& ‘Boss The Professional
Open Source Company

o0
JBoss Remoting Guide

JBoss Remoting version 2.2.2.SP8

June 22, 2008

Copyright © 2008 JBoss, a division of Red Hat .

Table of Contents

O Y T SRR 1
1.1. What iSIBOSS REMOLING ...eoiiieiieeiiiiiie ettt ettt e st e e et e e e aban e e e s annn e e e e e nees 1

O =] = 1

1.3. HOW tO g€t JBOSS REMOLINGuvvveiiiiieeiiiiiiiiee e e e e e e ettt e e e e e e e s s st re e e e e e e e s s s entnbaa e e e e e e e s s snnntraneeeeeas 2
Y =] T T RSP 3
LAL INTEIEESE 2.2.2.SP7 ...ttt et e e e e e e e e e e e nnes 3

142 INTEIEASE 2.2.2.SPA ...ttt e e e et aa e e e annraes 3

LA INTEIEESE 2.2.2.SP2 ...ttt et a e e e e e e 3

LAA INTEIEESE 2.2.2.GA ..ottt 3

FZ N o0 = ot (U = RS SPPPERRR 4
3. JB0OSS REMOLING COMPONENESeeeeiiiiitiieie e e e e e et e e e e e e e et e e e e e e e e s st b e e e e e aeesssssstsaeeeeaeesssantrreeeeeeas 8
TN B B 1 o0 Y= YOO U PTPPPP PP 10

G I I =10 o =S 10

4. Remoting libraries and thirdparty dependanCi€sooceiiiiiiiieiiiiee e 12
I I g 11 o o 7= 1 Y 1 o= = 13

I @0 41 Ko 0 = (o | PRSP PPPEPPR 15
5.1. General transport CONFIGUIELIONeeieiieiiieeiiiiie e e s e e s e e s e e e e 15
5.1.1. Server Side CONfigUIatioNc..eeeeiieiiiiiiiiieeee e e e et r e e e e e e 15

5.1.1.1. ProgrammatiC CONfIQUIAION.uvieeiiiiiieeeiiireee sttt e ettt e s s e e s e e e 15

5.1.1.2. Declarative configurationcccooveiieiii i, 17

5.1.1.3. Callback client CONfigUIationoocueeiiiiiiiie e 19

5.1.2. Client side configurationccooooeiiii i, 19

I o =00 | = £ PP TUPRRPRTPRPN 20

5.3. DISCOVENY (DEIECIOIS)eveeeeiiuiiiieesiiee e e et e et et e e et e e e st e e e st e e e e s s e e e s anne e e e s annnneeeans 24

5.4, TranSPOIS (INVOKEIS) ...vveiiieieiiiciiiiiiee e e e et e e e e s e st e e e e e e s s st b e e e e e e e e s eenatbtaaeeeeeeessananneees 26
5.4.1. Featuresintroduced in REMOLING VEISION 2.2ccoiiiiiieiiiiiiee et 26

5.4.1.1. Binding t0 0.0.0.0uuiiiiiiiiie et 26

5.4.1.2. SUPPOIt FOr IPV6 BOAIESSESccoiueiiieeiiiiiee ettt 27

5.4.2. SEIVEN INVOKEN'Seeeiiiieiie e e ittt ettt e e e e e s ettt e e e e e e e e ettt e e e eaeeeeaansnneeeeeaaeeaaans 27

5.4.3. Configurations affecting the iNVOKer Client ..o 27

5.4.4. How the server bind address and port isdeterminedccccooiiiieiiiiiee e 28

5.4.5. SOCKEL INVOKESeiiiiiiiiiee ettt e et e e s st e e s s nnb et e e e e nbe e e e s nnraeeeeans 28

5.4.5.1. How the Socket INVOKEr WOTKSccoiiiiiiiiiiiiiie e 30

5.4.6. SSL SOCKEL INVOKESeiiiiiiiiiiiiiiei ettt e e e e et e e e e e e e s s enenreeeeeaaeeean 32

B5.4.7. RMI TNVOKET ..ttt e e e e e e e e e e e e e s e e bbb e e e aaeessssnssrnaeeaaaeeeaans 32

5.4.8. SSL RMI INVOKES ...eeiiiieiee ettt e e e e et e e e e st e e e anneaeeeeannteeeeeansneeeaans 32

549 HTTP INVOKES ...ttt ettt e st e e e e e e s snbaeeeean 32

5.4.10. HTTPS INVOKES ..., 33

5.4.11. HTTP(S) Client Invoker - proxy and basic authenticationcccccceeeiiiiiiiiienieeenn, 34

5.4.12. SEIVIEL INVOKEYeiiiiiiiie ettt e e e e e e e e e e e e e e s s st reeeeeaeessannssranenaaaeesaans 35

5.4.13. SSL SErVIEL INVOKEeiieiiiiiiieieiiite et si et e e e e e e e e st e e e annseeeeeanteeeeeansaeeeeans 37

5.4.14. Exception handling for web based ClIENtScoooiiiiiiiiiiiiiie e 38

5.4.15. MUITIPIEX TNVOKEY ...ttt e e s e e e e e e 38

5.4.15.1. SEttiNg UP tNE SEIVENco i a e e e e eanneees 39

JBoss June 22, 2008

JBoss Remoting Guide

5.4.15.2. Setting UP the ClIENT ... e e 40

5.4.15.3. Shutting dOWN INVOKEr QrOUPS.cccoiirreeeiiiieeeeiiiiee e et e siiee e e s e e e sreeee e 43

5.4.15.4. EXAMPLES ...cooeeeeeeee e, 44

5.4.15.5. CONfigUuration PrOPEITIEScceiiuiiieeiiiiiee e st ee ettt e et e s e e e e s snneeeeean 46

5.4.16. SSL MUIIPIEX INVOKES ...ttt e e e e e e e e e e e e e ns 47
5.4.17. BiSOCKEL INVOKES ...ttt e st e e s b e e e e snbaeeeean 47
BUA.L7. 1L OVEIVIBW .oeeeieiiieeeeiiieeeeesiieee e e stee e e e sstaaeaesnntteeeaassteeeeeantanaeeassneeeeannsaneenansaneenans 47

BUALT.2. DEIAIS ..eveeieiiiiiie ettt e e e e e et e e e an 48

5.4.18. SSL BiSOCKEL INVOKESciiiiiiiiiieie et e e e e s s s e e e e e e s e e snnnrnaeeaaaeeeaaas 50

5.5 . Marshalling ..o 51
B5.6. CAllDBCKSeeeeiieeee e e e e aa e e s 53
5.6.1. CallDACK OVEINVIEWooiiieiiiee e e e e s e e e e e e e e 53
5.6.1.1. CallDaCk CONNECLIONSccoiieiiiiiiiiiie et 53

5.6.1.2. Transmitting CallDacksccooiiiiiiii e 54

5.6.1.3. CallDBCK SIOTES.oeiiiiiiiieiiiiiee et snraee e 54

5.6.1.4. Callback acknowledgementSovii i 55

5.6.2. Registering callback handlers. ..., 57
5.6.2.1. PUIl CAllDACKS.oeiiiiiiieee et 57

5.6.2.2. PUSN CalIDACKS.oeiiiiiiee ettt e 58

5.6.3. Unregistering callback handIersooociiiiiiiii e 61
5.6.4. Callback Store CONfiQUIALioN.eviiiiiiiiee et 61
5.6.5. Callback EXception HAaNAIINGccoveieiiiiiiiieiieeee e e e e e 63

5.7. Socket factories and server SOCKEL fACIOMEScvviieeiiiiciiiiir e 64
5.7.1. Server side programmatic configurationccccceeee e, 64
5.7.1.1. Server SOCKEL fFaCtONES. ...ooiiieiiieiiiii e e e e 64

5.7.10.2. SOCKEL TACLOMESeeeeeieieeeeiieieie ettt e e et e e e e e e e et e e e e e e e e e ennnees 66

5.7.2. Client side programmatic CoONfigUIrationccccccooiiiiiiieiiee e 67
5.7.2.1. Server SOCKEL TaCtONES. ...oiiiiiiiiiiiie et e e e et rre e e e e e e s 67

5.7.2.2. SOCKEL FACLOMES. ..oiiiiieiei ettt e e e e e nree e e e snreeeeean 68

5.7.3. Server side configuration in the JBoss AppliCation SErVErcccceviiiiieeiiiiieee s 69
5.7.4. SOCKEL Creation [HSIENENS ... e e e e e e e e e e e e e e 71
B.7.5. SSL TraNSPOMS ... eeeeeee e 72
5.7.6. SSLSOCKEtBUIIAEYc.eeeeeeeeiiiie ettt et e et e e e st e e e s nete e e e enneaeeennsneeeeans 73
5.7.7. SSL Server SOCKEtFaCtONYSEIVICE ...oooeeeiiiiiiieiee e a e e e 79
5.7.8. General SECUNMtY HOW TO ...c..ueiiiiiiiiiie ettt e e e e 79
5.7.9. TroubleShOOtiNG TIPS .eveiiieiiiiiiiiiee e e e e e e e s e et e e e e e e s e s sarbrereeeaaeeeaas 80

o3RS T T 1070 =SSR 81
5.8.1. General timeout CONfIgUIationccoooviiii i, 81
5.8.2. Per INVOCALTON TIMEOULSuvviiieiiiiiie ettt sttt e e st e e s sabe e e e s snbaeeeeans 81
5.8.3. Transport specific timeout NandliNgoooiiiiiiii e 81
5.8.3.1. Socket and biSOCKEL traNSPONSeveeeeeiiiciiiieieeeee e e et e e e e r e e e e 82

5.8.3.2. HTTPIFANSPOITeveieiiieeeeiiiiiiee ettt e e e s e e e e e s e e e e e e s s s rn e e e e e e e s s annnenes 82

5.8.3.3. Quick client diSCONNECEovvviiiiieiieeece e 82

5.9. Configuration DY PIrOPEITIESoiiiiiiiieiiiiiie ettt e et e b e e e e s e e e s sbneeaeans 83
6. SENAING SLIEAMS ... 94
20 I @0 1 To 01 1o PSSR 95
B.2. ISSUBS ..o 95
S = (T= 2= 1o o PP EP 96
8. Network ConneCtion IMONITONTINGoouueieeeiieeee ettt st e et e et e s st e e e e st e e e anbne e e e annneeas 97

JBoss June 22, 2008

JBoss Remoting Guide

8.1. Client SIAE MONITOMING ..vveiiieeiiiiiiiieeee e e e s e e e e e e s s s r e e e e e e s s e ratbbaaeeeeeeessananreees 97

8.2. SErVer SIdE MONITOIINGveeeeiitiieee ittt e et e e e et e e e e et e e e e s sbr e e e s anbeeeesannneeeeans 98

8.3. Interactions between client side and server side connection monitoringcccceeeeeeeeeeeeeee.. 100

9. Transporters - PEAMING POJOScoiiiiiieiiii ettt e e e et e e e s sba e e e e nnnneeas 101
10. HOW tO USB it - SAMPIE COUEeeiiiiiieee ettt et e e e e e s et e e e e e e e e aennneeeeeeaaeeeanns 102
O IS 0T o L= 110 To= o o [PPR P 102

0 2 I T 01770 7= 1 oo PRSP 103
10.3. ONEWAY INVOCAION ...eeeeeeiiiiiiiieeeee e e e et e e e e e e e e e e e e e s st e e e e e e e s s aasntrreeeeaeeesaansrraneeeeas 106
10.4. DiSCOVErY @G INVOCELIONeeeeiiiiiieeeiiieie e ettt e e e et e e e st e e e st e e e s st e e e e asbe e e e e anbe e e e s annneeeeans 107
1O.5. CAlIDACKS ...ceeeiiieiie ettt et e e et e e e e e e e e e e e et e e e e nnrreeeeaas 108

O S =" 1111 o PP PP T PUPPRPUTUPRR 110
10.7. JBOSS SENTAIIZALION ...oeieeeiiiiiieiee ettt e e e e e e e st e e e e e e e e e s anntt e e e e e e e e s e ansnneeeeeens 111

O R T I 00 = £ 112
10.8.1. Transporters - beaming POJOSccccuuiiiiiiiiiieiiiee e 112

10.8.2. Transporters Sample - SIMPIE ...ociiii i e e e e e 113

10.8.3. Transporter SAMPIE - DASICcooiuvriieiiiiiie e 115

10.8.4. Transporter sample - JBOSS SENTaliZatIONcccceiiiuuiuini e 120

10.8.5. Transporter SaMple - CIUSLEIedcoouueiiiiiiiiii e 125

10.8.6. Transporters sSample - MUITIPIEooeieiee e 130

10.8.7. TransSpOrters SAMPIE = PrOXY ..vveeeeeeeeiieeirerereeeeessisitsteseeseesssasasnrssereeaeessaassssnreeeaeessaans 133

10.8.8. Transporter SAMpPle -COMPIEXceeiiiiiiieiiiiii e 137

10.9. MUILIPIEX TNVOKEY'S ...coiiiiiiiiiieeee ettt e s et e e e e e e e e st e e e e e e e e s s aantb e e e e eaeeessantabnneeeans 139

11. Client programming MOOE]cooiiiiiiiiiiiii e e e e e e nnneeas 141
12. Compatibility and VErSIONINGcccceiiiiiiiiiiiii s nsasanasssnsasasnsnsnnnnnsnnnsnnnnns 142
13. Getting the JBossRemoting source and BUIAINGcuveeiiiiiiiiiiie e 143
T4, KNOWI ESSUBS ... eeteeeeeeee e e e e ettt et e e e e e e et eeeeeeeee e s e s s sttt e eeeeeee e e nseteeeeeaeeeesannssseeeeaaeeeaansnsneneeaaeeaans 145
15, FULUFE PIAINS ...ttt ettt ettt e e e e e e et e e e e e e e e e saat b baeeeeaaeess s sntabeeeeaeeseaaasnbnneeeaaeenaans 146
16. REIEASEINOLEScieiiiiiiiiie ettt e e e e e ettt et e e e e e asn et taeeeeaee e s s s sntsteeeeaaeeeaanssteneneaaeeeans 147

JBoss June 22, 2008

Overview

1.1. What is JBoss Remoting

The purpose of JBoss Remoting is to provide a single API for most network based invocations and related service
that uses pluggable transports and data marshallers. The JBossRemoting APl provides the ability for making syn-
chronous and asynchronous remote calls, push and pull callbacks, and automatic discovery of remoting servers.
The intention isto allow for the use of different transports to fit different needs, yet still maintain the same API for
making the remote invocations and only requiring configuration changes, not code changes.

JBossRemoting is a standalone project, separate from the JBoss Application Server project, but will be the frame-
work used for many of the JBoss projects and components when making remote calls. JBossRemoting is included
in the recent releases of the JBoss Application Server and can be run as a service within the container as well. Ser-
vice configurations are included in the configuration section below.

1.2. Features

The features available with JBoss Remoting are:

e Server identification — a simple url based identifier which allows for remoting servers to be identified and
called upon.

» Pluggabletransports— can use different protocol transports the same remoting API.

Provided transports:

e Socket (SSL Socket)

« RMI (SSL RMI)

« HTTP(S

e Multiplex (SSL Multiplex)
e Servlet (SSL Servlet)

» BiSocket (SSL BiSocket)

* Pluggable data marshallers — can use different data marshallers and unmarshallers to convert the invocation
payloads into desired data format for wire transfer.

JBoss June 22, 2008 1

Overview

* Pluggable serialization - can use different serialization implementations for data streams.

Provided serialization implementations:

e Javaseridlization
» JBoss seridization
e Automatic discovery — can detect remoting servers as they come on and off line.

Provided detection implementations:

« Multicast
« JINDI

e Server grouping — ability to group servers by logical domains, so only communicate with servers within spe-
cified domains.

e Callbacks— can receive server callbacks via push and pull models. Pull model alows for persistent stores and
memory management.

« Asynchronous calls — can make asynchronous, or one way, callsto server.

» Local invocation — if making an invocation on a remoting server that is within the same process space, remot-
ing will automatically make this call by reference, to improve performance.

« Remote classloading — alows for classes, such as custom marshallers, that do not exist within client to be
|loaded from server.

* Sending of streams — alows for clients to send input streams to server, which can be read on demand on the
server.

e Clustering - seamless client failover for remote invocations.
¢ Connection failure notification - notification if client or server hasfailed
e Data Compression - can use compression marshaller and unmarshaller for compresssion of large payloads.

All the features within JBoss Remoting were created with ease of use and extensibility in mind. If you have a sug-
gestion for a new feature or an improvement to a current feature, please log in our issue tracking system at ht-
tp:/ljirajboss.com

1.3. How to get JBoss Remoting

The JBossRemoting distribution can be downloaded from http://labs.jboss.com/portal/jbossremoting
[http://1abs.jboss.com/portal/jbossremoting] . This distribution contains everything needed to run JBossRemoting
stand alone. The distribution includes binaries, source, documentation, javadoc, and sample code.

JBoss June 22, 2008 2

http://jira.jboss.com
http://jira.jboss.com
http://labs.jboss.com/portal/jbossremoting

Overview

1.4. What's new?

1.4.1. In release 2.2.2.SP7

1. Server side and client side connection listeners can be tied together.

1.4.2. In release 2.2.2.SP4

1. IPv6 addresses are supported;

2. org.jboss.renoting. cal | back. Server | nvoker Cal | backHandl er can register itself as a lease connection
listener.

1.4.3. In release 2.2.2.SP2

1. Theservlet transport can throw an exception generated on the server side;

2. serverscan bind to 0.0.0.0.

1.4.4. In release 2.2.2.GA

Release 2.2.2.GA includes a number of bug fixes, greater configurability, and a couple of new features, including

1. animproved callback polling method;
2. theahility for the client to discover its | P address as seen by the server side of the connection;

The following changes affect configurability:

1. Theaddress and port of the bisocket transport secondary server socket are configurable;
2. org.jboss.renoting. Connector Val i dat or parameters are configurable;

3. the maximum number of errors before aor g. j boss. renoti ng. cal | back. Cal | backPol | er shuts down can be
specified;

4. thereisa separate timeout parameter for callbacks.

For the JIRA items related to release 2.2.2.GA, see Release Notes.

JBoss June 22, 2008 3

Architecture

The most critical component of the JBoss Remoting architecture is how servers are identified. This is done via an
InvokerLocator, which can be represented by a simple String with a URL based format (e.g., sock-
et://myhost:5400). Thisis all that is required to either create a remoting server or to make a call on aremoting serv-
er. The remoting framework will then take the information embedded within the InvokerL ocator and construct the
underlying remoting components needed and build the full stack required for either making or receiving remote in-
vocations.

There are severa layersto this framework that mirror each other on the client and server side. The outermost layer
is the one which the user interacts with. On the client side, thisis the Client class upon which the user will make its
calls. On the server side, thisis the InvocationHandler, which isimplemented by the user and is the ultimate receiv-
er of invocation requests. Next is the transport, which is controlled by the invoker layer. Finally, at the lowest layer
isthe marshalling, which converts data type to wire format.

Remoting Client Remoting Server
— Marshaller —~—. | UnMarshaller |—
. Output Inpot :
Stream Stream
p Client ! \ / E Server
E] : Invocation
-~ Client —— Invoker (m» oo o o e sssockcimee e o e ese e Invoker 1 Handler
b (transport) E / | (transport)
Input Output
. Stream Stream |
— UnMarshaller |-=t—— o Marshaller |—]

When a user calls on the Client to make an invocation, it will pass this invocation request to the appropriate client
invoker, based on the transport specified by the locator url. The client invoker will then use the marshaller to con-
vert the invocation request object to the proper data format to send over the network. On the server side, an unmar-
shaller will receive this data from the network and convert it back into a standard invocation request object and
send it on to the server invoker. The server invoker will then pass this invocation request on to the user’s imple-
mentation of the invocation handler. The response from the invocation handler will pass back through the server in-
voker and on to the marshaller, which will then convert the invocation response object to the proper data format
and send back to the client. The unmarshaller on the client will convert the invocation response from wire data
format into standard invocation response object, which will be passed back up through the client invoker and Client
tothe original caller.

Client

On the client side, there are a few utility class that help in figuring out which client invoker and marshal instances
should be used.

JBoss June 22, 2008 4

Architecture

Remoting Client

Invoker Marshal
:_+ Registry I-* Factory
- |
I rP———
1 1
Marshaller -
© Dutput
: Stream
: Client Y
| Client invoker e o e o e ssssockei
: (transport) : ‘,u"
' It
© Stream
UnMarshaller |-—-

For determining which client invoker to use, the Client will pass the InvokerRegistry the locator for the target serv-
er it wishes to make invocations on. The InvokerRegistry will return the appropriate client invoker instance based
on information contained within the locator, such as transport type. The client invoker will then call upon the Mar-
shal Factory to get the appropriate Marshaller and UnMarshaller for converting the invocation objects to the proper
data format for wire transfer. All invokers have a default data type that can be used to get the proper marshal in-
stances, but can be overridden within the locator specified.

Server

On the server side, there are also a few utility classes for determining the appropriate server invoker and marshal
instances that should be used. There is al'so a server specific class for tying the invocation handler to the server in-
voker.

JBoss June 22, 2008 5

Architecture

Remoting Server

Marshal Invoker
Factory Registry

A A

Ll e i |

1
Connector

;—-—I- UnMarshaller

Input
Stream -
/ 3 Server
amm:ockeinns o oo o o ey Invoker l“:::::;?“
\ : (transport)
Culput -
Stream -

“—— Marshaller

On the server side, it isthe Connector class that is used as the external point for configuration and control of the re-
moting server. The Connector class will cal on the InvokerRegistry with its locator to create a server invoker.
Once the server invoker is returned, the Connector will then register the invocation handlers on it. The server in-
voker will use the Marshal Factory to obtain the proper marshal instances asis done on the client side.

Detection

To add automatic detection, a remoting Detector will need to be added on both the client and the server side as well
as a NetworkRegistry to the client side.

JBoss June 22, 2008 6

Architecture

.

Remoting Server
Remoting Chent Invoker
Datector Registry
Network
Reglstry - Detector m | e
______________ | Connector
— Marshaller \ / #| UnMarshaller —
Dutpul Inpul
Stream Strnam
Client 3 / Sl Invocation
Client ——— Invoker I N IS S S EEESOCkeE T S S S Invoker - Handler
{transport) / [(transport)
Iput n"..l_.:l
Slraam Siraam
— UnMarshaller J . Marshaller [—

When a Detector on the server side is created and started, it will periodically pull from the InvokerRegistry all the
server invokers that it has created. The detector will then use the information to publish a detection message con-
taining the locator and subsystems supported by each server invoker. The publishing of this detection message will
be either via a multicast broadcast or a binding into a INDI server. On the client side, the Detector will either re-
ceive the multicast broadcast message or poll the JINDI server for detection messages. If the Detector determines a
detection message is for a remoting server that just came online it will register it in the NetworkRegistry. The Net-
workRegistry houses the detection information for all the discovered remoting servers. The NetworkRegistry will
aso emit a IMX notification upon any change to this registry of remoting servers. The change to the NetworkRe-
gistry can also be for when a Detector has discovered that a remoting server is no longer available and removes it
from the registry.

JBoss June 22, 2008

JBoss Remoting Components

This section covers afew of the main components exposed within the Remoting API with a brief overview.

org.jboss.remoting.Client —is the class the user will create and call on from the client side. Thisis the main entry
point for making all invocations and adding a callback listener. The Client class requires only the InvokerL ocator
for the server you wish to call upon and that you call connect before use and disconnect after use (which is technic-
aly only required for stateful transports and when client leasing is turned on, but good to call in either case).

org.jboss.remoting.l nvokerL ocator — is a class, which can be described as a string URI, for identifying a particu-
lar JBossRemoting server JVM and transport protocol. For example, the InvokerLocator string sock-
€t://192.168.10.1:8080 describes a TCP/IP Socket-based transport, which is listening on port 8080 of the IP ad-
dress, 192.168.10.1. Using the string URI, or the InvokerL ocator object, JBossRemoting can make a client connec-
tion to the remote server. The format of the locator string is the same as the URI type
[transport]://[host]: <port>/path/ ?<par anet er =val ue>&<par anet er =val ue>

A few important points to note about the InvokerLocator. The string representation used to construct the Invoker-
Locator may be modified after creation. This can occur if the host supplied is 0.0.0.0, in which case the Invoker-
Locator will attempt to replace it with the value of the local host name. This can also occur if the port specified is
less than zero or not specified at al (in which case remoting will select arandom port to use).

The InvokerLocator will accept host name as is and will not automatically convert to 1P address (since 2.0.0 re-
lease). There are two comparison operators for InvocatorLocators, equal s() and i sSaneEndpoi nt (), and neither
resolve a hostname to |P address or vice versa. equal s() compares all components of the InvokerL ocator, charac-
ter by character, while i sSaneEndpoi nt () usesonly protocol, host, and port. The following examples are just some
of the comparisonsthat can be seeninorg. j boss. test.remoting. | ocat or. | nvoker Locat or Test Case:

new I nvoker Locator("http://1ocal host: 1234/ servi ces/ uri: Test"). equal s(new I nvoker Locat -
or("http://1ocal host: 1234")) returnsfase

new I nvoker Locator("http://1ocal host: 1234/ servi ces/ uri: Test"). equal s(new I nvoker Locat -
or("http://127.0.0.1:1234")) returnsfase

new | nvokerLocator("http://|ocal host: 1234/ services/uri:Test").isSameEndpoi nt (new | nvokerLocat -
or("http://local host:1234")) returnstrue

new | nvokerLocator("http://|ocal host: 1234/ services/uri:Test").isSameEndpoi nt (new | nvokerLocat -
or("http://127.0.0.1:1234")) returnsfase

org.jboss.remoting.transport.Connector - is an MBean that loads a particular Serverlnvoker implementation for
a given transport subsystem and one or more ServerlnvocationHandler implementations that handle Subsystem in-
vocations on the remote server VM. The Connector is the main user touch point for configuring and managing a
remoting server.

JBoss June 22, 2008 8

JBoss Remoting Components

org.jboss.remoting.Server I nvocationHandler —is the interface that the remote server will call on with an invoca-
tion received from the client. This interface must be implemented by the user. This implementation will also be re-
quired to keep track of callback listenersthat have been registered by the client aswell.

org.jboss.remoting.I nvocationRequest — is the actual remoting payload of an invocation. This class wraps the
caller's request and provides extra information about the invocation, such as the caller’s session id and its callback
locator (if one exists). Thiswill be object passed to the ServerlnvocationHandler.

org.jboss.remoting.stream.StreamlnvocationHandler — extends the ServerlnvocationHandler interface and
should be implemented if expecting to receive invocations containing an input stream.

org.jboss.remoting.callback.l nvoker CallbackHandler — the interface for any callback listener to implement.
Upon receiving callbacks, the remoting client will call on thisinterfaceif registered as alistener.

org.jboss.remoting.callback.Callback — the callback object passed to the InvokerCallbackHandler. It contains the
callback payload supplied by the invocation handler, any handle object specified when callback listener was re-
gistered, and the locator from which the callback came.

org.jboss.remoting.networ k.Networ kRegistry — this is a singleton class that will keep track of remoting servers
as new ones are detected and dead ones are detected. Upon a change in the registry, the NetworkRegistry fires a
NetworkNotification.

org.jboss.remoting.networ k.Networ kNotification —a JMX Noatification containing information about a remoting
server change on the network. The notification contains information in regards to the server’s identity and all its
locators.

org.jboss.remoting.detection.Detection — is the detection message fired by the Detectors. Contains the locator and
subsystems for the server invokers of aremoting server as well as the remoting server’sidentity.

org.jboss.remoting.ident.l dentity —is one of the main components remoting uses during discovery to identify re-
moting server instances (is actualy the way it guarantees uniqueness). If have two remoting servers running on the
same server, they can be uniquely identified. The reason the identity is persisted (currently only able to do thisto
the file system) is so if a server crashes and then restarts, can identify it when it restarts as the one that crashed
(instead of being a completely new instance that is being started). This may be important from a monitoring point
as would want to know that the crashed server is back online.

When creating the identity to be presisted, remoting will first look to see if a system property for 'jboss.identity’ has
been set already. If it has, will use that one. If not, will get the value for the 'ServerDataDir' attribute of the
'jboss.system:type=ServerConfig' mbean. If can retrieve this value, will use this as the directory to write out the
'iboss.identity’ file. If not, will look to seeif a system property has been set for ‘jboss.identity.dir'. If it has, will use
this as the directory to write the 'jboss.identity’ file to, otherwise, will default to *.". If for some reason the file can
not be written to, will throw a RuntimeException, which will cause the detector to error during startup. For more
details on how and where the identity is persisted, can refer to org.jboss.remoting.ident.ldentity.createl d().

org.jboss.remoting.detection.multicast.MulticastDetector — is the detector implementation that broadcasts its
Detection message to other detectors using multicast.

org.jboss.remoting.detection.jndi.JNDIDetector — is the detector implementation that registers its Detection
message to other detectorsin a specified JNDI server.

There are afew other components that are not represented as a class, but important to understand.

JBoss June 22, 2008 9

JBoss Remoting Components

Subsystem — a sub-system is an identifier for what higher level system an invocation handler is associated with.
The sub-system is declared as any String value. The reason for identifying sub-systemsis that a remoting Connect-
or's server invoker may handle invocations for multiple invocation handlers, which need to be routed based on sub-
system. For example, a particular socket based server invoker may handle invocations for both customer processing
and order processing. The client making the invocation would then need to identify the intended sub-system to
handle the invocation based on this identifier. If only one handler is added to a Connector, the client does not need
to specify a sub-system when making an invocation.

Domain — alogical name for a group to which a remoting server can belong. The detectors can discriminate as to
which detection messages they are interested based on their specified domain. The domain to which a remoting
server belongs is stored within the Identity of that remoting server, which is included within the detection mes-
sages. Detectors can be configured to accept detection messages from one, many or all domains.

3.1. Discovery

One of the features of JBoss Remoting isto be able to dynamically discover remoting servers. Thisis done through
the use of what remoting calls detectors. These detectors run in same instance as the servers and the clients. The de-
tectors that run within the server instance automatically getslist of remoting servers running locally and emits a de-
tection message contain information about those servers, such as their locator url and subsystems supported. The
detector running within the client instance will receive these detection messages and update alocal registry, called
the network registry, with this information. The client detector will also monitor the remoting servers it has dis-
covered in case one were to fail, in which case, will notify the network registry of the failure The network registry
will then fire events to registered listeners (via IMX notifications), to include events such as new server added or
server failure.

There are currently two types of detector implementations; multicast and INDI. The multicast detectors use multic-
ast channel to send and receive detection messages. The INDI detectors use a well known JNDI server to bind and
lookup detection messages.

The standard approach for detecting remoting servers happens in a passive manner, in that as detection messages
are received by the client detector, they will cause an event to fire. In some cases, will need ability to synchron-
ously discover the remoting servers that exist upon startup. This can be done by calling the forceDetection() meth-
od on the detector. This will return an array of Networklnstances which contains the server information. Note, this
method can take afew seconds to return (at least in multicast implementation).

3.2. Transports

Service provider interface

The transport implementations within remoting, called invokers, are responsible for handling the wire protocol to
be used by remoting clients and servers. Remoting will load client and server invoker (transport) implementations
(within the InvokerRegistry) using factories. The factory class to be loaded will always be either TransportClient-
Factory (for loading client invoker) or TransportServerFactory (for loading server invoker). These classes must im-
plement org.jboss.remoting.transport.dientFactory and org.jboss.renoting.transport. ServerFactory
interfaces respectively. The package under which the TransportClientFactory and TransportServerFactory will al-
ways start with org. j boss. test. renoti ng. transport, then the transport protocol type. For example, the 'socket'

JBoss June 22, 2008 10

JBoss Remoting Components

transport factories are org.jboss.remoting.transport.socket. Transportd ient Factory and
org.jboss.renoting. transport.socket. Transport Server Factory. The APl for
org.jboss.remoting.transport.ClientFactory is.

public dientlnvoker createdientlnvoker(lnvokerLocator |ocator, Map config) throws | OException;
publ i c bool ean supportsSSL();

The API for org.jboss.remoting.transport.ServerFactory is.

publ i c Serverlnvoker createServerlnvoker(lnvokerLocator |ocator, Map config) throws | OException;
publ i c bool ean supportsSSL();

An example of a transport client factory for the socket transport
(org.jboss.renpting. transport.socket. Transportd i ent Factory) is:

public class TransportdientFactory inplenents dientFactory

{
public Cientlnvoker createdientlnvoker(lnvokerLocator |ocator, Mp config)
throws | OException
{
return new Socket d i entlnvoker (|l ocator, config);
}
publ i ¢ bool ean supportsSSL()
{
return false;
}
}

The packages used within the factory does not matter as long as they are on the classpath. Note that the transport
factories are only loaded upon request for that protocol. Also, the client and server factories have been separated so
that only the one requested is loaded (and thus the corresponding classes needed for that invoker implementation).
So if only ask for a particular client transport invoker, only those classes are loaded and the ones needed for the
server are not required to be on the classpath.

The biggest reason for taking this approach is allows users ability to plugin custom transport implementation with
zero config. Remoting comes with the following transports: socket, sslsocket, http, https, multiplex, ssimultiplex,
servlet, sslserviet, rmi, sslrmi.

JBoss June 22, 2008 11

Remoting libraries and thirdparty dependancies

Remoting partitions its functionality into severa different libraries to allow the size of the footprint to be controlled
according to the features that will be used. Remoting distribution will include the following remoting binaries
(found in the lib directory of the distribution).

jboss-remoting.jar - this binary contains all the remoting classes. This is the only remoting jar that is needed to
perform any remoting function within JBoss Remoting.

Since some may want to better control size of the binary footprint needed to use remoting, the remoting classes
have been broken out into multiple remoting binaries based on their function. There are four categories of these
binaries; core, detection, transport, and other.

core

jboss-remoting-corejar - contains al the core remoting classes needed for remoting to function. If not using
jboss-remoting.jar, then jboss-remoting.core.jar will be required.

detection

jboss-remoting-detection - contains all the remoting classes needed to perform automatic discovery of remoting
servers. It includes both the jndi and multicast detector classes aswell as the network registry classes.

transport

jboss-remoting-socket.jar - contains all the classes needed for the socket and sslsocket transports to function as
both a client and a server.

jboss-remoting-socket-client.jar - contains al the classes needed for the socket and sslsocket transports to func-
tion asaclient only. This means will not be able to perform any push callbacks or sending of streams using thisjar.

jboss-remoting-http.jar - contains all the classes needed for the http and https transports to function as a client and
aserver.

jboss-remoting-http-client.jar - contains all the classes needed for the http, https, servlet, and sslservlet transports
to function as a client only. This means will not be able to perform any push callbacks or sending of streams using
thisjar.

jboss-remoting-servlet.jar - contains al the classes needed for the servlet or sslservlet transports to function as a
server only (also requires servlet-invoker.war be deployed within web container as well).

jboss-remoting-rmi.jar - contains al the classes needed for the rmi and sdrmi transports to function as a client

JBoss June 22, 2008 12

Remoting libraries and thirdparty dependancies

and aserver.

jboss-remoting-multiplex.jar - contains al the classes needed for the multiplex and ssmultiplex transports to
function asaclient and a server. Use of this jar also requires jboss-remoting-socket.jar be on classpath as well.

jboss-remoting-bisocket.jar - contains all the classes needed for the bisocket and sslbisocket transports to function
as both aclient and a server.

jboss-remoting-bisocket-client.jar - contains all the classes needed for the bisocket and sslbisocket transports to
function as a client only. This means will not be able to perform any push callbacks or sending of streams using
thisjar.

other

jboss-remoting-serialization.jar - contains just the remoting serialization classes (and seriaization manager im-
plementations for java and jboss).

jboss-remoting-samples,jar - all the remoting samples showing example code for different remotng functions.

4.1. Thirdparty libraries

This section covers which thirdparty jars are required based on the feature or transport to be used. Remember,
whenever see jboss-remoting-XXX.jar mentioned, they can all be replaced with just the jboss-remoting.jar.

All remoting servers: jboss-remoting-core.jar, jboss-common.jar, jboss-jmx.jar, log4j.jar
All remoting clients: jboss-remoting-core.jar, jboss-common.jar, jboss-jmx.jar, log4j.jar, concurrent.jar

Note: concurrent.jar needed because of org.jboss.util.id.GUID used to create session id within Client
(http://jirajboss.com/jira/browse/ IBREM-549)

Remoting requires the use of IMX classes. It does not require the JBoss implementation (jboss-jmx.jar) of IMX in
order to function correctly, so can replace jboss-jmx.jar with another IMX implementation library (or exclude it if
using jdk 1.5 or higher, which has IMX implementation built in).

Multicast detection: jboss-remoting-detection.jar, concurrent.jar, domdj.jar

JNDI detection: jboss-remating-detection.jar, concurrent.jar, domdj.jar, jnpserver.jar (for jndi api classes)

The domdj.jar for use of detection is required because using jboss-jmx.jar.

Socket server: jboss-remoting-socket.jar

Socket client: jboss-remoting-socket-client.jar

HTTP server: jboss-remoting-http.jar, tomcat-coyote.jar, tomcat-util .jar, commons-logging-api .jar, tomcat-http.jar

Note: need tomcat-apr.jar and tcnative-1.dll/tcnative-1.s0 on system path if want to use APR based tomcat connect-
or

HTTP client: jboss-remoting-http-client.jar

JBoss June 22, 2008 13

Remoting libraries and thirdparty dependancies

Servlet server: servlet-invoker.war (deployed in web container), jboss-remoting-serviet.jar
Servlet client: jboss-remoting-http-client.jar

RMI server and client: jboss-remoting-rmi.jar

Multiplex server and client: jboss-remoting-socket.jar, jboss-remoting-multiplex.jar

JBoss serialization: jboss-serialization.jar, trovejar

JBoss June 22, 2008

14

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshallers, and transports. All the con-
figuration properties specified can be set either via calls to the object itself, including via IMX (so can be done via
the IMX or Web console), or viaa JBoss AS service xml file. Examples of service xml configurations can be seen
with each of the sections below. There is also an example-service.xml file included in the remoting distribution that
shows full examples of al the remating configurations.

5.1. General transport configuration

Remoting offers a variety of ways of configuring transports on the server side and client side. This section presents
an overview, and the rest of the chapter elaborates the material presented here. For easy reference the configuration
parameters discussed throughout the chapter are gathered together at the end of the chapter in section Configuration
by properties

5.1.1. Server side configuration

The heart of the server side is the Connect or, and it is through the Connect or that the server side of atransport is
configured. The central goals of configuration on the server side are to establish a server invoker and supply it with
a set of invocation handlers. Only one invoker can be declared per Connect or . Although declaring an invocation
handler is not required, it should only be omitted in the case of declaring a callback server that will not receive dir-
ect invocations, but only callback messages. Otherwise client invocations can not be processed. The invocation
handler is the only interface that is required by the remoting framework for a user to implement and will be what
the remoting framework calls upon when receiving invocations.

There are two general approaches to server side configuration: programmatic and declarative. A variety of pro-
grammatic techniques work in any environment, including the JBoss Application Server (JBossAS). Moreover,
JBossA S adds the option of declarative configuration. In particular, the SARDeployer (see The JBoss 4 Application
Server Guide on the labs.jboss.org web site) can read information from a *-service.xml file and use it to configure
MBeans such as Connect or S.

5.1.1.1. Programmatic configuration.

The simplest way to configure a Connect or iSto passan | nvoker Locat or t0 aConnect or constructor. For example,
the code fragment

String |locatorURI = "socket://test.sonedomai n. com 8084";
String parans = "/?clientlLeasePeri od=10000&t i meout =120000";
| ocat or URI += par ars;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURl);
Connect or connector = new Connector(locator);
connector.create();

JBoss June 22, 2008 15

Configuration

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocat i onHandl er () ;
connect or. addl nvocat i onHandl er ("sanpl e", invocati onHandl er);
connector.start();

creates a server invoker based on the socket transport, directs it to listen for invocations on port 8084 of host
test.somedomain.com, and passes two configuration parameters, "clientL easePeriod” and "timeout". It also supplies
the server invoker with an invocation handler.

One limitation of the I nvoker Locat or isthat it can only represent string values. An alternative that overcomes this
limitation is to pass some or al of the parameters to the Connect or by way of a configuration map. The following
code fragment accomplishes all that the previous fragment does, but it passes one parameter by way of the I n-
voker Locat or and passes the other by way of a configuration map. It also passes in a non-string object, a Ser ver -
Socket Factory:

String |locatorURI = "socket://test.sonedonai n.com 8084";

String parans = "/?clientlLeasePeri 0d=10000";

| ocat or URI += par ans;

I nvoker Locat or | ocator = new | nvokerLocator(locatorURl);

HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEQUT, 120000);

confi g. put (Serverl nvoker. SERVER_SOCKET_FACTORY, new MyServer Socket Factory());
Connect or connector = new Connector (|l ocator, config);

connector.create();

Sanpl el nvocat i onHandl er invocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);
connector.start();

Note that the wvaue of Serverinvoker.TIMEQUT is "timeout”, and the vaue of Serverln-
voker . SERVER_SOCKET_FACTORY is "serverSocketFactory". These configuration map keys are discussed throughout
the chapter and accumulated in section Configuration by properties. Also, server socket factory configuration is
covered in Socket factories and server socket factories.

A third programmatic option is available for those configuration properties which happen to be server invoker
MBean properties. In the following fragment, the server invoker is obtained from the Connect or and a Ser ver -
Socket Fact ory is passed to it by way of a setter method:

String |locatorURI = "socket://test.sonedonmai n. com 8084";
String parans = "/?clientlLeasePeri 0d=10000";

| ocat or URI += par ars;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURl);
HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, 120000);

Connector connector = new Connector(locator, config);
connector.create();

Server | nvoker serverlnvoker = connector. get Serverl nvoker();
Server Socket Factory ssf = new MyServer Socket Factory();
server | nvoker. set Server Socket Fact ory(ssf);

Sanpl el nvocati onHandl er i nvocati onHandl er = new Sanpl el nvocati onHandl er () ;
connect or. addl nvocat i onHandl er ("sanpl e", invocati onHandl er);
connector.start();

Note. The Connect or creates the server invoker during the call to Connector. creat e(), So this option only works

JBoss June 22, 2008 16

Configuration

after that method has been called. Also, depending on the parameter and the transport, this option may or may not
be effective after the call to Connector. start (), which callsstart () onthe server invoker.

A fourth option, which exists primarily to support the declarative mode of configuration presented below, isto pass
an XML document to the Connect or . The following fragment duplicates the behavior of the first and second ex-
amples above.

HashMap config = new HashMap();
config. put (Serverl nvoker. TI MEOUT, 120000);
Connect or connector = new Connector(config);

/1 Set xm configuration el enment.
StringBuffer buf = new StringBuffer();
buf . append("<?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"socket\">");

buf . append(" <attribute name=\"serverBi ndAddr ess\ ">t est. somedonei n. conx/ attri bute>");
buf . append(" <attribute name=\"serverBi ndPort\">8084</attribute>");

buf . append(" <attribute name=\"cl i ent LeasePeri od\">10000</attri bute>");

buf . append(" </invoker>");

buf . append(" <handl ers>");

buf . append(" <handl er subsyst enr\ " nmock\">");

buf . append(" org.j boss.renoting.transport. nock. Sanpl el nvocat i onHandl er");

buf . append(" </ handl er>");

buf . append(" </ handl ers>");

buf . append(" </ confi g>");

Byt eArrayl nput St ream bai s = new Byt eArrayl nput St ream(buf.toString().getBytes()):
Docunment xm = Documnent Bui | der Fact ory. new nst ance() . newDocunent Bui | der () . par se(bai s);
connect or. set Confi gurati on(xm . get Docunment El emrent ()) ;

connector.create();
connector.start();

Note that there is no I nvoker Locat or in this example. If the Connect or gets an I nvoker Locat or, it ignores the
presence of the xml document. Note also that this method only supports the use of string values, so it is necessary
to include the fully qualified name of the invocation handler, from which the handler is created by calling the de-
fault constructor.

An example of this option in use can be found in
org.j boss.test.renoting. configuration. SocketClientConfigurati onTest Case.

5.1.1.2. Declarative configuration

The configuration option discussed at the end of the previous section, passing an XML document to the Connect or,
works in conjunction with the service archive deployer (SARDeployer) inside the JBoss Application Server to al-
low declarative configuration on the server side. In particular, the SARDeployer reads XMI documents containing
MBean descriptors from files whose name has the form "*-service.xml”. When it sees a descriptor for a Connect or
MBean, it passes the descriptor's <conf i g> element to a newly created Connect or .

There are two ways in which to specify the server invoker configuration via a service xml file. The first is to spe-
cify just the InvokerLocator attribute as a sub-element of the Connector MBean. For example, a possible configura-
tion for a Connector using a socket invoker that is listening on port 8084 on the test.somedomain.com address
would be:

<nbean code="org.jboss.renoting.transport. Connector"

JBoss June 22, 2008 17

Configuration

nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">
<attri bute name="Invoker Locat or">
<! [CDATA| socket://test.sonedonai n. com 8084]] >
</attribute>
<attribute name="Configuration">
<confi g>
<handl er s>
<handl er subsystenr" nock" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

Note that all the server side socket invoker configurations will be set to their default valuesin this case. Also, itis
important to add CDATA to any locator uri that contains more than one parameter.

The other way to configure the Connector and its server invoker in greater detail is to provide an i nvoker sub-
element within the config element of the Configuration attribute. The only attribute of invoker element is transport,
which will specify which transport type to use (e.g.. socket, rmi, http, or multiplex). All the sub-elements of the in-
voker element will be attribute elements with a name attribute specifying the configuration property name and then
the value. Ani sPar amattribute can also be added to indicate that the attribute should be added to the locator uri, in
the case the attribute needs to be used by the client. An example using this form of configuration is as follows:

<nbean code="org.jboss.renoting.transport. Connector"
nane="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>

<i nvoker transport="socket">
<attribute name="numAccept Threads">1</attri bute>
<attribute nanme="naxPool Si ze">303</attri but e>
<attribute name="cl i ent MaxPool Si ze" i sParanr"true">304</attri bute>
<attribute nanme="socket Ti meout " >60000</attri bute>
<attribute nane="server Bi ndAddr ess">192. 168. 0. 82</ attri but e>
<attribute nanme="serverBi ndPort">6666</attri bute>
<attribute nane="client Connect Addr ess">216. 23. 33. 2</ attri but e>
<attribute nane="client ConnectPort">7777</attri bute>
<attri bute name="enabl eTcpNoDel ay" i sParan="true">fal se</attri bute>
<attribute name="backl og">200</attri bute>

</i nvoker >

<handl er s>
<handl er subsystem=" nock" >
org.jboss.rennting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>

</ nbean>

Also note that ${j boss. bi nd. addr ess} can be used for any of the bind address properties, which will be replaced
with the bind address specified to JBoss when starting (i.e. viathe -b option).

JBoss June 22, 2008 18

Configuration

All the attributes set in this configuration could be set directly in the locator uri of the InvokerLocator attribute
value, but would be much more difficult to decipher visually and is more prone to editing mistakes.

One of the components of alocator uri that can be expressed within the InvokerL ocator attribute is the path. For ex-
ample, can express alocator uri path of ‘foo/bar' via the InvokerL ocator attribute as:

<attri bute name="Invoker Locat or"><! [CDATA[socket://test.somedonmai n. com 8084/ foo/bar]]></attr

To include the path using the Configuration attribute, can include a specific 'path’ attribute. So the same Invoker-
Locator can be expressed as follows with the Configuration attribute:

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">
<attribute nanme="server Bi ndAddr ess" >t est . somedonmi n. conx/ attri but e>
<attribute name="serverBi ndPort">8084</attri bute>
<attri bute name="path">f oo/ bar</attribute>
</i nvoker >

Note: The value for the 'path’ attribute should NOT start or end with a/ (slash).

