
GateIn Reference Guide

by the GateIn community , JBoss by Red Hat , and eXo Platform

edited by Scott Mumford (Red Hat), Thomas Heute (Red

Hat), Luc Texier (Red Hat), and Christophe Laprun (Red Hat)

iii

1. Introduction ... 1

1.1. Related Links ... 1

2. Configuration ... 3

2.1. Database Configuration ... 3

2.1.1. Overview ... 3

2.1.2. Configuring the database for JCR ... 3

2.1.3. Configuring the database for the default identity store 4

2.2. E-Mail Service Configuration ... 5

2.2.1. Overview ... 5

2.2.2. Configuring the outgoing e-mail account .. 5

2.3. HTTPS Configuration .. 5

2.3.1. Overview ... 5

2.3.2. Generate your key ... 6

2.3.3. Setup Jboss configuration to use your key ... 6

2.3.4. Setup Tomcat configuration to use your key .. 6

2.4. Configuration of custom data validators .. 7

2.4.1. Overview ... 7

2.4.2. Validator configuration .. 7

2.4.3. Developer information .. 9

3. Portal Development ... 11

3.1. Skinning the portal .. 11

3.1.1. Overview ... 11

3.1.2. Skin Components ... 11

3.1.3. Skin Selection .. 12

3.1.4. Skins in Page Markups ... 12

3.1.5. The Skin Service .. 13

3.1.6. The Default Skin .. 15

3.1.7. Creating New Skins .. 16

3.1.8. Tips and Tricks .. 24

3.2. Portal Lifecycle ... 26

3.2.1. Overview ... 26

3.2.2. Application Server start and stop ... 27

3.2.3. The Command Servlet .. 27

3.3. Default Portal Configuration ... 29

3.3.1. Overview ... 29

3.3.2. Configuration .. 29

3.4. Portal Default Permission Configuration .. 30

3.4.1. Overview ... 30

3.4.2. Overwrite Portal Default Permissions ... 32

3.5. Portal Navigation Configuration .. 33

3.5.1. Overview ... 33

3.5.2. Portal Navigation .. 37

3.5.3. Group Navigation ... 41

3.5.4. User Navigation ... 42

GateIn Reference Guide

iv

3.6. Data Import Strategy ... 42

3.6.1. Introduction .. 42

3.6.2. Import Mode .. 42

3.6.3. Data Import Strategy .. 43

3.7. Internationalization Configuration ... 47

3.7.1. Overview ... 47

3.7.2. Locales configuration .. 48

3.7.3. ResourceBundleService .. 50

3.7.4. Navigation Resource Bundles ... 51

3.7.5. Portlets .. 51

3.7.6. Translating the language selection form ... 53

3.8. Pluggable Locale Policy .. 54

3.8.1. LocalePolicy API .. 54

3.8.2. Default LocalePolicy ... 55

3.8.3. Custom LocalePolicy .. 56

3.8.4. LocalePolicy Configuration .. 57

3.8.5. Keeping non-bridged resources in sync with current Locale 57

3.9. RTL (Right To Left) Framework ... 59

3.9.1. Groovy templates ... 59

3.9.2. Stylesheet .. 60

3.9.3. Images .. 61

3.9.4. Client side JavaScript ... 62

3.10. XML Resources Bundles ... 62

3.10.1. Motivation .. 62

3.10.2. XML format .. 62

3.10.3. Portal support .. 63

3.11. JavaScript Inter Application Communication .. 64

3.11.1. Overview .. 64

3.11.2. Library ... 64

3.11.3. Syntax ... 65

3.11.4. Example of Javascript events usage .. 66

3.12. Upload Component ... 67

3.12.1. Upload Service ... 67

3.13. Deactivation of the Ajax Loading Mask Layer .. 69

3.13.1. Purpose ... 69

3.13.2. Synchronous issue ... 70

3.14. Javascript Configuration .. 71

3.15. Navigation Controller ... 73

3.15.1. Description ... 73

3.15.2. Controller in Action ... 74

3.15.3. Integrate to GateIn WebUI framework .. 79

3.15.4. Changes and migration from GateIn 3.1.x .. 84

4. Portlet development ... 91

4.1. Portlet Primer ... 91

v

4.1.1. JSR-168 and JSR-286 overview .. 91

4.1.2. Tutorials .. 93

4.2. Global portlet.xml file ... 104

4.2.1. Global portlet.xml usecase .. 104

4.2.2. Global metadata ... 104

5. Gadget development .. 107

5.1. Gadgets .. 107

5.1.1. Existing Gadgets .. 109

5.1.2. Create a new Gadget ... 109

5.1.3. Remote Gadget .. 109

5.1.4. Gadget Importing .. 109

5.1.5. Gadget Web Editing ... 110

5.1.6. Gadget IDE Editing .. 110

5.1.7. Dashboard Viewing .. 111

5.2. Setup a Gadget Server ... 111

5.2.1. Virtual servers for gadget rendering ... 111

5.2.2. Configuration .. 112

6. Authentication and Identity .. 115

6.1. Authentication and Authorization intro ... 115

6.1.1. Authentication overview .. 115

6.1.2. Login modules .. 118

6.1.3. Different authentication workflows .. 123

6.1.4. Authorization overview .. 126

6.2. Password Encryption ... 127

6.3. Predefined User Configuration ... 130

6.3.1. Overview .. 130

6.3.2. Plugin for adding users, groups and membership types 130

6.3.3. Membership types .. 130

6.3.4. Groups .. 131

6.3.5. Users ... 132

6.3.6. Plugin for monitoring user creation .. 133

6.4. Authentication Token Configuration .. 134

6.4.1. What is Token Service? .. 134

6.4.2. Implementing the Token Service API ... 135

6.4.3. Configuring token services .. 135

6.5. PicketLink IDM integration ... 136

6.5.1. Configuration files ... 136

6.6. Organization API ... 143

6.7. Accessing User Profile .. 144

6.8. Single-Sign-On (SSO) ... 145

6.8.1. Overview .. 145

6.8.2. Enabling SSO using JBoss SSO Valve .. 145

6.8.3. Central Authentication Service (CAS) ... 149

6.8.4. JOSSO .. 158

GateIn Reference Guide

vi

6.8.5. OpenSSO - The Open Web SSO project ... 163

6.8.6. SPNEGO ... 170

7. Web Services for Remote Portlets (WSRP) .. 183

7.1. Introduction ... 183

7.2. Level of support in GateIn 3.2 ... 183

7.3. Deploying GateIn's WSRP services .. 184

7.3.1. Considerations to use WSRP when running GateIn on a non-default port

or hostname .. 185

7.4. Securing WSRP .. 185

7.4.1. Considerations to use WSRP with SSL .. 185

7.4.2. WSRP and WS-Security ... 185

7.5. Making a portlet remotable .. 188

7.6. Consuming GateIn's WSRP portlets from a remote Consumer 190

7.7. Consuming remote WSRP portlets in GateIn .. 190

7.7.1. Overview .. 190

7.7.2. Configuring a remote producer using the configuration portlet 190

7.7.3. Configuring access to remote producers via XML 194

7.7.4. Adding remote portlets to categories .. 198

7.7.5. Adding remote portlets to pages .. 198

7.8. Consumers maintenance ... 200

7.8.1. Modifying a currently held registration .. 200

7.8.2. Consumer operations .. 204

7.8.3. Importing and exporting portlets .. 205

7.8.4. Erasing local registration data ... 211

7.9. Configuring GateIn's WSRP Producer .. 212

7.9.1. Overview .. 212

7.9.2. Default configuration ... 213

7.9.3. Registration configuration .. 214

7.9.4. WSRP validation mode ... 216

8. Advanced Development ... 217

8.1. Foundations .. 217

8.1.1. GateIn Kernel ... 217

8.1.2. Configuring services ... 218

8.1.3. Configuration syntax ... 218

8.1.4. InitParams configuration object .. 222

8.1.5. Configuring a portal container ... 225

8.1.6. GateIn Extension Mechanism, and Portal Extensions 228

8.1.7. Running Multiple Portals ... 229

Chapter 1.

1

Introduction
GateIn 3.2 is the merge of two mature Java projects; JBoss Portal and eXo Portal. This new

community project takes the best of both offerings and incorporates them into a single portal

framework. The aim is to provide an intuitive user-friendly portal, and a framework to address the

needs of today's Web 2.0 applications.

This book provides a deep-dive information about installation and configuration of the services

provided by GateIn.

1.1. Related Links

• GateIn homepage: www.gatein.org [http://www.gatein.org]

• GateIn videos: vimeo.com/channels/gatein [http://vimeo.com/channels/gatein]

• GateIn documentation: www.jboss.org/gatein/documentation.html [http://www.jboss.org/gatein/

documentation.html]

• GateIn downloads: www.jboss.org/gatein/downloads.html [http://www.jboss.org/gatein/

downloads.html]

http://www.gatein.org
http://www.gatein.org
http://vimeo.com/channels/gatein
http://vimeo.com/channels/gatein
http://www.jboss.org/gatein/documentation.html
http://www.jboss.org/gatein/documentation.html
http://www.jboss.org/gatein/documentation.html
http://www.jboss.org/gatein/downloads.html
http://www.jboss.org/gatein/downloads.html
http://www.jboss.org/gatein/downloads.html

2

Chapter 2.

3

Configuration

2.1. Database Configuration

2.1.1. Overview

GateIn 3.2 has two different database dependencies. One is the identity service configuration,

which depends on Hibernate. The other is Java content repository (JCR) service, which depends

on JDBC API, and can integrate with any existing datasource implementation.

When you change the database configuration for the first time, GateIn will automatically generate

the proper schema (assuming that the database user has the appropriate permissions).

GateIn 3.2 assumes the default encoding for your database is latin1. You may need to change

this parameter for your database in order for GateIn 3.2 to work properly.

2.1.2. Configuring the database for JCR

To configure the database used by JCR you will need to edit the file:

$JBOSS_HOME/server/default/conf/gatein/configuration.properties

For Tomcat, the file is located at

$TOMCAT_HOME/gatein/conf/configuration.properties

And edit the values of driver, url, username and password with the values for your JDBC

connection (please, refer to your database JDBC driver documentation).

gatein.jcr.datasource.driver=org.hsqldb.jdbcDriver

gatein.jcr.datasource.url=jdbc:hsqldb:file:${gatein.db.data.dir}/data/jdbcjcr_${name}

gatein.jcr.datasource.username=sa

gatein.jcr.datasource.password=

By default, the name of the database is "jdbcjcr_${name}" - ${name} should be a part of the

database name, as it is dynamically replaced by the name of the portal container extension (for

instance, gatein-sample-portal.ear defines "sample-portal" as container name and the default

portal defines "portal" as container name).

In the case of HSQL the databases are created automatically. For any other database you will need

to create a database named jdbcjcr_portal (and "jdbcjcr_sample-portal" if you have gatein-sample-

Chapter 2. Configuration

4

portal.ear in $JBOSS_HOME/server/default/deploy - note that some databases don't accept '-' in

the database name, so you may have to remove $JBOSS_HOME/server/default/deploy/gatein-

sample-portal.ear)

Make sure the user has rights to create tables on jdbcjcr_portal, and to update them as they will

be automatically created during the first startup .

Also add your database's JDBC driver into the classpath - you can put it in $JBOSS_HOME/

server/default/lib (or $TOMCAT_HOME/lib, if you are running on Tomcat)

MySQL example:

Let's configure our JCR to store data in MySQL. Let's pretend we have a user named "gateinuser"

with a password "gateinpassword". We would create a database "mygateindb_portal" (remember

that _portal is required), and assign our user the rights to create tables.

Then we need to add MySQL's JDBC driver to the classpath, and finally edit

gatein.ear/02portal.war/WEB-INF/conf/jcr/jcr-configuration to contain the following:

gatein.jcr.datasource.driver=com.mysql.jdbc.Driver

gatein.jcr.datasource.url=jdbc:mysql://localhost:3306/mygateindb${container.name.suffix}

gatein.jcr.datasource.username=gateinuser

gatein.jcr.datasource.password=gateinpassword

2.1.3. Configuring the database for the default identity store

By default, users are stored in a database. To change the database in which to store users, you

will need to edit the file:

$JBOSS_HOME/server/default/conf/gatein/configuration.properties

For Tomcat, the file is located at

$TOMCAT_HOME/gatein/conf/configuration.properties

You will find the same kind of configuration as in jcr-configuration.xml:

gatein.idm.datasource.driver=org.hsqldb.jdbcDriver

gatein.idm.datasource.url=jdbc:hsqldb:file:${gatein.db.data.dir}/data/jdbcidm_${name}

gatein.idm.datasource.username=sa

gatein.idm.datasource.password

E-Mail Service Configuration

5

2.2. E-Mail Service Configuration

2.2.1. Overview

GateIn 3.2 includes an e-mail sending service that needs to be configured before it can function

properly. This service, for instance, is used to send e-mails to users who forgot their password

or username.

2.2.2. Configuring the outgoing e-mail account

The e-mail service can use any SMTP account configured in $JBOSS_HOME/server/default/conf/

gatein/configuration.properties (or $TOMCAT_HOME/gatein/conf/configuration.properties if you

are using Tomcat).

The relevant section looks like:

EMail

gatein.email.smtp.username=

gatein.email.smtp.password=

gatein.email.smtp.host=smtp.gmail.com

gatein.email.smtp.port=465

gatein.email.smtp.starttls.enable=true

gatein.email.smtp.auth=true

gatein.email.smtp.socketFactory.port=465

gatein.email.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

It is preconfigured for GMail, so that any GMail account can easily be used (simply use the full

GMail address as username, and fill-in the password.

In corporate environments you will want to use your corporate SMTP gateway. When using it over

SSL, like in default configuration, you may need to configure a certificate truststore, containing

your SMTP server's public certificate. Depending on the key sizes, you may then also need to

install Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files for your

Java Runtime Environment.

2.3. HTTPS Configuration

2.3.1. Overview

GateIn 3.2 default run on HTTP mode. However, for security purpose, you can config GateIn to

run on HTTPS mode. This section show you how to config GateIn with HTTPS mode.

Chapter 2. Configuration

6

2.3.2. Generate your key

If you haven't your own X.509 certificate, you can make a simple certificate using keytool

command:

keytool -genkey -alias serverkeys -keyalg RSA -keystore server.keystore -storepass 123456 -

keypass 123456 -dname "CN=localhost, OU=MYOU, O=MYORG, L=MYCITY, ST=MYSTATE,

 C=MY"

Now, your key is stored in server.keystore

You need to import your key into the Sun JDK keystore (This is required to help running gadget

features)

keytool -importkeystore -srckeystore server.keystore -destkeystore $JAVA_HOME/jre/lib/

security/cacerts

2.3.3. Setup Jboss configuration to use your key

Edit server.xml from jboss/server/<NAME>/deploy/jbossweb.sar folder. Comment lines:

<Connector protocol="HTTP/1.1" port="8080" address="${jboss.bind.address}"

 connectionTimeout="20000" redirectPort="8443" />

Uncomment lines and change keystoreFile and keystorePass to values of your key:

<Connector protocol="HTTP/1.1" SSLEnabled="true"

 port="8443" address="${jboss.bind.address}"

 scheme="https" secure="true" clientAuth="false"

 keystoreFile="$JAVA_HOME/jre/lib/security/cacerts"

 keystorePass="123456" sslProtocol = "TLS" />

2.3.4. Setup Tomcat configuration to use your key

Edit server.xml from tomcat/conf folder. Comment lines:

<Connector port="8080" protocol="HTTP/1.1"

 maxThreads="150" connectionTimeout="20000"

 redirectPort="8443" URIEncoding="UTF-8"

Configuration of custom data validators

7

 emptySessionPath="true"/>

Uncomment lines and add keystoreFile and keystorePass values:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

 maxThreads="150" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS"

 keystoreFile="$JAVA_HOME/jre/lib/security/cacerts"

 keystorePass="123456" />

Restart GateIn. If your configuration is correct, you can access to GateIn via address: https://

<ServerAddress>:8443/portal

2.4. Configuration of custom data validators

2.4.1. Overview

GateIn 3.2 includes a user-configurable validator that can be applied to input fields of different

bundled portlets. Currently, this validator is only used to configure the validation of user name

formats in the user account, user registration and group membership portlets, though the

architecture allows for configurable validation to be used in different contexts if needed.

The validator can be configured via properties in the configuration.properties file found in

the GateIn configuration directory. By default, this directory is found at $JBOSS_HOME/server/

default/conf/gatein/ if you are using JBoss Application Server or $TOMCAT_HOME/gatein/

conf/ if you are using Tomcat.

The architecture supports several configurations that can be activated and associated to specific

instances of the user-configurable validator when they are created and assigned to fields in

portlets. We will only concern ourselves with the currently supported use cases, which are creation/

modification of a user name during registration/modification of a user and group membership

assignments.

2.4.2. Validator configuration

A configuration is created by adding an entry in configuration.properties using the

gatein.validators. prefix followed by the name of the configuration, a period '.' and the name of

the validation aspect you want to configure. The user-configurable validator currently supports four

different aspects per configuration, as follows, where {configuration} refers to the configuration

name:

• gatein.validators.{configuration}.length.min: minimal length of the validated field

Chapter 2. Configuration

8

• gatein.validators.{configuration}.length.max: maximal length of the validated field

• gatein.validators.{configuration}.regexp: regular expression to which values of the

validated field must conform

• gatein.validators.{configuration}.format.message: information message to display

when the value of the validated field doesn't conform to the specified regular expression

Only two configurations are currently supported by GateIn, one, named username, to configure

validation of user names when they are created/modified and the other, named groupmembership,

to configure validation of user names in the context of group memberships.

For example, if you want to make sure that your users use an email address as their user name,

you could use the following configuration:

Example 2.1.

 # validators

 gatein.validators.username.regexp=^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-za-z]{2,4}$

 gatein.validators.username.format.message=Username must be a valid email address.

Note

If you don't change the configuration of the validator, user names will be validated

as follows:

• Length must be between 3 and 30 characters.

• Only lowercase letters, numbers, undescores (_) and period (.) can be used.

• No consecutive undescores (_) or period (.) can be used.

• Must start with a letter.

• Must end with a letter or number.

Important

Some components that leverage GateIn depend on user names being all

lowercase. We therefore strongly recommend that you also only accept lowercase

user names.

Developer information

9

2.4.3. Developer information

The user-configurable validator is implemented by the

org.exoplatform.webui.form.validator.UserConfigurableValidator class. Please refer

to its documentation for more details.

To use a specific validator configuration to validate a given field value, add the validator to the field

as follows, where configurationName is a String representing the name of the configuration

to use:

 addValidator(UserConfigurableValidator.class, configurationName))

The validator instance can then be configured by adding the relevant information in

configuration.properties, for example:

 # validators

 gatein.validators.configurationName.length.min=5

 gatein.validators.configurationName.length.max=10

 gatein.validators.configurationName.regexp=^u\d{4,9}$

 gatein.validators.configurationName.format.message=Username must start with ''u'' and

 be followed by 4 to 9 digits.

Alternatively, a resource key can also be passed to the addValidator method to specify which

localized message should be used in case a validation error occurs, for example as follows:

configurationName

 addValidator(UserConfigurableValidator.class,

 UserConfigurableValidator.GROUPMEMBERSHIP,

 UserConfigurableValidator.GROUP_MEMBERSHIP_LOCALIZATION_KEY);

10

Chapter 3.

11

Portal Development

3.1. Skinning the portal

3.1.1. Overview

GateIn 3.2 provides robust skinning support for the entire portal User Interface (UI). This includes

support for skinning all of the common portal elements as well as being able to provide custom

skins and window decoration for individual portlets. All of this designed with common graphic

resource reuse and ease of development in mind.

3.1.2. Skin Components

The complete skinning of a page can be decomposed into three main parts:

Portal Skin

The portal skin contains the css styles for the portal and its various UI components. This should

include all the UI components except for the window decorators and portlet specific styles.

Window Styles

The CSS styles associated with the porlet window decorators. The window decorators contain

the control buttons and boarders surrounding each portlet. Individual portlets can have their

own window decorator selected, or be rendered without one.

Portlet Skins

The portlet skins effect how portlets are rendered on the page. There are two main ways this

can be affected:

Portlet Specification CSS Classes

The portlet specification defines a set of css classes that should be available to portlets.

GateIn 3.2 provides these classes as part of the portal skin. This allows each portal skin

to define its own look and feel for these default values.

Portlet Skins

GateIn 3.2 provides a means for portlet css files to be loaded based on the current portal

skin. This allows a portlet to provide different css styles to better match the current portal

look and feel. Portlet skins provide a much more customizable css experience than just

using the portlet specification css classes.

Note

The window decorators and the default portlet specification css classes should be

considered separate types of skinning components, but they need to be included

Chapter 3. Portal Development

12

as part of the overall portal skin. The portal skin must include these component´s

css classes or they will not be displayed correctly.

A portlet skin doesn't need to be included as part of the portal skin and can be

included within the portlets web application.

3.1.3. Skin Selection

3.1.3.1. Skin Selection Through the User Interface

There are a few means in which a skin can be selected to be displayed to the user. The easiest

way to change the skin is select it through the user interface. An admin can change the default

skin for the portal, or a logged in user can select which skin they would prefer to be displayed.

Please see the User Guide for information on how to change the skin using the user interface.

3.1.3.2. Setting the Default Skin within the Configuration Files

The default skin can also be configured through the portal configuration files if using the admin

user interface is not desired. This will allow for the portal to have the new default skin ready when

GateIn 3.2 is first started.

The default skin of the portal is called Default. To change this value add a skin tag in the

02portal.war/WEB-INF/conf/portal/portal/classic/portal.xml configuration file.

To change the skin to MySkin you would make the following changes:

<portal-config>

 <portal-name>classic</portal-name>

 <locale>en</locale>

 <access-permissions>Everyone</access-permissions>

 <edit-permission>*:/platform/administrators</edit-permission>

 <skin>MySkin</skin>

 ...

3.1.4. Skins in Page Markups

A GateIn 3.2 skin contains css styles for the portal's components but also shares components that

may be reused in portlets. When GateIn 3.2 generates a portal page markup, it inserts stylesheet

links in the page's head tag.

There are two main types of css links that will appear in the head tag: a link to the portal skin css

file and a link to the portlet skin css files.

The Skin Service

13

Portal Skin

The portal skin will appear as a single link to a css file. This link will contain contents from all

the portal skin classes merged into one file. This allow for the portal skin to be transfered more

quickly as a single file instead of many multiple smaller files. Included with every page render.

Portlet Skin

Each portlet on a page may contribute its own style. The link to the portlet skin will only appear

on the page if that portlet is loaded on the current page. A page may contain many portlet

skin css links or none.

In the code fragment below you can see the two types of links:

<head>

...

<!-- The portal skin -->

<link id="CoreSkin" rel="stylesheet" type="text/css" href="/eXoResources/skin/Stylesheet.css" /

>

<!-- The portlet skins -->

<link id="web_FooterPortlet" rel="stylesheet" type="text/css" href= "/web/skin/portal/webui/

component/UIFooterPortlet/DefaultStylesheet.css" />

<link id="web_NavigationPortlet" rel="stylesheet" type="text/css" href= "/web/skin/portal/webui/

component/UINavigationPortlet/DefaultStylesheet.css" />

<link id="web_HomePagePortlet" rel="stylesheet" type="text/css" href= "/portal/templates/skin/

webui/component/UIHomePagePortlet/DefaultStylesheet.css" />

<link id="web_BannerPortlet" rel="stylesheet" type="text/css" href= "/web/skin/portal/webui/

component/UIBannerPortlet/DefaultStylesheet.css" />

...

</head>

Note

Window styles and the portlet specification CSS classes are included within the

portal skin.

3.1.5. The Skin Service

The skin service is a GateIn 3.2 service which manages the various types of skins. It is reponsible

for discovering and deploying the skins into the portal.

Chapter 3. Portal Development

14

3.1.5.1. Skin configuration

GateIn 3.2 automatically discovers web archives that contain a file descriptor for skins (WEB-

INF/gatein-resources.xml). This file is reponsible for specifying the portal, portlet and window

decorators to be deployed into the skin service.

The full schema can be found in lib directory:

exo.portal.component.portal.jar/gatein_resources_1_0.xsd

Here is an example where we define a skin (MySkin) with its CSS location, and specify a few

window decorator skins:

<gatein-resources>

 <portal-skin>

 <skin-name>MySkin</skin-name>

 <css-path>/skin/myskin.css</css-path>

 <overwrite>false</overwrite>

 </portal-skin>

</gatein-resources>

 <!-- window style -->

 <window-style>

 <style-name>MyThemeCategory</style-name>

 <style-theme>

 <theme-name>MyThemeBlue</theme-name>

 </style-theme>

 <style-theme>

 <theme-name>MyThemeRed</theme-name>

 </style-theme>

 ...

3.1.5.2. Resource Request Filter

Because of the Right-To-Left support all CSS files need to be retrieved through a Servlet filter

and the web application needs to be configured to activate this filter. This is already done for

01eXoResources.war web application which contains the default skin.

Any new web applications containing skinning css files will need to have the following added to

their web.xml :

<filter>

 <filter-name>ResourceRequestFilter</filter-name>

 <filter-class>org.exoplatform.portal.application.ResourceRequestFilter</filter-class>

The Default Skin

15

 </filter>

 <filter-mapping>

 <filter-name>ResourceRequestFilter</filter-name>

 <url-pattern>*.css</url-pattern>

 </filter-mapping>

Note

The display-name element will also need to be specified in the web.xml for the

skinning service to work properly with the web application.

3.1.6. The Default Skin

The default skin for GateIn 3.2 is located as part of the 01eXoResource.war. The main files

associated with the skin is show below:

WEB-INF/gatein-resources.xml

WEB-INF/web.xml

skin/Stylesheet.css

gatein-resources.xml: defines the skin setup to use

web.xml: contains the resource filer and has the display-name set

Stylesheet.css: contains the CSS class definitions for this skin.

gatein-resources.xml

For the default portal skin, this file contains definitions for the portal skin, the window

decorations that this skin provides and well as defining some javascript resources which are

not related to the skin. The default portal skin doesn't directly define portlet skins, these should

be provided by the portlets themeselves.

web.xml

For the default portal skin, the web.xml of the eXoResources.war will contains a lot of

information which is mostly irrelevant to the portal skining. The areas of interest in this file is

the resourcerequestfilter and the fact that the display-name is set.

Stylesheet.css

The main portal skin stylesheet. The file is the main entry point to the css class definitions for

the skin. Below is shown the contents of this file:

@import url(DefaultSkin/portal/webui/component/UIPortalApplicationSkin.css);

Chapter 3. Portal Development

16

@import url(DefaultSkin/webui/component/Stylesheet.css);

@import url(PortletThemes/Stylesheet.css);

@import url(Portlet/Stylesheet.css);

Skin for the main portal page.

Skins for various portal components.

Window decoration skins.

The portlet specificiation css classes.

Instead of defining all the CSS classes in this one file we are instead importing other css

stylesheet files, some of which may also import other CSS stylesheets. The css classes are

split up between multiple files to make it easier for new skins to reuse parts of the default skin.

To reuse a CSS stylesheet from the default portal skin you would need to reference the default

skin from eXoResources. For example, to include the window decorators from the default skin

within a new portal skin you would need to use this import:

@import url(/eXoResources/skin/Portlet/Stylesheet.css);

Note

When the portal skin is added to the page, it merge all the css stylesheets into

a single file.

