the test suite. Refer to your
test suite documentation for detailed descriptions of any additional filters displayed in the list of view
filters.

8.4.1. The Current Configuration Filter

The Current Configuration filter is the default filter and only displays the status of those folders and tests
selected in the Configuration Editor.

Examples:

1. You only want to view results for tests in the "api" folder. In the Tests tabbed pane of the
Configuration Editor Standard Values view click Specify and the "api" folder. All folders and tests
except those under "api" turn gray in the test tree. Those folder and test icons under "api" are displayed
in the test tree.

2. You only want to view results for failed tests. In the Prior Status tabbed pane of the Standard Values
view click:

Select tests that match
Any Of: Failed

All folders and tests except those with "failed" test results turn gray in the test tree. Those folder and
test icons with "failed" test results are displayed in the test tree. Repeat the test run. As failed tests pass
their icons turn from red to gray because they are no longer selected by the configuration criteria.

58 JavaTest User’s Guide - Version 3.1.2 October 2002

8.4.2. The All Tests Filter

The All Tests filter displays status icons for all folders and tests in the test suite, including those in any
exclude list associated with the test suite. This is effectively an unfiltered view of the contents of the work
directory.

Example:

A test run has failed tests. You set the Prior Status filter in the Configuration Editor to run only failed tests
and then repeat the test run. The tests pass and the test tree displays green status icons for all folders and
tests.

Because you set the All Tests filter, the test tree displays all test and folder status icons regardless of the
configuration set in the Configuration Editor.

8.4.3. The Custom Filter

When the Current Configuration and the All Test view filters do not provide a suitable view of the test tree,
you can use the Filter Editor to edit the Custom filter for the test suite.

The Custom filter is unique to a test suite. When the JavaTest harness opens the test suite in the Test
Manager window, it also restores its Custom filter. You can also use the Custom filter to generate reports.
See Generating New Reports [p 63] for a description of using the Custom filter when generating reports.

Editing the Custom Filter

To edit the Custom filter:

1. Choose View > Filters > Configure Filters from the menu bar or click the button at the bottom of the
test tree.

2. Choose Custom in the Available Filters panel. You can provide a name for the filter in the Custom
Label field.

3. Use the Test Suite Areas, Keywords, Prior Status, Exclude Lists, and Special tabs to set the view filter
properties:

Specifying Tests to View [p 60]
Using the Exclude List as a Filter [p 60]
Using Keywords as a Filter [p 60]
Using Prior Status as a Filter [p 60]
Using Special Settings as a Filter [p 60]

4. Click one of the following buttons:
Apply - saves but does not dismiss the dialog box. Apply updates the GUI if the filter is selected.
Reset - discards all changes and restores the last saved Custom filter.

8.4.2. The All Tests Filter 59

Cancel - closes the dialog box without saving any changes.
OK - saves the current changes, updates the Custom filter, and closes the dialog box.
Help - displays online help for the Filter Editor.

Using Test Suite Areas, Keywords, Prior Status, Exclude Lists, and Special settings to filter the displayed
test results does not stop the tests from running. To specify which tests are run, use the Configuration
Editor Standard Values View [p 23] .

Specifying Tests to View

Click the Test Suite Areas tab and use the tree to choose the results of test folders or individual tests that
you want displayed in the Test Tree. The JavaTest harness walks the test tree starting with the
sub-branches and/or tests you specify and displays the results of all tests that it finds.

Using Keywords as a View Filter

If your test suite provides keywords and you want to use them to filter the test results displayed in the Test
Tree, click the Keywords tab.

See Specifying Tests to Run [p 24] for a description of the behavior of this view filter.

See Using Keywords as a Filter [p 26] for a description of how to select the keywords available for your test
suite.

Using Prior Status as a View Filter

Click the Prior Status tab and choose the test results from the previous test run that you want displayed in
the Test Tree.

See Specifying Tests to Run [p 24] for a description of the behavior of this view filter.

Using the Exclude List as a View Filter

To use the exclude list specified in the configuration interview as a filter, click the Exclude Lists tab and its
check box.

Any test in the exclude list is filtered out and displayed as a icon in the test tree.

Using Special Settings as a Filter

The test suite architect has the option of providing a default filter for the test suite. The default filter is
automatically used in the Current Configuration view.

Select this filter setting when you are simulating the current configuration without actually changing the
interview.

Example:
You want to display the tests in the GUI that are marked with a keyword and do not want to change your
interview, click Enable test suite filter.

Using a Custom View Filter

To use a custom filter, choose it from the list of view filters below the test tree or from the View > Filters
menu. The JavaTest harness displays the status of the folders and tests in the test tree that match the filter
settings of the custom filter.

60 JavaTest User’s Guide - Version 3.1.2 October 2002

8.5. Test Manager Properties
To view the properties of a test manager, choose View > Properties. The JavaTest harness opens the Test
Manager Properties dialog box.

The Test Manager Properties dialog box contains four areas:

Test Suite [p 61]
Work Directory [p 61]
Configuration [p 61]
Plug-Ins [p 61]

8.5.1. Test Suite

The Test Suite properties area displays the Path, Name, and ID of the current test suite opened by the test
manager.

8.5.2. Work Directory

The Work Directory properties area displays the path of the current work directory opened by the test
manager.

8.5.3. Configuration

The Configuration properties area displays the Path, Name, Description, and State of the current
configuration interview opened by the test manager. The State field indicates whether the configuration is
complete and tests can be run as well as identifies the availabilty of special filters.

8.5.4. Plug-Ins

The Plug-Ins properties area displays the name of the plugins used by the Test Manager. The plug-ins are
provided by the test suite architect.

8.5. Test Manager Properties 61

Property Description

Test Suite The fully qualified name of the test suite class used by the test manager

Test Finder The fully qualified name of the test finder class used by the test manager

Interview The fully qualified name of the interview class used by the test manager

8.6. Test Suite Errors
The JavaTest harness displays the Test Manager: Test Suite Errors dialog box when you choose View > Test
Suite Errors from the Test Manager menu bar.

The dialog box displays a list of errors detected in the test suite. Unless instructed otherwise, you should
report any test suite errors to the owner of the test suite.

62 JavaTest User’s Guide - Version 3.1.2 October 2002

9. Using Test Reports
You can use the JavaTest harness to generate and view reports about test run information such as:

Tests grouped by test result
Configuration information used
Test environment names and values used

The JavaTest harness does not automatically generate reports at the end of a test run. See Generating New
Reports [p 63] for a description of how to generate test reports.

To view reports in the JavaTest Report Browser, choose Report > Open Report from the menu bar. See
Viewing Reports [p 64] for a description of how to view reports.

The test reports contain relative and fixed links to other files. See Moving Reports [p 66] for a description of
how to move reports to another directory.

9.1. Generating New Reports
The JavaTest harness does not automatically generate reports of test results after a test run. You can
generate test reports either from the command line in batch mode (see Writing Reports in Batch Mode [p
105]) or from the JavaTest GUI. To generate a test report from the JavaTest GUI, you must:

1. Choose Report > New Report from the Test Manager menu bar. The JavaTest harness opens the New
Report dialog box.

2. Type the name of a report directory in the Directory field or click the Browse button to specify where
to put the new reports. You can either specify a new directory or an existing directory. If you ran
reports earlier, it displays the directory from the previous run. If you use an existing report directory,
the JavaTest harness saves the previous reports as backups and then writes the new reports.

3. Choose a filter option to generate reports. You can use the Current Configuration filter, All Tests filter,
or a custom filter that you have created. Using a custom filter allows you to generate test reports for a
specific set of test criteria.

See Using Filters [p 57] for a description of the filters.
See Custom Filters [p 59] for a description of how to create custom filters.

4. After specifying a report directory and choosing a filter, click the OK button to generate new reports.

The JavaTest harness writes the reports and then displays a dialog box that gives you the option of either
viewing the new reports in the report browser or returning to the Test Manager window.

9. Using Test Reports 63

9.2. Viewing Reports
You can use the JavaTest Report browser or a web browser to view reports.

9.2.1. View Reports in the Report Browser

Choose Report > Open Report from the menu bar. The JavaTest harness opens a file chooser dialog box for
you to specify a report directory. When you choose a report directory, the JavaTest harness opens the
Report Browser and displays the report.html file in that directory.

The Report Browser consists of:

Component Description

Menu bar The menu bar contains a File and a Help menu.

Use the File menu to generate new reports, open existing reports, and to close the
Report Browser.
Use the Help menu to display Report Browser online help.

Tool bar The tool bar contains a File field and three navigation buttons.

The File field displays the name of the current report and provides a drop down list of
reports previously opened in the browser. As reports are opened the JavaTest harness adds
their names to the drop down list allowing you to navigate to any previously displayed
report.

 Returns to the previously displayed report page.

 Opens the next report page that was displayed.

 Returns to the report.html file. The report.html file is the root page and links to all of
the other test report pages.

Contents
area

The Report Browser displays the report file contents in the area below the tool bar. The
Report Browser displays text files as well as html files. For html files, you can use
hyperlinks in the report to display additional related reports.

64 JavaTest User’s Guide - Version 3.1.2 October 2002

9.2.2. View Reports Offline

If you choose to view the reports offline, use a web browser to open the report.html file located in the
appropriate report directory.

The report.html file is the root file and links to all of the other HTML reports.

Report Files Description

config.html Contains the configuration interview questions and your answers used for the test run.

env.html Contains the test environment names and values that were used for the test run.

error.html Contains a list of the tests that had errors and could not be run.

excluded.html Contains a list of the tests that were excluded from the test run.

failed.html Contains a list of the tests that were executed during the test run but failed.

notRun.html Contains a list of all tests that were not excluded from the test run but were not run.

passed.html Contains a list of the tests that were executed during the test run and passed.

report.html The root file that links to all of the other HTML reports.

The JavaTest harness also generates a summary.txt report that contains a list of all tests that were run, their
test results, and their status messages. You can open the summary.txt file in any text editor.

9.2.2. View Reports Offline 65

9.3. Moving Report Files
The test reports contain relative and fixed links to other files that may be broken when moving reports to
other directories.

The JavaTest harness provides a utility that you can use to move and update the links in the test reports
when moving the files to another directory.

A detailed description of the utility is available in Appendix A of the JavaTest User’s Guide or in your
TCK at:

doc/javatest/editlinks.html

66 JavaTest User’s Guide - Version 3.1.2 October 2002

10. Auditing a Test Run
The JavaTest harness includes an audit tool that you can use to analyze the test results in a work directory.
The audit tool verifies that all tests in a test suite ran correctly and identifies any audit categories of a test
run that had errors.

You can audit a test run in GUI mode or in batch mode.

10.1. Auditing in GUI Mode
Choose Tasks > Audit Test Results from the menu bar.

The JavaTest harness opens the Audit Test Results window. If you are running the audit for that first time,
the JavaTest harness also opens the Options dialog box for you.

Open the Options dialog box and specify the reference test suite, the work directory to audit, and the
reference configuration file. See Setting Audit Options [p 67] for a description of the Options dialog box.

Click the Start Audit button at the bottom of the Options dialog box.

When the JavaTest harness completes the audit it displays the results in the Audit Test Results window [p
69] .

To repeat the audit, choose Audit > Options from the menu bar to open the Options dialog box and click
the Start Audit button.

To close the Audit Test Results window, choose File > Close from the menu bar.

10.2. Auditing in Batch Mode
See Using Batch Mode [p 105] for a detailed description of using batch mode to audit a test run.

10.3. Setting Audit Options
Use the Options dialog box to specify the reference test suite, the audited work directory, the reference
configuration, and to start the audit.

To display the Options dialog box, choose Audit > Options from the menu bar.

10. Auditing a Test Run 67

The Options dialog box contains:

Test Suite [p 68]
Work Directory [p 68]
Configuration File [p 69]
Start Audit button [p 69]
Cancel button [p 69]
Help button [p 69]

10.3.1. Test Suite

You can use the drop down list or the chooser to specify a test suite. You can also clear a previous entry in
the Test Suite field by choosing the empty line from the drop down list. A blank field indicates a test suite
is not set.

Click the button to open the list of test suites currently loaded in the JavaTest harness. You are not

limited to using these tests suites. You can either choose a test suite from the list or click the button to
open the dialog box used to choose another test suite.

If you choose a reference test suite, the JavaTest harness sets the entries in the work directory drop down
list to the work directories that are currently loaded and match the specified test suite. If you have multiple
test suites and work directories, specifying a test suite can simplify choosing the options.

The JavaTest harness always uses the test suite associated with the work directory that you choose to audit.
See Work Directory below for a description of how to choose a work directory to audit.

10.3.2. Work Directory

The JavaTest harness audits the work directory named in the Work Directory field. A blank field indicates
the work directory is not set.

You can use the drop down list or the chooser to specify the work directory to audit. You can also clear a
previous entry in the work directory field by choosing the empty line in the drop down list.

Click the button to open the list of work directories identified by the JavaTest harness. If you choose a
reference test suite, the JavaTest harness only lists the work directories associated with it in the drop down
list.

You are not limited to using these work directories. You can either choose a work directory from the list or

click the button to open the dialog box used to choose another work directory.

68 JavaTest User’s Guide - Version 3.1.2 October 2002

If you choose a work directory, the JavaTest harness uses the test suite associated with the work directory
and sets the entries in the configuration files drop down list to those most recently used with the work
directory.

If you do not choose a work directory, the JavaTest harness uses the work directory associated with the
configuration file that you specify. See Configuration File below for a description of how to choose a
reference configuration file.

10.3.3. Configuration File

You can use the drop down list or the chooser to specify a reference configuration file. You can also clear a
previous file from the Configuration File field by choosing the empty line in the drop down list.

A blank field indicates that the default configuration file for the chosen work directory is used. If a work
directory is not chosen, you can choose a reference configuration and the JavaTest harness opens its work
directory.

Click the button to open the list of configuration files identified by the JavaTest harness. The JavaTest
harness lists the configuration files associated with the work directory.

Choose a file from the list or click the button to open the dialog box used in choosing a configuration
file.

If you specify a configuration file it must be associated with the work directory. If the configuration file is
not associated with the work directory the JavaTest harness displays an error message without performing
the audit.

10.3.4. Start Audit Button

After you set the audit options, click the Start Audit button to audit the work directory. The JavaTest
harness closes the Option dialog box and displays a message in the Audit Test Results window that it is
performing the audit.

10.3.5. Cancel Button

Closes the Options dialog box without accepting any changes to the option fields.

10.3.6. Help Button

Displays online help for the Options dialog box.

10.4. Audit Test Results Window
Use the Audit Test Results window to generate and view the audit report of the tests in a work directory.
To display the Audit Test Results window choose Tasks > Audit Test Results from the menu bar.

10.4. Audit Test Results Window 69

The Audit Test Results window contains:

Component Description

Menu bar The Audit menu bar contains an Audit and a Help menu. The menu bar also contains
JavaTest standard menus when the Tabbed and SDI window styles are used. See Changing
Window Styles [p 77] for a description of the different styles of windows that the JavaTest
harness provides.

Use the Audit menu to set options used to generate an audit report. See Setting Audit
Options [p 67] for a description of the Options dialog box.
Use the Help menu to display online help for the Audit Test Results window.
See JavaTest Menus [p 72] for a description of the JavaTest standard menus that can
also be displayed on the menu bar.

Text fields Three text fields are displayed at the top of the window:

Test Suite: contains the name and location of the reference test suite.
Work Directory: contains the name and location of the audited work directory.
Configuration File: contains the name and location of the reference configuration
interview.

Tabbed
panels

The JavaTest harness displays the audit report in five tabbed panels:

Summary [p 70]
Bad Result File [p 71]
Bad Checksum [p 71]
Bad Test Description [p 71]
Bad Test Cases [p 71]

10.4.1. Summary

The Summary panel provides the state and details for each of the following audit categories:

70 JavaTest User’s Guide - Version 3.1.2 October 2002

Category Description

Result Files Displays a summary of the audit for corrupted and missing test result files. See Bad
Result File [p 71] for a description of the detailed tab.

Checksums Displays a summary of the audit of the test result files checksums. See Bad Checksum
[p 71] for a description of the detailed tab.

Test
Descriptions

Displays a summary of the audit of the test descriptions. See Bad Test Description [p
71] for a description of the detailed tab.

Test Cases Displays a summary of the audit of the exclude list. See Bad Test Cases [p 71] for a
description of the detailed tab.

Test Results Displays a summary of the test results audit. To pass the audit, all tests must have
passing results.

Time Stamps Displays the date and time when the first and the last tests were run.

10.4.2. Bad Result File

The Bad Result File panel lists any corrupted or missing test result files.

A corrupted or missing test result file indicates that the result file was edited.

10.4.3. Bad Checksum

The Bad Checksum panel lists all test result files with invalid checksums.

The result file checksums must match the reference checksums in the reference test suite. An invalid
checksum indicates that a result file was edited.

10.4.4. Bad Test Description

The Bad Test Description panel lists all test files having edited test descriptions.

Test descriptions must match the reference test descriptions in the reference test suite. An invalid test
description indicates that the test file was edited.

10.4.5. Bad Test Cases

The Bad Test Cases panel lists all tests failing to execute the required test cases.

The test cases run must match the exclude list for the reference test suite. Tests failing to execute the
required test cases indicates that the exclude list was edited.

11. Customizing the JavaTest GUI
This topic describes the graphical user interface (GUI) that the JavaTest harness provides for running,
managing, and auditing tests and how you can customize it for your use.

Refer to Using a JavaTest Agent [p 81] for a description of the user interfaces that the JavaTest harness
provides for agents running tests on remote systems.