5.1.1.3. Callback client configuration

Remoting supports asynchronous computation and delivery of results through a callback mechanism, as described
in Section Callbacks. Callbacks are sent from the server side to the client side on a callback connection which isthe
reverse of the usual client to server connection. That is, a client invoker on the server side communicates with a
server invoker on the client side (in the case of push callbacks - again, see Section Callbacks). When a callback
connection is created, all of the configuration information passed to the server side Connect or is passed on to the
server side callback client invoker. It follows that callback client invokers are configured by way of the server side
Connector.

5.1.2. Client side configuration

Invoker configuration on the client side parallels configuration on the server side, with the exception that (1) it op-
erates in asimpler environment (in particular, it does not assume the presence of an MBeanServer) and (2) it does
not support a declarative option. However, it does support versions of the first three server side programmatic op-
tions, with the d i ent class playing the central role played by the Connect or class on the server side.

Again, the most straightforward form of configuration is to put the configuration parameters on the | nvoker Locat -
or . For example, the fragment

String |l ocatorURI = "socket://test.sonedonmai n.com 8084";
String parans = "/?client MaxPool Si ze=10&t i meout =360000";
| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator(locatorURl);
Client client = new Cient(locator);

client.connect();

JBoss June 22, 2008 19

Configuration

creates a d i ent using the socket transport to connect to a server on host test.somedomain.com, listening on port
8084. It also passesin two parameters, "clientMaxPool Size" and "timeout”, that will be used by the client invoker.

It is aso possible to use configuration maps on the client side. The following code fragment accomplishes all that
the previous fragment does, but it passes one parameter by way of the | nvoker Locat or and passes the other by way
of a configuration map. It also passes in a non-string object, a Socket Fact ory:

String locatorURI = "socket://test.somedomai n. com 8084";

String parans = "/ ?client MaxPool Si ze=10";

| ocat or URI += par ans;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

HashMap config = new HashMap();

config. put (Serverl nvoker. TI MEQUT, 360000);

confi g. put (Remoti ng. CUSTOM SOCKET_FACTORY, new MySocket Factory());
Client client = new Client(locator, config);

client.connect();

Note that the value of Server I nvoker. TI MEOUT is "timeout”, and the value of Renot i ng. CUSTOM SOCKET_FACTORY
is "customSocketFactory". These configuration map keys are discussed throughout the chapter and accumulated in
section Configuration by properties. Also, socket factory configuration is covered in Socket factories and server
socket factories.

Finally, a third programmatic option is available for those configuration properties which happen to be client in-
voker MBean properties. In the following fragment, the client invoker is obtained from the d i ent and a Socket -
Fact ory ispassed to it by way of a setter method:

String |l ocatorURl = "socket://test.sonmedonai n. com 8084";
String paranms = "/?client MaxPool Si ze=10";

| ocat or URI += par ars;

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
HashMap config = new HashMap();

confi g. put (Serverl nvoker. TI MEQUT, 360000);

Cient client = new Cient(locator, config);
client.connect();

Socket Factory sf = new MySocket Factory();

Clientlnvoker clientlnvoker = client.getlnvoker();
clientlnvoker. set Socket Fact ory(sf);

Note. The d i ent creates the client invoker during the call to di ent . connect (), S0 this option only works after
that method has been called.

5.2. Handlers

Handlers are classes that the invocation is given to on the server side (the final target for remoting invocations). To
implement a handler, all that is needed isto implement the or g. j boss. renot i ng. Server | nvocat i onHandl er inter-
face. There are atwo ways in which to register a handler with a Connector. The first is to do it programmatically.
The second is via service configuration. For registering programmatically, can either pass the Serverlnvocation-
Handler reference itself or an ObjectName for the ServerinvocationHandler (in the case that it is an MBean). To
pass the handler reference directly, call Connect or: : addl nvocat i onHandl er (String subsystem Serverlnvoca-
ti onHandl er handl er) . For example (fromor g. j boss. renot i ng. sanpl es. si npl e. Si npl eSer ver):

JBoss June 22, 2008 20

Configuration

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Connect or connector = new Connector ();

connector. set | nvoker Locat or (| ocat or. get Locator URI ());
connector.create();

Sanpl el nvocat i onHandl er invocati onHandl er = new Sanpl el nvocati onHandl er () ;
[l first parameter is sub-system name. can be any String val ue.
connect or . addl nvocat i onHandl er ("sanpl e", invocationHandl er);

connector.start();

To pass the handler by ObjectName, call Connect or: : addl nvocat i onHandl er (String subsystem Obj ect Nane
handl er Qbj ect Nane) . For example (fromor g. j boss. t est. renot i ng. handl er. nbean. Ser ver Test):

MBeanServer server = MBeanServerFactory. creat eMBeanServer();
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Connect or connector = new Connector ();

connect or. set | nvoker Locat or (| ocat or. get LocatorURI ());
connector.start();

server. regi st er MBean(connector, new Obj ect Name("test:type=connector, transport=socket"));

/1 now create Moean handl er and regi ster with nbean server
MBeanHandl er handl er = new MBeanHandl er () ;

Ooj ect Nare obj Name = new Obj ect Nane("test:type=handl er");
server. regi st er MBean(handl er, obj Nane) ;

connect or. addl nvocati onHandl er ("test", obj Nane);

Isimportant to note that if not starting the Connector via the service configuration, will need to explicitly register it
with the MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can either specify the fully
qualified class name for the handler, which will instantiate the handler instance upon startup (which requires there
be avoid parameter constructor), such as:

<handl er s>
<handl er subsystenm=" nock" >
org.j boss.renoting.transport. nock. MockServer | nvocati onHandl er
</ handl er >
</ handl er s>

where MockServerlnvocationHandler will be constructed upon startup and registered with the Connector as a hand-
ler.

Can a'so use an ObjectName to specify the handler. The configuration is the same, but instead of specifying afully
qualified class name, you specify the ObjectName for the handler, such as (can see nbeanhand| er - servi ce. xn
under remoting tests for full example):

<handl er s>
<handl er subsystem="nock" >t est:type=handl er </ handl er >
</ handl er s>

JBoss June 22, 2008 21

Configuration

The only requirement for this configuration is that the handler MBean must already be created and registered with
the MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain a reference to the handler instances provided (either indirectly via the MBean proxy
or directly viathe instance object reference). For each request to the server invoker, the handler will be called upon.
Since the server invokers can be multi-threaded (and in most cases would be), this means that the handler may re-
ceive concurrent calls to handle invocations. Therefore, handler implementations should take care to be thread safe
in their implementations.

Stream handler

There is aso an invocation handler interface that extends the ServerlnvocationHandler interface specifically for
handling of input streams as well as normal invocations. See the section on sending streams for further details. As
for Connector configuration, it is the same.

HTTP handlers

Since there is extra information needed when dealing with the http transport, such as headers and response codes,
special consideration is needed by handlers. The handlers receiving http invocations can get and set this extra in-
formation via the InvocationRequest that is passed to the handler.

Server invoker for the http transport will add the following to the InvocationRequest's request payload map:

MethodType - the http request type (i.e., GET, POST, PUT, HEADER, OPTIONS). Can use the contant value HT-
TPMetadataConstants. METHODTY PE, if don't want to use the actual string ‘MethodType' as the key to the request

payload map.

Path - the url path. Can use the contant value HTTPM etadataConstants.PATH, if don't want to use the actual string
'Path’ as the key to the request payload map.

HttpVersion - the client's http version. Can use the contant value HTTPMetadataConstants HTTPVERSION, if
don't want to use the actual string 'HttpVersion' as the key to the request payload map.

Other properties from the origina http request will also be included in the request payload map, such as request
headers. Can reference org.jboss.test.remoting.transport.http.method.MethodlnvocationHandler as an example for
pulling request properties from the InvocationRequest.

The only time thiswill not be added is a POST request where an InvocationRequest is passed and is not binary con-
tent type (application/octet-stream).

The handlers receiving http invocations can also set the response code, response message, and response headers. To
do this, will need to get the return payload map from the InvocationRequest passed (via its getReturnPayload()
method). Then populate this map with whatever properties needed. For response code and message, will need to
use the following keys for the map:

JBoss June 22, 2008 22

Configuration

ResponseCode - Can use the constant value HTTPMetaDataConstants.RESPONSE _CODE, if don't want to use
the actual string 'ResponseCode’ as they key. IMPORTANT - The value put into map for this key MUST be of
type java.lang.Integer.

ResponseCodeM essage - Can use the constant value HTTPM etadataConstants. RESPONSE_ CODE_MESSAGE,
if don't want to use the actual string 'ResponseCodeM essage’ as the key. The value put into map for this key should
be of type java.lang.String.

Is also important to note that ALL http requests will be passed to the handler. So even OPTIONS, HEAD, and PUT
method requests will need to be handled. So, for example, if want to accept OPTIONS method requests, would
need to populate response map with key of 'Allow' and value of 'OPTIONS, POST, GET, HEAD, PUT', in order to
tell calling client that all these method types are alowed. Can see an example of how to do this within
org.jboss.test.remoting.transport.http.method.M ethodl nvocationHandl er.

The PUT request will be handled the same as a POST method request and the PUT request payload will be in-
cluded within the InvocationRequest passed to the server handler. It is up to the server handler to set the proper
resonse code (or throw proper exception) for the processing of the PUT request. See ht-
tp://www.ietf.org/rfc/rfc2616.txtnumber=2616 [http://www.ietf.org/rfc/rfc2616.txtnumber=2616], section 9.6 for
details on response codes and error responses).

HTTP Client

The HttpClientinvoker will now put the return from HittpURLConnection getHeaderFields() method into the
metadata map passed to the Client's invoke() method (if not null). This means that if the caller passes a non-null
Map, it can then get the response headers. It isimportant to note that each response header field key in the metadata
map is associated with alist of response header values, so to get a value, would need code similar to:

Cbj ect response = renotingdient.invoke((Qoject) null, netadata);
String all owalue = (String) ((List) nmetadata.get("Alow').get(0);

Can reference org.jboss.test.remoting.transport.http.method. HT TPInvokerTestClient for an example of this.

Note that when making a http request using the OPTIONS method type, the return from the Client's invoke() meth-
od will ALWAY S be null.

Also, if the response code is 400, the response returned will be that of the error stream and not the standard input
stream. So isimportant to check for the response code.

Two values that will always be set within the metadata map passed to the Client's invoke() method (when not null),
is the response code and response message from the server. These can be found using the keys:

ResponseCode - Can use the constant value HTTPMetaDataConstants. RESPONSE_CODE, if don't want to use
the actual string 'ResponseCode’ as the key. IMPORTANT - The value returned for this key will be of type
javalang.Integer.

ResponseCodeM essage - Can use the constant value from HTTPMetadataCon-
stants. RESPONSE_CODE_MESSAGE, if don't want to use the actual string 'ResponseCodeMessage’ as the key.
The value returned for this key will be of type java.lang.String.

An example of getting the response code can be found within

JBoss June 22, 2008 23

http://www.ietf.org/rfc/rfc2616.txt?number=2616
http://www.ietf.org/rfc/rfc2616.txt?number=2616

Configuration

org.jboss.test.remoting.transport.http.method.HT TPInvokerTestClient.

5.3. Discovery (Detectors)

Domains

Detectors have the ability to accept multiple domains. What domains that the detector will accept as viewable can
either be set programmatically via the method:

public void setConfiguration(org.w3c.dom El enent xm)

or by adding to jboss-servicexml configuration for the detector. The domains that the detector is currently accept-
ing can be retrieved from the method:

public org.w3c.dom El ement get Configuration()
The configuration xml is a MBean attribute of the detector, so can be set or retrieved viaJM X.

There are three possible options for setting up the domains that a detector will accept. The first is to not call the
set Confi guration() method (or just not add the configuration attribute to the service xml). This will cause the de-
tector to use only its domain and is the default behavior. This enables it to be backwards compatible with earlier
versions of JBoss Remoting (JBoss 4, DR2 and before).

The second is to call the set Confi gurati on() method (or add the configuration attribute to the service xml) with
the following xml element:

<domai ns>
<domai n>domai n1</ domai n>
<domai n>donai n2</ domai n>
</ domai ns>

where dormai n1 and dorei n2 are the two domains you would like the detector to accept. Thiswill cause the detector
to accept detections only from the domains specified, and no others.

The third and final option is to call the setConfiguration() method (or add the configuration attribute to the service
xml) with the following xml element:

<domai ns>
</ domai ns>

Thiswill cause the detector to accept all detections from any domain.

By default, remoting detection will ignore any detection message the it receives from a server invoker running
within its own jvm. To disable this, add an element called 'loca’ to the detector configuration (alongside the do-
main element) to indicate should accept detection messages from local server invokers. This will be false by de-
fault, so maintains the same behavior as previous releases. For example:

JBoss June 22, 2008 24

Configuration

<domai ns>
<donmai n>donai nl</ donmai n>
<domai n>donmai n2</ domai n>
</ domai ns>
<l ocal / >

An example entry of a Multicast detector in the jboss-service.xml that accepts detections only from the roxanne and
sparky domains using port 5555, including serversin the same jvm, is asfollows:

<nbean code="org.jboss.renoting. detection. multicast.MilticastDetector"
nane="j boss. renoti ng: servi ce=Det ector, transport=nul ticast">
<attribute name="Port">5555</attribute>
<attribute name="Confi guration">
<donmi ns>
<donmi n>r oxanne</ donai n>
<domai n>spar ky</ dormai n>
</ domai ns>

<l ocal / >
</attribute>
</ mbean>

Global Detector Configuration

The following are configuration attributes for all the remoting detectors.

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving a detection event before
suspecting that a server is dead and performing an explicit invocation on it to verify it isalive. If thisinvocation, or
ping, fails, the server will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes receiving) detection messages.

The default is 1000 milliseconds.

JNDIDetector

Port - port to which detector will connect for the INDI server.
Host - host to which the detector will connect for the INDI server.

ContextFactory - context factory string used when connecting to the JNDI server. The default is
org.jnp.interfaces. Nam ngCont ext Factory .

URLPackage - url package string to use when connecting to the JINDI server. The default is
org.jboss.nanmi ng:org.jnp.interfaces.

CleanDetectionNumber - Sets the number of detection iterations before manually pinging remote server to make
sure still alive. This is needed since remote server could crash and yet still have an entry in the INDI server, thus
making it appear that it is still there. The default valueis5.

Can either set these programmatically using setter method or as attribute within the remoting-service.xml (or any-
where else the service is defined). For example:

JBoss June 22, 2008 25

Configuration

<nbean code="org. | boss.renoting. detection.jndi.JND Detector"
nanme="j boss. renoti ng: servi ce=Det ector, transport =j ndi ">
<attribute name="Host">| ocal host</attri bute>
<attribute name="Port">5555</attri bute>
</ nbean>

If the INDIDetector is started without the Host attribute being set, it will try to start alocal INP instance (the JBoss
JINDI server implementation) on port 1088.

MulticastDetector

Defaultl P - The IP that is used to broadcast detection messages on viamulticast. To be more specific, will betheip
of the multicast group the detector will join. This attribute isignored if the Address has already been set when star-
ted. Default is 224.1.9.1.

Port - The port that is used to broadcast detection messages on via multicast. Default is 2410.
BindAddress - The address to bind to for the network interface.

Address - The IP of the multicast group that the detector will join. The default will be that of the DefaultlP if not
explicitly set.

If any of these are set programmatically, need to be done before the detector is started (otherwise will use default
values).

5.4. Transports (Invokers)

This section covers configuration issues for each of the transports, beginning with a set of properties that apply to
all transports. The material in a later section in this chapter, Socket factories and server socket factories, also ap-
pliesto all transports.

5.4.1. Features introduced in Remoting version 2.2

Subsequent to the release of Remoting 2.2.0.GA, some transport independent features have been introduced.

5.4.1.1. Binding to 0.0.0.0

Before release 2.2.2.5P2, a Remoting server could bind to only one specific IP address. In particular, the address
0.0.0.0 was trandlated to the host returned by j ava. net . I net Addr ess. get Local Host () (Or its equivalent IP ad-
dress). Asof release 2.2.2.SP2, a server started with the address 0.0.0.0 binds to all available interfaces.

Note. If 0.0.0.0 appears in the | nvoker Locat or, it needs to be translated to an address that is usable on the client
side. If the system property | nvoker Locat or. Bl ND_BY_HOST (actual value "remoting.bind_by host") is set to
"true”, the InvokerLocator host will be transformed to the vaue returned Dby I netAd-
dress. get Local Host () . get Host Name() . Otherwise, it will be transformed to the value returned by I net Ad-
dress. get Local Host (). get Host Addr ess() .

JBoss June 22, 2008 26

Configuration

5.4.1.2. Support for IPv6 addresses

Asof release 2.2.2.5P4, or g. j boss. renot i ng. I nvoker Locat or Will accept IPv6 I P addresses. For example,

socket://[::1]:3333/?ti meout =10000

socket://[::]:4444/?ti neout =10000
socket://[::ffff:127.0.0.1]:5555/?ti meout =10000
socket://[fe80::205:9af f:fe3c: 7800%] : 6666/ ?t i meout =10000

5.4.2. Server Invokers

The following configuration properties are common to all the current server invokers.

server BindAddress - The address on which the server binds to listen for requests. The default is an empty value
which indicates the server should be bound to the host provided by the locator url, or if this value is null, the local
host as provided by | net Addr ess. get Local Host () .

serverBindPort - The port to listen for requests on. A value of 0 or less indicates that a free anonymous port
should be chosen.

maxNumThreadsOneway - specifies the maximum number of threads to be used within the thread pool for ac-
cepting one way invocations on the server side. This property will only be used in the case that the default thread
pool is used. If a custom thread pool is set, this property will have no meaning. This property can also be retrieved
or set programmatically viathe MaxNunber Of Oneway Thr eads property.

onewayThreadPool - specifies either the fully qualified class name for a class that implements the
org.jboss.util.threadpool . ThreadPool interface or the IMX ObjectName for an MBean that implements the
org.jboss. util.threadpool . Thr eadPool interface. This will replace the default
org.jboss.util.threadpool . Basi cThreadPool used by the server invoker.

Note that this value will NOT be retrieved until the first one-way (server side) invocation is made. So if the config-
uration is invalid, will not be detected until this first call is made. The thread pool can also be accessed or set via
the oneway Thr eadPool property programmatically.

Important to note that the default thread pool used for the one-way invocations on the server side will block the

calling thread if all the threadsin the pool are in use until oneis released.

5.4.3. Configurations affecting the invoker client

There are some configurations which will impact the invoker client. These will be communicated to the client in-
voker via parameters in the Locator URI. These configurations can not be changed during runtime, so can only be
set up upon initial configuration of the server invoker on the server side. The following is a list of these and their
effects.

clientConnectPort - the port the client will use to connect to the remoting server. Thiswould be needed in the case
that the client will be going through a router that forwards requests made externally to a different port internally.

clientConnectAddress - the ip or hostname the client will use to connect to the remoting server. This would be

JBoss June 22, 2008 27

Configuration

needed in the case that the client will be going through a router that forwards requests made externally to a differ-
ent ip or host internaly.

If no client connect address or server bind address specified, will use the local host's address (via I net Ad-
dress.getLocaIFbst().getkbstAddress()).

5.4.4. How the server bind address and port is determined

If the serverBindAddress property is set, the server invoker will bind to that address. Otherwise, it will, with one
exception, use the address in the InvokerLocator (if there is one). The exception is the case in which the clientCon-
nectAddress property is set, which indicates that the adddess in the InvokerLocator is not the real address of the
server's host. In that case, and in the case that there is no address in the InvokerLocator, the server will bind to the
address of the local host, as determined by the call

I net Addr ess. get Local Host () . get Host Addr ess() ;

In other words, the logicis

if (serverBi ndAddress is set)
use it

else if (the host is present in the InvokerLocator and clientConnect Address is not set)
use host from | nvokerLocat or

el se
use | ocal host address

If the serverBindPort property is set, it will be used. If thisvalue is 0 or a negative number, then the next available
port will be found and used. If the serverBindPort property is not set, but the clientConnectPort property is set, then
the next available port will be found and used. If neither the serverBindPort nor the clientConnectPort is set, then
the port specified in the original InvokerLocator will be used. If thisis 0 or a negative number, then the next avail-
able port will be found and used. In the case that the next available port is used because either the serverBindPort
or the original InvokerL ocator port value was either O or negative, the InvokerL ocator will be updated to reflect the
new port value.

5.4.5. Socket Invoker

The following configuration properties can be set at any time, but will not take effect until the socket invoker, on
the server side, is stopped and restarted.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the server side is
60000 (one minute). If the timeout parameter is set, its value will also be passed to the client side (see below).

backlog - The preferred number of unaccepted incoming connections allowed at a given time. The actua number
may be greater than the specified backlog. When the queue is full, further connection requests are rejected. Must be
a positive value greater than 0. If the value passed if equal or less than 0, then the default value will be assumed.
The default value is 200.

numAccept Threads - The number of threads that exist for accepting client connections. The default is 1.

JBoss June 22, 2008 28

Configuration

maxPool Size - The number of server threads for processing client. The default is 300.

server SocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use
on the server.

socket.check_connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

idleTimeout - indicates the number of seconds a pooled server thread can be idle (meaning time since last invoca
tions request processed) before it should be cleaned up and removed from the thread pool. The value for this prop-
erty must be greater than zero in order to enable idle timeouts on pooled server threads (otherwise they will not be
checked). Setting to value less than zero will disable idle timeout checks on pooled server threads, in the case was
previously enabled. The default value for this property is-1.

continueAfterTimeout - indicates what a server thread should do after experiencing a
j ava. net . Socket Ti meout Excepti on. If set to "true", or if JBossSerialization is being used, the server thread will
continue to wait for an invocation; otherwise, it will return itself to the thread pool.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be communicated to the cli-
ent invoker via parameters in the Locator URI. These configurations can not be changed during runtime, so can
only be set up upon initial configuration of the socket invoker on the server side. The following isalist of these and
their effects.

enableTcpNoDelay - can be either true or false and will indicate if client socket should have TCP_NODELAY
turned on or off. TCP_NODELAY is for a specific purpose; to disable the Nagle buffering algorithm. It should
only be set for applications that send frequent small bursts of information without getting an immediate response;
where timely delivery of datais required (the canonical example is mouse movements). The default is false.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the client side is
1800000 (or 30 minutes).

clientM axPool Size - the client side maximum number of active socket connections. This basically equates to the
maximum number of concurrent client calls that can be made from the socket client invoker. The default is 50.

number OfRetries - number of retries to get a socket from the pool. This basically equates to number of seconds
will wait to get client socket connection from pool before timing out. If max retriesis reached, will cause a Cannot-
ConnectException to be thrown (whose cause will be SocketException saying how long it waited for socket con-
nection from pool). The default is 30 (MAX_RETRIES)

number Of CallRetries - number of retries for making invocation. This is unrelated to numberOfRetries in that
when this comesinto play is after it has already received a client socket connection from the pool. However, is pos-
sible that the socket connection timed out while waiting within the pool. Since not doing a connection check by de-
fault, will throw away the connection and try to get a new one. Will do this for whatever the numberOfCallRetries
(which defaults to 3) is. However, when reaches numberOfCallsRetries - 2, will flush the entire connection pool
under the assumption that al connections in the pool have timed out and are invalid and will start over by creating
anew connection. If still fails, will throw Marshal Exception with the cause being the original SocketException.

JBoss June 22, 2008 29

Configuration

clientSocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use
on the client. Note, will need to make sure this is marked as a client parameter (using the 'isParam' attribute). Mak-
ing this change will not affect the marshaller/unmarshaller that is used, which may also be a requirement.

socket.check _connection - indicates if the invoker should try to check the connection before re-using it by sending
a single byte ping from the client to the server and then back from the server. This config needs to be set on both
client and server to work. Thisif false by default.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and the client's max pool size
of 30 would be:

socket://test.sonedomai n. com 8084/ ?enabl eTcpNoDel ay=f al se&naxPool Si ze=30

To reiterate, these client configurations can only be set within the server side configuration and will not change
during runtime.

5.4.5.1. How the Socket Invoker works

The Socket Invoker is one of the more complicated invokers mainly because allows the highest degree of configur-
ation. To better understand how changes to configuration properties for the Socket invoker (both client and server)
will impact performance and scalability, will discuss the implementation and how it works in detail.

server

When the socket server invoker is started, it will create one, and only one, instance of java.net.ServerSocket. Upon
being started, it will also create and start a number of threads to be used for accepting incoming requests from the
ServerSocket. These threads are called the accept threads and the number of them created is controlled by the 'nu-
mAcceptThreads' property. When these accept threads are started, they will call accept() on the ServerSocket and
block until the ServerSocket receives arequest from a client, where it will return a Socket back to the accept thread
who called the accept() method. As soon as this happens, the accept thread will try to pass off the Socket to another
thread for processing.

The threads that actually process the incoming request, referred to as server threads, are stored in a pool. The ac-
cept thread will try to retreive the first available server thread from the pool and hand off the Socket for processing.
If the pool does not contain any available server threads and the max pool size has not been reached, a new server
thread will be created for processing. Otherwise, if the max pool size has been reached, the accept thread will wait
for one to become available (will wait until socket timeout has been reached). The size of the server thread pool is
defined by the 'maxPool Size' property. As soon as the accept thread has been able to hand off the Socket to a server
thread for processing, it will loop back to ServerSocket and call accept() on it again. This will continue until the
socket server invoker is stopped.

The server thread processing the request will be the thread of execution through the unmarshalling of the data, call-
ing on the server invocation handler, and marshalling of response back to the client. After the response has been
sent, the server thread will then hold the socket connection and wait for another request to come from this client. It
will wait until the socket is closed by the client, a socket timeout occurs, or receives another request from the client
in which to process. When the client socket connection session is closed, meaning timeout or client closed socket
connection, then the thread will return itself to the pool.

If al the server threads from the pool are in use, meaning have a client connection established, and the pool has
reached its maximum value, the accept threads (no matter how many there are) will have to wait until one of the

JBoss June 22, 2008 30

Configuration

server threads is available for processing. This why having a large number of accept threads does not provide any
real benefit. If al the accept threads are blocked waiting for server thread, new client requests will then be queued
until it can be accepted. The number of regquests that can be queued is controlled by the backlog and can be useful
in managing sudden burstsin requests.

If take an example with a socket server invoker that has max pool set to 300, accept threads is 2, and backlog is
200, will be able to make 502 concurrent client calls. The 503rd client request will get an exception immediately.
However, this does not mean all 502 requests will be guaranteed to be processed, only the first 300 (as they have
server threads available to do the processing). If 202 of the server threads finish processing their requests from their
initial client connections and the connection is released before the timeout for the other 202 that are waiting (200
for backlog and 2 for accept thread), then they will be processed (of course thisis a request by request determina-
tion).

As of JBossRemoting 2.2.0 release, can also add configuration for cleaning up idle server threads using the 'idle-
Timeout' configuration property. Setting this property to a value of greater than zero will activate idle timeout
checking, which is disabled by default. When enabled, the idle timeout checker will periodically iterate through the
server threads that are active and inactive and if have not processed a request within the designated idle timeout
period, the server thread will be shutdown and removed from corresponding pool. Active server threads are ones
that have a socket connection associated with it and are in a blocked read waiting for data from the client. Inactive
server threads are ones that have finished processing on a particular socket connection and have been returned to
the thread pool for later reuse.

Note. Prior to release 2.2.2.SP7, if a server thread experienced aj ava. net . Socket Ti meout Except i on, it would re-
turn itself to the thread pool and could not be reused until a new socket connection was created for it to use. In prin-
ciple, it would be more efficient for the server thread ssimply to try again to read the next invocation, and, in release
2.2.2.5P7, that is what it does. Unfortunately, j ava. i 0. Obj ect I nput St r eam ceases to function once it experiences
a Socket Ti meout Except i on. The good newsisthat or g. j boss. seri al . i 0. JBossQvj ect | nput St r eam made avail-
able by the JBossSerialization project, does not suffer from that problem. Therefore, as of release 2.2.2.SP8, when
it experiences a Socket Ti meout Except i on, a server thread will check whether it is using a JBossj ect | nput -

streamor not and act accordingly. Just to allow for the possibility that an application is using yet another version
of Qvj ect | nput Stream the parameter Server Thread. CONTI NUE_AFTER TI MEQUT (actual vaue "continueAfter-
Timeout") allows the behavior following a Socket Ti meout Except i on to be configured explicitly.

client

When the socket client invoker makes its first invocation, it will check to seeif there is an available socket connec-
tion inits pool. Since is the first invocation, there will not be and will create a new socket connection and use it for
making the invocation. Then when finished making invocation, will return the still active socket connection to the
pool. As more client invocations are made, is possible for the number of socket connections to reach the maximum
allowed (which is controlled by 'clientMaxPool Size' property). At this point, when the next client invocation is
made, it will keep trying to get an available connection from the pool, waiting 1 second in between tries for up to
maximum number of retries (which is controlled by the numberOfRetries property). If runs out of retries, will
throw SocketException saying how long it waited to find available socket connection.

Once the socket client invoker goes get an available socket connection from the pool, are not out of the woods yet.
Thereis still a possibility that the socket connection returned, while still appearing to be valid, has timed out while
sitting in the pool. So if discover this while trying to make invocation, will throw it away and retry the whole pro-
cess again. Will do this up to the number set by the numberOf CallRetries before throwing an exception. The trick
here is that when get to numberOfCallRetries -2, will assume that any socket connection gotten from the pool will

JBoss June 22, 2008 31

Configuration

have timed out and will flush the pool all together so that the next retry will cause a new socket connection to be re-
created. A typical scenario when this might occur is when have had a burst of client invocations and then a long
period of inactivity.

Note. Asof release 2.2.2.GA, the server side of the socket transport can capture the |P address of the client side of
a TCP connection from client to server and make it available to application code on the client side. The address can
be retrieved as follows:

Client client = new Cient(locator);

I nvocati onResponse response = (Il nvocati onResponse) client.invoke("$GET_CLI ENT_LOCAL_ADDRESS$") ;
| net Addr ess address = (I net Address) response.getResult();

5.4.6. SSL Socket Invoker

Supports al the configuration attributes as the Socket Invoker. The main difference is that the SSL Socket Invoker
uses an SSLSer ver Socket by default, created by an SSLSer ver Socket Fact ory. See section Socket factories and
server socket factories for more information.

5.4.7. RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This also needs to have the is-
Param attribute set to true.

Note. The RMI server invoker creates a socket factory and passesit to a client invoker along with the RMI stub, so
the socket factory must be serializable. Therefore, if a socket factory is passed in to the server invoker by one of the
methods discussed in section Socket factories and server socket factories, then the user is responsible for supplying
a serializable socket factory.

5.4.8. SSL RMI Invoker

Thisis essentially identical to the RMI invoker, except that it creates SSL socket and server socket factories by de-
fault.

Note. The SSL RMI server invoker creates a socket factory and passes it to a client invoker along with the RMI
stub, so the socket factory must be serializable. If the SSL RMI server invoker is allowed to create an SSLSocket -
Fact ory from SSL parameters, as discussed in section Socket factories and server socket factories, it will take care
to create a serializable socket factory. However, if a socket factory is passed in to the server invoker (also discussed
in section Socket factories and server socket factories), then the user is responsible for supplying a serializable
socket factory. See ssirmi below for more information.

5.4.9. HTTP Invoker

The HTTP server invoker implementation is based on the Apache Tomcat connector components which support
GET, POST, HEAD, OPTIONS, and HEAD method types and keep-alive. Therefore, most any configuration al-
lowed for Tomcat can be configured for the remoting HTTP server invoker. For more information on the configur-

JBoss June 22, 2008 32

Configuration

ation attributes available for the Tomcat connectors, please refer to ht-
tp://tomcat.apache.org/tomcat-5.5-doc/config/http.html. http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
So for example, if wanted to set the maximum number of threads to be used to accept incoming http requests,
would use the 'maxThreads attribute. The only exception when should use remoting configuration over the Tomcat
configuration is for attribute 'address' (use serverBindAddress instead) and attribute 'port’ (use serverBindPort in-
stead).

Note: The http invoker no longer has the configuration attributes 'maxNumThreadsHTTP or 'HTTPThreadPool' as
thread pooling is now handled within the Tomcat connectors, which does not expose external API for setting these.

Since the remoting HTTP server invoker implementation is using Tomcat connectors, is possible to swap out the
Tomcat protocol implementations being used. By default, the protocol being wused is
org. apache. coyote. httpll. HttpliProtocol . However, it is possible to switch to wuse the
or g. apache. coyot e. ht t p11. Ht t p11Apr Pr ot ocol protocol, which is based on the Apache Portable Runtime (see
http://tomcat.apache.org/tomcat-5.5-doc/apr.html and http://apr.apache.org/ for more details). If want to use the
APR implementation, simply put the tcnative-1.dll (or tcnative-1.s0) on the system path so can be loaded. The APR
native binaries can be found at http://tomcat.heanet.ie.

Note: There is a bug with release 1.1.1 of APR where get an error upon shutting down (see JBREM-277 for more
information). This does not impact anything while running, but is still an issue when shutting down (as upon start-
ing up again, can get major problems). This should be fixed in alater release of APR so can just replace the 1.1.1
version of tcnative-1.dIl with the new one.

Client request headers

The HTTP Invoker allows for some of the properties to be passed as request headers from client caller. The follow-
ing are possible http headers and what they mean:

sessionld - isthe remoting session id to identify the client caller. If thisis not passed, the HTTP server invoker will
try to create a session id based on information that is passed. Note, this means if the sessionld is not passed as part
of the header, there is no guarantee that the sessionld supplied to the invocation handler will always indicate the re-
quest from the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is more than one handler per
Connector, thiswill need to be set (otherwise will just use the only one available).

These request headers are set automatically when using aremoting client, but if using another client to send request
to the HTTP server invoker, may want to add these headers.

5.4.10. HTTPS Invoker

Supports all the configuration attributes as the HTTP Invoker, plus the following:

SSLImplementation - Sets the Tomcat SSLimplementation to use. This should aways be
org.jboss.rennting.transport. coyote. ssl.Renoti ngSSLI npl ement ati on.

The main difference with the HTTP invoker is that the HTTPS Invoker uses an SSLSer ver Socket by default, cre-
ated by an ssLSer ver Socket Fact ory. See section Socket factories and server socket factories for more informa-
tion.

JBoss June 22, 2008 33

http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
http://tomcat.apache.org/tomcat-5.5-doc/config/http.html
http://tomcat.apache.org/tomcat-5.5-doc/apr.html
http://apr.apache.org/
http://tomcat.heanet.ie

Configuration

5.4.11. HTTP(S) Client Invoker - proxy and basic authentication

This section covers configuration specific to the HTTP Client Invoker only and is NOT related to HTTP(S) invoker
configuration on the server side (via service xml).

proxy

There are a few ways in which to enable http proxy using the HTTP client invoker. The first is simply to add the
following properties to the metadata Map passed on the Client's invoke() method: http. proxyHost and ht -
tp. proxyPort.

An example would be;

Map netadata = new HashMap();

/1 proxy info
nmet adat a. put ("http. proxyHost", "ginger");
nmet adat a. put ("http. proxyPort", "80");

response = client.invoke(payl oad, netadata);

The http.proxyPort property is not required and if not present, will use default of 80. Note: setting the proxy config
inthisway can ONLY be doneif using JDK 1.5 or higher.

The other way to enable use of an http proxy server from the HTTP client invoker is to set the following system
properties (either via System set Property() method call or via JVM arguments): http. proxyHost, ht-
t p. proxyPort, and pr oxySet .

An example would be setting the following JVM arguments:

- Dhtt p. pr oxyHost =gi nger -Dhtt p. proxyPort =80 - DproxySet=true

Note: when testing with Apache 2.0.48 (mod_proxy and mod_proxy http), all of the properties above were re-
quired.

Setting the system properties can be used for JDK 1.4 and higher. However, will not be able to specify proxy server
per remoting client if use system properties..

Basic authentication - direct and via proxy

The HTTP client invoker also has support for BASIC authentication for both proxied and non-proxied invocations.
For proxied invocations, the following properties need to be set: ht t p. pr oxy. user nane and htt p. pr oxy. passwor d.

For non-proxied invocations, the following properties need to be set: http. basic.usernane and ht-
t p. basi c. password.

For setting either proxied or non-proxied properties, can be done via the metadata map or system properties (see
setting proxy properties above for how to). However, for authentication properties, values set in the metadata Map

JBoss June 22, 2008 34

Configuration

will take precedence over those set within the system properties.
Note: Only the proxy authentication has been tested using A pache 2.0.48; non-proxied authentication has not.

Since there are many different ways to do proxies and authentication in this great world of web, not all possible
configurations have been tested (or even supported). If you find a particular problem or see that a particular imple-
mentation is not supported, please enter an issue in Jira (http://jira,jboss.com) under the JBossRemoting project, as
thisis where bugs and feature requests belong. If after reading the documentation have unanswered questions about
how to use these features, please post them to the remoting forum (ht-
tp://www.jboss.org/index.html 2modul e=bb& op=viewforum& f=222

[http://www.jboss.org/index.html ?modul e=bb& op=viewforum& f=222]).

Host name verification

During the SSL handshake when making client calls using https transport, if the URL's hostname and the server's
identification hostname mismatch, a javax.net.ssl.HostnameV erifier implementation will be called to determine if
this connection should be allowed. The default implementation will not allow this, but it is possible to override the
default behavior

One option is to use the key HTTPSA i ent | nvoker . HOSTNAVE_VERI FI ER (actual value "hostnameVerifier") to sup-
ply the name of a class that implements the j avax. net . ssl . Host naneVeri fi er interface, passing it either in the
metadata map supplied with an invocation or in the configuration map supplied when the HTTPSC i ent | nvoker was
created. If the key appears in both maps, the value in the metadata map takes precedence.

In the absence of an explicitly declared Host naneVeri fi er, another way to configure the hostname verification be-
havior is to declare that al host names are acceptable, which can be accomplished by setting the HTTPSC i ent I n-
voker . | GNORE_HTTPS_HOST property (actua value "org.jboss.security.ignoreHttpsHost") to true. In order of in-
creasing precedence, the property may be set (1) as a system property, (2) in the configuration map supplied when
the HTTPSC i ent | nvoker was created, or in the metadata map supplied with an invocation.

Finally, in the absence of both an explicitly declared Host nameVeri fier and an explicit directive to ignore host
names, an HITPSCientlnvoker Will check to see if its SocketFactory is an instance of
org. j boss.renoting. security. Cust onSSLSocket Fact ory and, if so, if authentication has been turned off. If that
is the case, host names will be ignored. See Section Socket factories and server socket factories for more informa-
tion about Socket Fact ory configuration.

5.4.12. Servlet Invoker

The servlet invoker is a server invoker implementation that uses a servlet running within a web container to accept
initial client invocation requests. The servlet request is then passed on to the servlet invoker for processing.

The deployment for this particular server invoker is alittle different than the other server invokers since aweb de-
ployment is also required. To start, the servlet invoker will need to be configured and deployed. This can be done
by adding the Connector MBean service to an existing service xml or creating a new one. The following is an ex-
ample of how to declare a Connector that uses the servlet invoker:

<nbean code="org.jboss.renoting.transport. Connector"
nane="j boss. renoti ng: servi ce=Connect or, transport=Servl et"
di spl ay- name="Servl et transport Connector">

JBoss June 22, 2008 35

http://jira.jboss.com
http://www.jboss.org/index.html?module=bb&op=viewforum&f=222
http://www.jboss.org/index.html?module=bb&op=viewforum&f=222

Configuration

<attribute nane="InvokerLocator">
servl et://l ocal host: 8080/ servl et-invoker/ Serverl nvoker Servl et
</attribute>

<attribute name="Configuration">
<confi g>
<handl er s>
<handl er subsystenm="test">
org.jboss.test.renoting.transport.web. Wbl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

An important point of configuration to note is that the value for the InvokerL ocator attribute is the exact url used to
access the servlet for the servlet invoker (more on how to define this below), with the exception of the protocol be-
ing servlet instead of http. Thisis important if using automatic discovery, as this is the locator url that will be dis-
covered and used by clientsto connect to this server invoker.

The next step is to configure and deploy the servlet that fronts the serviet invoker. The pre-built deployment file for
this servlet is the servlet-invoker.war file (which can be found in lib directory of the release distribution or under
the output/lib/ directory if doing a source build). By default, it is actually an exploded war, so the servlet-in-
voker.war is actually a directory so that can be more easily configured (feel free to zip up into an actual war file if
prefer). In the WEB-INF directory is located the web.xml file. Thisis a standard web configuration file and should
look like:

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. coni dt d/ web-app_2_3. dtd">

<web- app>
<servl et >
<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>
<descri pti on>The Server|nvokerServl et receives requests via HITP
protocol fromw thin a web contai ner and passes it onto the
Ser vl et Server | nvoker for processing.
</ descri pti on>
<servl et-class>org.jboss.renoting.transport.servl et.web. Serverl nvoker Servl et </ servl et -cl ass>
<init-paranp
<par am name>i nvoker Nanme</ par am nane>
<par am val ue>j boss. renoti ng: servi ce=i nvoker, transport =ser vl et </ param val ue>
<descri pti on>The servl et server invoker</description>
<l--
<par am nane>| ocat or Ur | </ par am nanme>
<paramval ue>servl et://I| ocal host: 8080/ servl et-i nvoker/ Server | nvoker Servl et </ param val ue>
<descri pti on>The servl et server invoker |ocator url</description>
-->
</init-paranp
<l oad-on- startup>1</| oad- on- st art up>
</ servl et>
<servl et - mappi ng>
<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>
<url - pattern>/ Serverl nvoker Servl et/ *</url -pattern>
</ servl et - mappi ng>
</ web- app>

There are two ways in which the servlet can obtain a reference to the servlet server invoker it needs to passits re-

JBoss June 22, 2008 36

Configuration

quest onto. Thefirst is by using the param 'invokerName', as is shown above. The value for this should be the IMX
ObjectName for the servlet server invoker that was deployed as a service mbean (see service xml above). The other
way isto provide a param 'locatorUrl" with a value that matches the locator url of the servlet server invoker to use.
In this case, will use the InvokerRegistry to find the server invoker instead of using IMX, which is useful if not de-
ploying server invoker as a mbean service or if want to run in web container other than the JBoss application serv-
er. Note, one or the other param is required. If both are provided, the 'locatorUrl' param take precedence.

This file can be changed to meet any web requirements you might have, such as adding security (see ssserviet) or
changing the actual url context that the servliet maps to. If the url that the serviet maps to is changed, will need to
change the value for the InvokerL ocator in the Connector configuration mentioned above.

Issues

One of the issues of using Servlet invoker is that the invocation handlers (those that implement Serverlnvocation-
Handler) can not return very much detail in regards to a web context. For example, the content type used for the re-
sponse is the same as that of the request.

5.4.13. SSL Servlet Invoker

The SSL Servlet Invoker is exactly the same as its parent, Servlet Invoker, with the exception that it uses the pro-
tocol of 'sdservlet’. On the server side it is deployed exactly the same as a servlet invoker would be but requires set-
ting up sd within the web container (i.e. enabling the ssl connector within Tomcat's server.xml). This will usually
require specifing a different port as well.

An example of the mbean service xml for deploying the ssl servlet server invoker would be:

<?xm version="1.0" encodi ng="UTF-8""?>

<server >
<nbean code="org.jboss.renoting.transport. Connector"
nane="j boss. renoti ng: servi ce=Connect or, transport=SSLSer vl et "
di spl ay- nanme="SSL Servl et transport Connector">

<attribute nanme="Invoker Locator">
sslservlet:/ /| ocal host: 8443/ servl et-invoker/ Server | nvoker Ser vl et
</attribute>
<attribute name="Configuration">
<config>
<handl er s>
<handl er subsystem="test">org.jboss.test.renoting.transport.web. Wbl nvocati onHand
</ handl er s>
</ confi g>
</attribute>
</ mbean>
</ server>

An example of servlet-invoker.war/WEB-INF/web.xml for the sd server invoker serviet would be:

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. conl dt d/ web-app_2_3. dtd">

<web- app>
<servl et >
<ser vl et - name>Ser ver | nvoker Ser vl et </ ser vl et - name>

JBoss June 22, 2008 37

Configuration

<descri pti on>The Server|nvokerServl et receives requests via HITP
protocol fromw thin a web container and passes it onto the
Servl et Server | nvoker for processing.
</ descri pti on>
<servl et-class>org.jboss.remoting.transport.servl et.web. Server| nvoker Servl et </ servl et -cl ass>
<i ni t-paranp
<par am name>| ocat or Ur | </ par am nanme>
<par am val ue>ssl servl et://| ocal host: 8443/ servl et-i nvoker/ Server | nvoker Servl et </ param val ue>
<descri pti on>The servlet server invoker |ocator url</description>
</init-paranr
<l oad- on- st art up>1</| oad- on- st art up>
</servlet>
<servl et - mappi ng>
<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>
<url - pattern>/ Serverl nvoker Servl et/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

5.4.14. Exception handling for web based clients

Web based clients, meaning remoting clients that call on web based remoting servers (i.e. http, https, servlet, and
sdlservlet) have special needs when it comes to handling exceptions that come from the servers they are calling on.
The main reason for thisis that depending on what type of server they are calling on, they might receive the error in
different formats.

By default, web based clients will throw an exception when the response code from the server is greater than 400.
The exact exception type thrown will depend on the type of web server the client isinteracting with. If it isa JBoss
Remoting server (http or https server invoker), the exception thrown will be the one originally generated on the
server side. If the server is not a JBoss Remoting server (e.g. JBossAS, Tomcat, Apache Web Server, etc.), the ex-
ception throw will be org. j boss. test. renoting. transport. http. WebSer ver Error. The WebServerError's mes-
sage will be the error html returned by the web server. To turn off the throwing of an exception when the web serv-
er responds with an error, can add config to the configuration map passed to the d i ent . i nvoke() method where
they key is HTTPMet adat aConst ant s. NO_THROW ON_ERRCR (actual text value 'NoThrowOnError') and a value of of
type javalang.String set to ‘true’. This will cause the http client invoker to not throw an exception, but instead re-
turn the data from the web server error stream. In the case that the data returned from this error stream is of type
javalang.String (i.e. is error html), it will be wrapped in a WebServerError and returned as this type. The raw data
from the web server can the be retrieved by getting the WebServerError's message.

Note. Prior to Remoting release 2.2.2.5P2, the servlet transport returned a simple error message in the event of an
error on the server side. As of release 2.2.2.SP2, the exception handling behavior described above can be requested
for the the servlet and sdservlet transports as well by configuring the server with the parameter
org.jboss.renmoting. transport. http. HTTPMet adat aConst ant s. RETURN_EXCEPTI ON (actual value "return-ex-
ception™) set to "true”.

5.4.15. Multiplex Invoker

The multiplex invoker isintended to replicate the functionality of the socket invoker with the added feature that it
supports multiple streams of communication over a single pair of sockets. Multiplexing may be motivated by, for
example, a desire to conserve socket resources or by firewall restrictions on port availability. This additional ser-
vice is made possible by the Multiplex subproject, which provides "virtual" sockets and "virtual" server sockets.
Please refer to the Multiplex documentation at

JBoss June 22, 2008 38

Configuration

http://labs.jboss.com/portal/jbossremoting/docs/index.html
[http://1abs.jboss.com/portal/jbossremoting/docs/index.htmi]

for further details.

In a typical multiplexed scenario a d i ent on a client host, through a il ti pl exd i ent I nvoker C, could make
synchronous method invocations to a mul ti pl exSer ver | nvoker 0On a server host, and at the same time (and over
the same TCP connection) asynchronous push callbacks could be made to amul ti pl exSer ver I nvoker Son the cli-
ent host. In this, the Prime Scenario, which motivated the creation of the multiplex invoker, C and S use two dif-
ferent virtual sockets but share the same port and same actual socket. We say that C and S belong to the same in-
voker group.