3.1.7. Creating New Skins

3.1.7.1. Creating a New Portal Skin

A new portal will need to be added to the portal through the skin service. As such the web

application which contains the skin will need to be properly configured for the skin service

to discover them. This means properly configuring the ResourceRequestFilter and gatein-

resources.xml.

3.1.7.1.1. Portal Skin Configuration

The gatein-resources.xml will need to specify the new portal skin. This will include specifying the

name of the new skin, where to locate its css stylesheet file and whether to overwrite an existing

portal theme with the same name.

<gatein-resources>

 <portal-skin>

Creating New Skins

17

 <skin-name>MySkin</skin-name>

 <css-path>/skin/myskin.css</css-path>

 <overwrite>false</overwrite>

 </portal-skin>

</gatein-resources>

The default portal skin and window styles are defined in 01eXoResources.war/WEB-INF/gatein-

resources.xml.

Note

The css for the portal skin needs to contain the css for all the window decorations

and the portlet specification css classes.

3.1.7.1.2. Portal Skin Preview Icon

When selecting a skin it is possible to see a preview of what the skin will look like. The current

skin needs to know about the skin icons for all the available skins, otherwise it will not be able to

show the previews. When creating a new portal it is recommended to include the preview icons

of the other skins and to update the other skins with your new portal skin preview.

The portal skin preview icon is specified through the CSS of the portal skin. In order for the current

portal skin to be able to display the preview it must specify a specific CSS class and set the icon

as the background.

For a portal named MySkin in must define the following CSS class:

Chapter 3. Portal Development

18

.UIChangeSkinForm .UIItemSelector .TemplateContainer .MySkinImage

In order for the default skin to know about the skin icon for a new portal skin, the preview

screenshot needs to be place in:

01eXoResources.war:/skin/DefaultSkin/portal/webui/component/customization/

UIChangeSkinForm/background

The CSS stylesheet for the default portal needs to have the following updated with the preview

icon css class. For a skin named MySkin then the following needs to be updated:

01eXoResources.war:/skin/DefaultSkin/portal/webui/component/customization/

UIChangeSkinForm/Stylesheet.css

.UIChangeSkinForm .UIItemSelector .TemplateContainer .MySkinImage {

 margin: auto;

 width: 329px; height:204px;

 background: url('background/MySkin.jpg') no-repeat top;

 cursor: pointer ;

}

3.1.7.2. Creating a New Window Style

Window styles are the CSS applied to window decoration. When an administrator choose a new

application to add on a page he can decide which style of decoration would go around the window

if any.

Creating New Skins

19

3.1.7.2.1. Window Style Configuration

Window Styles are defined within a gatein-resources.xml file which is used by the skin service to

deploy the window style into the portal. Window styles can belong in with a window style category,

this category and the window styles will need to be specified in resources file.

The following gatein-resource.xml fragment will add MyThemeBlue and MyThemeRed to the

MyTheme category.

<window-style>

 <style-name>MyTheme</style-name>

 <style-theme>

 <theme-name>MyThemeBlue</theme-name>

 </style-theme>

 <style-theme>

 <theme-name>MyThemeRed</theme-name>

 </style-theme>

</window-style>

The windows style configuration for the default skin is configured in:

01eXoResources.war/WEB-INF/gatein-resources.xml

Note

When a window style is defined in gatein-resources.xml file, it will be available to all

portlets regardless if the current portal skin support the window decorator or not. It

is recommended that when a new window decorator is added that it is added to all

portal skins or that portal skins share a common stylesheet for window decorators.

3.1.7.2.2. Window Style CSS

In order for the skin service to display the window decorators, it must have CSS classes with

specific naming in relation to the window style name. The service will try and display css based

on this naming. The css class must be included as part of the current portal skin for the window

decorators to be displayed.

The location of the window decorator css classes for the default portal theme is located at:

01eXoResources.war/skin/PortletThemes/Stylesheet.css

Create the CSS file:

/*---- MyTheme ----*/

Chapter 3. Portal Development

20

.MyTheme .WindowBarCenter .WindowPortletInfo {

 margin-right: 80px; /* orientation=lt */

 margin-left: 80px; /* orientation=rt */

}

.MyTheme .WindowBarCenter .ControlIcon {

 float: right; /* orientation=lt */

 float: left; /* orientation=rt */

 width: 24px;

 height: 17px;

 cursor: pointer;

 background-image: url('background/MyTheme.png');

}

.MyTheme .ArrowDownIcon {

 background-position: center 20px;

}

.MyTheme .OverArrowDownIcon {

 background-position: center 116px;

}

.MyTheme .MinimizedIcon {

 background-position: center 44px;

}

.MyTheme .OverMinimizedIcon {

 background-position: center 140px;

}

.MyTheme .MaximizedIcon {

 background-position: center 68px;

}

.MyTheme .OverMaximizedIcon {

 background-position: center 164px;

}

.MyTheme .RestoreIcon {

 background-position: center 92px;

}

.MyTheme .OverRestoreIcon {

 background-position: center 188px;

Creating New Skins

21

}

.MyTheme .NormalIcon {

 background-position: center 92px;

}

.MyTheme .OverNormalIcon {

 background-position: center 188px;

}

.MyTheme .Information {

 height: 18px; line-height: 18px;

 vertical-align: middle; font-size: 10px;

 padding-left: 5px; /* orientation=lt */

 padding-right: 5px; /* orientation=rt */

 margin-right: 18px; /* orientation=lt */

 margin-left: 18px; /* orientation=rt */

}

.MyTheme .WindowBarCenter .WindowPortletIcon {

 background-position: left top; /* orientation=lt */

 background-position: right top; /* orientation=rt */

 padding-left: 20px; /* orientation=lt */

 padding-right: 20px; /* orientation=rt */

 height: 16px;

 line-height: 16px;

}

.MyTheme .WindowBarCenter .PortletName {

 font-weight: bold;

 color: #333333;

 overflow: hidden;

 white-space: nowrap;

}

.MyTheme .WindowBarLeft {

 padding-left: 12px;

 background-image: url('background/MyTheme.png');

 background-repeat: no-repeat;

 background-position: left -148px;

}

.MyTheme .WindowBarRight {

 padding-right: 11px;

Chapter 3. Portal Development

22

 background-image: url('background/MyTheme.png');

 background-repeat: no-repeat;

 background-position: right -119px;

}

.MyTheme .WindowBarCenter {

 background-image: url('background/MyTheme.png');

 background-repeat: repeat-x;

 background-position: left -90px;

 height: 21px;

 padding-top: 8px;

}

.MyTheme .MiddleDecoratorLeft {

 padding-left: 12px;

 background: url('background/MMyTheme.png') repeat-y left;

}

.MyTheme .MiddleDecoratorRight {

 padding-right: 11px;

 background: url('background/MMyTheme.png') repeat-y right;

}

.MyTheme .MiddleDecoratorCenter {

 background: #ffffff;

}

.MyTheme .BottomDecoratorLeft {

 padding-left: 12px;

 background-image: url('background/MyTheme.png');

 background-repeat: no-repeat;

 background-position: left -60px;

}

.MyTheme .BottomDecoratorRight {

 padding-right: 11px;

 background-image: url('background/MyTheme.png');

 background-repeat: no-repeat;

 background-position: right -30px;

}

.MyTheme .BottomDecoratorCenter {

 background-image: url('background/MyTheme.png');

 background-repeat: repeat-x;

Creating New Skins

23

 background-position: left top;

 height: 30px;

}

3.1.7.2.3. How to Set the Default Window Style
To set the default window style to be used for a portal, you will to specify the css classes for a

theme called DefaultTheme.

Note

You do not need to specify the DefaultTheme in gatein-resources.xml

3.1.7.3. How to Create New Portlet skins

Portlets often require additional styles that may not be defined by the portal skin. GateIn 3.2 allows

portlets to define additional stylesheets for each portlet and will append the corresponding link

tags to the head.

The link ID will be of the form {portletAppName}{PortletName}. For example: ContentPortlet

in content.war, will give id="contentContentPortlet"

To define a new CSS file to include whenever a portlet is available on a portal page, the following

fragment needs to be added in gatein-resources.xml

<portlet-skin>

 <application-name>portletAppName</application-name>

 <portlet-name>PortletName</portlet-name>

 <skin-name>Default</skin-name>

 <css-path>/skin/DefaultStylesheet.css</css-path>

</portlet-skin>

<portlet-skin>

 <application-name>portletAppName</application-name>

 <portlet-name>PortletName</portlet-name>

 <skin-name>OtherSkin</skin-name>

 <css-path>/skin/OtherSkinStylesheet.css</css-path>

</portlet-skin>

This will load the DefaultStylesheet.css when the Default skin is used and the

OtherSkinStylesheet.css when the OtherSkin is used.

Chapter 3. Portal Development

24

Note

If the current portal skin is not defined as part of the supported skins, then the portlet

css class will not be loaded. It is recommended to update portlet skins whenever

a new portal skin is created.

3.1.7.3.1. Change portlet icons

Each portlet can be represented by an unique icon that you can see in the portlet registry or page

editor. This icon can be changed by adding an image to the directory of the portlet webapplication:

• skin/DefaultSkin/portletIcons/icon_name.png.

To be used correctly the icon must be named after the portlet.

For example, the icon for an account portlet named AccountPortlet would be located at:

• skin/DefaultSkin/portletIcons/AccountPortlet.png

Note

You must use skin/DefaultSkin/portletIcons/ for the directory to store the

portlet icon regardless of what skin is going to be used.

3.1.7.4. How to create a new Portlet Specification CSS Classes

The portlet specification defines a set of default css classes that should be available for portlets.

These classes are included as part of the portal skin. Please see the portlet specification for a list

of the default classes that should be available.

For the default portal skin, the portlet specification CSS classes are defined in :

eXoResources.war/skin/Portlet/Stylesheet.css

3.1.8. Tips and Tricks

3.1.8.1. Easier css debugging

By default, CSS files are cached and their imports are merged into a single CSS file at the server

side. This reduces the number of HTTP requests from the browser to the server.

The optimization code is quite simple as all the CSS files are parsed at the server startup time

and all the @import and url(...) references are rewritten to support a single flat file. The result is

stored in a cache directly used from the ResourceRequestFilter.

Although the optimization is useful for a production environments, it may be easier to

deactivate this optimization while debugging stylesheets. To do so, set the java system property

exo.product.developing to true.

Tips and Tricks

25

For example, the property can be passed as a JVM parameter with -D option when running GateIn.

sh $JBOSS_HOME/bin/run.sh -Dexo.product.developing=true

1. warning("This option may cause display bugs with certain browsers like Internet Explorer")

3.1.8.2. Some CSS techniques

It is recommended that users have some experience with CSS before studying GateIn 3.2 CSS.

GateIn 3.2 relies heavily on CSS to create the layout and effects for the UI. Some common

techniques for customizing GateIn 3.2 CSS are explained below.

3.1.8.2.1. Decorator pattern

The decorator is a pattern to create a contour or a curve around an area. In order to achieve this

effect you need to create 9 cells. The BODY is the central area that you want to decorate. The

other 8 cells are distributed around the BODY cell. You can use the width, height and background

image properties to achieve any decoration effect that you want.

<div class="Parent">

 <div class="TopLeft">

 <div class="TopRight">

 <div class="TopCenter"></div>

 </div>

 </div>

 <div class="CenterLeft">

Chapter 3. Portal Development

26

 <div class="CenterRight">

 <div class="CenterCenter">BODY</div>

 </div>

 </div>

 <div class="BottomLeft">

 <div class="BottomRight">

 <div class="BottomCenter"></div>

 </div>

 <div>

</div>

3.1.8.2.2. Left margin left pattern

Left margin left pattern is a technique to create 2 blocks side by side. The left block will have a

fixed size and the right block will take the rest of the available space. When the user resizes the

browser the added or removed space will be taken from the right block.

<div class="Parent">

 <div style="float: left; width: 100px">

 </div>

 <div style="margin-left: 105px;">

 <div>

 <div style="clear: left"></div>

</div>

3.2. Portal Lifecycle

3.2.1. Overview

This chapter describes the portal lifecycle from the application server start to its stop as well as

how requests are handled.

Application Server start and stop

27

3.2.2. Application Server start and stop

A portal instance is simply a web application deployed as a WAR in an application server. Portlets

are also part of an enhanced WAR called a portlet application.

GateIn 3.2 doesn't require any particular setup for your portlet in most common scenarios and the

web.xml file can remain without any GateIn 3.2 specific configuration.

During deployment, GateIn 3.2 will automatically and transparently inject a servlet into the portlet

application to be able to interact with it. This feature is dependent on the underlying servlet

container but will work out of the box on the proposed bundles.

3.2.3. The Command Servlet

The servlet is the main entry point for incoming requests, it also includes some init code when

the portal is launched. This servlet (org.gatein.wci.command.CommandServlet) is automatically

added during deployment and mapped to /tomcatgateinservlet.

This is equivalent to adding the following into web.xml.

Note

As the servlet is already configured this example is for information only.

<servlet>

 <servlet-name>TomcatGateInServlet</servlet-name>

 <servlet-class>org.gatein.wci.command.CommandServlet</servlet-class>

 <load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>TomcatGateInServlet</servlet-name>

 <url-pattern>/tomcatgateinservlet</url-pattern>

</servlet-mapping>

It is possible to filter on the CommandServlet by filtering the URL pattern used by the Servlet

mapping.

The example below would create a servlet filter that calculates the time of execution of a portlet

request.

The filter class:

Chapter 3. Portal Development

28

package org.example;

import java.io.IOException;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

public class MyFilter implements javax.servlet.Filter {

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain) throws IOException, ServletException

 {

 long beforeTime = System.currentTimeMillis();

 chain.doFilter(request, response);

 long afterTime = System.currentTimeMillis();

 System.out.println("Time to execute the portlet request (in ms): " + (afterTime - beforeTime));

 }

 public void init(FilterConfig config) throws ServletException

 {

 }

 public void destroy()

 {

 }

}

The Java EE web application configuration file (web.xml) of the portlet on which we want to know

the time to serve a portlet request. As mentioned above nothing specific to GateIn 3.2 needs to

be included, only the URL pattern to set has to be known.

<?xml version="1.0"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-

app_2_4.xsd"

 version="2.5">

Default Portal Configuration

29

 <filter>

 <filter-name>MyFilter</filter-name>

 <filter-class>org.example.MyFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>MyFilter</filter-name>

 <url-pattern>/tomcatgateinservlet</url-pattern>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

</web-app>

INCLUDE dispatcher

It is important to set INCLUDE as dispatcher as the portal will always hit the

CommandServlet through a request dispatcher. Without this, the filter will not be

triggered, unless direct access to a resource (such as an image).

3.3. Default Portal Configuration

3.3.1. Overview

GateIn 3.2 default home page URL is http://{hostname}:{port}/portal/. There may be

multiple independent portals deployed in parallel at any given time, each of which has its root

context (i.e.: http://{hostname}:{port}/sample-portal/). Each portal is internally composed

of one or more, what we again call 'portals'. There needs to be at least one such portal - the default

one is called 'classic'. When accessing GateIn 3.2 default home page URL, you are automatically

redirected to 'classic' portal. The default portal performs another important task. When starting up

GateIn 3.2 for the first time, its JCR database will be empty (that's where portals keep their runtime-

configurable settings). It's the default portal that's used to detect this, and to trigger automatic

data initialization.

3.3.2. Configuration

The following example configuration can be found at: "02portal.war:/WEB-INF/conf/portal/

portal-configuration.xml".

<component>

 <key>org.exoplatform.portal.config.UserPortalConfigService</key>

 <type>org.exoplatform.portal.config.UserPortalConfigService</type>

Chapter 3. Portal Development

30

 <component-plugins>

 <component-plugin>

 <name>new.portal.config.user.listener</name>

 <set-method>initListener</set-method>

 <type>org.exoplatform.portal.config.NewPortalConfigListener</type>

 <description>this listener init the portal configuration</description>

 <init-params>

 <value-param>

 <name>default.portal</name>

 <description>The default portal for checking db is empty or not</description>

 <value>classic</value>

 </value-param>

 ...

 </init-params>

 </component-plugin>

 </component-plugins>

 </component>

In this example the classic portal has been set as the default.

Note

Components, component-plugins, and init-params are explained in Foundations

chapter. For now just note how NewPortalConfigListener component-plugin is

used to add configuration to UserPortalConfigService, which is designed in this

way to allow other components to add configuration to it.

3.4. Portal Default Permission Configuration

3.4.1. Overview

The default permission configuration for the portal is defined through

org.exoplatform.portal.config.UserACL component configuration in the file

02portal.war:/WEB-INF/conf/portal/portal-configuration.xml.

It defines 8 permissions types:

super.user

The super user has all the rights on the platform, this user is referred to as root.

portal.administrator.groups

Any member of those groups are considered administrators. Default value is /platform/

administrators.

Overview

31

portal.administrator.mstype

Any user with that membership type would be considered administrator or the associated

group. Default value is manager.

portal.creator.groups

This list defines all groups that will be able to manage the different portals. Members of this

group also have the permission to create new portals. The format is membership:/group/

subgroup.

navigation.creator.membership.type

Defines the membership type of group managers. The group managers have the permission

to create and edit group pages and they can modify the group navigation.

guests.group

Any anonymous user automatically becomes a member of this group when they enter the

public pages.

mandatory.groups

Groups that can't be deleted.

mandatory.mstypes

Membership types that can't be deleted.

<component>

 <key>org.exoplatform.portal.config.UserACL</key>

 <type>org.exoplatform.portal.config.UserACL</type>

 <init-params>

 <value-param>

 <name>super.user</name>

 <description>administrator</description>

 <value>root</value>

 </value-param>

 <value-param>

 <name>portal.creator.groups</name>

 <description>groups with membership type have permission to manage portal</description>

 <value>*:/platform/administrators,*:/organization/management/executive-board</value>

 </value-param>

 <value-param>

 <name>navigation.creator.membership.type</name>

 <description>specific membership type have full permission with group navigation</

description>

 <value>manager</value>

 </value-param>

 <value-param>

Chapter 3. Portal Development

32

 <name>guests.group</name>

 <description>guests group</description>

 <value>/platform/guests</value>

 </value-param>

 <value-param>

 <name>access.control.workspace</name>

 <description>groups with memberships that have the right to access the User Control Workspace</

description>

 <value>*:/platform/administrators,*:/organization/management/executive-board</value>

 </value-param>

 </init-params>

</component>

3.4.2. Overwrite Portal Default Permissions

When creating custom portals and portal extensions it's possible to override the default

configuration by using org.exoplatform.portal.config.PortalACLPlugin, configuring it as

an external-plugin of org.exoplatform.portal.config.UserACL service:

<external-component-plugins>

 <target-component>org.exoplatform.portal.config.UserACL</target-component>

 <component-plugin>

 <name>addPortalACLPlugin</name>

 <set-method>addPortalACLPlugin</set-method>

 <type>org.exoplatform.portal.config.PortalACLPlugin</type>

 <description>setting some permission for portal</description>

 <init-params>

 <values-param>

 <name>access.control.workspace.roles</name>

 <value>*:/platform/administrators</value>

 <value>*:/organization/management/executive-board</value>

 </values-param>

 <values-param>

 <name>portal.creation.roles</name>

 <value>*:/platform/administrators</value>

 <value>*:/organization/management/executive-board</value>

 </values-param>

 </init-params>

 </component-plugin>

 </external-component-plugins>

Portal Navigation Configuration

33

3.5. Portal Navigation Configuration

3.5.1. Overview

There are three navigation types available to portal users:

• Section 3.5.2, “Portal Navigation”

• Section 3.5.3, “Group Navigation”

• Section 3.5.4, “User Navigation”

These navigations are configured using the standard XML syntax in the file; "02portal.war:/

WEB-INF/conf/portal/portal-configuration.xml".

<component>

 <key>org.exoplatform.portal.config.UserPortalConfigService</key>

 <type>org.exoplatform.portal.config.UserPortalConfigService</type>

 <component-plugins>

 <component-plugin>

 <name>new.portal.config.user.listener</name>

 <set-method>initListener</set-method>

 <type>org.exoplatform.portal.config.NewPortalConfigListener

 </type>

 <description>this listener init the portal configuration

 </description>

 <init-params>

 <value-param>

 <name>default.portal</name>

 <description>The default portal for checking db is empty or not</description>

 <value>classic</value>

 </value-param>

 <value-param>

 <name>page.templates.location</name>

 <description>the path to the location that contains Page templates</description>

 <value>war:/conf/portal/template/pages</value>

 </value-param>

 <value-param>

 <name>override</name>

 <description>The flag parameter to decide if portal metadata is overriden on restarting server

 </description>

 <value>false</value>

 </value-param>

 <object-param>

Chapter 3. Portal Development

34

 <name>site.templates.location</name>

 <description>description</description>

 <object type="org.exoplatform.portal.config.SiteConfigTemplates">

 <field name="location">

 <string>war:/conf/portal</string>

 </field>

 <field name="portalTemplates">

 <collection type="java.util.HashSet">

 <value><string>basic</string></value>

 <value><string>classic</string></value>

 </collection>

 </field>

 <field name="groupTemplates">

 <collection type="java.util.HashSet">

 <value><string>group</string></value>

 </collection>

 </field>

 <field name="userTemplates">

 <collection type="java.util.HashSet">

 <value><string>user</string></value>

 </collection>

 </field>

 </object>

 </object-param>

 <object-param>

 <name>portal.configuration</name>

 <description>description</description>

 <object type="org.exoplatform.portal.config.NewPortalConfig">

 <field name="predefinedOwner">

 <collection type="java.util.HashSet">

 <value><string>classic</string></value>

 </collection>

 </field>

 <field name="ownerType">

 <string>portal</string>

 </field>

 <field name="templateLocation">

 <string>war:/conf/portal/</string>

 </field>

 <field name="importMode">

 <string>conserve</string>

 </field>

 </object>

 </object-param>

Overview

35

 <object-param>

 <name>group.configuration</name>

 <description>description</description>

 <object type="org.exoplatform.portal.config.NewPortalConfig">

 <field name="predefinedOwner">

 <collection type="java.util.HashSet">

 <value><string>/platform/administrators</string></value>

 <value><string>/platform/users</string></value>

 <value><string>/platform/guests</string></value>

 <value><string>/organization/management/executive-board</string></value>

 </collection>

 </field>

 <field name="ownerType">

 <string>group</string>

 </field>

 <field name="templateLocation">

 <string>war:/conf/portal</string>

 </field>

 <field name="importMode">

 <string>conserve</string>

 </field>

 </object>

 </object-param>

 <object-param>

 <name>user.configuration</name>

 <description>description</description>

 <object type="org.exoplatform.portal.config.NewPortalConfig">

 <field name="predefinedOwner">

 <collection type="java.util.HashSet">

 <value><string>root</string></value>

 <value><string>john</string></value>

 <value><string>mary</string></value>

 <value><string>demo</string></value>

 <value><string>user</string></value>

 </collection>

 </field>

 <field name="ownerType">

 <string>user</string>

 </field>

 <field name="templateLocation">

 <string>war:/conf/portal</string>

 </field>

 <field name="importMode">

 <string>conserve</string>

Chapter 3. Portal Development

36

 </field>

 </object>

 </object-param>

 </init-params>

 </component-plugin>

 </component-plugins>

</component>

This XML configuration defines where in the portal's war to look for configuration, and which

portals, groups, and user specific views to include in portal/group/user navigation. Those files

will be used to create an initial navigation when the portal is launched in the first time. That

information will then be stored in the JCR content repository, and can then be modified and

managed from the portal UI.

Each portal, groups and users navigation is indicated by a configuration paragraph, for example:

<object-param>

 <name>portal.configuration</name>

 <description>description</description>

 <object type="org.exoplatform.portal.config.NewPortalConfig">

 <field name="predefinedOwner">

 <collection type="java.util.HashSet">

 <value><string>classic</string></value>

 </collection>

 </field>

 <field name="ownerType">

 <string>portal</string>

 </field>

 <field name="templateLocation">

 <string>war:/conf/portal/</string>

 </field>

 <field name="importMode">

 <string>conserve</string>

 </field>

 </object>

</object-param>

predefinedOwner define the navigation owner, portal will look for the configuration files in

folder with this name, if there is no suiable folder, a default portal will be created with name

is this value.

ownerType define the type of portal navigation. It may be a portal, group or user

Portal Navigation

37

templateLocation the classpath where contains all portal configuration files

importMode The mode for navigation import. There are 4 types of import mode:

• conserve: Import data when it does not exist, otherwise do nothing.

• insert: Import data when it does not exist, otherwise performs a strategy that adds new

data only.

• merge: Import data when it does not exist, update data when it exists.

• rewrite: Overwrite data whatsoever.

Base on these parameters, portal will look for the configuration files and create a relevant portal

navigation, pages and data import strategy. The portal configuration files will be stored in folders

with path look like {templateLocation}/{ownerType}/{predefinedOwner}, all navigations are

defined in the navigation.xml file, pages are defined in pages.xml and portal configuration is

defined in {ownerType}.xml. For example, with the above configuration, prtal will look for all

configuration files from war:/conf/portal/portal/classic path.

3.5.2. Portal Navigation

The portal navigation incorporates the pages that can be accessed even when the user is not

logged in assuming the applicable permissions allow the public access). For example, several

portal navigations are used when a company owns multiple trademarks, and sets up a website

for each of them.

The classic portal is configured by four XML files in the 02portal.war:/WEB-INF/conf/portal/

portal/classic directory:

portal.xml

This file describes the layout and portlets that will be shown on all pages. The layout

usually contains the banner, footer, menu and breadcrumbs portlets. GateIn 3.2 is extremely

configurable as every view element (even the banner and footer) is a portlet.

<portal-config

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://

www.gatein.org/xml/ns/gatein_objects_1_2"

 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">

 <portal-name>classic</portal-name>

 <locale>en</locale>

 <access-permissions>Everyone</access-permissions>

 <edit-permission>*:/platform/administrators</edit-permission>

 <properties>

 <entry key="sessionAlive">onDemand</entry>

 <entry key="showPortletInfo">1</entry>

Chapter 3. Portal Development

38

 </properties>

 <portal-layout>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>BannerPortlet</portlet-ref>

 <preferences>

 <preference>

 <name>template</name>

 <value>par:/groovy/groovy/webui/component/UIBannerPortlet.gtmpl</value>

 <read-only>false</read-only>

 </preference>

 </preferences>

 </portlet>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 </portlet-application>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>NavigationPortlet</portlet-ref>

 </portlet>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 </portlet-application>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>BreadcumbsPortlet</portlet-ref>

 </portlet>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 </portlet-application>

 <page-body> </page-body>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>FooterPortlet</portlet-ref>

 <preferences>

Portal Navigation

39

 <preference>

 <name>template</name>

 <value>par:/groovy/groovy/webui/component/UIFooterPortlet.gtmpl</value>

 <read-only>false</read-only>

 </preference>

 </preferences>

 </portlet>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 </portlet-application>

 </portal-layout>

</portal-config>

It is also possible to apply a nested container that can also contain portlets. Row, column or

tab containers are then responsible for the layout of their child portlets.

Each application references a portlet using the id portal#{portalName}:/

{portletWarName}/{portletName}/{uniqueId}

Use the page-body tag to define where GateIn 3.2 should render the current page.

The defined classic portal is accessible to "Everyone" (at /portal/public/classic) but

only members of the group /platform/administrators can edit it.

navigation.xml

This file defines all the navigation nodes of the portal. The syntax is simple using the nested

node tags. Each node refers to a page defined in the pages.xml file (explained next).

If the administrator want to create node labels for each language, they will have to use

xml:lang attribute in the label tag with value of xml:lang is the relevant locale.