11. Customizing the JavaTest GUI 71

11.1. The JavaTest GUI
The JavaTest GUI contains a set of windows [p 72] and menus [p 72] that you use to configure and run
tests, monitor test and agent status, evaluate and analyze test results, and include or exclude tests from test
runs.

You can display the graphical user interface in one of three styles:

A single top-level window that displays all JavaTest windows as tabbed panes
A single top-level window that contains all JavaTest windows
A separate top-level window for each JavaTest window

Differences between the window styles are described in the Changing Appearance Preferences [p 76] .

11.2. The JavaTest GUI Windows
The JavaTest graphical user interface provides a set of windows for you to use when running and
managing tests:

Window Description

Test Manager [p
10]

Contains panels, menus, and controls that you use to:

Open and create work directories
Create or modify the information that the JavaTest harness uses when
running your tests
Run the tests of a test suite
Monitor tests and test results while they are being run
View test environment settings of your configuration
View the contents of an exclude list
Browse completed tests and test results

Agent Monitor [p
94]

Contains controls that you use to set up the JavaTest agent pool for monitoring
active agents and to provide feedback about the status of both passive and
active agents.

Audit Test Results
Window [p 69]

Contains panels and menus that you use to generate and view audit reports of
the tests in a work directory.

11.3. JavaTest Menus
The JavaTest GUI provides two types of menus for you to use when performing tasks:

72 JavaTest User’s Guide - Version 3.1.2 October 2002

Menu Type Description

Tool Menus These menus are only available for use in a specific window and are described in the
section describing that window.

See Test Manager Window [p 10] for a description of the Test Manager menus.
See Audit Test Results Window [p 69] for a description of the Audit Test Results
menus.
See Agent Monitor Window [p 94] for a description of the Agent Monitor menus.

Standard
Menus

These menus are available for use in all JavaTest windows and include:

File [p 73]
Tasks [p 74]
Window [p 75]
Help [p 75]

11.3.1. File Menu

Use the File menu to open files, set user preferences, close windows, and exit from the JavaTest harness.
The contents of the File menu change dynamically, based on the context of the desktop. The JavaTest
harness only enables menus when they can be used.

11.3.1. File Menu 73

Menu Item Description

Open Test
Suite

Opens a file chooser dialog box you can use to choose a test suite.

When you choose a test suite, the JavaTest harness loads the test suite in an empty Test
Manager [p 10] window.

Open Work
Dir

Opens a file chooser dialog box you can use to choose an existing work directory.

The JavaTest harness associates the work directory with an open test suite if the test suite
is both a match and has no other work directory already open.

If the JavaTest harness cannot associate the work directory with an open test suite, it
opens a new Test Manager window and loads both the work directory and its associated
test suite.

New Work
Dir

Opens a file chooser dialog box for you to use in creating a new work directory for the
current test suite.

When you create a work directory, the JavaTest harness associates it with the current test
suite.

Each work directory is associated with a specific test suite and stores its test result files in
a cache. The test result files contain all of the information gathered by the JavaTest
harness during test runs.

Preferences Opens the JavaTest Preferences [p 75] dialog box for you to set the display and functional
options of the JavaTest harness.

File History Displays a list of work directories and test suites that have been opened.

Choose a file from the list to open a new instance of it in the current session.

Close Shown in the File menu when window styles is set to Tabbed or SDI. Closes the current
window without exiting from the JavaTest harness.

Closing a Test Manager window closes a test session. To start another session using the
same test suite and work directory, use the Open Work Directory menu above.

Exit Exits from the JavaTest harness. When you exit, your current desktop is saved so that all
open windows can be restored in your next JavaTest session.

11.3.2. Tasks Menu

Use the Tasks menu to open the windows required to perform specific tasks:

74 JavaTest User’s Guide - Version 3.1.2 October 2002

Menu Item Description

Monitor
Agent
Activity

Opens a new Agent Monitor window [p 94] for
you to:

Setup the Agent Pool for Active Agents.
Monitor communication between the
JavaTest harness and JavaTest Agents.

Audit Test
Results

Opens the Audit Test Results [p 69] window.
Only one Audit Test Results window can be
open.

11.3.3. Windows Menu

Use the Windows menu in all window styles to select the active window by clicking on it’s name in the
window list.

In MDI and SDI window styles, you can also use the Windows menu to manage the layout of the open
windows. See Managing JavaTest Windows [p 80] for a description of how you can use the Windows menu
to manage the window layout.

11.3.4. Help Menu

Use the Help menu to display online help for the window, JavaTest online help, available test suite
documentation, JavaTest harness information, and current Java runtime information:

Menu Item Description

active window Opens the help viewer and displays online help for the active window.

JavaTest Opens the help viewer and displays online help for the JavaTest harness.

User’s Guide Displays information about the location of the JavaTest User’s Guide.

About JavaTest Displays information about this release of the JavaTest harness.

About Java Displays information about the Java runtime used to run the JavaTest harness.

11.4. Setting JavaTest Preferences
You can use the JavaTest Preferences dialog box to set the display and functional options of the JavaTest
harness.

11.4. Setting JavaTest Preferences 75

Open the JavaTest Preferences dialog box from the menu bar by choosing:

File > Preferences

The JavaTest Preferences dialog box contains the following categories:

Preference
Category

Description

Appearance Use the Appearance category to set how the JavaTest graphical user interface
displays its windows and tool tips. See Changing Appearance Preferences [p 76] for
detailed information.

Test Manager Use the Test Manager category to set the Test Manager tool bar property. See
Changing Test Manager Preferences [p 78] for detailed information.

Configuration
Editor

Use the Configuration Editor category to set the Configuration Editor properties. See
Changing Configuration Editor Preferences [p 79] for detailed information.

11.4.1. Changing Appearance Preferences

To change the appearance preferences for the JavaTest GUI, choose File > Preferences from the menu bar to
open the JavaTest Preferences dialog box.

Click Appearances in the left panel and use the dialog box to set the following appearance preferences:

76 JavaTest User’s Guide - Version 3.1.2 October 2002

Changing Window Styles [p 77]
Setting Tool Tip Options [p 78]
Changing Shutdown Options [p 78]

Changing Window Styles

The JavaTest graphical user interface displays its windows and menus in one of three user specified styles:

Window
Style

Description

Tabbed [p 77] A single top-level window that displays individual tool windows as tabbed panes

MDI [p 77] A single top-level desktop window that contains individual tool windows

SDI [p 78] A JavaTest console window and individual tool windows displayed as top-level
windows

Tabbed

When you choose the Tabbed window style, the JavaTest harness displays the opened tool windows as a
set of tabbed panes within a single frame or desktop window.

Tabs at the bottom of each pane allow you to choose the pane that is active and displayed on the top of the
stack.

The desktop window contains the complete set of menus including any tool menus used to perform tasks
from the active pane. See JavaTest Menus [p 72] for a description of the two types of menus that JavaTest
provides.

Advantages of using the Tabbed window style:

Multiple open windows are managed from a single location
The small footprint of the desktop window minimizes obstruction of windows from other applications
If multiple windows of multiple applications are open, tabbed windows provide visual organization

Disadvantages of using the tabbed style:

Only one window can be viewed at a time
Performing tasks on multiple open test suites can be confusing

MDI

When you choose the Multiple Document Interface (MDI) window style, all of the tool windows that the
JavaTest harness opens to perform a task are contained within a single desktop window.

The desktop window contains the standard menus and each tool window contains only the tool menus
used to perform tasks appropriate for that window. See JavaTest Menus [p 72] for a description of the two
types of menus that JavaTest provides.

Advantages of using the MDI window style:

Open windows are contained in a top level window allowing simple window management
Multiple windows can be viewed at the same time
Multiple test suites can be open at the same time and easily monitored

11.4.1. Changing Appearance Preferences 77

Disadvantages of using the MDI style:

The single top level desktop window has a large footprint that may obstruct open windows of other
applications and slightly decrease usable space
Open windows cannot be positioned outside the boundary of the desktop window

SDI

When you choose the Single Document Interface (SDI) window style, the JavaTest harness opens a console
window and individual tool windows as separate top-level windows.

Each window contains the complete set of menus including any tool menus used to perform tasks from
that window. See JavaTest Menus [p 72] for a description of the two types of menus that JavaTest provides.

Advantages of using the SDI window style:

Individual windows can be positioned anywhere on the screen
Obstruction of windows from other applications is minimized
Multiple test suites can be opened and easily monitored at the same time

Disadvantages of using the SDI style:

Windows must be managed individually
When multiple windows of multiple applications are open, the display can be visually confusing

Setting Tool Tip Options

You can set the tool tip options from the Appearance category of the JavaTest Preferences dialog box.

The Tool Tips area contains combo boxes and a check-box that you can use to specify how tool tips function
in the GUI.

Option Description

Enabled Use the check-box to enable or disable tool tips for the JavaTest GUI.

Delay Use the combo box to select the delay interval before displaying tool tips.

Persistence Use the combo box to select the duration that the JavaTest GUI displays a tool tip.

Changing Shutdown Options

Click Save Desktop State on Exit to save and restore your current desktop in your next JavaTest session. If
you chose not to save the the current desktop on exit, the JavaTest harness restores the last saved desktop
for you to use.

This option is used each time you start the JavaTest harness.

11.4.2. Changing Test Manager Preferences

The Test Manager window default setting is to display a tool bar containing task accelerator buttons.

78 JavaTest User’s Guide - Version 3.1.2 October 2002

To turn off the tool bar:

1. Choose File > Preferences from the menu bar to open the JavaTest Preferences dialog box.
2. Click on the Test Manager folder in the preferences tree on the left.
3. Click the Tool Bar Displayed to set the Test Manager Tool Bar preferred style.

This preference is used each time you start the JavaTest harness.

11.4.3. Changing Configuration Editor Preferences

You can use the JavaTest Preferences dialog box to set the default view used when opening the
Configuration Editor and to show or hide the More Info pane.

Set the Configuration Editor Default View

The JavaTest graphical user interface opens the Configuration Editor in one of two user specified views:

All Values
Standard Values

To change the view used when opening the Configuration Editor:

1. Choose File > Preferences from the menu bar to open the JavaTest Preferences dialog box.
2. Open the Test Manager folder in the tree on the left and then click the Configuration Editor icon.
3. Click the Configuration Editor Default View to set the Configuration Editor’s opening view.

11.4.3. Changing Configuration Editor Preferences 79

This preference is used each time you start the JavaTest harness and open the Configuration Editor.

Display/Hide the Configuration Editor More Info Pane

The More Info pane contains detailed information about the questions and required settings presented in
the Configuration Editor. When More Info is checked the Configuration Editor displays the More Info
pane.

To hide the More Info pane, click More Info so that it is no longer checked.

11.5. Managing JavaTest Windows
In MDI and SDI window styles, use the Windows menu to manage the layout of the open windows on the
desktop:

Menu
Item

Description

Tile Arranges the open windows edge-to-edge in a tiled pattern.

Cascade Arranges the open windows so that their top left corners form a cascading pattern from the
top left corner to the bottom right corner of the desktop.

80 JavaTest User’s Guide - Version 3.1.2 October 2002

12. Using a JavaTest Agent
An agent is a separate program that works in conjunction with the JavaTest harness to run tests on a
system other than the one that is running the JavaTest harness.

Depending on your test suite, agents are typically used to run tests on small devices that do not support
online help.

You can either use custom agents or the agent provided with the JavaTest harness. The topics in this
chapter describe how to configure and run the agent provided with the JavaTest harness. If you are using a
custom agent, refer to your test suite documentation for a description of how to configure and run it.

To run tests using an agent on a test system, perform the following:

1. Choose the type of agent required to connect to the JavaTest harness. Refer to Choosing the Type of
Agent [p 81] for a detailed description of active, passive, and serial modes.

2. Start the agent. Refer to Starting an Agent [p 83] for a detailed description how agents can be run either
as applications or as applets.

If you choose to run the agent as an application, perform the procedure in Starting an Agent
Application [p 84] .
If you choose to run the agent as an applet, perform the procedure in Starting an Agent Applet [p 86] .

3. Run tests and monitor agent activity. Refer to Monitoring Agents [p 94] for a detailed description how
agents can be monitored when running tests.

This chapter contains the following sections:

Choosing the Type of Agent [p 81]
Starting an Agent [p 83]
Monitoring Agents [p 94]
Troubleshooting Agents [p 99]
Installing Agent Classes on a Test System [p 100]
Creating a Map File [p 103]

12.1. Choosing the Type of Agent
The JavaTest agent is a lightweight program compatible with JDK 1.1 that uses a bidirectional serial
connection supporting both TCP/IP and RS-232 protocols to communicate between the test system and the
JavaTest harness.

You can use the agent provided by the JavaTest harness if your test system meets the following minimum
requirements:

The device supports a communication layer that can last the duration of a test (couple of minutes)
The device must be able to have the agent classes loaded on it

The type of agent that you use depends on the communication protocol used between your test system and
the JavaTest harness and on the type of initial connection made between the agent and the JavaTest
harness:

12. Using a JavaTest Agent 81

Mode Description

Active Use active mode (active agent) when you want the agent to initiate the connection to the JavaTest
harness via TCP/IP.

Agents using active communication allow you to:

Run tests in parallel using many agents at once
Specify the test machines at the time you run the tests

Active agents are used for network connections and are recommended. If the security restrictions
of your test system prevent incoming connections then you must use an active agent.

The JavaTest harness should be running and agent pool listening should be enabled before
starting an active agent. Use Agent Monitor window [p 94] in the JavaTest harness GUI to enable
listening.

If listening is not enabled when the agent starts, it returns an error message and waits until its
timeout period ends before re-contacting the JavaTest harness.

Passive Use passive mode (passive agent) when you want the agent to wait for the JavaTest harness to
initiate the connection via TCP/IP.

Because the JavaTest harness only initiates a connection to a passive agent when it runs tests,
passive communication:

Requires that you specify the test machine as part of the test configuration - not at the time
you run the tests
Does not allow you to run tests in parallel

Passive agents are used for network connections and must be started before the harness attempts
to run tests. If the JavaTest harness issues a request before the passive agent is started, the
harness waits for an available agent until its timeout period ends. If the timeout period ends
before an agent is available, the JavaTest harness reports an error for the test.

Serial Use serial mode (serial agent) when you want the agent to use an RS-232 serial connection. Serial
agents wait for the JavaTest harness to initiate the connection. Infrared, parallel, USB, and
firewire connections can also be added through the JavaTest API by modeling the existing serial
system.

Because the JavaTest harness only initiates a connection to serial agent when it runs tests, serial
communication:

Requires that you specify the test machine as part of the test configuration - not at the time
you run the tests
Does not allow you to run tests in parallel

Other If your system does not meet the minimum requirements or if you have unique performance
requirements, you can use the JavaTest API to create a custom agent. Refer to your test suite
documentation for a description of how to configure and run it.

Next:

Starting the Agent [p 83] - start an agent on your test system.

82 JavaTest User’s Guide - Version 3.1.2 October 2002

12.2. Starting an Agent
You can start an agent either as an application or as an applet. While the application provides you with the
option of using either a GUI or a command line to configure and run the agent, the applet requires that you
use a GUI:

Interface Application Applet
GUI Supported Supported
Command Line Supported Not Supported

12.2.1. Agent Application

You can either use the application GUI or command line to configure and start an agent if the test system
provides AWT support.

If a test platform is unable to or does not provide AWT support, you must use the command line to
configure and start the agent. When using the command line to directly configure and run an agent, you:

Must specify all agent options in the command line
Cannot monitor agent performance during a test run
Cannot modify agent properties without killing the agent and starting a new agent from the command
line

If you use the GUI to run the agent, you can:

Include options in the command line or start the GUI without specifying agent options
Configure or reconfigure the agent after the GUI starts
Monitor agent performance during a test run

The GUI used by the application is the same as that used by the applet. Refer to Using the GUI [p 84] below
for a description of the tabbed panes.

12.2.2. Agent Applet

You can use either an applet or an application to run the agent on any test system that supports a web
browser. However, you must use the applet when testing JVMs that run in web browsers.

The GUI used by the applet is the same as that used by the application. Refer to Using the GUI [p 84] below
for a description of the tabbed panes.

When using the applet, you can:

Include parameters in the applet tag or start the GUI without specifying any parameters
Configure or reconfigure the agent after the GUI starts
Monitor agent performance during a test run.

12.2. Starting an Agent 83

12.2.3. Using The GUI

The GUI contains four tabbed panes and three buttons used to configure, control, and monitor the agent.

The parameters tabbed pane allows you to configure, start, and stop the agent.
The statistics tabbed pane displays detailed information about the tests that the agent is running.
The history and selected task tabbed panes allow you to monitor tasks performed by the agent.
The Start and Stop buttons control the agent.

Next:

Starting an Agent Application [p 84] - start an agent application on your test system.

Starting an Agent Applet [p 86] - start an agent applet on your test system.

12.2.4. Starting an Agent Application

Before you can start an agent application, the required classes must be installed on your test system. Refer
to Installing Agent Classes on Test Systems [p 100] for the location and list of classes required to start the
agent directly from the command line or using the application GUI.

1. Start the JavaTest harness and perform the following:

a) Open the Configuration Editor and configure the JavaTest harness to use an agent. In most cases, the
Configuration Editor provides detailed instructions about configuring the JavaTest harness to run tests
using an agent.

b) If you are starting an active agent, open the Agent Monitor window and enable agent pool listening.
Refer to Agent Monitor Window [p 94] .