One of the primary design goals of the Multiplex subsystem is for virtual sockets and virtual server sockets to
demonstrate behavior as close as possible to their real counterparts, and, indeed, they implement complete socket
and server socket APIs. However, they are necessarily different in some respects, and it follows that the multiplex
invoker is somewhat different than the socket invoker. In particular, there are three areas specific to the multiplex
invoker that must be understood in order to use it effectively:

1. Establishing on the server an environment prerequisite for creating multiplex connections
2. Configuring the client for multiplexed method invocations and callbacks

3. Shutting down invoker groups.

5.4.15.1. Setting up the server

There are two kinds of Mul ti pl exServer | nvoker S, master and virtual, corresponding to the two kinds of virtual
server sockets: Mast er Server Socket and Vi rt ual Server Socket . Bri€efly, the difference between the two virtual
server socket classes is that a Mast er Server Socket is derived from j ava. net. Server Socket and its accept ()
method is implemented by way of the inherited method super . accept (). A Mast er Ser ver Socket Can accept con-
nect reguests from multiple machines. A Vi rt ual Server Socket , on the other hand, is based on an actual socket
connected to another actual socket on some host H, and consequently a Vi rt ual Ser ver Socket Can accept connect
requests only from H.

Each multiplex connection depends on a pair of connected real sockets, one on the client host and one on the server
host, and this connection is created when an actual socket contacts an actual server socket. It follows that a multi-
plex connection begins with a connection request to a Mast er Ser ver Socket . Once the connection is established, it
is possible to build up virtual socket groups, consisting of virtual sockets (and at most one Vi rt ual Ser ver Socket)
revolving around the actual socket at each end of the connection. Each virtual socket in a socket group at one end is
connected to avirtual socket in the socket group at the other end.

Master and virtual Mul ti pl exServer | nvoker S assume the characteristics of their server sockets. Mast er Ser ver -
Socket and Vi rtual Server Socket , respectively. That is, a master Mul ti pl exSer ver | nvoker can accept requests
from any host, while avirtual Mul ti pl exServer I nvoker can accept requests only from the particular host to which
it has a multiplex connection. Since a multiplex connection begins with a connection request to a Mast er Ser ver -
Socket , it follows that the use of the multiplex invoker must begin with a connection reguest from the client (made
by either amul tipl exdientlnvoker or avirtual Ml tipl exServerlnvoker: see below) to a master mul ti pl ex-
Server | nvoker on the server. The master Mil ti pl exServer I nvoker responds by "cloning” itself (metaphorically,

JBoss June 22, 2008 39

http://labs.jboss.com/portal/jbossremoting/docs/index.html

Configuration

not necessarily through the use of cl one()) into avirtual Ml ti pl exSer ver | nvoker with the same parameters and
same set of invocation handlers but with a Vi rt ual Ser ver Socket belonging to a new socket group. In so doing the
master mul ti pl exServer I nvoker builds up a server invoker farm of virtual Ml ti pl exServer I nvoker S, each in
contact with a different mul ti pl exd i ent I nvoker over a distinct multiplex connection. The virtual Ml ti pl ex-
Ser ver | nvoker s do the actual work of responding to method invocation requests, sent by their corresponding mil -
ti pl exd i ent | nvoker S through virtual socketsin a socket group at the client end of a multiplex connection to vir-
tual sockets created by the Vi rt ual Ser ver Socket in the socket group at the server end of the connection. Note that
virtual mul ti pl exServer | nvoker S share data structures with the master, so that registering invocation handlers
with the master makes them available to the members of the farm. The members of a master mul ti pl exServer | n-
voker 'sinvoker farm are accessible by way of the methods

1. MultiplexServerlnvoker.get Serverlnvokers() and

2. Ml tipl exServerlnvoker. get Server| nvoker (| net Socket Addr ess)

the latter of which returns a virtual mul ti pl exSer ver | nvoker keyed on the address to which its Vi r t ual Ser ver -
Socket is connected. When the master mul ti pl exServer | nvoker shuts down, its farm of virtual invokers shuts
down as well

There are two ways of constructing a virtual Ml ti pl exServer | nvoker, one being the cloning method just dis-
cussed. It is also possible to construct one directly. Once a multiplex connection is established, a virtual mul ti -
pl exSer ver | nvoker can be created with a Vi rt ual Server Socket belonging to a socket group at one end of the
connection. The Mul ti pl exSer ver | nvoker constructor determines whether to create a virtual or master invoker ac-
cording to the presence or absence of certain parameters, discussed below, that may be added to its | nvoker Locat -
or . Server rules 1 through 3 described below result in the construction of a virtual mul ti pl exServer I nvoker, and
server rule 4 (the absence of these parameters) results in the construction of amaster mul ti pl exSer ver | nvoker .

Setting up the server, then, is simply a matter of starting a master mul ti pl exSer ver I nvoker with a simple I n-
voker Locat or , unadorned with any parameters specific to the multiplex invoker. As always, the server invoker is
not created directly but by way of a Connect or, asin the following:

Connect or connector = new Connector();

Connect or. set | nvoker Locat or ("mul ti pl ex://deno. j boss. com 8080") ;
Connector. create()

Connector.start()

5.4.15.2. Setting up the client

Before multiplex connections can be established, a master Mul ti pl exSer ver I nvoker must be created as described
in the previous section. For example, the Prime Scenario would begin with starting a master mul ti pl exSer ver I n-
voker on the server host, followed by starting, on the client host, amul ti pl exd i ent I nvoker C and avirtua mul -
ti pl exServerlnvoker S(in either order). The first to start initiates a multiplex connection to the master mul ti -
pl exSer ver I nvoker and requests the creation of a virtual Ml ti pl exServer | nvoker. Note that it is crucia for C
and Sto know that they are meant to share a multiplex connection, i.e., that they are meant to belong to the same
invoker group. Consider the following attempt to set up a shared connection between hosts bluemonkey.acme.com

JBoss June 22, 2008 40

Configuration

and demo.jboss.com. First, C is initialized on host bluemonkey.acme.com with the I nvoker Locat or multi-
plex://demo.jboss.com:8080, and, assuming the absence of an existing multiplex connection to
demo.jboss.com:8080, a new virtual socket group based on a real socket bound to an arbitrary port, say 32000, is
created. Then Sis initialized with | nvoker Locat or multiplex://bluemonkey.acme.com:4444, but since it needs to
bind to port 4444, it is unable to share the existing connection. [Actually, the example is dlightly deceptive, since
multiplex://bluemonkey.acme.com:4040 would result in the creation of a master Mul ti pl exSer ver I nvoker . But if
it were suitably extended with the parameters discussed below so that avirtual Ml ti pl exSer ver | nvoker were cre-
ated, the virtual invoker would be unable to share the existing connection.]

So C and Sneed to agree on the address and port of the real socket underlying the virtual socket group they are in-
tended to share on the client host and the address and port of the real socket underlying the peer virtual socket
group on the server host. Or, more succintly, they must know that they are meant to belong to the same invoker
group. Note the relationship between an invoker group and the virtual socket group which supports it: a mul ti -
pl exCl i ent I nvoker uses virtual sockets in its underlying virtual socket group, and a Mul ti pl exSer ver | nvoker in
an invoker group hasa Vi rt ual Ser ver Socket that creates virtual socketsin the underlying virtual socket group.

C and Seach get half of the information necessary to identify their invoker group directly from their respective | n-
voker Locat or S. In particular, C gets the remote address and port, and S gets the binding address and port. The ad-
ditional information may be provided through the use of invoker group parameters, which may be communicated
to C and Sin one of two ways:

1. they may be appended to the I nvoker Locat or passed to the d i ent which creates C and/or to the I nvoker -
Locat or passed to the Connect or which creates S

2. they may be stored in a configuration Map which is passed to the c i ent and/or Connect or .

In either case, there are two ways in which the missing information can be supplied to C and S

1. Theinformation can be provided explicitly by way of invoker group parameters:

a multiplexBindHost and multiplexBindPort parameters can be passed to C, and
b. multiplexConnectHost and multiplexConnectPort parameters can be passed to S.

2. Cand Scan betied together by giving them the same multiplexld, supplied by invoker group parameters:

a. clientMultiplexid, for the mul ti pl exd i ent | nvoker , and
b. serverMultiplexid, for the Mul ti pl exSer ver I nvoker .

Giving them matching multiplexlds tells them that they are meant to belong to the same invoker group and
that they should provide the missing information to each other.

The behavior of astarting Ml ti pl exd i ent I nvoker C isgoverned by the following four client rules:

1. If C has aclientMultiplexid parameter, it will use it to attempt to find a Mul ti pl exServer | nvoker Swith a
serverMultiplexid parameter with the same value. If it succeeds, it will retrieve binding host and port values,
create or reuse a suitable multiplex connection to the server, and start. Moreover, if Swas unable to start be-
cause of insufficient information (server rule 3), then C will supply the missing information and S will start.

JBoss June 22, 2008 41

Configuration

Note that in this situation C will ignore any multiplexBindHost and multiplexBindPort parameters passed to it.

2. If Cdoesnot find amul tipl exServer | nvoker through a multiplexid (either because it did not get a clientMul-
tiplexid parameter or because there is no mul ti pl exSer ver | nvoker with a matching multiplexid), but it does
have multiplexBindHost and multiplexBindPort parameters, then it will create or reuse a suitable multiplex
connection to the server, and start. Also, if it has a multiplexld, it will advertise itself for the benefit of amul -
ti pl exServer | nvoker that may come along later (see server rule 1).

3. If Chasamultiplexld and neither finds amuil ti pl exSer ver I nvoker with a matching multiplexid nor has mul-
tiplexBindHost and multiplexBindPort parameters, then it will not start, but it will advertise itself so that it
may be found later by amul ti pl exServer I nvoker (see server rule 1).

4. If C has neither clientMultiplexid nor multiplexBindHost and multiplexBindPort parameters, it will create or
reuse a multiplex connection from an arbitrary local port to the host and port given initsi nvoker Locat or, and
Start.

Similarly, the behavior of astarting mul ti pl exSer ver I nvoker Sisgoverned by the following four server rules:

1. If Shas aserverMultiplexid parameter, it will use it to attempt to find a Mul ti pl exd i ent | nvoker C with a
matching clientMultiplexid. If it succeeds, it will retrieve server host and port values, create a Vi r t ual Ser ver -
Socket , Create or reuse a suitable multiplex connection to the server, and start. Moreover, if C was unable to
start due to insufficient information (client rule 3), then Swill supply the missing information and C will start.
Note that in this situation Swill ignore multiplexConnectHost and multiplexConnectPort parameters, if any, in
its1 nvoker Locat or .

2. If Sdoes not find a Ml tipl exdientlnvoker through a multiplexid (either because it did not get a server-
Multiplexid parameter or because there is no mul ti pl exd i ent I nvoker with a matching multiplexid), but it
does have multiplexConnectHost and multiplexConnectPort parameters, then it will create a vi rt ual Ser ver -
Socket , create or reuse a suitable multiplex connection to the server, and start. Also, if it has a multiplexld, it
will advertise itself for the benefit of amul ti pl exd i ent | nvoker that may come along later (seeclient rule 1).

3. If Shasamultiplexid and neither finds a Ml ti pl exd i ent | nvoker with a matching multiplexid nor has mul-
tiplexConnectHost and multiplexConnectPort parameters, then it will not start, but it will advertise itself so
that it may be found later by amul ti pl exd i ent | nvoker (seeclient rule 1).

4. |If Shas neither serverMultiplexid nor multiplexConnectHost and multiplexConnectPort parameters, it will cre-
ate amMast er Ser ver Socket bound to the host and port inits1 nvoker Locat or and start.

5.4.15.2.1. Notes

1. Like server invokers, client invokers are not started directly but are started indirectly through calls to d i -
ent (I nvoker Locat or | ocat or), such as:

Cient client = new Cient("multiplex://deno.jboss.com 8080/ ?clientMiltiplexld=id0");
client.connect();

N.B. For the multiplex invoker, it is important to call d i ent. connect () . Otherwise, the last mul ti pl exd i -
ent | nvoker that leaves an invoker group will not get a chance to shut the group down.

JBoss June 22, 2008 42

Configuration

2. It should not be inferred that Mul ti pl exd i ent I nvoker S and Ml ti pl exSer ver I nvoker S belong to the same
invoker group only if they are required to do so by invoker group parameters. In fact, if two d i ent S are cre-
ated with the I nvoker Locat or multiplex://demo.jboss.com, the second one, lacking any constraints on its
binding address and port, is certainly not prevented from sharing a connection with the first. Rather, the func-
tion of the invoker group parametersisto force mul ti pl exd i ent | nvoker Sand Mul ti pl exSer ver | nvoker Sto
share a connection.

3. There are situations in which the method of passing parameters by way of the configuration map is preferable
to appending them to an I nvoker Locat or . One of the functions of an | nvoker Locat or isto identify a server,
and modifying the content of its | nvoker Locat or may interfere with the ability to locate the server. For ex-
ample, one of the features of JBoss Remoting is the substitution of method calls for remote invocations when
it discovers that a server runsin the same JVM as the client. However, appending multiplex parameters to the
| nvoker Locat or by which the server isidentified will prevent the Remoting runtime from recognizing the loc-
al presence of the server, and the optimization will not occur.

4. It is possible, and convenient, to set up a multiplexing scenario using no parameters other than clientMulti-
plexid and serverMultiplexid. Note, however, that in this case neither the d i ent s nor the Connect or will be
fully initialized until after both have been started. If the d i ents and the Connect or are to be started inde-
pendently, then the other parameters must be used. N.B. If a d i ent depends on Connect or in the same in-
voker group to supply binding information, it is an error to call methods such asd i ent. connect () and d i -
ent . i nvoke() until the Connect or has been started.

5. dients andtheoptiona Connect or may be created (and the Connect or started) in any order.

5.4.15.3. Shutting down invoker groups.

A virtual socket group will shut down, releasing a real socket and a number of threads, when (1) its last member
has closed and (2) the socket group at the remote end of the multiplex connection agrees to the proposed shut
down. The second condition prevents a situation in which a new virtual socket triesto join what it thinksis aviable
socket group at the same time that the peer socket group is shutting down. So for a virtual socket group to shut
down, al members at both ends of the connection must be closed.

The implication of this negotiated shutdown mechanism is that as long as the Vi r t ual Ser ver Socket used by avir-
tual mul ti pl exServer | nvoker remains open, resources at the client end of the connection cannot be freed, and for
thisreason it isimportant to understand how to close virtual mul ti pl exSer ver | nvoker S.

There are three ways in which a virtual Ml ti pl exServer I nvoker that belongs to a master mul ti pl exSer ver | n-
voker 'sinvoker farm can shut down.

When amaster mul ti pl exServer | nvoker isclosed, it closes all of the virtual mul ti pl exServer I nvoker Sit cre-
ated.

e A virtual MiltiplexServerinvoker can be retrieved by caling either MiltiplexServerln-
voker . get Server | nvokers() Or MiltiplexServerlnvoker. get Serverlnvoker (1 net Socket Address) oOn its
master Mul ti pl exSer ver I nvoker and then closed directly.

¢ When the accept () method of its Vi rt ual Server Socket times out, and when it detects that all multiplex in-
vokers in the invoker group at the client end of the connection have shut down, avirtual Ml ti pl exSer ver | n-
voker will shut itself down. Note that when all members leave an invoker group, it is guaranteed not to be re-

JBoss June 22, 2008 43

Configuration

vived, i.e., no new members may join.

The third method insures that without any explicit intervention, closing all multiplex invokers on the client (by way
of caling dient.disconnect() and Connector.stop()) iS guaranteed to result in the eventual release of re-
sources. The timeout period may be adjusted by setting the timeout parameter (see below). Alternatively, the
second method, in conjunction with the use of Ml tipl exServer I nvoker. i sSaf eToShut down(), which returns
true on Ml tipl exServer | nvoker Mif and only if (1) Mis not virtual, or (2) al of the multiplex invokersin the in-
voker group at the client end of Ms connection have shut down. For example, athread could be dedicated to looking
for uselessmul ti pl exSer ver | nvoker s and terminating them before their natural expiration through timing out.

5.4.15.4. Examples

The following are examples of setting up a client for multiplexed synchronous and asynchronous communication.
They each assume the existence of amaster Mil ti pl exSer ver | nvoker running on demo.jboss.com:8080.

For compl ete exampl es see the section Multiplex Invoker.

1. Awmiltiplexdientlnvoker Cstartsfirst:

String paranmeters = "nultipl exBi ndHost =l ocal host &l ti pl exBi ndPort=7070&cl i ent Mul ti pl ex| d=der
String locatorURI = "mul tipl ex://deno.jboss. com 8080/ ?" + paraneters;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURI);

Client client = new Client(locator);

client.connect();

and then it is found by a mul ti pl exServer | nvoker with a matching multiplexid, which joins C's invoker
group and starts:

Connect or connector = new Connector();

String paranmeters = "server Ml tipl exl d=denol d1";

String locatorURI = "multiplex://local host: 7070/ ?" + paraneters;
I nvoker Locat or | ocator = new | nvokerLocator(locatorURl);

connect or. set | nvoker Locat or (| ocat or. get LocatorURI ());
connector.create();

connector.start();

2. A Miltiplexdientlnvoker Cstarts:

String paraneters = "nmnul ti pl exBi ndHost =l ocal host &ul ti pl exBi ndPort =7070";
String locatorURI = "multiplex://deno.jboss.com 8080/ ?" + paraneters;

I nvoker Locat or | ocator = new | nvokerLocator (Il ocatorURl);

Cient client = new Cient(locator);

client.connect();

and aMil ti pl exServer | nvoker S starts independently, joining C's invoker group by virtue of having match-
ing local and remote addresses and ports:

Connect or connector = new Connector();
String paraneters = "nmul tipl exConnect Host =deno. j boss. com&mul ti pl exConnect Port =8080";

JBoss June 22, 2008 44

Configuration

String locatorURI = "nultiplex://local host: 7070/ ?" + paraneters;
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);
connector. set | nvoker Locat or (| ocat or. get LocatorURI ());
connector.create();

connector.start();

3. AMiltiplexdientlnvoker Ciscreated but does not start:

String paraneters = "clientMiltiplexld=denol d2";

String locatorURI = "mul tipl ex://deno.jboss. com 8080/ ?" + paraneters;
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

Client client = new Client(locator);

and then amul ti pl exServer I nvoker Sis created with a matching multiplexid, allowing both C and Sto start:

Connect or connector = new Connector();

String paraneters = "server Ml tipl exl d=denol d2";

String locatorURI = "multiplex://local host: 7070/ ?" + paraneters;
I nvoker Locator | ocator = new | nvokerLocator(locatorURl);

connect or. set | nvoker Locat or (| ocat or. get LocatorURI ());
connector.create();

connector.start();

client.connect();

Notethecall tod i ent. connect () after the call to Connector.start ().

4. A Miltiplexdientlnvoker C startsin an invoker group based on a real socket bound to an arbitrary local
port:

String locatorURI = "multiplex://deno.jboss.com 8080";

I nvoker Locator | ocator = new | nvokerLocator(locatorURl);
Client client = new Cient(locator);

client.connect();

and then amul ti pl exServer | nvoker Sstartsindependently:

Connect or connector = new Connector();

String locatorURI = "nul tiplex://local host: 7070";

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURl);
connector. set | nvoker Locat or (| ocat or. get Locator URI ());
connector.create();

connector.start();

Note that S creates a Mast er Ser ver Socket rather than a Vi rt ual Ser ver Socket in this case and so does not
share a multiplex connection and does not belong to an invoker group.

5. Thisisexample 1, rewritten so that the invoker group parameters are passed by way of a configuration Map in-
stead of | nvoker Locat or S. A Mul ti pl exd i ent | nvoker C startsfirst:

JBoss June 22, 2008 45

Configuration

String locatorURI = "mul tiplex://deno.jboss.com 8080";

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

Map configuration = new HashMap();

configuration. put (Ml tipl exl nvoker Constants. MULTI PLEX Bl ND_ HOST_KEY, "I ocal host");
configuration. put (Ml tiplexlnvoker Constants. MULTI PLEX_BI ND_PORT_KEY, "7070");
configuration. put (Ml tipl exl nvoker Constants. CLI ENT_MJLTI PLEX | D_KEY, "denoldl");
Client client = new Client(locator, configuration);

client.connect();

and then it is found by a mul ti pl exServer | nvoker with a matching multiplexid, which joins C's invoker
group and starts:

String locatorURI = "mul tiplex://local host: 7070";

I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);

Map configuration = new HashMap();

configuration. put (Ml tiplexlnvokerConstants. SERVER_ MIULTI PLEX_| D_KEY, "denoldl");
Connect or connector = new Connector (| ocator. getlLocatorURI (), configuration);
connector.create();

connector.start();

5.4.15.5. Configuration properties

There are four categories of configuration properties supported by the multiplex invoker, the last three of which are
specific to the multiplex invoker. Properties in categories 2 and 3 may be configured by appending them to the
server's locator URI. Properties in categories 2, 3, and 4 may be configured by putting their values in a configura-
tion Hashivap and passing the map to amul ti pl exSer ver I nvoker and/or Mul ti pl exd i ent | nvoker constructor, ac-
cording to the category. Constants for the property names in categories 2, 3, and 4 are found in
org.jboss.renoting.transport.nmultiplex.Mltiplex. Note that some of them are also found in the older
org.jboss.remoting.transport. nul tiplex. Ml tipl exl nvoker Const ant's, but the use of that class is now de-
precated.

1. The following properties are managed by ancestor classes of Mil ti pl exServer | nvoker . See the discussion
under Socket Ser ver | nvoker for more information.

socketTimeout - The socket timeout value passed to the Socket . set SoTi meout () method and the Ser ver -
Socket . set SoTi meout () method. The default is 60000 (or 1 minute).

numAcceptThreads - The number of threads that exist for accepting client connections. The default is 1.

2. Thefollowing properties are intended to be passed to avirtual Mil ti pl exSer ver I nvoker to configure its mul-
tiplex connection. These properties are specific to the multiplex invoker.

multiplexConnectHost - the name or address of the host to which the multiplex connection should be made.
multiplexConnectPort - the port to which the multiplex connection should be made.

serverMultiplexld - a string that associates a Mul ti pl exServer | nvoker With a Mul ti pl exd i ent | nvoker
with which it should share a multiplex connection.

JBoss June 22, 2008 46

Configuration

multiplex.maxAcceptErrors - Master and virtual Mil ti pl exSer ver | nvoker S keep a counter of errors experi-
enced by their server socket, and they terminate when this maximum is exceeded. Note that SSLHandshakeEx-
cept i ons are excluded from the count, since they could indicate a client rather than server error.

3. Thefollowing properties are intended to be passed to avirtual mul ti pl exd i ent | nvoker to configure its mul-
tiplex connection. These properties are specific to the multiplex invoker.

multiplexBindHost - the host name or address to which the local end of the multiplex connection should be
bound.

multiplexBindPort - the port to which the local end of the multiplex connection should be bound

clientMultiplexld - astring that associatesaMul ti pl exC i ent | nvoker With amul ti pl exSer ver | nvoker with
which it should share a multiplex connection.

4. Thereisaso aset of properties which are specific to the Multiplex subsystem internal classes. See the Multi-
plex documentation at

http://labs.jboss.com/portal/jbossremoting/docs/index.html
[http://1abs.jboss.com/portal/jbossremoting/docs/index.html]

for more information.

5.4.16. SSL Multiplex Invoker

This transport is essentially identical to the Multiplex transport, except that it will create SSL socket factories and
server socket factories by default.

The twist to be found with the multiplex transport is that virtual Ml ti pl exSer ver | nvoker SUSe a Vi rtual Ser ver -

Socket , which is based on a client rather than a server socket, and consequently they act like a client in some ways.
In particular, avirtual Mul ti pl exServer I nvoker Will, in some cases, attempt to connect to a remote master Ml ti -

pl exSer ver I nvoker , for which it will need an actual client socket. All of the rules for configuring socket factories
apply to the mul ti pl exSer ver I nvoker , which calls the same method that client invokers use to get a socket fact-
ory. Moreover, if necessary, it will look for a Server Socket Fact or yMBean to get SSL information when configur-
ing a socket factory. See section Socket factories and server socket factories for more information.

5.4.17. Bisocket invoker

The bisocket transport, like the multiplex transport, is a bidirectional transport that can function in the presence of
restrictions that would prevent a unidirectional transport like socket or http from creating a server to client push
callback connection. (See Section Callbacks for more information about callbacks and bidirectional and unidirec-
tional transports.) For example, security restrictions could prevent the application from opening a Ser ver Socket 0N
the client, or firewall restrictions could prevent the server from contacting a Ser ver Socket even if it were possible
to create one.

5.4.17.1. Overview

JBoss June 22, 2008 47

http://labs.jboss.com/portal/jbossremoting/docs/index.html

Configuration

The bisocket client and server invokers inherit most of their functionality from the socket invokers, with the prin-
cipal exception of overriding a method in the client invoker called cr eat eSocket () . If the client invoker is on the
client side, then creat eSocket () simply calls the super implementation. The heart of the bisocket transport isin
handling the case of creating a connection from a callback client invoker on the server side to a callback server in-
voker on the client side, which is mandated to occur without the use of a Ser ver Socket on the client side. Whenev-
er the bisocket transport isinformed by an application of its intention to use push callbacks, the client side creates a
secondary "control" connection, and subsequently, whenever the callback client invoker needs to create a connec-
tion to the callback server, it sends a request over the control connection asking the client side to establish the con-
nection. The server side of the transport maintains a secondary Ser ver Socket that accepts connection requests
from the client side, and whenever a socket is created it is passed to whichever callback client invoker requested it.
The client invoker, which inherits the socket transport's connection pool management facility, adds the new socket
to its connection pool.

Note that if the control connection were to fail, no new connections could be created for the callback client invoker,
and eventually callback transmission could come to a halt. The client and server invokers work together, therefore,
to maintain a heartbeat on the control connection and to recreate the control connection automatically should it fail.
In particular, the server side sends out ping messages on the control connection, and the client side needs to receive
a ping message within some configured window in order to consider the connection to be functional.

In addition to the configuration options inherited from the socket transport, the bisocket transport may be con-
figured with the following parameters, which are defined as constants in the
org.jboss.remoting. transport. bi socket . Bi socket class. A parameter can be configured on the server side by
appending it to the | nvoker Locat or or by adding it to the configuration map passed to the Connect or 's constructor.
On the client side, where all parameters are used by the callback server invoker, there are several options for setting
parameter values. If the callback Connect or is created explicitly, then a parameter can be configured by appending
it to the callback Connect or 's1 nvoker Locat or or by adding it to the configuration map passed to the callback con-
nect or 's constructor. If the callback connect or is created implicitly by the d i ent . addLi st ener () method, then
its configuration map is the union of the d i ent 's configuration map and the net adat a map passed as a parameter
todient. addLi stener().

IS CALLBACK_SERVER (actua vaue is "isCallbackServer"): when a bisocket server invoker receives this
parameter with a value of true, it avoids the creation of a Server Socket . Therefore, IS CALLBACK_SERVER
should be used on the client side for the creation of a callback server. The default value isfalse.

PING_FREQUENCY (actual value is "pingFrequency"): The server side uses this value to determine the interval,
in milliseconds, between pings that it will send on the control connection. The client side uses this value to calcu-
late the window in which it must receive pings on the control connection. In particular, the window is ping fre-
quency * ping window factor. See also the definition of PING_ WINDOW_FACTOR. The default value is 5000.

PING_WINDOW_FACTOR (actual value is "pingWindowFactor"): The client side uses this value to calculate
the window in which it must receive pings on the control connection. In particular, the window is ping frequency *
ping window factor. See aso the definition of PING_FREQUENCY . The default valueis 2.

MAX_RETRIES (actua value is "maxRetries'): This parameter is relevant only on the client side, where the
Bi socket O i ent | nvoker USesit to govern the number of attempts it should make to get the address and port of the
secondary Ser ver Socket , and the Bi socket Ser ver | nvoker USes it to govern the number of attempts it should make
to create both ordinary and control sockets. The default valueis 10.

5.4.17.2. Details

JBoss June 22, 2008 48

Configuration

Using the bisocket transport certainly does not require understanding its implementation details, but some further
information is presented in this section for those who might be interested.

In the following discussion, the client side client invoker and the server side server invoker will be referred to
simply as "client invoker" and "server invoker." The callback client invoker and callback server invoker will be ex-
plicitly identified as such.

The following sequence of events occurs in the course of creating a control connection. For simplicity it is assumed
that the d i ent and Connect or have aready been created, and that the callback server is created implicitly by the
dient. Theseeventsareillustrated in Figure 5.1.

8.

0.

The application callsd i ent . addLi st ener ().
Thed i ent createsacallback Connect or and the callback server invoker registersitself in a static map.
Thed i ent sends an "addListener" message to the server invoker by way of the client invoker.

The client invoker intercepts the "addListener" message, which tells it that a callback server is being created.
It retrieves the callback server invoker from the static map and tells it to create a control connection for the
callback connection that is being constructed.

The callback server invoker sends an internal message to the server invoker requesting the address and port of
the secondary Ser ver Socket

The callback server invoker connects to the secondary Ser ver Socket to create a Socket for the control con-
nection. If it has not aready done so, the callback server invoker creates a Ti mer Task which will monitor the
state of al of its control connections. (Note that if the callback Connect or is created explicitly, it could have
multiple | nvoker Cal | backHandl er S registered with it.)

On the server side, the Socket just created by the secondary Ser ver Socket is stored in a static map, awaiting
the creation of the callback client invoker.

The client invoker transmits the "addListener" message to the server invoker.

The server invoker creates a callback client invoker.

10. The calback client invoker retrieves the waiting socket and uses it for the control connection.

11. The callback client invoker begins pinging on the control connection.

Figure5.1. Creating a control connection.

The following sequence of events occurs in the course of creating a connection for the callback client invoker to
use for sending callbacks. It isillustrated in Figure 5.2.

1

2.

The Ser ver I nvocat i onHandl er calls| nvoker Cal | backHandl er . handl eCal | back() .

Thel nvocati onCal | backHandl er callsi nvoke() onthecallback dient .

JBoss June 22, 2008 49

Configuration

3. Thedient calsinvoke() onthe callback client invoker.

4. |If there are no connections in its connection pool, the callback client invoker sends a message on the control
connection asking the callback server invoker to connect to the server side secondary Ser ver Socket . It then
waits for the Socket to appear in a static map.

5. The calback server invoker receives the request and calls upon either a Socket constructor or a Socket Fact -
ory to create anew Socket . It passes the new Socket to aworker thread to process subsequent callback invoc-
ations.

6. Thesecondary Server Socket createsanew Socket , which is placed in a static map.
7. Thecallback client invoker retrieves the new Socket
8. The calback client uses the new Socket to transmit a callback, and adds the new connection to its connection

pool for later use.

Figure5.2. Creating a callback connection.

The following sequence of events occurs when a control connection fails. It isillustrated in Figure 5.3.

1. The callback server invoker notices that a ping has not been received during the control connection's current
window.

2. The callback server invoker reacquires the host and port of the secondary Ser ver Socket, just in case it has
changed.

3. Thecallback server invoker callson a Socket constructor or Socket Fact ory tO create a new Socket .

4. The callback server invoker sends an internal message on the new connection directing the server to replace
the current control connection with the new connection.

5. After the secondary Ser ver Socket Createsanew Socket , the Socket is passed directly to the client invoker in

amethod that replaces the old control connection with a new one.

Figure 5.3. Replacing a failed control connection.

5.4.18. SSL Bisocket invoker

The SSL bisocket transport has the same relation to the bisocket transport as the SSL socket transport has to the
socket transport. That is, it uses an SSLSer ver Socket and creates SSLSocket S by default. See Section Socket factor-
ies and server socket factories for more information.

SSL bisocket transport supports al the configuration attributes supported by the bisocket transport.

JBoss June 22, 2008 50

Configuration

5.5. Marshalling

Marshalling of data can range from extremely simple to somewhat complex, depending on how much customiza-
tion is needed. The following explains how marshallers'unmarshallers can be configured. Note that this applies for
all the different transports, but will use the socket transport for examples.

The easiest way to configure marshalling is to specify nothing at all. Thiswill prompt the remoting invokers to use
their default marshaller/lunmarshallers. For example, the socket invoker will use the SerializableMarshaller/Seri-
alizableUnMarshaller and the http invoker will use the HTTPMarshaller/HTTPUnMarshaller, on both the client
and server side.

The next easiest way is to specify the data type of the marshaller/unmarshaler as a parameter to the locator url.
This can be done by simply adding the key word 'datatype' to the url, such as:

socket : // nyhost : 5400/ ?dat at ype=seri al i zabl e

This can be done for types that are statically bound within the Mar shal Fact ory, serializable and http, without re-
quiring any extra coding, since they will be available to any user of remoting. However, is more likely this will be
used for custom marshallers (since could just use the default data type from the invokers if using the statically
defined types). If using custom marshaller/unmarshaller, will need to make sure both are added programmatically
to the Mar shal Fact ory during runtime (on both the client and server side). This can be done by the following meth-
od call within the Marshal Factory:

public static void addMarshal l er(String dataType, Marshaller marshaller, UnMarshaller unMarshaller)

The dataType passed can be any String value desired. For example, could add custom InvocationMarshaller and In-
vocationUnMarshaller with the data type of ‘invocation'. An example using this data type would then be:

socket : // myhost : 5400/ ?dat at ype=i nvocat i on

One of the problems with using a data type for a custom Marshaller/UnMarshaller is having to explicitly code the
addition of these within the Marsha Factory on both the client and the server. So another approach that is alittle
more flexible is to specify the fully qualified class name for both the Marshaller and UnMarshaller on the locator
url. For example:

socket : // myhost : 5400/ ?dat at ype=i nvocat i on&
mar shal | er=org. j boss. i nvocati on. uni fi ed. marshal | . | nvocati onMarshal | er &
unmar shal | er=or g. j boss. i nvocati on. uni fi ed. marshal | . | nvocati onUnMar shal | er

Thiswill prompt remoting to try to load and instantiate the Marshaller and UnMarshaller classes. If both are found
and loaded, they will automatically be added to the Marsha Factory by data type, so will remain in memory. Now
the only requirement is that the custom Marshaler and UnMarshaller classes be available on both the client and
server's classpath.

Another requirement of the actual Marshaller and UnMarshaller classes is that they have a void constructor. Other-
wise loading of these will fail.

This configuration can aso be applied using the service xml. If using declaration of invoker using the InvokerL oc-

JBoss June 22, 2008 51

Configuration

ator attribute, can simply add the datatype, marshaller, and unmarshaller parameters to the defined InvokerL ocator
attribute value. For example:

<attribute name="|nvokerLocator">

<! [CDATA[socket : // ${j boss. bi nd. addr ess}: 8084/ ?dat at ype=i nvocat i on&

mar shal | er =org. j boss. i nvocation. uni fi ed. marshal | . | nvocati onMarshal | er &

unmar shal | er=or g. j boss. i nvocati on. uni fi ed. marshal | . | nvocati onUnMar shal | er]] >
</attribute>

If were using config element to declare the invoker, will need to add an attribute for each and include the isParam
attribute set to true. For example:

<i nvoker transport="socket">
<attribute name="dataType" isParam="true">i nvocation</attribute>
<attribute name="narshal |l er" isParam="true">

org.jboss.invocation.unified. marshall.lnvocati onMarshall er
</attribute>
<attribute name="unmarshal l er" isParane"true">
org.j boss.invocation. unified. marshall.|nvocati onUnMarshal |l er

</attribute>

</i nvoker >

This configuration is fine if the classes are present within the client's classpath. If they are not, can provide config-
uration for allowing clients to dynamically load the classes from the server. To do this, can use the parameter 'load-
erport' with the value of the port you would like your marshal loader to run on. For example:

<i nvoker transport="socket">
<attri bute name="dat aType" isParan¥"true">i nvocation</attribute>
<attribute name="marshal l er" isParam="true">
org.j boss.invocation. unified. marshall.|nvocati onMarshall er
</attribute>
<attribute name="unmarshal l er" isParans"true">
org.j boss.invocation. unified. marshall.|nvocati onUnMarshal | er
</attribute>
<attribute name="|oaderport" isParans"true">5401</attri bute>
</i nvoker >

When this parameter is supplied, the Connector will recognize this at startup and create a marshal loader connector
automatically, which will run on the port specified. The locator url will be exactly the same as the original invoker
locator, except will be using the socket transport protocol and will have all marshalling parameters removed
(except the dataType). When the remoting client can not load the marshaller/unmarshaller for the specified data
type, it will try to load them from the marshal loader service running on the loader port, including any classes they
depend on. This will happen automatically and no coding is required (only the ability for the client to access the
server on the specified loader port, so must provide access if running through firewall).

Compression marshalling

A compression marshaller/lunmarshaller is available as well which uses gzip to compress and uncompress large
payloads for wire transfer. The implementation classes are

JBoss June 22, 2008 52

Configuration

org.j boss. renoti ng. marshal . conpr ess. Conpr essi nghar shal | er and
org. j boss. renoting. marshal . conpr ess. Conpr essi ngunMar shal | er. They extend the
org.j boss.renoting. marshal . seri al i zabl e. Seri al i zabl eMar shal | er and

org.jboss.renmoting. marshal . serializabl e. Serial i zabl eUnMar shal | er interfaces and maintain the same be-
havior with the addition of compression.

5.6. Callbacks

5.6.1. Callback overview

Although this section covers callback configuration, it will be useful to begin with alittle general information about
callbacks within Remating. In addition to the ordinary remote method invocation model, in which invocation res-
ults are returned synchronously, Remoting also supports an invocation model in which the server asynchronously
generates information to be returned to the client.

There are two models for callbacks, push callbacks and pull callbacks. In the push model, the client registers a
client side callback server with the target server. When the target server has a callback to deliver, it will call on the
callback server directly and send the callback message. The other model, pull callbacks, allows the client to call on
the target server to collect the callback messages waiting for it.

5.6.1.1. Callback connections

A callback connection is initiated by the invocation of one of the overloaded addLi st ener () methods in the
org.jboss.renmoting. dient class, asdescribed below in Section Registering callback handlers. The creation of a
callback connection resultsin a server side call to the

public void addLi stener (I nvoker Cal | backHandl er cal | backHandl er);

method of the application's org. j boss. renoting. ServerlnvocationHandl er. The
org. j boss. renoting. cal | back. | nvoker Cal | backHandl er parameter (actua type
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er) isthe server side representation of the callback
connection, essentially a proxy for the client side | nvoker Cal | backHandl er passed to the addLi st ener () method.
The Server I nvocat i onHandl er is free to do whatever it wants with the I nvoker Cal | backHandl er, but a typical
practice would be to keep alist of them and transmit each generated callback to some or all of them.

The client side of a callback connection is identified in one of two ways, according to whether there is a callback
Connect or associated with the connection. If the connection has a callback Connect or, then it is identifed by the
combination of the Connect or and the | nvoker Cal | backHandl er . It follows that if an | nvoker Cal | backHandl er iS
registered twice with the same Connect or (through a call to di ent . addLi st ener ()), only a single callback con-
nection is created. That is, the second call has no effect. If there is no callback Connect or, which isthe case for pull
callbacks and simulated push callbacks (see Section Registering callback handlers), then the callback connection is
identified by the combination of the d i ent on which addLi st ener () wasinvoked and the | nvoker Cal | backHand-

I er. It follows that if an | nvoker Cal | backHandl er is registered twice with the same d i ent for pull or simulated
push callbacks, only asingle callback connection is created. That is, the second call has no effect.

Each callback connection is tagged with a unique identifier, which can be retrieved from the | nvoker Cal | back-
Hand| er passed to Server | nvocat i onHandl er . addLi st ener () by casting it to type

JBoss June 22, 2008 53

Configuration

org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er and calling get Cal | backSessi onl d(). Itisaso
possible to retrieve the unique identifier of the d i ent upon which addLi st ener () was invoked by casting the | n-
voker Cal | backHand| er totype Ser ver | nvoker Cal | backHandl er and calling get d i ent Sessi onl d().

5.6.1.2. Transmitting callbacks

Once the server I nvocat i onHandl er has generated information to be sent to the client, it can be packaged in an
org. j boss.renoting. cal | back. Cal | back and transmitted on one or more callback connections in one of two
ways. One way to transmit a callback is by invoking the

public void handl eCal | back(Cal | back cal | back) throws Handl eCal | backExcepti on;

method of | nvoker Cal | backHandl er . The subsequent disposition of the callback depends on whether the callback
connection is configured for push or pull callbacks. For a pull callback connection, the cal | back is simply stored
on the server, and for a push callback connection, handl eCal | back() is analogous to (and is implemented by) an
ordinary di ent . i nvoke() invocation.

An alternative method of transmitting a callback is by casting an |nvokerCall backHandl er to type
org. j boss. renoting. cal | back. Asynchl nvoker Cal | backHandl er and invoking one of the overloaded handl e-
Cal | backOneway() methods

public void handl eCal | backOneway(Cal | back cal | back) throws Handl eCal | backExcepti on;

public void handl eCal | backOneway(Cal | back cal | back, bool ean serverSide)) throws Handl eCal | backE

of Asynchl nvoker Cal | backHandl er. (Note that al | nvoker Cal | backHandl er s passed in to Server | nvocat i on-
Handl er . addLi st ener () implement Asynchl nvoker Cal | backHandl er.) For a pull callback connection handl e-
Cal | backOneway() hasthe same behavior as handl eCal | back() , but for a push callback connection it is analogous
to (and implemented by) a d i ent.i nvokeOneway() invocation. The server Si de parameter is analogous to the
cli ent Si de parameter in the

public void i nvokeOneway(final Object param final Mp sendPayl oad, bool ean clientSide) throws

method of org. j boss. renoting. Cient. That is, if server Si de is true, then the oneway invocation is handed off
to a separate thread on the server side and the call to handl eCal | backOneway() returnsimmediately. If server Si de
is false, then callback d i ent makes an invocation on the callback server, which hands the invocation off to a sep-
arate thread on the client side and returns, after which the call to handl eCal | backOneway() returns.

5.6.1.3. Callback stores.

For pull callbacks (and also simulated push callbacks - see Section Registering callback handlers), the server hasto
manage callback messages until the client calls to collect them. Since the server has no control of when the client
will call to get the callbacks, it has to be aware of memory constraints as it manages a growing number of call-
backs. The way the callback server doesthisis through use of a persistence palicy.

The persistence policy indicates at what point the server has too little free memory available and therefore the call-

JBoss June 22, 2008 54

Configuration

back message should be put into a persistent store. This policy can be configured via the menPer cent Cei | i ng at-
tribute (see more on configuring this below).

By default, the persistent store used by the invokers is the org.j boss. renoting. Nul | Cal | backStore. The
NullCallbackStore will simply throw away the callback to help avoid running out of memory. When the persistence
policy is triggered and the NullCallbackStore is called upon to store the callback, the invocation handler making
the call will be thrown an 1OException with the message:

and there will be an error in the log stating which object was lost. In this same scenario, the client will get an in-
stance of the org. j boss. renoting. Nul | Cal | backSt ore. Fai | edCal | back class when they call to get their call-
backs. This class will throw a RuntimeException with the following message when get Cal | backQbj ect () iS
called:

Also, the payload of the callback will be the same string. The client will also get any valid callbacks that were kept
in memory before the persistence policy was triggered.

An example case when using the NullCallbackStore might be when callback objects A, B, and C are stored in
memory because there is enough free memory. Then when callback D comes, the persistence policy is triggered
and the NullCallbackStore is asked to persist callback D. The NullCallbackStore will throw away callback D and
create a FailedCallback object to take its place. Then callback E comes, and there is still too little free memory, so
that is thrown away by the NullCallbackStore.

Then the client calls to get its callbacks. It will receive a List containing callbacks A, B, C and the FailedCallback.
When the client asks the FailedCallback for its callback payload, it will throw the af orementioned exception.

Besides the default NullCallbackStore, there is a truly persistent CallbackStore, which will persist callback mes-
sagesto disk so they will not be lost. The description of the CallbackStore is as follows:

Callback store configuration

CallbackStore is a'so a service mbean, so can be run as a service within JBoss AS or stand alone.

Remoting also offers the Bl ocki ngCal | backSt or e, which is described as follows.

Custom callback stores can also be implemented and defined within configuration. The only requirement is that it
implements the org.jboss.remoting.SerializableStore interface and has a void constructor (only in the case of using
afully qualified classnamein configuration).

Once a callback client has been removed as alistener, all persisted callbacks will be removed from disk.

5.6.1.4. Callback acknowledgements

JBoss June 22, 2008 55

Configuration

Unlike the d i ent . i nvoke() method, | nvoker Cal | backHandl er. handl eCal | back() has a void return type, so it
does not provide away of knowing if the callback has been received by the client. In fact, a void return type is ap-
propriate since the immediate effect of a call to | nvoker Cal | backHandl er . handl eCal | back() may be no more
than storing the callback for later retrieval. However, it may be useful for the application to be informed when the
callback has made its way to the client, and Remoting has a listener mechanism that can provide callback acknow-
ledgements.

An object that implementstheor g. j boss. renpti ng. cal | back. Cal | backLi st ener interface

public interface Call backLi stener
{
/**
* @aram cal | backHandl er | nvoker Cal | backHandl er that handl ed this call back
* @aram cal | backld id of callback being acknow edged
* @aram response either (1) response sent with acknow edgenent or (2) null
“f

voi d acknow edgeCal | back(| nvoker Cal | backHandl er cal | backHandl er, Object call backld, Object res

}

may be registered to receive an acknowledgement for a particular callback by adding it to the calback's r et ur n-
Payl oad map with the key or g. j boss. renoti ng. cal | back. Ser ver | nvoker Cal | backHandl er . CALLBACK_LI STENER
(actual value "callbackListener"). It is also necessary to assign an identifier to the callback by adding some unique
object, recognizable by the application, to the callback’s r et ur nPayl oad map with the key Server I nvoker Cal | -
backHandl er . CALLBACK_I D (actual value "callbackld"). This identifier will be passed as the cal | back! d parameter
of the Cal | backLi st ener . acknow edgeCal | back() method.

There are two ways in which callbacks can be acknowledged:

1. explicit acknowledgements, and
2. automatic acknowledgements.

Note that automatic acknowledgements are available only for push callbacks and simulated push callbacks (see
Section Registering callback handlers) transmitted by the | nvoker Cal | backHandl er . handl eCal | back() method.

Callbacks may be acknowledged explicitly by the client side application code by calling one of the overloaded ac-
know edgeCal | back() and acknow edgeCal | backs() methods

public int acknow edgeCal | back(| nvoker Cal | backHandl er cal | backHandl er, Call back cal | back) thrc

public int acknow edgeCal | back(| nvoker Cal | backHandl er cal | backHandl er, Call back cal | back, Obje

public int acknow edgeCal | backs(I nvoker Cal | backHandl er cal | backHandl er, List callbacks) throws

public int acknow edgeCal | backs(I| nvoker Cal | backHandl er cal | backHandl er, List call backs,

of the dient class. In each case the cal | backHandl er parameter is the client side | nvoker Cal | backHandl er
which received the callback. The first two and the latter two methods acknowledge a single callback and a list of
callbacks, respectively. In the latter case, each of the callbacks must have the same registered cal | backLi st ener .
The second and fourth methods also allow a response value to be associated with each callback acknowledgement,

JBoss June 22, 2008 56

List r

Configuration

which will passed as the response parameter of the Cal | backLi st ener . acknow edgecCal | back() method. For the
fourth method, the lengths of the cal I backs list and ther esponses list must be the same.

It is also possible to request that Remoting automatically supply acknowledgements for push callbacks and simu-
lated push callbacks by adding the key Ser ver | nvoker Cal | backHand-
| er . REMOTI NG_ACKNOW.EDGES_PUSH_CALLBACKS (actual value "remotingAcknowledgesPushCallbacks") to the call-
back's returnPayload map with the value of true, along with the Serverlnvoker Cal | backHand-
| er. CALLBACK_ LI STENER and Server | nvoker Cal | backHandl er. CALLBACK_| D entries. The acknowledgement is
generated after the callback has been delivered by acall to handl ecCal | back() onthe client side | nvoker Cal | back-
Handl er .

For an example of code that uses callback acknowledgements, see the classes in the package
org. j boss.rennting. sanpl es. cal | back. acknow edgenent .

5.6.2. Registering callback handlers.

There are severa ways in which callback handlers can be configured. The main distinction in type of callback setup
is whether the callbacks will be push (asynchronous) or pull (synchronous) callbacks.