Otherwise, if they want the node label is localized by resource bundle files, the #{...} syntax

will be used, the enclosed property name serves as a key that is automatically passed to

the internationalization mechanism. Thus the literal property name is replaced by a localized

value taken from the associated properties file matching the current locale.

For example:

<node-navigation

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://

www.gatein.org/xml/ns/gatein_objects_1_2"

 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">

Chapter 3. Portal Development

40

 <priority>1</priority>

 <page-nodes>

 <node>

 <name>home</name>

 <label xml:lang="en">Home</label>

 <page-reference>portal::classic::homepage</page-reference>

 </node>

 <node>

 <name>sitemap</name>

 <label xml:lang="en">SiteMap</label>

 <visibility>DISPLAYED</visibility>

 <page-reference>portal::classic::sitemap</page-reference>

 </node>

 </page-nodes>

</node-navigation>

This navigation tree can have multiple views inside portlets (such as the breadcrumbs portlet)

that render the current view node, the site map or the menu portlets.

pages.xml

This configuration file structure is very similar to portal.xml and it can also contain container

tags. Each application can decide whether to render the portlet border, the window state, the

icons or portlet's mode.

<page-set

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://

www.gatein.org/xml/ns/gatein_objects_1_2"

 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">

 <page>

 <name>homepage</name>

 <title>Home Page</title>

 <access-permissions>Everyone</access-permissions>

 <edit-permission>*:/platform/administrators</edit-permission>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>HomePagePortlet</portlet-ref>

 <preferences>

 <preference>

 <name>template</name>

Group Navigation

41

 <value>system:/templates/groovy/webui/component/UIHomePagePortlet.gtmpl</

value>

 <read-only>false</read-only>

 </preference>

 </preferences>

 </portlet>

 <title>Home Page portlet</title>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 <show-application-state>false</show-application-state>

 <show-application-mode>false</show-application-mode>

 </portlet-application>

 </page>

 <page>

 <name>sitemap</name>

 <title>Site Map</title>

 <access-permissions>Everyone</access-permissions>

 <edit-permission>*:/platform/administrators</edit-permission>

 <portlet-application>

 <portlet>

 <application-ref>web</application-ref>

 <portlet-ref>SiteMapPortlet</portlet-ref>

 </portlet>

 <title>SiteMap</title>

 <access-permissions>Everyone</access-permissions>

 <show-info-bar>false</show-info-bar>

 </portlet-application>

 </page>

</page-set>

3.5.3. Group Navigation

Group navigations are dynamically added to the user navigation at login. This allows users to see

the menu of all pages assigned to any groups they belong to.

The group navigation menu is configured by three XML files (navigation.xml, pages.xml and

portlet-preferences.xml). The syntax used in these files is the same as those covered in

Section 3.5.2, “Portal Navigation”.

They are also located in the {templateLocation}/{ownerType}/{predefinedOwner} directory

with ownerType is group and predefinedOwner is the path to the group. For example,

portal.war/WEB-INF/conf/portal/group/platform/administrators/.

Chapter 3. Portal Development

42

3.5.4. User Navigation

User navigation is the set of nodes and pages that are owned by the user. They are part of the

user's dashboard.

Three files configure the user navigation (navigation.xml, pages.xml and portlet-

preferences.xml). They are located in the {templateLocation}/{ownerType}/

{predefinedOwner} directory with ownerType is user and predefinedOwner is username that

want to create the navigation. For example, if administrator want to create navigation for user

root, he has to locate the configuration files in portal.war/WEB-INF/conf/portal/user/root

3.6. Data Import Strategy

3.6.1. Introduction

In the Portal extension mechanism, developers can define an extension that Portal data can

be customized by configurations in the extension. There are several cases which an extension

developer wants to define how to customize the Portal data, for example modifying, overwriting

or just inserting a bit into the data defined by the portal. Therefore, GateIn also defines several

modes for each case and the only thing which a developer has to do is to clarify the usecase and

reasonably configure extensions.

This section shows you how data are changes in each mode.

3.6.2. Import Mode
In this section, the following modes for the import strategy are introduced:

• CONSERVE

• MERGE

• INSERT

• OVERWRITE

Each mode indicates how the Portal data are imported. The import mode value is set whenever

NewPortalConfigListener is initiated. If the mode is not set, the default value will be used in this

case. The default value is configurable as a UserPortalConfigService initial param. For example,

the bellow configuration means that default value is MERGE

<component>

 <key>org.exoplatform.portal.config.UserPortalConfigService</key>

 <type>org.exoplatform.portal.config.UserPortalConfigService</type>

Data Import Strategy

43

 <component-plugins>

 </component-plugins>

 <init-params>

 <value-param>

 <name>default.import.mode</name>

 <value>merge</value>

 </value-param>

 </init-params>

</component>

The way that the import strategy works with the import mode will be clearly demonstrated in next

sections for each type of data.

3.6.3. Data Import Strategy
The 'Portal Data' term which has been referred in the previous sections can be classified into

three types of object data: Portal Config, Page Data and Navigation Data; each of which has some

differences in the import strategy.

3.6.3.1. Navigation Data
The navigation data import strategy will be processed to the import mode level as the followings:

• CONSERVE: If the navigation exists, leave it untouched. Otherwise, import data.

• INSERT: Insert the missing description data, but add only new nodes. Other modifications

remains untouched.

• MERGE: Merge the description data, add missing nodes and update same name nodes.

• OVERWRITE: Always destroy the previous data and recreate it.

In the GateIn navigation structure, each navigation can be referred to a tree which each node

links to a page content. Each node contains some description data, such as label, icon, page

reference, and more. Therefore, GateIn provides a way to insert or merge new data to the initiated

navigation tree or a sub-tree.

The merge strategy performs the recursive comparison of child nodes between the existing

persistent nodes of a navigation and the transient nodes provided by a descriptor:

1. Start with the root nodes (which is the effective root node or another node if the parent URI

is specified).

Chapter 3. Portal Development

44

2. Compare the set of child nodes and insert the missing nodes in the persistent nodes.

3. Proceed recursively for each child having the same name.

Let's see the example with two navigation nodes in each import mode. In this case, there are 2

navigation definitions:

<node-navigation>

 <page-nodes>

 <node>

 <name>foo</name>

 <icon>foo_icon_1</icon>

 <node>

 <name>juu</name>

 <icon>juu_icon</icon>

 </node>

 </node>

 <node>

 <name>daa</name>

 <icon>daa_icon</icon>

 </node>

 </page-nodes>

</node-navigation>

Navigation node tree hierarchy

<node-navigation>

 <page-nodes>

 <node>

 <name>foo</name>

 <icon>foo_icon_2</icon>

 </node>

Data Import Strategy

45

 <node>

 <name>bar</name>

 <icon>bar_icon</icon>

 </node>

 </page-nodes>

</node-navigation>

Navigation node tree hierarchy

For example, the navigation1 is loaded before navigation2. The Navigation Importer processes

on two navigation definitions, depending on the Import Mode defined in portal configuration.

• Case 1: Import mode is CONSERVE.

With the CONSERVE mode, data are only imported when they do not exist. So, if the navigation has

been created by the navigation1 definition, the navigation2 definition does not affect anything

on it. We have the result as following

• Case 2: Import mode is INSERT.

If a node does not exist, the importer will add new nodes to the navigation tree. You will see

the following result:

Chapter 3. Portal Development

46

Hereafter, the node 'bar' is added to the navigation tree, because it does not exist in the initiated

data. Other nodes are kept in the import process.

• Case 3: Import mode is MERGE.

The MERGE mode indicates that a new node is added to the navigation tree, and updates the

node data (such node label and node icon in the example) if it exists.

• Case 4: Import mode is OVERWRITE.

Everything will be destroyed and replaced with new data if the OVERWRITE mode is used.

Internationalization Configuration

47

3.6.3.2. Portal Config

PortalConfig defines the portal name, permission, layout and some properties of a site. These

information are configured in the portal.xml, group.xml or user.xml, depending on the site

type. The PortalConfig importer performs a strategy that is based on the mode defined in

NewPortalConfigListener, including CONSERVE, INSERT, MERGE or OVERWRITE. Let's see how the

import mode affects in the process of portal data performance:

• CONSERVE: There is nothing to be imported. The existing data will be kept without any changes.

• INSERT: When the portal config does not exist, create the new portal defined by the portal config

definition. Otherwise, do nothing.

• MERGE and OVERWRITE have the same behavior. The new portal config will be created if it does

not exist or update portal properties defined by the portal config definition.

3.6.3.3. Page Data

The import mode affects the page data import as the same as Portal Config.

Note

If the Import mode is CONSERVE or INSERT, the data import strategy always performs

as the MERGE mode in the first data initialization of the Portal.

3.7. Internationalization Configuration

3.7.1. Overview

Assumed Knowledge

GateIn 3.2 is fully configurable for internationalization, however users should have

a general knowledge of Internationalization in Java products before attempting

these configurations.

Sun Java hosts a comprehensive guide to internationalizing java products at http://

java.sun.com/docs/books/tutorial/i18n/TOC.html.

All GateIn 3.2 applications contain property files for various languages. They are packaged with

the portlets applications in a WEB-INF/classes/locale/ directory.

These files are located in the classes folder of the WEB-INF directory, so as to be loaded by

the ClassLoader.

All resource files are in a subfolder named locale.

http://java.sun.com/docs/books/tutorial/i18n/TOC.html
http://java.sun.com/docs/books/tutorial/i18n/TOC.html

Chapter 3. Portal Development

48

For instance; the translations for the NavigationPortlet are located in web.war/WEB-INF/classes/

locale/portlet/portal

NavigationPortlet_de.properties

NavigationPortlet_en.properties

NavigationPortlet_es.properties

NavigationPortlet_fr.properties

NavigationPortlet_nl.properties

NavigationPortlet_ru.properties

NavigationPortlet_uk.properties

NavigationPortlet_ar.xml

Inside those file are typical key=value Java EE properties. For example the French one:

javax.portlet.title=Portlet Navigation

There are also properties files in the portal itself. They form the portal resource bundle.

From a portlet you can then access translations from the portlet itself or shared at the portal level,

both are aggregated when you need them.

Translation in XML format

It is also possible to use a proprietary XML format to define translations. This

is a more convenient way to translate a document for some languages such as

Japanese, Arabic or Russian. Property files have te be ASCII encoded, while the

XML file can define its encoding. As a result it's easier for a human being to read

(and fix) a translation in XML instead of having to decode and encode the property

file.

For more information refer to: Section 3.10, “XML Resources Bundles”

3.7.2. Locales configuration

Various languages are available in the portal package. The configuration below will define which

languages are shown in the "Change Language" section and made available to users.

The 02portal.war:/WEB-INF/conf/common/common-configuration.xml file of your

installation contains the following section:

<component>

 <key>org.exoplatform.services.resources.LocaleConfigService</key>

Locales configuration

49

 <type>org.exoplatform.services.resources.impl.LocaleConfigServiceImpl</type>

 <init-params>

 <value-param>

 <name>locale.config.file</name>

 <value>war:/conf/common/locales-config.xml</value>

 </value-param>

 </init-params>

</component>

This configuration points to the locale configuration file.

The locale configuration file (02portal.war:/WEB-INF/conf/common/locales-config.xml)

contains the following code:

<?xml version="1.0" encoding="UTF-8"?>

<locales-config>

 <locale-config>

 <locale>en</locale>

 <output-encoding>UTF-8</output-encoding>

 <input-encoding>UTF-8</input-encoding>

 <description>Default configuration for english locale</description>

 </locale-config>

 <locale-config>

 <locale>fr</locale>

 <output-encoding>UTF-8</output-encoding>

 <input-encoding>UTF-8</input-encoding>

 <description>Default configuration for the french locale</description>

 </locale-config>

 <locale-config>

 <locale>ar</locale>

 <output-encoding>UTF-8</output-encoding>

 <input-encoding>UTF-8</input-encoding>

 <description>Default configuration for the arabic locale</description>

 <orientation>rt</orientation>

 </locale-config>

</locales-config>

locale The locale has to be defined such as defined here http://ftp.ics.uci.edu-pub-ietf-http-

related-iso639.txt. In this example "ar" is Arabic.

http://ftp.ics.uci.edu-pub-ietf-http-related-iso639.txt
http://ftp.ics.uci.edu-pub-ietf-http-related-iso639.txt

Chapter 3. Portal Development

50

output-encoding deals with character encoding. It is recommended that UTF-8 be used.

input-encoding In the java implementation, the encoding parameters will be used for

the request response stream. The input-encoding parameter will be used for request

setCharacterEncoding(..).

description Description for the language

orientation The default orientation of text and images is Left-To-Right. GateIn 3.2 supports

Right-To-Left orientation. Modifying text orientation is explained in Section 3.9, “RTL (Right

To Left) Framework”.

3.7.3. ResourceBundleService

The resource bundle service is configured in: 02portal.war:/WEB-INF/conf/common/common-

configuration.xml:

<component>

 <key>org.exoplatform.services.resources.ResourceBundleService</key>

 <type>org.exoplatform.services.resources.impl.SimpleResourceBundleService</type>

 <init-params>

 <values-param>

 <name>classpath.resources</name>

 <description>The resources that start with the following package name should be load from

 file system</description>

 <value>locale.portlet</value>

 </values-param>

 <values-param>

 <name>init.resources</name>

 <description>Initiate the following resources during the first launch</description>

 <value>locale.portal.expression</value>

 <value>locale.portal.services</value>

 <value>locale.portal.webui</value>

 <value>locale.portal.custom</value>

 <value>locale.navigation.portal.classic</value>

 <value>locale.navigation.group.platform.administrators</value>

 <value>locale.navigation.group.platform.users</value>

 <value>locale.navigation.group.platform.guests</value>

 <value>locale.navigation.group.organization.management.executive-board</value>

 </values-param>

 <values-param>

 <name>portal.resource.names</name>

 <description>The properties files of the portal , those file will be merged

 into one ResoruceBundle properties </description>

 <value>locale.portal.expression</value>

 <value>locale.portal.services</value>

Navigation Resource Bundles

51

 <value>locale.portal.webui</value>

 <value>locale.portal.custom</value>

 </values-param>

 </init-params>

</component>

classpath.resources are discussed in a later section.

init.resources TODO

portal.resource.names Defines all resources that belong to the Portal Resource Bundle.

These resources are merged to a single resource bundle which is accessible from anywhere

in GateIn 3.2. All these keys are located in the same bundle, which is separated from the

navigation resource bundles.

3.7.4. Navigation Resource Bundles

There is a resource bundle for each navigation. A navigation can exist for user, groups, and portal.

The previous example shows bundle definitions for the navigation of the classic portal and of

four different groups. Each of these resource bundles occupies a different sphere, they are

independent of each other and they are not included in the portal.resource.names parameter.

The properties for a group must be in the WEB-INF/classes/locale/navigation/

group/ folder. /WEB-INF/classes/locale/navigation/group/organization/management/

executive-board_en.properties, for example.

The folder and file names must correspond to the group hierarchy. The group name "executive-

board" is followed by the iso 639 code.

For each language defined in LocalesConfig must have a resource file defined. If the name of

a group is changed the name of the folder and/or files of the correspondent navigation resource

bundles must also be changed.

Content of executive-board_en.properties:

organization.title=Organization

organization.newstaff=New Staff

organization.management=Management

This resource bundle is only accessible for the navigation of the

organization.management.executive-board group.

3.7.5. Portlets

Portlets are independent applications and deliver their own resource files.

Chapter 3. Portal Development

52

All shipped portlet resources are located in the locale/portlet subfolder. The

ResourceBundleService parameter classpath.resources defines this subfolder.

Procedure 3.1. Example

1. To add a Spanish translation to the GadgetPortlet.

2. Create the file GadgetPortlet_es.properties in: WEB-INF/classes/locale/portlet/

gadget/GadgetPortlet.

3. In portlet.xml, add Spanish as a supported-locale ('es' is the 2 letters code for Spanish),

the resource-bundle is already declared and is the same for all languages :

<supported-locale>en</supported-locale>

<supported-locale>es</supported-locale>

<resource-bundle>locale.portlet.gadget.GadgetPortlet</resource-bundle>

See the portlet specification for more details about portlet internationalization.

3.7.5.1. Standard portlet resource keys

The portlet specifications defines three standard keys: Title, Short Title and Keywords. Keywords

is formatted as a comma-separated list of tags.

 javax.portlet.title=Breadcrumbs Portlet

 javax.portlet.short-title=Breadcrumbs

 javax.portlet.keywords=Breadcrumbs, Breadcrumb

3.7.5.2. Debugging resource bundle usage

When translating an application it can sometimes be difficult to find the right key for a given

property.

Execute the portal in debug mode and select, from the available languages, select the special

language; Magic locale.

This feature translates a key to the same key value.

For example, the translated value for the key "organization.title" is simply the value

"organization.title". Selecting that language allows use of the portal and its applications with

all the keys visible. This makes it easier to find out the correct key for a given label in the portal

page.

Translating the language selection form

53

3.7.6. Translating the language selection form

When choosing a language as on the screenshot above, the user is presented

with a list of languages on the left side in the current chosen language and

on the right side, the same language translated into its own language. Those

texts are obtained from the JDK API java.util.Locale.getDisplayedLanguage() and

java.util.Locale.getDisplayedCountry() (if needed) and all languages may not be

translated and can also depend on the JVM currently used. It is still possible to override

those values by editing the locale.portal.webui resource bundle, to do so edit the

file gatein.ear/02portal.war/WEB-INF/classes/locale/portal/webui_xx_yy.properties

where xx_yy represents the country code of the language in which you want to translate a

particular language. In that file, add or modify a key such as Locale.xx_yy with the value being

the translated string.

Example 3.1. Changing the displayed text for Traditional Chinese in French

First edit gatein.ear/02portal.war/WEB-INF/classes/locale/portal/

webui_fr.properties where ne is the country code for French, and add the following key into it:

 Locale.zh_TW=Chinois traditionnel

Chapter 3. Portal Development

54

After a restart the language will be updated in the user interface when a user is trying to change

the current language.

3.8. Pluggable Locale Policy

Every request processed by every portlet is invoked within a context of current Locale. Current

Locale can be retrieved by calling getLocale() method of javax.portlet.PortletRequest

interface.

The exact algorithm for determining the current Locale is not specified by Portlet Specification,

and is left to portlet containers to implement the way they deem most appropriate.

In GateIn 3.2 each portal instance has a default language which can be used to present content

for new users. Another option is to use each user’s browser language preference, provided it

matches one of the available localizations that GateIn 3.2 supports, and only fallback to portal

default language if no match is found. Every user, while visiting a portal, has an option to change

the language of the user interface by using a Language chooser. The choice can be remembered

for the duration of the session, or it can be remembered for a longer period using a browser cookie,

or - for registered and logged-in users - it can be saved into user’s profile.

So, we can see that there is more than one way to determine the Locale to be used for displaying

a portal page to the user. For this reason the mechanism for determining the current Locale of

the request is pluggable in GateIn 3.2, so the exact algorithm can be customized.

3.8.1. LocalePolicy API

Customization is achieved by using LocalePolicy API, which is a simple API consisting of one

interface, and one class:

• org.exoplatform.services.resources.LocalePolicy interface

• org.exoplatform.services.resources.LocaleContextInfo class

LocalePolicy interface defines a single method that’s invoked on the installed LocalePolicy

service implementation:

public interface LocalePolicy

{

 public Locale determineLocale(LocaleContextInfo localeContext);

}

Locale returned by determineLocale() method is the Locale that will be returned to portlets when

they call javax.portlet.PortletRequest.getLocale() method.

Default LocalePolicy

55

The returned Locale has to be one of the locales supported by portal, otherwise it will fallback

to portal-default Locale.

The supported locales are listed in gatein.ear/02portal.war/WEB-INF/conf/common/

locales-config.xml file as described in Section 3.7.2, “Locales configuration” .

The determineLocale() method takes a parameter of type LocaleContextInfo, which

represents a compilation of preferred locales from different sources - user’s profile, portal default,

browser language settings, current session, browser cookie … All these different sources of

Locale configuration or preference are used as input to LocalePolicy implementation that

decides which Locale should be used.

3.8.2. Default LocalePolicy

By default,

org.exoplatform.portal.application.localization.DefaultLocalePolicyService - an

implementation of LocalePolicy - is installed to provide the default behaviour. This, however,

can easily be extended and overriden. A completely new implementation can also be written from

scratch.

DefaultLocalePolicyService treats logged-in users slightly differently than anonymous users.

Logged-in users have a profile that can contain language preference, while anonymous users

don't.

Here is an algorithm used for anonymous users.

Procedure 3.2. An algorithm for anonymous users

1. Iterate over LocaleContextInfo properties in the following order:

• cookieLocales

• sessionLocale

• browserLocales

• portalLocale

2. Get each property's value - if it's a collection, get the first value.

3. If value is one of the supported locales return it as a result.

4. If value is not in the supported locales set, try to remove country information, and check if a

language matching locale is in the list of supported locales. If so, return it as a result.

5. Otherwise, continue with the next property.

If no supported locale is found the return locale eventually defaults to portalLocale.

Chapter 3. Portal Development

56

The algorithm for logged-in users is virtually the same except that the first Locale source checked

is user's profile.

Procedure 3.3. An algorithm for logged-in users

1. Iterate over LocaleContextInfo properties in the following order:

• userProfile

• cookieLocales

• sessionLocale

• browserLocales

• portalLocale

2. The rest is the same as for anonymous users ...

3.8.3. Custom LocalePolicy

The easiest way to customize the LocalePolicy is to extend DefaultLocalePolicyService.

The study of its source code will be required. There is ample JavaDoc that provides thorough

information. Most customizations will involve simply overriding one or more of its protected

methods.

An example of a customization is an already provided NoBrowserLocalePolicyService. By

overriding just one method, it skips any use of browser language preference.

public class NoBrowserLocalePolicyService extends DefaultLocalePolicyService

{

 /**

 * Override super method with no-op.

 *

 * @param context locale context info available to implementations in order to determine

 appropriate Locale

 * @return null

 */

 @Override

 protected Locale getLocaleConfigFromBrowser(LocaleContextInfo context)

 {

 return null;

 }

}

LocalePolicy Configuration

57

3.8.4. LocalePolicy Configuration

The LocalePolicy framework is enabled for portlets by configuring LocalizationLifecycle

class in portal's webui configuration file: gatein.ear/02portal.war/WEB-INF/webui-

configuration.xml:

 <application-lifecycle-listeners>

 ...

 <listener>org.exoplatform.portal.application.localization.LocalizationLifecycle</listener>

 </application-lifecycle-listeners>

The default LocalePolicy implementation is installed as GateIn Kernel portal service

via gatein.ear/02portal.war/WEB-INF/conf/portal/web-configuration.xml. So here you

can change it to different value according to your needs.

The following fragment is responsible for installing the service:

 <component>

 <key>org.exoplatform.services.resources.LocalePolicy</key>

 <type>org.exoplatform.portal.application.localization.DefaultLocalePolicyService</type>

 </component>

Besides implementing LocalePolicy, the service class also needs to implement

org.picocontainer.Startable interface in order to get installed.

3.8.5. Keeping non-bridged resources in sync with current

Locale

In portals all the resources that are not portlets themselves but are accessed through portlets

- reading data through PortletRequest, and writing to PortletResponse - are referred to as

'bridged'. Any resources that are accessed directly, bypassing portal filters and servlets, are

referred to as 'non-bridged'.

Non-bridged servlets, and .jsps have no access to PortalRequest. They don't

use PortletRequest.getLocale() to determine current Locale. Instead, they use

ServletRequest.getLocale() which is subject to precise semantics defined by Servlet

specification - it reflects browser's language preference.

In other words, non-bridged resources don't have a notion of current Locale in the same sense

that portlets do. The result is that when mixing portlets and non-bridged resources there may be a

Chapter 3. Portal Development

58

localization mismatch - an inconsistency in the language used by different resources composing

your portal page.

This problem is addressed by LocalizationFilter. This is a filter that changes the

behaviour of ServletRequest.getLocale() method so that it behaves the same way as

PortletRequest.getLocale(). That way even localization of servlets, and .jsps accessed in a

non-bridged manner can stay in sync with portlet localization.

LocalizationFilter is installed through portal's web.xml file: gatein.ear/02portal.war/WEB-

INF/web.xml

 <filter>

 <filter-name>LocalizationFilter</filter-name>

 <filter-class>org.exoplatform.portal.application.localization.LocalizationFilter</filter-class>

 </filter>

 ...

 <filter-mapping>

 <filter-name>LocalizationFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

 <dispatcher>INCLUDE</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>ERROR</dispatcher>

 </filter-mapping>

There is a tiny limitation with this mechanism in that it is unable to determine the current portal,

and consequently its default language. As a result the portalLocale defaults to English, but can

be configured to something else by using filter's PortalLocale init param. For example:

 <filter>

 <filter-name>LocalizationFilter</filter-name>

 <filter-class>org.exoplatform.portal.application.localization.LocalizationFilter</filter-class>

 <init-param>

 <param-name>PortalLocale</param-name>

 <param-value>fr_FR</param-value>

 </init-param>

 </filter>

RTL (Right To Left) Framework

59

By default, LocalizationFilter is applied to *.jsp, which is considered the minimum required by

GateIn 3.2 to properly keep its non-bridged resources in sync with the rest of the portal. Additionally

deployed portlets, and portal applications, may need broader mapping to cover their non-bridged

resources.

Avoid using /*, /public/*, /private/*, and similar broad mappings as LocalizationFilter

sometimes adversely interacts with the processing of portlet requests. Use multiple filter-mappings

instead to specifically target non-bridged resources.

Keeping the mapping limited to only non-bridged resources will minimize any impact on

performance as well.

3.9. RTL (Right To Left) Framework

The text orientation depends on the current locale setting. The orientation is a Java 5 enum that

provides a set of functionalities:

 LT, // Western Europe

 RT, // Middle East (Arabic, Hebrew)

 TL, // Japanese, Chinese, Korean

 TR; // Mongolian

 public boolean isLT() { ... }

 public boolean isRT() { ... }

 public boolean isTL() { ... }

 public boolean isTR() { ... }

The object defining the Orientation for the current request is the UIPortalApplication.

However it should be accessed at runtime using the RequestContext that delegates to the

UIPortalApplication.

In the case of a PortalRequestContext it is a direct delegate as the PortalRequestContext

has a reference to the current UIPortalApplication.

In the case of a different context such as the PortletRequestContext, it delegates to the parent

context given the fact that the root RequestContext is always a PortalRequestContext.

3.9.1. Groovy templates

Orientation is defined by implicit variables in the groovy binding context:

Orientation

The current orientation as an Orientation

isLT

The value of orientation.isLT()

Chapter 3. Portal Development

60

isRT

The value of orientation.isRT()

dir

The string 'ltr' if the orientation is LT or the string 'rtl' if the orientation is RT.

3.9.2. Stylesheet

The skin service handles stylesheet rewriting to accommodate the orientation. It works by

appending -lt or -rt to the stylesheet name.

For instance: /web/skin/portal/webui/component/UIFooterPortlet/DefaultStylesheet-

rt.css will return the same stylesheet as /web/skin/portal/webui/component/

UIFooterPortlet/DefaultStylesheet.css but processed for the RT orientation. The -lt suffix

is optional.

Stylesheet authors can annotate their stylesheet to create content that depends on the orientation.