If the agent pool is not listening when an active agent starts, the agent cannot contact the harness. The
agent returns an error message and then waits until its timeout period ends before recontacting the
JavaTest harness.

2. Use the following application command template to enter the appropriate agent command at the
command prompt:

java -cp class path [application class] [options]

The -cp option sets the class paths required to run the agent. Use the ";" or ":" separator
appropriate for your test system when more than one class path is included in the command
string. Refer to Class Paths [p 85] below for detailed descriptions of the classes that your agent
requires.

84 JavaTest User’s Guide - Version 3.1.2 October 2002

The [application class] sets the class used to run the agent application. Refer to Application Classes
[p 85] below for a list and description of the classes used to start an agent application.
The [options] can be included in the command line to specify the agent parameters. Refer to Agent
Options [p 86] below for a list and description of the parameters that you can use to configure and
start an agent.

Example:
java -cp javatest.jar com.sun.javatest.agent.AgentFrame

3. If you are using the application GUI to run the agent, use the Parameters tabbed pane to verify the
agent settings and start the agent:

Specifying Active Agent Options [p 88] - the parameter settings required to run an active agent.
Specifying Passive Agent Options [p 89] - the parameter settings required to run a passive agent.
Specifying Serial Agent Options [p 91] - the parameter settings required to run a serial agent.

Class Paths

The following class paths are required in the command line:

Classes Description

Agent
Classes

The location of the agent classes installed on your test system.

The agent classes are either located in the javatest.jar file or in the directory containing
the minimum set of classes required to run the agent from the GUI.

Some test suites include additional .jar files containing classes needed for an agent to run tests.
These .jar files must also be included in the command string. Refer to Installing Agent Classes
on a Test System [p 100] for a description of how agent classes can be installed.

Test
Classes

Test classes are located in the classes directory of the test suite.

The most common error in setting up a test platform to use an agent is entering the wrong class paths in the
command string. Configuring your test platform to use the simplest class paths increases the reliability of
the test run.

Application Classes

An application class is required in the command line to run the agent. Two application classes are
available:

Mode Application Class

no
GUI

com.sun.javatest.agent.AgentMain [options]

Used when the GUI is not wanted or not available. In this mode, all options must be fully
specified on the command line. The agent automatically starts when the Return key is pressed.
Refer to Agent Options [p 86] below for the [options] that are included on the command line.

with
GUI

com.sun.javatest.agent.AgentFrame [options]

Used to start the GUI. In this mode, options may either be given on the command line or in the
GUI. The GUI is used to start and stop the agent. Refer to Agent Options [p 86] below for the
[options] that are included on the command line.

12.2.4. Starting an Agent Application 85

Agent Options

There are two types of options used in the command line:

Type of
Option

Description

Agent
Parameters

Set the parameters for the type of agent that you are using:

Specifying Active Agent Options [p 88] - the parameter settings required to run an
active agent.
Specifying Passive Agent Options [p 89] - the parameter settings required to run a
passive agent.
Specifying Serial Agent Options [p 91] - the parameter settings required to run a
serial agent.

If you are using the command-line application class
(com.sun.javatest.agent.AgentMain) to directly configure and run the agent, you
must include all options in the command line that are used to run the agent.

If you are using the GUI application class (com.sun.javatest.agent.AgentFrame)
you can either set the agent options in the command line or in the GUI before running the
agent.

Additional
Parameters

Display help, run the agent, or configure other agent properties.

Refer to Specifying Additional Options [p 92] for a description of the additional
parameters that can be set.

12.2.5. Starting an Agent Applet

Before you can start an agent applet, the required classes must be installed on your test system. Refer to
Installing Agent Classes on Test Systems [p 100] for the location and list of classes required to start the
agent applet.

1. If an HTML page containing the required applet is not available, create it in your test suite root
directory. Refer to Agent Applet Tag [p 86] below for a detailed description of an applet tag.

2. Use a web browser to open an HTML page containing the agent applet tag. The applet tag must be
compatible with your browser’s VM.

3. Use the Parameters tabbed pane to configure and run the agent:

Specifying Active Agent Options [p 88] - the parameter settings required to run an active agent.
Specifying Passive Agent Options [p 89] - the parameter settings required to run a passive agent.
Specifying Serial Agent Options [p 91] - the parameter settings required to run a serial agent.

Agent Applet Tag

Because some browsers use built-in VMs to run applets, you must use a compatible applet or object tag.
Refer to your VM documentation for a description of the tags required to run applets on your browser.

The following example is compatible with the Netscape browser VM. It calls the agent applet and sets the
parameters of the applet GUI.

Agent parameters and run options can also be set in the applet tag. Refer to Setting Parameters in the
Applet Tag [p 88] below.

86 JavaTest User’s Guide - Version 3.1.2 October 2002

Example agent applet tag:

 <APPLET/
 code=applet-class-path/
 archive=JavaTest-classes/
 width=display-width/
 height=display-height/
 >
 Applets have not been enabled
 on your browser. You must enable
 applets on you browser to display
 the applet GUI used to run the agent.
 </APPLET>

The following table describes the tags used in the applet:

Tag Description

code The agent applet class installed on your test system.

Example:

code=com.sun.javatest.agent.AgentApplet

archive The URL of the classes required to run the agent applet on your test system. The classes are
either located in the javatest.jar file or in a directory containing the minimum set of
classes required to run the agent applet.

In the following example, the classes are contained in the javatest.jar file located in the same
directory as the HTML page. Refer to Installing Agent Classes on a Test System [p 100] for a
description of how the agent applet classes can be installed.

Example:

archive=javatest.jar

width Sets the width of the GUI. An initial value of 600 is suggested; however, adjust the value based
on your screen size and resolution.

Example:

width=600

height Sets the height of the applet. An initial value of 600 is suggested; however, you may need to
adjust the value based on your screen size and resolution.

Example:

height=600

12.2.5. Starting an Agent Applet 87

Setting Parameters in the Applet Tag

Parameters can also be set in the applet tag. Parameters in the applet tag are included as <param
name/value> pair tags:

Example agent applet tag:

 <APPLET
 code=applet-class-path
 archive=JavaTest-classes
 width=display-width
 height=display-height
 >
... <param name=parameter-name value=parameter-value> Applets have not been enabled on your browser.
 You must enable applets on you browser to display
 the applet GUI used to run the agent.
 </APPLET>

Two types of parameters can be included in the applet tag:

Agent Parameters - used to specify the agent type. Can be set either in the applet tag or in the GUI.
Anytime the agent is not running, you can also use the Parameters tabbed pane to change the agent
parameters:

Specifying Active Agent Options [p 88] - parameter settings required to run an active agent.

Specifying Passive Agent Options [p 89] - parameter settings required to run a passive agent.

Specifying Serial Agent Options [p 91] - parameter settings required to run a serial agent.

Additional Parameters - used to specify how an agent is run, Specifying Additional Options [p 92] .

12.2.6. Specifying Active Agent Options

Active agents can be configured and run from the application command-line, the application or applet
GUI, or the applet tag. Refer to Starting the Agent [p 83] for a description of the different features and
functions that each provides.

Depending on how you choose to start the agent, you must set the following minimum set of parameters
either in the command line, the GUI Parameter pane, or the applet tag:

Mode [p 88]
Host [p 89]
Port [p 89]

Mode

Specifies the type of agent. The type of agent that you use determines how the agent communicates with
the JavaTest harness and the protocol that is used. An active agent initiates the connection to the JavaTest
harness via TCP/IP.

To specify an active agent, use the appropriate setting or option from the following table:

Interface Option or Setting

default active

command line -active

applet tag <param name=mode value=active>

GUI Parameter Pane

88 JavaTest User’s Guide - Version 3.1.2 October 2002

Host

Identifies the system running the JavaTest harness. Because an active agent initiates the connection to the
JavaTest harness, the location of the system running the JavaTest harness must be set before it can run.

To specify the system running the JavaTest harness, use the appropriate setting or option from the
following table:

Interface Option or Setting

default none

command line -activeHost host-name

applet tag <param name=activeHost value=host-name>

GUI Parameter Pane

Port

Specifies the port used by the active agent to communicate with the JavaTest harness. The agent and
JavaTest harness must use the same port. If the ports are not the same, the agent cannot communicate with
the JavaTest harness. The default value for active agents is 1907.

To specify a port other than 1907, use the appropriate setting or option from the following table:

Interface Option or Setting

default 1907

command line -activePort port-number

applet tag <param name=activePort value=port-number>

GUI Parameter Pane

Next:

Specifying Additional Options [p 92] - additional parameters to display help or configure other agent
properties.

12.2.7. Specifying Passive Agent Options

Passive agents can be configured and run from the application command-line, the application or applet
GUI, or the applet tag. Refer to Starting the Agent [p 83] for a description of the different features and
functions that each provides.

Depending on how you choose to start the agent, you must set the following minimum set of parameters
either in the command line, the GUI Parameter pane, or the applet tag:

Mode [p 89]
Port [p 90]

Mode

Specifies the type of agent. The type of agent that you use determines how the agent communicates with
the JavaTest harness and the protocol that is used. A passive agent waits for the JavaTest harness to initiate
the connection via TCP/IP.

12.2.7. Specifying Passive Agent Options 89

To specify a passive agent, use the appropriate setting or option from the following table:

Interface Option or Setting
default active
command line -passive
applet tag <param name=mode value=passive>
GUI Parameter Pane

Port

Specifies the port that the passive agent uses to listen for the JavaTest harness. The JavaTest harness and
agent must use the same port. If the ports are not the same, the JavaTest harness cannot communicate with
the agent. The default value for passive agents is 1908.

To specify a port other than 1908, use the appropriate setting or option from the following table:

Interface Option or Setting
default 1908
command line -passivePort port-number
applet tag <param name=activePort value=port-number>
GUI Parameter Pane

Next:

Specifying Additional Options [p 92] - additional parameters to display help or configure other agent
properties.

90 JavaTest User’s Guide - Version 3.1.2 October 2002

12.2.8. Specifying Serial Agent Options

Serial agents can be configured and run from a command-line, GUI, or applet tag. Refer to Starting the
Agent [p 83] for a description of the different features and functions that each provides.

Depending on how you choose to start the agent, you must set the following minimum set of parameters
from the command line, GUI Parameter pane, or applet tag:

Mode [p 91]
Port [p 91]

Mode

Specifies the type of agent. The type of agent that you use determines how the agent communicates with
the JavaTest harness and the protocol that is used. A serial agent waits for the JavaTest harness to initiate
the connection via an RS-232 serial connection or a connection added through the JavaTest API that models
the serial system.

To specify a serial agent, use the appropriate setting or option from the following table:

Interface Option or Setting

default active

command line -serial

applet tag <param name=mode value=serial>

GUI Parameter Pane

Port

Specifies the com port that the serial agent uses to listen for the JavaTest harness. The JavaTest harness and
agent must use the same port. If the ports are not the same, the JavaTest harness cannot communicate with
the agent.

To specify a port, use the appropriate setting or option from the following table:

Interface Option or Setting
command line -serialPort port-number
applet tag <param name=serialPort value=port-number>
GUI Parameter Pane

Next:

Specifying Additional Options [p 92] - additional parameters to display help or configure other agent
properties.

12.2.8. Specifying Serial Agent Options 91

12.2.9. Specifying Additional Options

Two types of additional options can be used:

Options Used to Display Help [p 92]
Options Used to Run and Monitor the Agent [p 92]

Options Used to Display Help

The help option only displays command-line help for the agent regardless of the application class used in
the command line. To start an agent application or applet after displaying command-line help, perform
Starting the Agent [p 83] .

The following options are only used on the command line to display help:

Option Function

-help or -usage Displays command-line help.

Example:

java -cp javatest.jar com.sun.javatest.agent.AgentMain -help

Options Used to Run and Monitor the Agent

The following options can be set in the application command-line, the application or applet GUI, or the
applet tag.

Specify a Map File [p 92]
Set Concurrency [p 92]
Set Number of Tasks in the History Tabbed Pane [p 93]
AutoStart the Agent [p 93]
Set Tracing [p 93]

Specify a Map File

Specifies that the agent use a map file to translate host specific values. Refer to Creating a Map File [p 103]
for additional information about map files.

To specify a map file, use the appropriate setting or option from the following table:

Interface Option or Setting

default none (empty)

command line -map map-file

applet tag <param name=map value=map-file-url>

GUI Parameter Pane

Set Concurrency

To run tests concurrently, set the maximum number of simultaneous requests handled by the agent. Each
request requires a separate connection to the JavaTest harness and a separate thread inside the agent. The
request may also require a separate process on the test system running the agent. The default setting is one.

92 JavaTest User’s Guide - Version 3.1.2 October 2002

To run concurrent tests, use the appropriate setting or option from the following table:

Interface Option or Setting

default one

command line -concurrency number-of-tests

applet tag <param name=concurrency value=number-of-tests>

GUI Parameter Pane

Set Number of Tasks in the History Tabbed Pane

Specifies the maximum number of tasks displayed in the history tabbed pane. Refer to History Tabbed
Pane [p 96] for a description of the history tabbed pane and how it is used to monitor an agent.

To set the tasks displayed in the history tabbed pane, use the appropriate setting or option from the
following table:

Interface Option or Setting

default one

command line -history number-of-items

applet tag <param name=history value=number-of-items>

GUI Not Supported

AutoStart the Agent

This option is only used with the application GUI class or as a parameter in the applet tag. When used, the
autostart option automatically starts the agent after all command line options are validated and the GUI is
displayed. The agent must be completely configured in the command line or applet tag. When the -start
option is not used, click the Start button in the agent GUI to start testing.

To autostart the agent when the GUI is displayed, use the appropriate setting or option from the following
table:

Interface Option or Setting

default false

command line -start

applet tag <param name=autostart value=true>

GUI

Set Tracing

Sends detailed information about agent activity to the system output stream.

To start tracing when the agent is run, use the appropriate setting or option from the following table:

12.2.9. Specifying Additional Options 93

Interface Option or Setting

default false

command line -trace

applet tag <param name=trace value=true>

GUI Not Supported

Next:

Monitoring JavaTest Agents [p 94] - monitor an agent while it runs tests.

12.3. Monitoring JavaTest Agents
There are two ways that you can monitor JavaTest agents. You can:

1. View all agents in a test system that are running tests. Refer to Agent Monitor Window [p 94] for
detailed information about opening and using the Agent Monitor window to view all agents in a test
system that are running tests.

2. Monitor specific information about an agent and the tests that it runs. To display information about the
agent, you must use the tabbed panes in the application or applet GUI:

Statistics Pane [p 95] - displays the current status of the tests that the agent is running.
History Pane [p 96] - displays a list of tasks performed by the agent.
Selected Task Pane [p 97] - displays details about a specific task or test chosen in the history
tabbed pane.

12.3.1. Agent Monitor Window

Open the Agent Monitor window by using the Test Manager menu bar to choose:

Tasks > Monitor Agent Activity

The Agent Monitor window contains two sections, the Agent Pool and the Agents Currently In Use.

94 JavaTest User’s Guide - Version 3.1.2 October 2002

Agent Pool

The agent pool lists the active agents that are available to run tests. When active agents connect to the
JavaTest harness they are added to the agent pool. When the JavaTest harness requires an active agent to
run a test, it moves the agent from the Agent Pool to the Agents Currently In Use section until the test is
completed.

The following table lists and describes the contents of the Agent Pool GUI:

Field Description

Listening Click the check box to enable listening for active agents. If listening is not enabled when an
agent starts, the agent issues a message that it cannot connect to the JavaTest harness and
then waits for its timeout period to end before attempting to re-contact the harness.

Port: Port 1907 is the default port used by active agents. If your agent uses a different port, you
must either change the value used by the agent or change this value to match the agent.

Timeout: When the agent pool is empty, the timeout value sets the number of seconds that the
JavaTest harness waits between tests for an available agent before reporting the test result as
an error. If you run tests with one agent, there is usually a latent period between the time
when the agent completes the test and when it returns to the agent pool. The timeout value
must be greater than the agent’s latent period. The default value of 180 seconds is usually
sufficient.

Agents Currently In Use

Lists all agents currently used by the JavaTest harness to run tests. When agents are not running tests they
are removed from the list (active agents re-register with the agent pool). Click on an agent in the list to
display detailed information about the agent and the test it is running. The detailed information is
displayed in the text fields at the bottom and can be used to troubleshoot problems using an agent to run
tests.

The following table lists and describes the contents of the Agents Currently In Use GUI:

Field Description

Address The network address of the agent

Tag The test executed by the agent

Request The function executed by the agent

Execute The class executed by the agent

Args The arguments passed to the class executed by the agent

Localize Args Checked if the agent uses a map file

12.3.2. Statistics Pane

The statistics tabbed pane in the agent GUI displays the cumulative statistics for the tests in the test suite:

12.3.2. Statistics Pane 95

Field Description

currently
active

The number of tests being run by the agent

passed The number of tests that were run by the agent and had passing results

failed The number of tests that were run by the agent and had failing results

error The number of tests that were run by the agent and had errors

not run The number of tests that were not run by the agent and were not filtered out by the
JavaTest harness

exceptions The number of tests that were filtered out of the test run by the JavaTest harness

12.3.3. History Pane

The history tabbed pane in the agent GUI displays a list of the tasks performed by the agent.

To view the details about a task, click on it in the list. The GUI displays the task details in the selected task
pane.

Refer to Selected Task Pane [p 97] for a description of the task information that is displayed.