5.6.2.1. Pull callbacks.

A pull callback connection is implemented by an object (an
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er) on the server side which stores information
that is generated asynchronously on the server and subsequently retrieved by the client. It is set up by invoking one
of the following overloaded addLi st ener () methodsinthed i ent class:

public voi d addLi stener (I nvoker Cal | backHandl er) throws Throwabl e;
public voi d addLi stener (I nvoker Cal | backHandl er cal | backHandl er, |nvokerLocator clientlLocator) t

publ i c voi d addLi stener (Il nvoker Cal | backHandl er cal | backHandl er, | nvokerLocator clientLocator,

where, in the latter two cases, thecl i ent Locat or parameter is set to null.

The callbacks stored for a pull callback connection may be retrieved by calling the

public List getCallbacks(InvokerCallbackHandl er cal | backHandl er) throws Throwabl e

method of the d i ent class. Note that for pull callbacks, the | nvoker Cal | backHand! er registered on the client side
doesn't really participate in the handling of callbacks. However, when cli ent . get Cal | backs(cal | backHandl er)
is caled for a particular i ent and I nvoker Cal | backHandl er, the two objects together identify a particular call-
back connection.

Note. As of Remoting release 2.2.2.GA, there are two versions of pull callbacks: non-blocking (original) and
blocking (new). In the original, non-blocking mode, acall to d i ent. get Cal | backs() will return more or less im-
mediately, whether or not any callbacks are waiting on the server side. In the new, blocking mode, the call will
block on the server side until either it times out or a callback becomes available. The blocking mode eliminates the
overhead of busy polling. Blocking and non-blocking mode are configured on a per-invocation basis by setting

JBoss June 22, 2008 57

Configuration

org. j boss. renoting. Serverl nvoker. BLOCKING MODE (actual value "blockingMode') to either Serverln-
voker . BLOCKI NG (actual value "blocking") or Server | nvoker. NONBLOCKI NG (actual value "nonblocking") in the
metadata map passed to

public List getCallbacks(lnvokerCallbackHandl er cal | backHandl er, Map netadata) throws

inorg.jboss. remoting. dient. The default value is Server | nvoker . NONBLOCKI NG. The blocking timeout value
may be configured in two ways:

1. theconnect or can be configured with a default value; and

2. a per-invocation timeout value can be configured with the key Server ! nvoker. BLOCKI NG_TI MEQUT in the
metadata map passed to C i ent . get Cal | backs() .

In the absence of any configured timeout, the default value is 5000 ms.

5.6.2.2. Push callbacks.

A push callback connection is implemented by a pair of objects, one on the server side and one on the client side,
which facilitate transmitting to the client some information which has been generated asynchronously on the server.
There are two versions of push callbacks: true push callbacks and simulated push callbacks, aso known as
polled callbacks.

In the case of true push calbacks, there is a Remoting object on the server side (an
org. j boss. renoting. cal | back. Server | nvoker Cal | backHandl er) which uses a dient to make invocations to
the client side On the client side there is a Connector and an implementation of the
org.j boss. renoting. cal | back. | nvoker Cal | backHandl er interface which functions as an invocation handler for
callbacks. Like implementations of org. j boss. renoting. Serverlnvocati onHandl er on the server side, imple-
mentations of | nvoker Cal | backHandl er are supplied by the application. When a Ser ver I nvocat i onHandl er gen-
erates a callback object, it will be sent to the callback Connect or, which will, in turn, deliver it to the | nvoker Cal | -
backHandl er

For simulated push callbacks, the server side Remoting object stores callbacks for later retrieval by the client, ex-
actly as in the case of pull cadlbacks. However, there is a Remoting poller (an
org. j boss. renoting. cal | back. Cal | backPol | er) on the client side which periodically retrieves the callbacks and,
asin the case of true push callbacks, deliversthem to the | nvoker Cal | backHandl er .

There are two ways to set up push callback handling, each of which entails the use of one of the overloaded ad-
dLi st ener () methodsinthed i ent class:

1. explicit creation of a Connect or
2. implicit configuration.

In the first case, the application creates a Connect or and passes its | nvoker Locat or , dlong with an implementation
of I nvoker Cal | backHand! er , to one of the following versions of addLi st ener () :

Thr owabl ¢

publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backHandl er, | nvokerLocator clientlLocator) t

JBoss June 22, 2008 58

Configuration

publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backHandl er, | nvoker Locat or clientlLocator, O

Because thereis a Connect or, explicit configuration always results in true push callbacks.

In the case of implicit configuration, only the I nvoker Cal | backHandl er is passed and Remoting takes care of the
rest. One of the following versions of addLi st ener () isused:

public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map metadata) throws Throwabl e;
public void addLi st ener (I nvoker Cal | backHandl er cal | backhandl er, Map netadata, Cbject call backHe

public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map met adata, Object call backHe

Note that the latter three methods are distinguished from the first two by the presence of the net adat a parameter,
which can be used to configure the callback connection. Depending on the transport being used and the parameters
supplied to addLi st ener (), Remoting will set up either true or simulated push callbacks. If the client isin an envir-
onment where the server will be allowed to establish a connection to the client, then the final version of ad-

dLlI st ener () could be used with the server Tod i ent parameter set to true. In this case, regardless of the transport,
Remoting will automatically create a callback Connect or on behalf of the user, which behaves just as though the
user had created it and passed the | nvoker Locat or as aparameter to addLi st ener ().

If the client is in an environment where the server is not allowed to establish a network connection to the client
(e.g. firewall rules disallow it or security rules prohibit the creation of a Ser ver Socket), then there are two options.
Oneisto use one of the bidirectional transports, each of which has a strategy for the creation of a connection from
the server to the client without connecting a client Socket to aSer ver Socket . There are currently three bidirection-
al transports: loca (i.e., the client and server reside in the same JVM), bisocket, and multiplex. When one of the
second set of addLi st ener () methods is invoked for a bidirectional transport, it will create a callback Connect or,
even if server Tod i ent isset to false. The other option is to use any of the unidirectional transports (socket, http,
rmi) with server Tod i ent set to false (which is the default value if it is not an explicit parameter), in which case,
Remoting will configure polled callbacks.

The implicitly created callback Connectors are available for reuse. Each d i ent maintains a set of all callback
Connect or S it has implicitly created for each | nvoker Cal | backHandl er that is passed in by way of one of the ad-
dLi st ener () methods. For example,

I nvoker Cal | backHandl er cal | backHandl er = new Sanpl eCal | backHandl er () ;
client. addLi stener (cal | backHandl er, new HashMap(), null, true);
client.addLi stener(cal | backHandl er, new HashMap(), null, true);

would result in a set of two calback Connect or s associated with cal | backHandl er . These sets of callback Con-
nect or Sare accessible by way of thed i ent method

public Set getCall backConnectors(InvokerCal |l backHandl er cal | backHandl er) ;

A callback connect or could be reused as in the following code:

JBoss June 22, 2008 59

Configuration

I nvoker Cal | backHandl er cal | backHandl er1 = new Sanpl eCal | backHandl er () ;

client. addLi st ener (cal | backHandl er 1, new HashMap(), null, true);

Set cal | backConnectors = client. getCal | backConnect ors(cal | backHandl er 1) ;
Connect or cal | backConnector = (Connector) call backConnectors.iterator().next();
I nvoker Cal | backHandl er cal | backHandl er2 = new Sanpl eCal | backHandl er () ;

client. addLi stener(cal | backHandl er2, cal | backConnect or. getlLocator());

which would result in the implicitly created callback Connect or having two registered | nvoker Cal | backHandl er S.
Note, by the way, that if the | nvoker Cal | backHandl er were reused as in the following:

I nvoker Cal | backHandl er cal | backHandl er1 = new Sanpl eCal | backHandl er () ;
client.addLi stener(cal | backHandl er 1, new HashMap(), null, true);

Set cal | backConnectors = client. getCal | backConnect ors(cal | backHandl er1);
Connect or cal |l backConnector = (Connector) call backConnectors.iterator().next();
client. addLi stener(cal | backHandl er 1, cal | backConnect or. getlLocator());

then only one callback connection would be created, because a single (Connect or, | nvoker Cal | backHandl er) pair
can be associated with only one callback connection.

Note. As of Remoting release 2.2.2.GA, there are two versions of pull callbacks: non-blocking (original) and
blocking (new). For more information, see Pull callbacks. Since the cal | backPol | er uses pull callbacks, this dis-
tinction is relevant to polled callbacks as well. The default behavior of cal | backPol | er is to use non-blocking
mode, but blocking mode can be requested by using the key Server I nvoker. BLOCKI NG MODE Set tO Server | n-
voker . BLOCKI NGin the metadata map passed to d i ent . addLi st ener ().

There are nine parameters that can be passed to addLi st ener () in the net adat a map which are specific to push
callback configuration. The first three apply to push callbacks and the latter six apply to polled callbacks. For con-
venience, the keys related to push callbacks are defined as constantsin the or g. j boss. renoti ng. C i ent class, and
the keys related to polled callbacks are defined in the or g. j boss. renot i ng. cal | back. Cal | backPol | er class(with
the exception of Ser ver | nvoker . BLOCKI NG_MODE and Ser ver | nvoker . BLOCKI NG_TI MEQUT).

CALLBACK_SERVER _PROTOCOL (actual value is "callbackServerProtocal): the transport protocol to be
used for callbacks. By default it will be the protocol used by the d i ent upon which addLi st ener () isinvoked.

CALLBACK_SERVER_HOST (actua value is "calbackServerHost"): the host name to be used by the callback
server. By default it will be the result of calling | net Addr ess. get Local Host () . get Host Addr ess() .

CALLBACK_SERVER_PORT (actual value is "callbackServerPort"): the port to be used by the callback server.
By default it will be arandomly chosen unused port.

CALLBACK_POLL_PERIOD (actual vaue is "calbackPollPeriod"): the interval in milliseconds between at-
tempts to download callbacks from the server.

CALLBACK_SCHEDULE_MODE (actual value is "scheduleMode"): may be set to either call back-
Pol | er. SCHEDULE FI XED RATE (actual vaue "scheduleFixedRate") or cCal | backPol | er. SCHEDULE_FI XED_DELAY
(actual value "scheduleFixedDelay"). In either case, polling will take place at approximately regular intervals, but
in the former case the scheduler will attempt to perform each poll CALLBACK _POLL_PERIOD milliseconds after
the previous attempt, and in the latter case the scheduler will attempt to schedule polling so that the average inter-
val will be approximately CALLBACK_ POLL_PERIOD milliseconds. Cal | backPol | er . SCHEDULE_FI XED_RATE iS

JBoss June 22, 2008 60

Configuration

the default.

REPORT_STATISTICS (actua value is "reportStatistics"): The presence of this key in net adat a, regardless of
its value, will cause the cal | backPol | er to print statistics that might be useful for configuring the other paramet-
ers.

MAX_ERROR_COUNT (actual value is"maxErrorCount"): determines the maximum number of errors that may
be experienced during polling before Cal | backPol | er will shut itself down. The default valueis"5".

SYNCHRONIZED _SHUTDOWN (actual value is "doSynchronizedShutdown™): if set to "true", call back-
Pol | er. st op() Will wait for di ent. get Cal | backs() to return, and if set to "false" it will not wait. For blocking
polled callbacks, the default valueis "false" and for non-blocking polled callbacks, the default valueis "true".

BLOCKING_MODE (actual value is "blockingMode"): if set to Server I nvoker . BLOCKI NG (actual value "block-
ing"), cal | backpPol I er will do blocking polled callbacks, and if set to Server | nvoker. NONBLOCKI NG (actua value
"nonblocking"), Cal | backPol | er will do non-blocking polled callbacks.

Note that all of the elements in net adat a will be passed to the callback Connect or and appended to its | nvoker -
Locat or.

Note. As of Remoting release 2.2.2.GA, it is possible to configure a server side timeout value for sending push
calbacks that is distinct from the timeout value used by the server. The parameter is
org.j boss. renoting. cal | back. Server | nvoker Cal | backHandl er . CALLBACK_TI MEQUT (actual value "callback-
Timeout"), and it should be used to configure the Connect or. In the absence of Server | nvoker Cal | backHand-
| er. CALLBACK_TI MEQUT, the timeout value configured for the Connect or will be used.

5.6.3. Unregistering callback handlers

Callback connections are torn down through a call to the method

public void renpveli st ener (I nvoker Cal | backHandl er cal | backHandl er) throws Throwabl e;

inthe org.jboss.renoting. dient class. A dient can unregister only those I nvoker Cal | backHandl er S that it
originally registered.

It is good practice to eliminate callback connections when they are no longer needed. For example, callback Con-
nect or S can, depending on the transport, occupy TCP ports, and cal | backPol | er swill continue to poll aslong asa
connection exists.

5.6.4. Callback store configuration.

All callback store configuration will need to be defined within the server invoker configuration, since the server in-
voker is the parent that creates the callback stores as needed (when client registers for pull callbacks). Example ser-
vice xml files are included below.

The following genera calback store parameters may be configured. They are defined as constants in the
org. j boss. cal | back. Server | nvoker Cal | backHandl er class.

CALLBACK_MEM _CEILING (actual vaueis"callbackMemCeiling"): the percentage of free memory available

JBoss June 22, 2008 61

Configuration

before callbacks will be persisted. If the memory heap allocated has reached its maximum value and the percent of
free memory available is less than the callbackMemCeiling, this will trigger persisting of the callback message.
The default valueis 20.

Note: The calculations for thisis not always accurate. The reason is that total memory used is usually less than the
max allowed. Thus, the amount of free memory is relative to the total amount allocated at that point in time. It is
not until the total amount of memory alocated is equal to the max it will be allowed to allocate. At this point, the
amount of free memory becomes relevant. Therefore, if the memory percentage ceiling is high, it might not trigger
until after free memory percentage is well below the ceiling.

CALLBACK_STORE_KEY (actual value is "callbackStore"): specifies the callback store to be used. The value
can be either an MBean ObjectName or a fully qualified class name. If using class name, the callback store imple-
mentation must have avoid constructor. The default isto use the NullCallbackStore.

The following parameters specific to cal | backSt or e can be configured via the invoker configuration as well. They
are defined as constants in the Cal | backsSt or e class.

FILE_PATH_KEY (actua value is "StoreFilePath"): indicates to which directory to write the callback objects.
The default value is the property value of 'jboss.server.data.dir' and if thisis not set, then will be 'datal. Will then
append ‘remotingg and the callback client's session id. An example would be
‘data\remoting\5c4005I-9jijyx-e5bbxyph-1-e5bxyph-2'.

FILE_SUFFIX_KEY (actua value is "StoreFileSuffix"): indicates the file suffix to use for the callback objects
written to disk. The default valueis 'ser'.

Sample service configuration

Socket transport with callback store specified by class name and memory ceiling set to 30%:

<nbean code="org.jboss.renoting.transport. Connector"
name="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">
<attribute name="cal | backSt ore">org.jboss.rennting. cal | back. Cal | backStore</attri bt
<attribute name="cal | backMentCei |l i ng">30</attri but e>
</i nvoker >
<handl er s>
<handl er subsystens"test">
org.j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

Socket transport with callback store specified by MBean ObjectName and declaration of CallbackStore as service:

<nbean code="org.jboss.renoting. cal | back. Cal | backSt or e"
nane="j boss. renoti ng: servi ce=Cal | backSt ore, t ype=Seri al i zabl e"
di spl ay- name="Per si sted Cal | back Store">

JBoss June 22, 2008 62

Configuration

<l-- the directory to store the persisted call backs into -->
<attribute name="StoreFil ePat h">cal | back_store</attri but e>
<l-- the file suffix to use for each call back persisted to disk -->
<attribute name="StoreFil| eSuffix">cbk</attribute>

</ mbean>

<nmbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- nane="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">
<attribute name="cal | backSt ore">
j boss. renoting: servi ce=Cal | backSt ore, t ype=Seri al i zabl e
</attribute>
</i nvoker >
<handl er s>
<handl er subsystens"test">
org.j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

Socket transport with callback store specified by class name and the callback store's file path and file suffix
defined:

<nmbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, t ransport =Socket "
di spl ay- nane="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="socket">
<attribute name="cal | backSt ore">org.j boss.renoting. cal | back. Cal | backStore</attri bt
<attribute name="StoreFil ePat h">cal | back</attri bute>
<attribute name="StoreFil eSuffix">cst</attribute>
</i nvoker >
<handl er s>
<handl er subsystenm="test">
org. j boss.renmoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

5.6.5. Callback Exception Handling

Since performing callbacks can sometimes fail, due to network errors or errors produced by the client callback
handler, there needs to be a mechanism for managing exceptions when delivering callbacks. Thisis handled via use
of the org. j boss. renot i ng. cal | back. Cal | backErr or Handl er interface. Implementations of this interface can be
registered with the Connector to control the behavior when callback exceptions occur.

The implementation of the CallbackErrorHandler interface can be specified by setting the ‘callbackErrorHandler'

JBoss June 22, 2008 63

Configuration

attribute to either the ObjectName of an MBean instance of the CallbackErrorHandler which is aready running and
registered with the MBeanServer, or can just specify the fully qualified class name of the CallbackErrorHandler
implementation (which will be constructed on the fly and must have a void parameter constructor). The full server
invoker configuration will be passed along to the CallbackErrorHandler, so if want to add extra configuration in-
formation in the invoker's configuration for the callback error handler, it will be available. If no callback error
handler is specified via configuration, org. j boss. renoti ng. cal | back. Def aul t Cal | backEr r or Handl er will be
used by default. This implementation will allow up to 5 exceptions to occur when trying to deliver a callback mes-
sage from the server to the registered callback listener client (regardless of what the cause of the exception is, so
could be because could not connect or could be because the client actually threw a valid exception). After the De-
faultCallbackErrorHandler receives its fifth exception, it will remove the callback listener from the server invoker
handler and shut down the callback listener proxy on the server side. The number of exceptions the DefaultCall-
backErrorHandler will alow before removing the listener can by configured by the 'callbackErrorsAllowed' attrib-
ute.

Note. As of Remoting release 2.2.2.SP4, an org. j boss. remoti ng. cal | back. Server | nvoker Cal | backHandl er ,
which manages both push and pull callbacks on the server side, can register to be informed of afailure on the con-
nection to the client that it is servicing. In particular, if there is alease registered for the connection for that particu-
lar client, then the Server | nvoker Cal | backHandl er can be registered as a
org. j boss. renmoting. Connecti onLi st ener for that lease. The default behavior is to do the registration, but the
parameter org. j boss. renot i ng. Server | nvoker . REG STER CALLBACK_LI STENER (actual value "registerCallback-
Listener") may be set to "false” to prevent registration. If leasing is enabled and registration is turned on, a Ser ver -
I nvoker Cal | backHandl er will shut itself down upon being informed of a connection failure. For more information
about leasing, see Network Connection Monitoring.

5.7. Socket factories and server socket factories

All current transports depend on sockets and server sockets, and the ability to specify their implementation classes
provides considerable power in configuring Remoting. Notably, SSL sockets and server sockets are the basis of se-
cure communications in Remoting. This section covers the configuration of socket factories and server socket
factories on both the server side and the client side, and then focuses on SSL configuration.

5.7.1. Server side programmatic configuration

All server invokers use server sockets, and it makes sense, therefore, to be able to configure server invokers with
server socket factories. It is also true, though less obvious. that server invokers create sockets (other than by way of
server sockets). When a server invoker makes a push callback to aclient, it creates a client invoker, which creates a
socket. Moreover, some server invokers, e.g., the RMI server invoker, have their own idiosyncratic uses for socket
factories. Remoting offers a number of ways of configuring socket factories and server socket factories, and these
apply to all transports (except for the servlet invokers).

5.7.1.1. Server socket factories.

For ser ver Socket Fact or yS, there are ten options for programmeatic configuration:

1. Get the Serverinvoker by caling Connector.getServerinvoker() and cal Serverln-
voker . set Server Socket Fact ory() .

JBoss June 22, 2008 64

Configuration

2. Call connector. set Server Socket Fact ory().

3. Put a constructed ServerSocketFactory in a configuraion map, using Kkey Renot-
i ng. CUSTOM_SERVER_SOCKET_FACTCRY, and pass the map to one of the Connect or constructors.

4. Create an xml document with root element <confi g>, Setting the <ser ver Socket Fact ory> attribute to the
name of a Server Socket Fact or yMBean and pass the document to Connect or . set Confi guration() . For ex-

ample:

StringBuffer buf = new StringBuffer();
append("<?xm version=\"1.0\"?2>\n");

buf .

buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"ssl socket\">");

buf . append(" <attribute name=\"serverBi ndAddress\">" + get Host Nane() + "</at
buf . append(" <attribute name=\"serverBi ndPort\">" + freeport + "</attribute:
buf . append(” <attribute name=\"server Socket Factory\">" + socket Fact or yCbj Nar
buf . append(" </i nvoker>");

buf . append(" </ config>");

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Stream(buf.toString().getBytes());
Docunent xm = Docunent Bui | der Fact ory. new nst ance() . newDocunent Bui | der () . par se(bz
connect or. set Confi gurati on(xm . get Docunent El ement ());

Create an xml document with root element <confi g>, Setting the <ser ver Socket Fact ory> attribute to the
class name of a Server Socket Factory and pass the document to Connector. set Configuration(). The
<server Socket Fact or y> class must have a default constructor, which will be used to create a Ser ver Socket -
Factory.

Put the ObjectName Of a ServerSocket FactoryMBean in a configuration map, using key Serverln-
voker . SERVER_SOCKET_FACTCRY, and pass the map to one of the Connect or constructors.

Put the class name of a ServerSocketFactory in a configuration map, using key Serverln-
voker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connector constructors. The
<server Socket Fact or y> class must have a default constructor, which will be used to create a Ser ver Socket -
Factory.

Put a set of SSL parameters, using the keysin org. j boss. renoti ng. securi ty. SSLSocket Bui | der, in a con-
figuration map and pass the map to one of the Connect or constructors. These will be used by sSLSocket -
Bui | der (see below) to create a Cust onSSLSer ver Socket Fact ory.

Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssimultiplex,
ssirmi, or sslsocket). The properties will be used to create some kind of SSLSer ver Socket Fact ory, as determ-
ined by the transport.

10. Useone of the non-SSL transports and do nothing. A default Ser ver Socket Fact ory Will be constructed.

These options are essentially in descending order of precedence. If options 3 and 6, for example, are both used, the
factory passed in option 3 will prevail. Options 4 and 5 are mutually exclusive, as are options 6 and 7. Options 1, 2,
3, 5, and 7 areillustrated in Fact or yConf i gSanpl e and options 4, 6, 8, and 9 are illustrated in Fact or yConf i gSSL-
sanpl e, both of which arein package or g. j boss. renoti ng. sanpl es. config.factories.

Timing considerations. The Ser ver | nvoker, for any transport, is created during the call to Connector. create(),
before which option 1 is unavailable. Option 2, on the other hand, is only available before the call to Connect -

JBoss June 22, 2008

65

Configuration

or.create(). Oncethe Server I nvoker has been created, it selects a Ser ver Socket Fact ory, according to the rules
enumerated above, during the creat () phase. For all current transports, the actual Ser ver Socket iscreated during
the call to Connector. start (), SO that a call to Server | nvoker. set Server Socket Fact ory() (option 1) can over-
ride the selected Ser ver Socket Fact ory until Connector. start () iscalled.

5.7.1.2. Socket factories

For socket Fact oryS, there are also ten options for programmatic configuration, and they are essentially the same
as the previous ten. Note, however, that options 5 and 6 are reversed. This is because an Ser ver Socket Fact -
oryMBean, if it exists, is given precedence over class names:

1

7.

Cadll connect or. set Socket Fact ory().

Get the Serverinvoker by caling Connector.getServerinvoker() and cal Serverln-
voker . set Socket Fact ory().

Put a constructed Socket Fact ory in a configuration map, using key Renot i ng. CUSTOM SOCKET_FACTORY, and
pass the map to one of the Connect or constructors.

Create an xml document with root element <confi g>, Setting the <ser ver Socket Fact ory> attribute to the
name of a Server Socket Fact oryMBean and pass the document to Connect or. set Confi guration(). If the
MBean has type SSLSer ver Socket Fact or ySer vi ceMBean, its configuration information will be gathered and
used to construct a Cust onSSLSocket Fact ory. Note. This method is guaranteed to work only for callback cli-
ent invokers. For other, transport specific, socket factory uses, the transport may or may not use this informa-
tion.

Put the ObjectNane Of a ServerSocket FactoryMBean in a configuration map, using key Serverln-
voker . SERVER_SOCKET_FACTORY, and pass the map to one of the Connect or constructors. If the MBean has
type SSLSer ver Socket Fact or ySer vi ceMBean, its configuration information will be gathered and used to con-
struct a cust onSSLSocket Fact ory. Note. This method is guaranteed to work only for callback client invokers.
For other, transport specific, socket factory uses, the transport may or may not use this information.

Create an xml document with root element <conf i g>, Setting the <socket Fact or y> attribute to the class name
of aSocket Fact ory and pass the document to Connect or . set Confi gurati on() . For example:

StringBuffer buf = new StringBuffer();
buf . append(”<?xm version=\"1.0\"?>\n");
buf . append("<confi g>");

buf . append(" <i nvoker transport=\"sslsocket\">");

buf . append(" <attribute name=\"serverBi ndAddress\">" + get Host Nane() + "</at
buf . append(” <attribute name=\"serverBindPort\">" + freeport + "</attribute>
buf . append(" <attri bute name=\"socket Factory\">" + socketFactoryd assnane +
buf . append(” </i nvoker>");

buf . append(" </ config>");

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Strean(buf.toString().getBytes());
Docunent xml = Docunent Bui | der Fact ory. new nst ance() . newDocunent Bui | der (). par se(bz

connect or. set Confi gurati on(xml . get Docunent El enent ());

The Socket Fact ory class must have a default constructor, which will be used to create a Socket Fact ory.

Put the class name of a SocketFactory in a configuration map, using key Renot-
i ng. SOCKET_FACTORY_CLASS_NAME, and pass the map to one of the Connect or constructors. The Socket Fact -

JBoss June 22, 2008 66

Configuration

ory class must have adefault constructor.

8. Put aset of SSL parameters, using the keysin org. j boss. renoti ng. securi ty. SSLSocket Bui | der, in a con-
figuration map and pass the map to one of the Connect or constructors. These will be used by SSLSocket -
Bui | der (see below) to create a Cust onSSLSocket Fact ory.

9. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssmultiplex,
ssirmi, or sslsocket). The properties will be used to create some kind of SSLSocket Fact ory, as determined by
the transport.

10. Useone of the non-SSL transports and do nothing. Ordinary Socket swill be used.

Again, these are essentially in descending order of precedence. Options 1, 2, 3, 6, and 7 are illustrated in Fact or y-
Conf i gSanpl e and options 4, 5, 8, and 9 areillustrated in Fact or yConf i gSSLSanpl e, both of which are in package
org.jboss.renoting. sanpl es. config.factories.

Timing considerations. A new C i ent, with a client invoker, is created on the server side whenever a callback
listener isregistered by acall to d i ent. addLi st ener () . If aSocket Fact ory is supplied by any of options 1to 5, it
will be passed to the d i ent . Otherwise, any information from options 6 to 9 will be passed to the client invoker,
which will create a Socket Fact ory according to the rules given below in the section on client side socket factory
configuration. Once Connect or . creat e() has been called, Server | nvoker . set Socket Fact ory(), may be called at
any time to determine the Socket Fact ory used by the next callback client invoker.

5.7.2. Client side programmatic configuration

On the client side it is possible to configure socket factories for client invokers and to configure server socket
factories for callback server invokers. Configuration on the client side is largely the same as configuration on the
server side, with the exception that no MBeanSer ver is assumed to be present, and the d i ent has no facilities for
parsing xml documents.

5.7.2.1. Server socket factories.

For server Socket Fact orys in callback server invokers, there are eight options for programmatic configuration,
which are identical to options 1-3, 5 and 7-10 on the server side (we don't assume the existence of an MBeanSer ver
on theclient side:

1. Get the sServerinvoker by caling Connector.getServerinvoker() and cal Serverln-
voker . set Ser ver Socket Fact ory() .
2. Call connector. set Server Socket Fact ory().

3. Put a constructed ServerSocketFactory in a configuration map, using Kkey Renot-
i ng. CUSTOM_SERVER_SOCKET_FACTORY, and pass the map to one of the Connect or constructors.

4. Create an xml document with root element <confi g>, Setting the <ser ver Socket Fact ory> attribute to the
class name of a Server Socket Fact ory and pass the document to Connect or. set Confi gurati on(). For ex-
ample:

StringBuffer buf = new StringBuffer();

JBoss June 22, 2008 67

Configuration

buf . append("<?xm version=\"1.0\"?>\n");
buf . append(" <confi g>");

buf . append(" <i nvoker transport=\"sslsocket\">");

buf . append(" <attribute name=\"serverBi ndAddress\">" + get Host Nane() + "</at
buf . append(" <attribute name=\"serverBi ndPort\">" + freeport + "</attribute:
buf . append(” <attribute name=\"server Socket Factory\">" + server Socket Fact ory
buf . append(" </invoker>");

buf . append(" </ config>");

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Stream buf.toString().getBytes());
Docunent xm = Documnent Bui | der Fact ory. new nst ance() . newDocunent Bui | der () . par se(be
connect or. set Confi gurati on(xm . get Docunent El ement ());

The Ser ver Socket Fact ory class must have a default constructor, which will be used to create a Ser ver Sock-
et Factory.

5. Put the class name of a ServerSocketFactory in a configuration map, using key Serverln-
voker . SERVER_SOCKET_FACTCRY, and pass the map to one of the Connect or constructors. The Ser ver Socket -
Fact ory class must have a default constructor, which will be used to create a Ser ver Socket Fact ory.

6. Put aset of SSL parameters, using the keysin org. j boss. renoti ng. security. SSLSocket Bui | der, in a con-
figuration map and pass the map to one of the Connect or constructors. These will be used by SSLSocket -
Bui | der (See below) to create a Cust onSSLSer ver Socket Fact ory.

7. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, sssmultiplex,
sdrmi, or sslsocket). The properties will be used to create some kind of SSLSer ver Socket Fact ory, as determ-
ined by the transport.

8. Useone of the non-SSL transports and do nothing. A default Ser ver Socket Fact ory Will be constructed.

These options are essentially in descending order of precedence. For example, if options 3 and 5, for example, are
both used, the factory passed in options 3 will prevail. Options 1, 2, 3, 4, and 5 are illustrated in Fact or yConf i g-
Sanple and options 6 and 7 are illustrated in FactoryConfigSSLSanpl e, both of which are in package
org.j boss. renoting. sanpl es. config.factories.

Timing considerations. See the discussion in the section on the creation of server socket factories on the server
side.

5.7.2.2. Socket factories.

For socket Fact orysin client invokers, there are seven options for programmatic configuration, and they are essen-
tialy the same as 1-3 and 5-8 in the previous section (d i ent has no facility for parsing xml documents:

1. Getthedientlnvoker by calingdient.getlnvoker() andcall dientlnvoker. set Socket Fact ory().
2. Cdldient.setSocket Factory().

3. Put aconstructed Socket Fact ory in a configuration map, using key Renot i ng. CUSTOM SOCKET_FACTORY, and
pass the map to one of thed i ent constructors.

4, Put the class name of a SocketFactory in a configuration map, using key Renot-
i ng. SOCKET_FACTORY_CLASS_NAME, and pass the map to one of the d i ent constructors. The Socket Fact ory
class must have a default constructor, which will be used to create a Socket Fact ory.

JBoss June 22, 2008 68

Configuration

5. Put aset of SSL parameters, using the keysin org. j boss. renoti ng. securi ty. SSLSocket Bui | der, in a con-
figuration map and pass the map to one of the a i ent constructors. These will be used by SSLSocket Bui | der
(see below) to create a Cust onBSLSocket Fact ory.

6. Configure an appropriate set of SSL system properties and use one of the SSL transports (https, ssmultiplex,
sdlrmi, or sslsocket). The properties will be used to create some kind of SSLSocket Fact ory, as determined by
the transport.

7. Useone of the non-SSL transports and do nothing. Ordinary Socket swill be used.

Again, these are essentially in descending order of precedence. Options 1, 2, 3, and 4 areillustrated in Fact or yCon-
figSanple and options 5 and 6 are illustrated in Fact or yConfi gSSLSanpl e, both of which are in package
org.j boss. renoting. sanpl es. config.factories.

Timing considerations. A Socket Fact ory is created in the constructor for Renot ed i ent I nvoker , the ancestor of
all current remote client invokers (that is, all client invokers except Local d i ent | nvoker , which can make acall by
reference on a server invoker in the same JVM), but it is currently used only by SSL transports, for which the tim-
ing considerations vary.

1. https: HTTPSO i ent | nvoker Setsthe socket factory onitSHtt psURLConnect i on eachtimed i ent. i nvoke() is
called. Option 1 may be used to reset the Socket Fact ory for future invocations at any time.

2. sdmultiplex: Whichever of ssLMul tipl exCientlnvoker OF SSLMilti pl exServer | nvoker first gets suffi-
cient bind and connect information to create a priming socket (see the section on the multiplex invoker for a
discussion of priming sockets) passes the current Socket Fact ory to be used to create the actual socket that
supports the multiplexed connection. This happens during the call to either d i ent. connect () OF Connect -
or. creat e() . Once the actual socket is created, no further configuration is possible

3. sdrmi: A Socket Fact ory is either created or configured for future creation during d i ent . creat e() . No fur-
ther configuration is possible.

4, sdsocket: sSLSocket O i ent | nvoker USesthe current Socket Fact ory to create a new socket whenever it runs
out of available pooled connections. Option 1 may be used to reset the Socket Fact ory for future connections
at any time.

5.7.3. Server side configuration in the JBoss Application Server

Everything in the previous two sections applies to configuring socket and server socket factories in any environ-
ment, including inside the JBoss Application Server (JBossAS), but JBossAS adds some new options. In particular,
the sARDepl oyer (see The JBoss 4 Application Server Guide on the labs.jboss.org web site) can read information
from a*-service. xn file, as discussed above in the section "General Connector and Invoker configuration,”" and
use it to configure MBeans such as Connect or S.

An example of a service xml that covers all the different transport and service configurations can be found within
the example-service.xml file under the etc directory of the JBoss Remoting distribution.

The server socket factory to be used by a server invoker can be set via configuration within the service xml. To do
this, the serverSocketFactory attribute will need to be set as a sub-element of the invoker element (this cannot be
done if just specifying the invoker configuration using the InvokerLocator attribute). The attribute value must be

JBoss June 22, 2008 69

Configuration

either

1. the IJMX ObjectName of an MBean that implements the
org.jboss.renoting. security. Server Socket Fact or yMBean interface, or

2. theclass name of aServer Socket Fact or y with a default constructor.

An example of thefirst case would be:

<nbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, t ransport =Socket "
di spl ay- nane="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="ssl socket">
<attribute name="server Socket Factory" >
j boss. renoting: servi ce=Ser ver Socket Fact ory, t ype=SSL
</attribute>
<attribute name="numAccept Threads">1</attri bute>

The server Socket Fact ory attribute is processed as follows:

1. Take its String value, creaste an Obj ect Nane from it, and look up an MBean with that name from the
MBeanSer ver that the invoker has been registered with (by way of the Connect or). If an MBean with that
name is found, create a proxy to it of type org. | boss. renoting. security. Server Socket Fact or yMBean.
(Technically, a user could set the ser ver Socket Fact ory property with the locator url, but the preferred meth-
od isto use the explicit configuration viathe invoker element's attribute, as discussed above.)

2. If no MBean is found with a matching bj ect Nane, treat the ser ver Socket Fact ory attribute as a class name
and try to create an instance using the default constructor.

The JBossRemoting project provides an implementation of the ServerSocketFactoryMBean that can be used and
should provide most of the customization features that would be needed. More on this implementation later.

Note that these two options correspond exactly to options 4 and 5 in section Server socket factories (on the server
side), which is how these two new options are implemented.

Timing considerations. If a Connect or is accessed by way of the MBeanSer ver , then most of the options for con-
figuring the server socket factory discussed in Server socket factories are irrelevant since Connect or MBean does not
expose methods for using them. However, when a Connect or that isregistered with an MBeanSer ver creates a serv-
er invoker during a call to Connector. create(), it aso registers the server invoker with the same MBeanSer ver,
which means that the server invoker is accessible by way of its j ect Narme, which has the form

j boss. renoting: servi ce=i nvoker, transport =socket, host =ww. j boss. com port =8765

for example, followed by additional parameter=value pairs. (See the jmx-console for a running instance of
JBOssAS at http://localhost:8080/jmx-console/ to see examples of server invoker bj ect NaneS.) Now, if another
MBean is configured in a*-servi ce. xnl file to be dependent on the server invoker MBean, e.g.

JBoss June 22, 2008 70

Configuration

<nbean code="org.jboss. Bl ueMonkey" nanme="j boss. renoting: bl uenonkey, nanme=di anond" >
<depends optional -attribute-name="server | nvoker">
j boss. renoti ng: servi ce=i nvoker, transport =socket, host =www. j boss. com port =8765
</ depends>
</ mbean>

then or g. j boss. Bl ueMonkey. creat e() Will have access to the designated server invoker after the invoker has been
created but before it has been started, which means that Server | nvoker . set Ser ver Socket Fact ory() will be €ef-
fective. (See the The JBoss 4 Application Server Guide, Chapter 2, for more information about the life cycle of
JBoss MBeans.)

5.7.4. Socket creation listeners
Every Remoting transport uses Socket s, but the creation and management of the Socket sis generally inaccessible

from the application code. Remoting has a hook that can provide access to Socket S, in the form of a listener inter-
faceintheorg. j boss. renoti ng. socket f act ory package:

public interface SocketCreationLi stener

{
/**
* Cal |l ed when a socket has been created.
*
* @aram socket socket that has been created
* @aram source Socket Factory or Server Socket that created the socket
* @hrows | OException
“f
voi d socket Creat ed(Socket socket, bject source) throws | OException;
}

Socket creation listeners can be registered to be informed every time a socket is created by a Socket Factory or
Ser ver Socket . The mechanisms for registering listeners are the usual ones, e.g., by putting them in configuration
maps passed to client and server invokers. (See Section General transport configuration for a general discussion of
parameter configuration in Remating.) In any case they should be associated with one of the following keys from
org.j boss. renoting. Renoti ng:

/**

* Key for the configuration map passed to a Cient or Connector to indicate
* a socket creation listener for sockets created by a Socket Factory.

*/

public static final String SOCKET_CREATI ON_CLI ENT_LI STENER = "socket Creati ond i ent Li st ener"

/**

* Key for the configuration map passed to a Cient or Connector to indicate
* a socket creation |listener for sockets created by a Server Socket.

*/

public static final String SOCKET_CREATI ON_SERVER LI STENER = "socket Creati onServer Li st ener"

The value associated with either of these keys can be an actual object, or, to facilitate configuration by I nvoker -
Locat or or xml, it can be the name of a class that implements Socket Cr eat i onLi st ener and has a default con-
structor

JBoss June 22, 2008 71

Configuration

Note that client and server invokers always use the respective keys SOCKET_CREATION_CLIENT_LISTENER
and SOCKET_CREATION_SERVER_LISTENER, whether they are on the client side or server side. For example,
a calback client invoker would be configured by putting a listener with the key SOCK-
ET_CREATION_CLIENT_LISTENER in the configuration map passed to the server side Connect or, which will
find its way to the callback client invoker when a callback handler is registered.

The creation listener facility currently is supported by the following transports: bisocket, sslbisocket, https, multi-
plex, sssmultiplex, rmi, sslrmi, socket, and sslsocket. It is not supported by http because Ht t pURLConnect i on does
not expose its socket factory (though Htt psURLConnect i on does). It is not supported by the servlet transport be-
cause invocations with the servlet transport go through a servlet container, which is outside the scope of Remoting.

5.7.5. SSL transports

There are now four transports that support SSL: https, ssmultiplex, sslrmi, and sslsocket (plus sslservlet, which is
not relevant here). All of the preceding discussion applies to each of these, and, moreover, they are all extensions of
their non-ssl counterparts, so only some ssl specific information will be added here.

https

Configuration of the https transport is a bit different from that of the other transports since the implementation is
based off the Tomcat connectors. One difference is that, in order to use SSL connections, the SSLI npl enent at i on
attribute must be set and must aways have the value
org.jboss.renoting.transport.coyote. ssl.RenotingSSLI npl enent ati on. The SSLI npl enent ati on IS used by
the Tomcat connector to create Ser ver Socket Fact oryS, and Renot i ngSSLI npl enent ati on presents Tomcat with
the Ser ver Socket Fact or y configured according to the options described above.

An example of setting up https via service.xml configuration would be:

<nbean code="org.jboss.renoting.transport. Connector"
nanme="j boss. renoti ng: servi ce=Connect or, t ranspor t =HTTPS"
di spl ay- name="HTTPS transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="https">

<attribute name="server Socket Fact ory" >j boss. renoti ng: servi ce=Ser ver Socket Factory, t ype=S
<attribute name="SSLI npl enent ati on">org. j boss.renoti ng.transport.coyote.ssl.RenotingSSl

<attri bute name="server Bi ndAddr ess" >${j boss. bi nd. addr ess} </ attri but e>
<attribute name="serverBi ndPort">6669</attri bute>

</i nvoker >

<handl er s>

<handl er subsystenm="nock">org. | boss.test.renoting.transport. nock. MockServer | nvocati onHe

</ handl er s>
</ confi g>
</attribute>

<l-- This depends is included because need to make sure this nbean is running before configure

<depends>j boss. renpti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL</ depends>
</ mbean>

See section SSL ServerSocketFactoryService below for a discussion of the
"jboss.remoting:service=ServerSocketFactory,type=SSL" MBean that appears in this configuration element.

Note that the configuration for SSL support only works when using the java based http processor and not with the

JBoss June 22, 2008 72

Configuration

APR based transport. See section HTTP Invoker for more information on using the APR based transport.

ssimultiplex

The ssimultiplex server invoker inherits from the socket server invoker a method with signature

public void set NewServer Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

which supports dynamic replacement of server socket factories. The principal motivation for this facility is to be
ableto swap in anew SSLSer ver Socket Fact ory configured with an updated keystore.

sslrmi

The extra twist in the ssirmi invoker is that the server invoker creates the (client) socket factory and packages it
with its own stub, from which it follows that the socket factory must be serializable. If the ssirmi server invoker is
allowed to create an SSLSocket Fact ory from SSL parameters, it will take care to create a serializable socket fact-
ory. In particular, the server invoker creates a copy of
org.jboss.renoting.transport.rm.ssl.Serializabl eSSLA i ent Socket Factory, which is essentidly just a
holder for the configuration map passed to the server invoker, with any parameters removed which concern trust
store and key store configuration. On the client side, when an sslrmi client invoker is created, it stores its own con-
figuration map in a static variable which the transferred Seri al i zabl eSSLA i ent Socket Fact ory can retrieve and
merge with the configuration information it brought with it from the server. In particular, if a socket factory is ex-
plicitly passed to the client invoker, then Seri al i zabl eSSLd i ent Socket Fact ory Will use it. If not, then Seri al -

i zabl eSSLA i ent Socket Fact ory Will use any key store and trust store information passed to the client to create
and configure a socket factory.

Note. If instead of using Seri al i zabl eSSLO i ent Socket Fact ory, a socket factory is passed in to the server in-
voker by one of the methods discussed above, then the user is responsible for supplying a serializable socket fact-
ory.

sslsocket

In addition to the various configuration options discussed above, the sslsocket transport exposes the

public void set Server Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

method as a IMX operation.

Also, the sslsocket server invoker inherits from the socket server invoker a method with signature

public void set NewServer Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

which supports dynamic replacement of server socket factories. The principal motivation for this facility is to be
ableto swap in anew SSLSer ver Socket Fact ory configured with an updated keystore.

5.7.6. SSLSocketBuilder

JBoss June 22, 2008 73

Configuration

Throughout this section reference has been made to SSL socket factory and server socket factory configuration
parameters. This subsection will introduce these parameters in the context of configuring
org.jboss.renoting. security. SSLSocket Bui | der, Remoting's flexible, highly customizable master factory for
creating socket and server socket factories. It can be used programmatically on both the client and server side, and
itisalso aservice MBean, so it can be configured and started from within a service xml in a JBossA S environment.

Once a ssLSocket Bui | der has been constructed and configured, a call to its method cr eat eSSLSer ver Socket -
Fact ory() Will return a custom instance of a SSLSer ver Socket Fact ory, and a call to cr eat eSSLSocket Fact or y()
will return acustom instance of SSLSocket Factory.

There are two modes in which the ssLSocket Bui | der can be run. The first is the default mode where all that is
needed is to declare the SSLSocketBuilder and set the system properties javax. net.ssl.keyStore and
j avax. net . ssl . keySt or ePasswor d. This will use the VM vendor's default configuration for creating the SSL
server socket factory.

In order to customize any of the SSL properties, the first requirement is that the default mode is turned off. Thisis
IMPORTANT because otherwise, if the default mode is not explicitly turned off, al other settings will be |G-
NORED, even if they are explicitly set. To turn off the default mode via service xml configuration, set the
UseSSLSer ver Socket Fact ory altribute to false. This can also be done programmaticaly by caling the
set UseSSLSer ver Socket Fact ory() and passing false as the parameter value.

There are two ways to configure a SSLSocket Bui | der

1. setitsbean attributes, either programmatically or by xml configuration, or

2. pass to a SsLSocket Bui | der constructor a configuration map with keys defined in the SSLSocket Bui | der
class.

The configuration properties for SsLSocket Bui | der are as follows:

Table5.1. ssLsocket Bui | der configuration parameters.

attribute key name type default description

ClientAuthMode REMOT- String need Determines if sock-
ING_CLIENT_AU ets need or want cli-
TH_MODE ent authentication.

This configuration
option isonly useful
for sockets in the
server mode. Value
may be "none",
"want", or "need".

KeyAlias REMOT- String The preferred iden-
ING_KEY_ALIAS tity in key store to
be used by key

managers

JBoss June 22, 2008 74

Configuration

attribute

KeyPassword

KeyStoreAlgorithm

key name type

REMOT-
ING_KEY_PASSW
ORD

String

REMOT-
ING_KEY_STORE
_ALGORITHM

String

default

SunX509

description

Sets the password to
use for the keys
within the key store.
This only needs to
be set if
set UseSSLSer ver -
Socket Factory() is
set to false
(otherwise will be
ignored). If this
value is not set, but
the key store pass-
word is, it will use
that value for the
key password.

The algorithm for
the key manager
factory.

KeyStorePassword

KeyStoreType

REMOT-
ING_KEY_STORE
_PASSWORD

String

REMOT-
ING_KEY_STORE
_TYPE

String

JKS

The password to use
for the key store.
This only needs to
be set if
set UseSSLSer ver -
Socket Factory() IS
Set to fase
(otherwise will be
ignored). The vaue
passed will also be
used for the key
password if the lat-
ter attribute is not
explicitly set.

The type to be used
for the key store.
Some acceptable
vaues ae JXKS
(Java Keystore -
Sun's keystore
format), JCEKS
(Java Cryptography
Extension keystore -
More secure version

JBoss June 22, 2008

75

Configuration

attribute

KeyStoreURL

key name type

REMOT-
ING_KEY_STORE
_FILE_PATH

String

default

description

of XKS9), and
PKCS12

(Public-Key Cryp-
tography Standards
#12 keystore -
RSA's Persona In-
formation Exchange
Syntax Standard).
These are not case
sensitive.

Property used to
define where
SSLSocket Bui | der
will look for the
keystore file. This
can be rdative to
the thread's class
loader or can be an
absolute path on the
file system or can
beaURL.

Provider

ProviderName

SecureRandom

SecureSocketPro-
tocol

ServerAuthMode

none java.security.Provid

er

REMOT-
ING_SSL_PROVID
ER NAME

String

none java.security.Secure

Random

REMOT-
ING_SSL_PROTO
coL

String

REMOT-
ING_SERVER_AU
TH_MODE

boolean/String

new Secur eRan-

don()

TLS

true

Java Security API
implementation to
use.