Example 1. In the example we need to use the orientation to modify the float attribute that will

make the horizontal tabs either float on left or on right:

float: left; /* orientation=lt */

float: right; /* orientation=rt */

font-weight: bold;

text-align: center;

white-space: nowrap;

The LT produced output will be:

float: left; /* orientation=lt */

font-weight: bold;

text-align: center;

white-space: nowrap;

The RT produced output will be:

float: right; /* orientation=rt */

font-weight: bold;

text-align: center;

white-space: nowrap;

Images

61

Example 2. In this example we need to modify the padding according to the orientation:

color: white;

line-height: 24px;

padding: 0px 5px 0px 0px; /* orientation=lt */

padding: 0px 0px 0px 5px; /* >orientation=rt */

The LT produced output will be:

color: white;

line-height: 24px;

padding: 0px 5px 0px 0px; /* orientation=lt */

The RT produced output will be:

color: white;

line-height: 24px;

padding: 0px 0px 0px 5px; /* orientation=rt */

3.9.3. Images

Sometimes it is necessary to create an RT version of an image that will be used from a template

or from a stylesheet. However symmetric images can be automatically generated avoiding the

necessity to create a mirrored version of an image and furthermore avoiding maintenance cost.

The web resource filter uses the same naming pattern as the skin service. When an image ends

with the -rt suffix the portal will attempt to locate the original image and create a mirror of it.

For instance: requesting the image /GateInResources/skin/DefaultSkin/webui/

component/UITabSystem/UITabs/background/NormalTabStyle-rt.gif returns a mirror of

the image /GateInResources/skin/DefaultSkin/webui/component/UITabSystem/UITabs/

background/NormalTabStyle.gif.

Note

It is important to consider whether the image to be mirrored is symmetrical as this

will impact it's final appearance.

Chapter 3. Portal Development

62

Here is an example combining stylesheet and images:

line-height: 24px;

background: url('background/NavigationTab.gif') no-repeat right top; /* orientation=lt */

background: url('background/NavigationTab-rt.gif') no-repeat left top; /* orientation=rt */

padding-right: 2px; /* orientation=lt */

padding-left: 2px; /* orientation=rt */

3.9.4. Client side JavaScript

The eXo.core.I18n object provides the following parameters for orientation:

getOrientation()

Returns either the string lt or rt

getDir()

Returns either the string ltr or rtl

isLT()

Returns true for LT

isRT()

Returns true of RT

3.10. XML Resources Bundles

3.10.1. Motivation

Resource bundles are usually stored in property files. However, as property files are plain files,

issues with the encoding of the file may arise. The XML resource bundle format has been

developed to provide an alternative to property files.

• The XML format declares the encoding of the file. This avoids use of the native2ascii program

which can interfere with encoding.

• Property files generally use ISO 8859-1 character encoding which does not cover the full

unicode charset. As a result, languages such as Arabic would not be natively supported.

• Tooling for XML files is better supported than the tooling for Java property files and thus the

XML editor copes well with the file encoding.

3.10.2. XML format

The XML format is very simple and has been developed based on the DRY (Don't Repeat

Yourself) principle. Usually resource bundle keys are hierarchically defined and we can leverage

Portal support

63

the hierarchic nature of the XML for that purpose. Here is an example of turning a property file

into an XML resource bundle file:

UIAccountForm.tab.label.AccountInputSet = ...

UIAccountForm.tab.label.UIUserProfileInputSet = ...

UIAccountForm.label.Profile = ...

UIAccountForm.label.HomeInfo= ...

UIAccountForm.label.BusinessInfo= ...

UIAccountForm.label.password= ...

UIAccountForm.label.Confirmpassword= ...

UIAccountForm.label.email= ...

UIAccountForm.action.Reset= ...

<?xml version="1.0" encoding="UTF-8"?>

<bundle>

 <UIAccountForm>

 <tab>

 <label>

 <AccountInputSet>...</AccountInputSet>

 <UIUserProfileInputSet>...</UIUserProfileInputSet>

 </label>

 </tab>

 <label>

 <Profile>...</Profile>

 <HomeInfo>...</HomeInfo>

 <BusinessInfo>...</BusinessInfo>

 <password>...</password>

 <Confirmpassword>...</Confirmpassword>

 <email>...</email>

 </label>

 <action>

 <Reset>...</Reset>

 </action>

 </UIAccountForm>

</bundle>

3.10.3. Portal support

In order to be loaded by the portal at runtime (actually the resource bundle service), the name of

the file must be the same as a property file and it must use the .xml suffix.

Chapter 3. Portal Development

64

For example; for the Account Portlet to be displayed in Arabic, the resource bundle would be

AccountPortlet_ar.xml rather than AccountPortlet_ar.properties.

3.11. JavaScript Inter Application Communication

3.11.1. Overview

JavaScript Inter Application Communication is designed to allow applications within a page to

exchange data. This library is made for broadcasting messages on topic.

It is based on 3 functions:

• Subscribe.

• Publish.

• Unsubscribe.

A subscription to a topic will receive any subtopic messages. For example; An application

subscribed to "/eXo/application" will receive messages sent on the "/eXo/application/map"

topic. A message sent on "/eXo", however, would not be received.

Subscription Topics

/eXo

This topic contains all the events generated by the platform.

/eXo/portal/notification

A message is sent on this topic will prompt a popup notification in the top right of the screen.

3.11.2. Library

The Inter Application Communication library is found in 01eXoResources.war:/javascript/

eXo/core/Topic.js

/**

 * publish is used to publish an event to the other subscribers to the given channels

 * @param {Object} senderId is a string that identify the sender

 * @param {String} topic is the topic that the message will be published

 * @param {Object} message is the message that's going to be delivered to the subscribers to

 the topic

 */

Topic.prototype.publish = function(/*Object*/ senderId, /*String*/ topicName, /*Object*/ message)

 { ... }

/**

 * isSubscribed is used to check if a function receive the events from a topic

Syntax

65

 * @param {String} topic The topic.

 * @param {Function} func is the name of the function of obj to call when a message is received

 on the topic

 */

Topic.prototype.isSubscribed = function(/*String*/ topic, /*Function*/ func) { ... }

/**

 * subscribe is used to subscribe a callback to a topic

 * @param {String} topic is the topic that will be listened

 * @param {Function} func is the name of the function of obj to call when a message is received

 on the topic

 *

 * func is a function that take a Object in parameter. the event received have this format:

 * {senderId:senderId, message:message, topic: topic}

 *

 */

Topic.prototype.subscribe = function(/*String*/ topic, /*Function*/ func) { ... }

/**

 * unsubscribe is used to unsubscribe a callback to a topic

 * @param {String} topic is the topic

 * @param {Object} id is the id of the listener we want to unsubscribe

 */

Topic.prototype.unsubscribe = function(/*String*/ topic, /*Object*/ id) { ... }

Topic.prototype.initCometdBridge = function() { ... }

3.11.3. Syntax

The three messaging functions require particular objects and definitions in their syntax:

Subscribe

The subscribe function is used to subscribe a callback to a topic. It uses the following

parameters:

topic

The topic that will be listened for.

func

The name of the object function to call when a message is received on the topic. It has to

be a function that takes an Object parameter. The event received will have this format:

{

 senderId:senderId,

Chapter 3. Portal Development

66

 message:message,

 topic: topic

}

Publish

The publish function is used to publish an event to the other subscribered applications

through the given channels. Its parameters are:

senderId

This is a string that identifies the sender.

topicName

The topic that the message will be published.

message

This is the message body to be delivered to the subscribers to the topic.

Unsubscribe

The unsubscribe function is used to unsubscribe a callback to a topic. The required

parameters are:

topic

The topic that will is to be unsubscribed from.

id

This is the context object.

3.11.4. Example of Javascript events usage

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<portlet:defineObjects/>

<div>

 <p>

 Received messages:

 <div id="received_<portlet:namespace/>">

 </div>

 </p>

 <p>

 Send message:

 <input type="text" id="msg_<portlet:namespace/>"/> <a href="#"

 onclick="send_<portlet:namespace/>();">send

 </p>

</div>

Upload Component

67

<script type="text/javascript">

 Function.prototype.bind = function(object) {

 var method = this;

 return function() {

 method.apply(object, arguments);

 }

 }

 function send_<portlet:namespace/>() {

 var msg = document.getElementById("msg_<portlet:namespace/>").value;

 eXo.core.Topic.publish("<portlet:namespace/>", "/demo", msg);

 }

 function Listener_<portlet:namespace/>(){

 }

 Listener_<portlet:namespace/>.prototype.receiveMsg = function(event) {

 document.getElementById("received_<portlet:namespace/>").innerHTML =

 document.getElementById("received_<portlet:namespace/>").innerHTML + "
* " +

 event.senderId + ": " + event.message;

 }

 function init_<portlet:namespace/>() {

 var listener_<portlet:namespace/> = new Listener_<portlet:namespace/>();

 eXo.core.Topic.subscribe("/demo", listener_<portlet:namespace/

>.receiveMsg.bind(listener_<portlet:namespace/>));

 }

 init_<portlet:namespace/>();

</script>

3.12. Upload Component

3.12.1. Upload Service

The service is defined by the class: org.exoplatform.upload.UploadService;

This can be configured with the following xml code:

<component>

Chapter 3. Portal Development

68

 <type>org.exoplatform.upload.UploadService</type>

 <init-params>

 <value-param>

 <name>upload.limit.size</name>

 <description>Maximum size of the file to upload in MB</description>

 <value>10</value>

 </value-param>

 </init-params>

 </component>

This code allows for a default upload size limit for the service to be configured. The value unit

is in MegaBytes.

This limit will be used by default by all applications if no application-specific limit is set. Setting a

different limit for applications is discussed in a later section.

If the value is set at 0 the upload size is unlimited.

Procedure 3.4. How to use the upload component

1. Create an object type org.exoplatform.webui.form.UIFormUploadInput.

Two constructors are available for this:

public UIFormUploadInput(String name, String bindingExpression)

or:

public UIFormUploadInput(String name, String bindingExpression, int limit)

This is an example using the second form :

PortletRequestContext pcontext = (PortletRequestContext)WebuiRequestContext.getCurrentInstance();

PortletPreferences portletPref = pcontext.getRequest().getPreferences();

int limitMB = Integer.parseInt(portletPref.getValue("uploadFileSizeLimitMB", "").trim());

UIFormUploadInput uiInput = new UIFormUploadInput("upload", "upload", limitMB);

2. To obtain the limit from the xml configuration, this piece of code can be added to the either

portlet.xml or portlet-preferences.xml :

<preference>

Deactivation of the Ajax Loading Mask Layer

69

 <name>uploadFileSizeLimitMB</name>

 <value>30</value>

 <read-only>false</read-only>

</preference>

Again, a 0 value means an unlimited upload size, and the value unit is set in MegaBytes.

3. Use the getUploadDataAsStream() method to get the uploaded data:

UIFormUploadInput input = (UIFormUploadInput)uiForm.getUIInput("upload");

InputStream inputStream = input.getUploadDataAsStream();

...

jcrData.setValue(inputStream);

4. The upload service stores a temporary file on the filesystem during the upload process. When

the upload is finished, the service must be cleaned in order to:

1. Delete the temporary file.

2. Delete the classes used for the upload.

Use theremoveUpload() method defined in the upload service to purge the file:

UploadService uploadService = uiForm.getApplicationComponent(UploadService.class) ;

UIFormUploadInput uiChild = uiForm.getChild(UIFormUploadInput.class) ;

uploadService.removeUpload(uiChild.getUploadId()) ;

Saving the uploaded file

Ensure the file is saved before the service is cleaned.

3.13. Deactivation of the Ajax Loading Mask Layer

3.13.1. Purpose

The loading mask layer is deployed after an ajax-call. Its purpose is to block the GUI in order to

prevent further user actions until the the ajax-request has been completed.

However, the mask layer may need to be deactivated in instances where the portal requires user

instructions before previous instructions have been carried out.

Chapter 3. Portal Development

70

Procedure 3.5. How to deactivate the ajax-loading mask

1. Generate a script to make an asynchronous ajax-call. Use the uicomponent.doAsync()

method rather than the uicomponent.event() method.

For example:

<a href="<%=uicomponent.doAsync(action, beanId, params)%>" alt="">Asynchronous

2. The doAsync() method automatically adds the following new parameter into the parameters

list; asyncparam = new Parameter(AJAX ASYNC,"true"); (AJAX ASYNC == "ajax

async")

This request is asynchronous and the ajax-loading mask will not deployed.

Note

An asynchronous request can still be made using the uicomponent.event().

When using this method, however, the asyncparam must be added manually.

The GUI will be blocked to ensure a user can only request one action at a time and while the

request seems to be synchronous, all ajax requests are, in fact always asynchronous. For further

information refer to Section 3.13.2, “Synchronous issue”.

3.13.2. Synchronous issue

Most web browsers support ajax requests in two modes: Synchronous and Asynchronous. This

mode is specified with a boolean bAsync parameter.

var bAsync = false; // Synchronous

request.open(instance.method, instance.url, bAsync);

However, in order to work with browsers that do not support Synchronous requests, bAsync is set

to always be true (Ajax request will always be asynchronous).

// Asynchronous request

request.open(instance.method, instance.url, true);

Javascript Configuration

71

3.14. Javascript Configuration

Managing Javascript scripts in an application like GateIn 3.2 is a critical part of the configuration

work. Configuring the scripts correctly will result in a faster response time from the portal.

Every portlet can have its own javscript code but in many cases it is more convenient to reuse

some existing shared libraries. For that reason, GateIn 3.2 has a mechanism to easily register the

libraries that will be loaded when the first page will be rendered.

To do so, every WAR deployed in GateIn 3.2 can register the .js files with the groovy script WEB-

INF/conf/script/groovy/JavascriptScript.groovy. (TODO: this file doesn't seem to exist)

The example file below is found in the 01eXoResources.war

JavascriptService.addJavascript("eXo", "/javascript/eXo.js", ServletContext);

/* Animation Javascripts */

JavascriptService.addJavascript("eXo.animation.ImplodeExplode", "/javascript/eXo/animation/

ImplodeExplode.js", ServletContext);

/* Application descriptor */

JavascriptService.addJavascript("eXo.application.ApplicationDescriptor", "/javascript/eXo/

application/ApplicationDescriptor.js", ServletContext);

/* CORE Javascripts */

JavascriptService.addJavascript("eXo.core.Utils", "/javascript/eXo/core/Util.js", ServletContext);

JavascriptService.addJavascript("eXo.core.DOMUtil", "/javascript/eXo/core/

DOMUtil.js", ServletContext);

JavascriptService.addJavascript("eXo.core.Browser", "/javascript/eXo/core/

Browser.js", ServletContext);

JavascriptService.addJavascript("eXo.core.MouseEventManager", "/javascript/eXo/core/

MouseEventManager.js", ServletContext);

JavascriptService.addJavascript("eXo.core.UIMaskLayer", "/javascript/eXo/core/

UIMaskLayer.js", ServletContext);

JavascriptService.addJavascript("eXo.core.Skin", "/javascript/eXo/core/Skin.js", ServletContext);

JavascriptService.addJavascript("eXo.core.DragDrop", "/javascript/eXo/core/

DragDrop.js", ServletContext);

JavascriptService.addJavascript("eXo.core.TemplateEngine", "/javascript/eXo/core/

TemplateEngine.js", ServletContext);

/* Widget Javascripts */

JavascriptService.addJavascript("eXo.widget.UIWidget", "/javascript/eXo/widget/

UIWidget.js", ServletContext);

JavascriptService.addJavascript("eXo.widget.UIAddWidget", "/javascript/eXo/widget/

UIAddWidget.js", ServletContext);

JavascriptService.addJavascript("eXo.widget.UIExoWidget", "/javascript/eXo/widget/

UIExoWidget.js", ServletContext);

/* Desktop Javascripts */

Chapter 3. Portal Development

72

JavascriptService.addJavascript("eXo.desktop.UIDockbar", "/javascript/eXo/desktop/

UIDockbar.js", ServletContext);

JavascriptService.addJavascript("eXo.desktop.UIDesktop", "/javascript/eXo/desktop/

UIDesktop.js", ServletContext);

/* WebUI Javascripts */

JavascriptService.addJavascript("eXo.webui.UIItemSelector", "/javascript/eXo/webui/

UIItemSelector.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIForm", "/javascript/eXo/webui/

UIForm.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIPopup", "/javascript/eXo/webui/

UIPopup.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIPopupSelectCategory", "/javascript/eXo/webui/

UIPopupSelectCategory.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIPopupWindow", "/javascript/eXo/webui/

UIPopupWindow.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIVerticalScroller", "/javascript/eXo/webui/

UIVerticalScroller.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIHorizontalTabs", "/javascript/eXo/webui/

UIHorizontalTabs.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIPopupMenu", "/javascript/eXo/webui/

UIPopupMenu.js", ServletContext);

JavascriptService.addJavascript("eXo.webui.UIDropDownControl", "/javascript/eXo/webui/

UIDropDownControl.js", ServletContext);

/* Portal Javascripts */

JavascriptService.addJavascript("eXo.portal.PortalHttpRequest", "/javascript/eXo/portal/

PortalHttpRequest.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIPortal", "/javascript/eXo/portal/

UIPortal.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIWorkspace", "/javascript/eXo/portal/

UIWorkspace.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIPortalControl", "/javascript/eXo/portal/

UIPortalControl.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.PortalDragDrop", "/javascript/eXo/portal/

PortalDragDrop.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIPortalNavigation", "/javascript/eXo/portal/

UIPortalNavigation.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIMaskWorkspace", "/javascript/eXo/portal/

UIMaskWorkspace.js", ServletContext);

JavascriptService.addJavascript("eXo.portal.UIExoStartMenu", "/javascript/eXo/portal/

UIExoStartMenu.js", ServletContext);

/* Desktop Javascripts 2 */

JavascriptService.addJavascript("eXo.desktop.UIWindow", "/javascript/eXo/desktop/

UIWindow.js", ServletContext);

Navigation Controller

73

Note that even registered dedicated javascripts will be merged into a single merged.js file when

the server loads. This reduces the number of HTTP calls as seen in the home page source code:

<script type="text/javascript" src="/portal/javascript/merged.js"></script>

Although this optimization is useful for a production environment, it may be easier to deactivate

this optimization while debugging javascript problems.

To do this, set the java system property exo.product.developing to true.

To see or use the merged file set this property to false.

The property can be passed as a JVM parameter with the -D option in your GateIn.sh or

GateIn.bat startup script.

Every javascript file is associated with a module name which acts as a namespace. The module

name is passed as a first parameter to JavascriptService.addJavascript() function as in the

following example:

JavascriptService.addJavascript("eXo.core.DragDrop",

 "/javascript/eXo/core/DragDrop.js", ServletContext);

Inside the associated javascript files, functions are exposed as global javascript function variables

using the module name.

For example:

eXo.core.DragDrop = new DragDrop();

It is also possible to use eXo.require() javascript method to lazy load and evaluate some

javascript code. This is quite useful for the portlet or widget applications that will use this javascript

only once. Otherwise, if the library is reusable in several places it is better to reference it in the

groovy file.

3.15. Navigation Controller

3.15.1. Description

The navigation controller is a major enhancement of GateIn that has several goals

Chapter 3. Portal Development

74

• Provide non ambiguous urls for portal managed resources such as navigation. Previously

different resources were possible for a single url, even worse, the set of resources available for

an url was depending on one's private navigation (groups and dashboard)

• Decouple the http request from the portal request. Previously both were tightly coupled, for

instance the url for a site had to begin with /public/{sitename} or /private/{sitename} .The

navigation controller provides a flexible and configurable mapping.

• Provide more friendly url and give a degree of freedom for the portal administrator by letting

him configure how http request should look like.

3.15.2. Controller in Action

3.15.2.1. Controller

The WebAppController is the component of GateIn that process http invocations and transforms

them into a portal request. It has been improved with the addition of a request mapping engine

(controller) whose role is to make the decoupling of the http request and create a portal request.

The mapping engine makes two essential tasks

• Create a Map<QualifiedName, String> from an incoming http request

• Render a Map<QualifiedName, String> as an http URL

The goal of the controller (mapping engine) is to decouple the request processed by GateIn from

the incoming HTTP request. Indeed a request contain data that determine how the request will

be processed and such data can be encoded in various places in the request such as the request

path or a query parameter. The controller allows GateIn route a request according to a set of

parameters (a map) instead of the servlet request.

The controller configuration is declarative in an XML file, allowing easy reconfiguration of the

routing table and it is processed into an internal data structure that is used to perform resolution

(routing or rendering)

3.15.2.2. Building controller

The controller configuration that contains the routing rules is loaded from a file named

controller.xml that is retrieved in the GateIn configuration directory. Its location is determined by

the gatein.controller.config property.

WebAppController loads and initializes the mapping engine

<!-- conf/portal/controller-configuration.xml of portal.war -->

<component>

 <type>org.exoplatform.web.WebAppController</type>

 <init-params>

Controller in Action

75

 <value-param>

 <name>controller.config</name>

 <value>${gatein.portal.controller.config}</value>

 </value-param>

 </init-params>

</component>

GateIn's extension project can define their own routing table, thanks to the extension mechanism.

The controller.xml can be changed and reloaded at runtime, this help the testing of different

configurations easily (configuration loading operations) and provide more insight into the routing

engine (the findRoutes operation). see Rebuiding controller for more detail

• ReBuilding controller

The WebAppController is annotated with @Managed annotations and is bound under the

view=portal,service=controller JMX name and under the "portalcontroller" REST name.

It provides the following attributes and operations

• Attribute configurationPath : the read only the configuration path of the controller xml file

• Operation loadConfiguration : load a new configuration file from a specified xml path

• Operation reloadConfiguration : reload the configuration file

• Operation findRoutes : route the request argument through the controller and returns

a list of all parameter map resolution. The argument is a request uri such as "/

groups/:platform:administrators/administration/registry". It returns a string representation

(List<Map>) of the matched routes.

3.15.2.3. Controller Configuration (controller.xml)

Most of the controller configuration cares about defining rules (Routing table - contains routes

object) that will drive the resolution. Routes are processed during the controller initialization to

give a tree of node. Each node

• is related to its parent with a matching rule that can either be an exact string matching or a

regular expression matching

• is associated with a set of parameters

A parameter is defined by a qualified name and there are three kind of parameters

3.15.2.3.1. Route parameters

Route parameters defines a fixed value associate with a qualified name.

Chapter 3. Portal Development

76

• Routing: route parameters allow the controller to distinguish branches easily and route the

request accordingly.

• Rendering: selection occurs when always.

Example:

<route path="/foo">

 <route-param qname="gtn:handler">

 <value>portal</value>

 </route-param>

</route>

This configuration matches the request path "/foo" to the map (gtn:handler=portal). Conversely it

renders the (gtn:handler=portal) map as the "/foo" url. In this example we see two concepts

• exact path matching ("/foo")

• route parameters ("gtn:handler")

3.15.2.3.2. Path parameters - Regular expression support

Path parameters allow to associate a portion of the request path with a parameter. Such parameter

will match any non empty portion of text except the / character (that is the [^/]+ regular expression)

otherwise they can be associated with a regular expression for matching specific patterns. Path

parameters are mandatory for matching since they are part of the request path, however it is

allowed to write regular expression matching an empty value.

• Routing: route is accepted if the regular expression is matched.

• Rendering: selection occurs when the regular expression matches the parameter.

Encoding

Path parameters may contain '/' character which is a reserved char for URI path. This case is

specially handled by the navigation controller by using a special character to replace '/' literals.

By default the character is the semi colon : and can be changed to other possible values (see

controller XML schema for possible values) to give a greater amount of flexibility.

This encoding is applied only when the encoding performed for parameter having a mode set to

the default-form value, for instance it does not happen for navigation node URI (for which / are

encoded literally). The separator escape char can still be used but under it's percent escaped

form, so by default a path parameter value containing : would be encoded as %3A and conversely

the %3A value will be decoded as :.

Example:

Controller in Action

77

<route path="/{gtn:path}">

</route>

No pattern defined, used the default one [^/]+

Routing and Rendering

Path "/foo" <--> the map (gtn:path=foo)

Path "/foo:bar" <--> the map (gtn:path=foo/bar)

If the request path contains another "/" char it will not work,default encoding mode is : default-

form. For example:"/foo/bar" --> not matched, return empty parameter map

However this could be solved with the following configuration:

<route path="/{gtn:path}">

 <path-param encoding="preserve-path" qname="gtn:path">

 <pattern>.*</pattern>

 </path-param>

</route>

1. The .* declaration allows to match any char sequence.

2. The preserve-path encoding tells the engine that the "/" chars should be handled by the path

parameter itself as they have a special meaning for the router. Without this special encoding,

"/" would be rendered as the ":" character and conversely the ":" character would be matched

as the "/" character.

3.15.2.3.3. Request parameters

Request parameters are matched from the request parameters (GET or POST). The match can

be optional as their representation in the request allows it.

• Routing

• route is accepted when a required parameter is present and matched in the request.

• route is accepted when an optional parameter is absent or matched in the request.

• Rendering:

Chapter 3. Portal Development

78

• selection occurs for required parameters when is the parameter is present and matched in

the map.

• selection occurs for optional parameters when is the parameter is absent or matched in the

map.

Example:

<route path="/">

 <request-param name="path" qname="gtn:path"/>

</route>

Request parameters are declared by a request-param element and by default will match any

value. A request like "/?path=foo" is mapped to the (gtn:path=foo) map. The name attribute of the

request-param tag defines the request parameter value. This element accepts more configuration

• a value or a pattern element a child element to match a constant or a pattern

• a control-mode attribute with the value optional or required to indicate if matching is

mandatory or not

• a value-mapping attribute with the possible values canonical, never-empty, never-null can

be used to filter filter values after matching is done. For instance a parameter configured with

value-mapping="never-empty" and matching the empty string value will not put the empty

string in the map.

3.15.2.3.4. Route precedence

The order of route declaration is important as it influence how rules are matched. Sometimes the

same request could be matched by several routes and the routing table is ambiguous.

<route path="/foo">

 <route-param qname="gtn:handler">

 <value>portal</value>

 </route-param>

</route>

<route path="/{gtn:path}">

 <path-param encoding="preserve-path" qname="gtn:path">

 <pattern>.*</pattern>

 </path-param>

</route>

Integrate to GateIn WebUI framework

79

In that case, the request path "/foo" will always be matched by the first rule before the second

rule. This can be misleading since the map (gtn:path=foo) would be rendered as "/foo" as well and

would not be matched by the first rule. Such ambiguit can happen, it can be desirable or not.

3.15.2.3.5. Route nesting

Route nesting is possible and often desirable as it helps to

• factor common parameters in a common rule

• perform more efficient matching as the match of the common rule is done once for all the sub

routes

<route path="/foo">

 <route-param qname="gtn:handler">

 <value>portal</value>

 </route-param>

 <route path="/bar">

 <route-param qname="gtn:path">

 <value>bar</value>

 </route-param>

 </route>

 <route path="/juu">

 <route-param qname="gtn:path">

 <value>juu</value>

 </route-param>

 </route>

</route>

• The request path "/foo/bar" is mapped to the (gtn:handler=portal,gtn:path=bar) map

• The request path "/foo/juu" is mapped to the (gtn:handler=portal,gtn:path=juu) map

• The request path "/foo" is not mapped as non leaf routes do not perform matches.