The history pane displays a list of tasks that:

Are currently being executed by the agent
Have recently been completed

Each entry in the list contains a code indicating the current state of the task and additional information
about the state of the task. A task in the history list will be in one of the following states:

96 JavaTest User’s Guide - Version 3.1.2 October 2002

Current
State

Description

CONN
host:port

This state shows that the JavaTest Agent has an open connection to JavaTest, at the specified
network address, and that the JavaTest Agent is waiting for a request to be sent over the
connection. If the JavaTest Agent is running in active mode, it will wait until JavaTest sends
the request. If the agent is running in passive mode, this state will usually appear only
temporarily because JavaTest will normally initiate a connection and then immediately send
the request. The host will normally be identified by its host name; if JavaTest cannot
determine the host name, the IP address of the host will be shown instead.

EXEC tag This state shows that the JavaTest Agent is executing a task on behalf of JavaTest. The tag is
an identification of the task supplied by JavaTest as part of the request.

IO tag This state shows that the JavaTest Agent was executing a task on behalf of JavaTest but that
some exception occurred while trying to send the results back to JavaTest.

The following states show that the JavaTest Agent completed a request for JavaTest; the states correspond
to the various possible outcomes of the task. These outcomes are exactly the same as the outcomes JavaTest
gets when it runs tests directly, without the assistance of the JavaTest Agent.

State Description

PASS: The task completed successfully.

FAIL: The task indicated that it failed.

ERR: The task encountered some error before it could properly be executed.

!RUN: This should never occur; if it were to occur, it would mean that a task has inappropriately
indicated that it has not been run.

12.3.4. Selected Task Pane

The selected task tabbed pane in the agent GUI displays detailed information about a task selected from the
task list in the history pane:

Refer to History Pane [p 96] for a description of the task list.

12.3.4. Selected Task Pane 97

Field Description

client Displays the network address (host and port) of the source of the task request. The host will
normally be identified by its host name, but if JavaTest cannot determine the host name, the IP
address of the host will be shown instead.

request Displays the tag that was supplied with the request in order to identify itself.

class Displays the name of the class that was specified in the request. This is the class that will be
loaded and run in fulfillment of the request.

args Displays the arguments that were specified in the request. These arguments will be passed to
the class that will be executed.

result If and when the task is completed, this field will contain the outcome of the task, as indicated
by a JavaTest Status object.

98 JavaTest User’s Guide - Version 3.1.2 October 2002

12.4. Troubleshooting JavaTest Agents
To troubleshoot JavaTest agents, verify that:

The agent has been correctly configured and started
The test harness is configured correctly for the agent and test system that the agent runs on
Map files, if required, correctly translate host specific value into values that the agent can use

Because active agents initiate the connection with the JavaTest harness while passive agents wait for a
request from the JavaTest harness, troubleshooting each type of agent requires a different approach:

Active Agents [p 99]
Passive Agents [p 100]

12.4.1. Troubleshooting Active Agents

Active agents initiate the connection with the JavaTest harness. You must set up the JavaTest agent pool so
that the connection is made before running tests.

Errors in configuring, synchronizing, or implementing the connection between the agent and the JavaTest
harness are the most probable causes of failure.

Use the Agent Monitor window, the Test Manager window, the agent GUI, and the following guide when
troubleshooting problems running active agents:

1. In the Agent Monitor window, verify that the agent is listed in the agent pool. If the agent is not listed
in the agent pool:

a) Verify that the Listening check box is selected.
b) Verify that the agent is configured to contact the correct active host and that the port value of the

harness matches the port value used by the agent.
c) Check the physical connection between the JavaTest platform and the test platform.

2. Verify that the agent moves to Agents Currently in Use when tests are running. If the agent does not
move to Agents Currently in Use when tests are running:

a) Use the Configuration Editor to verify that the harness is configured to use agents when running tests.
b) If you are running the tests using multiple JVMs, use the Configuration Editor to verify that the path

you provided in the Java Launcher question is the path of the Java launcher for the agent running tests.

3. If tests are failing or have errors, check the error messages displayed in the Test Manager window. If
the error indicates that tests are failing because of missing classes:

a) Verify that the class paths used to start the agent are correct.
b) Use the Configuration Editor to verify that the harness is correctly configured to use the agent on the

test system.
c) Run the agent using the -trace option to verify that the paths in the stream messages for the test are

correct. If the paths are not correct for the test system, create a map file [p 103] for the agent to use in
translating host specific values into values that the agent can use.

d) If a map file was used to run the test, use the Test Run Messages pane to verify that the -mapArgs
command is present in the stream messages. If the -mapArgs command is not present verify that both
the agent and the harness are configured to use the map file. Use the Configuration Editor to verify that
the harness has been configured to use the agent map file.

12.4. Troubleshooting JavaTest Agents 99

12.4.2. Troubleshooting Passive Agents

Because passive agents must wait for a request from the JavaTest harness before running tests, the port that
the passive agent uses must be the same as that used by the JavaTest harness to send requests.

Errors in configuring, synchronizing, or implementing the connection between the agent and the JavaTest
harness are the most probable causes of failure.

Use the Agent Monitor window, the Test Manager window, the agent GUI, and the following guide when
troubleshooting problems running passive agents:

1. Verify that the agent was started before the JavaTest harness started the test run. If not, repeat the test
run.

2. Verify that the port value used when starting the agent matches the port value used by the JavaTest
harness to send requests.

3. Check the physical connection between the JavaTest platform and the test platform.
4. Use the Configuration Editor to verify that the harness is configured to use agents when running tests.
5. If you are running the tests using multiple JVMs, use the Configuration Editor to verify that the path

you provided in the Java Launcher question is the path of the Java launcher for the agent running tests.
6. If tests are failing or have errors, check the error messages displayed in the Test Manager window. If

the error indicates that tests are failing because of missing classes:

a) Verify that the class paths used to start the agent are correct.
b) Use the Configuration Editor to verify that the harness is correctly configured to use the agent on the

test system.
c) Run the agent using the -trace option to verify that the paths in the stream messages for the test are

correct. If the paths are not correct for the test system, create a map file [p 103] for the agent to use in
translating host specific values into values that the agent can use.

d) If a map file was used to run the test, use the Test Run Messages pane to verify that the -mapArgs
command is present in the stream messages. If the the -mapArgs command is not present verify that
both the agent and the harness are configured to use the map file. Use the Configuration Editor to
verify that the harness has been configured to use the agent map file.

12.5. Installing Agent Classes on a Test System
Agent classes must be located on your test system before you can run the JavaTest agent.

There are two methods you can use to load agent classes on your test system. The method that you use is
determined by the available space on your test system:

If space is available on your test system, you can copy the javatest.jar file directly to it. The
javatest.jar file contains all of the required JavaTest agent classes.
If space is limited on your test system, you can extract and then install the minimum set of classes for
the agent user interface that you are using from the javatest.jar file:

Agent User Interface Required Classes

Agent GUI Minimum set of classes required to run agents using a GUI [p 100] .

Command Line Minimum set of classes required to run agents from the command line [p 102] .

Applets Minimum set of classes required to run agents as applets [p 102] .

100 JavaTest User’s Guide - Version 3.1.2 October 2002

12.5.1. Classes Required to Run Agents Using a GUI

The following list contains the minimum set of classes required to run an agent by using a GUI on your test
system. You may require additional classes for some tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.ProductInfo
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentClassLoader
com.sun.javatest.agent.AgentFrame
com.sun.javatest.agent.AgentFrame$1
com.sun.javatest.agent.AgentFrame$2
com.sun.javatest.agent.AgentFrame$Listener
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.ExitCount
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer

12.5.1. Classes Required to Run Agents Using a GUI 101

com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

12.5.2. Classes Required to Run Agents from the Command Line

The following list contains the minimum set of classes required to run an agent from a command line on
your test system. You may require additional classes for some tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentClassLoader
com.sun.javatest.agent.AgentMain
com.sun.javatest.agent.AgentMain$1
com.sun.javatest.agent.AgentMain$BadArgs
com.sun.javatest.agent.AgentMain$ErrorObserver
com.sun.javatest.agent.AgentMain$Fault
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Map
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

12.5.3. Classes Required to Run Agents as Applets

The following list contains the minimum set of classes required to run an agent as an applet on your test
system. You may require additional classes for some tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.ProductInfo
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task

102 JavaTest User’s Guide - Version 3.1.2 October 2002

com.sun.javatest.agent.AgentApplet
com.sun.javatest.agent.AgentApplet$1
com.sun.javatest.agent.AgentClassLoader
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

12.6. Creating a Map File
Some tests require contextual information, such as the host name on which they are executed, before they
can run. Because network file systems may be mounted differently on different systems, the path names
used by the JavaTest harness may not be the same for the agent. The agent uses a map file to translate these
strings into values it can use to run tests.

1. Use a text editor to open a simple ASCII file and enter the following types of lines:

Comment line - begins with the # symbol and provides information that is not processed by the agent.
Comment lines are optional.

Example:
#Replace all /home/jjg with /jjg

12.6. Creating a Map File 103

Translation line - contains the target and substitution strings. Enter the string that is to be replaced
followed by one or more spaces and the replacement string. The agent replaces all occurrences of the
first string with the second.

Example:
/home/jjg /jjg

Because the agent uses the map file to perform global string substitution on all matching values received
from the JavaTest harness, you should be as specific as possible when specifying strings in a translation
line.

Refer to Troubleshooting JavaTest Agents [p 99] for additional information about determining the
substitution strings required in a map file.

2. Save the map file in the test suite root directory. You can use any name and extension. If you are
unable to use the root directory, you can use any directory on the test system that you can write to.
When starting an agent you must specify which map file, if any, to use.

Example of a map file:

#This is a sample map file
#Replace all /home/jjg with /jjg

/home/jjg /jjg

#Replace all /home/kasmith/javatest with /kas/javatest
/home/kasmith/javatest /kas/javatest

104 JavaTest User’s Guide - Version 3.1.2 October 2002

13. Using the JavaTest Command-Line
The JavaTest harness provides a command-line interface that you can use to:

Perform batch mode tasks, such as configure and run tests, without using the GUI. Refer to Using
Batch Mode [p 105] for detailed information.
Start the JavaTest harness using specific settings. Refer to Specifying Additional Options [p 112] for
detailed information.
Display JavaTest information, such as online help, without starting the harness. Refer to Displaying
JavaTest Information [p 115] for detailed information.

13.1. Using Batch Mode
You can use the -batch mode option and its commands to configure and run one or more tests or
branches of tests, write test reports, and audit test results either from the command line or as a part of a
product build process. The commands used with -batch are a formatted set of commands, executed in the
sequence that they appear in the command string. See Formatting Batch Commands [p 105] for a
description of the formats you can use.

You should use the commands in the command string much as you would if you were writing a script:

1. Initialize a configuration. See Initializing a Configuration [p 107] for detailed information.
2. Modify the current configuration (if required). See Setting the Standard Values [p 109] and Setting

Other Configuration Values [p 110] for detailed information.
3. Specify the task performed. See Running Tests [p 111] , Writing Reports [p 111] , and Auditing Tests [p

111] for detailed information.

See Specifying Additional Options [p 112] for additional settings that can be used to start the JavaTest
harness. If used, these options are included before the -batch option.

The topics in this section are:

 Formatting Batch Commands [p 105]

 Initializing a Configuration [p 107]

 Setting the Standard Values [p 109]

 Setting Other Configuration Values [p 110]

 Running Tests [p 111]

 Writing Reports [p 111]

 Auditing Tests [p 111]

 Index of Available Batch Commands [p 112]

13. Using the JavaTest Command-Line 105

13.1.1. Formatting Batch Commands

Commands are used with the -batch mode option in any one of three formats:

Batch Options
Single String Arguments
Batch Command Files

Start the JavaTest harness from a writable directory where you intend to create files and store test results.
Include the path of the directory [jt_dir] where the javatest.jar file is installed. The javatest.jar file is usually
installed in the TCK lib directory when the JavaTest harness bundled with a TCK.

See Available Batch Commands [p 112] for a description of the commands that can be used in batch mode.

Batch Options

If you are setting a limited number of batch options you can use the batch options format. In the batch
options format, the batch commands are preceded by "-," act as options, and do not use command
terminators. Enclose complex batch command arguments in quotes.

Example:

java -jar [jt_dir]/javatest.jar [harness-options] -batch -open default.jti -set host
mymachine -runtests

Single String Arguments

If you are setting several batch options, you can use the single string arguments format. In the single string
arguments format, one or more batch commands and their arguments can be enclosed in quotes as a single
string argument to the -batch option. Multiple batch commands and arguments in the string are
separated by semicolons.

Example:

java -jar [jt_dir]/javatest.jar [harness-options] -batch "open default.jti; set host
mymachine; runtests"

Batch Command Files

If you are setting a series batch commands and options, you can use the batch command file format. Using
the batch command file allows you to easily reuse the same configuration.

In the batch command file format, a file containing a series of batch commands and their arguments is
included in the command line by preceding the file name with the "@" symbol. Refer to Creating a Batch
Command File below for detailed information about creating a batch command file.

Example:

java -jar [jt_dir]/javatest.jar [harness-options] -batch -open default.jti @batchcmd.jtb

Creating a Batch Command File

You can put a lengthy series of batch commands and their arguments into an ASCII file and then include it
in the command line. Using a batch command file allows you to repeatedly use a batch configuration
without retyping the commands each time a test run is performed.

To help you identify the function of each batch file, it is recommended that you use a descriptive name and
the extension .jtb when naming individual batch files.

106 JavaTest User’s Guide - Version 3.1.2 October 2002

Batch files can contain blank lines and comments as well as batch commands and their arguments:

File Contents Description

Comments Comments are started by the # symbol and stop at the end of the line.

Example:
#File contains batch commands

Batch
Commands

Are executed in the sequence that they appear in the batch file. Use commands listed in
Available Batch Commands [p 112] . Commands used in the batch file must be separated
by a semicolon (;) or a new line (#). The # symbol acts as a new line character and can
terminate a command.

Examples:
open default.jti #opens file

Example:
open default.jti ; -set host mymachine

Command
Arguments

Arguments that contain white space must be placed inside quotes. Use "\" to escape
special characters such as quotes (") and backslashes (\).

Example Use of a Batch File

An example of a typical application of a batch file:

Use the configuration editor to create a template .jti file and then use it in conjunction with -set
commands in a batch file to override specific questions for unique test configurations.

By using a batch file in this manner, it is possible to develop multiple variations of a configuration without
having to use the configuration editor each time a minor change is required.

13.1.2. Initializing the Configuration

To use batch mode you must initialize the configuration by opening at least one of the following:

An existing configuration (.jti) file
A test suit and empty work directory
An existing work directory

See Shortcuts for Initializing the Current Configuration [p 109] for additional information about specifying
test suite and work directory in the current configuration.

The following lists the batch commands that you can use:

open name [p 107]
testSuite testsuite [p 108]
workDirectory work-directory [p 108]

After initializing the configuration, you can then modify the current configuration for your specific
requirements. See Setting Standard Values [p 109] and Setting Other Configuration Values [p 110] for the
commands used to modify the current configuration.

open name

Opens a test suite, work directory, parameter .jtp file, or a configuration .jti file. The .jtp files are
supported for older test suites that do not use a configuration editor and .jti file.

13.1.2. Initializing the Configuration 107

Example:

..;open test_workdir.wd;..

testSuite testsuite

Specifies the test suite that is run.

Example:

..;testSuite sampleTestSuite;..

workDirectory work-directory

Each work directory is associated with a test suite and stores its test result files in a cache. You can use the
workdirectory command to open an exiting work directory, create a new work directory, or replace an
existing work directory with a new work directory.

Open an Exiting Work Directory

To open an existing work directory for the test run, use the workDirectory command.

workDirectory work-directory

Example:

..;workDirectory sampletest;..

Create a New Work Directory

To create a new work directory for the test run, use the -create command option. The new work
directory must not previously exist.

workDirectory -create work-directory

Example:

..;workDirectory -create sampletest;..

Replace an Existing Work Directory with a New Work Directory

When you replace an existing work directory with a new work directory, the JavaTest harness:

1. Deletes the existing work directory and its contents.
2. Creates the new work directory using the same name (if the old directory was successfully deleted).

To replace an existing work directory with a new work directory, use the -overwrite command option.
The -create command option is optional when the -overwrite command is used.

workDirectory -create -overwrite work-directory

Example:

Replace the existing sampletest work directory with a new sampletest work directory.

..;workDirectory -overwrite sampletest;..

or

108 JavaTest User’s Guide - Version 3.1.2 October 2002

..;workDirectory -create -overwrite sampletest;..

Shortcuts Used to Initialize the Current Configuration

The following apply to the test suite, work directory, and .jti file specified in a batch command:

If you specify an existing work directory, you are not required to specify a test suite.
If you specify an existing .jti file, you are not required to specify a test suite.
If you specify an existing .jti file, you are not required to specify a work directory unless you want
to use a work directory different from that specified in the .jti file.

You can include batch commands as any combination of options, single string arguments, or files on the
command line. However, because commands are executed in the sequence that they appear in the
command string, if specified:

Test suites must precede the work directory or .jti file.
The work directory and .jti file must match the test suite.
The work directory must precede any standard values.
The .jti file must precede any changes to the current configuration.

13.1.3. Setting the Standard Values

The following lists the batch commands used to set the Standard Values in the current configuration:

concurrency number [p 109]
env environment [p 109]
envFile environment-file [p 109]
excludeList exclude-list-file [p 110]
keywords keyword-expr [p 110]
params parameter-arguments [p 110]
priorStatus status-arguments [p 110]
tests test-name [p 110]
timeoutFactor number [p 110]

concurrency number

Specifies the number of tests run concurrently. If you are running the tests on a multi-processor computer,
concurrency can speed up your test runs.