Name of Java Se-
curity APl imple-
mentation to use.

Random number
generator to use.

The protocol for the
SSLCont ext. Some
acceptable values
are TLS, SSL, and
SSLv3

Determines if a cli-
ent should attempt
to authenticate a
server certificate as

JBoss June 22, 2008

76

Configuration

attribute key name type default description
oneit trusts.
ServerSocketUse- REMOT- boolean/String false Determines if the
ClientMode ING_SERVER SO server sockets will
CK- bein client or server
ET_USE CLIENT_ mode.
MODE
SocketUseClient- REMOT- boolean/String true Determines if the
Mode ING_SOCKET_US sockets will be in
E CLIENT_MODE client or server
mode.
TrustStoreAl- REMOT- String value of Key- trust store key man-
gorithm ING_TRUST_STO St oreAl gorithm or agement algorithm
RE_ALGORITHM SunX509 if Key-
StoreAl gorithmis
not set
TrustStorePassword REMOT- String trust store password
ING_TRUST_STO
RE_PASSWORD
TrustStoreType REMOT- String value of KeySt ore- | type of trust store
ING_TRUST_STO Type, or IKSif Key-
RE TYPE St or eType iSnot set
TrustStoreURL REMOT- String location of trust
ING_TRUST_STO store
RE_FILE_PATH
UseSSL ServerSock- none boolean true Determines if de-
etFactory fault ssLServer-
Socket Fact ory
should be created.
UseSSL SocketFact- none boolean true Determines if de-
ory fault SSLSocket -

Factory should be
created.

Note. If any of the attributes Key St or eURL, Key St or ePasswor d, KeySt or eType, Tr ust St or eURL, Tr ust St or ePass-

JBoss June 22, 2008

7

Configuration

wor d, OF Trust St oreType are left unconfigured, SSLSocket Bui | der will also examine the corresponding standard
SSL system properties "javax.net.sdl.keyStore", "javax.net.ss.keyStorePassword”, "javax.net.sdl.keyStoreType",
"Javax.net.sdl.trustStore”, "javax.net.sdl.trustStorePassword"”, "javax.net.ssl.trustStoreType'. In the cases of Key-
St or eType and Trust St or eType, SSLSocket Bui | der Will then go on to use default values after checking the system
properties.

The following is an example of configuring a SSLSocket Bui | der and using it to create a custom SSLSocket Fact -
ory:

prot ect ed SSLSocket Factory get Socket Factory() throws Exception

{
HashMap config = new HashMap();
confi g. put (SSLSocket Bui | der. REMOTI NG_KEY_STORE_TYPE, "JKS");
String keyStoreFil ePath = get KeystoreFil ePath();
confi g. put (SSLSocket Bui | der. REMOTI NG _KEY_STORE_FI LE_PATH, keyStoreFil ePat h);
confi g. put (SSLSocket Bui | der. REMOTI NG_KEY_STORE_PASSWORD, "unit-tests-server");
confi g. put (SSLSocket Bui | der. REMOTI NG_SSL_PROTOCOL, "SSL");
SSLSocket Bui | der bui | der = new SSLSocket Bui | der (confi g);
bui | der. set UseSSLSocket Fact ory(fal se);
return buil der.createSSLSocket Factory();
}

More examples of configuring SSLSocket Bui | der can be found in the class Fact or yConf i gSSLSanpl e in the pack-
ageorg.jboss.renoting. sanpl es. config.factories.

Thefollowing is an example of configuring SSLSocket Bui | der ina*-servicexml file:

<I-- This service is used to build the SSL Server socket factory -->

<I-- This will be where all the store/trust information will be set. -->

<I-- If do not need to make any custom configurations, no extra attributes -->
<l-- need to be set for the SSLSocketBuilder and just need to set the -->

<I-- javax.net.ssl.keyStore and javax. net.ssl.keyStorePassword system properties. -->
<l-- This can be done by just adding sonething like the following to the run -->
<l-- script for JBoss -->

<l-- (this one is for run.bat): -->

<I-- set JAVA OPTS=-D avax.net.ssl.keyStore=. keystore -->

<l-- -D avax. net.ssl.keySt or ePasswor d=opensour ce %JAVA OPTS% - - >

<Il-- Oherwise, if want to custonize the attributes for SSLSocketBuil der, -->
<I-- will need to unconmrent them bel ow. -->

<nbean code="org.j boss.renoting. security. SSLSocket Bui | der"
nane="j boss. renoti ng: servi ce=Socket Bui | der, t ype=SSL"
di spl ay- nane="SSL Server Socket Factory Buil der">

<I-- | MPORTANT - |f making ANY custom zations, this MJST be set to false. -->

<I-- Oherwise, will used default settings and the following attributes will be ignored. -
<attribute name="UseSSLServer Socket Factory">fal se</attri bute>

<l-- This is the url string to the key store to use -->

<attribute name="KeyStoreURL">. keystore</attribute>

<I-- The password for the key store -->

<attribute name="KeySt or ePasswor d">opensour ce</attri bute>

<I-- The password for the keys (will use KeystorePassword if this is not set explicitly. -

<attribute name="KeyPassword">opensource</attri bute>

<l-- The protocol for the SSLContext. Default is TLS. -->

<attri bute name="SecureSocket Protocol ">TLS</attri bute>

<I-- The algorithmfor the key nanager factory. Default is SunX509. -->

<attribute name="KeyManagenent Al gorit hm >SunX509</ attri but e>

<I-- The type to be used for the key store. -->

<I-- Defaults to JKS. Sonme acceptable values are JKS (Java Keystore - Sun's keystore fornme
<l-- JCEKS (Java Cryptography Extension keystore - Mre secure version of JKS), and -->
<I-- PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's Personal |nformation
<I-- These are not case sensitive. -->

JBoss June 22, 2008 78

Configuration

<attribute name="KeyStoreType">JKS</attribute>
</ mbean>

It is also possible to set the default socket factory to be used when not using customized settings (meaning
UseSSL SocketFactory property value is true, which is the default). This can be done by setting system property of
org.jboss.remoting.defaultSocketFactory to the fully qualified class name of the javax.net.SocketFactory imple-
mentation to use. Will then call the getDefault() method on that implementation to get the SocketFactory instance
to use.

5.7.7. SSLServerSocketFactoryService

Although any server socket factory can be set for the various transports, there is a customizable server socket fact-
ory service provided within JBossRemoting that supports SSL. This is the
org.jboss.renmoting. security. SSLServer Socket Fact oryServi ce class. The SSLSer ver Socket Fact or ySer vi ce
class extends the j avax. net . Server Socket Fact ory class and also implements the SSLSer ver Socket Fact or ySer -
vi ceMBean interface (so that it can be set using the socket Server Fact ory attribute described previously). Other
than providing the proper interfaces, this class is a smple wrapper around the
org. j boss.renoting. security. SSLSocket Bui | der class.

The following is an example of configuring SSLSer ver Socket Fact or ySer vi ce in a*-servicexml file. Note that it
depends on the ssLSocket Bui | der MBean defined in the xml fragment above:

<l-- This service provides the exact sanme APl as the Server Socket Factory, so -->
<l-- can be set as an attribute of that type on any MBean requiring an Server Socket Factory. -->
<nbean code="org.j boss.renoting. security. SSLServer Socket Fact or yServi ce"
nane="j boss. renoti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL"
di spl ay- nane="SSL Server Socket Factory">
<depends optional -attri bute-nane="SSLSocket Bui | der"
proxy-type="attribute">j boss.renoting: servi ce=Socket Bui | der, t ype=SSL</ depends>
</ mbean>

5.7.8. General Security How To

Since we are talking about keystores and truststores, this section will quickly go over how to quickly generate a test
keystore and truststore for testing. Thisis not intended to be a full security overview, just an example of how | ori-
ginaly created mine for testing.

To get started, will need to create key store and trust store.

Generating key entry into keystore:

C:\tnp\ ssl >keyt ool -genkey -alias renoting -keyal g RSA
Enter keystore password: opensource

What is your first and | ast nane?

[Unknown] : Tom El r od

What is the name of your organizational unit?

[Unknown] : Devel opnent

What is the name of your organization?

[Unknown] : JBoss | nc

What is the name of your City or Locality?

JBoss June 22, 2008 79

Configuration

[Unknown] : Atl anta

What is the nane of your State or Province?

[Unknown] : GA

VWhat is the two-letter country code for this unit?

[Unknown] : US

I's CN=Tom El rod, OU=Devel opnent, O=JBoss Inc, L=Atlanta, ST=GA, C=US correct?
[no]: yes

Enter key password for <renoting>
(RETURN i f sane as keystore password):

Since did not specify the -keystore filename parameter, created the keystore in $HOME/.keystore (or
C:\Documents and Settings\Tom\.keystore).

Export the RSA certificate (without the private key)

C:\tnp\ssl >keyt ool -export -alias rempting -file renoting.cer
Enter keystore password: opensource
Certificate stored in file <renmoting.cer>

Import the RSE certificate into a new truststore file.

C:\tnp\ssl >keytool -inmport -alias renoting -keystore .truststore -file renoting.cer
Ent er keystore password: opensource

Owner: CN=Tom El rod, OU=Devel opnent, O=JBoss |nc, L=Atlanta, ST=GA C=US

I ssuer: CN=Tom El rod, OU=Devel opnent, O=JBoss Inc, L=Atlanta, ST=GA, C=US
Serial nunber: 426f lee3

Valid from Wed Apr 27 01:10:59 EDT 2005 until: Tue Jul 26 01:10:59 EDT 2005
Certificate fingerprints:

MD5: CF: DO: A8: 7D: 20: 49: 30: 67: 44: 03: 98: 5F: 8E: 01: 4A: 6A

SHA1: C6: 76: 3B: 6C: 79: 3B: 8D: FD: FB: 4F: 33: 3B: 25: C9: 01: 9D: 50: BF: 9F: 8A

Trust this certificate? [no]: yes

Certificate was added to keystore

Now have two files, .keystore for the server and .truststore for the client.

5.7.9. Troubleshooting Tips
Common errors when using server socket factory:

javax. net. ssl . SSLException: No available certificate corresponds to the SSL ci pher suites which are enab

The 'javax.net.sdl.keyStore' system property has not been set and are using the default SSL ServerSocketFactory.

j ava. net. Socket Exception: Default SSL context init failed: Cannot recover key

The 'javax.net.ssl .keyStorePassword' system property has not been set and are using the default SSL ServerSocket-
Factory.

java.io. | OException: Can not create SSL Server Socket Factory due to the url to the key store not being s

JBoss June 22, 2008 80

Configuration

The default SSL ServerSocketFactory is NOT being used (so custom configuration for the server socket factory)
and the key store url has not been set.

java.lang. |11 egal Argunent Excepti on: password can't be null

The default SSL ServerSocketFactory is NOT being used (so custom configuration for the server socket factory)
and the key store password has not been set.

5.8. Timeouts

The handling of timeouts in Remoting is surveyed in this section. On the whole, timing out network connectionsis
handled differently by each transport, but there are some transport independent methods for timeout configuration,
extended by some transport specific methods.

5.8.1. General timeout configuration

Aswith all configuration parameters, there are several avenues for specifying parameter values. See Section Gener-
al transport configuration for a general discussion of parameter configuration in Remoting. The transport independ-
ent key for setting timeouts is "timeout", also available as org. j boss. renoti ng. Server | nvoker. TI MEQUT. All
server invokers also have the getter/setter methods

public int getTinmeout();

public void setTimeout(int tinmeout);

where the values are given in milliseconds. The default timeout value is 60000 for server invokers.

5.8.2. Per invocation timeouts

Beginning with release 2.2.0, some Remoting transports offer a per invocation transport facility, which allows a
timeout value to be set for a particular invocation, overriding the client invoker's previously configured timeout
value. The per invocation timeout is set by passing the st ri ng representation of the timeout value in the invoca
tion's metadata map, using the key "timeout". For example,

HashMap net adata = new HashMap();
met adat a. put ("ti neout”, "2000");
client.invoke("testlnvocation", netadata);

will allow approximately 2 seconds for this particular invocation, after which the timeout value will be reset to its
previously configured value.

Each transport that supports per invocation timeouts handles them alittle differently. More details are given below.

5.8.3. Transport specific timeout handling

JBoss June 22, 2008 81

Configuration

5.8.3.1. Socket and bisocket transports

These two transports are handled together because bisocket inherits most of its timeout handling from socket. The
discussion also applies to their SSL versions, sslbisocket and ssisocket. On the server side, the timeout value,
whatever the source of its value, is used to set the timeout value of all Socket s managed by the server invoker's
worker threads. On the client side, the configured timeout value is used to limit the time required by Sock-
et.connect () when anew Socket is created, as well as to set the Socket timeout value for all connections in its
connection pool.

The socket and bisocket transports support per invocation timeouts. The processing subject to the timeout period
starts when the client invoker begins to acquire a network connection and extends to the point at which it begins
reading the reponse to the invocation. Note that the acquisition of the network connection might involve multiple
attempts to connect to the server.

5.8.3.2. HTTP transport

The http server invoker looks for a configured timeout value at initialization time, which it uses to set the "connec-
tionTimeout" property on its Tomcat connector. (See Section HTTP Invoker for more information.) Note that sub-
sequent callsto set Ti meout () will have no effect.

The http client invoker treats timeouts configured for the connection and per invocation timeouts the same, since it
opens a new Ht t pURLConnect i on With each invocation. Any nonnegative per invocation timeout value will over-
ride atimeout value configured at client invoker creation time.

If the application is using a jdk of generation 1.5 or later, then the client invoker will use the
j ava. net. Ht t pURLConnect i on methods set Connect Ti meout () and set ReadTi neout () methods. Note that in this
case the timeout value will be allowed twice, once to create the connection and once to read the invocation result.

If an earlier jdk is being used, the client invoker will simulate a timeout by making the connection and executing
the invocation in a separate thread, which it waits on for the specified timeout. The threads are drawn from a thread
pool, which is configurable. A custom thread pool may be set by calling the HTTPA i ent | nvoker method

public voi d setTi meout Thr eadPool (org.j boss. util.threadpool . ThreadPool pool);

where the ThreadPool interface is avalable from the anonomous JBoss svn repository at ht-
tp://anonsvn.jboss.org/repos/common/common-core/trunk/sre/main/javal
[http://anonsvn.jboss.org/repos/common/common-core/trunk/sre/main/javal. If a thread poal is not set, it will de-
fault to an instance of org. j boss. util .t hreadpool . Basi cThr eadPool , which may be configured with the follow-
ing parameters, defined as constantsin or g. j boss. renot i ng. transport. http. HTTPA i ent | nvoker :

MAX_NUM_TIMEOUT_THREADS (actua value "maxNumTimeoutThreads"): the number of threads in the
threadpool. The default valueis 10.

MAX_TIMEOUT_QUEUE_SIZE (actual value "maxTimeoutQueueSize"): the size of the thread pool queue,
which holds execution requests when all of the threads are in use. The default value is 1024.

5.8.3.3. Quick client disconnect

JBoss June 22, 2008 82

http://anonsvn.jboss.org/repos/common/common-core/trunk/src/main/java
http://anonsvn.jboss.org/repos/common/common-core/trunk/src/main/java

Configuration

org.jboss.renmoting. dient appliesper invocation timeoutsin itsrenoveLi st ener () and di sconnect () methods
to create a "quick disconnect” facility. If, for example, an or g. j boss. renot i ng. Connecti onVal i dat or (See Net-
work Connection Monitoring) reports its suspicion that a connection is failing, the application might want to re-
strict, or even eliminate, the time spent trying to access the network while unregistering callback handlers and dis-
connecting. The quick disconnect facility isinvoked by calling the d i ent method

public void setDi sconnect Ti neout (i nt di sconnect Ti meout) ;

to set the disconnect timeout value to a nonnegative value. If the disconnect timeout value is set, it will be applied
as the per invocation timeout value for all network activity in the methods r emoveli st ener () and di sconnect ().
As aspecial case, if the disconnect timeout valueis set to 0, d i ent will simply skip any network i/o in these two
methods.

5.9. Configuration by properties

This section covers configuration properties by constant values and bean properties for individual classes. This will
duplicate some of the configuration properties already covered and is just another view to some of the same in-
formation.

org.jboss.remoting.InvokerLocator

SERVER_BIND_ADDRESS (actual value is 'jboss.bind.address) - indicates the system property key for bind ad-
dress that should be used.

BIND BY HOST (actua vaue is 'remoting.bind by host') - indicates the system property key for if the local
bind address should be by host name (e.g. InetAddress.getl ocalHost().getHostName()) or if should be by IP (e.g.
InetAddress.getL ocalHost().getHostAddress()). The default is "True', meaning will will use local host name. This
configuration only applies when the initial bind addressis 0.0.0.0 (or InvokerL ocator. ANY).

DATATYPE (actua value is 'datatype’) - indicates the marshalling datatype that should be used for a particular in-
voker. Each invoker has its own default marshaller and unmarshaller based on default datatype. For examle, the
socket transport has a default datatype of 'serializable’, which is automatically registered with the Marshal Factory
and associated by default with org.jboss.remoting.marshal.serializable.SerializableMarshaler and
org.jboss.remoting.marshal .serializable.SerializableUnMarshaller. The marshaller and unmarshaller used by an in-
voker can be overriden by setting the 'datatype’ parameter within the Locatorlnvoker. For example, could use aloc-
ator url of:

socket : // myhost : 6500/ ?dat at ype=t est

which would cause the socket invoker to use the marshaller and unmarshaller registered with the Marshal Factory
under the datatype 'test'. Of course, this requires that the marshaller and unmarshaller implementations to be used
have aready been registered with the Marshal Factory (otherwise will get an exception).

SERIALIZATIONTYPE (actua value is 'seridizationtype) - indicates the serialization implementation to use.
Currently, the only possible values are 'java and 'jboss. Java serialization is the default. Setting to 'jboss will cause
JBoss Serialization to be used. In implementation, this equates to the parameter that will be passed to the Seriaiza

JBoss June 22, 2008 83

Configuration

tionStreamFactory.getManagerinstance() method. This configuration can be set as an invoker locator url parameter
(e.g. socket://myhost:5400/?serializationtype=jboss) or as an entry to the configuration Map passed when con-
structing aremoting client or server.

MARSHALLER (actua value is 'marshaler’) - used to indicate which marshaller implementation should be used
by the invoker. Thisis an override for whatever the invoker's default implementation is. This can be set as a para-
meter of the invoker locator url (e.0. sock-
et://myhost:6500/?marshaller=org.jboss.test.remoting.marshall.dynamic.remote.http. TestMarshaller). Using this
configuration requires that the value be the fully qualified classname of the marshaller implementation to use
(which must be on the classpath, have avoid constructor, and implement the org.jboss.remoting.marshal.Marshaller
interface).

UNMARSHALLER (actual value is 'unmarshaller') - used to indicate which unmarshaller implementation should
be used by the invoker. Thisis an override for whatever the invoker's default implementation is. This can be set as
a parameter of the invoker locator url (e sock-
et://myhost: 6500/ 2unmarshaller=org.jboss.test.remoting.marshall.dynamic.remote.http. TestUnMarshaller). Using
this configuration requires that the value be the fully qualified classname of the unmarshaller implementation to use
(which must be on the classpath, have a void constructor, and implement the
org.jboss.remotng.marshal.UnMarshaller interface).

LOADER_PORT (actua value is 'loaderport’) - indicates the port number where the class loader server resides.
This can be used when is possible that a client may not have particular classes locally and would want to load them
from the server dynamically. This property can be set as a parameter to the invoker locator url. A clasic example of
when this might be used would be in conjunction with using custom marshalling. For example, if have configured a
server to use custom marshaller and unmarshaller that the client will not have access to, could create a invoker loc-
ator such as:

socket : // nyhost : 6500/ ?dat at ype=t est & oader port =6501&
mar shal | er=org. j boss.test.renoti ng. marshal | . dynami c. renote. http. Test Marshal | er &
unmar shal | er=or g. j boss. test.renoti ng. marshal | . dynam c. renot e. http. Test UnMar shal | er

When the client invoker begins to make an invocation, will try to look up marshaller and unmarshaller based on
type (‘test' in this case) and when can not find aregistry entry for it, will try to load the TestMarshaller and TestUn-
Marshaller from the classpath. When the classes can not be found locally, will make a call to the loader server (on
port 6501) to load the classes locally. Once they are retrieved from the server, will be registered locally, so isaone
time only event (as next time will be found in the registry).

This can work for loading any remote server classes, but requires the loaderport be included in the invoker locator
url.

BYVALUE (actua vaue is 'byvalue’) - indicates if when making local invocations (meaning client and server in-
voker exists within same jvm), the marshalling will be done by value, instead of the default, by reference. Using
this configuration, the marshaling will actually perform a clone of the object instance (see
org.jboss.remoting.serialization.SerializationM anager.createM arshal ledV alueForClone()). Value for this property
should be of type String and be either 'true’ or 'false’. In releases prior to 2.0.0, using this configuration setting
would have forced invokers to be remote, which can now be done via FORCE_REMOTE config (see below).

FORCE_REMOTE (actua value is 'force_remote') - indicates if when making local invocations (meaning client
and server invoker exists within same jvm), the remote invokers should be used instead of local invoker. Is equival-
ent to making invocations as though client and server were in different jyms). Vaue for this property should be of
type String and be either 'true’ or 'false’.

JBoss June 22, 2008 84

Configuration

CLIENT_LEASE (actua valueis 'leasing’) - indicates if client should try to automatically establish a lease with
the server. Isfalse by default. Value for this property should be of type String and be either 'true’ or ‘false'.

CLIENT_LEASE_PERIOD (actual valueis'lease period’) - defines what the client lease period should be in the
case that server side leasing is turned on. Value for this parameter key should be the number of milliseconds to wait
before each client lease renewal and must be greater than zero in order to be recognized. If this property is not set
(and CLIENT_LEASE is), will use the lease period as specified by the server.

org.jboss.remoting.Client

RAW (actual value is 'rawPayload’) - key to use for the metadata Map passed when making an invoke() call and
wish for the invocation payload to be sent as is and not wrapped within a remoting invocation request object. This
should be used when want to make direct calls on systems outside of remoting (e.g. making an http POST request
to aweb service).

ENABLE_LEASE (actua value is 'enablelease’) - key for the configuration map passed to the Client constructor
to indicate that client should make initial request to establish lease with server. The value for this should be either a
String that java.lang.Boolean can evaluate or a java.lang.Boolean. By default, leasing is turned off, so this property
would be used to turn on leasing for the client.

HANDSHAKE _COMPLETED LISTENER (actua value is 'handshakeCompletedListener’) - key for the con-
figuration map passed to the Client constructor providing a ss javax.net.ssl.HandshakeCompletedListener imple-
mentation, which will be called on when ssl handshake completed with server.

The following three configuration properties are only useful when using one of the following Client methods:

public voi d addLi stener (I nvoker Cal | backHandl er cal | backhandl er, Map netadata, Object call backHandl er Obj ec
publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backhandl er, Map netadata, Object call backHandl er Obj ec

CALLBACK_SERVER_PROTOCOL (actua valueis ‘callbackServerProtocol’) - key for the configuration when
adding a callback handler and internal callback server connector is created. The value should be the transport pro-
tocol to be used. By default will use the same protocol as being used by this client (e.g. http, socket, rmi, multiplex,
etc.).

CALLBACK_SERVER_HOST (actua value is 'callbackServerHost") - key for the configuration when adding a
callback handler and internal callback server connector is created. The value should be the host name to be used.
By default will use the result of calling InetAddress.getL ocal Host().getHostAddress().

CALLBACK_SERVER_PORT (actua value is ‘calbackServerPort") - key for the configuration when adding a
callback handler and internal callback server connector is created. The value should be the port to be used. By de-
fault will find arandom unused port.

Bean properties (meaning have getter/setter):

Sessionld - session id used when making invocations on server invokers. There is a default unique id automatically
generated for each Client instance, so unless you have a good reason to set this, do not set this.

Subsystem - the subsystem being used when routing invocation requests on the server side. Specifing a subsystem

JBoss June 22, 2008 85

Configuration

is only needed when server has multiple handlers registered (which will each have their own associated subsystem).
Best if specified using Client constructor.

MaxNumber Of Threads - the maximum number of threads to use within client pool for one way invocations on
the client side (meaning oneway invocation is handled by thread in this pool and user's call returns immediately)
Default valueisMAX_NUM_ONEWAY _THREADS (whose valueis 10).

OnewayT hreadPoal - the thread pool being used for making one way invocations on the client side. If one has not
been gspecifically set via configuration or cal to set it, will aways return instance of
org.jboss.util .threadpool .BasicThreadPool.

SocketFactory - instance of javax.net.SocketFactory, which can only be set on the Client before the connect()
method has been called. Otherwise, a runtime exception will be thrown.

Marshaller - the marshaller implementation that should be used by the client invoker (transport). This overrides
the client's default marshaller (or any set within configuration).

UnMarshaller - the unmarshaller implementation that should be used by the client invoker (transport). This over-
rides the client's default unmarshaller (or any set within configuration).

org.jboss.remoting.Remoting

CUSTOM_SERVER_SOCKET_FACTORY (actua value is 'customServerSocketFactory') - key for the config-
uration map passed to a Connector to indicate the server socket factory to be used. Thiswill override the creation of
any other socket factory. Value must be an instance of javax.net.ServerSocketFactory.

CUSTOM_SOCKET_FACTORY (actua value is ‘customSocketFactory") - key for the configuration map passed
to aClient to indicate the socket factory to be used. Vaue must be instance of javax.net.SocketFactory.

SOCKET_FACTORY_CLASS NAME (actua value is 'socketFactoryClassName) - key for the configuration
map passed to a Client to indicate the classname of the socket factory to be used. Value should be fully qualified
classname of class that is an instance of javax.net.SocketFactory and has a void constructor. This property will not
be used if CUSTOM_SOCKET_FACTORY isalso set.

org.jboss.remoting.Serverinvoker

MAX_NUM_ONEWAY_THREADS KEY (actua vaue is 'maxNumThreadsOneway") - key for the maximum
number of threads to be used in the thread pool for one way invocations (server side). This property is only used
when the default oneway thread pool is used.

ONEWAY_THREAD_POOL_CLASS KEY (actual value is ‘onewayThreadPool’) - key for setting the setting
the oneway thread pool to use. The value used with this key will first be checked to see if is a IMX ObjectName
and if so, try to look up associated mbean for the ObjectName given and cast to type
org.jboss.util .threadpool. ThreadPoolMBean (via MBeanServerinvocationHandler.newProxylnstance()). If the
value is not a IMX ObjectName, will assume is a fully qualified classname and load the coresponding class and
create a new instance of it (which will require it to have a void constructor). The newly created instance will then
be cast to type of org.jboss.util.threadpool . ThreadPool.

JBoss June 22, 2008 86

Configuration

SERVER_BIND_ADDRESS KEY (actual vaue is 'serverBindAddress) - key for setting the address the server
invoker should bind to. The value can be either host name or |P.

CLIENT_CONNECT_ADDRESS KEY (actua vaueis 'clientConnectAddress) - key for setting the address the
client invoker should connecto to. This should be used when client will be connecting to server from outside the
server's network and the external address is different from that of the internal address the server invoker will bind
to (e.g. using NAT to expose different external address). This will mostly be useful when client uses remoting de-
tection to discover remoting servers. The value can be either host name or IP.

SERVER_BIND_PORT_KEY (actua vaue is 'serverBindPort) - key for setting the port the server invoker
should bind to. If the value supplied is less than or equal to zero, the server invoker will randomly choose a free
port to use.

CLIENT_CONNECT_PORT_KEY (actual value is 'clientConnectPort") - key for setting the port the client in-
voker should connect to. This should be used when client will be connecting to server from outside the server's net-
work and the external port is different from that of the internal port the server invoker will bind to (e.g. using NAT
to expose different port routing). This will be mostly useful when client uses remoting detection to discover remot-
ing servers.

CLIENT_LEASE_PERIOD (actua vaueis'clientLeasePeriod’) - key used for setting the amount of time (in mil-
liseconds) that a client should renew its lease. If this value is not set, the default of five seconds (see DE-
FAULT_CLIENT _LEASE PERIOD), will be used. This value will also be what is given to the client when it ini-
tially queries server for leasing information.

TIMEOUT (actua valueis 'timeout’) - key for setting the timeout value (in milliseconds) for socket connections.

SERVER_SOCKET_FACTORY (actua value is 'serverSocketFactory’) - key for setting the value for the server
socket factory to be used by the server invoker. The value can be either a IMX Object name, in which case will
lookup the mbean and create a proxy to it with type of org.jboss.remoting.security.ServerSocketFactoryMBean (via
MBeanServerlnvocationHandl er.newProxylnstance()), or, if not aJMX ObjectName, will assume is the fully quali-
fied classname to the implementation to be used and will load the class and create a new instance of it (which re-
quiresit to have avoid constructor). The instance will then be cast to type javax.net.ServerSocketFactory.

BLOCKING_MODE (actual value is "blockingMode"): if set to Server I nvoker . BLOCKI NG (actual value "block-
ing"), org. j boss. renmoting. dient.getCall backs() will do blocking pull callbacks and Cal | backPol | er will do
blocking polled callbacks, if set to Serverlnvoker. NONBLOCKING (actual value "nonblocking™), di-
ent . get Cal | backs() will do non-blocking pull callbacks and cal | backPol I er will do non-blocking polled call-
backs.

BLOCKING_TIMEOUT (actual valueis "blockingTimeout"): the timeout value used for blocking callback.

REGISTER_CALLBACK_LISTENER (actual value is ‘"registerCalbackListener"): determines if
org. j boss.renoting. cal | back. Server | nvoker Cal | backHandl er S should register as
org. j boss. renoting. Connect i onLi st ener Swith leases. The default value is "true”.

Bean properties (meaning have getter /setter):

Server SocketFactory - implementation of javax.net.ServerSocketFactory to be used by the server invoker. This
takes precedence over any other configuration for the server socket factory.

JBoss June 22, 2008 87

Configuration

Timeout - timeout (in milliseconds) for socket connection. If set after create() method called, this value will over-
ride value set by TIMEOUT key.

LeasePeriod - the amount of time (in milliseconds) that a client should renew its lease. If this value is not set, the
default of five seconds (see DEFAULT_CLIENT_LEASE _PERIOD), will be used. This value will also be what is
given to the client when it initially queries server for leasing information. If set after create() method called, this
value will override value set by CLIENT_LEASE_PERIOD key.

MaxNumber OfOnewayT hreads - the maximum number of threads to be used in the thread pool for one way in-
vocations (server side). This property is only used when the default oneway thread pool is used. If set after create()
method called, this value will override value set by MAX_NUM_ONEWAY_THREADS KEY key.

OnewayT hreadPooal - the oneway thread pool to use.

org.jboss.remoting.callback.CallbackPoller

CALLBACK_POLL_PERIOD (actual value is 'calbackPollPeriod’) - key for setting the frequency (in milli-
seconds) in which Client'sinternal callback poller should poll server for waiting callbacks. The default value isfive
seconds.

CALLBACK_SCHEDULE MODE (actua vaue is "scheduleMode'): may be set to ether call back-
Pol | er. SCHEDULE FI XED RATE (actual vaue "scheduleFixedRate") or cCal | backPol | er. SCHEDULE_FI XED_DELAY
(actual value "scheduleFixedDelay"). In either case, polling will take place at approximately regular intervals, but
in the former case the scheduler will attempt to perform each poll CALLBACK _POLL_PERIOD milliseconds after
the previous attempt, and in the latter case the scheduler will attempt to schedule polling so that the average inter-
val will be approximately CALLBACK POLL_PERIOD milliseconds. cal | backPol | er . SCHEDULE_FI XED_RATE iS
the default.

REPORT_STATISTICS (actua value is "reportStatistics"): The presence of this key in net adat a, regardless of
its value, will cause the cal | backPol | er to print statistics that might be useful for configuring the other paramet-
ers..

Cal | backPol | er configuration is only necessary when using one of the following Client methods:

public voi d addLi st ener (I nvoker Cal | backHandl er cal | backhandl er, Map netadata, Object call backHandl er Obj ec
publ i c voi d addLi stener (I nvokerCal | backHandl er cal | backhandl er, Map netadata, Object cal |l backHandl er Obj ec

The keys should be among the entries in the metadata Map passed. This will aso only apply when the underlying
transport is uni-directional (e.g. socket, http, rmi). Bi-directional transports will not need to poll.

org.jboss.remoting.callback.CallbackStore

FILE_PATH_KEY (actual value is 'StoreFilePath’) - key for setting the directory in which to write the callback
objects. The default value is the property value of 'jboss.server.data.dir' and if thisis not set, then will be 'data’. Will
then append ‘remoting and the callback client's sesson id. An example would be
‘data\remoting\5c40051-9jijyx-e5hexyph-1-e5b6xyph-2'.

FILE_SUFFIX_KEY (actua vaue is 'StoreFileSuffix') - key for setting the file suffix to use for the callback ob-

JBoss June 22, 2008 88

Configuration

jects written to disk. The default value is 'ser'.

org.jboss.remoting.callback.DefaultCallbackErrorHandler

CALLBACK_ERRORS ALLOWED (actua value is 'callbackErrorsAllowed’) - key for setting the number of
callback exceptions that will be allowed when caling on
org.jboss.remoting.callback.lnvokerCallbackHandl er.handleCallback(Callback callback) before cleaning up the
callback listener. This only appliesto push callback. The default if this property isnot set isfive.

org.jboss.remoting.callback.ServerinvokerCallbackHandler

CALLBACK_STORE_KEY (actua vaueis'callbackStore') - key for specifing the callback store to be used. The
value can be either a JIMX ObjectName or a fully qualified class name; either way, must implement
org.jboss.remoting.SerializableStore. If using class name, the callback store implementation must have a void con-
structor. The default is to use the org.jboss.remoting.callback.Null CallbackStore.

CALLBACK_ERROR HANDLER_KEY (actua value is 'callbackErrorHandler') - key for specifing the call-
back exception handler to be used. The value can be either a IMX ObjectName or a fully qualified class name,
either way, must implement org.jboss.remoting.callback.CallbackErrorHandler. If using class name, the callback
exception handler implementation must have a void constructor. The default is to use
org.jboss.remoting.callback.DefaultCallbackErrorHandl er.

CALLBACK_MEM_CEILING (actua valueis 'callbackMemCeiling') - key for specifying the percentage of free
memory available before callbacks will be persisted. If the memory heap allocated has reached its maximum value
and the percent of free memory available is less than the callbackMemCeiling, this will trigger persisting of the
callback message. The default valueis 20.

org.jboss.remoting.detection.jndi.JNDIDetector

Bean properties (meaning have getter/setter):

SubContextName - sub context name under which detection messages will be bound and looked up.

org.jboss.remoting.transport.bisocket.Bisocket

IS CALLBACK_SERVER (actua value is "isCallbackServer"): when a bisocket server invoker receives this
parameter with a value of true, it avoids the creation of a Server Socket . Therefore, IS CALLBACK_SERVER
should be used on the client side for the creation of a callback server. The default value isfalse.

PING_FREQUENCY (actual valueis "pingFrequency"): The server side uses this value to determine the interval,
in milliseconds, between pings that it will send on the control connection. The client side uses this value to calcu-
late the window in which it must receive pings on the control connection. In particular, the window is ping fre-
quency * ping window factor. See also the definition of PING_WINDOW_FACTOR. The default value is 5000.

PING_WINDOW_FACTOR (actual vaue is "pingWindowFactor"): The client side uses this value to calculate

JBoss June 22, 2008 89

Configuration

the window in which it must receive pings on the control connection. In particular, the window is ping frequency *
ping window factor. See aso the definition of PING_FREQUENCY . The default valueis 2.

MAX_RETRIES (actua value is "maxRetries'): This parameter is relevant only on the client side, where the
Bi socket O i ent | nvoker USeSit to govern the number of attempts it should make to get the address and port of the
secondary Ser ver Socket , and the Bi socket Ser ver I nvoker Usesit to govern the number of attempts it should make
to create both ordinary and control sockets. The default valueis 10.

MAX_CONTROL_CONNECTION_RESTARTS (actua value is "maxControlConnectionRestarts'): The client
side uses this value to limit the number of times it will request a new control connection after a ping timeout. The
default valueis 10.

SECONDARY_BIND_PORT (actua value is "secondaryBindPort"): The server side uses this parameter to de-
termine the bind port for the secondary Ser ver Socket .

SECONDARY_CONNECT_PORT (actua value is "secondaryConnectPort"): The server side uses this paramet-
er to determine the connect port used by the client side to connect to the secondary Ser ver Socket .

org.jboss.remoting.transport.http.HTTPMetadataConstants

The following are keys to use to get corresponding values from the Map returned from call to
org.jboss.remoting.InvocationRequest.getRequestPayload() within a org.jboss.remoting.ServerlnvocationHandler
implementation. For example:

public Object invoke(lnvocati onRequest invocation) throws Throwabl e

{

Map headers = invocation. get Request Payl oad() ;

where variable 'headers will contain entries for the following keys.

METHODTYPE (actua vaue is 'MethodType) - key for getting the method type used by client in http request.
This will be populated within the Map returned from call to
org.jboss.remoting.lnvocationRequest.getRequestPayload() within a org.jboss.remoting.ServerlnvocationHandler
implementation. For example:

public Object invoke(lnvocationRequest invocation) throws Throwabl e

{

Map headers = invocati on. get Request Payl oad() ;
String methodType = (String) headers. get (HTTPMet adat aConst ant s. METHODTYPE) ;
i f (met hodType != null)

i f (met hodType. equal s(" GET"))

PATH (actua value is 'Path’) - key for getting the path from the url request from the calling client. This will be
populated within the Map returned from call to org.jboss.remoting.lnvocationRequest.getRequestPayload() within
a org.jboss.remoting.ServerlnvocationHandler implementation. For example:

publ i c Object invoke(lnvocati onRequest invocation) throws Throwabl e
{

Map headers = invocation. get Request Payl oad() ;

String path = (String) headers. get (HTTPMet adat aConst ants. PATH) ;

JBoss June 22, 2008 90

Configuration

HTTPVERSION (actual value is 'HttpVersion') - key for getting the HTTP version from the calling client request
(eg. HTTP/1.1).

RESPONSE_CODE (actua vaue is 'ResponseCode') - key for getting and setting the HTTP response code. Will
be used as key to get the response code from metadata Map passed to the Client's invoke() method after the invoca
tion has been made. For example:

Map netadata = new HashMap();
Cbj ect response = renotingdient.invoke(nyPayl oadCbj ect, netadata);
I nt eger responseCode = (Integer) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CCDE) ;

Will be used as key to put the response code in the return payload map from invocation handler. For example:

public Object invoke(lnvocationRequest invocation) throws Throwabl e

{

Map responseHeaders = invocation. get Ret urnPayl oad() ;
responseHeader s. put (HTTPMet adat aConst ant s. RESPONSE_CODE, new | nt eger (202));

RESPONSE_CODE_MESSAGE (actua value is 'ResponseCodeM essage’) - key for getting and setting the HTTP
response code message. Will be used as the key to get the response code message from metadata Map passed to the
Client'sinvoke() method after the invocation has been made. For example:

Map netadata = new HashMap();
Cbj ect response = renotingdient.invoke(nyPayl oadCbj ect, netadata);
String responseCodeMessage = (String) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE) ;

Will be used as key to put the response code message in the return payload map from invocation handler. For ex-
ample:

public Object invoke(lnvocati onRequest invocation) throws Throwabl e

{

Map responseHeaders = invocati on. get Ret ur nPayl oad();
responseHeader s. put (HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE, " Custom response code and nessage

NO_THROW_ON_ERROR (actual value is 'NoThrowOnError") - key indicating if http client invoker (for trans-
ports http, https, serviet, and sslservlet) should throw an exception if the server response code is equal to or greater
than 400. Unless set to true, the client invoker will by default throw either the exception that originated on the serv-
er (if using remoting server) or throw a org.jboss.remoting.transport.http.WebServerError, whose message will be
the error html returned from the web server.

RETURN_EXCEPTION (actua value is ‘return-exception’) - key indicating if
org.jboss.renoting. transport.servlet. Servl et Server | nvoker should throw an exception instead of the or-
ginal error handling behavior of returning an error message.

For every http client request made from remoting client, a remoting version and remoting specific user agent will
be set as a request property. The regquest property key for the remoting version will be 'JBoss-Remoating-Version'
and the value will be set based on return from call to Version.getDefaultVersion(). The 'User-Agent' request prop-
erty value will be set to the evaluation of " JBossRemoting - " + Version.VERSION'.

JBoss June 22, 2008 91

Configuration

org.jboss.remoting.transport.http.ssl.HTTPSClientInvoker

IGNORE_HTTPS HOST (actua value is 'org.jboss.security.ignoreHttpsHost') - key indicating if the http client
invoker (for transports https and sslservlet) should ignore host name verification (meaning will not check for URL's
hostname and server's identification hosthame mismatch during handshaking). By default, if this not set to true,
standard hostname verification will be performed.

HOSTNAME_VERIFIER (actual vaue is 'hostnameVerifier') - key indicating the hostname verifier that should
be used by the http client invoker. The value should be the fully qualified classname of class that implements
javax.net.ssl.HostnameV erifier and has avoid constructor.

org.jboss.remoting.transport.rmi.RMIServerinvoker

REGISTRY_PORT_KEY (actua vaue is 'registryPort’) - the port on which to create the RMI registry. The de-
fault is 3455. This also needs to have the isParam attribute set to true.

org.jboss.remoting.transport.socket.MicroSocketClientinvoker

TCP_NODELAY_FLAG (actual valueis 'enableTcpNoDelay") - can be either true or false and will indicate if cli-
ent socket should have TCP_NODELAY turned on or off. TCP_NODELAY is for a specific purpose; to disable
the Nagle buffering algorithm. It should only be set for applications that send frequent small bursts of information
without getting an immediate response; where timely delivery of data is required (the canonical example is mouse
movements). The default isfalse.

MAX_POOL_SIZE_FLAG (actual value is 'clientMaxPool Size) - the client side maximum number of threads.
The default is 50.

CLIENT_SOCKET_CLASS FLAG (actua vaueis 'clientSocketClass) - specifies the fully qualified class name
for the custom SocketWrapper implementation to use on the client. Note, will need to make sure thisis marked as a
client parameter (using the 'isParam'’ attribute). Making this change will not affect the marshaller/unmarshaller that
is used, which may also be a requirement.

org.jboss.remoting.transport.socket.ServerThread

CONTINUE_AFTER_TIMEOQOUT (actua value "continueAfterTimeout") - indicates what a server thread should
do after experiencing aj ava. net . Socket Ti meout Except i on. If set to "true”, or if JBossSerialization is being used,
the server thread will continue to wait for an invocation; otherwise, it will return itself to the thread pool.

org.jboss.remoting.transport.socket.SocketServerinvoker

CHECK_CONNECTION_KEY (actua vaue is 'socket.check_connection’) - key for indicating if socket invoker
should continue to keep socket connection between client and server open after invocations by sending a ping on
the connection before being re-used. The default for thisis false.

SERVER_SOCKET_CLASS FLAG (actual value is 'serverSocketClass) - specifies the fully qualified class

JBoss June 22, 2008 92

Configuration

name for the custom SocketWrapper implementation to use on the server.

JBoss June 22, 2008

93

Sending streams

Remoting supports the sending of InputStreams. It is important to note that this feature DOES NOT copy the
stream data directly from the client to the server, but is a true on demand stream. Although thisis obviously slower
than reading from a stream on the server that has been copied locally, it does allow for true streaming on the server.
It also allows for better memory control by the user (versus the framework trying to copy a 3 Gig file into memory
and getting out of memory errors).

Use of this new feature is simple. From the client side, there is a method in org.jboss.remoting.Client with the sig-
nature:

public Object invoke(lnputStreaminputStream bject param throws Throwabl e

So from the client side, would just call invoke as done in the past, and pass the InputStream and the payload as the
parameters. An example of the code from the client side would be (this is taken directly from
org.jboss.test.remoting.stream.StreamingTestClient):

String param = "foobar";
File testFile = new File(fileURL.getFile());

bject ret = renptingdient.invoke(filelnput, paran);

From the server side, will need to implement or g. j boss. renot i ng. st ream Streanl nvocat i onHandl er instead of
org. j boss. renoting. ServerlnvocationHandl er . StreamlnvocationHandler extends ServerlnvocationHandler,
with the addition of one new method:

publ i c Object handl eStrean(| nput Stream stream Cbject paramn

The stream passed to this method can be called on just as any regular local stream. Under the covers, the Input-
Stream passed is really proxy to the real input stream that exists in the client's VM. Subsequent calls to the passed
stream will actually be converted to calls on the real stream on the client via this proxy. If the client makes an in-
vocation on the server passing an InputStream as the parameter and the server handler does not implement Stream-
Invocationhandler, an exception will be thrown to the client caller.

If want to have more control over the stream server being created to send the stream data back to the caller, instead
of letting remoting create it internally, can do this by creating a Connector to act as stream server and pass it when
making Client invocation.

public Qbject invoke(lnputStreaminputStream bject param Connector streamConnector) throws Throwabl e

Note, the Connector passed must already have been started (else an exception will be thrown). The stream handler

JBoss June 22, 2008 94

Sending streams

will then be added to the connector with the subystem 'stream'. The Connector passed will NOT be stopped when
the stream is closed by the server's stream proxy (which happens automatically when remoting creates the stream
server internaly).

Can also cal i nvoke() method on client and pass the invoker locator would like to use and alow remoting to cre-
ate the stream server using the specified locator.

public Object invoke(lnputStreaminputStream bject param |nvokerLocator streanServerLocator)

In this case, the Connector created internally by remoting will be stopped when the stream is closed by the server's
stream proxy.

It is VERY IMPORTANT that the StreamlnvocationHandler implementation close the InputStream when it fin-
ishes reading, as will close the real stream that lives within the client VM.

6.1. Configuration

By default, the stream server which runs within the client VM uses the following values for its locator uri:
transport - socket

host - triesto first get local host name and if that fails, the local ip (if that fails, localhost).

port - 5405

Currently, the only way to override these settings is to set the following system properties (either via VM argu-
ments or via Syst em set Property() method):

remoting.stream.transport - sets the transport type (rmi, http, socket, etc.)
remoting.stream.host - host name or ip address to use
remoting.stream.port - the port to listen on

These properties are important because currently the only way for a target server to get the stream data from the
stream server (running within the client VM) is to have the server invoker make the invocation on a new connec-
tion back to the client (see issues below).

6.2. Issues

This is afirst pass at the implementation and needs some work in regards to optimizations and configuration. In
particular, there is aremoting server that is started to service requests from the stream proxy on the target server for
data from the original stream. This raises an issue with the current transports, since the client will have to accept
calls for the original stream on a different socket. This may be difficult when control over the client's environment
(including firewalls) may not be available. A bi-directional transport, called multiplex, is being introduced as of
1.4.0 release which will allow calls from the server to go over the same socket connection established by the client
to the server (JBREM-91). This will make communications back to client much simpler from this standpoint.

JBoss June 22, 2008 95

throws Tt

Serialization

Serialization - how it works within remoting: In general, remoting will rely on afactory to provide the serialization
implementation, or org. j boss. renoting. seri al i zati on. Seri al i zati onManager , t0 be used when doing object
seridization. This factory is org.j boss.renoting. serialization. SerializationStreanFactory and is a (as
defined by its javadoc):

factory is for defining the Object stream implemenations to be used along with creating those implemenations for use.
The main function will be to return instance of ObjectOutput and Objectinput. By default, the implementationswill be
java.io.ObjectOutputStream and java.io.Objectl nputStream.

Currently there are only two different types of serialization implementations; ‘java and 'jboss. The 'java type uses
org.jboss.renoting.serialization.inpl.java.JavaSerializationManager as the SerializationManager im-
plementation and is backed by standard Java serialization provide by the VM, which is the default. The 'jboss' type
USES org.j boss.remoting.serialization.inpl.jboss.JBossSerializationManager as the SerializationMan-
ager implementation and is backed by JBoss Serialization.