3.15.3. Integrate to GateIn WebUI framework

3.15.3.1. Routing

GateIn defines a set of parameters in its routing table, for each client request, the mapping

engine processes the request path and return the defined parameters with their values as a

Map<QualifiedName, String>

gtn:handler

Chapter 3. Portal Development

80

The gtn:handler names is one of the most important qualified name as it determines which

handler will take care of the request processing just after the controller has determined the

parameter map. The handler value is used to make a lookup in the handler map of the

controller. An handler is a class that extends the WebRequestHandler class and implements the

execute(ControllerContext) method. Several handlers are available by default:

• portal : process aggregated portal requests

• upload / download : process file upload and file download

• legacy : handle legacy URL redirection (see Legacy handler section)

• default : http redirection to the default portal of the container

• staticResource: serve static resources like image, css or javascript... files in portal.war (see

Static Resource Handler section)

gtn:sitetype / gtn:sitename / gtn:path

Those qualified names drives a request for the portal handler. They are used to determine

which site to show and which path to resolve against a navigation. For instance the

(gtn:sitetype=portal,gtn:sitename=classic,gtn:path=home) instruct the portal handler to show the

home page of the classic portal site.

gtn:lang

The language in the url for the portal handler. This is a new feature offered, now language can be

specified on URL. that mean user can bookmark that URL (with the information about language)

or he can changed language simply by modifying the URL address

gtn:componentid / gtn:action / gtn:objectid

The webui parameters used by the portal handler for managing webui component URLs for portal

applications (and not for portlet applications).

3.15.3.2. Rendering

The controller is designed to render a Map<QualifiedName, String> as an http URL according

to its routing table. But to integrate it for using easily in WebUI Framework of GateIn, we need

some more components

3.15.3.2.1. PortalURL

PortalURL play a similar role at the portal level, its main role is to abstract the creation of an URL

for a resource managed by the portal.

public abstract class PortalURL<R, U extends PortalURL<U>>

{

 ...

Integrate to GateIn WebUI framework

81

}

The PortalURL declaration may seem a bit strange at first sight with two generic types U and R

and the circular recursion of the U generic parameter, but it's because most of the time you will

not use the PortalURL object but instead subclasses.

• The R generic type represents the type of the resource managed by the portal

• The U generic type is also described as self bound generic type. This design pattern allows a

class to return subtypes of itself in the class declaring the generic type. Java Enums are based

on this principle (class Enum<E extends Enum<E>>)

A portal URL has various methods but certainly the most important method is the toString()

method that generates an URL representing that will target the resource associated with the url.

The remaining methods are getter and setter for mutating the url configuration, those options will

affect the URL representation when it is generated.

• resource : the mandatory resource associated with the url

• locale : the optional locale used in the URL allowing the creation of bookmarkable URL

containing a language

• confirm : the optional confirm message displayed by the portal in the context of the portal UI

• ajax : the optional ajax option allowing an ajax invocation of the URL

Obtaining a PortalURL

PortalURL objects are obtained from RequestContext instance such as the

PortalRequestContext or the PortletRequestContext. Usually those are obtained thanks to

getCurrentInstance method of the RequestContext class:

RequestContext ctx = RequestContext.getCurrentInstance();

PortalURL are created via to the createURL method that takes as input a resource type. A

resource type is usually a constant and is a type safe object that allow to retrieve PortalURL

subclasses:

RequestContext ctx = RequestContext.getCurrentInstance();

PortalURL<R, U> url = ctx.createURL(type);

In reality you will use a concrete type constant and have instead more concrete code like:

Chapter 3. Portal Development

82

RequestContext ctx = RequestContext.getCurrentInstance();

NodeURL url = ctx.createURL(NodeURL.TYPE);

Note

The NodeURL.TYPE is actually declared as new

ResourceType<NavigationResource, NodeURL>() that can be described as a

type literal object emulated by a Java anonymous inner class. Such literal were

introduced by Neil Gafter as Super Type Token and popularized by Google Guice

as Type Literal. It's an interesting way to create a literal representing a kind of Java

type.

3.15.3.2.2. Node URL

The class NodeURL is one of the subclass of PortalURL that is specialized for navigation node

resources:

public class NodeURL extends PortalURL<NavigationResource, NodeURL>

{

 ...

}

The good news is that the NodeURL does not carry any generic type of its super class, which

means that a NodeURL is type safe and one does not have to worry about generic types.

Using a NodeURL is pretty straightforward:

NodeURL url = RequestContext.getCurrentInstance().createURL(NodeURL.TYPE);

url.setResource(new NavigationResource("portal", "classic, "home"));

String s = url.toString();

The NodeURL subclass contains specialized setter to make its usage even easier:

UserNode node = ...;

NodeURL url = RequestContext.getCurrentInstance().createURL(NodeURL.TYPE);

Integrate to GateIn WebUI framework

83

url.setNode(node);

String s = url.toString();

3.15.3.2.3. Component URL

The ComponentURL subclass is another specialization of PortalURL that allows the creation of

WebUI components URLs. ComponentURL is commonly used to trigger WebUI events from client

side:

<% def componentURL = uicomponent.event(...); /*or uicomponent.url(...) */ %>

 Click me

Normally you should not have to deal with it as the WebUI framework has already an abstraction for

managing URL known as URLBuilder. The URLBuilder implementation delegates URL creation

to ComponentURL objects.

3.15.3.2.4. Portlet URLs

Portlet URLs API implementation delegates to the portal ComponentURL (via the portlet container

SPI). It is possible to control the language in the URL from a PortletURL object by setting a

property named gtn:lang:

• when the property value is set to a value returned by Locale#toString() method for locale

objects having a non null language value and a null variant value, the url generated by the

PortletURL#toString() method will contain the locale in the url.

• when the property value is set to an empty string, the generated URL will not contain a language.

If the incoming URL was carrying a language, this language will be erased.

• when the property value is not set, it will not affect the generated URL.

PortletURL url = resp.createRenderURL();

url.setProperty("gtn:lang", "fr");

writer.print("French");

3.15.3.2.5. Webui URLBuilder

This internal API for creating URL works as before and delegates to the PortletURL API when the

framework is executed in a portlet and to a ComponentURL API when the framework is executed

in the portal context. The API has been modified to take in account the language in URL with two

properties on the builder:

Chapter 3. Portal Development

84

• locale : a locale for setting on the URL

• removeLocale : a boolean for removing the locale present on the URL

3.15.3.2.6. Groovy Templates

Within a Groovy template the mechanism is the same, however a splash of integration has been

done to make creation of NodeURL simpler. A closure is bound under the nodeurl name and is

available for invocation anytime. It will simply create a NodeURL object and return it:

UserNode node = ...;

NodeURL url = nodeurl();

url.setNode(node);

String s = url.toString();

The closure nodeurl is bound to Groovy template in WebuiBindingContext

// Closure nodeurl()

put("nodeurl", new Closure(this)

{

 @Override

 public Object call(Object[] args)

 {

 return context.createURL(NodeURL.TYPE);

 }

});

3.15.4. Changes and migration from GateIn 3.1.x

The navication controller implies a migration of the client code that is coupled to several internal

APIs of GateIn. As far as we know the major impact is related to anything dealing with URL:

• Creation of an URL representing a resource managed by the portal: navigation node or ui

component.

• Using http request related information

There are also changes in the configuration, because there is a change of how things are internally.

3.15.4.1. Migration of navigation node URL

Using free form node

Changes and migration from GateIn 3.1.x

85

Previously code for creating navigation node was like:

String uri = Util.getPortalRequestContext().getPortalURI() + "home";

The new code will look like

PortalURL nodeURL = nodeurl();

NavigationResource resource = new NavigationResource(SiteType.PORTAL,

 pcontext.getPortalOwner(), "home");

String uri = nodeURL.setResource(resource).toString();

Using UserNode object

UserNode node = ...;

String uri = Util.getPortalRequestContext().getPortalURI() + node.getURI()";

The new code will look like

UserNode node = ...;

PortalURL nodeURL = nodeurl();

String uri = nodeURL.setNode(node).toString();

3.15.4.2. Security changes

Security configuration change in order to keep with the flexibility added by the navigation controller.

In particular the authentication does not depend anymore on path specified in web.xml but instead

rely on the security mandated by the underlying resource. Here are the noticeable changes for

security

• Authentication is now triggered on the /login URL when it does not have a username or a

password specified. Therefore the URL /login?initialURI=/classic/home is (more or less)

equivalent to /private/classic/home

• When a resource cannot be viewed due to security constraint

• If the user is not logged, the authentication will be triggered

Chapter 3. Portal Development

86

• Otherwise a special page (the usual one) will be displayed instead

3.15.4.3. Default handler

Redirection to the default portal used to be done by the index.jsp JSP page. This is not the case

anymore, the index.jsp has been removed and the welcome file in web.xml was removed too.

Instead a specific handler in the routing table has been configured, the sole role of this handler is

to redirect the request to default portal when no other request has been matched previously:

<controller>

 ...

 <route path="/">

 <route-param qname="gtn:handler">

 <value>default</value>

 </route-param>

 </route>

</controller>

3.15.4.4. Legacy handler

Legacy urls such as /public/... and /private/... are now emulated to determine the best

resource with the same resolution algorithm than before but instead of displaying the page,

will make an http 302 redirection to the correct URL. This handler is present in the controller

configuration. There is a noticeable difference between the two routes

• The public redirection attempt to find a node with the legacy resolution algorithm without

authentication, which means that secured nodes will not be resolved and the redirection of a

secured node will likely redirect to another page. For instance resolving the URL /public/classic/

administration/registry path will likely resolve to another node if the user is not authenticated

and is not part of the platform administrator group.

• The private redirection performs first an authentication before doing the redirection. In

that case the /private/classic/administration/registry path will resolve be redirected to the /

portal/groups/:platform:administrators/administration/registry page if the user has the sufficient

security rights.

3.15.4.5. Static resource handler

The "/" mapping for "default" servlet is now replaced by mapping for

org.exoplatform.portal.application.PortalController servlet, that mean we need a

handler (org.exoplatform.portal.application.StaticResourceRequestHandler) to serve static

resources like image, css or javascript... files in portal.war. And it should be configured,

Changes and migration from GateIn 3.1.x

87

and extended easily. Thanks to the controller.xml. This file can be overridden and can be

changed and reloaded at runtime (WebAppController is MBean with some operations such as :

reloadConfiguration() ...)

Declare StaticResourceHandler in controller.xml

<route path="/{gtn:path}">

 <route-param qname="gtn:handler">

 <value>staticResource</value>

 </route-param>

 <path-param encoding="preserve-path" qname="gtn:path">

 <pattern>.*\.(jpg|png|gif|ico|css)</pattern>

 </path-param>

</route>

And we don't need these kind of following mapping in portal.war's web.xml anymore :

<servlet-mapping>

 <servlet-name>default</servlet-name>

 <url-pattern>*.jpg</url-pattern>

</servlet-mapping>

...

3.15.4.6. portal.war's web.xml changes

DoLoginServlet declaration

<servlet>

 <servlet-name>DoLoginServlet</servlet-name>

 <servlet-class>org.exoplatform.web.login.DoLoginServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>DoLoginServlet</servlet-name>

 <url-pattern>/dologin</url-pattern>

</servlet-mapping>

Delare portal servlet as default servlet

Chapter 3. Portal Development

88

<servlet-mapping>

 <servlet-name>portal</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

So there are some mapping declaration for portal servlet are unused, we should also remove

them: /private/* /public/* /admin/* /upload/* /download/*

Add some security constraints

<security-constraint>

 <web-resource-collection>

 <web-resource-name>user authentication</web-resource-name>

 <url-pattern>/dologin</url-pattern>

 <url-pattern>/groups/*</url-pattern>

 <url-pattern>/users/*</url-pattern>

...

 </web-resource-collection>

</security-constraint>

We can remove the index.jsp, and its declaration in web.xml now, thank to the Default request

handler

<welcome-file-list>

 <welcome-file>/index.jsp</welcome-file>

</welcome-file-list>

3.15.4.7. Dashboard changes

There are several important changes to take in account

• dashboard are now bound to a single URL (/users/root by default) and dashboard pages are

leaf of this path

• dashboard life cycle can be decoupled (create / destroy) from the

identity creation in a configurable manner in UserPortalConfigService and

exposed in configuration.properties under gatein.portal.idm.createuserportal and

gatein.portal.idm.destroyuserportal.

Changes and migration from GateIn 3.1.x

89

• by default dashboard are not created when a user is registered

• a dashboard is created when the user access his dashboard URL

3.15.4.8. Remove unused files

1/ portal-unavailable.jsp: this file was presented before if user goes to a non-available portal. Now

the server sends a 404 status code instead.

2/ portal-warning.jsp: this file is not used in any place

90

Chapter 4.

91

Portlet development

4.1. Portlet Primer

4.1.1. JSR-168 and JSR-286 overview

The Java Community Process (JCP) uses Java Specification Requests (JSRs) to define proposed

specifications and technologies designed for the Java platform.

The Portlet Specifications aim at defining portlets that can be used by any JSR-168 (Portlet 1.0)

[http://www.jcp.org/en/jsr/detail?id=168] or JSR-286 (Portlet 2.0) [http://www.jcp.org/en/jsr/detail?

id=286] portlet container.

Most Java EE (Enterprise Edition) portals include at least one compliant portlet container, and

GateIn 3.2 is no exception. In fact, GateIn 3.2 includes a container that supports both versions.

This chapter gives a brief overview of the Portlet Specifications but portlet developers are strongly

encouraged to read the JSR-286 Portlet Specification [http://www.jcp.org/en/jsr/detail?id=286] .

GateIn 3.2 is fully JSR-286 compliant. Any JSR-168 or JSR-286 portlet operates as it is mandated

by the respective specifications inside the portal.

4.1.1.1. Portal Pages

A portal can be considered as a series of web pages with different areas within them. Those areas

contain different windows and each window contains portlet:

The diagram below visually represents this nesting:

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286

Chapter 4. Portlet development

92

4.1.1.2. Rendering Modes

A portlet can have different view modes. Three modes are defined by the JSR-286 specification:

View

Generates markup reflecting the current state of the portlet.

Edit

Allows a user to customize the behavior of the portlet.

Help

Provides information to the user as to how to use the portlet.

4.1.1.3. Window States

Window states are an indicator of how much page space a portlet consumes on any given page.

The three states defined by the JSR-168 specification are:

Normal

A portlet shares this page with other portlets.

Tutorials

93

Minimized

A portlet may show very little information, or none at all.

Maximized

A portlet may be the only portlet displayed on this page.

4.1.2. Tutorials

The tutorials contained in this chapter are targeted toward portlet developers. It is also recommend

that developers read and understand the JSR-286 Portlet Specification [http://www.jcp.org/en/

jsr/detail?id=286] .

Maven

This example is using Maven to compile and build the web archive. Maven

versions can be downloaded from maven.apache.org [http://maven.apache.org/

download.html]

4.1.2.1. Deploying your first Portlet

This section describes how to deploy a portlet in GateIn 3.2. A sample portlet called

SimplestHelloWorld is located in the examples directory at the root of your GateIn 3.2 binary

package. This sample is used in the following examples.

4.1.2.1.1. Compiling

To compile and package the application:

1. Navigate to the SimplestHelloWorld directory and execute:

mvn package

2. If the compile is successfully packaged the result will be available in: SimplestHelloWorld/

target/SimplestHelloWorld-0.0.1.war .

3. Copy the package file into JBOSS_HOME/server/default/deploy.

4. Start JBoss Application Server (if it is not already running).

5. Create a new portal page and add the portlet to it.

http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 4. Portlet development

94

4.1.2.1.2. Package Structure

Like other Java EE applications, GateIn 3.2 portlets are packaged in WAR files. A typical portlet

WAR file can include servlets, resource bundles, images, HTML, JavaServer Pages (JSP), and

other static or dynamic files.

The following is an example of the directory structure of the SimplestHelloWorld portlet:

|-- SimplestHelloWorld-0.0.1.war

| `-- WEB-INF

| |-- classes

| | `-- org

| | `-- gatein

| | `-- portal

| | `-- examples

| | `-- portlets

| | `-- SimplestHelloWorldPortlet.class

| |-- portlet.xml

| `-- web.xml

The compiled Java class implementing javax.portlet.Portlet (through

javax.portlet.GenericPortlet)

This is the mandatory descriptor files for portlets. It is used during deployment..

This is the mandatory descriptor for web applications.

4.1.2.1.3. Portlet Class

Below is the SimplestHelloWorldPortlet/src/main/java/org/gatein/portal/examples/

portlets/SimplestHelloWorldPortlet.java Java source:

package org.gatein.portal.examples.portlets;

Tutorials

95

import java.io.IOException;

import java.io.PrintWriter;

import javax.portlet.GenericPortlet;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

public class SimplestHelloWorldPortlet extends GenericPortlet

{

 public void doView(RenderRequest request,

 RenderResponse response) throws IOException

 {

 PrintWriter writer = response.getWriter();

 writer.write("Hello World !");

 writer.close();

 }

}

All portlets must implement the javax.portlet.Portlet interface. The portlet API provides

a convenient implementation of this interface.

The javax.portlet.Portlet interface uses the javax.portlet.GenericPortlet class

which implements the Portlet render method to dispatch to abstract mode-specific

methods. This makes it easier to support the standard portlet modes.

Portlet render also provides a default implementation for the processAction, init and

destroy methods. It is recommended to extend GenericPortlet for most cases.

If only the view mode is required, then only the doView method needs to be implemented.

The GenericPortletrender implementation calls our implementation when the view mode

is requested.

Use the RenderResponse to obtain a writer to be used to produce content.

Write the markup to display.

Closing the writer.

Markup Fragments

Portlets are responsible for generating markup fragments, as they are included on

a page and are surrounded by other portlets. This means that a portlet outputting

HTML must not output any markup that cannot be found in a <body> element.

Chapter 4. Portlet development

96

4.1.2.1.4. Application Descriptors

GateIn 3.2 requires certain descriptors to be included in a portlet WAR file. These descriptors are

defined by the Jave EE (web.xml) and Portlet Specification (portlet.xml).

Below is an example of the SimplestHelloWorldPortlet/WEB-INF/portlet.xml file. This file

must adhere to its definition in the JSR-286 Portlet Specification. More than one portlet application

may be defined in this file:

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

 <portlet>

 <portlet-name>SimplestHelloWorldPortlet</portlet-name>

 <portlet-class>

 org.gatein.portal.examples.portlets.SimplestHelloWorldPortlet

 </portlet-class>

 <supports>

 <mime-type>text/html</mime-type>

 </supports>

 <portlet-info>

 <title>Simplest Hello World Portlet</title>

 </portlet-info>

 </portlet>

</portlet-app>

Define the portlet name. It does not have to be the class name.

The Fully Qualified Name (FQN) of your portlet class must be declared here.

The <supports> element declares all of the markup types that a portlet supports in the

render method. This is accomplished via the <mime-type> element, which is required for

every portlet.

The declared MIME types must match the capability of the portlet. It allows administrators to

pair which modes and window states are supported for each markup type.

This does not have to be declared as all portlets must support the view portlet mode.

Use the <mime-type> element to define which markup type the portlet supports. In the

example above this is text/html. This section tells the portal to only output HTML.

Tutorials

97

When rendered, the portlet's title is displayed as the header in the portlet window, unless it

is overridden programmatically. In the example above the title would be Simplest Hello

World Portlet .

4.1.2.2. JavaServer Pages Portlet Example

This section discusses:

1. Adding more features to the previous example.

2. Using a JSP page to render the markup.

3. Using the portlet tag library to generate links to the portlet in different ways.

4. Using the other standard portlet modes.

1. The example used in this section can be found in the JSPHelloUser directory.

2. Execute mvn package in this directory.

3. Copy JSPHelloUser/target/JSPHelloUser-0.0.1.war to the deploy directory of JBoss

Application Server.

4. Select the new JSPHelloUser tab in your portal.

Chapter 4. Portlet development

98

Note

The EDIT button only appears with logged-in users, which is not the case in the

screenshot.

4.1.2.2.1. Package Structure

The package structure in this tutorial does not differ greatly from the previous example, with the

exception of adding some JSP files detailed later.

The JSPHelloUser portlet contains the mandatory portlet application descriptors. The following is

an example of the directory structure of the JSPHelloUser portlet:

JSPHelloUser-0.0.1.war

 |-- META-INF

 | |-- MANIFEST.MF

 |-- WEB-INF

 | |-- classes

 | | `-- org

 | | `-- gatein

 | | `-- portal

 | | `-- examples

 | | `-- portlets

 | | `-- JSPHelloUserPortlet.class

 | |-- portlet.xml

 | `-- web.xml

 `-- jsp

 |-- edit.jsp

 |-- hello.jsp

 |-- help.jsp

 `-- welcome.jsp

4.1.2.2.2. Portlet Class

The code below is from the JSPHelloUser/src/main/java/org/gatein/portal/examples/

portlets/JSPHelloUserPortlet.java Java source. It is split in different pieces.

package org.gatein.portal.examples.portlets;

import java.io.IOException;

import javax.portlet.ActionRequest;

Tutorials

99

import javax.portlet.ActionResponse;

import javax.portlet.GenericPortlet;

import javax.portlet.PortletException;

import javax.portlet.PortletRequestDispatcher;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import javax.portlet.UnavailableException;

public class JSPHelloUserPortlet extends GenericPortlet

{

 public void doView(RenderRequest request, RenderResponse response)

 throws PortletException, IOException

 {

 String sYourName = (String) request.getParameter("yourname");

 if (sYourName != null)

 {

 request.setAttribute("yourname", sYourName);

 PortletRequestDispatcher prd =

 getPortletContext().getRequestDispatcher("/jsp/hello.jsp");

 prd.include(request, response);

 }

 else

 {

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/

welcome.jsp");

 prd.include(request, response);

 }

 }

...

Override the doView method (as in the first tutorial).

This entry attempts to obtain the value of the render parameter named yourname. If defined

it should redirect to the hello.jsp JSP page, otherwise to the welcome.jsp JSP page.

Get a request dispatcher on a file located within the web archive.

Perform the inclusion of the markup obtained from the JSP.

As well as the VIEW portlet mode, the specification defines two other modes; EDIT and HELP.

These modes need to be defined in the portlet.xml descriptor. This will enable the

corresponding buttons on the portlet's window.

The generic portlet that is inherited dispatches the different views to the methods: doView , doHelp

and doEdit.

Chapter 4. Portlet development

100

...

 protected void doHelp(RenderRequest rRequest, RenderResponse rResponse) throws PortletException, IOException,

 UnavailableException

 {

 rResponse.setContentType("text/html");

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/help.jsp");

 prd.include(rRequest, rResponse);

 }

 protected void doEdit(RenderRequest rRequest, RenderResponse rResponse) throws PortletException, IOException,

 UnavailableException

 {

 rResponse.setContentType("text/html");

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/edit.jsp");

 prd.include(rRequest, rResponse);

 }

...

Portlet calls happen in one or two phases. One when the portlet is rendered and two when the

portlet is actioned then rendered.

An action phase is a phase where some state changes. The render phase will have access to

render parameters that will be passed each time the portlet is refreshed (with the exception of

caching capabilities).

The code to be executed during an action has to be implemented in the processAction method

of the portlet.

...

 public void processAction(ActionRequest aRequest, ActionResponse aResp onse) throws PortletException, IOException,

 UnavailableException

 {

 String sYourname = (String) aRequest.getParameter("yourname");

 aResponse.setRenderParameter("yourname", sYourname);

 }

...

processAction is the method from GernericPorlet to override for the action phase.

Here the parameter is retrieved through an action URL .

The value of yourname is kept to make it available in the rendering phase. The previous line

simply copies an action parameters to a render parameter for this example.

Tutorials

101

4.1.2.2.3. JSP files and the Portlet Tag Library

The help.jsp and edit.jsp files are very simple. Note that CSS styles are used as defined in

the portlet specification. This ensures that the portlet will render well within the theme and across

portal vendors.

<div class="portlet-section-header">Help mode</div>

<div class="portlet-section-body">This is the help mode, a convenient place to give the user some

 help information.</div>

<div class="portlet-section-header">Edit mode</div>

<div class="portlet-section-body">This is the edit mode, a convenient place to let the user change

 his portlet preferences.</div>

The landing page contains the links and form to call our portlet:

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<div class="portlet-section-header">Welcome !</div>

<div class="portlet-font">Welcome on the JSP Hello User portlet,

my name is GateIn Portal. What's yours ?</div>

<div class="portlet-font">Method 1: We simply pass the parameter to the render phase:

<a href="<portlet:renderURL><portlet:param name="yourname" value="John Doe"/>

 </portlet:renderURL>">John Doe</div>

<div class="portlet-font">Method 2: We pass the parameter to the render phase, using valid XML:

Please check the source code to see the difference with Method 1.

<portlet:renderURL var="myRenderURL">

 <portlet:param name="yourname" value='John Doe'/>

</portlet:renderURL>

<a href="<%= myRenderURL %>">John Doe</div>

Chapter 4. Portlet development

102

<div class="portlet-font">Method 3: We use a form:

<portlet:actionURL var="myActionURL"/>

<form action="<%= myActionURL %>" method="POST">

 Name:

 <input class="portlet-form-input-field" type="text" name="yourname"/>

 <input class="portlet-form-button" type="Submit"/>

</form>

</div>

The portlet taglib, needs to be declared.

The first method showed here is the simplest one. portlet:renderURL will create a URL

that calls the render phase of the current portlet and append the result at the place of the

markup (within a tag). A parameter is also added directly to the URL.

In this method the var attribute is used. This avoids having one XML tag within another.

Instead of printing the url the portlet:renderURL tag will store the result in the referenced

variable (myRenderURL).

The variable myRenderURL is used like any other JSP variable.

The third method mixes form submission and action request. Again, a temporary variable is

used to put the created URL into.

The action URL is used in HTML form.

In the third method the action phase is triggered first then the render phase is triggered, which

outputs some content back to the web browser based on the available render parameters.

4.1.2.2.4. JSF example using the JBoss Portlet Bridge

In order to write a portlet using JSF a 'bridge' is needed. This software allows developers to write

a portlet application as if it was a JSF application. The bridge then negotiates the interactions

between the two layers.

An example of the JBoss Portlet Bridge is available in examples/JSFHelloUser. The configuration

is slightly different from a JSP application. This example can be used as a base to configure

instead of creating a new application.

Tutorials

103

As in any JSF application, the file faces-config.xml is required. It must contain the following

information:

<faces-config>

...

 <application>

 <view-handler>org.jboss.portletbridge.application.PortletViewHandler</view-handler>

 <state-manager>org.jboss.portletbridge.application.PortletStateManager</state-manager>

 </application>

...

</faces-config>

The portlet bridge libraries must be available and are usually bundled with the WEB-INF/lib

directory of the web archive.

The other difference compare to a regular portlet application, can be found in the portlet descriptor.

All details about it can be found in the JSR-301 specification that the JBoss Portlet Bridge

implements.

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

 <portlet>

 <portlet-name>JSFHelloUserPortlet</portlet-name>

 <portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>view</portlet-mode>

 <portlet-mode>edit</portlet-mode>

 <portlet-mode>help</portlet-mode>

 </supports>

 <portlet-info>

 <title>JSF Hello User Portlet</title>

 </portlet-info>

 <init-param>

 <name>javax.portlet.faces.defaultViewId.view</name>

 <value>/jsf/welcome.jsp</value>

 </init-param>

Chapter 4. Portlet development

104

 <init-param>

 <name>javax.portlet.faces.defaultViewId.edit</name>

 <value>/jsf/edit.jsp</value>

 </init-param>

 <init-param>

 <name>javax.portlet.faces.defaultViewId.help</name>

 <value>/jsf/help.jsp</value>

 </init-param>

 </portlet>

</portlet-app>

All JSF portlets define javax.portlet.faces.GenericFacesPortlet as portlet class. This

class is part of the JBoss Portlet Bridge

This is a mandatory parameter to define what's the default page to display.