Example:

..;concurrency 2;..

env environment

Specifies a test environment in an environment file. This is only used with envFiles of test suites that use
parameter (.jtp) and environment (.jte) files.

Example:

..;env testsystem;..

envFile environment-file

Specifies an environment file (.jte) containing test environments that the JavaTest harness uses to run older
test suites. The environment file is not used by newer test suites that use a configuration (.jti) file.

13.1.3. Setting the Standard Values 109

Example:

..;envFile test.jte;..

excludeList exclude-list-file

Exclude list files contain a list of tests that are not to be run. Exclude list files conventionally use the
extension .jtx and are normally supplied with a test suite.

Example:

..;excludeList sample.jtx;..

keywords keyword-expr

Restricts the set of tests to be run based on keywords associated with tests in the test suite

Example:

..;keywords interactive;..

params parameter-arguments

These commands are deprecated. However, for backwards compatibility, if you are running a test suite that
uses a parameter file (.jtp) you can continue to use the params command and its arguments to set
parameter values when starting the JavaTest harness. Refer to Parameter Commands [p 114] for detailed
information about using the params command.

priorStatus status-arguments

Selects the tests included in a test run based on their outcome on a prior test run. The status-arguments that
can be used are "pass," "fail," "error," and "notRun." If you use more than one argument, each argument
must be separated by a comma.

Example:

..;priorStatus fail,error;..

tests test-name

Create a list of test directories and/or tests to run. The JavaTest harness walks the test tree starting with the
sub-branches and/or tests you specify and executes all tests that it finds (unless they are filtered out).

Example:

..;tests api;..

timeoutFactor number

Increases the amount of time that the JavaTest harness waits for a test to complete before moving on to the
next test. Each test’s timeout limit is multiplied by the time factor value. For example, if you specify a value
of "2", the timeout limit for tests with a 10 basic time limit becomes 20 minutes.

Example:

..;timeoutFactor 2;..

110 JavaTest User’s Guide - Version 3.1.2 October 2002

13.1.4. Setting Other Configuration Values

The following batch command is used to set test suite specific values in the current configuration:

set question-tag-name value [p 111]

set question-tag-name value

Changes the response of a specific question in a configuration (.jti) file without having to open the JavaTest
GUI. To display the question-tag-name of a question, open the configuration editor, select a block of text in
the question panel, and press the "Alt" and "T" keys. The question panel’s tag name is displayed at the
bottom of the panel.

Example:

..; set jck.env.runtime.testExecute.cmdAsFile jdk_install_dir/bin/java ;..

13.1.5. Running Tests in Batch Mode

You can run one or more tests or branches of tests in batch mode as part of a series of batch commands
(such as multiple test runs using different configuration values, write test reports, and audit test results) or
as a single batch command.

Example:

...; runtests ;...

To configure and run tests in batch mode, format the -batch option, its commands, and the -runtests
command as described in Formatting Batch Commands [p 105] .

See Modifying Settings in a Configuration [p 118] for an example of how to form the command used to run
tests in batch mode.

13.1.6. Writing Reports in Batch Mode

You can write test reports in batch mode by using the -writereport batch command as part of a series of
batch commands (such as run tests and audit test results) or as a separate write reports batch command.

Because the JavaTest harness executes batch commands in their command line sequence, identify the work
directory before the -writereport command and providing the report directory as an option after the
command.

Example:

..; -workdirectory work-directory -writereport report-directory ;..

To configure and write reports in batch mode, format the -batch option, its commands, and the
-writereport command as described in Formatting Batch Commands [p 105] .

13.1.7. Auditing Tests

You can audit test results in batch mode by using the -audit batch command as part of a series of batch
commands or as a separate batch command. The results of the audit are output to the terminal.

Because the JavaTest harness executes batch commands in their command line sequence, you must identify
the work directory before the -audit command.

13.1.4. Setting Other Configuration Values 111

Example:

..; -workdirectory work-directory -audit ;..

To audit tests in batch mode, format the -batch option, its commands, and the -audit command as
described in Formatting Batch Commands [p 105] .

13.1.8. Index of Available Batch Commands

The following lists all of the commands available in batch mode:

Command Description

concurrency number [p 109] Specifies the number of tests run concurrently.

env environment [p 109] Specifies a test environment in an environment file.

envFile environment-file [p
109]

Specifies an environment file (.jte) containing test environments.

excludeList exclude-list-file [p
110]

Specifies an exclude list file.

keywords keyword-expr [p 110] Restricts the set of tests to be run based on keywords.

open name [p 107] Opens a test suite, work directory, parameter .jtp file, or a
configuration .jti file.

params parameter-arguments [p
110]

These commands are deprecated.

priorStatus status-arguments
[p 110]

Selects the tests included in a test run based on their outcome on a
prior test run.

set question-tag-name value [p
111]

Changes the response of a specific question in a configuration (.jti)
file.

testSuite testsuite [p
108]

Specifies the test suite that is run.

tests test-name [p 110] Create a list of test directories and/or tests to run.

timeoutFactor number [p
110]

Increases the amount of time that the JavaTest harness waits for a test
to complete

workDirectory
work-directory [p 108]

Open an exiting work directory, create a new work directory, or
replace an existing work directory with a new work directory.

runtests [p 111] Run tests in batch mode.

audit [p 111] Audit test results in batch mode.

writereport [p 111] Write test reports in batch mode.

112 JavaTest User’s Guide - Version 3.1.2 October 2002

13.2. Specifying Additional Options
In most cases, command-line options perform functions that are also available through the GUI. However,
there are several situations in which using command-line options to specify how the JavaTest harness starts
is either uniquely useful or necessary.

When starting the JavaTest harness you can use options in the command line to:

Include all system properties [p 114] in test execution environments
Set an environment variable [p 114] that you want inherited in every test environment
Set the agent pool port number [p 114]
Set the agent pool timeout [p 114]
Start the active agent pool [p 114]
Specify parameters [p 114] if you are running a test suite that uses a parameter file
Use a new desktop [p 114] when starting the JavaTest GUI

Start the JavaTest harness from a writeable directory where you intend to creatre files and store test results.
You must include the path of the directory [jt_dir] where the javatest.jar file is installed. The javatest.jar file
is usually installed in the TCK lib directory when the JavaTest harness bundled with a TCK.

Use the following example to start the JavaTest harness with command-line options:

java -jar [jt_dir]/javatest.jar [options]

If you are running the JavaTest harness in batch mode, refer to Using Batch Mode [p 105] for detailed
information about using batch commands with the command-line options.

The JavaTest harness uses a new desktop when you include GUI options in the command line.

The following options can be used in the command line to specify how the Javatest harness starts:

13.2. Specifying Additional Options 113

Option Function

-EsysProps Includes all system properties in test execution environments.

-Ename=value Sets an environment variable that is inherited in every test environment
created.

The -Ename=value command line option tunnels in values from the external
shell. The method used in previous versions of the JavaTest harness to tunnel
in values from the external shell is now deprecated.

-agentPoolPort port Set the Agent Pool Port Number

Use this option only if you are configuring the JavaTest harness and the agent
to use a port other than 1907.

-agentPoolTimeout
#seconds

Set the Agent Pool Timeout

Sets the number of seconds that the JavaTest harness waits between tests for an
available agent before reporting the test result as an error. The default value of
180 seconds is usually sufficient. You can also set this value in the GUI if you
are not running the JavaTest harness in batch mode.

-startAgentPool Start the Active Agent Pool

If you use an active agent and run the JavaTest harness in batch mode, you
must add -startAgentPool to the command string to start the Agent Pool.

-params [commands]
[initial-files]

Specify Parameters

If you are running a test suite that uses a parameter file (.jtp), you can specify
different parameter values when starting the JavaTest harness by including the
-params option and the appropriate parameter command in the command
line.

If you are using the JavaTest GUI to run tests, refer to Using Parameter
Commands [p 114] for detailed information about using the -params option
and its commands.

-newDesktop Add -newDesktop to the command string to start the JavaTest GUI without
using a previous desktop. The JavaTest GUI will ignore any previous settings
and open the Welcome to JavaTest dialog box. Refer to Welcome Dialog Boxes
[p 5] for a description of the dialog box.

A new desktop is automatically started and the old desktop is ignored when
explicit GUI command line options are used.

13.2.1. Using Parameter Commands

These commands are deprecated. You should use the -batch commands to perform these functions. If you
are running a test suite that uses a parameter file (.jtp), for backwards compatibility you can continue to
use the following commands with the -param option to change one or more parameter values used to start
the JavaTest harness:

114 JavaTest User’s Guide - Version 3.1.2 October 2002

Command Description

-t testsuite
or
-testsuite
testsuite

Specifies the test suite that is run.

-keywords
keyword-expr

Restricts the set of tests to be run based on keywords associated with tests in
the test suite.

-status status-expr Includes or excludes tests from a test run based on their status from a
previous test run. Valid status expressions are error, failed, not run, and
passed.

-exclude
exclude-list-file

Specifies an exclude list file. Exclude list files contain a list of tests that are not
to be run. Exclude list files conventionally use the .jtx extension and are
normally supplied with a test suite.

-envFile
environment-file

Specifies an environment file that contains information used by the JavaTest
harness to run tests in your computing environment. You can specify an
environment file for the JavaTest harness to use when running tests.

-env environment Specifies a test environment from an environment file.

-concurrency number Specifies the number of tests run concurrently. If you are running the tests on
a multi-processor computer, concurrency can speed up your test runs.

-timeoutFactor
number

Increases the timeout limit by specifying a value in the time factor option.

The timeout limit is the amount of time that the JavaTest harness waits for a
test to complete before moving on to the next test. Each test’s timeout limit is
multiplied by the time factor value.

For example, if you specify a value of "2", the timeout limit for tests with a 10
basic time limit becomes 20 minutes.

-r report-directory
or
-report
report-directory

Specifies the directory where the JavaTest harness writes test report files. If
this path is not specified, the reports are written to a directory named report
in the directory from which you started the JavaTest harness.

-w work-directory
or
-workDir
workDirectory

Specifies a work directory for the test run. Each work directory is associated
with a test suite and stores its test result files in a cache.

13.3. Displaying JavaTest Information
The following options are used at the end of the command line to display JavaTest information without
starting the harness. You must include the path of the directory [jt_dir] where the javatest.jar file is
installed. The javatest.jar file is usually installed in the TCK lib directory when the JavaTest harness
bundled with a TCK:

java -jar [jt_dir]/javatest.jar [information-options]

13.3. Displaying JavaTest Information 115

Function Option

Display Command-Line Help -help
-usage
or
-?

Displays command-line help without starting the JavaTest harness.

Display JavaTest Version
Information

-version

Displays the version, location, and build information for the installed
copy of the JavaTest harness.

Display Online Help -onlineHelp

Displays JavaTest online help without starting the JavaTest harness.

13.4. Examples of Batch Commands
This section provides examples of different types of batch commands. The commands used with -batch
are a formatted set of commands, executed in the sequence that they appear in the command string.

All batch command formats use combinations of commands in the following basic sequence:

Example:
java -jar [jt_dir]/javatest.jar [set harness options] -batch [initialize configuration] [set standard
values] [set other configuration values] [perform task]

You can set configuration values by using a tag-name to value format. It is an error to set a configuration
value in a batch command if the question tag-name is not found in the current interview path. To determine
the current interview path, use the -path option.

See Obtaining the Question tag-name [p 116] below for detailed information about the tag-name for the
question.

See Formatting Batch Commands [p 105] for a description of the different batch command formats that can
be used.

The following sections provide different examples that you can use as patterns for creating batch
commands:

 Editing in Batch Commands [p 117]

 Modifying Settings in a Configuration [p 118]

 Using a Batch File [p 119]

13.4.1. Obtaining the Question tag-name

There are two ways to obtain a configuration question tag-name:

ALT T - Start the JavaTest harness, open the Configuration Editor and load the configuration file
containing the value to be changed. Click in the Configuration Editor’s question box and then press
ALT and T. The Configuration Editor displays the tag-name for the question in the title bar. You can
navigate through the interview until you locate the question whose value must be changed.
Question Log - Start the JavaTest harness and load the configuration file that will be used to run tests.
Choose Configure > Show Question Log in the Test Manager menu bar to view the Question Log of
the current configuration. The Question Log displays the tag-name for each question in the interview

116 JavaTest User’s Guide - Version 3.1.2 October 2002

and its value.

13.5. Editing in Batch Commands
You can use the -batch mode option and its commands to edit a configuration either from the command
line as part of a batch process or as a part of a product build process. The commands used with -batch are
a formatted set of commands, executed in the sequence that they appear in the command string. See
Formatting Batch Commands [p 105] for a description of the formats you can use.

The following are provided as examples of how editing can be accomplished in batch mode:

Open a .jti file and change values before running tests [p 117]
Create a new work directory [p 117]

Use the commands in the command string as you would if you were writing a script.

13.5.1. Open a .jti File and Change Values Before Running Tests

You can import a site specific .jti file (as a template) and then set specific configuration values before
running tests.

In the following examples, a test suite and work directory are opened, a .jti file (myconfig.jti) is
imported, and the host name in the .jti file is changed to "mymachine" before running tests. The test suite
(mytestsuite.ts) and existing work directory (myworkdir.wd) must be compatible.

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, and myconfig.jti
with test suite, work directory, and .jti names that exist on your system. Win32 users must also change "/"
file separators to "\" to run these examples.

You must also replace jck.env.runtime.net.localHostName and its value with a question tag-name
and value in your current interview path. From the command line, you can only change values in your
current interview path. See Obtaining the Question tag-name [p 116] for detailed information about the
tag-name for the question.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti -set jck.env.runtime.net.localHostName
mymachine -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; set jck.env.runtime.net.localHostName
mymachine; runtests"

You can only change configuration values in the current interview path of the .jti file. If you change a
value that is not in the current interview path the JavaTest harness displays a error message. You can view
the current interview path in the Configuration Question Log or in the Configuration Editor All Values
view.

13.5.2. Create a New Work Directory

You can open an existing work directory (as a template) and then use it to create a new work directory for
the the test run before running tests.

In the following examples, a test suite (mytestsuite.ts) and work directory (myworkdir.wd) are
opened, and a new work directory (testrun.wd) is created before running tests. The results of the test run
are written to the new work directory.

13.5. Editing in Batch Commands 117

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, and myconfig.jti
with test suite, work directory, and .jti names that exist on your system. Win32 users must also change "/"
file separators to "\" to run these examples.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -create testrun.wd -open myconfig.jti -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd; create testrun.wd; open myconfig.jti; runtests"

The JavaTest harness uses the work directory (testrun.wd) created by the command line when the tests
are run, even if myconfig.jti was created using another work directory.

13.6. Modifying Settings in a Configuration
You can use the -batch mode option and its commands to temporarily modify the contents of a .jti file
loaded in memory without changing the .jti file itself. This can be done when running tests, writing test
reports, and auditing test results either from the command line or as a part of a product build process.

The commands used with -batch are a formatted set of commands, executed in the sequence that they
appear in the command string. See Formatting Batch Commands [p 105] for a description of the formats
you can use.

Use the commands in the command string as you would if you were writing a script.

13.6.1. Selecting Tests to Run

You can use an existing .jti file and then set the specific tests to be run. You can specify one or more
individual tests or branches of tests to be run

In the following examples, a test suite (mytestsuite.ts) and work directory (myworkdir.wd) and a .jti
file (myconfig.jti) are opened, and the tests to be run are set before running tests. In the following
example, tests in branches api/javax_swing and api/java_awt will be run.

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, and myconfig.jti
with test suite, work directory, and .jti names that exist on your system. Win32 users must also change "/"
file separators to "\" to run these examples.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti -tests api/javax_swing api/java_awt -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; tests api/javax_swing api/java_awt; runtests"

The path used for setting the test or folder of tests to be run is the same as that displayed in the tree folder.
One or more tests can be specified.

118 JavaTest User’s Guide - Version 3.1.2 October 2002

13.6.2. Selecting an Exclude List

You can use an existing .jti file and then specify the exclude list to be used when running tests.

In the following examples, a test suite (mytestsuite.ts) and work directory (myworkdir.wd) and a .jti
file (myconfig.jti) are opened, and the exclude list (myexcludelist.jtx is set before running tests.

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, myconfig.jti,
and myexcludelist.jtx with test suite, work directory, .jti and .jtx names that exist on your system.
Win32 users must also change "/" file separators to "\" to run these examples.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti -exclude myexcludelist.jtx -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; exclude myexcludelist.jtx; runtests"

13.6.3. Setting Configuration Values

You can use an existing .jti file and then specify the values to be used when running tests.

In the following examples, a test suite (mytestsuite.ts), work directory (myworkdir.wd), and a .jti file
(myconfig.jti) are opened, then one or more name=values are specified for running tests.

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, and myconfig.jti
with test suite, work directory, and .jti names that exist on your system. Win32 users must also change "/"
file separators to "\" to run these examples.

To change a value on the command line it must be in your current interview path. If your current interview
path does not include jckdate.gmtOffset you must either add it to the interview path or replace it with
a value that is in the path. To view the current interview path, open your .jti file in the Configuration
Editor. See Obtaining the Question tag-name [p 116] for detailed information about the tag-name for the
question.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti -set jckdate.gmtOffset=8 -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; set jckdate.gmtOffset=8; runtests"

13.7. Using a Batch File
You can place routinely used configuration settings in a "batch file" and then use it in additional or
repeated test runs.