JBoss Serialization is a new project under development to provide a more performant implementation of object
serialization. It complies with java seriaization standard with three exceptions:

- SerialUID not needed

- java.io.Serializable is not required
- different protocol

JBoss Serialization requires JDK 1.5

It is possible to override the default SerializationManger implementation to be used by setting the system property
'SERIALIZATION' to the fully qualified name of the class to use (which will need to provide a void constructor).

JBoss June 22, 2008 96

Network Connection Monitoring

Remoting has two mechanisms for monitoring the health of estabilished connections, which inform listeners on the
client and server sides when a possible connection failure has been detected.

8.1. Client side monitoring

On the client side, an or g. j boss. renot i ng. Connect i onVal i dat or periodically sends a PING message to the serv-
er and reports a failure if the response does not arrive within a specified timeout period. The PING is sent on one
thread, and another thread determines if the response arrives in time. Separating these two activities allows Remot-
ing to detect afailure regardless of the cause of the failure.

The creation of the Connecti onval i dat or is the responsibility of the org. j boss. renoting. dient class. All the
application code needs to do isto register an implementation of the or g. j boss. r enot i ng. Connect i onLi st ener in-
terface, which has only one method:

publ i c voi d handl eConnecti onExcepti on(Throwabl e throwable, Cient client);

What actions the Connecti onLi st ener chooses to take are up to the application, but disconnecting the d i ent
might be a reasonable strategy.

Thed i ent class has three methods for registering a Connect i onLi st ener :

publ i c void addConnecti onLi st ener (Connecti onLi stener |istener);
public voi d addConnecti onLi st ener (Connecti onLi stener |istener, int pingPeriod);
public void addConnecti onLi st ener (Connecti onLi stener |istener, Map netadata);

The second method supports configuring the frequency of PING messages, and the third method supports more
general configuration of the Connect i onVval i dat or . Note that a given d i ent maintains a single Connect i onval -
idator, so the parameters in the metadata map are applied only on the first cal to ai-
ent . addConnect i onLi stener (). The following parameters are supported by Connectionvalidator, which is
where the parameter names are defined:

VALIDATOR_PING_PERIOD (actua value "validatorPingPeriod") - specifies the time, in milliseconds, that
elapses between the sending of PING messages to the server. The default value is 2000.

VALIDATOR_PING_TIMEOUT (actua vaue "validatorPingTimeout") - specifies the time, in milliseconds, a-
lowed for arrival of aresponseto a PING message. The default value is 1000.

For more configuration parameters, see I nteractions between client side and server side connection monitoring.

JBoss June 22, 2008 97

Network Connection Monitoring

Note, also, that Connecti onval i dat or creates a client invoker to sends the PING messages, and it passes the
metadata map to configure the client invoker.

8.2. Server side monitoring

A remoting server also has the capability to detect when a client is no longer available. This is done by estabilish-
ing a lease with the remoting clients that connect to a server. On the client side, an
org. j boss. renoting. LeasePi nger periodically sends PING messages to the server, and on the server side an
org.j boss. renmoting. Lease informs registered listeners if the PING doesn't arrive withing the specified timeout
period.

Server side activation. To turn on server side connection failure detection of remoting clients, it is necessary to
satisfy two criteria. The first is that the client lease period is set and is avalue greater than 0. The value is represen-
ted in milliseconds. The client lease period can be set by either the 'clientLeasePeriod' attribute within the Connect-
or configuration or by calling the Connect or method

public void setlLeasePeriod(long | easePeri odVal ue);

The second criterion is that an implementation of the or g. j boss. renot i ng. Connecti onLi st ener interface is ad-
ded as a connection listener to the Connector, either via the method

publ i c voi d addConnecti onLi st ener (Connecti onLi stener |istener)

or though the use of the Server | nvoker. CONNECTI ON_LI STENER parameter (actual value "connectionListener") in
the Connect or 's configuration map or XML configuration file. Once both criteria are met, the remoting server will
turn on client leasing.

The ConnectionListener will be notified of both client failures and client disconnects via the handleConnectionEx-
ception() method. If the client failed, meaning its lease was not renewed within configured time period, the first
parameter to the handleConnectionException() method will be null. If the client disconnected in a regular manner,
the first parameter to the handleConnectionException() method will be of type ClientDisconnectedException
(which indicates a normal termination). Note, the client's lease will be renewed on the server with any and every in-
vocation made on the server from the client, whether it be anormal invocation or a ping from the client internally.

The actual lease window established on the server side is dynamic based the rate at which the client updates its
lease. In particular, the lease window will always be set to lease period * 2 for any lease that does not have a lease
update duration that is longer than 75% of the lease window (meaning if set lease period to 10 seconds and always
update that lease in less then 7.5 seconds, the lease period will always remain 10 seconds). If the update duration is
greater than 75% of the lease window, the lease window will be reset to the lease duration X 2 (meaning if set lease
period to 10 seconds and update that lease in 8 seconds, the new lease window will be set to 16 seconds). Also, the
lease will not immediately expire on the first lease timeout (meaning did not get an update within the lease win-
dow). It takes two consecutive timeouts before a lease will expire and a notification for client connection failureis
fired. This essentially means that the time it will take before a connection listener is notified of a client connection
failure will be at least 4 X lease period (no exceptions).

Client side activation. By default, the client is not configured to do client leasing. To alow a client to do leasing,
either set the parameter "leasing” to "true" in the I nvoker Locat or Or set the parameter d i ent. ENABLE_LEASE
(actual value "enablel ease") to true in the I nvoker Locat or or inthe d i ent configuration map. [The use of d i -

JBoss June 22, 2008 98

Network Connection Monitoring

ent . ENABLE_LEASE is recommended.] This does not mean that client will lease for sure, but will indicate the client
should call on the server to seeif the server has activated leasing and get the leasing period suggested by the server.
It is possible to override the suggested lease period by @ setting the parameter
org. j boss. renoting. | nvoker Locat or. CLI ENT_LEASE PERI 0D (actual value "lease period") to a value greater
than 0 and less than the value suggested by the server. Note. If the client and server are local, meaning running
within the VM, leasing (and thus connection natification) will not be activated, even if is configured to do so.

If leasing is turned on within the client side, there is no API or configuration changes needed, unless want to over-
ride as mentioned previously. When the client initially connects to the server, it will check to seeif client leasing is
turned on by the server. If it is, it will internally start pinging periodically to the server to maintain the lease. When
the client disconnects, it will internally send message to the server to stop monitoring lease for this client. There-
fore, it isIMPORTANT that disconnect is called on the client when done using it. Otherwise, the client will con-
tinue to make its ping call on the server to keep its lease current.

The client can aso provide extra metadata that will be communicated to the connection listener in case of failure by
supplying a metadata Map to the Client constructor. This map will be included in the Client instance passed to the
connection listener (viathe handleConnectionException() method) via the Client's getConfiguration() method.

From the server side, there are two ways in which to disable leasing (i.e. turn leasing off). Thefirst isto call:

public void renpoveConnecti onLi st ener (Connecti onLi stener |i stener)

and remove al the registered ConnectionListeners. Once the last one has been removed, leasing will be disabled
and all the current leasing sessions will be terminated. The other way isto call:

public void setLeasePeriod(long | easePeri odVal ue)

and pass a value less than zero. Thiswill disable leasing, preventing any new leases to be established but will alow
current leasing sessions to continue.

The following parameter is relevant to leasing configuration on the server side:

org. j boss. renoting. Server | nvoker. CLI ENT_LEASE PERI OD (actual value "clientLeasePeriod") - specifies the
timeout period used by the server to determine if a PING is late. The default value is "5000", which indicates that
leasing will be activated if an or g. j boss. renoti ng. Connecti onLi st ener isregistered with the server. Thisisalso
the suggested |ease period returned by the server when the client inquiresif leasing is activated.

The following parameters are relevant to leasing configuration on the client side:

org.jboss.rempting. dient. ENABLE_LEASE (actua value "enableLease") - if set to "true', will lead
org.jboss.renmoting. dient toattempt to set up alease with the server, if leasing is activated on the server.

org. j boss. renoting. | nvoker Locat or. CLI ENT_LEASE (actual value "leasing") - if set to "true" in the | nvoker Loc-
ator, will lead org. j boss. renmoting. d i ent to attempt to set up alease with the server, if leasing is activated on
the server. It is suggested that this parameter be avoided, in favor of C i ent . ENABLE_LEASE.

org. j boss. renoting. | nvoker Locat or. CLI ENT_LEASE _PERI 0D (actual value "lease period") - if set to a value
greater than 0 and less than the suggested lease period returned by the server, will be used to determine the time
between PING messages sent by LeasePi nger .

org.j boss.renoting. LeasePi nger. LEASE _PI NGER TI MEQUT (actual value "leasePingerTimeout") - specifies the
per invocation timeout value use by LeasePi nger when it sends PING messages. In the absence of a configured

JBoss June 22, 2008 99

Network Connection Monitoring

value, the timeout value used by the d i ent that created the LeasePi nger will be used.

For examples of how to use server side connection listeners, reference
org.jboss.test.remoting.lease.L easeT estServer and org.jboss.test.remoting.lease.L easeTestClient.

8.3. Interactions between client side and server side connection
monitoring

As of Remoting release 2.2.2.SP7, the client side and server side connection monitoring mechanisms can be, and
by default are, more closely related, in two ways.

1. If the parameter org.j boss. remoting. Connecti onVal i dat or. TI E_TO LEASE (actual value "tieToLease") is
st to true, then, when the server receives a PING message from an
org. j boss. remoting. Connecti onVal i dat or, it will return a boolean value that indicates whether a lease cur-
rently exists for the connection being monitored. If leasing is activated on the client and server side, then a
value of "false" indicates that the lease has failed, and the Connect i onVal i dat or will treat a returned value of
"false" the same as a timeout; that is, it will notifiy listeners of a connection failure. The default value of this
parameter is "true”. Note. If leasing is not activated on the client side, then this parameter has no effect.

2. If the parameter org.jboss.renoting. ConnectionValidator. STOP_LEASE_ON FAI LURE (actua value
"stopLeaseOnFailure”) is set to true, then, upon detecting a connection failure, Connecti onval i dat or Wwill
stop the LeasePi nger, if any, pinging alease on the same connection. The default valueis "true”.

TIE_TO_LEASE (actual value "tieToLease") - specifies whether Connecti onval i dat or should treat the failure of
arelated lease on the server side as a connection failure. The default valueis "true”.

STOP_LEASE_ON_FAILURE (actua value "stopLeaseOnFailure") - specifies whether, when a Connect i on-
val i dat or detects a connection failure, it should stop the associated or g. j boss. renot i ng. LeasePi nger, if any.
The default valueis "true”.

JBoss June 22, 2008 100

Transporters - beaming POJOs

There are many ways in which to expose a remote interface to a java object. Some require a complex framework
API based on a standard specification and some require new technologies like annotations and AOP. Each of these

have their own benefits. JBoss Remoting transporters provide the same behavior viaa simple APl without the need
for any of the newer technologies.

When boiled down, transporters take a plain old java object (POJO) and expose a remote proxy to it via JBoss Re-
moting. Dynamic proxies and reflection are used to make the typed method calls on that target POJO. Since JBoss
Remoting is used, can select from a number of different network transports (i.e. rmi, http, socket, multiplex, etc.),

including support for SSL. Even clustering features can be included. See the transporter samples in the next chapter
for detailed examples of how to set up use of atransporter.

JBoss June 22, 2008 101

10

How to use it - sample code

Sample code demonstrating different remoting features can be found in the examples directory. They can be com-
piled and run manually via your IDE or viaan ant build file found in the examples directory. There are many sets
of sample code, each with their own package. Within most of these packages, there will be a server and a client
class that will need to be executed

10.1. Simple invocation

The simple invocation sample (found in the org.jboss.remoting.samples.simple package), has two classes, Simple-
Client and SimpleServer. It demonstrates making a simple invocation from a remoting client to a remoting server.
The SimpleClient class will create an InvokerLocator object from a simple url-like string that identifies the remot-
ing server to call upon (which will be socket://localhost:5400 by default). Then the SimpleClient will create a re-
moting Client class, passing the newly created InvokerL ocator. Next the Client will be called to make an invocation
on the remoting server, passing the request payload object (which is a String with the value of "Do something").
The server will return aresponse from this call which is printed to standard output.

Within the SimpleServer, aremoting server is created and started. Thisis done by first creating an InvokerL ocator,
just like was done in the SimpleClient. Then constructing a Connector, passing the InvokerLocator. Next, need to
call create() on the Connector to initialize al the resources, such as the remoting server invoker. Once created, need
to create the invocation handler. The invocation handler is the class that the remoting server will pass client re-
guests on to. Theinvocation handler in this sample simply returns the simple String "This is the return to Sampleln-
vocationHandler invocation". Once created, the handler is added to the Connector. Finally, the Connector is started
and will start listening for incoming client requests.

To run this example, can compile both the SimpleClient and SimpleServer class, then first run the SimpleServer
and then the SimpleClient. Or can go to the examples directory and run the ant target 'run-simple-server' and then
in another console window run the ant target ‘run-simple-client’. For example:

ant run-sinpl e-server

ant then:

ant run-sinple-client

The output when running the SimpleClient should look like:

Calling renoting server with |ocator uri of: socket://I|ocal host: 5400
I nvoki ng server with request of 'Do sonething'
I nvocation response: This is the return to Sanpl el nvocati onHandl er invocation

The output when running the SimpleServer should look like:

JBoss June 22, 2008 102

How to useit - sample code

Starting renoting server with |locator uri of: socket://Ilocal host: 5400
I nvocation request is: Do sonething
Ret urni ng response of: This is the return to Sanpl el nvocati onHandl er invocation

Note: will have to manually shut down the SimpleServer once started.

10.2. HTTP invocation

This http invocation sample (found in the org.jboss.remoting.samples.http package), demonstrates how the http in-
voker can be used for avariety of http based invocations. Thistime, will start with the server side. The SimpleServ-
er classis much like the one from the previous simple invocation example, except that instead of using the 'socket’
transport, will be using the 'http' transport. Also, instead of using the Samplel nvocationHandler class as the handler,
will be using the Webl nvocationHandler (code shown below).

public class Wbl nvocati onHandl er inplenments Serverlnvocati onHandl er
{
/1 Pre-defined returns to be sent back to client based on type of request.
public static final String RESPONSE VALUE = "This is the return to sinple text based http invocation.”
public static final Conpl exCbject OBJECT_RESPONSE VALUE = new Conpl exCbj ect (5, "dub", false);
public static final String HTM._PAGE RESPONSE = "<htnl ><head><titl| e>Test HTM. page</titl| e></head><body
"<h1>HTTP/ Servl et Test HTM. page</hl><p>This is a sing
"<p>Shoul d show up in browser or via invoker client</t

/1 Different request types that client may nmake

public static final String NULL_RETURN PARAM = "return_nul|";
public static final String OBJECT_RETURN PARAM = "return_object";
public static final String STRING RETURN PARAM = "return_string";

/**

* called to handl e a specific invocation
*

* @aram i nvocation

* @eturn
* @hrows Throwabl e
*/
publ i c Ooject invoke(lnvocati onRequest invocation) throws Throwabl e
{
/1 Print out the invocation request
System out. println("lnvocation request fromclient is: " + invocation.getParaneter());
i f (NULL_RETURN_PARAM equal s(i nvocati on. get Paraneter()))
{
return null;
el se if(invocation.getParaneter() instanceof ConplexQoject)
{
return OBJECT_RESPONSE_VALUE;
}
el se i f(STRI NG_RETURN_PARAM equal s(i nvocati on. get Paraneter()))
{
Map responseMet adata = invocation. get Ret ur nPayl oad() ;
r esponseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CCDE, new | nt eger (207));
responseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE, " Custom response code and ness
/1 Just going to return static string as this is just sinple exanple code.
return RESPONSE_VALUE;
}
el se
{
return HTM._PAGE_RESPONSE;
}
}

JBoss June 22, 2008 103

How to useit - sample code

The most interesting part of the WeblnvocationHandler is its invoke() method implementation. First it will check to
see what the request parameter was from the InvocationRequest and based on what the value is, will return differ-
ent responses. The first check isto seeif the client passed a request to return a null value. The second will check to
see if the request parameter from the client was of type ComplexObject. If so, return the pre-built ComplexObject
that was created as a static variable.

After that, will check to seeif the request parameter was for returning a simple String. Notice in this block, will set
the desired response code and message to be returned to the client. In this case, are setting the response code to be
returned to 207 and the response message to " Custom response code and message from remoting server”. These are
non-standard code and message, but can be anything desired.

Last, if have not found a matching invocation request parameter, will just return some simple html.

Now onto the client side for making the calls to this handler, which can be found in SimpleClient (code shown be-
low).

public class Sinpledient

{
/1 Default |ocator val ues
private static String transport = "http";
private static String host = "l ocal host";

private static int port = 5400;

public void nmakel nvocation(String |ocatorURI) throws Throwabl e

{
/'l create InvokerLocator with the url type string
/1 indicating the target renoting server to call upon.
I nvoker Locator | ocator = new | nvokerLocator (Il ocatorURI);
Systemout.println("Calling remoting server with locator uri of: " + |locatorURl);

Client remptingCient = new Client(locator);

/'l meke invocation on renoting server and send conpl ex data object

/1 by default, the renpting http client invoker will use nethod type of POST,

/1 which is needed when ever sending objects to the server. So no netadata map needs
/1l to be passed to the invoke() nethod.

Ohj ect response = remoti ngd i ent.invoke(new Conpl exoj ect (2, "foo", true), null);

System out. println("\nResponse fromrenoting http server when maki ng http POST request and sending

Map netadata = new HashMap();

/1 set the metadata so renmpting client knows to use http GET nethod type

nmet adat a. put (" TYPE", "CET");

/1 not actually sending any data to the renoting server, just want to get its response
response = renotingCdient.invoke((Object) null, netadata);

Systemout. println("\nResponse fromrenoting http server when naki ng GET request:\n" + response);

/'l now set type back to POST and send a plain text based request
nmet adat a. put (" TYPE", "POST");
response = renotingCient.invoke(Wbl nvocati onHandl er. STRI NG RETURN_PARAM net adat a) ;

Systemout. println("\nResponse fromrenoting http server when making http POST request and sendi ng

/1 notice are getting customresponse code and nessage set by web invocation handl er

I nt eger responseCode = (Integer) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CCODE) ;

String responseMessage = (String) mnetadata. get(HTTPMet adat aConst ant s. RESPONSE_CODE_MESSACE) ;
System out . println("Response code fromserver: " + responseCode);

System out. println("Response nessage from server: " + responseMessage);

JBoss June 22, 2008 104

How to useit - sample code

This SimpleClient, like the one before in the simple invocation example, starts off by creating an InvokerL ocator
and remoting Client instance, except is using http transport instead of socket. The first invocation made isto send a
newly constructed ComplexObject. If remember from the WeblnvocationHandler above, will expect this invoca-
tion to return a different ComplexObject, which can be seen in the following system output line.

The next invocation to be made is a simple http GET request. To do this, must first let the remoting client know
that the method type needs to be changed from the default, which is POST, to be GET. Then make the invocation
with anull payload (since not wanting to send any data, just get data in response) and the metadata map just popu-
lated with the GET type. Thisinvocation request will return aresponse of html.

Then, will change back to being a POST type request and will pass a simple String as the payload to the invocation
request. This will return a simple String as the response from the WeblnvocationHandler. Afterward, will see the
specific response code and message printed to standard output, as well as the exception itself.

To run this example, can compile al the classes in the package, then first run the SimpleServer and then the Sim-
pleClient. Or can go to the examples directory and run the ant target 'run-http-server' and then in another console
window run the ant target ‘run-http-client'. For example:

ant run-http-server

and then:

ant run-http-client

The output when running the SimpleClient should look like:

Response fromrenoting http server when nmaeking http POST request and sending a conpl ex data object:
Conpl exCoject (i =5, s = dub, b = false, bytes.length = 0)

Response fromrennting http server when nmaking GET request:
<ht m ><head><titl e>Test HTM. page</titl e></head><body><hl1>HTTP/ Servl et Test HITM. page</hl><p>This is a si

Response fromrenoting http server when making http POST request and sending a text based request:
This is the return to sinple text based http invocation.

Response code from server: 207

Response nmessage from server: Custom response code and nessage from renoting server

Notice that the first response is the ComplexObject from the static variable returned within WeblnvocationHandler.
The next response is html and then simple text from the WeblnvocationHandler. Can see the specific response code
and message set in the WeblnvocationHandler.

The output from the SimpleServer should look like:

Starting renoting server with locator uri of: http://local host: 5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. Htt pliBaseProtocol init

INFO Initializing Coyote HTTP/1.1 on http-127.0.0. 1-5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. Htt pliBaseProtocol start

INFO Starting Coyote HTTP/ 1.1 on http-127.0.0. 1-5400

I nvocation request fromclient is: ConplexObject (i = 2, s =foo, b =true, bytes.length = 0)
I nvocation request fromclient is: null

I nvocation request fromclient is: return_string

First the information for the http server invoker iswritten, which includes the locator uri used to start the server and

JBoss June 22, 2008 105

How to useit - sample code

the output from starting the Tomcat connector. Then will see the invocation parameter passed for each client re-
quest.

Since the SimpleServer should still be running, can open a web browser and enter the locator uri, ht-
tp://localhost:5400. This should cause the browser to render the html returned from the WeblnvocationHandler.

10.3. Oneway invocation

The oneway invocation sample (found in the org.jboss.remoting.samples.oneway package) is very similar to the
simple invocation example, except in this sample, the client will make asynchronous invocations on the server.

The OnewayClient class sets up the remoting client as in the simple invocation sample, but instead of using the in-
voke() method, it uses the invokeOneway() method on the Client class. There are two basic modes when making a
oneway invocation in remoting. The first is to have the calling thread to be the one that makes the actua call to the
server. This allows the caller to ensure that the invocation request at |east made it to the server. Once the server re-
ceives the invocation request, the call will return (and the request will be processed by a separate worker thread on
the server). The other mode, which is demonstrated in the second call to invokeOneway, allows for the calling
thread to return immediately and a worker thread on the client side will make the actual invocation on the server.
Thisisfaster of the two modes, but if there is a problem making the request on the server, the original caller will be
unaware.

The OnewayServer is exactly the same as the SimpleServer from the previous example, with the exception that in-
vocation handler returns null (since even if did return aresponse, would not be delivered to the original caller).

To run this example, can compile both the OnewayClient and OnewayServer class, then run the OnewayServer and
then the OnewayClient. Or can go to the examples directory and run the ant target 'run-oneway-server' and then in
another console window run the ant target 'run-oneway-client'. For example:

ant run-oneway-server

and then:

ant run-oneway- cl i ent

The output when running the OnewayClient should look like:

Calling renpoting server with |ocator uri of: socket://I|ocal host: 5400
Maki ng oneway invocation with payl oad of 'Oneway call 1.'
Maki ng oneway invocation with payload of 'Oneway call 2.'

The output when running the OnewayServer should look like:

Starting renoting server with |locator uri of: socket://| ocal host: 5400
I nvocation request is: Oneway call 1.
I nvocation request is: Oneway call 2.

Note: will have to manually shut down the OnewayServer once started.

Although this example only demonstrates making one way invocations, could include this with callbacks (see fur-
ther down) to have asynchronous invocations with callbacks to verify was processed.

JBoss June 22, 2008 106

How to useit - sample code

10.4. Discovery and invocation

The discovery sample (found in the org.jboss.remoting.samples.detection package) is similar to the simple invoca-
tion example in that it makes a simple invocation from the client to the server. However, in this example, instead of
explicitly specifying the invoker locator to use for the target remoting server, it is discovered dynamically during
runtime. This example is composed of two classes; SimpleDetectorClient and SimpleDetectorServer.

The SimpleDetectorClient starts off by setting up the remoting detector. Detection on the client side requires a few
components; aJV X MBeanServer, one or more Detectors, and a NetworkRegistry. The Detectors will listen for de-
tection messages from remoting servers and then add the information for the detected servers to the NetworkRe-
gistry. They use IMX to lookup and call on the NetworkRegistry. The NetworkRegistry uses IMX Notifications to
emit changes in network topology (remoting servers being added or removed).

In this particular example, the SimpleDetectorClient is registered with the NetworkRegistry as a notification listen-
er. When it receives notifications from the NetworkRegistry (via the handleNotification() method), it will check to
seeif the notification is for adding or removing aremoting server. If it isfor adding a remoting server, the Simple-
DetectorClient will get the array of InvokerLocators from the NetworkNotification and make a remote call for
each. If the natification is for removing a remoting server, the SimpleDetectorClient will simply print out a mes-
sage saying which server has been removed.

The biggest change between the SimpleDetectorServer and the SimpleServer from the first sasmple is that have ad-
ded a method, setupDetector(), to create and start a remoting Detector. On the server side, only two components are
needed for detection; the Detector and a IMX MBeanServer. As for the setup of the Connector, it is exactly the
same as before. Notice that even though we have added a Detector on the server side, the Connector is not directly
aware of either Detector or the MBeanServer, so ho code changes for the Connector setup is required.

To run this example, can compile both the SimpleDetectorClient and SimpleDetectorServer class, then run the Sim-
pleDetectorServer and then the SimpleDetectorClient. Or can go to the examples directory and run the ant target
‘run-detector-server' and then in another window run the ant target ‘run-detector-client'. For example:

ant run-detector-server

and then:

ant run-detector-client

Theinitial output when running the SimpleDetectorClient should look like:

ri Jan 13 09: 36: 50 EST 2006: [CLIENT]: Starting JBoss/Renbting client... to stop this client, k
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegistry has been created

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegistry has added the client as a |istener

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: MuilticastDetector has been created and is |istening for

il it mar

new Net w

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: GOT A NETWORK- REA STRY NOTI FI CATI ON: j boss. net wor k. server. added

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: New server(s) have been detected - getting | ocators and
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: Sending wel cone nessage to renoting server with | ocator

sendi ng v
uri of: ¢

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: The newly di scovered server sent this response to our wel cone nes

The output when running the SimpleDetectorServer should ook like:

Fri Jan 13 09: 36:46 EST 2006: [SERVER]: Starting JBoss/Renoting server... to stop this server,
Fri Jan 13 09: 36:46 EST 2006: [SERVER]: This server's endpoint will be: socket://I|ocal host: 5400
Fri Jan 13 09: 36:46 EST 2006: [SERVER]: MilticastDetector has been created and is listening for

JBoss June 22, 2008 107

kKill it me

new Net w

How to useit - sample code

Fri Jan 13 09:36: 46 EST 2006: [SERVER]: Starting renoting server with |ocator uri of: socket://I|ocal host:
Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: Added our invocation handler; we are now ready to begin accepti ng

Fri Jan 13 09: 36:50 EST 2006: [SERVER]: RECEI VED A CLI ENT MESSAGE: Wl cone Aboard!

Fri Jan 13 09: 36: 50 EST 2006: [SERVER]: Returning the foll owi ng nmessage back to the client: Received your

At this point, try stopping the SimpleDetectorServer (notice that the SimpleDetectorClient should still be running).
After afew seconds, the client detector should detect that the server is no longer available and will see something
like the following appended in the SimpleDetectorClient console window:

Fri Jan 13 09: 37: 04 EST 2006: [CLIENT]: GOT A NETWORK- REA STRY NOTI FI CATI ON: j boss. net wor k. server. renovec
Fri Jan 13 09: 37: 04 EST 2006: [CLIENT]: It has been detected that a server has gone down with a | ocator ¢

10.5. Callbacks

The callback sample (found in the org.jboss.remoting.samples.callback package) illustrates how to perform call-
backs from a remoting server to a remoting client. This example is composed of two classes; CallbackClient and
CallbackServer.

Within remoting, there are two approaches in which a callback can be received. The first is to actively ask for call-
back messages from the remoting server, which is called a pull callback (since are pulling the callbacks from the
server). The second is to have the server send the callbacks to the client as they are generated, which is called a
push callback. This sample demonstrates how to do both pull and push callbacks.

Looking at the CallbackClient class, will see that the first thing doneis to create aremoting Client, which isdonein
the same manner as previous examples. Next, we'll perform a pull callback, which requires the creation of a Call-
backHandler. The CallbackHandler, which implements the InvokerCallbackHandler interface, is what is called
upon with a Callback object when a callback is received. The Callback object contains information such as the call-
back message (in Object form), the server locator from where the callback originaly came from, and a handle ob-
ject which can help to identify callback context (similar to the handle object within a IMX Notification). Once cre-
ated, the CallbackHandler is then registered as a listener within the Client. This will cause the client to make a call
to the server to notify the server it has a callback listener (more on this below in the server section). Although the
CallbackHandler is not caled upon directly when doing pull callbacks, it is needed as an identifier for the call-
backs.

Then the client will wait a few seconds, make a simple invocation on the server, and then call on the remoting Cli-
ent instance to get any callbacks that may be available for our CallbackHandler. This will return alist of callbacks,
if any exist. Thelist will be iterated and each callback will be printed to standard output. Finally, the callback hand-
ler will be removed as a listener from the remoting Client (which in turns removes it from the remoting server).

After performing a pull callback, will perform a push callback. Thisis a little more involved as requires creating a
callback server to which the remoting target server can callback on when it generates a callback message. To do
this, will need to create a remoting Connector, just as have seen in previous examples. For this particular example,
we use the same locator url as our target remoting server, but increment the port to listen on by one. Will aso no-
tice that use the SamplelnvocationHandler hander from the CallbackServer (more in thisin a minute). After creat-
ing our callback server, a CallbackHandler and callback handle object is created. Next, remoting Client is called to
add our callback listener. Here we pass not only the CallbackHandler, but the InvokerL ocator for the callback serv-
er (so the target server will know where to deliver callback messages to), and the callback handle object (which
will beincluded in all the callback messages delivered for this particular callback listener).

JBoss June 22, 2008 108

How to useit - sample code

Then the client will wait a few seconds, to allow the target server time to generate and deliver callback messages.
After that, we remove the callback listener and clean up our callback server.

The CallbackServer is pretty much the same as the previous samples in setting up the remoting server, via the Con-
nector. The biggest change resides in the ServerInvocationHandler implementation, SamplelnvocationHandler
(which is an inner class to CallbackServer). The first thing to notice is now have a variable called listeners, which
isaList to hold any callback listeners that get registered. Also, in the constructor of the Samplel nvocationHandler,
we set up a new thread to run in the background. This thread, executing the run() method in Samplelnvocation-
Handler, will continually loop looking to see if the shouldGenerateCallbacks has been set. If it has been, will create
a Callback object and loop through its list of listeners and tell each listener to handle the newly created callback.
Have aso added implementation to the addListener() and removeListener() methods where will either add or re-
move specified callback listener from the internal callback listener list and set the shouldGenerateCallbacks flag ac-
cordingly. The invoke() method remains the same asin previous samples.

To run this example, can compile both the CallbackClient and CallbackServer class, then run the CallbackServer
and then the CallbackClient. Or can go to the examples directory and run the ant target 'run-callback-server' and
then in another window run the ant target 'run-callback-client. For example:

ant run-cal | back-server

and then:

ant run-cal |l back-client

The output in the CallbackClient console window should look like:

Calling renoting server with |ocator uri of: socket://Ilocal host: 5400

I nvocation response: This is the return to Sanpl el nvocati onHandl er i nvocati on

Pull Call back value = Callback 1. This is the payl oad of callback invocation.

Pul | Cal I back value = Callback 2: This is the payl oad of callback invocation.
Starting renoting server with |ocator uri of: |nvokerLocator [socket://127.0.0.1:5401/]
Recei ved push cal | back.

Recei ved cal | back val ue of: Callback 3: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: nyCall backHandl eObj ect

Recei ved cal | back server invoker of: |nvokerlLocator [socket://127.0.0.1:5400/]

Recei ved push cal | back.

Recei ved cal | back value of: Callback 4: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: nyCall backHandl eObj ect

Recei ved cal | back server invoker of: |nvokerlLocator [socket://127.0.0.1:5400/]

This output shows that client first pulled two callbacks generated from the server. Then, after creating and register-
ing our second callback handler and a callback server, two callbacks were received from the target server.

The output in the CallbackServer console window should look like:

Starting renoting server with locator uri of: socket://Ilocal host: 5400
Addi ng cal | back |istener.

I nvocation request is: Do sonething

Rermovi ng cal | back |istener.

Addi ng cal | back i stener.

Rermovi ng cal | back |istener.

This output shows two distinct callback handlers being added and removed (with an invocation request being re-
ceived after the first was added).

JBoss June 22, 2008 109

How to useit - sample code

There are a few important points to mention about this example. First, notice that in the client, the same callback
handle object in the push callbacks was received as was registered with the callback listener. However, there was
no special code required to facilitate this within the SamplelnvocationHandler. This is handled within remoting
automatically. Also notice when the callback server was created within the client, no special coding was required to
register the callback handler with it, both were simply passed to the remoting Client instance when registering the
callback listener and was handled internally.

10.6. Streaming

The streaning sample (found in the org.jbossremoting.samples.stream package) illustrates how a
javaio.lnputStream can be sent from a client and read on demand from a server. This example is composed of two
classes: StreamingClient and StreamingServer.

Unlike the previous examples that sent plain old java objects as the payload, this example will be sending a
java.io.FilelnputStream as the payload to the server. This is a special case because streams can not be serialized.
One approach to this might be to write out the contents of a stream to a byte buffer and send the whole data content
to the server. However, this approach can be dangerous because if the data content of the stream is large, such asan
800MB file, would run the risk of causing an out of memory error (since are loading all 800MB into memory). An-
other approach, which is used by JBossRemoting, is to create a proxy to the original stream. This proxy can then be
called upon for reading, same as the origina stream. When this happens, the proxy will call back the original
stream for the requested data.

Looking at the StreamingClient, the remoting Client is created as in previous samples. Next, will create a
javaio.FilelnputStream to the sample.txt file on disk (which is in the same directory as the test classes). Finaly,
will call the remating Client to do its invocation, passing the new FilelnputStream and the name of the file. The
second parameter could be of any Object type and is meant to supply some meaningful context to the server in re-
gards to the stream being passed, such as the file name to use when writing to disk on the server side. The response
from the server, in this example, isthe size of thefile it wrote to disk.

The StreamingServer sets up the remoting server as was done in previous examples. However, instead of using an
implementation of the ServerlnvocationHandler class as the server handler, an implementation of the StreamlInvoc-
ationHandler (which extends the ServerlnvocationHandler) is used. The StreamlnvocationHandler includes an ex-
tra method called handleStream() especially for processing requests with a stream as the payload. In this example,
the class implementing the StreamlnvocationHandler is the TestStreamlnvocationHandler class, which is an inner
class to the StreamingServer. The handleStream() method within the TestStreamlinvocationHandler will use the
stream passed to it to write out its contentsto afile on disk, as specified by the second parameter passed to the han-
dleStream() method. Upon writing out the file to disk, the handleStream() method will return to the client caller the
size of thefile.

To run this example, can compile both the StreamingClient and StreamingServer class, then run the StreamingServ-
er and then the StreamingClient. Or can go to the examples directory and run the ant target 'run-stream-server' and
then in another window run the ant target 'run-stream-client’. For example:

ant run-streamserver

and then:

ant run-streamclient

JBoss June 22, 2008 110

How to useit - sample code

The output in the StreamingClient console window should look like:

Calling on remoting server with |ocator uri of: socket://Iocal host: 5400
Sending input streamfor file sanple.txt to server.

Size of file sanple.txt is 987

Server returned 987 as the size of the file read.

The output in the StreamingServer console window should ook like:

Starting renoting server with locator uri of: socket://Ilocal host: 5400

Received input streamfromclient to wite out to file server_sanple.txt

Read stream of size 987. Now witing to server_sanple.txt

New file server_sanple.txt has been witten out to C\tnp\JBossRenoting_1 4 0_final\exanpl es\server_sanpl

After running this example, there should be a newly created server _sample.txt file in the root examples directory.
The contents of the file should look exactly like the contents of the sampletxt file located in the ex-
amples\org\jboss\remoting\samples\stream directory.

10.7. JBoss Serialization

The serialization sample (found in the org.jboss.remoting.samples.serialization package) illustrates how JBoss Seri-
alization can be used in place of the standard java serialization to alow for sending of invocation payload objects
that do not implement the java.io.Serializable interface. This example is composed of three classes: Serialization-
Client, SerializationServer, and NonSerializablePayload.

This example is exactly like the one from the simple example with two differences. Thefirst differenceis the use of
JBoss Serialization to convert object instances to binary data format for wire transfer. This is accomplished by
adding an extra parameter (serializationtype) to the locator url with a value of 'jboss. Is important to note that use
of JBoss Seridization requires JDK 1.5, so this example will need to be run using JDK 1.5. The second difference
isinstead of sending and receiving a simple String type for the remote invocation payload, will be sending and re-
ceiving an instance of the NonSerializablePayload class.

There are afew important points to notice with the NonSerializablePayload class. The first is that it does NOT im-
plement the java.io.Serializable interface. The second is that it has a void parameter constructor. Thisis a require-
ment of JBoss Seriadization for object instances that do not implement the Serializable interface. However, this
void parameter constructor can be private, as in the case of NonSerializablePayload, as to not change the external
AP of the class.

To run this example, can compile both the SerializationClient and SerializationServer class, then run the Seriaiza-
tionServer and then the SerializationClient. Or can go to the examples directory and run the ant target 'run-
serialization-server' and then in another window run the ant target 'run-serialization-client'. For example:

ant run-serialization-server

and then:

ant run-serialization-client

The output in the SerializationClient console window should look like:

Calling renpoting server with |locator uri of: socket://l|ocal host: 5400/ ?seri ali zati ont ype=j boss

JBoss June 22, 2008 111

How to useit - sample code

I nvoki ng server with request of 'NonSerializabl ePayl oad - nanme: foo, id: 1'
I nvocation response: NonSerializabl ePayl oad - nane: bar, id: 2

The output in the SerializationServer console window should look like:

Starting renoting server with locator uri of: socket://I|ocal host: 5400/ ?seri al i zati ontype=j boss
I nvocation request is: NonSerializabl ePayl oad - nanme: foo, id: 1
Ret urni ng response of: NonSeri al i zabl ePayl oad - name: bar, id: 2

Note: will have to manually shut down the SerializationServer once started.

10.8. Transporters

10.8.1. Transporters - beaming POJOs

There are many ways in which to expose a remote interface to a java object. Some require a complex framework
API based on a standard specification and some require new technologies like annotations and AOP. Each of these
have their own benefits. JBoss Remoting transporters provide the same behavior via a simple APl without the need
for any of the newer technologies.

When boiled down, transporters take a plain old java object (POJO) and expose a remote proxy to it via JBoss Re-
moting. Dynamic proxies and reflection are used to make the typed method calls on that target POJO. Since JBoss
Remoting is used, can select from a number of different network transports (i.e. rmi, http, socket, multiplex, etc.),
including support for SSL. Even clustering features can be included.

How it works

In this section will discuss how remoting transporters can be used, some requirments for usage, and alittle detail on
the implementation. For greater breath on usage, please review the transporter samples as most use cases are
covered there.

To start, will need to have a plain old java object that implements one or more interfaces that want to expose for re-
mote method invocation. Then will need to create a org. j boss. remoting. transporter. Transporter Server t0
wrap around it, so that can be exposed remotely. This can be done in one of two basic ways. The first is to use a
static creat eTransport er Server () method of the TransporterServer class. There are many of these create meth-
ods, but al basically do that same thing in that they take a remoting locator and target pojo and will return a Trans-
porterServer instance that has been started and ready to receive remote invocations (see javadoc for Transport-
erServer for al the different static createTransporterServer() methods). The other way to create a TransporterServer
for the target pojo is to construct an instance of it. This provides a little more flexibility as are able to control more
aspects of the TransporterServer, such as when it will be started.

When a TransporterServer is created, it will create a remoting Connector using the locator provided. It will gener-
ate a server invocation handler that wraps the target pojo provided and use reflection to make the calls on it based
on the invocations it receives from clients. By default, the subsystem underwhich the server invocation handler is
registered is the interface class name for which the target pojo is exposing. If the target implements multiple inter-
faces, and a specific one to use is not specified, all the interfaces will be registered as subsystems for the same serv-
er invocation handler. Whenever no long want the target pojo to receive remote method invocations, will need to
call the st op() method on the TransporterServer for the target pojo (thisis very important, as otherwise will never

JBoss June 22, 2008 112

How to useit - sample code

be released from memory and will continue to consume network and memory resources).

On the client side, in order to be able to call on the target pojo remotely, will need to use the
org.jboss.renoting. transporter. Transporterdient. Unlike the TransporterServer, can only use the static
create methods of the TransporterClient (this is because the return to the static create method is a typed dynamic
proxy). The static method to call on the TransportClient iscr eat eTransporterd i ent (), where will pass the |ocat-
or to find the target pojo (same as one used when creating the TransporterServer) and the interface for the target
pojo that want to make remote method invocations on. The return from this create call will be a dynamic proxy
which you can cast to to same interface type supplied. At that point, can make typed method invocations on the re-
turned object, which will then make the remote invocations under the covers. Note that can have multiple transport-
er clientsto the same target pojo, each using different interface types for making calls.

When no longer need to make invocations on the target pojo, the resources associated with the remoting client will
need to be cleaned up. Thisis done by calling the dest royTransporterdi ent () method of the TransporterClient.
Thisisimportant to remember to do, as will otherwise |eave network resources active even though not in use.

One of the features of using remoting transporters is location transparency. By this mean that client proxies re-
turned by the TransporterClient can be passed over the network. For example, can have a target pojo that returns
from a method call a client proxy (that it created using the TransporterClient) in which the client can call on dir-
ectly aswell. See the transporter proxy sample code to see how this can be done.

Another nice feature when using transportersis the ability to cluster. To be more specific, can create multiple target
pojos using the TransporterServer in clustered mode and then use the TransporterClient in clustered mode to create
aclient proxy that will discover the location of the target pojos are wanting to call on. Will also provide automatic,
seemless failover of remote method invocations in the case that a particular target pojo instance fails. However,
note that only provide invocation failover and does not take into account state transfer between target pojos (would
need addition of JBoss Cache or some other state synchronization tool).

The transporter sample spans several examples showing different ways to use the transporter. Each specific ex-
ample is within its own package under the org.jboss.remoting.samples.transporter package. Since each of the trans-
porter examples includes common objects, as well as client and server classes, the common objects will be found
under the main transporter sub-package and the client and server classes in their respective sub-packages (named
client and server).

10.8.2. Transporters sample - simple

The simple transporter example (found in org.jboss.remoting.samples.transporter.simple package) demonstrates a
very simple example of how to use the transporters to expose a plain old java object for remote method invoca-
tions.

In this simple transporter example, will be taking a class that formats ajava.util.Date into a simple String represent-
ation and exposing it so can cal on the remotey. The target object in this case
org.jboss.remoting.sampl es.transporter.simple.DateProcessorl mpl, implements the
org.jboss.remoting.samples.transporter.simple.DateProcessor interfaces (as shown below):

public interface DateProcessor

{
}

public String formatDate(Date dateToConvert);

public class DateProcessorl|npl inplenments DateProcessor

JBoss June 22, 2008 113

How to useit - sample code

{
public String formatDate(Date dateToConvert)
{
Dat eFor mat dat eFor mat = Dat eFor mat . get Dat el nst ance(Dat eFor mat . MEDI UM ;
return dat eFormat. f or mat (dat eToConvert);
}
}

Thisisthen exposed using the TransporterServer by the org.jboss.remoting.samples.transporter.simple.Server class.

public class Server

{
public static void main(String[] args) throws Exception
{
Transporter Server server = TransporterServer. createTransporter Server("socket://I| ocal host: 5400",
Thr ead. sl eep(10000) ;
server.stop();
}
}

The Server class simply creates a TransporterServer by indicating the locator url would like to use for the remoting
server, a newly created instance of DataProcessorimpl, and the interface type would like to expose remotely. The
TransporterServer returned from the createTransporterServer call is live and ready to receive incoming method in-
vocation requests. Will then wait 10 seconds for arequest, then stop the server.

Next need to have client to make the remote invocation. This can be found within
org.jboss.remoting.sampl es.transporter.simple.Client.

public class dient

ney

{
public static void nain(String[] args) throws Exception
{
Dat ePr ocessor dat eProcessor = (DateProcessor) TransporterCient.createTransporterCient("socket://I
String formattedDate = dat eProcessor. fornmat Dat e(new Date());
Systemout.println("Current date: " + fornmattedDate);
}
}

In the Client class, create a TransporterClient which can be cast to the desired type, which is DataProcessor in this
case. In calling the createTransporterClient, need to specify the locator ulr (same as was used for the Transport-
erServer), and the interface type will be calling on for the target pojo. Once have the DateProcessor variable, will
make the call to formatDate() and pass a newly created Date object. The return will be aformated String of the date
passed.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant tar-
get 'run-transporter-simple-server' and then in another window run the ant target 'run-transporter-simple-client'. For
example:

ant run-transporter-sinple-server

and then:

ant run-transporter-sinple-client

The output from the client window should look similar to:

JBoss June 22, 2008 114

How to useit - sample code

Current date: Jul 31, 2006

10.8.3. Transporter sample - basic

The basic transporter example (found in org.jboss.remoting.samples.transporter.basic package) illustrates how to
build a simple transporter for making remote invocations on plain old java objects.

In this basic transporter example, will be using a few domain objects; cust omer and Address, which are just data
objects.

public class Custoner inplenents Serializable
{

private String firstName = null;

private String lastName = null;

private Address addr = null;

private int custonerld = -1;

public String getFirstName()

{
return firstName;
}
public void setFirstName(String firstNane)
{
this.firstNane = firstNane;
}
public String getlLast Nane()
{
return | ast Nane;
}
public void setlLastName(String | ast Nane)
{
this.lastName = | ast Nane;
}
publ i c Address get Addr ()
{
return addr;
}
public void set Addr (Address addr)
{
this.addr = addr;
}
public int getCustonerld()
{
return custonerld;
}
public void setCustonerld(int custonerld)
{
this.custonerld = custonerld;
}
public String toString()
{

StringBuffer buffer = new StringBuffer();
buf f er. append("\ nCustonmer:\n");
buf f er. append("custoner id: " + custonerld + "\n");

JBoss June 22, 2008 115

How to useit - sample code

buf fer. append("“first nane: " + firstNane + "\n");
buf f er. append("l ast name: " + |astName + "\n");
buf fer. append("street: " + addr.getStreet() + "\n");

buf fer. append("city: " + addr.getCity() + "\n");
buf fer. append("state: " + addr.getState() + "\n");
buf fer. append("zip: " + addr.getZ p() + "\n");

return buffer.toString();

}
}
public class Address inplenents Serializable
{
private String street = null;
private String city = null;
private String state = null;
private int zip = -1;
public String getStreet()
{
return street;
}
public void setStreet(String street)
{
this.street = street;
}
public String getCty()
{
return city;
}
public void setCity(String city)
{
this.city = city;
}
public String getState()
{
return state;
}
public void setState(String state)
{
this.state = state;
}
public int getZp()
{
return zip;
}
public void setZ p(int zip)
{
this.zip = zip;
}
}

Next comes the POJO that we want to expose a remote proxy for, which is cust oner Processor | npl class. Thisim-
plementation has one method to process a cust oner aobject. It also implements the Cust orer Processor interface.

public class CustomnerProcessorlnpl inplenents CustonerProcessor

{

/**

JBoss June 22, 2008 116

How to useit - sample code

Takes the custoner passed, and if not null and custoner id
is less than O, will create a newrandomid and set it.
The customer object returned will be the nodified customer
obj ect passed.

@ar am cust oner
@eturn
/
publ i c Custoner processCustomner(Custoner customer)

{

*
*
*
*
*
*
*
*

if(customer !'= null && custoner.getCustonerld() < 0)

{
}

cust oner. set Cust oner | d(new Randon{) . next | nt (1000));

System out. println("processed customer with newid of " + custoner.getCustonerld());

return custoner;

public interface CustomnerProcessor

{

*

/
Process a custonmer object. Inplenmentors
shoul d ensure that the custoner object
passed as paraneter should have its internal
state changed sonehow and r et urned.