This parameter defines which page to display on the 'edit' mode.

This parameter defines which page to display on the 'help' mode.

4.2. Global portlet.xml file

4.2.1. Global portlet.xml usecase

The Portlet Specification introduces PortletFilter as a standard approach to extend the behaviors

of portlet objects. For example, a filter can transform the content of portlet requests and portlet

responses. According to the Portlet Specification, normally there are three steps in setting up a

portlet filter:

1. Implement a PortletFilter object

2. Define the filter in portlet application deployment descriptor

3. Define the filter mapping in portlet definitions

Two first steps are quite simple and easy to be done, however, at the step 3, developers/

administrators need to replicate the filter mapping in many portlet definitions, that makes work

error and tedious in several use cases. The global portlet feature is designed to compensate such

limitation.

4.2.2. Global metadata

The Global metadata is declared in the portlet.xml file conforming with Portlet 2.0 's XSD.

Global metadata

105

<portlet-app version="1.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://

java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">

</portlet-app>

4.2.2.1. Location

The path to the global portlet.xml is value of gatein.portlet.config in the configuration.properties

file and varied by hosting application servers.

For Tomcat: TOMCAT_HOME/gatein/conf/portlet.xml

For JBoss: JBOSS_HOME/server/default/conf/gatein/portlet.xml

4.2.2.2. Global metadata elements

The global portlet.xml file conforms to the schema of the portlet deployment descriptor defined in

the Portlet Specification with some restrictions. In this file, the following elements are supported:

1. Portlet Filter

2. Portlet Mode

3. Window State

4.2.2.2.1. Portlet filter

Portlet filter mappings declared in the global portlet.xml file are applied across portlet applications.

With the XML configuration below, the filter ApplicationMonitoringFilter involves in request

handling on any deployed portlet.

<filter>

 <filter-name>org.exoplatform.portal.application.ApplicationMonitoringFilter</filter-name>

 <filter-class>org.exoplatform.portal.application.ApplicationMonitoringFilter</filter-class>

 <lifecycle>ACTION_PHASE</lifecycle>

 <lifecycle>RENDER_PHASE</lifecycle>

 <lifecycle>EVENT_PHASE</lifecycle>

 <lifecycle>RESOURCE_PHASE</lifecycle>

</filter>

Application Monitoring Filter supports four lifecycle phases as the order below:

ACTION_PHASE/ EVENT_PHASE/ RENDER_PHASE/ RESOURCE_PHASE and records

Chapter 4. Portlet development

106

statistic information on deployed portlets. The filter alternates actual monitoring mechanism in

WebUI Framework.

4.2.2.2.2. Portlet Mode and Window State

The global portlet.xml file is considered as an alternative place to declare custom Portlet Modes

and Window States.

Chapter 5.

107

Gadget development

5.1. Gadgets

A gadget is a mini web application, embedded in a web page and running on an application server

platform. These small applications help users perform various tasks.

GateIn 3.2 supports gadgets such as: Todo gadget, Calendar gadget, Calculator gadget, Weather

Forecasts and and RSS Reader.

Default Gadgets:

Calendar

The calendar gadget allows users to switch easily between daily, monthly and yearly view

and, again, is customizable to match your portal's theme.

ToDo

This application helps you organize your day and work group. It is designed to keep track of

your tasks in a convenient and transparent way. Tasks can be highlighted with different colors.

Chapter 5. Gadget development

108

Calculator

This mini-application lets you perform most basic arithmetic operations and can be themed

to match the rest of your portal.

RSS Reader

An RSS reader, or aggregator, collates content from various, user-specified feed sources and

displays them in one location. This content can include, but isn't limited to, news headlines,

blog posts or email. The RSS Reader gadget displays this content in a single window on your

Portal page.

More Gadgets

Further gadgets can be obtained from the Google Gadget [http://www.google.com/ig/

directory?synd=open] site. GateIn 3.2 is compatible with most of the gadgets available here.

http://www.google.com/ig/directory?synd=open
http://www.google.com/ig/directory?synd=open
http://www.google.com/ig/directory?synd=open

Existing Gadgets

109

Important

The following sections require more textual information.

5.1.1. Existing Gadgets

5.1.2. Create a new Gadget

5.1.3. Remote Gadget

This is the reference to a remote gadget (stock one).

5.1.4. Gadget Importing

After referencing the gadget successfully, then import it into the local repository.

Chapter 5. Gadget development

110

5.1.5. Gadget Web Editing

Edit it from the Web the imported Gadget to modify it:

5.1.6. Gadget IDE Editing

Edit it from your IDE thanks to the WebDAV protocol:

Dashboard Viewing

111

5.1.7. Dashboard Viewing

View it from the Dashboard when you drag and drop the Gadget from listing to the dashboard.

5.2. Setup a Gadget Server

5.2.1. Virtual servers for gadget rendering

GateIn 3.2 recommends using two virtual hosts for security. If the gadget is running on a different

domain than the container (the website that 'contains' the app), it is unable to interfere with the

portal by modifying code or cookies.

An example would hosting the portal from http://www.sample.com and the gadgets from http://

www.samplemodules.com.

Chapter 5. Gadget development

112

To do this, configure a parameter called gadgets.hostName. The value is the path/to/gadgetServer

in GadgetRegisteryService:

<component>

 <key>org.exoplatform.application.gadget.GadgetRegistryService</key>

 <type>org.exoplatform.application.gadget.jcr.GadgetRegistryServiceImpl</type>

 <init-params>

 <value-param>

 <name>gadgets.hostName</name>

 <description>Gadget server url</description>

 <value>http://localhost:8080/GateInGadgetServer/gadgets/</value>

 </value-param>

 </init-params>

</component>

It is also possible to have multiple rendering servers. This helps to balance the rendering load

across multiple servers.

When deploying on the same server, ensure the gadget initiates before

anything that calls it (for example; the webapp GateInGadgets which uses

org.exoplatform.application.gadget.GadgetRegister).

5.2.2. Configuration

5.2.2.1. Security key

In GateIn, the gadget container is using three security files for authentication and authorization

gadgets:

• key.txt

• oauthkey.pem

• oauthkey_pub.pem

By default, they are located in the $JBOSS_HOME/server/default/conf/gatein/gadgets or

For Tomcat: $TOMCAT_HOME/gatein/conf/gadgets folder and are configured by system

variables in the $JBOSS_HOME/server/default/conf/gatein/configuration.properties or For

Tomcat: $TOMCAT_HOME/gatein/conf/configuration.properties file:

 gatein.gadgets.securitytokenkeyfile=${gatein.conf.dir}/gadgets/key.txt

 gatein.gadgets.signingkeyfile=${gatein.conf.dir}/gadgets/oauthkey.pem

Configuration

113

In case you have other files, you can change these variables to point to them.

The key.txt file contains a secret key used to encrypt the security token used for the user

authentication. When starting GateIn, this file is read via the gatein.gadgets.securitytokenkeyfile

path. In case the key.txt file is not found, GateIn automatically generates a new key.txt one and

save it to the gatein.gadgets.securitytokenkeyfile path.

oauthkey.pem and oauthkey_pub.pem are a key pair of RSA cryptography standard.

oauthkey.pem is known as a private key and oauthkey_pub.pem is a public key. They are the

default keys of the gadget container which OAuth gadgets will use to authorize with external

service providers.

5.2.2.2. Gadget proxy and concat configuration

These servers have to be on the same domain as the gadget server. You can configure the

container in eXoGadgetServer:/WEB-INF/classes/containers/default/container.js.

"gadgets.content-rewrite" : {

 "include-urls": ".*",

 "exclude-urls": "",

 "include-tags": ["link", "script", "embed", "img", "style"],

 "expires": "86400",

 "proxy-url": "http://localhost:8080/eXoGadgetServer/gadgets/proxy?url=",

 "concat-url": "http://localhost:8080/eXoGadgetServer/gadgets/concat?"

},

5.2.2.3. Proxy

To allow external gadgets when the server is behind a proxy, add the following code to the

beginning of the JVM:

-Dhttp.proxyHost=proxyhostURL -Dhttp.proxyPort=proxyPortNumber -

Dhttp.proxyUser=someUserName -Dhttp.proxyPassword=somePassword

114

Chapter 6.

115

Authentication and Identity

6.1. Authentication and Authorization intro

6.1.1. Authentication overview

Authentication in GateIn 3.2 is based on JAAS [http://docs.oracle.com/javase/6/docs/technotes/

guides/security/jaas/JAASRefGuide.html] and by default it's standard J2EE FORM based

authentication. However authentication workflow is not so easy and straightforward, because we

support many different authentication use cases, so that we can leverage authentication process

according to our needs.

In GateIn 3.2 we support these kinds of authentication:

• J2EE FORM based authentication

• RememberMe authentication (user checks Remember my login checkbox in login form)

• SSO servers integration (CAS, JOSSO, OpenSSO) - more informations in Section 6.8, “Single-

Sign-On (SSO)”

• SPNEGO authentication with Kerberos ticket - more informations in Section 6.8.6, “SPNEGO”

• Cluster authentication with loadbalancer or with JBoss SSO valve. See Section 6.8.2, “Enabling

SSO using JBoss SSO Valve”

Authentication workflow consists of more HTTP requests and redirects with couple of handshakes

in it. Source code related to authentication is partially in WCI module, because authentication

process is little different on Servlet 2.5 [http://www.jcp.org/en/jsr/detail?id=154] containers and

Servlet 3.0 [http://www.jcp.org/en/jsr/detail?id=315] containers.

First you can see in deploy/gatein.ear/02portal.war/WEB-INF/web.xml that authentication is

triggered by accessing some of secured URL:

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>user authentication</web-resource-name>

 <url-pattern>/dologin</url-pattern>

 <url-pattern>/private/*</url-pattern>

 <url-pattern>/g/*</url-pattern>

 <url-pattern>/u/*</url-pattern>

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://www.jcp.org/en/jsr/detail?id=154
http://www.jcp.org/en/jsr/detail?id=154
http://www.jcp.org/en/jsr/detail?id=315
http://www.jcp.org/en/jsr/detail?id=315

Chapter 6. Authentication and...

116

 </web-resource-collection>

 <auth-constraint>

 <role-name>users</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

This means that access to some of these URL like http://localhost:8080/portal/dologin will directly

trigger J2EE authentication in case that user is not logged. Access to this URL also means that

user needs to be in JAAS group users, otherwise he can authenticate but he will have HTTP error

like 403 Forbidden.

In next part of the file we can see that authentication is FORM based and it starts by redirection

to /initiatelogin URL, which is actually mapped to InitiateLoginServlet .

 <login-config>

 <auth-method>FORM</auth-method>

 <realm-name>gatein-domain</realm-name>

 <form-login-config>

 <form-login-page>/initiatelogin</form-login-page>

 <form-error-page>/errorlogin</form-error-page>

 </form-login-config>

 </login-config>

InitiateLoginServlet simply redirects user to login page placed in deploy/gatein.ear/02portal.war/

login/jsp/login.jsp .

http://localhost:8080/portal/dologin

Authentication overview

117

So if you want to change somehow the look and feel of this login page, you can do it in this JSP

file. You can also change image or CSS placed in deploy/gatein.ear/login/skin .

After user submit his login form, he is redirected to login URL, which looks

like http://localhost:8080/portal/login?username=root&password=gtn&initialURI=/portal/private/

classic. This URL is mapped to PortalLoginController servlet, which stores credentials and

redirects again to InitiateLoginServlet, which performs WCI login. WCI layer can recognize current

servlet container and so that it can decide if it's old container with Servlet API 2.5 (JBoss 5, Tomcat

6) or newer with Servlet API 3.0 (JBoss 6, JBoss 7, Tomcat 7).

• Servlet 3.0 case - New servlet API supports programmatic authentication by calling method

HttpServletRequest.login(String username, String password). This will directly call JAAS

authentication without need to perform any more redirects.

• Servlet 2.5 case - There is not standard support for programmatic authentication and so

we need another redirection to special URL like http://localhost:8080/portal/j_security_check?

j_username=root&j_password=wci-ticket-1385113882&initialURI=/portal/private/classic/ which

will trigger JAAS authentication. You can notice that in this case, JAAS authentication is

not triggered with real password of user but with WCI ticket. WCI ticket is created by

InitiateLoginServlet during WCI login and it's saved into WCI TicketService. The purpose of WCI

ticket is to avoid using of real password in URL during redirection.

http://localhost:8080/portal/j_security_check?j_username=root&j_password=wci-ticket-1385113882&initialURI=/portal/private/classic/
http://localhost:8080/portal/j_security_check?j_username=root&j_password=wci-ticket-1385113882&initialURI=/portal/private/classic/

Chapter 6. Authentication and...

118

6.1.2. Login modules

So finally we are redirected to JAAS authentication. GateIn is using it's own security domain

gatein-domain with set of predefined login modules. Login module configuration for gatein-

domain is in file deploy/gatein.ear/META-INF/gatein-jboss-beans.xml in JBoss and in file

GATEIN_HOME/conf/jaas.conf in Tomcat. By default we can see this login modules stack:

 <login-module code="org.gatein.wci.security.WCILoginModule" flag="optional">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <login-module code="org.exoplatform.web.security.PortalLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <login-

module code="org.exoplatform.services.security.jaas.SharedStateLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <!-- Uncomment this part to check on each login if user is member of "/platform/users" group

 and if not

 create such membership -->

 <!--

 <login-module

 code="org.exoplatform.services.organization.idm.CustomMembershipLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 <module-option name="membershipType">member</module-option>

 <module-option name="groupId">/platform/users</module-option>

 </login-module>

 -->

 <login-

module code="org.exoplatform.services.security.j2ee.JbossLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

Login modules

119

You are free to add some new login modules or completely replace existing login modules with

some of your own. Few points to mention:

• It's possible to login user through existing login modules with his real password (credentials

like username: root/ password: gtn), but also with WCI ticket (credentials like username:

root/password: wci-ticket-458791). Login modules stack supports both of these kinds of

authentication.

• Authentication through WCI ticket is used for FORM based authentication in Servlet 2.5

containers (JBoss 5 or Tomcat 6). Majority of other cases (Servlet 3.0 login, JBoss SSO valve

login, login through Crash [http://code.google.com/p/crsh/], BASIC authentication etc) are using

the case with real password.

• Authentication starts with invoke of method login on each login module. After all login

methods are invoked, then authentication continue by invoke of method commit on each

login module. Both methods login or commit can throw LoginException. If it happens, then

whole authentication ends unsuccessfully, which in next turn invokes method abort on each

login module. By returning "false" from method login, you can ensure that login module is

ignored. This is not specific to EPP but it's generic to JAAS and more info about login modules

in general can be found here [http://docs.oracle.com/javase/6/docs/technotes/guides/security/

jaas/JAASRefGuide.html].

6.1.2.1. Existing login modules

Here is some brief description of existing login modules:

• WCILoginModule - This login module is useful when authentication is performed with JAAS

password like WCI ticket. It simply validates if WCI ticket is valid and then it finds real username

and password of user from WCI TicketService and save it into sharedState map. Username

is saved under key javax.security.auth.login.name and Password (real password like "gtn") is

saved under key javax.security.auth.login.password.

Note
If you trigger JAAS authentication with username/password like "root"/"gtn" and

not with password like WCI ticket, then WCILoginModule is useless and it throws

LoginException. But you can notice that WCILoginModule is declared as "optional"

which means that login failure in WCILoginModule is not a problem for whole login

process.

• PortalLoginModule - This login module is actually used mainly for login in cluster

environment. Assumption is working session replication between two cluster nodes.

After successful authentication on cluster node1 will method commit add flag (attribute

http://code.google.com/p/crsh/
http://code.google.com/p/crsh/
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Chapter 6. Authentication and...

120

AUTHENTICATED_CREDENTIALS) to HTTP session and this flag can then be used to

reauthentication on node2 when it executes method login. More info in section Section 6.1.3.3,

“Cluster login”.

• SharedStateLoginModule - This login module is actually the one, which triggers real

authentication of user with usage of Authenticator interface. It takes the username

and password from sharedState map from attributes javax.security.auth.login.name

and javax.security.auth.login.password. Then it calls Authenticator.validateUser(Credential[]

credentials), which performs real authentication of username and password against

OrganizationService and portal identity database. Result of successful authentication is object

Identity, which is saved to sharedState map under key exo.security.identity. More info in

Section 6.1.2.3, “Authenticator and RolesExtractor”.

SharedStateLoginModule assumes that mentioned attributes for username and password are

already placed in sharedState map, which was actually done by WCILoginModule. If attributes are

not in sharedState map, SharedStateLoginModule is simply ignored (method "login" returns false).

• JbossLoginModule - previous login modules (like WCILoginModule and

SharedStateLoginModule) are useful for authentication flow with WCI ticket.

DefaultLoginModule (superclass of JbossLoginModule) is used for second case

(authentication with real password instead of WCI ticket). First it checks if Identity object has

been already created and saved into sharedState map by SharedStateLoginModule. If not,

then it means that WCI ticket authentication was not successful and so it tries to login with

real password of user. It also uses Authentication.validateUser(Credential[] credentials) for

authentication check.

In method JbossLoginModule.commit, we need to assign our Identity object to IdentityRegistry,

which will be used later for authorization. We also need to create JAAS principals (UserPrincipal

and RolesPrincipal) and assign them to our authenticated Subject. This is needed for JBoss AS

server, so that it can properly recognize name of logged user and his roles on JBoss AS level.

• CustomMembershipLoginModule - special login module, which is disabled (commented) by

default. It can be used to add user to some existing group during successful login of this

user. Name of group is configurable and by default it's /platform/users group. Login module

is commented because in normal environment, users are already in /platform/users group. It's

useful only for some special setups like read-only LDAP, where groups of ldap user are taken

from ldap tree and so that users may not be in /platform/users group, which is needed for

successful authorization.

6.1.2.1.1. SVN location of login modules

Some modules are specific for portal, but some are used also by eXo JCR and so they are part

of eXo core module.

• PortalLoginModule - is located in GateIn 3.2 sources in http://anonsvn.jboss.org/repos/gatein/

portal/trunk/component/web/security/

http://anonsvn.jboss.org/repos/gatein/portal/trunk/component/web/security/
http://anonsvn.jboss.org/repos/gatein/portal/trunk/component/web/security/

Login modules

121

• SharedStateLoginModule, JbossLoginModule - these are located in eXo core sources in http://

anonsvn.jboss.org/repos/exo-jcr/core/trunk/exo.core.component.security.core/

• CustomMembershipLoginModule - located in GateIn 3.2 sources in module for identity

integration - http://anonsvn.jboss.org/repos/gatein/portal/trunk/component/identity/

6.1.2.2. Creating your own login module

Before creating your own login module, it's recommended to study source code of existing

login modules to better understand whole JAAS authentication process. You need to have good

knowledge so that you can properly decide where your login module should be placed and if you

need to replace some existing login modules or simply attach your own module to existing chain.

We have actually two levels of authentication and overall result of JAAS authentication should

properly handle both these cases:

• Authentication on application server level

• Authentication on GateIn level

6.1.2.2.1. Authentication on application server level

Application server needs to properly recognize that user is successfuly logged and it has assigned

his JAAS roles. Unfortunately this part is not standardized and is specific for each AS. For example

in JBoss AS, you need to ensure that JAAS Subject has assigned principal with username

(UserPrincipal) and also RolesPrincipal, which has name "Roles" and it contains list of JAAS roles.

This part is actually done in JbossLoginModule.commit(). In Tomcat, this flow is little different,

which means Tomcat has it's own TomcatLoginModule.

After successful authentication, user needs to be at least in JAAS role "users" because this role is

declared in web.xml as you saw above. JAAS roles are extracted by special algorithm from GateIn

3.2 memberships. See below in section with RolesExtractor.

6.1.2.2.2. Authentication on GateIn 3.2 level

Login process needs to create special object org.exoplatform.services.security.Identity and

register this object into GateIn 3.2 component IdentityRegistry. This Identity object should

encapsulate username of authenticated user, Memberships of this user and also JAAS roles.

Identity object can be easily created with interface Authenticator as can be seen below.

So have this in mind, if you will extend or replace existing login modules.

6.1.2.3. Authenticator and RolesExtractor

Authenticator is important component in authentication process. Actually interface

org.exoplatform.services.security.Authenticator looks like this:

http://anonsvn.jboss.org/repos/exo-jcr/core/trunk/exo.core.component.security.core/
http://anonsvn.jboss.org/repos/exo-jcr/core/trunk/exo.core.component.security.core/
http://anonsvn.jboss.org/repos/gatein/portal/trunk/component/identity/

Chapter 6. Authentication and...

122

public interface Authenticator

{

 /**

 * Authenticate user and return userId.

 *

 * @param credentials - list of users credentials (such as name/password, X509

 * certificate etc)

 * @return userId

 */

 String validateUser(Credential[] credentials) throws LoginException, Exception;

 /**

 * @param userId.

 * @return Identity

 */

 Identity createIdentity(String userId) throws Exception;

}

Method validateUser is used to check whether given credentials (username and password) are

really valid. So it performs real authentication. It returns back username if credentials are correct.

Otherwise LoginException is thrown.

Method createIdentity is used to create instance of object

org.exoplatform.services.security.Identity, which encapsulates all important informations about

single user like:

• username

• set of Memberships (MembershipEntry objects) which user belongs to. Membership is object,

which contains informations about membershipType (manager, member, validator, ...) and

about group (/platform/users, /platform/administrators, /partners, /organization/management/

executiveBoard, ...).

• set of Strings with JAAS roles of given user. JAAS roles are simple Strings,

which are mapped from MembershipEntry objects. There is another special component

org.exoplatform.services.security.RolesExtractor, which is used to map JAAS roles from

MembershipEntry objects. RolesExtractor interface looks like this:

Different authentication workflows

123

public interface RolesExtractor

{

 /**

 * Extracts J2EE roles from userId and|or groups the user belongs to both

 * parameters may be null

 *

 * @param userId

 * @param memberships

 */

 Set<String> extractRoles(String userId, Set<MembershipEntry> memberships);

}

Default implementation DefaultRolesExtractorImpl is based on special algorithm, which uses

name of role from the root of the group (for example for role "/organization/management/

something" we have JAAS role "organization"). Only exception is group "platform" where we use

2nd level as name of group. For example from group "/platform/users" we have JAAS role "users".

Example: We have user root, which has memberships member:/platform/users, manager:/

platform/administrators, validator:/platform/managers, member:/partners, member:/customers/

acme, member:/organization/management/board. In this case we will have JAAS roles: users,

administrators, managers, partners, customers, organization.

Default implementation of Authenticator is OrganizationAuthenticatorImpl, which is

implementation based on OrganizationService. See Section 6.6, “Organization API” .

You can override default implementation of mentioned interfaces Authenticator and

RolesExtractor if default behaviour is not suitable for your needs. Consult documentation of eXo

kernel for more info.

6.1.3. Different authentication workflows

6.1.3.1. RememberMe authentication

In default login dialog, you can notice that there is "Remember my login" checkbox, which users

can use to persist their login on his workstation. Default validity period of RememberMe cookie is 1

day (it is configurable), and so user can be logged for whole day before he need to reauthenticate

again with his credentials.

6.1.3.1.1. How does it work

• User checks the checkbox "Remember my login" on login screen of GateIn 3.2 . Then he submit

the form.

Chapter 6. Authentication and...

124

• HTTP request like http://localhost:8080/portal/login?initialURI=/portal/

classic&username=root&password=gtn&rememberme=true is send to server

• Request is processed by PortalLoginController servlet. Servlet obtains instance of

RemindPasswordTokenService and save user credentials into JCR. It generates and returns

special token (key) for later use. Then it creates cookie called rememberme and use returned

token as value of cookie.

6.1.3.1.2. Reauthentication

• After some time, user wants to reauthenticate. Let's assume that his HTTP Session is already

expired but his RememberMe cookie is still active.

• User send HTTP request to some portal page (ie. http://localhost:8080/portal/classic).

• There is special HTTP Filter RememberMeFilter configured in web.xml, which

checks rememberme cookie and then it retrieves credentials of user from

RemindPasswordTokenService. Now filter redirects request to PortalLoginController and

authentication process goes in same way as for normal FORM based authentication.

6.1.3.1.3. RemindPasswordTokenService

This is special service used during RememberMe authentication workflow. It's configurable in file

deploy/gatein.ear/02portal.war/WEB-INF/conf/common/remindpwd-configuration.xml . For more

info, look at section Section 6.4, “Authentication Token Configuration”

Another thing is that you can encrypt passwords before store them into JCR. More info is in section

Section 6.2, “Password Encryption”.

6.1.3.2. BASIC authentication

GateIn 3.2 is using FORM based authentication by default but it's not a problem with switch to

different authentication type like BASIC. Only needed thing is to configure it properly in deploy/

gatein.ear/02portal.war/WEB-INF/web.xml like this:

<!--

 <login-config>

 <auth-method>FORM</auth-method>

 <realm-name>gatein-domain</realm-name>

 <form-login-config>

 <form-login-page>/initiatelogin</form-login-page>

 <form-error-page>/errorlogin</form-error-page>

 </form-login-config>

Different authentication workflows

125

 </login-config>

-->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>gatein-domain</realm-name>

 </login-config

In this case user will see login dialog from browser instead of GateIn login.jsp page. JAAS

authentication will be performed with real credentials of user (ie. root/gtn). WCI ticket is not used

with BASIC authentication.

6.1.3.3. Cluster login

GateIn 3.2 supports automatic login propagation in cluster environment. Cluster login relies on

HTTP session replication. It's useful for situations like this:

1. You have Apache loadbalancer and two portal nodes node1 and node2

2. User will send request to loadbalancer and he will be redirected to node1. All his requests

will be then processed on node1 (sticky session).

3. User login on loadbalancer (which is redirected to node1)

4. node1 is killed

5. User will send another HTTP request. He will now be redirected to node2 because node1 is

killed. Now user will be automatically logged on node2 as well thanks to session replication,

because he still has same HTTP session, which was replicated from node1 to node2. So end

user shouldn't recognize any change even if his work is now done on different node of cluster.

This login workflow works thanks to PortalLoginModule, which is able to save special attribute

into HTTP session as flag that user is already logged. Then reauthentication on node2 is working

thanks to servlet filter ClusteredSSOFilter, which is able to automatically trigger programmatic

authentication.

Note
ClusteredSSOFilter is using proprietary JBossWeb API for trigger programmatic

authentication and so it's working only on JBoss AS. It is not working on other

servers like Tomcat or Jetty.

There is also possibility for integration with JBoss clustered SSO valve (See Section 6.8.2,

“Enabling SSO using JBoss SSO Valve”).

Chapter 6. Authentication and...

126

6.1.3.4. SSO login

GateIn 3.2 also supports integration with couple of well-known SSO frameworks (CAS, JOSSO,

OpenSSO). When user wants login, he is not redirected to portal login form but to SSO server

login form. After successful login with SSO server, he gains ticket represented by special cookie

(name of cookie differs for each SSO server). Then user is redirected back to GateIn 3.2, where

we need to perform agent validation of SSO ticket against SSO server. We still need to create

Identity object and bind it to IdentityRegistry (this is same as in default authentication), which is

done thanks to Authenticator component.

In other words, you need to ensure that users, which are logged successfuly through SSO, needs

to be also in GateIn 3.2 identity database because SSO server is used only for authentication,

but authorization is handled completely by GateIn 3.2, which assumes that user exists in portal

DB. If users are not in DB, Identity object won't be created and you will have 403 Forbidden errors

even if you authenticate successfuly. For details about SSO integration, see Section 6.8, “Single-

Sign-On (SSO)”.