When you use the -batch mode option and its commands to configure and run tests, write test reports,
and audit test results (either from the command line or as a part of a product build process), you can use a
.jti file as a standard template and a batch file to modify specific configuration values before running
tests.

13.7. Using a Batch File 119

The commands used in a batch file with -batch are a formatted set of commands, executed in the
sequence that they appear in the command string. Use the commands in the batch file as you would if you
were writing a script. See Formatting Batch Commands [p 105] for a description of the formats you can use.

13.7.1. Example of Using a Batch File

In a text file named "mybatchfile.jtb" is the following (-set is only used on the command line):

set jck.env.runtime.net.localHostName mymachine; tests api/javax_swing
api/java_awt

To change a value by using the set option, the question tag-name name must be in your current interview
path. To view the current interview path, open your .jti file in the Configuration Editor. If your current
interview path does not include jck.env.runtime.net.localHostName you must either add it to the
interview path or replace it in the batch file with a tag-name and value that is in the path. See Obtaining the
Question tag-name [p 116] for detailed information about the tag-name for the question.

In the following examples, a test suite (mytestsuite.ts), work directory (myworkdir.wd), and .jti file
(myconfig.jti) are opened, and the batch file (mybatchfile.jtb) is read and executed before running
tests.

To run the following examples you must replace mytestsuite.ts, myworkdir.wd, and myconfig.jti
with test suite, work directory, and .jti names that exist on your system. Win32 users must also change "/"
file separators to "\" to run these examples.

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti @mybatchfile.jtb -runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; @mybatchfile.jtb; -runtests"

You can also change values after the batch file is set:

Batch Options Example:
java -jar lib/javatest.jar -batch -testsuite mytestsuite.ts -workdir
myworkdir.wd -open myconfig.jti @mybatchfile.jtb -exclude myexcludelist.jtx
-runtests

Single String Arguments Example:
java -jar lib/javatest.jar -batch "testsuite mytestsuite.ts workdir
myworkdir.wd open myconfig.jti; @mybatchfile.jtb; exclude myexcludelist.jtx;
runtests"

120 JavaTest User’s Guide - Version 3.1.2 October 2002

14. Using Additional JavaTest Utilities
The JavaTest harness provides additional utilities that you can use to:

Monitor results with HTTP server. Refer to Monitoring Results with HTTP Server [p 121] for detailed
information.
Browse result (.jtr) files without starting the harness. Refer to Browsing Result (.jtr) Files [p 125] for
detailed information.
Browse exclude list files without starting the harness. Refer to Browsing Exclude List Files [p 125] for
detailed information.
Edit responses in a configuration file without starting the harness. Refer to Editing Responses in a
Configuration File [p 125] for detailed information.
Move test reports. Refer to Moving Test Reports [p 130] for detailed information.

14.1. Monitoring Results with HTTP Server
The JavaTest harness provides a small web server that you can use to remotely monitor and control a test
run. The HTTP Server provides two types of output:

HTML Formatted Output [p 121]
Plain Text Output [p 123]

14.1.1. HTML Formatted Output

The HTML formatted output is provided as human readable pages (these pages are subject to change in
future releases of the JavaTest harness), allowing users to remotely monitor batch mode test runs in a web
browser and stop any test runs that are not executing as expected:

Server Index Page [p 122]
Server Harness Page [p 123]
Server Test Result Index Page [p 122]
Harness Environment Page [p 122]
Harness Interview Page [p 123]
Stop a Test Run [p 123]

Accessing HTTP Server HTML Formatted Output

1. Use the following command on the command line to activate the web server. Include the path of the
directory [jt_dir] where the javatest.jar file is installed. The javatest.jar file is usually installed in the
TCK lib directory when the JavaTest harness bundled with a TCK:

java -jar [jt_dir]/javatest.jar -startHttp -batch [options]

2. Copy the URL reported to the console:

Example:
JavaTest HTTPd - Success, active on port 1903
JavaTest HTTPd server available at http://129.145.162.75:1903/

3. Launch a web browser and enter or paste the URL in the browser URL field:

14. Using Additional JavaTest Utilities 121

Example:
http://129.145.162.75:1903/

Viewing HTTP Server Index Page

The root of the web server provides an index page that only lists the handlers registered with the internal
web server; not all available URLs on the server. You can also display the HTTP Server Index page by
including /index.html at the end of the URL in the browser URL field:

Example:
http://129.145.162.75:1903/index.html

Each JavaTest harness has it’s own handler, identified by a unique number as the second component of the
URL.

Viewing HTTP Server Harness Page

When the JavaTest harness is running tests, the harness page displays:

Name and location of the current test suite
Location of the work directory
Link to view the environment information provided to the JavaTest harness and used in the current
test run. Displays an HTML formatted view of the current environment.
Link to view the configuration interview used by the JavaTest harness in the current test run. Displays
a formatted view of the interview settings.
Link to view the current test results. Displays the Test Result Index page.

In addition to the list of registered handlers, the page also prints the UTC/GMT date on which that page
was generated (subject to the system clock on the machine which JavaTest is running) and provides the
JavaTest version number and build date.

You can display the HTTP Server Harness page by choosing its link on the index page or by including
/harness at the end of the URL in the browser URL field:

Example:
http://129.145.162.75:1903/harness

Viewing HTTP Server Test Result Index Page

The Test Result Index page displays:

Work directory
The total number or tests in the test suite.

The total number of tests is also a link to view the current test results. The test results are displayed in a
two column table, by test name and status message.

You can display the Test Result Index page by choosing its link on the harness page.

Viewing the Harness Environment Page

The Harness Environment page displays the environment information provided to the JavaTest harness
and used in the current test run. The environment information is displayed in an HTML table and provides
a view of the current settings.

You can display the Harness Environment page by choosing its link on the harness page or by including
/harness/env at the end of the URL in the browser URL field:

122 JavaTest User’s Guide - Version 3.1.2 October 2002

Example:
http://129.145.162.75:1903/harness/env

Viewing the Harness Interview Page

The Harness Interview page displays the configuration interview provided to the JavaTest harness and
used in the current test run.

You can display the Harness Interview page by choosing its link on the harness page or by including
/harness/interview at the end of the URL in the browser URL field:

Example:
http://129.145.162.75:1903/harness/interview

Using HTTP Server to Stop a Test Run

If you want to remotely terminate a test run for any reason, you can use the HTTP server. Include
/harness/stop at the end of the URL in the browser URL field:

Example:
http://129.145.162.75:1903/harness/stop

To stop the test run, you must click the STOP button on the page displayed in the browser.

14.1.2. Plain Text Output

The HTTP server provides plain text output that can be used for automated monitoring of the JavaTest
harness during test runs. The plain text output does not include HTTP headings or HTML formatting and
is intended for use by automated testing frameworks, not for viewing in web browsers. Consequently,
future releases of the JavaTest harness will attempt to maintain the content formatting and URLs of this
output.

Two types of JavaTest information can be accessed by automated testing frameworks:

Accessing Version Information [p 123]
Accessing Harness Information [p 122]

Accessing Version Information

The HTTP Server Version page displays version information about the JavaTest harness. You can display
the HTTP Server Version page by choosing its link on the index page or by including /version at the end
of the URL in the browser URL field:

Example:
http://129.145.162.75:1903/version

A dump of the version information is provided.

Example:
JavaTest 3.0.3 Built on 06 Feb 2002

Accessing Harness Information

The following strings access specific information about the JavaTest harness:

/harness/text/config

Currently provides, in java.util.Properties format, the Test Suite name location and work directory of
the current harness configuration values.

14.1.2. Plain Text Output 123

Example:
testsuite.path=/export/scratch/sampleJCK-compiler-13a testsuite.name=J2SE
Sample Compiler 1.3a TCK (JCK) workdir=/export/scratch/wdsc13a

/harness/text/tests

Provides in java.util.Properties format the initial tests used for the current test run.

Example:
url0=api/java_lang url1=api/java_util

/harness/text/stats

Provides, in java.util.Properties format, the current count of test results in the each state (pass, fail,
error, not run). Whitespace is not present in the output:

Example:
Passed.=0
Failed.=151
Error.=54
Not_run.=1

For performance reasons, the Not_run number usually equals the concurrency setting in batch mode
and matches the "not run" number shown in the GUI when in GUI mode (Current Configuration view
filter).
harness/text/results

Provides alternating lines of test name, test status.

Example:
lang/FP/fpl005/fpl00506m1/fpl00506m1.html
Error. context undefined for hardware.xFP_ExponentRanges
lang/FP/fpl005/fpl00506m2/fpl00506m2.html
Error. context undefined for hardware.xFP_ExponentRanges
vm/classfmt/atr/atrnew003/atrnew00301m1/atrnew00301m1.html
Failed. unexpected exit code: exit code 1
vm/classfmt/atr/atrnew003/atrnew00302m1/atrnew00302m1.html
Failed. unexpected exit code: exit code 1
vm/classfmt/atr/atrnew003/atrnew00303m1/atrnew00303m1.html
Failed. unexpected exit code: exit code 1

/harness/text/state

Indicates whether JavaTest is currently running. It will return one of the following:

running=true
running=false

/harness/text/env

Provides, in java.util.Properties format, the current environment settings for the test run.

Example:
command.testExecute=com.sun.jck.lib.ExecJCKTestOtherJVMCmd
/work/jdk1.3.1/bin/java -classpath $testSuiteRootDir/classes
-Djava.security.policy=$testSuiteRootDir/lib/jck.policy $testExecuteClass
$testExecuteArgs context.nativeCodeSupported=true description=bar
jniTestArgs=-loadLibraryAllowed nativeCodeSupported=true
platform.expectOutOfMemory=true

124 JavaTest User’s Guide - Version 3.1.2 October 2002

14.2. Browsing Result (.jtr) Files
Included in the javatest.jar file is a servlet that allows you to use a web browser to view .jtr files.

To view .jtr files in your web browser, you must configure your web server to use the JavaTest
ResultBrowser servlet:

com.sun.javatest.servlets.ResultBrowser

Refer to your server documentation for information about configuring it to use the JavaTest ResultBrowser
servlet. Typically, you configure the web server to direct .jtr files to the servlet for rendering.

14.3. Browsing Exclude List Files
Included in the javatest.jar file is a servlet that allows you to use a web browser to view .jtx files.

To view .jtx files in your web browser, you must configure your web server to use the JavaTest
ExcludeBrowser servlet:

com.sun.javatest.servlets.ExcludeBrowser

Refer to your server documentation for information about configuring it to use the JavaTest
ExcludeBrowser servlet. Typically, you configure the web server to direct .jtx files to the servlet for
rendering.

14.4. Editing Responses in a Configuration File
The JavaTest harness provides an EditJTI utility that you can use from the command line to edit the
responses in a configuration file without opening the JavaTest GUI. The EditJTI utility is the batch
command equivalent of the JavaTestTM Configuration Editor.

14.4.1. Format of EditJTI Command

The EditJTI utility loads a configuration (.jti) file, and applies a series of specified edits. You can save the
file back to the original file, or to another file. You can use the EditJTI utility to generate an HTML log of
the questions and responses as well as write a quick summary of the questions and responses to the
console. The EditJTI utility provides a preview mode; in addition, configuration files are normally backed
up before being overwritten.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI [OPTIONS] [EDIT COMMANDS]
original configuration file

While it is possible to use EditJTI to change the order of commands in a configuration file, because of the
dependencies between values, it is recommended that major changes in the .jti file be accomplished by
using the Configuration Editor.

OPTIONS
The various options are as follows:
-help
-usage
/?

Display a summary of the command line options.
-classpath classpath
-cp classpath

Override the default classpath used to load the classes for the configuration interview. The default
is determined from the work directory and test suite specified in the configuration file. The new

14.2. Browsing Result (.jtr) Files 125

location will be as specified by this option.
-log log-file
-l log-file

Generate an HTML log containing the questions and responses from the configuration file. The
log is generated after any edits have been applied.

-out out-file
-o out-file

Specify where to write the configuration file after the edits (if any) have been applied. The default
is to overwrite the input file if the interview is edited.

-path
-p

Generate a summary to the console output stream of the sequence of questions and responses
from the configuration file. The summary is generated after any edits have been applied.

-preview
-n

Do not write out any files, but instead, preview what would happen if this option were not
specified.

-testsuite test-suite
-ts test-suite

Override the default location used to load the classes for the configuration interview. The default
is determined from the work directory and test suite specified in the configuration file. The new
location is determined from the specified test suite.

-verbose
-v

Verbose mode. As the edit commands are executed, details of the changes are written to the
console output stream.

EDIT COMMANDS
Two different types of edit command are supported.
tag-name=value

Set the value for the question whose tag is tag-name to value. It is an error if no such question is
found. The question must be on the current path of questions being asked by the interview. To
determine the current path, use the -path option. See Obtaining the Question tag-name [p 127]
below.

/search-string/replace-string/
Scan the path of questions being asked by the interview, looking for responses that match
(contain) the search string. In such answers, replace search-string by replace-string. Note that
changing the response to a question may change the subsequent questions that are asked. It is an
error if no such questions are found.

If you wish to use / in the search string, you may use some other punctuation character as a
delimiter, instead of /. For example, |search-string|replace-string|

Note: regular expressions are not currently supported in search-string, but may be supported in a future release.

Depending on the shell you are using, you may need to quote your edit commands, to protect any
characters in them against interpretation by the shell.

RETURN CODE
The program will exit with one of the following return codes:

0 the operations were successful; the configuration file is complete and ready to use.

1 the operations were successful, but the configuration file is incomplete and is not yet ready to
use for a test run.

2 there was a problem with the command line arguments

3 an error occurred while trying to perform the copy

126 JavaTest User’s Guide - Version 3.1.2 October 2002

SYSTEM PROPERTIES
Two system properties are recognized:
EditJTI.maxIndent

Used when generating the output for the -path option, this property specifies the maximum
length of tag name after which the output will be line-wrapped before writing the corresponding
value. The default value is 32.

EditJTI.numBackups
Specifies how many levels of backup to keep when overwriting a .jti file. The default is 2. A value
of 0 disables backups.

14.4.2. Obtaining the Question tag-name

There are two ways to obtain the question tag-name:

ALT T - Start the JavaTest harness, open the Configuration Editor and load the configuration file
containing the value to be changed. Click in the Configuration Editor’s question box and then press
ALT and T. The Configuration Editor displays the tag-name for the question in the title bar. You can
navigate through the interview until you locate the question whose value must be changed.
Question Log - Start the JavaTest harness and load the configuration file that will be used to run tests.
Choose Configure > Show Question Log in the Test Manager menu bar to view the Question Log of
the current configuration. The Question Log displays the tag-name for each question in the interview
and its value.

A detailed description of the utility is also available in your TCK at:

doc/javatest/editJTI.html

14.5. Examples of Using EditJTI
The following are examples of basic operations that can be performed by using EditJTI:

Edit a Configuration File [p 127]
Generate a Log of All Updates [p 128]
Preview But Not Change [p 128]
Echo Results of Your Edit [p 128]
Show Paths for Debugging [p 128]
Change Test Suites or Create a New Interview [p 128]
Change the HTTP Port and Overwrite Original Configuration File [p 129]
Change the HTTP Port and Create New Configuration File [p 129]
Doing Escapes in a UNIX Shell [p 129]

See Editing Responses in a Configuration File [p 125] for a detailed list of options that can be used in the
EditJTI command.

14.5.1. Edit a Configuration File

When using EditJTI to edit a configuration file you can use either one of two edit command formats:

1. tag=value for direct replacement of values. You must know the tag-name for the question that sets the
value.

2. /old pattern/new pattern/ to replace all occurrences (strings) of an "old pattern" to a "new pattern." This
format replaces all occurrences in the file.

When using the /old pattern/new pattern/ format, the separator used can be any character, however, it is
recommended that the string be enclosed in quotes to avoid shell problems:

14.5. Examples of Using EditJTI 127

"|/java/jdk/1.3/|/java/jck/1.4/|"

To run the following examples of editing configuration files, you must replace myoriginal.jti with a .jti
file name that exists on your system. Win32 users must also replace the "\" file separators with "/" to run
these examples.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -o mynew.jti
"|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Generate a Log of All Updates

You can use the -l option to generate a log of all updates to the jti file which can be used later.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -o mynew.jti -l
myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Preview But Not Change

You can use the -n option to preview but not perform updates to the jti file:

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -n -o mynew.jti -l
myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Echo Results of Your Edit

You can include the -v option to echo results of your edit.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -n -v -o mynew.jti -l
myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Show Paths for Debugging

The -p option can be used to show the path during debugging. Using -p options in the command string
displays how the path is changed by your edit.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -n -o mynew.jti -l
myeditlog.html -p "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Change Test Suites or Create a New Interview

The following example uses the -ts option to create an empty interview derived from the test suite
(mytestsuite.ts). This is only recommended for very simple test suites.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI -o mynew.jti -l
myeditlog.html -ts mytestsuite.ts "|/java/jdk/1.3/|/java/jck/1.4/|"
myoriginal.jti

If a change is made that is not in the current interview path, then the interview will be invalid and the tests
can not be run.

128 JavaTest User’s Guide - Version 3.1.2 October 2002

Generally, you should not use EditJTI to change the interview path, only the values on the existing path. If
you are in doubt about the current interview path, open the Configuration Editor in the JavaTest harness
and use it to change the values. The Configuration Editor will then display the current interview path for
that question name/value.