@ar am cust oner
@eturn

E I S R T R

~

publ i c Custoner processCustomner(Custoner customner);

So far, nothing special, just plain old java objects. Next need to create the server component that will listen for re-
mote request to invoke on the target POJO. Thisis where the transporter comes in.

public class Server

{

private String |locatorURl = "socket://| ocal host:5400";
private TransporterServer server = null;

public void start() throws Exception

{

server = TransporterServer.createTransporterServer(locatorURl,
}
public void stop()
{

if(server !'= null)

{

server.stop();

}
}
public static void main(String[] args)
{

Server server = new Server();

try

{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)

new Cust oner Processor | nmpl ());

JBoss June 22, 2008

117

How to useit - sample code

{
e.printStackTrace();
}
finally
{
server.stop();
}

The server classis apretty ssimple one. It calls the Transport er Server factory method to create the server com-
ponent for the cust oner Processor I npl instance using the specified remoting locator information.

The Transporter Server returned from the creat eTransporter Server () cal will be a running instance of are-
moting server using the socket transport that isbound to | ocal host and listening for remote requests on port 5400.
The requests that come in will be forwarded to the remoting handler which will convert them into direct method
calls on the target POJO, Cust orer Processor | npl in this case, using reflection.

The TransporterServer hasastart() and stop() method exposed to control when to start and stop the running
of the remoting server. Thestart () method is called automatically within the creat eTr ansport er Server () meth-
od, so is ready to receive requests upon the return of this method. The st op() method, however, needs to be called
explicitly when no longer wish to receive remote calls on the target POJO.

Next up isthe client side. Thisisrepresented by thed i ent class.

public class dient

{
private String |ocatorURl = "socket://I|ocal host:5400";

public void nakeCientCall () throws Exception
{

Cust oner custoner = createCustoner();
Cust oner Processor cust onmer Processor = (Customer Processor) TransporterCient.createTransporterdient

System out. println("Custoner to be processed: " + custoner);
Cust oner processedCustoner = customner Processor. processCust omer (cust oner);
Systemout. println("Customer is now " + processedCustoner);

TransporterClient.destroyTransporterdient (custonerProcessor);

private Custoner createCustoner()

Cust oner cust = new Custoner();
cust . set Fi rst Nane(" Bob") ;

cust. set Last Name("Sm th");
Address addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCGity("Atlanata");
addr.setState("GA");

addr. set Zi p(30249);

cust . set Addr (addr) ;

return cust;

}

public static void main(String[] args)
{

Cient client = new dient();

try

{

JBoss June 22, 2008 118

How to useit - sample code

client.makeCientCall();

}
cat ch(Exception e)
{
e.printStackTrace();
}

}
}

The dient classisalso pretty simple. It creates a new Cust oer object instance, creates the remote proxy to the
Cust omer Processor , and then calls on the Cust oner Processor to processits new Cust oner instance.

To get the remote proxy for the cust oner Processor, adl that isrequired isto call the Transporterd i ent 's method
createTransporterdient () method and pass the locator uri and the type of the remote proxy (and explicitly cast
the return to that type). This will create a dynamic proxy for the specified type, Cust oner Processor in this case,
which is backed by a remoting client which in turn makes the calls to the remote POJO's remoting server. Once the
call tocreateTransport dient () has returned, the remoting client has already made its connection to the remot-
ing server and is ready to make calls (will throw an exception if it could not connect to the specified remoting serv-
er).

When finished making calls on the remote POJO proxy, will need to explicitly destroy the client by calling des-
troyTransporterd ient () and passthe remote proxy instance. This allows the remoting client to disconnect from
the POJO's remoting server and clean up any network resources previously used.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant tar-
get 'run-transporter-basic-server' and then in another window run the ant target 'run-transporter-basic-client'. For
example:

ant run-transporter-basic-server

and then:

ant run-transporter-basic-client

The output from the Client console should be similar to:

Custoner to be processed:
Cust oner :

custoner id: -1

first nane: Bob

| ast name: Smith

street: 101 Cak Street
city: Atlanata

state: GA

zi p: 30249

Custoner i s now

Cust orrer :

custoner id: 204
first nane: Bob

| ast name: Smith
street: 101 Cak Street
city: Atlanata

state: GA

zi p: 30249

JBoss June 22, 2008 119

How to useit - sample code

and the output from the Server class should be similar to:

processed customer with new id of 204

The output shows that the cust oner instance created on the client was sent to the server where it was processed (by
setting the customer id to 204) and returned to the client (and printed out showing that the customer id was set to
204).

10.8.4. Transporter sample - JBoss serialization

The transporter serialization example (found in org.jboss.remoting.samples.transporter.seriaization package) is
very similar to the previous basic example, except in this one, the domain objects being sent over the wire will
NOT be Serializable. This is accomplished via the use of JBoss Serialization. This can be useful when don't know
which domain objects you may be using in remote calls or if adding ability for remote calls on legacy code.

To start, there are a few more domain objects: O der, Or der Processor, and O der Processor | npl . These will use
some of the domain objects from the previous example as well, such as cust oner .

public class Order

{
private int orderld = -1,
private bool ean i sProcessed = fal se;
private Custoner custonmer = null;
private List itens = null;

public int getOrderld()

{
return orderld;
}
public void setOrderld(int orderld)
{
this.orderld = orderld;
}

publ i c bool ean i sProcessed()

{

return i sProcessed;

}
public void setProcessed(bool ean processed)
{
i sProcessed = processed;
}
publ i ¢ Custoner get Custoner ()
{
return custoner;
}
public void set Custoner(Custonmer custoner)
{
this.customer = custoner;
}
public List getltens()
{
return itemns;
}

JBoss June 22, 2008 120

How to useit - sample code

public void setltens(List itens)

{
}

public String toString()
{

this.itens = itens;

StringBuffer buffer = new StringBuffer();

buf f er. append("\nOrder:\n");

buffer.append("\nls processed: " + isProcessed);
buf fer. append("\nOrder id: " + orderld);

buf f er. append(custoner.toString());

buf fer. append("\nltens ordered:");
Iterator itr = itens.iterator();
whi | e(itr.hasNext())

buf fer. append("\n" + itr.next().toString());
}

return buffer.toString();

public class O derProcessorlnpl inplenents O derProcessor

{

private CustonerProcessor custonerProcessor = null;

public O derProcessorlnpl ()
{

}

public Order processOrder(Order order)
{

cust oner Processor = new Cust oner Processor | nmpl ();

System out. println("lncomng order to process from custoner.\n" + order.getCustoner());

/1 has this custoner been processed?
i f(order.getCustoner().getCustonerld() < 0)

{
}

List itens = order.getltens();
Systemout.println("ltens ordered:");
Iterator itr = itens.iterator();
whil e(itr. hasNext())

{
}

order.set Orderld(new Randon{). next| nt (1000));
order. set Processed(true);

order. set Cust orer (cust oner Processor. processCust oner (order. get Custoner()));

Systemout.println(itr.next());

Systemout. println("Oder processed. Oder id now " + order.getOderld());
return order;

public interface OrderProcessor

{
}

public Order processOrder(Order order);

JBoss June 22, 2008 121

How to useit - sample code

The o der Processor | npl will take orders, viathe processOrder () method, check that the customer for the order
has been processed, and if not have the customer processor process the new customer. Then will place the order,
which means will just set the order id and processed attribute to true.

The most important point to this example isthat the o der classdoes NOT implement j ava. i o. Seri al i zabl e.

Now onto the Server class. Thisisjust like the previous Server class in the basic example with one main differ-
ence: thel ocat or URI value.

public class Server

{
private String |l ocatorURl = "socket://| ocal host: 5400/ ?seri al i zati ont ype=j boss";
private TransporterServer server = null;
public void start() throws Exception
{
server = Transporter Server.createTransporterServer (|l ocatorUR, new O derProcessorlnpl());
}
public void stop()
{
if(server !'= null)
{
server.stop();
}
}
public static void main(String[] args)
{
Server server = new Server();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}
}

The addition of seri al i zat i ont ype=j boss tells the remoting framework to use JBoss Serialization in place of the
standard java serialization.

Ontheclient side, thereisthe d i ent class, just asin the previous basic example.

public class dient

{

private String |l ocatorURI = "socket://I|ocal host: 5400/ ?seri al i zati ontype=j boss";
public void makeCdientCall () throws Exception
{

Order order = createOrder();

Or der Processor order Processor = (OrderProcessor) TransporterCient.createTransporterdient (Il ocatorl

JBoss June 22, 2008 122

How to useit - sample code

Again, the biggest difference to note is that have added seri al i zat i ont ype=j boss to the locator uri.

pri

pri

}

Systemout.println("Order to be processed: " + order);
O der changedOrder = orderProcessor. processOr der (order);
Systemout. println("Order now processed " + changedOrder);

Transporterd ient.destroyTransporterCient(orderProcessor);

vate Order createOder()

Order order = new Order();
Cust omer custonmer = createCustoner();
order. set Cust orer (cust oner) ;

List items = new ArraylList();

i tems. add(" Xbox 360");

itens. add("Wreless controller");
i tems. add(" Ghost Recon 3");

order.setltens(itens);

return order;

vate Custoner createCustoner()

Cust onmer cust = new Custoner();
cust . set Fi r st Nane(" Bob") ;

cust. set Last Name("Smith");
Address addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCGity("Atlanata");
addr.setState("GA");

addr . set Zi p(30249);

cust . set Addr (addr) ;

return cust;

public static void main(String[] args)

{

Cient client = new dient();

try
{
client. mked ientCall ();
}
cat ch(Exception e)
{
e.printStackTrace();
}

Note: Running this example requires JDK 1.5.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant tar-
get 'ant run-transporter-serialization-server' and then in another window run the ant target 'ant run-transport-
er-serialization-client'. For example:

ant

run-transporter-serialization-server

JBoss June 22, 2008

123

How to useit - sample code

and then:

ant run-transporter-serialization-client

When the server and client are run the output for the d i ent classis:

Order to be processed:

O der:

I's processed: false
Order id: -1

Cust oner :

custonmer id: -1

first nanme: Bob

| ast nanme: Smith
street: 101 Cak Street
city: Atlanata

state: GA

zi p: 30249

Itens ordered:

Xbox 360

Wrel ess controller
Chost Recon 3

Order now processed
Order:

I s processed: true
Order id: 221

Cust oner :

custoner id: 861

first name: Bob

| ast nanme: Smith
street: 101 GCak Street
city: Atlanata

state: GA

zi p: 30249

Itens ordered:

Xbox 360

Wrel ess controller
CGhost Recon 3

The client output shows the printout of the newly created order before calling the o der Processor and then the
processed order afterwards. Noticed that the processed order has its customer's id set, its order id set and the pro-
cessed attributeis set to true.

And the output from the Ser ver is:

I ncomi ng order to process from custoner

Cust oner :

custonmer id: -1

first name: Bob

| ast name: Smith
street: 101 Cak Street
city: Atlanata

state: GA

zi p: 30249

processed custonmer with new id of 861
I tens ordered:

JBoss June 22, 2008 124

How to useit - sample code

Xbox 360

Wrel ess controller

CGhost Recon 3

Order processed. Order id now 221

The server output shows the printout of the customer before being processed and then the order while being pro-
cessed.

10.8.5. Transporter sample - clustered

In the previous examples, there has been one and only one target POJO to make calls upon. If that target POJO was
not available, the client cal would fal. In the transporter clustered example (found in
org.jboss.remoting.samples.transporter.clustered package), will show how to use the transporter in clustered mode
so that if one target POJO becomes unavailable, the client call can be seamlessly failed over to another available
target POJO on the network, regardless of network transport type.

This example uses the domain objects from the first, basic example, so only need to cover the client and server
code. For this example, there are three different server classes. The first class is the Socket Server class, which is
the exact same as the server class in the basic example, except for the call to the Transport Server's creat -
eTransport Server () method.

public class Socket Server

{
public static String | ocatorURl = "socket://|ocal host:5400";

private TransporterServer server = null;

public void start() throws Exception

{
server = TransporterServer.createTransporterServer(getlLocatorURI (), new CustonerProcessor|npl (),
Cust oner Processor. cl ass. get Nane(), true);
}
protected String getLocatorURI ()
{
return | ocatorURl;
}
public void stop()
{
if(server !'= null)
{
server.stop();
}
}
public static void nain(String[] args)
{
Socket Server server = new Socket Server();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)
{
e.printStackTrace();
}

JBoss June 22, 2008 125

How to useit - sample code

}

}

finally
{

server.stop();

}

Notice that are now calling on the Transport Server to create a server with the locator uri and target POJO (Cus-
t omer Processor | npl) as before, but have also added the interface type of the target POJO (Cust oner Pr ocessor)

and that want clustering turned on (viathe last t r ue parameter).

The interface type of the target POJO is needed because this will be used as the subsystem within the remoting
server for the target POJO. The subsystem value will be what the client uses to determine if discovered remoting
server isfor the target POJO they are looking for.

The transporter uses the MulticastDetector from JBoss Remoting for automatic discovery when in clustered mode.
The actual detection of remote servers that come online can take up to a few seconds once started. Thereis a INDI

based detector provided within JBoss Remoting, but has not been integrated within the transporters yet.

The second server class is the RM Server class. The RM Server class extends the Socket Server class and uses a

different locator uri to specify ri as the transport protocol and a different port (5500).

public class RM Server extends Socket Server

{

}

private String local LocatorURI = "rm://|ocal host:5500";

protected String getLocatorURI ()

{
}

return | ocal Locat or URI ;

public static void nain(String[] args)

{

}

Socket Server server = new RM Server ();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)

{
}
finally
{

}

e.printStackTrace();

server.stop();

The last server class is the HTTPSer ver class. The HTTPSer ver class also extends the Socket Server class and spe-

cifiesht t p asthe trangport protocol and 5600 as the port to listen for requests on.

public class HTTPServer extends Socket Server

{

JBoss June 22, 2008

126

How to useit - sample code

private String | ocal LocatorURI = "http://| ocal host:5600";
protected String getLocatorURI ()
{
return | ocal Locat or URl ;
}
public static void main(String[] args)
{
Socket Server server = new HTTPServer();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}

On the client side, thereis only the d i ent class. This classis very similar to the one from the basic example. The
main exceptions are (1) the addition of aTransporterdient call to create a transporter client and (2) the fact that
it continually loops, making calls on its cust oner Processor variable to process customers. This is done so that
when we run the client, we can kill the different servers and see that the client continues to loop making its calls
without any exceptions or errors.

public class dient

{
private String | ocatorURI = Socket Server. | ocator URl;
private CustonerProcessor customerProcessor = null;

public void makeCdientCall () throws Exception

{
Cust oner custonmer = createCustoner();
Systemout. println("Custoner to be processed: " + custoner);
Cust oner processedCustonmer = custoner Processor. processCust oner (custoner);
Systemout.println("Custonmer is now. " + processedCustoner);
[l Transporterdient.destroyTransporterd i ent (custonerProcessor);
}
public void get Custoner Processor () throws Exception
{
cust oner Processor = (CustonerProcessor) TransporterCient.createTransporterdient(locatorURl,
}

private Custoner createCustoner()

{
Cust oner cust = new Custoner();
cust . set Fi r st Narre(" Bob") ;
cust. set Last Name("Smth");
Addr ess addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCity("Atlanata");

JBoss June 22, 2008 127

Cust c

How to useit - sample code

addr. set State(" GA");
addr . set Zi p(30249);
cust . set Addr (addr) ;

return cust;

}
public static void main(String[] args)
{
Cient client = new dient();
try
{
client. get Cust orer Processor () ;
whi | e(true)
{
try
{
client.mekedientCall();
Thr ead. current Thread() . sl eep(5000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
}
}
cat ch(Exception e)
{
e.printStackTrace();
}
}

The first item of note is that the locator uri from the Socket Server classis being used. Technically, thisis not re-
quired as once the clustered Transporterdi ent is started, it will start to discover the remoting servers that exist
on the network. However, this process can take several seconds to occur, so unlessit is known that no calls will be
made on the remote proxy right away, it is best to bootstrap with a known target server.

Can also see that in the mai n() method, the first call on the Client instance is to get Cust oner Processor (). This
method will call the Transporterdient'screateTransporterdient () method and passes the locator uri for the
target POJO server, the type of POJO's remote proxy, and that clustering should be enabled.

After getting the customer processor remote proxy, will continually loop making calls using the remote proxy (via
the pr ocessCust omer () method on the cust orrer Processor variable).

To run this example, all the servers need to be started (by running the Socket Server, RM Ser ver, and HTTPSer ver
classes). Then run the Client class. This can be done via ant targets as well. So for example, could open four con-
sole windows and enter the ant targets as follows:

ant run-transporter-clustered-socket-server
ant run-transporter-clustered-http-server
ant run-transporter-clustered-rm -server
ant run-transporter-clustered-client

Once the client starts running, should start to see output logged to the Socket Ser ver, since thisis the one used to

JBoss June 22, 2008 128

How to useit - sample code

bootstrap. This output would look like:

processed custonmer with new id of 378
processed customer with new id of 487
processed custonmer with new id of 980

Once the socket Server instance has received a few cals, kill this instance. The next time the client makes a call
on its remote proxy, which happens every five seconds, it should fail over to another one of the servers (and will
see similar output on that server instance). After that server has received a few calls, kill it and should see it fail
over once again to the last server instance that is still running. Then, if kill that server instance, will see a Cannot-
ConnectException and stack trace similar to the following:

org. j boss. rennti ng. Cannot Connect Excepti on: Can not connect http client invoker.
at org.jboss.renoting.transport. http. HTTPC i ent | nvoker. useHt t pURLConnecti on(HTTPO i ent | nvoker . j ava: 147)
at org.jboss.renoting.transport. http. HTTPC i ent | nvoker.transport (HTTPC i ent | nvoker. j ava: 56)
at org.jboss.renoting. Renot ed i ent | nvoker.invoke(Renot eC i entlnvoker.java: 112)
at org.jboss.renmoting. dient.invoke(dient.java: 226)
at org.jboss.renpting.dient.invoke(dient.java: 189)
at org.jboss.remoting. dient.invoke(dient.java:174)
at org.jboss.renoting.transporter. TransporterCient.invoke(TransporterCient.java:219)
at $Proxy0. processCust onmer (Unknown Sour ce)
at org.jboss.renoting.sanples.transporter3.client.Cient.makeCientCall(Cient.java:29)
at org.jboss.renoting. sanples.transporter3.client.Client.main(Cient.java: 64)
at sun.reflect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)
at sun.reflect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . j ava: 39)
at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . j ava: 25)
at java.lang.refl ect. Method. i nvoke(Met hod. j ava: 585)
at comintellij.rt.execution.application.AppMi n. mai n(AppMai n. j ava: 86)
Caused by: java.net.Connect Exception: Connection refused: connect
at java. net. Pl ai nSocket | npl . socket Connect (Nati ve Met hod)
at java. net. Pl ai nSocket | npl . doConnect (Pl ai nSocket | npl . j ava: 333)
at java. net. Pl ai nSocket | npl . connect ToAddr ess(Pl ai nSocket | npl . j ava: 195)
at java. net. Pl ai nSocket | npl . connect (Pl ai nSocket | npl . j ava: 182)
at j ava. net. Socket . connect (Socket . java: 507)
at java. net. Socket . connect (Socket . java: 457)
at sun. net. Networ kC i ent. doConnect (Networ kCl i ent . j ava: 157)
at sun.net.ww. http. Ht pCient.openServer(Httpdient.java: 365)
at sun.net.ww. http. HtpClient.openServer(HtpCient.java: 477)
at sun.net.ww. http. HitpCient.<init>(Htpdient.java: 214)
at sun.net.ww. http. Htpdient. New(H t pdient.java: 287)
at sun.net.ww. http. HHtpCient. New(Htt plient.java: 299)
at sun. net.ww. protocol . http. H t pURLConnecti on. get NewHt t pCl i ent (Ht t pURLConnecti on. j ava: 792)
at sun. net.ww. protocol . http. H t pURLConnecti on. pl ai nConnect (Ht t pURLConnecti on. j ava: 744)
at sun. net.ww. protocol . http. H t pURLConnecti on. connect (Ht t pURLConnecti on. j ava: 669)
at sun. net.ww. protocol . http. H t pURLConnect i on. get Qut put St rean(Ht t pURLConnecti on. j ava: 836)
at org.jboss.renpoting.transport. http. HTTPC i ent | nvoker . useHt t pURLConnecti on(HTTPO i ent | nvoker . j ava: 117)
14 nore

since there are no target servers left to make calls on. Notice that earlier in the client output there were no errors
while was failing over to the different servers as they were being killed.

Because the CannotConnectException is being caught within the while loop, the client will continue to try calling
the remote proxy and getting this exception. Now re-run any of the previously killed servers and will see that the
client will discover that server instance and begin to successfully call on that server. The output should look
something like:

at sun. net.ww. protocol . http. H t pURLConnecti on. connect (Ht t pURLConnect i on. j ava: 669)
at sun. net.ww. protocol . http. H t pURLConnect i on. get Qut put St r ean{ Ht t pURLConnect i on. j ava: 836)
at org.jboss.renoting.transport. http. HTTPQ i ent | nvoker. useHt t pURLConnecti on(HTTPC i ent | nvoker . j ava: 117)

JBoss June 22, 2008 129

How to useit - sample code

14 nore

Custoner to be processed:
Cust omer :

custonmer id: -1

first name: Bob

| ast nanme: Smith

street: 101 Cak Stree
city: Atlanata

state: nul

zi p: 30249

Cust omer i s now.

Cust oner :

custoner id: 633
first name: Bob

| ast nanme: Smith
street: 101 Cak Stree
city: Atlanata

state: nul

zi p: 30249

As demonstrated in this example, fail over can occur across any of the JBoss Remoting transports. Clustered trans-
portersis also supported using JBoss Serialization, which was introduced in the previous example.

It is important to understand that in the context of transporters, clustering means invocation fail over. The JBoss
Remoting transporters themselves do not handle any form of state replication. If this feature were needed, could use
JBoss Cache to store the target POJO instances so that when their state changed, that change would be replicated to
the other target POJO instances running in other processes.

10.8.6. Transporters sample - multiple

The multiple transporter example (found in org.jboss.remoting.samples.transporter.multiple package) shows how
can have a multiple target pojos exposed via the same TransporterServer. In this example, will be two pojos being
exposed, CustomerPracessorlmpl and AccountProcessorimpl. Since the domain objects for this example is similar
to the others discussed in previous examples, will just focus on the server and client code. On the server side, need
to create the TransporterServer so that will included both of the target pojos.

public class Server

{
private String | ocatorURI = "socket://I ocal host: 5400"

private TransporterServer server = null;

public void start() throws Exception

{

server = TransporterServer.createTransporterServer (locatorURI, new CustonerProcessorlnpl (),
server. addHandl er (new Account Processor | npl (), Account Processor. cl ass. get Nane());

}

public void stop()
{

if(server !'=null)

{

server.stop();

JBoss June 22, 2008 130

Cust one

How to useit - sample code

}

public static void main(String[] args)

{

Server server = new Server();
try
{

server.start();
Thr ead. current Thread() . sl eep(60000) ;
cat ch(Exception e)
{
}
finally
{

}

e. printStackTrace();

server.stop();

The TransporterServer is created with the CustomerProcessorimpl as the inital target pojo. Now that have alive
TransporterServer, can add other pojos as targets. This is done using the addHandler() method where the target
pojo instance is passed and then the interface type to be exposed as.

Next have the Client that makes the call to both pojos.

public class dient

{
private String |locatorURl = "socket://| ocal host:5400";

public void makeCdientCall () throws Exception
{

Cust oner customer = createCustoner();
Cust oner Processor cust oner Processor = (CustonerProcessor) TransporterClient.createTransporterCient

Systemout. println("Custoner to be processed: " + custoner);
Cust omer processedCustonmer = custoner Processor. processCust oner (custoner);
Systemout.println("Custonmer is now. " + processedCustoner);

Account Processor account Processor = (Account Processor) TransporterC ient.createTransporterdient(Ic

Systemout. println("Asking for a new account to be created for custoner.");
Account account = account Processor. creat eAccount (processedCust oner) ;
System out. println("New account: " + account);

Transporterd ient.destroyTransporterC ient(customerProcessor);
TransporterClient.destroyTransporterdient(account Processor);

private Custoner createCustoner()

Cust oner cust = new Custoner();
cust . set Fi r st Nane(" Bob") ;

cust . set Last Name("Smith");
Address addr = new Address();
addr.set Street ("101 Cak Street");
addr.setGty("Atlanta");
addr.setState("GA");

JBoss June 22, 2008 131

How to useit - sample code

addr . set Zi p(30249);
cust . set Addr (addr) ;

return cust;

}
public static void nain(String[] args)
{
org. jboss.rennting. sanpl es.transporter.nultiple.client.Cient client = new org.jboss. renoting. sanpl
try
{
client.makeCdientCall();
catch (Exception e)
{
e. printStackTrace();
}
}

Notice that TransporterClients are created for each target pojo want to call upon, they just happen to share the same
locator uri. These are independant instances so need to both be destroyed on their own when finished with them.

To run this example, run the Server class and then the Client class. This can be done via ant targets 'run-
transporter-multiple-server' and then 'run-transporter-multiple-client’. For example:

ant run-transporter-nultiple-server

and then:

ant run-transporter-multiple-client

The output for the server should look similar to:

processed customer with new id of 980
Creat ed new account with account nunber: 1 and for custoner:

Cust omer :

custoner id: 980

first nane: Bob

| ast name: Smith
street: 101 CGak Street
city: Atlanta

state: GA

zi p: 30249

and the output from the client should look similar to:

Custoner to be processed:
Cust oner :

custonmer id: -1

first nanme: Bob

| ast nanme: Smith

street: 101 GCak Street
city: Atlanta

state: GA

zi p: 30249

JBoss June 22, 2008 132

How to useit - sample code

Cust oner
Cust oner :
cust onmer
first nanme: Bob
| ast nanme: Smith
street: 1
city: Atlanta

state:

is now

id: 980

01 Cak Street

GA

zi p: 30249

Asking for a new account to be created for custoner.
New account: Account - account nunber: 1

Cust oner :
Cust oner :
cust omer
first name: Bob
| ast nanme: Smith
street: 1
city: Atlanta

state:

id: 980

01 GCak Street

GA

zi p: 30249

10.8.7. Transporters sample - proxy

The proxy transporter example (found in org.jboss.remoting.samples.transporter.proxy package) shows how can
have a TransporterClient sent over the network and called upon. In this example, will have atarget pojo, Customer-
Processorlmpl which itself creates a TransporterClient to another target pojo, Customer, and return it as response to
amethod invocation.

To start, will look at theinitial target pojo, CustomerProcessorimpl.

public class CustomerProcessor| npl

i mpl enents Cust oner Processor

{

private String | ocatorURl = "socket://|ocal host:5401";

/**
* Takes the custoner passed, and if not null and custoner id
* is less than 0, will create a new randomid and set it.
* The custoner object returned will be the nodified custoner
* obj ect passed.
*
* @ar am cust oner
* @eturn
*

/

public | Custoner processCustoner(Custoner custoner)

{

if
{

}

I Cu
try
{

}

cat

{
}

(custoner != null && custoner.getCustonerld() < 0)

cust oner. set Cust onmer | d(new Randon{() . next | nt(1000));

stoner custonerProxy = null;

Transporter Server server = TransporterServer.createTransporterServer(locatorUR, custoner, | Cust
custonerProxy = (I Customer) TransporterCient.createTransporterCient(locatorURl, |Customer.clas

ch (Exception e)

e.printStackTrace();

JBoss June 22, 2008

133

How to useit - sample code

System out. println("processed customer with newid of " + customerProxy.getCustonerld());
return custoner Proxy;

Notice that the processCustomer() method will take a Customer object and set customer id on it. Then it will create
a TransporterServer for that customer instance and also create a TransporterClient for the same instance and return
that TransporterClient proxy as the return to the processCustomer() method.

Next will look at the Customer class. It isabasic data object in that is really just stores the customer data.

public class Custoner inplenents Serializable, |Customner
{

private String firstName = null;

private String lastName = null;

private Address addr = null;

private int custonerld = -1;

public String getFirstNanme()

{
return firstName;
}
public void setFirstName(String firstNane)
{
this.firstNanme = firstNane;
}
public String getlLast Nane()
{
return | ast Nane;
}
public void setlLastName(String | ast Nane)
{
this.lastNane = | ast Nane;
}
publ i c Address get Addr ()
{
return addr;
}
public void set Addr (Address addr)
{
this. addr = addr;
}
public int getCustonerld()
{
return custonerld;
}
public void setCustonerld(int custonerld)
{
this.custonerld = custonerld;
}
public String toString()
{

Systemout.println("Customer.toString() being called.");
StringBuffer buffer = new StringBuffer();
buf f er. append("\ nCust oner:\n");

JBoss June 22, 2008 134

How to useit - sample code

buf f er. append("custoner id: " + custonerld + "\n");
buf fer. append("“first nane: " + firstNane + "\n");
buf fer. append("l ast name: " + lastNanme + "\n");

buf fer. append("street: " + addr.getStreet() + "\n");
buf fer. append("city: " + addr.getCity() + "\n");

buf fer. append("state: " + addr.getState() + "\n");
buf fer. append("zip: " + addr.getZip() + "\n");

return buffer.toString();

Notice the toString() method and how it prints out to the standard out when being called. This will be important
when the sampleisrun later.

Now if look at the Server class, will seeis a standard setup like have seen in previous samples.

public class Server

{
private String | ocatorURI = "socket://I ocal host: 5400"
private TransporterServer server = null;
public void start() throws Exception
{
server = TransporterServer.createTransporterServer(locatorUR, new CustomnerProcessor|npl (), Custone
}
public void stop()
{
if (server I= null)
{
server.stop();
}
}
public static void main(String[] args)
{
Server server = new Server();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
catch (Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}
}

It is creating a TransporterServer for the CustomerProcessImpl upon being started and will wait 60 seconds for in-
vocations.

Next isthe Client class.

JBoss June 22, 2008 135

How to useit - sample code

public class dient

{
private String |l ocatorURI = "socket://| ocal host:5400";

public void nakeCientCall () throws Exception
{

Cust oner custoner = createCustoner();
Cust oner Processor cust onmer Processor = (Customer Processor) TransporterCient.createTransporterdient

Systemout. println("Custoner to be processed: " + custoner);

| Cust omer processedCust oner = cust oner Processor. processCust oner (cust oner) ;

/| processedCustoner returned is actually a proxy to the Custoner instnace

/1 that lives on the server. So when print it out below, will actually

/1 be calling back to the server to get the string (vi toString() call).

/1l Notice the output of 'Custonmer.toString() being called.' on the server side.
Systemout.println("Custonmer is now. " + processedCustoner);

Transporterd ient. destroyTransporterCient(customnerProcessor);

private Custoner createCustoner ()

Cust oner cust = new Custoner();
cust . set Fi r st Nane(" Bob") ;

cust . setLast Name("Smith");
Address addr = new Address();
addr.set Street ("101 Cak Street");
addr.setGity("Atlanta");

addr.set State("GA");

addr. set Zi p(30249);

cust . set Addr (addr) ;

return cust;

}

public static void main(String[] args)

{

Cient client = new dient();
try

{
client.makedientCall();

catch (Exception e)
{

}

e.printStackTrace();

The client class looks similar to the other example seen in that it creates a TransporterClient for the CustomerPro-
cessor and calls on it to process the customer. Will then call on the ICustomer instance returned from the process-
Customer() method call and call toString() on it (in the system out call).

To run this example, run the Server class and then the Client class. This can be done via ant targets 'run-
transporter-proxy-server' and then 'run-transporter-proxy-client'. For example:

ant run-transporter-proxy-server

JBoss June 22, 2008 136

How to useit - sample code

ant then:

ant run-transporter-proxy-client

The output for the client should look similar to:

Custoner.toString() being called.
Custoner to be processed:

Cust oner :

custoner id: -1

first nanme: Bob

| ast name: Smith

street: 101 Cak Street

city: Atlanta

state: GA

zi p: 30249

Custoner i s now

Cust oner :

custoner id: 418
first nane: Bob

| ast name: Smith
street: 101 Cak Street
city: Atlanta

state: GA

zi p: 30249

The first line is the print out from calling the Customer's toString() method that was created to be passed to the
CustomerProcessor's processCustomer() method. Then the contents of the Customer object before being processed.
Then have the print out of the customer after has been processed. Notice that when the | Customer object instanceis
printed out the second time, do not see the '‘Customer.toString() being called'. Thisis because that code is no longer
being executed in the client vm, but instead is a remote cal to the customer instance living on the server
(remember, the processCustomer() method returned a TransporterClient proxy to the customer living on the server
side).

Now, if look at output from the server will look similar to:

processed customer with new id of 418
Custoner.toString() being called.

Notice that the 'Customer.toString() being called.' printed out at the end. Thisis the result of the client's call to print
out the contents of the customer object returned from the processCustomer() method, which actually lives within
the server vm.

This example has shown how can pass around TransporterClient proxies to target pojos. However, when doing this,
is important to understand where the code is actually being executed as there are consequences to being remote
verse local, which need to be understood.

10.8.8. Transporter sample -complex

The complex transporter example (found in org.jboss.remoting.samples.transporter.complex package) is based off a
test case a user, Milt Grinberg, provided (thanks Milt). The example is similar to the previous examples, except in
this case involves matching Doctors and Patients using the ProviderInterface and provides a more complex sample
in which to demonstrate how to use transporters.

JBoss June 22, 2008 137

How to useit - sample code

This example requires JDK 1.5 to run, since is using JBoss Serialization (and non-serialized data objects). To run
this example, run the Server class and then the Client class. This can be done via ant targets 'run-transport-
er-complex-server' and then 'run-transporter-complex-client' as well. For example:

ant run-transporter-conpl ex-server

and then:

ant run-transporter-conpl ex-client

The output for the client should look similar to:

*** Have a new patient that needs a doctor. The patient is:

Patient:
Name: Bill Gates
Al ment - Type: financial, Description: Mney conmng out the wazoo.

*** | ooki ng for doctor that can hel p our patient...

*** Found doctor for our patient. Doctor found is:
Doct or:

Narme: Andy Jones

Speci al ty: financial

Patients:
Pati ent:
Nanme: Larry Ellison
Ailment - Type: null, Description: null

Doctor - Nane: Andy Jones

Pati ent:
Nanme: Steve Jobs
Al ment - Type: null, Description: null

Doctor - Nane: Andy Jones

Pati ent:
Nanme: Bill Gates
Al ment - Type: financial, Description: Mpney com ng out the wazoo.

*** Set doctor as patient's doctor. Patient info is now

Pati ent:
Name: Bill Gates
Al ment - Type: financial, Description: Mney com ng out the wazoo.
Doctor - Nane: Andy Jones

*** Have a new patient that we need to find a doctor for (renenber, the previous one retired and there ar
*** Could not find doctor for patient. This is an expected exception when there are not doctors avail abl

org. j boss.renoting. sanpl es. transporter. conpl ex. NoDoct or Avai | abl eExcepti on: No doctor avail able for
at org.jboss.renoting. Renot ed i ent | nvoker. i nvoke(Renot eCl i ent | nvoker.java: 183)
at org.jboss.renpnting.dient.invoke(dient.java: 325)
at org.jboss.renpting.dient.invoke(dient.java: 288)
at org.jboss.renpting.dient.invoke(dient.java:273)
at org.jboss.renoting.transporter. TransporterCient.invoke(TransporterCient.java: 237)
at $Proxy0. fi ndDoct or (Unknown Sour ce)
at org.jboss.renoting. sanpl es.transporter.conplex.client.Cient.mkedientCall (Cient.java:72)
at org.jboss.renoting. sanples.transporter.conplex.client.dient.min(Cient.java: 90)
at sun.reflect. Nati veMet hodAccessor | npl . i nvokeO(Native Method)
at sun.reflect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . java: 39)
at sun.reflect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . j ava: 25)
at java.lang.refl ect. Method. i nvoke(Met hod. j ava: 585)
at comintellij.rt.execution.application.AppMi n. mai n(AppMai n. j ava: 86)

JBoss June 22, 2008 138

How to useit - sample code

From the output see the creation of a new patient, Bill Gates, and the attempt to find a doctor that specializesin his
ailment. For Mr. Gates, we were able to find a doctor, Andy Jones, and can see that he has been added to the list of
Dr. Jones' patients. Then we have Dr. Jones retire. Then we create a new patient and try to find an available doctor
for the same ailment. Since Dr. Jones has retired, and there are no other doctors that specialize in that particular ail-
ment, an exception isthrown. Thisis as expected.

10.9. Multiplex invokers

This section illustrates the construction of multiplex invoker groups described in the section Multiplex Invoker.
The directory

exanpl es/ org/j boss/renoti ng/ sanpl es/ mul ti pl ex/i nvoker

contains a server class, Mil ti pl exl nvoker Ser ver , which is suitable for use with any of the client classes described
below. It may be run in an IDE or from the command line using ant target run- nul ti pl ex-server from the
bui 1 d. xm file found in the exanpl es directory. The server will stay alive, processing invocation requests as they
are presented, until it has sent two push callbacks to however many listeners are registered, at which time it will
shut itself down.

The sample clients are as follows. Each sample client <client> may be run in an IDE or by using the ant target
run- <client> (e.g., run-di ent 2Ser ver 1).

e dient2Serverl: A Miltiplexdientlnvoker starts according to client rule 2, after which a Ml ti pl ex-
Server | nvoker is started according to server rule 1. Note that the d i ent and Connect or are passed matching
clientMultiplexid and serverMultiplexld parameters, respectively.

e dient2Server2: A Miltiplexdientlnvoker starts according to client rule 2, after which a Ml ti pl ex-
Server | nvoker is started according to server rule 2. Note that no clientMultiplexid is passed to the d i ent and
no serverMultiplexid parameter is passed to the Connect or in this example.

e dient3Serverl: A Miltiplexdientlnvoker is created, and, lacking binding information, finds itself gov-
erned by client rule 3. Subsequently, amul ti pl exSer ver I nvoker is started according to server rule 1, providing
the binding information which allows the mul ti pl exd i ent I nvoker to start. Note that the d i ent and Con-
nect or are passed matching clientMultiplexld and server Multiplexid parameters, respectively.

e Server2dient1: A MiltiplexServerlnvoker starts according to server rule 2, after which aml tipl exCli -
ent | nvoker is started according to client rule 1. Note that the Connector and dient are passed matching
serverMultiplexid and clientMultiplexid parameters, respectively.

e Server2dient2: A MltiplexServerlnvoker starts according to server rule 2, after which amul tipl exd i -
ent | nvoker is started according to client rule 2. Note that no serverMultiplexid is passed to the Connect or and
no clientMultiplexid parameter is passed to the d i ent in thisexample.

e Server3dientl: A MiltiplexServerlnvoker is created, and, lacking connect information, finds itself gov-
erned by server rule 3. Subsequently, amul ti pl exd i ent | nvoker is started according to client rule 1, providing
the connect information which allows the Mul ti pl exSer ver I nvoker to start. Note that the Connector and d i -

JBoss June 22, 2008 139

How to useit - sample code

ent are passed matching serverMultiplexid and clientMultiplexld parameters, respectively.

For variety, the examples in which the client invoker starts first use the configuration Map to pass invoker group
parameters, and the examples in which the server invoker starts first pass parametersin the | nvoker Locat or .

JBoss June 22, 2008 140

11

Client programming model

The approach taken for the programming model on the client side is one based on a session based model. This
means that it is expected that once a Client is created for a particular target server, it will be used exclusively to
make calls on that server. This expectation dictates some of the behavior of the remoting client.

For example, if create a Client on the client side to make server invocations, including adding callback listeners,
will have to use that same instance of Client to remove the callback listeners. This is because the Client creates a
unique session id that it passes within the calls to the server. Thisid is used as part of the key for registering call-
back listeners on the server. If create a new Client instance and attempt to remove the callback listeners, a new ses-
sion id will be passed to the server invoker, who will not recognize the callback listener to be removed.

Seetest caseorg. j boss. test. renoting. cal | back. push. Ml ti pl eCal | backSer ver sTest Case .

JBoss June 22, 2008 141

12

Compatibility and versioning

As of JBossRemoting 2.0.0 versioning has been added to guarantee compatibility between different versions. This
is accomplished by changing serialization formats for certain classes and by using wire versioning. By wire ver-
sioning, mean that the version used by a client and server will be sent on the wire so that the other side will be able
to adjust accordingly. This will be automatic for JBossRemoting 2.0.0 and later versions. However, since version-
ing was not introduced until the 2.0.0 release, if need to have a 1.4.x version of remoting communicate to a later
version, will need to set a system property on the 2.0.0 version so that knows to use the older wire protocol version.
The system property to set is 'jboss.remoting.pre 2 0_compatible' and should be set to true. There are afew minor
features that will not be fully compatible between 1.4.x release and 2.0.0, which are listed in the release notes.

JBoss June 22, 2008 142

13

Getting the JBossRemoting source and building

The JBossRemoting source code resides in the JBoss CV S repository under the CV'S module JBossRemating. To
check out the source using the anonymous account, use the following command:

cvs -d: pserver: anonynous@noncvs. f orge. j boss. com/cvsroot/jboss checkout JBossRenoti ng

To check out the source using a committer user id, use the following:

cvs -d: ext:username@vs. forge.jboss.com/cvsroot/jboss checkout JBossRenoting

This should checkout the entire remoting project, including doc, tests, libs, etc.

See http://www.jboss.org/wiki/Wiki.jsp?page=CV SRepository
[http://www.jboss.org/wiki/Wiki.jsp?page=CV SRepository] for more information on how to access the JBoss CV'S
repository.

The build process for JBossRemoting is based on a standard ant build file (build.xml). The version of ant that is
supported is ant 1.6.2, but should work with earlier versions as there are no specia ant features being used.

The main ant build targets are as follows:
compile - compiles al the core JBossRemoting classes.
jars- creates the jboss-remoting.jar file from the compiled classes

dist.jars - creates the subsystem jar files (jboss-remoting-core.jar, jboss-remoting-socket.jar, etc.) from the com-
piled classes

javadoc - creates the javadoc html files for JBossRemoting

tests.compile - compiles the JBossRemoting test files

testsjars - creates the jboss-remoting-tests.jar and jboss-remoting-loading-tests.jar files.
tests.quick - runsthe functional unit tests for JBossRemoting.

tests - runs al the tests for JBossRemoting, including functional and performance tests for all the different trans-
ports.

clean - removes all the build artifacts and directories.
most - calls clean then jars targets.

dist - builds the full JBossRemoting distribution including running the full test suite.

JBoss June 22, 2008 143

http://www.jboss.org/wiki/Wiki.jsp?page=CVSRepository

Getting the JBossRemoting source and building

dist.quick - builds the full JBossRemoting distribution, but does not run the test suite.
The root directory for al build output is the output directory. Under this directory will be:
cl asses - compiled core classes

et ¢ - deployment and IMX XMBean xml files

l'i b - al the jars and war file produced by the build

t est s - contains the compiled test classes and test results

For most development, the most target can be used. Please run the tests.quick target before checking anything in to
ensure that code changes did not break any previously functioning test.

JBoss June 22, 2008 144

14

Known issues

All of the known issues and road map can be found on our bug tracking system, Jira, a ht-
tp://jirajboss.com/jira/secure/BrowseProject.jspa? d=10031
[http://jirajboss.com/jiral/secure/BrowseProject.jspa?d=10031] (require member plus registration, which is free). If
you find more, please post them to Jira. If you have questions post them to the JBoss Remoting users forum (ht-
tp:/lwww.jboss.com/index.html ?modul e=bb& op=viewforumé& f=222

[http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=222]).

JBoss June 22, 2008 145

http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222

15

Future plans

Full road map for JBossRemoting can be found a ht-
tp://jira,jboss.com/jira/browse/IBREM ?report=com.atl assian.jira.plugin.system.project:roadmap- panel
[http://jirajboss.com/jiralbrowse/ IBREM ?report=com.atlassian.jira.plugin.system.project:roadmap-panel].

If you have questions, comments, bugs, fixes, contributions, or flames, please post them to the JBoss Remating
users forum (http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=222
[http://www.jboss.com/index.html ?modul e=bb& op=viewforum&f=222]). You can also find more information
about JBoss Remoting on our wiki (http://www.jboss.org/wiki/Wiki.jsp?page=Remoting
[http://www.jboss.org/wiki/Wiki.jsp?page=Remoting]). The wiki will usually contain the latest updates to doc and
features that did not make into previous release.

JBoss June 22, 2008 146

http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222
http://www.jboss.org/wiki/Wiki.jsp?page=Remoting

16

Release Notes

Important changes and differences in 2.2.0 release (from 2.0.0 release)

- Asynchronous method for handling callbacks (JBREM-640)
- Bidirectional transport (JBREM-650)
- Local transport (JBREM-660)

- Marshallers'Unmarshallers construct their preferred streams (JBREM-692)

Release Notes - JBoss Remoting - Version 2.2.2.SP8

Bug

* [IBREM-949] - CLONE [JBREM-947] - ConnectionValidator hangs when server dies

* [JBREM-954] - InterruptedException should not be rethrown as CannotConnectionException

* [JBREM-960] - Remoating configured with Servlet invoker can return misleading Exceptions when Servlet path is
incorrect

* [JBREM-962] - Remote classloading does not work with Isolated EARs
* [IBREM-965] - Fix PortUtil.getRandomStartingPort()

* [JBREM-981] - CLONE [JBREM-980] - ServerlnvokerServiet should retrieve ServietServerinvoker based on
updated InvokerL ocator

* [JBREM-1003] - Verify IPv6 addresses are handled correctly, part 2
Feature Request

* [JBREM-972] - CLONE [JBREM-971] - Enhance client-side connection error handling so certain (potentialy re-
vealing) socket-related exceptins are not discarded

* [JBREM-973] - CLONE [JBREM-970] - Enhance client-side error reporting so a misspelled truststore file name
required by SSL can be easily spotted

Release

JBoss June 22, 2008 147

Release Notes

* [JBREM-948] - Release 2.2.2.SP8

Task

* [JBREM-950] - Assure version compatibility with earlier versions of Remoting

* [IBREM-995] - Apply unit test timing fixes

* [JBREM-1001] - Update Remoting Guide

* [IBREM-1002] - Allow ServerThread to keep running after SocketTImeoutException, part 2

* [JBREM-1004] - Run manual servlet unit tests

Release Notes - JBoss Remoting - Version 2.2.2.SP7

Bug

* [JBREM-942] - A deadlock encountered on ConnectionV alidator

* [IBREM-944] - Fix race in ConnectionNotifier

Release

* [JBREM-943] - Release 2.2.0.SP7

Task

* [JBREM-945] - Allow ServerThread to keep running after SocketTImeoutException

* [IBREM-946] - Assure version compatibility with earlier versions of Remoting

Release Notes - JBoss Remoting - Version 2.2.2.5P6

Bug

* [JBREM-915] - NullPointerException in InvokerL ocator

* [JBREM-937] - Callback BisocketServerlnvoker should reuse available ServerThreads
Release

* [JBREM-939] - Release 2.2.2.5P6

Task

* [JBREM-940] - Assure version compatibility with earlier versions of Remoting

JBoss June 22, 2008 148

Release Notes

Release Notes - JBoss Remoting - Version 2.2.2.SP5
Bug

* [JBREM-892] - CLONE -Client side connection exception is not thrown on the client side when the lease times
out [JBREM-888]

* [JBREM-910] - CLONE -Connector.stop() cannot find invoker MBean when bind address is 0.0.0.0
[JBREM-909]

Release
* [JBREM-913] - Release 2.2.2.5P5
Task

* [IBREM-912] - Remove stacktrace when SSL SocketBuilder.createSSL SocketFactory() fails

Release Notes - JBoss Remoting - Version 2.2.2.5P4

** Bug

* [IBREM-823] - Serverlnvoker#getM BeanObjectName() returns invalid ObjectName if host valueis IPv6
* [JBREM-845] - Infinite loop in BisocketClientlnvoker.createSocket

* [IBREM-858] - MaxPool Size value should be used in key to MicroSocketClientl nvoker.connectionPools
* [JBREM-860] - Eliminate delay in MicroSocketClientlnvoker.getConnection()

* [JBREM-871] - HTTP Client invoker doesn't throw exceptions when using the sslservlet protocol

** Feature Request

* [JBREM-852] - Verify IPv6 addresses are handled correctly

* [IBREM-855] - Update build.xml to allow jdk 1.5 compiler to target VM version 1.4

* [JBREM-873] - Have ServerlnvokerCallbackHandler register as connection listener

** Release

* [JBREM-872] - Release 2.2.0.SP4

** Task

* [IBREM-862] - Verify compatibility with earlier versions

JBoss June 22, 2008 149

Release Notes

N.B. Release 2.2.2.SP4 replaces 2.2.2.SP3.