Same applies for SPNEGO authentication (See Section 6.8.6, “SPNEGO”). In this case, you need

to ensure that your Kerberos users are also created in GateIn 3.2 database.

6.1.4. Authorization overview

In previous section, we learned about JAAS authentication and about login modules. So we know

that result of authentication are:

• JAAS Subject with principals for username (UserPrincipal) and for JAAS roles (RolesPrincipal).

• Identity object, which encapsulates username, all memberships and all JAAS roles. This Identity

object is bound to IdentityRegistry component.

Authorization in GateIn 3.2 actually happens on two levels:

6.1.4.1. Servlet container authorization

First round of authorization is servlet container authorization based on secured URL from web.xml.

We saw above in web.xml snippet that secured URL are accessible only for users from role users:

 <auth-constraint>

 <role-name>users</role-name>

 </auth-constraint>

Password Encryption

127

This actually means that our user needs to be in GateIn 3.2 role /platform/users (For details

see Section 6.1.2.3, “Authenticator and RolesExtractor”). In other words, if we successfuly

authenticate but our user is not in group /platform/users, then it means that he is not in JAAS role

users, which in next turn means that he will have authorization error 403 Forbidden thrown by

servlet container.

You can change the behaviour and possibly add some more auth-constraint elements into

web.xml. However this protection of resources based on web.xml is not standard GateIn 3.2 way

and it's mentioned here mainly for illustration purposes.

6.1.4.2. Portal level authorization

Second round of authorization is based on component UserACL (See Section 3.4, “Portal Default

Permission Configuration”). We can declare access and edit permissions for portals, pages and/

or portlets. UserACL is then used to check if our user has particular permissions to access or

edit specified resource. Important object with informations about roles of our user is mentioned

Identity object created during JAAS authentication.

Authorization on portal level looks like this:

• user send HTTP request to some URL in portal

• HTTP request is processed through SetCurrentIdentityFilter, which is declared in deploy/

gatein.ear/02portal.war/WEB-INF/web.xml.

• SetCurrentIdentityFilter reads username of current user from

HttpServletRequest.getRemoteUser(). Then it looks for Identity of this user in IdentityRegistry,

where Identity has been saved during authentication. Found Identity is then encapsulated into

ConversationState object and bound into ThreadLocal variable.

• UserACL is able to obtain Identity of current user from method UserACL.getIdentity(), which

simply calls ConversationState.getCurrent().getIdentity() for find current Identity bound to

ThreadLocal. Now UserACL has identity of user and so that it can performs any security checks.

6.2. Password Encryption

Username and passwords stored in clear text

The Remember Me feature of JBoss Enterprise Portal Platform uses a token

mechanism to be able to authenticate returning users without requiring an explicit

login. However, to be able to authenticate these users, the token needs to store

the username and password in clear text in the JCR.

Administrators have two options available to ameliorate this risk:

Chapter 6. Authentication and...

128

1. The Remember Me feature can be disabled by removing the corresponding checkbox

in: <JBOSS_HOME>/server/<PROFILE>/deploy/gatein.ear/02portal.war/login/jsp/

login.jsp and <JBOSS_HOME>/server/<PROFILE>/deploy/gatein.ear/02portal.war/

groovy/portal/webui/UILoginForm.gtmpl.

2. Passwords can be encoded prior to being saved to the JCR. This option requires administrators

to provide a custom subclass of org.exoplatform.web.security.security.AbstractCodec

and set up a codec implementation with CookieTokenService:

Procedure 6.1. Encrypt Password in JCR

1. Create a javaclass similar to:

package org.example.codec;

import org.exoplatform.container.xml.InitParams;

import org.exoplatform.web.security.security.AbstractCodec;

import org.exoplatform.web.security.security.CookieTokenService;

import org.picocontainer.Startable;

public class ExampleCodec extends AbstractCodec implements Startable

{

 private String simpleParam;

 private CookieTokenService cookieTokenService;

 public ExampleCodec(InitParams params, CookieTokenService cookieTokenService)

 {

 simpleParam = params.getValueParam("encodingParam").getValue();

 this.cookieTokenService = cookieTokenService;

 }

 public void start()

 {

 cookieTokenService.setupCodec(this);

 }

 public void stop()

 {

 }

 /**

Password Encryption

129

 * Very simple encoding algorithm used only for demonstration purposes.

 * You should use stronger algorithm in real production environment.

 */

 public String encode(String plainInput)

 {

 return plainInput + simpleParam;

 }

 public String decode(String encodedInput)

 {

 return encodedInput.substring(0, encodedInput.length() - simpleParam.length());

 }

}

2. Compile the class and package it into a jar file. For this example we will call the jar file

codec-example.jar.

3. Create a conf/portal/configuration.xml file within the codec-example.jar similar

to the example below. This allows the portal kernel to find and use the new codec

implementation.

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd http://

www.exoplaform.org/xml/ns/kernel_1_2.xsd"

xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

<component>

 <key>org.example.codec.ExampleCodec</key>

 <type>org.example.codec.ExampleCodec</type>

 <init-params>

 <value-param>

 <name>encodingParam</name>

 <value>aaa</value>

 </value-param>

 </init-params>

Chapter 6. Authentication and...

130

</component>

</configuration>

4. Deploy the codec-example.jar into your <JBOSS_HOME>/server/<PROFILE>/deploy/

gatein.ear/lib/ directory.

5. Start (or restart) your JBoss Enterprise Portal Platform.

Any passwords written to the JCR will now be encoded and not plain text.

6.3. Predefined User Configuration

6.3.1. Overview

To specify the initial Organization configuration, the content of 02portal.war:/WEB-INF/conf/

organization/organization-configuration.xml should be edited. This file uses the portal

XML configuration schema. It lists several configuration plugins.

6.3.2. Plugin for adding users, groups and membership types

The plugin of type

org.exoplatform.services.organization.OrganizationDatabaseInitializer is used to

specify a list of membership types, a list of groups, and a list of users to be created.

The checkDatabaseAlgorithm initialization parameter determines how the database update is

performed.

If its value is set to entry it means that each user, group and membership listed in the configuration

is checked each time GateIn 3.2 is started. If the entry doesn't yet exist in the database, it is

created. If checkDatabaseAlgorithm parameter value is set to empty, the configuration data will

be updated to the database only if the database is empty.

6.3.3. Membership types

The predefined membership types are specified in the membershipType field of the

OrganizationConfig plugin parameter.

Note

See 02portal.war:/WEB-INF/conf/organization/organization-

configuration.xml for the full content.

Groups

131

<field name="membershipType">

 <collection type="java.util.ArrayList">

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">

 <field name="type">

 <string>member</string>

 </field>

 <field name="description">

 <string>member membership type</string>

 </field>

 </object>

 </value>

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">

 <field name="type">

 <string>owner</string>

 </field>

 <field name="description">

 <string>owner membership type</string>

 </field>

 </object>

 </value>

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">

 <field name="type">

 <string>validator</string>

 </field>

 <field name="description">

 <string>validator membership type</string>

 </field>

 </object>

 </value>

 </collection>

</field>

6.3.4. Groups

The predefined groups are specified in the group field of the OrganizationConfig plugin

parameter.

<field name="group">

 <collection type="java.util.ArrayList">

Chapter 6. Authentication and...

132

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$Group">

 <field name="name">

 <string>portal</string>

 </field>

 <field name="parentId">

 <string></string>

 </field>

 <field name="type">

 <string>hierachy</string>

 </field>

 <field name="description">

 <string>the /portal group</string>

 </field>

 </object>

 </value>

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$Group">

 <field name="name">

 <string>community</string>

 </field>

 <field name="parentId">

 <string>/portal</string>

 </field>

 <field name="type">

 <string>hierachy</string>

 </field>

 <field name="description">

 <string>the /portal/community group</string>

 </field>

 </object>

 </value>

 ...

 </collection>

</field>

6.3.5. Users

The predefined users are specified in the membershipType field of the OrganizationConfig

plugin parameter.

<field name="user">

 <collection type="java.util.ArrayList">

Plugin for monitoring user creation

133

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$User">

 <field name="userName"><string>root</string></field>

 <field name="password"><string>exo</string></field>

 <field name="firstName"><string>root</string></field>

 <field name="lastName"><string>root</string></field>

 <field name="email"><string>exoadmin@localhost</string></field>

 <field name="groups"><string>member:/admin,member:/user,owner:/portal/admin</string></

field>

 </object>

 </value>

 <value>

 <object type="org.exoplatform.services.organization.OrganizationConfig$User">

 <field name="userName"><string>exo</string></field>

 <field name="password"><string>exo</string></field>

 <field name="firstName"><string>site</string></field>

 <field name="lastName"><string>site</string></field>

 <field name="email"><string>exo@localhost</string></field>

 <field name="groups"><string>member:/user</string></field>

 </object>

 </value>

 ...

 </collection>

</field>

6.3.6. Plugin for monitoring user creation

The plugin of type org.exoplatform.services.organization.impl.NewUserEventListener

specifies which groups all the newly created users should become members of. It specifies the

groups and the memberships to use (while group is just a set of users, a membership type

represents a user's role within a group). It also specifies a list of users that should not be processed

(i.e. administrative users like 'root').

Note

The terms 'membership' and 'membership type' refer to the same thing, and are

used interchangeably.

<component-plugin>

 <name>new.user.event.listener</name>

 <set-method>addListenerPlugin</set-method>

 <type>org.exoplatform.services.organization.impl.NewUserEventListener</type>

Chapter 6. Authentication and...

134

 <description>this listener assign group and membership to a new created user</description>

 <init-params>

 <object-param>

 <name>configuration</name>

 <description>description</description>

 <object type="org.exoplatform.services.organization.impl.NewUserConfig">

 <field name="group">

 <collection type="java.util.ArrayList">

 <value>

 <object type="org.exoplatform.services.organization.impl.NewUserConfig$JoinGroup">

 <field name="groupId"><string>/user</string></field>

 <field name="membership"><string>member</string></field>

 </object>

 </value>

 </collection>

 </field>

 <field name="ignoredUser">

 <collection type="java.util.HashSet">

 <value><string>exo</string></value>

 <value><string>root</string></value>

 <value><string>company</string></value>

 <value><string>community</string></value>

 </collection>

 </field>

 </object>

 </object-param>

 </init-params>

</component-plugin>

6.4. Authentication Token Configuration

6.4.1. What is Token Service?

Token Service is used in authentication.

The token system prevents user account information being sent in clear text mode within inbound

requests. This increases authentication security.

Token service allows administrators to create, delete, retrieve and clean tokens as required. The

service also defines a validity period of any given token. The token becomes invalid once this

period expires.

Implementing the Token Service API

135

6.4.2. Implementing the Token Service API

All token services used in GateIn 3.2 authentication must be implemented by subclassing an

AbstractTokenService abstract class. The following AbstractTokenService methods represent

the contract between authentication runtime, and a token service implementation.

 public Token getToken(String id) throws PathNotFoundException, RepositoryException;

 public Token deleteToken(String id) throws PathNotFoundException, RepositoryException;

 public String[] getAllTokens();

 public long getNumberTokens() throws Exception;

 public String createToken(Credentials credentials) throws IllegalArgumentException,NullPointerException;

 public Credentials validateToken(String tokenKey, boolean remove) throws NullPointerException;

6.4.3. Configuring token services

Token services configuration includes specifying the token validity period. The token service is

configured as a portal component (in portal scope, as opposed to root scope - more about that

in Foundations chapter).

In the example below, CookieTokenService is a subclass of AbstractTokenService so it has a

property which specifies the validity period of the token.

The token service will initialize this validity property by looking for an init-param named

service.configuration.

This property must have three values.

<component>

 <key>org.exoplatform.web.security.security.CookieTokenService</key>

 <type>org.exoplatform.web.security.security.CookieTokenService</type>

 <init-params>

 <values-param>

 <name>service.configuration</name>

 <value>jcr-token</value>

 <value>7</value>

 <value>DAY</value>

 </values-param>

 </init-params>

</component>

Service name

Chapter 6. Authentication and...

136

Amount of time

Unit of time

In this case, the service name is jcr-token and the token expiration time is one week.

GateIn 3.2 supports four time units:

1. SECOND

2. MINUTE

3. HOUR

4. DAY

6.5. PicketLink IDM integration

GateIn 3.2 uses PicketLink IDM component to keep the necessary identity

information (users, groups, memberships, etc.). While legacy interfaces are still used

(org.exoplatform.services.organization) for identity management, there is a wrapper

implementation that delegates to PicketLink IDM framework.

This section doesn't provide information about PicketLink IDM and its configuration. Please,

refer to the appropriate project documentation (http://jboss.org/picketlink/IDM.html) for further

information.

Note

It is important to fully understand the concepts behind this framework design before

changing the default configuration.

The identity model represented in 'org.exoplatform.services.organization' interfaces and the

one used in PicketLink IDM have some major differences.

TODO: tell more about org.exoplatform.services.organization

For example: PicketLink IDM provides greater abstraction. It is possible for groups in IDM

framework to form memberships with many parents (which requires recursive ID translation), while

GateIn model allows only pure tree-like membership structures.

Additionally, GateIn membership concept needs to be translated into the IDM Role concept.

Therefore PicketLink IDM model is used in a limited way. All these translations are applied by

the integration layer.

6.5.1. Configuration files

The main configuration file is idm-configuration.xml:

http://jboss.org/picketlink/IDM.html

Configuration files

137

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd http://

www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <component>

 <key>org.exoplatform.services.organization.idm.PicketLinkIDMService</key>

 <type>org.exoplatform.services.organization.idm.PicketLinkIDMServiceImpl</type>

 <init-params>

 <value-param>

 <name>config</name>

 <value>war:/conf/organization/idm-config.xml</value>

 </value-param>

 <value-param>

 <name>portalRealm</name>

 <value>realm${container.name.suffix}</value>

 </value-param>

 </init-params>

 </component>

 <component>

 <key>org.exoplatform.services.organization.OrganizationService</key>

 <type>org.exoplatform.services.organization.idm.PicketLinkIDMOrganizationServiceImpl</

type>

 <init-params>

 <object-param>

 <name>configuration</name>

 <object type="org.exoplatform.services.organization.idm.Config">

 <field name="useParentIdAsGroupType">

 <boolean>true</boolean>

 </field>

 <field name="forceMembershipOfMappedTypes">

 <boolean>true</boolean>

 </field>

 <field name="pathSeparator">

 <string>.</string>

 </field>

 <field name="rootGroupName">

 <string>GTN_ROOT_GROUP</string>

Chapter 6. Authentication and...

138

 </field>

 <field name="groupTypeMappings">

 <map type="java.util.HashMap">

 <entry>

 <key><string>/</string></key>

 <value><string>root_type</string></value>

 </entry>

 <!-- Sample mapping -->

 <!--

 <entry>

 <key><string>/platform/*</string></key>

 <value><string>platform_type</string></value>

 </entry>

 <entry>

 <key><string>/organization/*</string></key>

 <value><string>organization_type</string></value>

 </entry>

 -->

 </map>

 </field>

 <field name="associationMembershipType">

 <string>member</string>

 </field>

 <field name="ignoreMappedMembershipType">

 <boolean>false</boolean>

 </field>

 </object>

 </object-param>

 </init-params>

 </component>

</configuration>

The org.exoplatform.services.organization.idm.PicketLinkIDMServiceImpl service has

the following options:

Configuration files

139

config

(value-param)

PicketLink IDM configuration file

hibernate.properties

(properties-param)

A list of hibernate properties used to create SessionFactory that will be injected to JBoss

Identity IDM configuration registry.

hibernate.annotations

A list of annotated classes that will be added to Hibernate configuration.

hibernate.mappings

A list of xml files that will be added to hibernate configuration as mapping files.

jndiName

(value-param)

If the 'config' parameter is not provided, this parameter will be used to perform JNDI

lookup for IdentitySessionFactory

portalRealm

(value-param)

The realm name that should be used to obtain proper IdentitySession. The default is

'PortalRealm'.

The

org.exoplatform.services.organization.idm.PicketLinkIDMOrganizationServiceImpl

key is a main entrypoint implementing

org.exoplatform.services.organization.OrganizationService and is dependant on

org.exoplatform.services.organization.idm.PicketLinkIDMService

org.exoplatform.services.organization.idm.PicketLinkIDMOrganizationServiceImpl

service has the following options defined as fields of object-param of type

org.exoplatform.services.organization.idm.Config:

defaultGroupType

The name of the PicketLink IDM GroupType that will be used to store groups. The default

is 'GTN_GROUP_TYPE'.

rootGroupName

The name of the PicketLink IDM Group that will be used as a root parent. The default

is 'GTN_ROOT_GROUP'

Chapter 6. Authentication and...

140

passwordAsAttribute

This parameter specifies if a password should be stored using PicketLink IDM Credential

object or as a plain attribute. The default is false.

useParentIdAsGroupType

This parameter stores the parent ID path as a group type in PicketLink IDM for any IDs

not mapped with a specific type in 'groupTypeMappings'. If this option is set to false,

and no mappings are provided under 'groupTypeMappings', then only one group with

the given name can exist in the GateIn 3.2 group tree.

pathSeparator

When 'userParentIdAsGroupType is set to true, this value will be used to replace all "/"

characters in IDs. The "/" character is not allowed to be used in group type name in

PicketLink IDM.

associationMembershipType

If this option is used, then each Membership, created with MembrshipType that is equal

to the value specified here, will be stored in PicketLink IDM as simple Group-User

association.

groupTypeMappings

This parameter maps groups added with GateIn 3.2 API as children of a given group ID,

and stores them with a given group type name in PicketLink IDM.

If the parent ID ends with "/*", then all child groups will have the mapped group type.

Otherwise, only direct (first level) children will use this type.

This can be leveraged by LDAP if LDAP DN is configured in PicketLink IDM to only store

a specific group type. This will then store the given branch in GateIn 3.2 group tree, while

all other groups will remain in the database.

forceMembershipOfMappedTypes

Groups stored in PicketLink IDM with a type mapped in 'groupTypeMappings' will

automatically be members under the mapped parent. Group relationships linked by

PicketLink IDM group association will not be necessary.

This parameter can be set to false if all groups are added via GateIn 3.2 APIs. This may

be useful with LDAP configuration as, when set to true, it will make every entry added

to LDAP appear in GateIn 3.2. This, however, is not true for entries added via GateIn

3.2 management UI.

ignoreMappedMembershipType

If "associationMembershipType" option is used, and this option is set to true,

then Membership with MembershipType configured to be stored as PicketLink IDM

association will not be stored as PicketLink IDM Role.

Configuration files

141

Additionally, JBossIDMOrganizationServiceImpl uses those defaults to perform identity

management operations

• GateIn 3.2 User interface properties fields are persisted in JBoss Identity IDM using those

attributes names: firstName, lastName, email, createdDate, lastLoginTime, organizationId,

password (if password is configured to be stored as attribute)

• GateIn 3.2 Group interface properties fields are persisted in JBoss Identity IDM using those

attributes names: label, description

• GateIn 3.2 MembershipType interface properties fields are persisted in JBoss Identity IDM

using those RoleType properties: description, owner, create_date, modified_date

A sample PicketLink IDM configuration file is shown below. To understand all the options it

contains, please refer to the PicketLink IDM Reference Guide

<jboss-identity xmlns="urn:jboss:identity:idm:config:v1_0_beta"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:jboss:identity:idm:config:v1_0_alpha identity-config.xsd">

 <realms>

 <realm>

 <id>PortalRealm</id>

 <repository-id-ref>PortalRepository</repository-id-ref>

 <identity-type-mappings>

 <user-mapping>USER</user-mapping>

 </identity-type-mappings>

 </realm>

 </realms>

 <repositories>

 <repository>

 <id>PortalRepository</id>

 <class>org.jboss.identity.idm.impl.repository.WrapperIdentityStoreRepository</class>

 <external-config/>

 <default-identity-store-id>HibernateStore</default-identity-store-id>

 <default-attribute-store-id>HibernateStore</default-attribute-store-id>

 </repository>

 </repositories>

 <stores>

 <attribute-stores/>

 <identity-stores>

 <identity-store>

 <id>HibernateStore</id>

 <class>org.jboss.identity.idm.impl.store.hibernate.HibernateIdentityStoreImpl</class>

 <external-config/>

Chapter 6. Authentication and...

142

 <supported-relationship-types>

 <relationship-type>JBOSS_IDENTITY_MEMBERSHIP</relationship-type>

 <relationship-type>JBOSS_IDENTITY_ROLE</relationship-type>

 </supported-relationship-types>

 <supported-identity-object-types>

 <identity-object-type>

 <name>USER</name>

 <relationships/>

 <credentials>

 <credential-type>PASSWORD</credential-type>

 </credentials>

 <attributes/>

 <options/>

 </identity-object-type>

 </supported-identity-object-types>

 <options>

 <option>

 <name>hibernateSessionFactoryRegistryName</name>

 <value>hibernateSessionFactory</value>

 </option>

 <option>

 <name>allowNotDefinedIdentityObjectTypes</name>

 <value>true</value>

 </option>

 <option>

 <name>populateRelationshipTypes</name>

 <value>true</value>

 </option>

 <option>

 <name>populateIdentityObjectTypes</name>

 <value>true</value>

 </option>

 <option>

 <name>allowNotDefinedAttributes</name>

 <value>true</value>

 </option>

 <option>

 <name>isRealmAware</name>

 <value>true</value>

 </option>

 </options>

 </identity-store>

 </identity-stores>

 </stores>

Organization API

143

</jboss-identity>

6.6. Organization API

The exo.platform.services.organization package has five main components: user, user

profile, group, membership type and membership. There is an additional component that serves as

an entry point into Organization API - OrganizationService component, that provides handling

functionality for the five components.

The User component contains basic information about a user - such as username, password, first

name, last name, and email. The User Profile component contains extra information about a

user, such as user's personal information, and business information. You can also add additional

information about a user if your application requires it. The Group component contains a group

Chapter 6. Authentication and...

144

graph. The Membership Type component contains a list of predefined membership types. Finally,

the Membership component connects a User, a Group and a Membership Type.

A user can have one or more memberships within a group, for example: user A can have the

'member' and 'admin' memberships in group /user. A user belongs to a group if he has at least

one membership in that group.

Exposing the Organization API to developers the OrganizationService component

provides developers with access to handler objects for managing each of the five

components - UserHandler, UserProfileHandler, GroupHandler, MembershipTypeHandler, and

MembershipHandler.

The five central API components are really designed like persistent entities, and handlers are

really specified like data access objects (DAO).

Organization API simply describes a contract, meaning it is not a concrete implementation. The

described components are interfaces, allowing for different concrete implementations. In practial

terms that means, you can replace the existing implementation with a different one.

6.7. Accessing User Profile

The following code retrieves the details for a logged-in user:

// Alternative context: WebuiRequestContext context =

 WebuiRequestContext.getCurrentInstance() ;

PortalRequestContext context = PortalRequestContext.getCurrentInstance() ;

// Get the id of the user logged

String userId = context.getRemoteUser();

// Request the information from OrganizationService:

OrganizationService orgService = getApplicationComponent(OrganizationService.class) ;

if (userId != null)

 {

 User user = orgService.getUserHandler().findUserByName(userId) ;

 if (user != null)

 {

 String firstName = user.getFirstName();

 String lastName = user.getLastName();

 String email = user.getEmail();

 }

}

Below are two alternatives for retrieving the Organization Service:

1.
OrganizationService service = (OrganizationService)

Single-Sign-On (SSO)

145

 ExoContainerContext.getCurrentContainer().getComponentInstanceOfType(OrganizationService.class);

2.
OrganizationService service = (OrganizationService)

 PortalContainer.getInstance().getComponentInstanceOfType(OrganizationService.class);

6.8. Single-Sign-On (SSO)

6.8.1. Overview

GateIn 3.2 provides some form of Single Sign On (SSO) as an integration and aggregation platform.

When logging into the portal users gain access to many systems through portlets using a single

identity. In many cases, however, the portal infrastructure must be integrated with other SSO

enabled systems. There are many different Identity Management solutions available. In most

cases each SSO framework provides a unique way to plug into a Java EE application.

6.8.1.1. Prerequisites

In this tutorial, the SSO server is installed in a Tomcat installation. Tomcat can be obtained from

http://tomcat.apache.org.

All the packages required for setup can be found in a latest zip file located under this

directory [https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/

]. At this moment, latest version is here [https://repository.jboss.org/nexus/content/groups/public/

org/gatein/sso/sso-packaging/1.1.1-CR02/sso-packaging-1.1.1-CR02.zip]. In this document,

$GATEIN_SSO_HOME is called as the directory where the file is extracted.

Users are advised to not run any portal extensions that could override the data when manipulating

the gatein.ear file directly.

6.8.2. Enabling SSO using JBoss SSO Valve

The JBoss SSO valve is useful to authenticate a user on one GateIn 3.2 node in a cluster and

have that authentication automatically carry across to other nodes in the cluster.

This authentication can also be used in any other web applications which may require

authentication, provided that these applications use same roles as the main portal instance.

Attempting to use an SSO authentication in an application that uses different roles may create

authorization errors (403 errors, for example).

Note

This behaviour is coming from the fact that same JAAS principal is added by

SSO valve to all HTTP requests, even to other web applications. So the same

roles are required because of it. There is alternative that you can configure SSO

http://tomcat.apache.org
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/1.1.1-CR02/sso-packaging-1.1.1-CR02.zip
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/1.1.1-CR02/sso-packaging-1.1.1-CR02.zip
https://repository.jboss.org/nexus/content/groups/public/org/gatein/sso/sso-packaging/1.1.1-CR02/sso-packaging-1.1.1-CR02.zip

Chapter 6. Authentication and...

146

valve with parameter requireReauthentication=true , which will force SSO valve

to perform reauthentication with saved credentials in each HTTP request against

security domain of particular web application where the request is coming. This

will enforce that new principal for that web application will be created with updated

roles for that web application. In other words, when requireReauthentication is

false (default state), you need to have same roles among web applications. When

requireReauthentication is true you need to have same username and passwords.

More info about the JBoss SSO valve can be found at http://community.jboss.org/wiki/

JBossWebSingleSignOn.

To successfully implement SSO integration, do the following:

Procedure 6.2. SSO Integration

1. Open the /<JBOSS_HOME>/server/<PROFILE>/deploy/jbossweb.sar/server.xml file and

uncomment one of the two Valve entries:

• For a non-clustered implementation, uncomment:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />

• For a clustered implementation, uncomment:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" />

2. For integration of SSO valve among different nodes of cluster, you need to ensure

that all these nodes share the same domain (for example node1.yourdomain.com and

node2.yourdomain.com). This domain needs to be configured with parameter cookieDomain

of SSO valve. Thing is that SSO valve is adding cookie JSESSIONIDSSO, which is by

default bound only to host where the request is coming. When used cookieDomain parameter,

cookie is bound to domain (like yourdomain.com), which will ensure that it is shared

among both hosts node1.yourdomain.com and node2.yourdomain.com. So in this case, valve

configuration can look like this:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"

 cookieDomain="yourdomain.com" />

3. Another important thing is that both cluster nodes needs to be on same cluster (using same

parameter -g and same parameter -u and also using parameter -Dexo.profiles=cluster). It's

http://community.jboss.org/wiki/JBossWebSingleSignOn
http://community.jboss.org/wiki/JBossWebSingleSignOn

Enabling SSO using JBoss SSO Valve

147

also needed for them to share the same NFS directory and same database and apply all the

configuration needed for GateIn 3.2 cluster.

Testing SSO in a physical cluster. In this example, we will try to simulate testing on more

physical machines by simply using virtual hosts on single machine.