14.5.2. Change the HTTP Port and Overwrite Original Configuration File

The following example changes the http port used when running tests and overwrites original
configuration file (myoriginal.jti in this example).

To run the following example you must use a .jti file that exists on your system and include httpPort in
your current interview path. If your current interview path does not include httpPort you will not be able
to change its value from the command line. To view the current interview path, open your .jti file in the
Configuration Editor. See Obtaining the Question tag-name [p 127] for detailed information about the
tag-name for the question.

java -cp lib/javatest.jar com.sun.javatest.EditJTI httpPort=8081 myoriginal.jti

14.5.3. Change the HTTP Port and Create a New Configuration File

The following example changes the http port used when running tests and writes the changed
configuration to a new configuration file (myoutput.jti in this example). The original configuration file
(myoriginal.jti in this example) remains unchanged.

To run the following example you must use a .jti file that exists on your system and include httpPort in
your current interview path. If your current interview path does not include httpPort you will not be able
to change its value from the command line. To view the current interview path, open your .jti file in the
Configuration Editor. See Obtaining the Question tag-name [p 127] for detailed information about the
tag-name for the question.

java -cp lib/javatest.jar com.sun.javatest.EditJTI -o myoutput.jti
httpPort=8081 myoriginal.jti

14.5.4. Doing Escapes in a UNIX Shell

The following uses the syntax for doing escapes in a UNIX shell. Changes to the original configuration file
(myconfig.jti in this example) are written to a new configuration file (my-newconfig.jti in this
example).

To run the following example you must replace myoriginal.jti with a .jti file name that exists on your
system and only change values that are in your current interview path. To view the current interview path,
open your .jti file in the Configuration Editor. Win32 users must also change "/" file separators to "\" to run
these examples.

To change a value in the command line, use the tag-name for the question that sets the value. See Obtaining
the Question tag-name [p 127] for detailed information about viewing the tag-name for the question.

java -cp lib/javatest.jar com.sun.javatest.EditJTI -o my-newconfig.jti
tck.serialport.midPort=/dev/term/a tck.connection.httpsCert="\"CN=Brian K,
OU=JSW, O=Sun, L=SCA22, ST=CA, C=US\"" myoriginal.jti

A detailed description of the utility is also available in your TCK at:

14.5.2. Change the HTTP Port and Overwrite Original Configuration File 129

doc/javatest/editJTI.html

14.6. Moving Test Reports
Because JavaTest reports contain links to files, you must update the links when moving reports to other
directories. The JavaTest harness provides an EditLinks utility for you to use when moving reports.

14.6.1. Format of EditLinks Command

EditLinks reads one or more files or directories and copies them to a new file or directory. Files whose
names end with ".html" are checked to see if they contain any HTML links that begin with certain
filenames. Any that do are rewritten with a corresponding different filename. All other files are copied
without change.

Example:
java -classpath lib/javatest.jar com.sun.javatest.EditLinks OPTIONS file...

OPTIONS
The various options are as follows:
-e oldPrefix newPrefix

Any links that begin with the string oldPrefix are rewritten to begin with newPrefix. Note that only
the target of the link is rewritten, and not the presentation text. Thus the edit is effectively
transparent when the file is viewed in a browser. Multiple -e options may be given; when editing
a file, the options are checked in the order they are given.
For example, if the argument
-e /work/ /java/jck-dev/scratch/12Jun00/jck-lab3/
is used on a file that contains the following segment:
/work/api/java_lang/results.jtr
the text shown bold below will match:
/work/api/java_lang/results.jtr
and the resulting new file will contain the following:
/work/api/java_lang/results.jtr

-ignore file
When scanning directories, ignore any entries named file. Multiple -ignore may be given.

For example, ’-ignore SCCS’ will cause any directories named SCCS to be ignored.

-o file
The output file or directory. The output may only be a file if the input is a single file; otherwise,
the output should be a directory into which the edited copies of the input files will be placed.

file...
The input files to be edited. If any of the specified files are directories, they will be recursively
copied to the output directory, and any HTML files within them updated.

RETURN CODE
The program will exit with one of the following return codes:

0 the copy was successful

1 there was a problem with the command line arguments

2 an error occurred while trying to perform the copy

130 JavaTest User’s Guide - Version 3.1.2 October 2002

14.6.2. Example of EditLinks Command

To run the following example you must replace myworkdir.wd with a work directory name that exists on
your system. Win32 users must also replace the "\" file separators with "/" to run these examples.

java -cp lib/javatest.jar com.sun.javatest.EditLinks -e /work/
/java/jck-dev/scratch/12Jun00/jck-lab3/ -o test12_dir.wd myworkdir.wd

A detailed description of the utility is also available in your TCK at:

doc/javatest/editlinks.html

14.6.2. Example of EditLinks Command 131

15. Troubleshooting
The JavaTest harness provides information you can use in troubleshooting problems in running tests and in
using JavaTest Agents.

15.1. Problems in Running Tests
The goal of a test run is for all tests in the test suite that are not filtered out to have passing results.

If the root test suite folder contains tests with errors or failing results, you must troubleshoot and correct
the cause to satisfactorily complete the test run.

There are two types of problems that can occur when running tests:

Problem Description

 Tests
with errors

Tests with errors are tests that could not be executed by the JavaTest harness. These errors
usually occur because the test environment is not properly configured. Use the Test tabbed
panes and the Configuration Editor to help determine the change required in the
configuration.

 Tests that
fail

Tests that fail are tests that were executed but had failing results. The test or the
implementation may have errors. Use the Test tabbed panes

See Troubleshooting a Test Run [p 41] for information about the resources that the JavaTest harness
provides for troubleshooting.

15.2. Problems Using Agents
See Troubleshooting JavaTest Agents [p 99] for information about the tools that the JavaTest harness
provides for troubleshooting problems using JavaTest Agents.

132 JavaTest User’s Guide - Version 3.1.2 October 2002

16. Glossary
Active Agent

An agent [p 133] that initiates a connection to the JavaTest harness.

Active agents allow you to run tests in parallel using many agents at once and to specify the test machines
at the time you run the tests. Use the Agent Monitor [p 133] window to view the list of registered active
agents and synchronize active agents with the JavaTest harness before running tests.

Agent

A lightweight Java application that receives tests from the test harness, runs them on the implementation
being tested, and reports the results back to the test harness. Normally test agents are only used when the
TCK and implementation being tested are running on different platforms. When running tests on a
platform other than the one running the JavaTest harness, you must use an agent. The JavaTest harness
uses three types of agents:

Active agents [p 133]
Passive agents [p 136]
Serial agents [p 137]

Agent Monitor

The JavaTest window used to synchronize active agents and to monitor agent activity. The Agent Monitor
window displays the agent pool [p 133] and the agents [p 133] currently in use. To open the Agent Monitor
window, choose Tasks > Monitor Agent Activity from the menu bar.

Agent Pool

A list in the Agent Monitor [p 133] of the active agents [p 133] that are connected with the JavaTest harness
and available to run tests. Agents are removed from the agent pool when they are running tests.

All Tests

A test tree view filter [p 139] that displays all folders and tests in the test suite [p 138] .

Audit

The JavaTest harness includes an audit tool that you can use to analyze the test results in a work directory.
The audit tool verifies that all tests in a test suite ran correctly and identifies any audit categories of a test
run that had errors.

You can audit a test run in GUI mode or in batch mode.

Batch Mode

The mode in which the JavaTest harness is run from the command line without using a GUI. Running in
batch mode allows you to include the JavaTest harness as part of a product build process.

Configuration

Information about the computing environment, required to execute a test suite. The JavaTest harness uses
the configuration editor to collect two types of data in an interview file [p 135] :

16. Glossary 133

Test environment [p 137]
Standard Values [p 137]

Use the configuration editor to collect or modify configuration information or to load an existing
configuration. See Configuration Editor [p 134] .

Configuration Editor

The JavaTest Configuration Editor provides two views, the All Values View and the Standard Values view.
Use the configuration editor’s All Values view to create a configuration file for the test run and to search
interview titles, questions, and answers for character strings. Use the configuration editor’s Standard
Values view to modify specific runtime values.

To open the Configuration Editor, choose Configure > Configuration Editor from the Test Manager menu
bar.

Current Configuration Filter

The configuration containing the test environment and standard values currently loaded in the test
manager or specified in batch mode for use in running tests and displaying test status.

Custom Filter

A filter [p 139] that can be edited in the Filter Editor to include or exclude the results of specific tests or
folders either in views of the test tree [p 138] or in test reports.

Desktop

The configuration and layout of the windows used by the JavaTest harness.

The desktop is saved when you exit from the harness and is automatically restored in your next session.

The JavaTest desktop is displayed in three user selectable styles:

SDI [p 137]
MDI [p 136]
Tabbed [p 137]

Environment

See Test Environment [p 137] .

Environment Files

Contain one or more test environments used by test suites prior to the JavaTest 3.0 harness. Environment
files are identified by the .jte extension in the file name.

Environment Variables

Name/value pairs used by a test environment [p 137] to provide information about how to run tests of a
test suite on a particular platform.

For test suites prior to the JavaTest 3.0 harness, the environment variables are read from an
environment file [p 134] (.jte).
For JavaTest 3.0 (or later) test suites, the environment variables are derived from an interview file [p
135] (.jti).

Exclude List

134 JavaTest User’s Guide - Version 3.1.2 October 2002

Exclude list files (*.jtx), supply a list of invalid tests to be filtered out of a test run by the test harness. The
exclude list provides a level playing field for all implementors by ensuring that when a test is determined
to be invalid, then no implementation is required to pass it. Exclude lists are maintained by the technology
specification Maintenance Lead and are made available to all technology licensees.

Use the configuration editor to add or remove exclude lists from a test run.

To view the contents of an exclude list, choose Configure > Show Exclude List from the Test Manager
menu bar. Exclude lists can only be edited or modified by the test suite Maintenance Lead.

Filtered Out

Folders and their tests that have been excluded from the test run by one or more test run filters [p 138] .

Filtered out folders and tests are identified in the test tree by grey folder and test icons.

Filters

A facility in the JavaTest harness that accepts or rejects tests based on a set of criteria. Used to configure the
Test Manager view [p 139] and to create test reports. Use the Configuration Editor [p 134] or the filter
editor to configure the filters.

HTTP Server

Software included in the JavaTest harness that services HTTP requests used to monitor a test run from a
remote work station.

Interview Files

Contains all of the information collected by the configuration editor [p 133] about the test platform.

The JavaTest harness uses the interview file (.jti) to derive the environment variables [p 134] required
execute the test suite.

When changes to the environment variables are required, use the configuration editor to modify the .jti
file.

.jtb Files

An ASCII file containing a lengthy series of batch commands and their arguments used in the batch mode
command line. Using a batch command file allows you to repeatedly use a batch configuration without
retyping the commands each time a test run is performed.

It is recommended that a descriptive name and the extension .jtb are used to help identify the function of
each batch file.

.jte Files

See Environment Files [p 134] .

.jti Files

See Interview Files [p 135] .

.jtr Files

See Test Result Files [p 138] .

.jtx Files

16. Glossary 135

See Exclude List [p 134] .

Keywords

Special values in a test description [p 137] that describe how the test is executed.

Keywords are provided by the test suite for use in the Configuration Editor as a filter to exclude or include
tests in a test run.

MDI

See Multiple Document Interface [p 136] .

Multiple Document Interface

A window style in which the JavaTest desktop [p 134] is a single top-level window that contains all
JavaTest windows opened to perform a task.

Use the JavaTest Preferences dialog box to select the MDI window style. See JavaTest Preferences.

Observer

An optional class instantiated from the command line to observe a test run. The class implements a specific
observer interface.

Parameters

Values used to configure an agent. The agent parameters can be set at the time the agent is started or, if the
agent GUI is used, from the Parameters tab after the agent GUI has started.

Passive Agent

Agents that must wait for a request from the JavaTest harness before they can run tests.

The JavaTest harness initiates connections to passive agents as needed. Passive agents are simpler, but less
flexible than active agents [p 133] because you must specify the test machine as part of the test
configuration [p 133] , not at the time you run the tests. Passive agents do not allow you to run tests in
parallel.

Port Number

A number assigned to the JavaTest harness that is used to link specific incoming data to an appropriate
service.

Prior Status

A filter [p 138] used to restrict the set of tests in a test run based on the last test result information stored in
the test result [p 138] files (.jtr).

Use the configuration editor to enable the Prior Status filter for a test run.

Progress Monitor

A dialog box that displays detailed information about the current configuration of a test run. Information
displayed in the Progress Monitor is not altered by view filter settings.

To display the Progress Monitor, do one of the following:

Choose View > Progress Monitor from the Test Manager menu bar

Click the icon in the test status display

136 JavaTest User’s Guide - Version 3.1.2 October 2002

Report Directory

The directory in which the JavaTest harness writes test reports.

The location of the report directory is set in the GUI or from the command line by the user when generating
test reports.

SDI

See Single Document Interface [p 137] .

Serial Agent

Use serial mode (serial agent) when you want the agent to use an RS-232 serial connection. Serial agents
wait for the JavaTest harness to initiate the connection. Infrared, parallel, USB, and firewire connections can
also be added through the JavaTest API by modeling the existing serial system.

Single Document Interface

A window style in which the JavaTest harness opens a console window and individual tool windows as
separate top-level windows on an unbounded desktop. Use the JavaTest Preferences dialog box to select
the SDI window style. See JavaTest Preferences.

Standard Values

Values in a configuration that govern how the JavaTest harness runs the tests of a test suite. Standard
values are a part of the configuration interview but can change from test run to test run. You can use the
Standard Values view of the Configuration Editor to edit the standard values in the current configuration.
See Current Configuration [p 134] .

System Properties

Contains environment variables [p 134] from your system that are required to run the tests of a test suite [p
138] .

Because the JavaTest harness cannot directly access environment variables, you must use command-line
options to copy them into the JavaTest harness system properties.

Tabbed

A window style in which the JavaTest desktop [p 134] is a single top-level window that displays all
JavaTest windows as tabbed panes.

Use the JavaTest Preferences dialog box to select the Tabbed window style. See JavaTest Preferences.

Test Description

Machine readable information that describes a test to the JavaTest harness so that it can correctly process
and run the related test. The actual form and type of test description depends on the attributes of the test
suite. When using the JavaTest harness, the test description is a set of test-suite-specific name/values pairs
in either HTML tables or Javadoc-style tags

Each test in a test suite [p 138] has a corresponding test description that is typically contained in an HTML
file.

Test Environment

A collection of values that provide information about how to run tests on a particular platform.

16. Glossary 137

When a test in a test suite [p 138] is run, the JavaTest harness gives the script a test environment containing
environment variables [p 134] that are derived from configuration data collected by the configuration
editor. See configuration [p 133] .

Prior to the JavaTest 3.0 harness, the environment variables were read from an environment file. Use of
environment files is deprecated, however, the JavaTest harness provides support for those test suites that
use environment files. See environment file [p 134] .

Test Manager

The JavaTest window used to configure, run, monitor, and manage tests from its panels, menus, and
controls.

The Test Manager window is divided into two panes. It displays the folders and tests of a test suite in the
tree pane on the left and provides information about the selected test or folder in the information panes on
the right. A new Test Manager window is used for each test suite that is opened.

Test Result Files

Contains all of the information gathered by the JavaTest harness during a test run.

The test result files (.jtr) are stored in a cache in the work directory [p 139] associated with the test suite.

You can view the test result files in a web browser configured to use the JavaTest ResultBrowser servlet.

Test Run Filters

Include or exclude tests in a test run:

Exclude lists [p 134]
Keywords [p 136]
Prior status [p 136]

Test run filters are set using the configuration editor or the parameter editor.

Test Script

A script used by the JavaTest harness, responsible for running the tests and returning the status (pass, fail,
error) to the harness. The test script must understand how to interpret the test description information
returned to it by the test finder. The test script is a plug-in provided by the test suite. The Test Manager
Properties dialog box lists the plug-ins that are provided by the test suite.

Test Suite

A collection of tests, used in conjunction with the JavaTest harness to verify compliance of the licensee’s
implementation of the technology specifications.

A test suite must be associated with a work directory [p 139] before the JavaTest harness can run its tests.

Test Tree

The hierarchical representation of the folders and tests in a test suite [p 138] .

The test tree is displayed in the Test Manager [p 138] window and uses colored status icons to indicate the
test status of the folders and tests. Use view filters [p 139] to specify the folders and tests whose test status
are displayed in the test tree.

Tests to Run

138 JavaTest User’s Guide - Version 3.1.2 October 2002

Test folders and/or tests specified as a starting point in the test tree [p 138] for running tests.

Initial files are used to limit the test run to a specific branch of the test tree or to a specific test. The JavaTest
harness walks the test tree starting at the folder and/or test and runs all tests (unless otherwise filtered out
[p 135]) that it finds.

Use the configuration editor or the parameter editor to modify the initial files listed in the test run
configuration.

View Filters

Include or exclude the results of tests in views of the test tree [p 138] . The following filters are provided in
the combo box at the bottom of the test tree:

Current Configuration [p 134]
All Tests [p 133]
Custom [p 134]

View filter settings do not include or exclude tests from a test run. Use the test run filter [p 138] settings to
include or exclude tests from a test run.

Work Directory

A directory associated with a specific test suite [p 138] and used by the JavaTest harness to store files
containing information about the test suite and its tests.

Until a test suite is associated with a work directory, the JavaTest harness cannot run tests.