Release Notes - JBoss Remoting - Version 2.2.2.SP2

Bug

* [JBREM-811] - Privileged Block to create Class L oader

* [JBREM-813] - ServletServerlnvoker should return an exception instead of just an error message
Release

* [JBREM-817] - Release 2.2.2.S5P2

Task

* [IBREM-687] - allow binding to 0.0.0.0

Release Notes - JBoss Remoting - Version 2.2.2.5P1

** Bug

* [JBREM-653] - alow user to set content-type for http responses
* [JBREM-750] - Logger in HTTPClientInvoker should be static.
** Release

* [JBREM-803] - Release 2.2.2.5P1

** Task

* [JBREM-805] - Verify Remoting 2.2.2.SP1 is compatible with earlier versions

Release Notes - JBoss Remoting - Version 2.2.2.GA
** Bug
* [JBREM-731] - Address of secondary server socket should be acquired each time a control connection is created.

* [JBREM-743] - For polling callback handler, org.jboss.remoting.Client.addListener() should create only one
CallbackPoller per InvokerCallbackHandler

JBoss June 22, 2008 150

Release Notes

* [IBREM-747] - org.jboss.remoting.transport.Connector should unregister server invoker from MBeanServer
* [JBREM-754] - Reset timeout on each use of HttpURL Connection

* [IBREM-761] - NPE in BisocketServerlnvoker$Control ConnectionThread

* [IBREM-766] - Guard against "spurious wakeup" from Thread.sleep()

* [JBREM-771] - MicroSocketClientlnvoker can experience socket leaks

* [JBREM-774] - BisocketClientlnvoker.replaceControl Socket() and handleDisconnect() should close control
socket

* [IBREM-775] - MicroSocketClientlnvoker.initPool () should omit pool from log message

* [JBREM-778] - BisocketServerlnvoker.start() creates a new static Timer each time

* [IBREM-779] - BisocketClientlnvoker should guard agains scheduling on an expired Timer, part 2

* [IBREM-784] - Use separate maps for control sockets and ordinary sockets in BisocketClientlnvoker

* [JBREM-785] - BisocketClientlnvoker.transport() inadvertently uses listenerld member variable

* [IBREM-787] - Move network i/o in BisocketClientlnvoker constructor to handleConnect()

* [JBREM-788] - Access to BisocketClientInvoker static maps should be synchronized in handleDisconnect()
* [JBREM-790] - NPE in BisocketClientlnvoker$PingTimerTask

* [IBREM-793] - Lease should synchronize access to client map

* [JBREM-794] - LeasePinger.addClient() should not create a new LeaseTimerTask if none currently exists
* The following is the public version of support patch BREM-791, under which the fix was applied. -RS

* [JBREM-806] - In HTTPClientinvoker remove newlines and carriage returns from Base64 encoded user names
and passwords

** Feature Request

* [JBREM-749] - BisocketServerlnvoker: Make configurable the address and port of secondary server socket
* [JBREM-755] - Make ConnectorValidator parameters configurable

* [JBREM-756] - CallbackPoller should shut down if too many errors occur.

* [IBREM-757] - Implement quick Client.removeListener() for polled callbacks.

* [JBREM-765] - Add a separate timeout parameter for callback clients

** Patch

* [JBREM-781] - Socket transport needs to provide to the client local address of a TCP/IP connection, as seen from
the server

JBoss June 22, 2008 151

Release Notes

** Release

* [JBREM-789] - Release 2.2.2.GA

** Task

* [IBREM-641] - re-implement the callback polling for http transport to reduce latency

* [JBREM-767] - Avoid deadlock in callback BisocketClientlnvoker when timeout ==

* [IBREM-782] - Remove network i/o from synch block in ServerlnvokerCallbackHandler.getCallbackHandl er()
* [JBREM-783] - Remove network i/o from synch blocks that establish and terminate L easePingers

* [JBREM-796] - Verify Remoting 2.2.2 is compatible with earlier versions

Release Notes - JBoss Remoting - Version 2.2.1.GA
** Bug

* [JBREM-751] - Eliminate unnecessary "Unable to process control connection:" message from BisocketServerin-
voker

** Release

* [JBREM-763] - Release 2.2.1.GA

Release Notes - JBoss Remoting - Version 2.2.0.SP4

** Bug

* [JBREM-748] - BisocketClientlnvoker should guard agains scheduling on an expired Timer
** Release

* [JBREM-744] - Release 2.2.0.SP4

** Task

* [IBREM-714] - Make sure 2.2.0 and 2.0.0 are compatible binary releases

* [JBREM-734] - BisocketClientinvoker constructor should get parameters from InvokerL ocator as well as config-
uration map.

Release Notes - JBoss Remoting - Version 2.2.0.SP3

JBoss June 22, 2008 152

Release Notes

** Tagk
* [JBREM-741] - Eliminate unnecessary log.warn() in BisocketServerlnvoker
Release Notes - JBoss Remoting - Version 2.2.0.SP2

** Bug

* [JBREM-739] - Fix java serialization leak. [Note. This issue has been moved to 2.4.0.Betal pending the addition
of unit tests, but the bug has been fixed.]

Release Notes - JBoss Remoting - Version 2.2.0.SP1
** Bug

* [JBREM-732] - When server terminates and has clients, when the server comes back up clients that survived,
can't connect. Connection refused when trying to connect the control socket.

Release Notes - JBoss Remoting - Version 2.2.0.GA (Bluto)
** Bug
* [IBREM-721] - Fix memory leaksin bisocket transport and L easePinger

* [JIBREM-722] - BisocketClientlnvoker should start pinging on control connection without waiting for call to cre-
atesocket()

* [JBREM-725] - NPE in BisocketServel nvoker::createControl Connection

* [IBREM-726] - BisocketServerlnvoker control connection creation needs to be in loop

** Feature Request

* [JBREM-705] - Separate the http invoker and web container dependency

* [IBREM-727] - Make Client'simplicitly created Connectors accessible

** Task * [JBREM-634] - update doc on callbacks

* [IBREM-724] - Update build.xml to create bisocket transport jars

Release Notes - JBoss Remoting - Version 2.2.0.Betal (Bluto)

** Bug

* [IBREM-581] - can not do connection validation with ssl transport (only impacts detection)

* [JBREM-600] - org.jboss.test.remoting.lease.multiplex.MultiplexL easeTestCase fails

* [IBREM-623] - need reset() call added back to JavaSerializationManager.sendObject() method
* [IBREM-642] - Socket.setReuseAddress() in MicroSocketClientInvoker invocation isignored

* [IBREM-648] - Client.disconnect without clearing ConnectionListeners will cause NPEs

JBoss June 22, 2008 153

Release Notes

* [IBREM-651] - Array class loading problem under jdk6

* [JBREM-654] - a NullPointerException occures and is not handled in SocketServerlnvoker and MultiplexServer-
Invoker

* [JBREM-655] - rename server thread when new socket connection comesin

* [JBREM-656] - Creating a client inside a ConnectionListener might lead into L ease reference counting problems
* [IBREM-658] - bug in oneway thread pool under heavy load

* [JIBREM-659] - Java 6 and ClassL oader.loadClass()

* [JBREM-670] - Remove equals() and hashCode() from
org.jboss.remoting.transport.rmi.RemotingRM I ClientSocketFactory.

* [IBREM-671] - serlvet invoker no longer supports leasing

* [JBREM-683] - ByValuelnvocationTestCase is broken

* [JBREM-685] - A server needs redundant information to detect a one way invocation

* [IBREM-690] - Once the socket of a callback server timeouts, it starts to silently discard traffic

* [JBREM-697] - Horg.jboss.remoting.transport.rmi.RemotingRM I ClientSocketFactory.ComparableHol der should
use InetAddress for host.

* [JBREM-700] - NPE in AbstractDetector

* [IBREM-704] - BisocketServerlnvoker inadvertently logs "got listener: null" as INFO
* [JBREM-708] - Correct org.jboss.remoting.Client.readExternal ()

* [IBREM-711] - ChunkedTestCase and Chuncked2TestCase failing

* [IBREM-712] - HTTPInvokerProxyTestCase failing

* [IBREM-723] - BisocketClientInvoker.transport() needs to distinguish between push and pull callback connec-
tions

** Feature Request

* [IBREM-525] - Automatically set HostnameVerifier in HTTPSClientInvoker to allow all hosts if authorization is
turned off.

* [IBREM-598] - add timeout config per client invocation

* [JBREM-618] - Support CallbackPoller configuration.

* [JBREM-640] - Implement an asynchronous method for handling callbacks.
* [IBREM-650] - Create bidirectional transport

* [JBREM-657] - Implement versions of Client.removeListener() and Client.disconnect() which do not write to a

JBoss June 22, 2008 154

Release Notes

broken server.

* [JBREM-660] - create local transport

* [JBREM-664] - Fix misleading InvalidConfigurationException

* [IBREM-692] - Let marshallerssunmarshallers construct their preferred streams.

* [JBREM-720] - Need to expose create method for TransporterClient that passes load balancing policy
** Task

* [JBREM-274] - add callback methods to the Client API

* [JBREM-369] - For Connectors that support callbacks on SSL connections, there should be a unified means of
configuring SSL ServerSocket and callback Client SSL Socket.s.

* [JBREM-453] - Send the pre-release jar to the messaging team for testing
* [IBREM-614] - Client.invoke() should check isConnected().

* [JBREM-631] - Fix org.jboss.test.remoting.transport.socket.connection.SocketConnectionCheckTestCase and
SocketConnectionTestCase failures.

* [JBREM-635] - Remove misleading error message from HTTPUnMarshaller.

* [IBREM-636] - Remove ServerlnvokerCallbackHandler's dependence on initial InvocationRequest for listerner
id.

* [IBREM-637] - add tomcat jar to component-info.xml for remoting release

* [JBREM-644] - Reduce unit test logging output.

* [JBREM-647] - Initialize Client configuration map to empty HashMap.

* [IBREM-663] - Put org.jboss.remoting.LeasePinger on separate thread.

* [JBREM-669] - Client.removeL istener() should catch exception and continue if invocation to server fails.
* [IBREM-674] - add test case for client exiting correctly

* [IBREM-693] - Make sure "bisocket" can fully replace "socket" as Messaging's default transport

* [JBREM-695] - RemotingRM I ClientSocketFactory.createSocket() should return a socket even if a RMIClientin-
voker has not been registered.

* [JBREM-702] - http.basic.password should allow for empty passwords
* [IBREM-707] - Fix handling of OPTIONS invocations in Coyotel nvoker
* [JBREM-709] - Fix occasional failures of org.jboss.test.remoting.lease.socket.multiple.SocketL easeTestCase

* [JBREM-719] - Fix spelling of ServerlnvokerCallbackHand-
ler.REMOTING_ACKNOWLEDGES PUSH CALLBACKS

JBoss June 22, 2008 155

Release Notes

Release Notes - JBoss Remoting - Version 2.2.0.Alphab

** Bug

* [JBREM-662] - Failed Clientlnvoker not cleaned up properly

* [IBREM-673] - Use of java.util. Timer recently added and not set to daemon, so applications not exiting
* [JBREM-683] - ByVauelnvocationTestCase is broken

** Feature Request

* [JBREM-678] - Sending an one-way invocation into a server invoker that is not started should generate awarning
inlogs

* [JBREM-679] - Add the possibility to obtain ConnectionValidator's ping period from a Client

* [JBREM-680] - An invocation into a"broken" client should throw a subclass of |OException

** Ta§<

* [JBREM-676] - TimerTasks run by TimerUtil should have a chance to clean up if TimerUtil.destroy() is called.

Release Notes - JBoss Remoting - Version 2.2.0.Alphab

** Bug
* [JBREM-666] - Broken or malicious clients can lock up the remoting server
* [IBREM-667] - Worker thread names are confusing

** Feature Request

* [JBREM-668] - jrunit should allow TRACE level logging

Release Notes - JBoss Remoting - Version 2.2.0.Alphad

** Bug
* [IBREM-649] - Concurrent exceptions on Lease when connecting/disconnecting new Clients

Release Notes - JBoss Remoting - Version 2.2.0.Alpha3 (Bluto)

** Bug
* [IBREM-594] - invoker not torn down upon connector startup error

* [JBREM-596] - Lease stops working if the First Client using the same L ocator is closed

* [JBREM-602] - If LeasePeriod isnot set and if enablel ease==true |easePeriod assumes negative value

* [IBREM-610] - Prevent org.jboss.remoting.callback.CallbackPoller from delivering callbacks out of order.

JBoss June 22, 2008 156

Release Notes

* [IBREM-611] - Initializing Client.sessionld outside constructor leads to java.lang.NoClassDef FoundError in cer-
tain circumstances

* [JBREM-615] - If CallbackStore.add() is called twice quickly, System.currentTimeMillis() might not change,
leading to duplicate file names.

* [JBREM-616] - Deletion of callback files in getNext() is not synchronized, allowing callbacks to be returned
multiple times.

* [JIBREM-619] - In SocketServerlnvoker.run() and MultiplexServerInvoker().run, guarantee ServerSocketRefresh
thread terminates.

* [JBREM-622] - InvokerLocator aready exists for listener

* [IBREM-625] - MicroSocketClientlnvoker should decrement count of used sockets when a socket is discarded.
* [JIBREM-629] - NPE in sending notification of lost client

** Feature Request

* [JBREM-419] - Invokers Encryption

* [IBREM-429] - Create JBossSerialization MarshalledVaue more optimized for RemoteCalls

* [JBREM-548] - Support one way invocations with no response

* [JBREM-597] - Allow access to underlying stream in marshaller with socket transport

* [IBREM-604] - allow socket server invoker to accept third party requests

* [JBREM-605] - Inform a server side listener that a callback has been delivered.

* [IBREM-607] - Add idle timeout setting for invoker threads

* [JBREM-609] - Support nonserializable callbacks in CallbackStore

** Task

* [IBREM-562] - publish performance benchmarks

* [JBREM-601] - Integrate http with messaging

* [IBREM-612] - Verify push callback connection with multiplex transport shares client to server connection.
* [IBREM-613] - Serverlnvoker.InvalidStateException should be a static class.

* [JBREM-617] - CallbackPoller should have its own thread.

* [JBREM-620] - If HTTPClientinvoker receives an Exception in an InvocationRespose, it should throw it instead
of creating a new Exception.

* [IBREM-621] - http transport should behave more like other transports.

* [JBREM-624] - Add JBoss EULA

JBoss June 22, 2008 157

Release Notes

* [IBREM-627] - Fix org.jboss.test.remoting.transport.multiplex.Multiplexlnvoker ShutdownTestCase failure.

* [JBREM-630] - Fix client/server race in
org.jboss.test.remoting.transport.multiplex.L ateClientShutdownTestCase.

* [JBREM-632] - Modify src/etc/logdj.xml to allow DEBUG level logging for org.jboss.remoting loggers in jrunit
test cases.

Release Notes - JBoss Remoting - Version 2.0.0.GA (Boon)

** Bug
* [JBREM-568] - SSL SocketBuilderM Bean does not have matching getter/setter attribute types

* [IBREM-569] - HTTP(S) proxy broken

* [JBREM-576] - deadlock with socket invoker

* [IBREM-579] - transporter does not handl e reflection conversion for primitive types

* [JBREM-580] - detection can not be used with ssl based transports

* [JBREM-586] - socket client invoker connection pooling not bounded

* [IBREM-590] - SSL client socket invoker does not use configuration map for SSL SocketBuilder

** Feature Request

* [IBREM-564] - Default client socket factory configured by a system property

* [IBREM-575] - local client invoker should convert itself to remote client invoker when being serialized

** Task

* [JBREM-570] - Change log in ConnectionValidator to be debug instead of warn when not able to ping server
* [JBREM-571] - fix/cleanup doc

* [IBREM-574] - Write SSL info for virtual sockets and server sockets in toString()

* [JBREM-578] - add spring remoting to performance benchmark tests

* [IBREM-582] - remove System.out.println and printStack Trace calls

* [JBREM-583] - Fix ConcurrentM odificationException in MultiplexingM anager.notify SocketsOf Exception()

* [JBREM-584] - Get org.jboss.test.remating.performance.spring.rmi.SpringRM I PerformanceTestCase to run with
multiple clients and callback handlers

* [JBREM-587] - ClientConfigurationCallbackConnector TestCase(jboss_serialization) failure.

* [JBREM-593] - Synchronize client and server in

JBoss June 22, 2008 158

Release Notes

org.jboss.test.remoting.transport.multiplex.L ateClientShutdownT estCase

Release Notes - JBoss Remoting - Version 2.0.0.CR1 (Boon)

** Bug
* [JBREM-303] - org.jboss.test.remoting.transport.multiplex.BasicSocket TestCase(jboss _serialization) failure
* [IBREM-387] - classloading problem - using wrong classloader

* [JBREM-468] - No connection possible after an illegitimate attempt

* [IBREM-484] - AbstractDetector.checklnvokerServer() is probably broken

* [IBREM-494] - ClientDisconnectedException does not have serial version UID

* [IBREM-495] - classes that do not have serial version UID

* [JBREM-500] - ServerThread never dies

* [JBREM-502] - not getting REMOVED natification from registry for intra-VM detection

* [IBREM-503] - NPE in abstract detector

* [IBREM-506] - StreamHandler throws index out of bounds exception

* [JBREM-508] - serialization exception with mustang

* [JBREM-519] - StreamServer never shuts down the server

* [JBREM-526] - TimeUTtil not using daemon thread

* [IBREM-528] - ConcurrentM odificationException when checking for dead servers (AbstractDetector)

* [JBREM-530] - Detection heartbeat requires small timeout (for dead server detection)

* [IBREM-534] - multiplex client cannot re-connect to server after it has died and then been re-started

* [JBREM-537] - org.jboss.test.remoting.transport.rmi.ssl.handshake.RMIInvokerTestCase(java serialization) -
failing

* [JBREM-541] - null pointer when receiving detection message

* [JBREM-545] - setting of the bind address within MulticastDetector not working
* [IBREM-546] - InvokerLocator.equalsis broken

* [IBREM-552] - cannot init cause of ClassCastException

* [IBREM-553] - deadl ock when disconnecting

* [JBREM-556] - versioning tests failing

JBoss June 22, 2008 159

Release Notes

* [IBREM-561] - http chuncked test cases failing under jdk 1.5

** Feature Request

* [IBREM-427] - SSL Connection: load a new keystore at runtime

* [IBREM-430] - transporter needs to be customizable

* [JBREM-461] - Better documentation for ssimultiplex

* [IBREM-491] - need to implement using ssl client mode for push callbacks for all transports
* [JBREM-492] - would like an API to indicate if atransport requires SSL configuration

* [JBREM-499] - need indication if invoker is secured by ssl

* [IBREM-501] - give descriptive names to threads

* [JBREM-504] - some synch blocks in AbstractDetector could change

* [IBREM-520] - Organize configuring of ServerSocketFactory's and callback SocketFactory's.
* [IBREM-527] - Allow user to pass Connector to be used for stream server

* [IBREM-532] - need synchronous call from detector client to get all remoting servers on network
* [IBREM-539] - add sslservlet procotol

* [JBREM-544] - http client invoker (for http, https, servlet, and ssiservlet) needs to handle exceptions in same
manner as other transport implementations

** Task

* [JBREM-21] - Add stress tests

* [JBREM-218] - investigate why jrunit report on cruisecontrol inaccurate
* [JBREM-311] - need required library matrix

* [JBREM-320] - optimize pass by value within remoting

* [JBREM-321] - performance tuning

* [JBREM-368] - Configure SSL Sockets and SSL ServerSockets used in callbacks to be in server mode and client
mode, respectively.

* [IBREM-383] - Document new versioning for remoting
* [JBREM-384] - correct manifest to comply with new standard
* [JBREM-390] - finish multiplex

* [JBREM-412] - Remoting Guide lacks left margin

JBoss June 22, 2008 160

Release Notes

* [IBREM-423] - document how remoting identity works and how to configure

* [JBREM-428] - add the samples/transporter/multiple/ to the distribution build (think may be there by default) and
update the docs

* [JBREM-434] - fix configuration data within document (socketTimeout should be timeout)
* [JBREM-435] - break out remoting jars (serialization)

* [IBREM-442] - need full doc on how socket invoker works (connection pooling, etc.)

* [JBREM-447] - convert static transporter factory methods into constructor calls

* [IBREM-452] - Send the pre-release jar to the messaging team for testing

* [JBREM-454] - cache socket wrapper classes

* [IBREM-477] - remove Client.setlnvoker() and Client.getlnvoker() methods

* [IBREM-487] - Eliminate possible synchronization problem in InvokerRegistry

* [JBREM-490] - consolidate the remoting security related classes

* [IBREM-493] - Update version of jboss serialization being used

* [JBREM-496] - restructure service providers for remoting

* [JBREM-497] - change InvokerL ocator to respect hosthame over ip address

* [IBREM-498] - change logging on cleaning up failed detection

* [JBREM-507] - need to make configuration properties consistent

* [IBREM-509] - Fix call to super() in Serverlnvoker's two argument constructor.

* [IBREM-511] - Allow HTTPSClientInvoker to create a HosthameV erifier from classname.
* [JBREM-513] - Create SSL version of RMI transport.

* [JBREM-514] - Fix potential NullPointerException in SSL SocketClientlnvoker.createSocket().
* [JBREM-516] - add very simple transporter sample

* [IBREM-517] - HTTPServerlnvoker needs to be deprecated

* [JBREM-523] - connection pool on socket client invoker needs to be bound

* [IBREM-524] - Clean up MicrosocketClientlnvoker code

* [JBREM-529] - Need to be able to reuse socket connections after moveto TIME WAIT state
* [JBREM-533] - remove external http GET test

* [IBREM-535] - add config to force use of remote invoker instead of local

JBoss June 22, 2008 161

Release Notes

* [IBREM-536] - turn off host verification when doing push callback from server using same ssl config as server
* [JBREM-538] - update remoting dist build to break out transportsinto individual jars

* [JBREM-540] - need to make servlet-invoker.war part of remoting distribution

* [IBREM-542] - change how remoting servlet finds servlet invoker

* [JIBREM-543] - fix servlet invoker error handling to be more like that of the http invoker

* [IBREM-547] - need test case for exposing multiple interfaces for transporter server target pojo

* [JBREM-551] - org.jboss.test.remoting.transport.multiplex.MultiplexInvoker TestCase(java serialization) failure
* [JBREM-555] - fix connection validator to not require extra thread to execute ping every time

* [IBREM-558] - Break master.xml documentation into chapter files

* [JBREM-559] - update doc for 2.0.0.CR1 release

* [IBREM-560] - InvokerGroupTestCase(java_serialization) failure

* [IBREM-563] - Multiplex ClientConfigurationCallbackConnector TestCase(jboss_serialization) failure

Release Notes - JBoss Remoting - Version 2.0.0.Beta2 (Boon)

** Bug
* [JBREM-304] - org.jboss.test.remoting.transport.multiplex.MultiplexInvoker TestCase(java _serialization) fails
* [IBREM-371] - HTTPClientInvoker does not pass an ObjectOutputStream to the marshaller

* [IBREM-405] - NPE when calling stop() twice on MulticastDetector

* [JBREM-406] - StringlndexOutOfBoundsException in InvokerL ocator

* [IBREM-408] - client |ease updates broken on server side

* [JBREM-409] - Invocations fail when the pool exhausts and under heavy load

* [JBREM-414] - INDI detection failing

* [IBREM-418] - ObjectInputStreamWithClassL oader can't handle primitives

* [JBREM-426] - keyStorePath and keyStorePassword being printed to standard out

* [IBREM-432] - TransporterClient missing seriaVersionUID

* [JBREM-440] - CallbackStore.getNext() won't necessarily get the oldest one

* [JBREM-441] - DefaultCallbackErrorHandler.setConfig needs to avoid NPE

* [IBREM-449] - Failure Information lost in RemotingSSL SocketFactory

JBoss June 22, 2008 162

Release Notes

* [IBREM-450] - ClassNotFoundException for class array type during deserialization
* [JBREM-464] - ssl socket invoker not using ssl server socket factory

* [JBREM-467] - NPE when calling Client.removeConnectionListener()

* [IBREM-470] - javax.net.ssl.SSL Exception: No available certificate corresponds to the SSL cipher suites

* [JBREM-472] - Misspelled serialization type generates obscure NPE

* [IBREM-479] - ClientConfigurationMapTestCase failure

* [JBREM-482] - client invoker configuration lost after first timeinvoker is created

** Feature Request

* [IBREM-312] - make TransporterClient so can be sent over network as dynamic proxy
* [JBREM-363] - make callbacks easier with richer API for registering for callbacks

* [IBREM-411] - Add chunked streaming support to the HTTP invoker

* [IBREM-413] - Transporter server should allow multiple pojo targets

* [JBREM-422] - Add plugable load balancing policy to transporter client

* [IBREM-425] - Add support for setting the HTTP invoker content encoding that is accepted
* [JBREM-431] - transporter server should automatically expose al interfaces implemented as subsystems

* [IBREM-439] - Streaml nvocationHandler.handleStream should throw Throwable for consistency

* [JBREM-469] - Enable HTTP polling

* [JBREM-471] - need better InvokerL ocator.equals() implementation

* [JBREM-481] - Changing StringUtilBuffer creation on JBossSerialization

** Task

* [IBREM-299] - MultiplexInvokerTestCase failure

* [JBREM-314] - need org.jboss.test.pooled.test. SSL SocketsUnitTestCase for remaoting
* [IBREM-328] - change lease ping to be HEAD instead of POST for http transport

* [JBREM-362] - convert Connector to be standard mbean instead of xmbean

* [JBREM-365] - set default user agent header in http client invoker

* [IBREM-366] - clean up client invoker tracking within InvokerRegistry

* [JBREM-367] - set live server socket factory on Connector

JBoss June 22, 2008

163

Release Notes

* [IBREM-370] - add changes from 1.4.1 release to master.xml doc

* [JBREM-377] - need to convert ConnectionValidator to use TimerQueue

* [JBREM-379] - need to update jboss-serialization jar being used

* [IBREM-380] - change ConnectionValidator to only notify once of failure

* [JBREM-382] - disable lease ping for local invoker

* [IBREM-415] - sync bug fixes with pooled invoker and socket invoker

* [JBREM-420] - INDI Detector should not need a connector when running in client mode
* [JBREM-421] - remote stream handler api inconsistent with regular handler

* [IBREM-436] - Extend MultiplexinglnputStream with readint() to avoid creating a MultiplexingDatal nputStream
in Virtual Socket.connect() and elsewhere.

* [IBREM-437] - Eliminate "verify connect" phase from virtual socket connection protocol.
* [JBREM-443] - add HandshakeCompletedListener support to ssl multiplex

* [IBREM-451] - Send the pre-release jar to the messaging team for testing

* [IBREM-455] - checking of socket connection is not really needed

* [JBREM-456] - block callback handling when callback store full

* [JBREM-460] - createSocket() in SSLSocketClientinvoker and SSLMultiplexClientinvoker should not assume
SocketFactory has been created.

* [IBREM-465] - property setting on the client from locator parameters and config map
* [JBREM-476] - make externalization of Client match original instance state

* [IBREM-478] - fix local client invoker handling of disconnected server invokers

* [JBREM-483] - remove LocalLeaseTestCase

* [JBREM-485] - use the ClientIinvokerHolder to contain the reference counting instead of having to use clientin-
vokerCounter

* [JBREM-486] - Fix ConcurrentM odificationException in
org.jboss.test.remoting.transport.mock.M ockServerlnvocationHandl er

Release Notes - JBoss Remoting - Version 2.0.0.Betal

* % Bug

* [JBREM-372] - memory leak on server side leasing

JBoss June 22, 2008 164

Release Notes

* [IBREM-376] - problem versioning with not using connection checking
* [JBREM-378] - client connection checking not working

** Feature Request

* [IBREM-340] - Strong version compatibility guarantee

** Task

* [IBREM-374] - single thread the leasing timer

Release Notes - JBoss Remoting - Version 1.4.4.GA

** Bug

* [IBREM-426] - keyStorePath and keyStorePassword being printed to standard out

Release Notes - JBoss Remoting - Version 1.4.3.GA

** Bug

* [JBREM-418] - ObjectlnputStreamWithClassL oader can't handle primitives

Release Notes - JBoss Remoting - Version 1.4.2 fina
** Feature Request

* [JBREM-429] - Create JBossSerialization MarshalledV alue more optimized for RemoteCalls

Release Notes - JBoss Remoting - Version 1.4.1 fina
** Feature Request
* [IBREM-310] - Ability to turn connection checking off

* [JBREM-325] - move IMarshalledV alue from jboss-commons to jboss-remoting.jar

** Bug
* [IBREM-313] - client lease does not work if client and server in same VM (using local invoker)
* [JBREM-317] - HTTPClientInvoker conect sends gratuitous POST
* [JBREM-341] - Client ping interval must be lease than |ease period

* [IBREM-343] - Exceptions on connection closing

JBoss June 22, 2008 165

Release Notes

* [IBREM-345] - problem using client address and port

* [JBREM-346] - fix ConcurrentM odificationException in cleanup of MultiplexServerlnvoker

* [JBREM-350] - ConcurrentM odificationException in InvokerRegistry

* [IBREM-361] - Race condition in invoking on Client

** Task

* [IBREM-2] - sample-bindings.xml does not have entry for remoting

* [JBREM-220] - clean up remoting wiki

* [JBREM-316] - Maintain tomcat originated code under the ASF license.

* [IBREM-319] - ahility to inject socket factory by classname or instance in all remoting transports

* [JBREM-323] - client lease config changes

* [IBREM-329] - create global transport config for timeout

* [JBREM-330] - create socket server factory based off of configuration properties

* [JBREM-335] - Client.invoke() should pass configuration map to InvokerRegistry.createClientl nvoker().
* [IBREM-336] - InvokerRegistry doesn't purge InvokerLocators from static Set registeredL ocators.

* [JBREM-337] - PortUtil.findFreePort() should return ports only between 1024 and 65535.

* [IBREM-342] - Thread usage for timers and |lease functionality

* [IBREM-354] - ServerlnvokerCallbackHandler should make its subsystem accessible.

* [IBREM-356] - Serverlnvoker should destroy its callback handlers.

* [JBREM-359] - MultiplexInvokerConfigTestCase should execute MultiplexlnvokerConfigTestServer instead of
Multiplexinvoker TestServer.

Release Notes - JBoss Remoting - Version 1.4.0 fina

** Feature Request

* [IBREM-91] - UIL2 type transport (duplex calling of same socket)

* [JBREM-117] - clean up callback client after several failures delivering callbacks

* [JBREM-138] - HTTP/Servlet invokers require content length to be set

* [IBREM-229] - Remove dependency on ThreadL ocal for SerializationManagers and pluggable serialization

* [JBREM-233] - Server side exception listeners for client connections

JBoss June 22, 2008 166

Release Notes

* [IBREM-257] - Append client stack trace to thrown remote exception
* [JBREM-261] - Integration with IMarshalledV alue from JBossCommons
* [JBREM-278] - remoting detection needs ability to accept detection of server invoker running locally

* [IBREM-280] - no way to add path to invoker uri when using complex configuration

** Bug
* [JBREM-41] - problem using localhost/127.0.0.1

* [IBREM-115] - http server invoker does not wait to finish processing on stop

* [IBREM-223] - Broken Pipeif client don't do any calls before the timeout value

* [IBREM-224] - java.net.Socket TimeoutException when socket timeout on the keep alive
* [IBREM-231] - bug in invoker locator when there are no params (NPE)

* [IBREM-234] - StreamCorruptedException in DTM testcase

* [JBREM-240] - TestUtil does not always give free port for server

* [JBREM-243] - socket client invoker sharing pooled connections

* [IBREM-250] - InvokerLocator doesn't support URL in IPv6 format (ex: socket://3000::117:5400/)

* [JBREM-251] - transporter passes method signature based on concrete object and not the parameter type

* [IBREM-256] - NullPointer in MarshallerL oaderHandler.java:69

* [IBREM-259] - Unmarshalling of server responseis not using caller's classloader

* [IBREM-271] - http client invoker needs to explicitly set the content type if not provided
* [IBREM-277] - error shutting down coyote invoker when using APR protocol

* [JBREM-281] - getting random port for connectorsis not reliable

* [IBREM-282] - ServletServerlnvoker not working with depployed for use as gjb invoker
* [JBREM-286] - Socket server does not clean up server threads on shutdown

* [JBREM-289] - PortUtil only checking for free ports on localhost

** Task

* [JBREM-7] - Add more tests for local invoker

* [IBREM-121] - improve connection failure callback

* [JBREM-126] - add tests for client vs. server address bindings

JBoss June 22, 2008

167

Release Notes

* [IBREM-195] - Performance optimization

* [JBREM-199] - remoting clients required to include servlet-api.jar

* [JBREM-207] - clean up build file

* [IBREM-214] - multiplex performance tests getting out of memory error

* [JBREM-215] - re-write http transport/handler documentation

* [IBREM-216] - Need to add new samples to example build in distro

* [JBREM-217] - create samples documentation

* [JBREM-219] - move remoting site to jboss labs

* [IBREM-226] - Release JBoss Remoting 1.4.0 final

* [JBREM-230] - create interface for marshallers to implement for swapping out serialization impl
* [IBREM-235] - add new header to source files

* [JBREM-239] - Update the LGPL headers

* [IBREM-242] - Subclass multiplex invoker from socket invoker.

* [IBREM-249] - http invoker (tomcat connector) documentation

* [JBREM-253] - Convert http server invoker implementation to use tomcat connector and protocols
* [IBREM-255] - HTTPClientlnvoker not setting response code or message

* [IBREM-275] - fix package error in examle-service.xml

* [IBREM-276] - transporter does not throw original exception from server implementation

* [IBREM-279] - socket server invoker spits out error messages on shutdown when is not needed
* [JBREM-287] - need to complete javadoc for all user classed/interfaces

* [IBREM-288] - update example-service.xml with new configurations

** Reactor Event

* [IBREM-241] - Refactor SocketServerlnvoker so that can be subclassed by MultiplexServerlnvoker

Release Notes - JBoss Remoting - Version 1.4.0 beta

** Feature Request
* [JBREM-28] - Marshaller for non serializable objects

* [IBREM-40] - Compression marshaller/unmarshaller

JBoss June 22, 2008 168

Release Notes

* [IBREM-120] - config for using hosthame in locator url instead of ip

* [JBREM-140] - can not set response headers from invocation handlers

* [JBREM-148] - support pluggable object serialization packages

* [IBREM-175] - Remove Dependenciesto Server Classes from Unifiedlnvoker
* [JBREM-180] - add plugable serialization

* [JBREM-187] - Better HTTP 1.1 stack support for HTTP invoker

* [JBREM-201] - Remove dependency from JBossSerialization

** Bug
* [JBREM-127] - RMI Invoker will not bind to specified address
* [JBREM-192] - distro contains samplesin src and examples directory

* [JBREM-193] - HTTPClientinvoker doesn't call getErrorStream() on HttpURL Connection when an error re-
sponse code is returned

* [JBREM-194] - multiplex performance tests hang

* [IBREM-202] - getUnmarshaller always calls Class.forName operation for creating Unmarshallers
* [JBREM-203] - rmi server invoker hangsif custom unmarshaller

* [IBREM-205] - Spurious java.net.SocketException: Connection reset error logging

* [JBREM-210] - InvokerLocator should be insensitive to parameter order

** Task
* [IBREM-9] - Fix performance tests

* [JBREM-33] - Add GET support within HTTP server invoker

* [JBREM-145] - convert user guide from MS word doc to docbook

* [IBREM-182] - Socket timeout too short (and better error message)

* [JBREM-183] - keep alive support for http invoker

* [IBREM-196] - reducde the number of retries for socket client invoker

* [JBREM-204] - create complex remoting example using dynamic proxy to endpoint
* [JBREM-212] - create transporter implementation

* [IBREM-213] - allow config of ignoring https host validation (ssl) via metadata

JBoss June 22, 2008 169

Release Notes

** Patch
* [JBREM-152] - NullPointerException in SocketServerlnvoker.stop() at line 185.

* [JBREM-153] - LocalClientlnvoker's outlive their useful lifetime, causing anomalous behavior

Release Notes - JBoss Remoting - Version 1.2.1 fina
** Feature Request

* [JBREM-161] - Upgrade JRunit to Beta 2

** Bug
* [IBREM-147] - Invalid reuse of target location

* [JBREM-163] - NPE in Mutlicast Detector

* [JBREM-164] - HTTP Invoker unable to send large amounts of data

* [JBREM-176] - Correct inheritance structure for detectors

* [IBREM-177] - configuration attribute spelled incorrectly in ServerlnvokerMBean

* [JBREM-178] - SocketServerInvoker hanging on Linux

* [IBREM-179] - socket timeout not being set properly

** Task

* [JBREM-156] - Better exception handling within socket server invoker

* [IBREM-158] - Clean up test cases

* [JBREM-162] - add version to the remoting jar

Release Notes - JBoss Remoting - Version 1.2.0 fina

** Feature Request

* [JBREM-§] - Ability to stream files viaremoting

* [IBREM-22] - Manipulation of the client proxy interceptor stack

* [JBREM-24] - Allow for specific network interface bindings

* [IBREM-27] - Support for HTTP/HTTPS proxy

* [IBREM-35] - Servlet Invoker - counterpart to HTTP Invoker (runs within web container)
* [JBREM-43] - custom socket factories

* [IBREM-46] - Connection failure callback

JBoss June 22, 2008

170

Release Notes

* [JBREM-87] - Add handler metadata to detection messages

* [JBREM-93] - Callback handler returning a generic Object

* [JBREM-94] - callback server specific implementation

* [IBREM-109] - Add support for JaasSecurityDomain within SSL support

* [JBREM-122] - need log4j.xml in examples

** Bug
* [IBREM-58] - Bug with multiple callback handler registered with same server

* [JBREM-64] - Need Marshal Factory to produce new instance per get request

* [JBREM-84] - Duplicate Connector shutdown using same server invoker

* [IBREM-92] - in-VM push callbacks don't work

* [JBREM-97] - Won't compile under JDK 1.5

* [JBREM-108] - can not set bind address and port for rmi and http(s)

* [JBREM-114] - getting callbacks for a callback handler always returns null

* [IBREM-125] - can not configure transport, port, or host for the stream server

* [JBREM-131] - invoker registry not update if server invoker changes locator

* [IBREM-134] - can not remove callback listeners from multiple callback servers

* [JBREM-137] - Invalid RemoteClientlnvoker reference maintained by InvokerRegistry after invoker disconnect()
* [JBREM-141] - bug connecting client invoker when client detects that previously used oneis disconnected
* [IBREM-143] - NetworkRegistry should not be required for detector to run on server side

** Task

* [IBREM-11] - Create seperate JBoss Remoting modulein CVS

* [JBREM-20] - break out remoting into two seperate projects

* [JBREM-34] - Need to add configuration properties for HTTP server invoker

* [IBREM-39] - start connector on new thread

* [JBREM-55] - Clean up Callback implementation

* [IBREM-57] - Remove use of InvokerRequest in favor of Callback object

* [JBREM-62] - update Unifiedlnvoker to use remote marshall loading

JBoss June 22, 2008 171

Release Notes

* [IBREM-67] - Add ability to set ThreadPool via configuration

* [JBREM-98] - remove isDebugEnabled() within code as is now depricated
* [JBREM-101] - Fix serialization versioning between releases of remoting
* [IBREM-104] - Release JBossRemoting 1.1.0

* [JBREM-110] - create jboss-remoting-client.jar

* [IBREM-113] - Convert remote tests to use JRunit instead of distributed test framework

* [JBREM-123] - update detection samples

* [JBREM-128] - standardize address and port binding configuration for all transports
* [IBREM-130] - updated wiki for checkout and build

* [JBREM-132] - write test case for BREM-131

* [IBREM-133] - Document use of Client (as a session object)

* [IBREM-135] - Remove ClientlnvokerAdapter

** Reactor Event

* [IBREM-65] - move callback specific classes into new callback package

* [JBREM-111] - pass socket's output/inputstream directly to marshaller/unmarshaller

Release Notes - JBoss Remoting - Version 1.0.2 fina

** Bug
* [JBREM-36] - performance tests fail for http transports

* [JBREM-66] - Race condition on startup

* [JBREM-82] - Bad warning in Connector.

* [JBREM-88] - HTTP invoker only binds to localhost

* [JBREM-89] - HTTPUnMarshaller finishing read early

* [JBREM-90] - HTTP header values not being picked up on the http invoker server
** Task

* [JBREM-70] - Clean up build.xml. Fix .classpath and .project for eclipse

* [IBREM-83] - Updated Invocation marshalling to support standard payloads

Release Notes - JBoss Remoting - Version 1.0.1 final

JBoss June 22, 2008

172

Release Notes

** Feature Request

* [JBREM-54] - Need access to HT TP response headers

** Bug
* [IBREM-1] - Thread.currentThread().getContextClassL oader() is wrong

* [IBREM-31] - Exception handling in http server invoker

* [JBREM-32] - HTTP Invoker - check for threading issues

* [IBREM-50] - Need ability to set socket timeout on socket client invoker

* [JBREM-59] - Pull callback collection is unbounded - possible Out of Memory
* [IBREM-60] - Incorrect usage of debug level logging

* [JBREM-61] - Possible RMI exception semantic regression

** Task

* [JBREM-15] - merge Unifiedinvoker from remoting branch

* [JBREM-30] - Better integration for registering invokers with MBeanServe

* [IBREM-37] - backport to 4.0 branch before 1.0.1 final release

* [JBREM-56] - Add Callback object instead of using InvokerRequest

** Reactor Event

* [JBREM-51] - defining marshaller on remoting client

Release Notes - JBoss Remoting - Version 1.0.1 beta

** Bug

* [IBREM-19] - Try to reconnect on connection failure within socket invoker

* [IBREM-25] - Deadlock in InvokerRegistry

** Feature Request
* [IBREM-12] - Support for call by value

* [JBREM-26] - Ability to use MBeans as handlers

** Task

JBoss June 22, 2008 173

Release Notes

* [IBREM-3] - Fix Asyninvokers - currently not operable

* [JBREM-4] - Added test for throwing exception on server side
* [JBREM-5] - Socket invokers needs to be fixed

* [JBREM-16] - Finish HTTP Invoker

* [JBREM-17] - Add CannotConnectException to all transports

* [IBREM-18] - Backport remoting from HEAD to 4.0 branch

** Reactor Event
* [IBREM-23] - Refactor Connector so can configure transports

* [IBREM-29] - Over load invoke() method in Client so metadata not required

JBoss June 22, 2008 174

	JBoss Remoting Guide
	Table of Contents
	Chapter 1. Overview
	1.1. What is JBoss Remoting
	1.2. Features
	1.3. How to get JBoss Remoting
	1.4. What's new?
	1.4.1. In release 2.2.2.SP7
	1.4.2. In release 2.2.2.SP4
	1.4.3. In release 2.2.2.SP2
	1.4.4. In release 2.2.2.GA

	Chapter 2. Architecture
	Chapter 3. JBoss Remoting Components
	3.1. Discovery
	3.2. Transports

	Chapter 4. Remoting libraries and thirdparty dependancies
	4.1. Thirdparty libraries

	Chapter 5. Configuration
	5.1. General transport configuration
	5.1.1. Server side configuration
	5.1.1.1. Programmatic configuration.
	5.1.1.2. Declarative configuration
	5.1.1.3. Callback client configuration

	5.1.2. Client side configuration

	5.2. Handlers
	5.3. Discovery (Detectors)
	5.4. Transports (Invokers)
	5.4.1. Features introduced in Remoting version 2.2
	5.4.1.1. Binding to 0.0.0.0
	5.4.1.2. Support for IPv6 addresses

	5.4.2. Server Invokers
	5.4.3. Configurations affecting the invoker client
	5.4.4. How the server bind address and port is determined
	5.4.5. Socket Invoker
	5.4.5.1. How the Socket Invoker works

	5.4.6. SSL Socket Invoker
	5.4.7. RMI Invoker
	5.4.8. SSL RMI Invoker
	5.4.9. HTTP Invoker
	5.4.10. HTTPS Invoker
	5.4.11. HTTP(S) Client Invoker - proxy and basic authentication
	5.4.12. Servlet Invoker
	5.4.13. SSL Servlet Invoker
	5.4.14. Exception handling for web based clients
	5.4.15. Multiplex Invoker
	5.4.15.1. Setting up the server
	5.4.15.2. Setting up the client
	5.4.15.2.1. Notes

	5.4.15.3. Shutting down invoker groups.
	5.4.15.4. Examples
	5.4.15.5. Configuration properties

	5.4.16. SSL Multiplex Invoker
	5.4.17. Bisocket invoker
	5.4.17.1. Overview
	5.4.17.2. Details

	5.4.18. SSL Bisocket invoker

	5.5. Marshalling
	5.6. Callbacks
	5.6.1. Callback overview
	5.6.1.1. Callback connections
	5.6.1.2. Transmitting callbacks
	5.6.1.3. Callback stores.
	5.6.1.4. Callback acknowledgements

	5.6.2. Registering callback handlers.
	5.6.2.1. Pull callbacks.
	5.6.2.2. Push callbacks.

	5.6.3. Unregistering callback handlers
	5.6.4. Callback store configuration.
	5.6.5. Callback Exception Handling

	5.7. Socket factories and server socket factories
	5.7.1. Server side programmatic configuration
	5.7.1.1. Server socket factories.
	5.7.1.2. Socket factories

	5.7.2. Client side programmatic configuration
	5.7.2.1. Server socket factories.
	5.7.2.2. Socket factories.

	5.7.3. Server side configuration in the JBoss Application Server
	5.7.4. Socket creation listeners
	5.7.5. SSL transports
	5.7.6. SSLSocketBuilder
	5.7.7. SSLServerSocketFactoryService
	5.7.8. General Security How To
	5.7.9. Troubleshooting Tips

	5.8. Timeouts
	5.8.1. General timeout configuration
	5.8.2. Per invocation timeouts
	5.8.3. Transport specific timeout handling
	5.8.3.1. Socket and bisocket transports
	5.8.3.2. HTTP transport
	5.8.3.3. Quick client disconnect

	5.9. Configuration by properties

	Chapter 6. Sending streams
	6.1. Configuration
	6.2. Issues

	Chapter 7. Serialization
	Chapter 8. Network Connection Monitoring
	8.1. Client side monitoring
	8.2. Server side monitoring
	8.3. Interactions between client side and server side connection monitoring

	Chapter 9. Transporters - beaming POJOs
	Chapter 10. How to use it - sample code
	10.1. Simple invocation
	10.2. HTTP invocation
	10.3. Oneway invocation
	10.4. Discovery and invocation
	10.5. Callbacks
	10.6. Streaming
	10.7. JBoss Serialization
	10.8. Transporters
	10.8.1. Transporters - beaming POJOs
	10.8.2. Transporters sample - simple
	10.8.3. Transporter sample - basic
	10.8.4. Transporter sample - JBoss serialization
	10.8.5. Transporter sample - clustered
	10.8.6. Transporters sample - multiple
	10.8.7. Transporters sample - proxy
	10.8.8. Transporter sample -complex

	10.9. Multiplex invokers

	Chapter 11. Client programming model
	Chapter 12. Compatibility and versioning
	Chapter 13. Getting the JBossRemoting source and building
	Chapter 14. Known issues
	Chapter 15. Future plans
	Chapter 16. Release Notes