16. Glossary 139

17. Index

A

active agents, troubleshooting [p 99]

active host (active agent), setting [p 89]

Agent Monitor [p 94]

agent pool [p 95]

agent pool [p 95]

all tests (filter) [p 58]

arrows, folder icons [p 45]

arrows, test icons [p 46]

audit tests, batch mode [p 111]

audit tests, GUI [p 67]

auto-start the agent [p 93]

B

batch commands, specifying [p 105]

batch file [p 105]

batch mode, running tests in [p 111]

browse exclude list files [p 125]

browse result files [p 125]

browsing exclude list contents [p 32]

browsing test environments [p 32]

browsing test information [p 43]

browsing test reports [p 64]

button bar (same as toolbar) [p 10]

C

checklist, viewing [p 31]

clearing test results, GUI [p 47]

140 JavaTest User’s Guide - Version 3.1.2 October 2002

clearing test results, batch mode [p 108]

colors, folder icons [p 45]

colors, test icons [p 46]

command-line interface [p 105]

command-line options, using [p 112]

concurrency [p 29]

concurrency values (agents), setting [p 92]

configuration editor, All Values [p 18]

configuration editor, Standard Values [p 23]

configuration editor, using the [p 17]

Configuration pane [p 54]

Configure menu [p 11]

configuring test information [p 17]

context sensitive help [p 15]

creating a map file (agents) [p 103]

creating a work directory [p 16]

current configuration (filter) [p 58]

custom filter [p 59]

D

desktop, JavaTest harness [p 71]

dialog box, Exclude List [p 33]

dialog box, Filter Editor [p 57]

dialog box, New Report [p 63]

dialog box, Test Environment [p 32]

dialog box, Preferences [p 75]

dialog box, Progress Monitor [p 38]

dialog boxes, Welcome [p 5]

display command-line help [p 115]

displaying command-line help (agents) [p 92]

E

17. Index 141

editJti [p 125]

editLinks [p 130]

editor, configuration [p 17]

editor, filter [p 57]

environment files [p 28]

Error status pane [p 52]

errors, testsuite [p 62]

exclude list contents, browsing [p 32]

exclude list files, browse [p 125]

exclude list, initial [p 24]

exclude list, latest [p 24]

exclude list, other [p 24]

exclude lists, specifying [p 24]

F

Failed status pane [p 50]

File menu [p 73]

file, specifying a map [p 92]

files, batch [p 105]

files, creating map [p 103]

files, .jte [p 114]

files, .jti [p 18]

files, .jtp [p 114]

files, .jtr [p 28]

files, .jtx [p 125]

Files pane [p 51]

filter editor [p 59]

folder icons [p 45]

folder tabbed pane [p 50]

G

getting started [p 9]

142 JavaTest User’s Guide - Version 3.1.2 October 2002

H

help, agent command-line [p 92]

help, context sensitive [p 15]

help, JavaTest online [p 7]

Help menu [p 75]

HTTP server, monitor results with the [p 121]

I

icons, folder [p 45]

icons, test [p 46]

initial exclude list [p 24]

initial files [p 24]

interview, editing in the command-line [p 125]

interview, editing in the GUI [p 17]

interview, editing in batch mode [p 109]

J

.jte files [p 114]

.jti files [p 18]

.jtp files [p 114]

.jtr files [p 28]

.jtx files [p 125]

K

keywords [p 26]

L

latest exclude list [p 24]

log, viewing the question [p 33]

M

map files, specifying [p 92]

map file, creating a (agents) [p 103]

MDI window style [p 77]

memory (Test Monitor) [p 38]

17. Index 143

menu, Configure [p 11]

menu, File [p 73]

menu, Help [p 75]

menu, Report [p 63]

menu, Run Tests [p 12]

menu, Tasks [p 74]

menu, View [p 13]

menu, Window [p 75]

menus, Test Manager [p 10]

messages, test run [p 55]

Monitor, Agent [p 94]

monitor results with the HTTP server [p 121]

monitoring a test run [p 37]

monitoring JavaTest Agents [p 94]

Move report files [p 130]

multiple configurations, working with [p 31]

N

Not Run tab [p 52]

O

Test Run Messages pane [p 55]

opening a jti file, batch mode [p 107]

opening a report [p 63]

opening a work directory [p 15]

other exclude list [p 24]

P

Passed status pane [p 51]

passive agents, troubleshooting [p 99]

plug-ins [p 61]

pool, agent [p 94]

popup menu, test tree [p 47]

144 JavaTest User’s Guide - Version 3.1.2 October 2002

port number (active agents), setting [p 89]

Preferences dialog box [p 75]

prior status [p 27]

progress meter [p 38]

Progress Monitor dialog box [p 38]

properties, Test Manager [p 61]

Q

question log, viewing the [p 33]

quick pick test execution (test tree popup menu) [p 47]

R

refresh tests (test tree popup menu) [p 47]

report files, move [p 130]

reports, browsing test [p 64]

resetting tests (test tree popup menu) [p 47]

Run Tests menu [p 35]

running tests [p 35]

running tests in batch mode [p 105]

S

SDI window style [p 78]

set tracing (agents) [p 93]

set (batch mode) [p 110]

setting active host (active agents) [p 89]

setting concurrency (agents) [p 92]

setting tasks in history (agents) [p 93]

specifying a map file (agents) [p 92]

specifying batch commands [p 105]

starting a test run [p 36]

starting JavaTest [p 4]

status panes [p 51]

stopping a test run [p 40]

17. Index 145

sub-total (Test Manager window) [p 50]

Summary pane (Test Manager window) [p 50]

T

tabbed pane, folder [p 50]

tabbed pane, test [p 53]

tabbed window style [p 77]

tasks in history, setting (agents) [p 93]

Tasks menu [p 74]

Test Description pane [p 54]

test icons [p 46]

Test Manager [p 10]

Test Progress Display [p 38]

Test Run Details pane [p 55]

test suite, choosing [p 15]

test tabbed pane [p 53]

test tree pane [p 43]

tests, running [p 35]

time factor [p 29]

tool tips [p 76]

tracing agent activity, set [p 93]

tree, test [p 43]

Troubleshooting [p 132]

troubleshooting a test run [p 41]

troubleshooting active agents [p 99]

troubleshooting JavaTest Agents [p 99]

troubleshooting passive agents [p 100]

U

user interfaces, JavaTest [p 71]

using the Configuration Editor [p 17]

V

146 JavaTest User’s Guide - Version 3.1.2 October 2002

view filter (Test Manager window) [p 57]

view, folder (Test Manager window) [p 50]

View menu [p 13]

view, test (Test Manager window) [p 53]

viewing test reports [p 64]

W

Welcome dialog boxes [p 5]

Window menu [p 75]

window styles [p 76]

work directory, creating [p 16]

work directory, opening [p 15]

working with multiple configurations [p 31]

writereport (batch mode) [p 111]

X,Y,Z

17. Index 147

	1.€What is the JavaTest Harness?
	1.1.€JavaTest Features

	2.€Before Starting the JavaTest Harness
	3.€Starting the JavaTest Harness
	3.1.€Welcome Dialog Boxes
	3.1.1.€Test Suite Dialog Box
	3.1.2.€Work Directory Dialog Box

	4.€JavaTest Online Help
	4.1.€Accessing Help
	4.2.€Navigation

	5.€Using the JavaTest Harness
	5.1.€Test Manager Window
	5.1.1.€Configure Menu
	5.1.2.€Run Tests Menu
	5.1.3.€Report Menu
	5.1.4.€View Menu
	5.1.5.€Tool Bar

	5.2.€Displaying JavaTest Help and Information
	5.2.1.€Help Menu
	5.2.2.€Help Buttons
	5.2.3.€F1 Key

	5.3.€Opening a Test Suite
	5.4.€Opening a Work Directory
	5.5.€Creating a Work Directory

	6.€Configuring a Test Run
	6.1.€Configuring All Values
	6.1.1.€Using the Configuration Editor: All Values View
	Create or Edit a Configuration
	Searching the Interview
	Saving the Interview

	6.1.2.€Using the Menus
	File Menu
	Search Menu
	View Menu
	Help Menu

	6.1.3.€Using the All Values View Panes
	Index Pane
	Question Pane
	More Info Pane

	6.1.4.€Find Questions

	6.2.€Changing Standard Values
	6.2.1.€Using the Configuration Editor: Standard Values View
	Specifying Tests to Run
	Using Exclude Lists
	Latest Exclude List
	Other Exclude List

	Using Keywords as a Filter
	Using Prior Status as a Filter
	Specifying the Test Environment
	Files
	Name

	Setting Test Execution Values
	Concurrency
	Time Factor

	6.3.€Working with Multiple Configurations
	6.3.1.€Creating a New Configuration File
	6.3.2.€Opening an Existing Configuration File

	6.4.€Viewing the Configuration Checklist
	6.5.€Viewing the Test Environment
	6.5.1.€Test Environment Dialog Box

	6.6.€Viewing Exclude Lists
	6.6.1.€Exclude List Dialog Box
	Exclude List Contents
	Test Details

	6.7.€Viewing the Question Log

	7.€Running Tests
	7.1.€Starting a Test Run
	7.2.€Monitoring a Test Run
	7.3.€Using the Test Tree
	7.4.€Using the Test Progress Display
	7.4.1.€Select a Monitor
	Elapsed Time
	Run Progress Meter

	7.5.€Using the Progress Monitor
	7.5.1.€ Progress
	7.5.2.€ Time
	7.5.3.€ Memory
	7.5.4.€ Tests in Progress

	7.6.€Stopping a Test Run
	7.7.€Troubleshooting a Test Run
	7.7.1.€Test Tree
	7.7.2.€Folder View
	7.7.3.€Test View

	8.€Browsing Test Information
	8.1.€Test Tree
	8.1.1.€Folder Icons
	Result Status
	Run Status

	8.1.2.€ Test Icons
	Result Status
	Run Indicator

	8.1.3.€Using the Test Tree Popup Menu
	"Quick Pick" Test Execution
	Refresh Test Suite Contents
	Refreshing a Single Test
	Refreshing a Folder

	Clear Previous Test Results
	Clear a Single Test Result
	Clear Test Results in a Folder

	8.2.€Folder View
	8.2.1.€Summary Information
	8.2.2.€Status Information
	Passed †green‡
	Failed †red‡
	Error †blue‡
	Not Run †white‡
	Filtered Out

	8.3.€Test View
	8.3.1.€Test Description
	Name
	Value

	8.3.2.€Files
	8.3.3.€Configuration
	Name
	Value

	8.3.4.€Test Run Details
	Name
	Value

	8.3.5.€Test Run Messages
	Message List
	Message Area
	Summary Message
	Script Messages
	Output Summary and Result Messages
	Test Result Message

	8.4.€Using Filters
	8.4.1.€The Current Configuration Filter
	8.4.2.€The All Tests Filter
	8.4.3.€The Custom Filter
	Editing the Custom Filter
	Specifying Tests to View
	Using Keywords as a View Filter
	Using Prior Status as a View Filter
	Using the Exclude List as a View Filter
	Using Special Settings as a Filter

	Using a Custom View Filter

	8.5.€Test Manager Properties
	8.5.1.€Test Suite
	8.5.2.€Work Directory
	8.5.3.€Configuration
	8.5.4.€Plug-Ins

	8.6.€Test Suite Errors

	9.€Using Test Reports
	9.1.€Generating New Reports
	9.2.€Viewing Reports
	9.2.1.€View Reports in the Report Browser
	9.2.2.€View Reports Offline

	9.3.€Moving Report Files

	10.€Auditing a Test Run
	10.1.€Auditing in GUI Mode
	10.2.€Auditing in Batch Mode
	10.3.€Setting Audit Options
	10.3.1.€Test Suite
	10.3.2.€Work Directory
	10.3.3.€Configuration File
	10.3.4.€Start Audit Button
	10.3.5.€Cancel Button
	10.3.6.€Help Button

	10.4.€Audit Test Results Window
	10.4.1.€Summary
	10.4.2.€Bad Result File
	10.4.3.€Bad Checksum
	10.4.4.€Bad Test Description
	10.4.5.€Bad Test Cases

	11.€Customizing the JavaTest GUI
	11.1.€The JavaTest GUI
	11.2.€The JavaTest GUI Windows
	11.3.€JavaTest Menus
	11.3.1.€File Menu
	11.3.2.€Tasks Menu
	11.3.3.€Windows Menu
	11.3.4.€Help Menu

	11.4.€Setting JavaTest Preferences
	11.4.1.€Changing Appearance Preferences
	Changing Window Styles
	Tabbed
	MDI
	SDI

	Setting Tool Tip Options
	Changing Shutdown Options

	11.4.2.€Changing Test Manager Preferences
	11.4.3.€Changing Configuration Editor Preferences
	Set the Configuration Editor Default View
	Display/Hide the Configuration Editor More Info Pane

	11.5.€Managing JavaTest Windows

	12.€Using a JavaTest Agent
	12.1.€Choosing the Type of Agent
	12.2.€Starting an Agent
	12.2.1.€Agent Application
	12.2.2.€Agent Applet
	12.2.3.€Using The GUI
	12.2.4.€Starting an Agent Application
	Class Paths
	Application Classes
	Agent Options

	12.2.5.€Starting an Agent Applet
	Agent Applet Tag
	Setting Parameters in the Applet Tag

	12.2.6.€Specifying Active Agent Options
	Mode
	Host
	Port

	12.2.7.€Specifying Passive Agent Options
	Mode
	Port

	12.2.8.€Specifying Serial Agent Options
	Mode
	Port

	12.2.9.€Specifying Additional Options
	Options Used to Display Help
	Options Used to Run and Monitor the Agent
	Specify a Map File
	Set Concurrency
	Set Number of Tasks in the History Tabbed Pane
	AutoStart the Agent
	Set Tracing

	12.3.€Monitoring JavaTest Agents
	12.3.1.€Agent Monitor Window
	Agent Pool
	Agents Currently In Use

	12.3.2.€Statistics Pane
	12.3.3.€History Pane
	12.3.4.€Selected Task Pane

	12.4.€Troubleshooting JavaTest Agents
	12.4.1.€Troubleshooting Active Agents
	12.4.2.€Troubleshooting Passive Agents

	12.5.€Installing Agent Classes on a Test System
	12.5.1.€Classes Required to Run Agents Using a GUI
	12.5.2.€Classes Required to Run Agents from the Command Line
	12.5.3.€Classes Required to Run Agents as Applets

	12.6.€Creating a Map File

	13.€Using the JavaTest Command-Line
	13.1.€Using Batch Mode
	13.1.1.€Formatting Batch Commands
	Batch Options
	Single String Arguments
	Batch Command Files
	Creating a Batch Command File
	Example Use of a Batch File

	13.1.2.€ Initializing the Configuration
	open name
	testSuite testsuite
	workDirectory work-directory
	Open an Exiting Work Directory
	Create a New Work Directory
	Replace an Existing Work Directory with a New Work Directory

	Shortcuts Used to Initialize the Current Configuration

	13.1.3.€ Setting the Standard Values
	concurrency number
	env environment
	envFile environment-file
	excludeList exclude-list-file
	keywords keyword-expr
	params parameter-arguments
	priorStatus status-arguments
	tests test-name
	timeoutFactor number

	13.1.4.€ Setting Other Configuration Values
	set question-tag-name value

	13.1.5.€ Running Tests in Batch Mode
	13.1.6.€ Writing Reports in Batch Mode
	13.1.7.€ Auditing Tests
	13.1.8.€ Index of Available Batch Commands

	13.2.€Specifying Additional Options
	13.2.1.€Using Parameter Commands

	13.3.€Displaying JavaTest Information
	13.4.€Examples of Batch Commands
	13.4.1.€Obtaining the Question tag-name

	13.5.€Editing in Batch Commands
	13.5.1.€Open a .jti File and Change Values Before Running Tests
	13.5.2.€Create a New Work Directory

	13.6.€Modifying Settings in a Configuration
	13.6.1.€Selecting Tests to Run
	13.6.2.€Selecting an Exclude List
	13.6.3.€Setting Configuration Values

	13.7.€Using a Batch File
	13.7.1.€Example of Using a Batch File

	14.€Using Additional JavaTest Utilities
	14.1.€Monitoring Results with HTTP Server
	14.1.1.€HTML Formatted Output
	Accessing HTTP Server HTML Formatted Output
	Viewing HTTP Server Index Page
	Viewing HTTP Server Harness Page
	Viewing HTTP Server Test Result Index Page
	Viewing the Harness Environment Page
	Viewing the Harness Interview Page
	Using HTTP Server to Stop a Test Run

	14.1.2.€Plain Text Output
	Accessing Version Information
	Accessing Harness Information

	14.2.€Browsing Result †.jtr‡ Files
	14.3.€Browsing Exclude List Files
	14.4.€Editing Responses in a Configuration File
	14.4.1.€Format of EditJTI Command
	14.4.2.€Obtaining the Question tag-name

	14.5.€Examples of Using EditJTI
	14.5.1.€Edit a Configuration File
	Generate a Log of All Updates
	Preview But Not Change
	Echo Results of Your Edit
	Show Paths for Debugging
	Change Test Suites or Create a New Interview

	14.5.2.€Change the HTTP Port and Overwrite Original Configuration File
	14.5.3.€Change the HTTP Port and Create a New Configuration File
	14.5.4.€Doing Escapes in a UNIX Shell

	14.6.€Moving Test Reports
	14.6.1.€Format of EditLinks Command
	14.6.2.€Example of EditLinks Command

	15.€Troubleshooting
	15.1.€Problems in Running Tests
	15.2.€Problems Using Agents

	16.€Glossary
	17.€Index