1. If you are on Linux, you can configure file /etc/hosts to contain these lines:

127.0.1.1 machine1.yourdomain.com

127.0.1.2 machine2.yourdomain.com

2. Open the <JBOSS_HOME>/server/all/deploy/jbossweb.sar/server.xml file.

3. Uncomment the line:

<!--

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" />

-->

4. And edit it to match the following:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"

 cookieDomain="yourdomain.com" />

This will ensure the JSESSIONIDSSO cookie is used in the correct domain, allowing the SSO

authentication to occur.

5. Copy server configuration all and create another two configurations node1 and node2 from it.

6. Start both cluster nodes with commands:

./run.sh -c node1 -b machine1.yourdomain.com -Dexo.profiles=cluster -

Djboss.messaging.ServerPeerID=0 &

./run.sh -c node2 -b machine2.yourdomain.com -Dexo.profiles=cluster -

Djboss.messaging.ServerPeerID=1 &

7. Let's go to http://machine1.yourdomain.com:8080/portal and login as some user.

8. Access some private url on second host like http://machine2.yourdomain.com:8080/portal/

dologin. Now you should be logged directly into machine2 thanks to SSO valve.

http://machine1.yourdomain.com:8080/portal
http://machine2.yourdomain.com:8080/portal/dologin
http://machine2.yourdomain.com:8080/portal/dologin

Chapter 6. Authentication and...

148

9. Logout from SSO initiating machine1.yourdomain.com should also logged you out from other

cluster nodes. So you should be logout directly from machine2 as well.

Enabling SSO with Other Web Applications. As mentioned earlier, in order to use SSO

authentication between JBoss Enterprise Portal Platform instances and other web applications,

the roles defined in the web application must match those used in the portal instance (unless you

have requireReauthentication=true as mentioned above).

As an example, to use the SSO Valve to authenticate a user in both a portal instance and the JMX

Console, the following actions would be required:

Procedure 6.3.

• Open the <JBOSS_HOME>/server/node1/deploy/jmx-console.war/WEB-INF/web.xml file

and edit it as follows:

a. Change the <role-name> entry in the <auth-constraint> element (line 110) from

JBossAdmin to users:

<auth-constraint>

 <!--<role-name>JBossAdmin</role-name>-->

 <role-name>users</role-name>

</auth-constraint>

b. Change the <role-name> entry in the <security-role> element (line 120) from

JBossAdmin to users

<security-role>

 <!--<role-name>JBossAdmin</role-name>-->

 <role-name>users</role-name>

</security-role>

Testing SSO With Other Web Applications. To test that SSO authentication is enabled from

portal instances to other web applications (in this case, the JMX Console), do the following:

Procedure 6.4. Test SSO Between Portal and JMX Console

1. Start a portal instance on one node:

./run.sh -c node1 -b machine1.yourdomain.com -Dexo.profiles=cluster -

Djboss.messaging.ServerPeerID=0 &

Central Authentication Service (CAS)

149

2. Navigate to http://machine1.yourdomain.com:8080/portal/private/classic and authenticate

with the pre-configured user account " root " (password " gtn ").

3. Navigate to http://machine1.yourdomain.com:8080/jmx-console. You should be automatically

authenticated into the JMX Console.

Using SSO to Authenticate From the Public Page. The previous configuration changes in

this section are useful if a user is using a secured URL (http://localhost:8080/portal/private/classic,

for example) to log in to the portal instance.

Further changes are needed however, if SSO authentication is required to work with the Sign In

button on the front page of the portal (http://localhost:8080/portal/classic).

To enable this functionality, the Sign In link must redirect to some secured URL, which will ensure

that JAAS authentication will be enforced directly without showing login dialog.

Procedure 6.5. Redirect to Use SSO Valve Authentication

1. Open the <JBOSS_HOME>/server/<PROFILE>/deploy/gatein.ear/web.war/groovy/

groovy/webui/component/UIBannerPortlet.gtml file and edit the line:

<a class="Login"

 onclick="$signInAction"><%=_ctx.appRes("UILoginForm.label.Signin")%>

To read:

<a class="Login"

 href="/portal/private/classic"><%=_ctx.appRes("UILoginForm.label.Signin")%>

2. Open the <JBOSS_HOME>/server/<PROFILE>/deploy/gatein.ear/web.war/groovy/

portal/webui/component/UILogoPortlet.gtmpl file and change the line:

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

To read:

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

6.8.3. Central Authentication Service (CAS)

This Single Sign On plugin enables seamless integration between GateIn 3.2 and the CAS Single

Sign On Framework. Details about CAS can be found here [http://www.jasig.org/cas].

http://machine1.yourdomain.com:8080/portal/private/classic
http://machine1.yourdomain.com:8080/jmx-console
http://localhost:8080/portal/private/classic
http://localhost:8080/portal/classic
http://www.jasig.org/cas
http://www.jasig.org/cas

Chapter 6. Authentication and...

150

The integration consists of two parts; the first part consists of installing or configuring a CAS server,

the second part consists of setting up the portal to use the CAS server.

6.8.3.1. CAS server

First, set up the server to authenticate against the portal login module. In this example, the CAS

server is installed on Tomcat.

6.8.3.1.1. Obtaining CAS

CAS can be downloaded from http://www.jasig.org/cas/download. Tested version, which should

work with these instructions is CAS 3.3.5, however other versions can also work without problems.

Extract the downloaded file into a suitable location. This location will be referred to as $CAS_HOME

in the following instructions.

6.8.3.1.2. Modifying the CAS server

To configure the web archive as desired, the simplest way is to make the necessary changes

directly in the CAS codebase.

Note

To complete these instructions, and perform the final build step, you will need the

Apache Maven 2. You can get it here [http://maven.apache.org/download.html].

First, change the default authentication handler with the one provided by GateIn 3.2.

The CAS Server Plugin makes secure authentication callbacks to a RESTful service installed on

the remote GateIn 3.2 server to authenticate a user.

In order for the plugin to function correctly, it needs to be properly configured to connect to this

service. This configuration is done via the cas.war/WEB-INF/deployerConfigContext.xml file.

1. Open CAS_HOME/cas-server-webapp/src/main/webapp/WEB-INF/

deployerConfigContext.xml

2. Replace:

 <!--

 | Whereas CredentialsToPrincipalResolvers identify who it is some Credentials might

 authenticate,

 | AuthenticationHandlers actually authenticate credentials. Here e declare the

 AuthenticationHandlers that

 | authenticate the Principals that the CredentialsToPrincipalResolvers identified. CAS will

 try these handlers in turn

http://www.jasig.org/cas/download
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Central Authentication Service (CAS)

151

 | until it finds one that both supports the Credentials presented and succeeds in

 authenticating.

 +-->

 <property name="authenticationHandlers">

 <list>

 <!--

 | This is the authentication handler that authenticates services by means of callback via

 SSL, thereby validating

 | a server side SSL certificate.

 +-->

 <bean

 class="org.jasig.cas.authentication.handler.support.HttpBasedServiceCredentialsAuthenticationHandler"

 p:httpClient-ref="httpClient" />

 <!--

 | This is the authentication handler declaration that every CAS deployer will need to

 change before deploying CAS

 | into production. The default SimpleTestUsernamePasswordAuthenticationHandler

 authenticates UsernamePasswordCredentials

 | where the username equals the password. You will need to replace this with an

 AuthenticationHandler that implements your

 | local authentication strategy. You might accomplish this by coding a new such handler

 and declaring

 | edu.someschool.its.cas.MySpecialHandler here, or you might use one of the handlers

 provided in the adaptors modules.

 +-->

 <bean

 class="org.jasig.cas.authentication.handler.support.SimpleTestUsernamePasswordAuthenticationHandler" /

>

 </list>

 </property>

With the following (Make sure to set the host, port and context with the values

corresponding to your portal). Also available in GATEIN_SSO_HOME/cas/plugin/WEB-INF/

deployerConfigContext.xml.

<!--

 | Whereas CredentialsToPrincipalResolvers identify who it is some Credentials might

 authenticate,

 | AuthenticationHandlers actually authenticate credentials. Here we declare the

 AuthenticationHandlers that

 | authenticate the Principals that the CredentialsToPrincipalResolvers identified. CAS will

 try these handlers in turn

Chapter 6. Authentication and...

152

 | until it finds one that both supports the Credentials presented and succeeds in

 authenticating.

 +-->

 <property name="authenticationHandlers">

 <list>

 <!--

 | This is the authentication handler that authenticates services by means of callback via

 SSL, thereby validating

 | a server side SSL certificate.

 +-->

 <bean

 class="org.jasig.cas.authentication.handler.support.HttpBasedServiceCredentialsAuthenticationHandler"

 p:httpClient-ref="httpClient" />

 <!--

 | This is the authentication handler declaration that every CAS deployer will need to

 change before deploying CAS

 | into production. The default SimpleTestUsernamePasswordAuthenticationHandler

 authenticates UsernamePasswordCredentials

 | where the username equals the password. You will need to replace this with an

 AuthenticationHandler that implements your

 | local authentication strategy. You might accomplish this by coding a new such handler

 and declaring

 | edu.someschool.its.cas.MySpecialHandler here, or you might use one of the handlers

 provided in the adaptors modules.

 +-->

 <!-- Integrates with the Gatein Authentication Service to perform authentication -->

 <!--

 | Note: Modify the Plugin Configuration based on the actual information of a GateIn

 instance.

 | The instance can be anywhere on the internet...Not necessarily on localhost where

 CAS is running

 +-->

 <bean class="org.gatein.sso.cas.plugin.AuthenticationPlugin">

 <property name="gateInHost"><value>localhost</value></property>

 <property name="gateInPort"><value>8080</value></property>

 <property name="gateInContext"><value>portal</value></property>

 </bean>

 </list>

 </property>

3. Copy GATEIN_SSO_HOME/cas/plugin/WEB-INF/lib/sso-cas-plugin-<VERSION>.jar

and GATEIN_SSO_HOME/cas/plugin/WEB-INF/lib/commons-httpclient-<VERSION>.jar

into the CAS_HOME/cas-server-webapp/src/main/webapp/WEB-INF/lib created directory.

Central Authentication Service (CAS)

153

4. Get an installation of Tomcat and extract it into a suitable location (which will be called

TOMCAT_HOME for these instructions).

Change the default port to avoid a conflict with the default GateIn 3.2 (for testing purposes).

Edit TOMCAT_HOME/conf/server.xml and replace the 8080 port to 8888.

Note

If GateIn 3.2 is running on the same machine as Tomcat, other ports need to

be changed in addition to 8080 to avoid port conflicts. They can be changed

to any free port. For example, you can change admin port from 8005 to 8805,

and AJP port from 8009 to 8809.

5. Go to CAS_HOME/cas-server-webapp and execute the command:

mvn install

6. Copy CAS_HOME/cas-server-webapp/target/cas.war into TOMCAT_HOME/webapps.

Tomcat should start and be accessible at http://localhost:8888/cas. Note that at this stage

login won't be available.

Note

By default on logout the CAS server will display the CAS logout page with a link

to return to the portal. To make the CAS server redirect to the portal page after a

logout, modify the cas.war/WEB-INF/cas-servlet.xml to include the follow line :

http://localhost:8888/cas

Chapter 6. Authentication and...

154

 <bean id="logoutController" class="org.jasig.cas.web.LogoutController"

 p:centralAuthenticationService-ref="centralAuthenticationService"

 p:logoutView="casLogoutView"

 p:warnCookieGenerator-ref="warnCookieGenerator"

 p:ticketGrantingTicketCookieGenerator-

ref="ticketGrantingTicketCookieGenerator"

 p:followServiceRedirects="true"/>

6.8.3.2. Setup the CAS client

1. Copy all libraries from GATEIN_SSO_HOME/cas/gatein.ear/lib into JBOSS_HOME/server/

default/deploy/gatein.ear/lib (Or in Tomcat, into $GATEIN_HOME/lib)

2. • In JBoss AS, edit gatein.ear/META-INF/gatein-jboss-beans.xml and uncomment on

this section:

<authentication>

 <login-module code="org.gatein.sso.agent.login.SSOLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <login-module code="org.exoplatform.services.security.j2ee.JbossLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

</authentication>

• In Tomcat, edit GATEIN_HOME/conf/jaas.conf, uncomment on this section and comment

other parts:

org.gatein.sso.agent.login.SSOLoginModule required;

org.exoplatform.services.security.j2ee.TomcatLoginModule required

portalContainerName=portal

Central Authentication Service (CAS)

155

realmName=gatein-domain;

3. In Tomcat, edit GATEIN_HOME/webapps/portal.war/META-INF/context.xml and add

ServletAccessValve into configuration as first sub-element of Context:

<Context path='/portal' docBase='portal' ... >

 <Valve className='org.gatein.sso.agent.tomcat.ServletAccessValve' />

 ...

</Context>

4. The installation can be tested at this point:

1. Start (or restart) GateIn 3.2, and (assuming the CAS server on Tomcat is running) direct

your browser to http://localhost:8888/cas.

2. Login with the username root and the password gtn (or any account created through

the portal).

6.8.3.3. Redirect to CAS

To utilize the Central Authentication Service, GateIn 3.2 needs to redirect all user authentication

to the CAS server.

Information about where the CAS is hosted must be properly configured within the GateIn 3.2

instance. The required configuration is done by modifying three files:

• In the gatein.ear/web.war/groovy/groovy/webui/component/UIBannerPortlet.gtml file

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILoginForm.label.Signin")%></

a>

-->

<%=_ctx.appRes("UILoginForm.label.Signin")%>

http://localhost:8888/cas

Chapter 6. Authentication and...

156

• In the gatein.ear/web.war/groovy/portal/webui/component/UILogoPortlet.gtmpl file,

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

-->

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

• Replace the entire contents of gatein.ear/02portal.war/login/jsp/login.jsp with:

<html>

 <head>

 <script type="text/javascript">

 window.location = '/portal/sso';

 </script>

 </head>

 <body>

 </body>

</html>

• Add the following Filters at the top of the filter chain in gatein.ear/02portal.war/WEB-INF/

web.xml:

<filter>

 <filter-name>LoginRedirectFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.LoginRedirectFilter</filter-class>

 <init-param>

 <!-- This should point to your SSO authentication server -->

 <param-name>LOGIN_URL</param-name>

 <!-- If casRenewTicket param value of InitiateLoginServlet is: not specified or false -->

 <param-value>http://localhost:8888/cas/login?service=http://localhost:8080/portal/

initiatessologin</param-value>

 <!-- If casRenewTicket param value of InitiateLoginServlet is : true -->

 <!-- <param-value>http://localhost:8888/cas/login?service=http://localhost:8080/portal/

initiatessologin&renew=true</param-value> -->

 </init-param>

</filter>

<filter>

 <filter-name>CASLogoutFilter</filter-name>

Central Authentication Service (CAS)

157

 <filter-class>org.gatein.sso.agent.filter.CASLogoutFilter</filter-class>

 <init-param>

 <!-- This should point to your JOSSO authentication server -->

 <param-name>LOGOUT_URL</param-name>

 <param-value>http://localhost:8888/cas/logout</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>InitiateLoginFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.InitiateLoginFilter</filter-class>

 <init-param>

 <param-name>ssoServerUrl</param-name>

 <param-value>http://localhost:8888/cas</param-value>

 </init-param>

 <init-param>

 <param-name>casRenewTicket</param-name>

 <param-value>false</param-value>

 </init-param>

 <init-param>

 <param-name>casServiceUrl</param-name>

 <param-value>http://localhost:8080/portal/initiatessologin</param-value>

 </init-param>

 <init-param>

 <param-name>loginUrl</param-name>

 <param-value>http://localhost:8080/portal/dologin</param-value>

 </init-param>

</filter>

<!-- Mapping the filters at the very top of the filter chain -->

<filter-mapping>

 <filter-name>LoginRedirectFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>CASLogoutFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>InitiateLoginFilter</filter-name>

 <url-pattern>/initiatessologin</url-pattern>

</filter-mapping>

Chapter 6. Authentication and...

158

Once these changes have been made, all links to the user authentication pages will redirect to

the CAS centralized authentication form.

6.8.4. JOSSO

This Single-Sign-On plugin enables the seamless integration between GateIn 3.2 and the JOSSO

Single-Sign-On Framework. Details about JOSSO can be found here [http://www.josso.org].

Setting up this integration consists of two steps: installing/configuring a JOSSO server, and setting

up the portal to use the JOSSO server.

6.8.4.1. JOSSO server

This section describes how to set up the JOSSO server to authenticate against the GateIn 3.2

login module.

In this example, the JOSSO server will be installed on Tomcat.

6.8.4.1.1. Obtaining JOSSO

JOSSO can be downloaded from http://sourceforge.net/projects/josso/files/. Use the package that

embeds Apache Tomcat.

Once downloaded, extract the package into what will be called JOSSO_HOME in this example.

Warning

The steps described later are only correct in case of JOSSO v.1.8

6.8.4.1.2. Modifying the JOSSO server

1. If you have JOSSO 1.8.1, then copy the files from GATEIN_SSO_HOME/josso/josso-181/

plugin into the Tomcat directory (JOSSO_HOME).

If you have JOSSO 1.8.2 or newer, then copy the files from GATEIN_SSO_HOME/josso/

josso-182/plugin into the Tomcat directory (JOSSO_HOME).

This action should replace or add the following files to the JOSSO_HOME/webapps/josso/WEB-

INF/lib directory:

• JOSSO_HOME/lib/josso-gateway-config.xml

• JOSSO_HOME/lib/josso-gateway-gatein-stores.xml

and

• JOSSO_HOME/webapps/josso/WEB-INF/classes/gatein.properties

http://www.josso.org
http://www.josso.org
http://sourceforge.net/projects/josso/files/

JOSSO

159

2. Edit TOMCAT_HOME/conf/server.xml and replace the 8080 port to 8888 to change the default

Tomcat port and avoid a conflict with the default GateIn 3.2 port (for testing purposes).

Port Conflicts

If GateIn 3.2 is running on the same machine as Tomcat, other ports need to

be changed in addition to 8080 to avoid port conflicts. They can be changed

to any free port. For example, you can change the admin port from 8005 to

8805, and AJP port from 8009 to 8809.

3. Tomcat should now start and allow access to http://localhost:8888/josso/signon/login.do but

at this stage login will not be available.

6.8.4.2. Setup the JOSSO client

Note
There are some changes in JOSSO agent api among versions 1.8.1 and 1.8.2,

which means that we need to use different modules for different JOSSO versions.

In next section, we will use directory with key josso-18X, which will be directory

josso-181 if you have JOSSO 1.8.1 and josso-182 if you have JOSSO 1.8.2 or

newer.

1. Copy the library files from GATEIN_SSO_HOME/josso/josso-18X/gatein.ear/lib into

gatein.ear/lib (or into GATEIN_HOME/lib if GateIn 3.2 is running in Tomcat)

http://localhost:8888/josso/signon/login.do

Chapter 6. Authentication and...

160

2. Copy the file GATEIN_SSO_HOME/josso/josso-18X/gatein.ear/portal.war/WEB-INF/

classes/josso-agent-config.xml into gatein.ear/02portal.war/WEB-INF/classes

(or into GATEIN_HOME/webapps/portal.war/WEB-INF/classes, or GATEIN_HOME/conf if

GateIn 3.2 is running in Tomcat)

3. • In JBoss AS, edit gatein.ear/META-INF/gatein-jboss-beans.xml and uncomment this

section:

<authentication>

 <login-module code="org.gatein.sso.agent.login.SSOLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <login-module code="org.exoplatform.services.security.j2ee.JbossLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

</authentication>

• In Tomcat, edit GATEIN_HOME/conf/jaas.conf and uncomment this section:

org.gatein.sso.agent.login.SSOLoginModule required;

org.exoplatform.services.security.j2ee.TomcatLoginModule required

portalContainerName=portal

realmName=gatein-domain;

4. In Tomcat, edit GATEIN_HOME/webapps/portal.war/META-INF/context.xml and add

ServletAccessValve into configuration as first sub-element of Context:

<Context path='/portal' docBase='portal' ... >

 <Valve className='org.gatein.sso.agent.tomcat.ServletAccessValve' />

 ...

</Context>

JOSSO

161

5. The installation can be tested at this point.

1. Start (or restart) GateIn 3.2, and (assuming the JOSSO server on Tomcat is running)

direct your browser to http://localhost:8888/josso/signon/login.do.

2. Login with the username root and the password gtn or any account created through

the portal.

6.8.4.3. Setup the portal to redirect to JOSSO

The next part of the process is to redirect all user authentication to the JOSSO server.

Information about where the JOSSO server is hosted must be properly configured within the

GateIn 3.2 instance. The required configuration is done by modifying four files:

• In the gatein.ear/web.war/groovy/groovy/webui/component/UIBannerPortlet.gtml file

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILoginForm.label.Signin")%></

a>

-->

<%=_ctx.appRes("UILoginForm.label.Signin")%>

• In the gatein.ear/web.war/groovy/portal/webui/component/UILogoPortlet.gtmpl file

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

-->

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

• Replace the entire contents of gatein.ear/02portal.war/login/jsp/login.jsp with:

http://localhost:8888/josso/signon/login.do

Chapter 6. Authentication and...

162

<html>

 <head>

 <script type="text/javascript">

 window.location = '/portal/sso';

 </script>

 </head>

 <body>

 </body>

</html>

• Add the following Filters at the top of the filter chain in gatein.ear/02portal.war/WEB-INF/

web.xml:

<filter>

 <filter-name>LoginRedirectFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.LoginRedirectFilter</filter-class>

 <init-param>

 <!-- This should point to your SSO authentication server -->

 <param-name>LOGIN_URL</param-name>

 <param-value>http://localhost:8888/josso/signon/login.do?josso_back_to=http://

localhost:8080/portal/initiatessologin</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>JOSSOLogoutFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.JOSSOLogoutFilter</filter-class>

 <init-param>

 <!-- This should point to your JOSSO authentication server -->

 <param-name>LOGOUT_URL</param-name>

 <param-value>http://localhost:8888/josso/signon/logout.do</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>InitiateLoginFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.InitiateLoginFilter</filter-class>

 <init-param>

 <param-name>ssoServerUrl</param-name>

 <param-value>http://localhost:8888/josso/signon/login.do</param-value>

 </init-param>

 <init-param>

 <param-name>loginUrl</param-name>

 <param-value>http://localhost:8080/portal/dologin</param-value>

OpenSSO - The Open Web SSO project

163

 </init-param>

</filter>

<!-- Mapping the filters at the very top of the filter chain -->

<filter-mapping>

 <filter-name>LoginRedirectFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>JOSSOLogoutFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>InitiateLoginFilter</filter-name>

 <url-pattern>/initiatessologin</url-pattern>

</filter-mapping>

From now on, all links redirecting to the user authentication pages will redirect to the JOSSO

centralized authentication form.

6.8.5. OpenSSO - The Open Web SSO project

Setting up this integration involves two steps. The first step is to install or configure an OpenSSO

server, and the second is to set up the portal to use the OpenSSO server.

6.8.5.1. OpenSSO server

This section details the setting up of OpenSSO server to authenticate against the GateIn 3.2 login

module.

In this example the OpenSSO server will be installed on Tomcat.

6.8.5.1.1. Obtaining OpenSSO

OpenSSO must be purchased from Oracle [http://www.oracle.com/technetwork/middleware/id-

mgmt/overview/index.html].

For testing purpose, we will use OpenSSO_80U2 can be downloaded from Oracle [http://

download.oracle.com/otn/nt/middleware/11g/oracle_opensso_80U2.zip].

Once downloaded, extract the package into a suitable location. This location will be referred to

as OPENSSO_HOME in this example.

Note

There is also possibility to use OpenAM instead of OpenSSO server.

OpenAM is free and integration steps with GateIn 3.2 and OpenAM are very

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://download.oracle.com/otn/nt/middleware/11g/oracle_opensso_80U2.zip
http://download.oracle.com/otn/nt/middleware/11g/oracle_opensso_80U2.zip
http://download.oracle.com/otn/nt/middleware/11g/oracle_opensso_80U2.zip

Chapter 6. Authentication and...

164

similar as with OpenSSO. More info is here [http://community.jboss.org/wiki/

GateInAndOpenAMIntegration] .

6.8.5.1.2. Modifying the OpenSSO server

To configure the web server as desired, it is simpler to directly modify the sources.

The first step is to add the GateIn 3.2 Authentication Plugin:

The plugin makes secure authentication callbacks to a RESTful service installed on the remote

GateIn 3.2 server to authenticate a user.

In order for the plugin to function correctly, it needs to be properly configured to connect

to this service. This configuration is done via the opensso.war/config/auth/default/

AuthenticationPlugin.xml file.

1. Obtain a copy of Tomcat and extract it into a suitable location (this location will be referred

to as TOMCAT_HOME in this example).

2. Change the default port to avoid a conflict with the default GateIn 3.2 port (for testing

purposes) by editing TOMCAT_HOME/conf/server.xml and replacing the 8080 port with 8888.

Note

If GateIn 3.2 is running on the same machine as Tomcat, other ports need to

be changed in addition to 8080 to avoid port conflicts. They can be changed

to any free port. For example, you can change the admin port from 8005 to

8805, and AJP port from 8009 to 8809.

3. Ensure the TOMCAT_HOME/webapps/opensso/config/auth/default/

AuthenticationPlugin.xml file looks like this:

<?xml version='1.0' encoding="UTF-8"?>

<!DOCTYPE ModuleProperties PUBLIC "=//iPlanet//Authentication Module Properties XML

 Interface 1.0 DTD//EN"

 "jar://com/sun/identity/authentication/Auth_Module_Properties.dtd">

<ModuleProperties moduleName="AuthenticationPlugin" version="1.0" >

 <Callbacks length="2" order="1" timeout="60"

 header="GateIn OpenSSO Login" >

 <NameCallback>

http://community.jboss.org/wiki/GateInAndOpenAMIntegration
http://community.jboss.org/wiki/GateInAndOpenAMIntegration
http://community.jboss.org/wiki/GateInAndOpenAMIntegration

OpenSSO - The Open Web SSO project

165

 <Prompt>

 Username

 </Prompt>

 </NameCallback>

 <PasswordCallback echoPassword="false" >

 <Prompt>

 Password

 </Prompt>

 </PasswordCallback>

 </Callbacks>

</ModuleProperties>

4. Copy GATEIN_SSO_HOME/opensso/plugin/WEB-INF/lib/sso-opensso-plugin-

<VERSION>.jar, GATEIN_SSO_HOME/opensso/plugin/WEB-INF/lib/commons-

httpclient-<VERSION>.jar, and GATEIN_SSO_HOME/opensso/plugin/WEB-INF/lib/

commons-logging-<VERSION>.jar into the Tomcat directory at TOMCAT_HOME/webapps/

opensso/WEB-INF/lib.

5. Copy GATEIN_SSO_HOME/opensso/plugin/WEB-INF/classes/gatein.properties into

TOMCAT_HOME/webapps/opensso/WEB-INF/classes

6. Tomcat should start and be able to access http://localhost:8888/opensso/UI/Login?

realm=gatein. Login will not be available at this point.

http://localhost:8888/opensso/UI/Login?realm=gatein
http://localhost:8888/opensso/UI/Login?realm=gatein

Chapter 6. Authentication and...

166

Configure "gatein" realm:

1. Direct your browser to http://localhost:8888/opensso

2. Create default configuration

3. Login as amadmin and then go to tab Configuration -> tab Authentication -> link Core -> add

new value and fill in the class name org.gatein.sso.opensso.plugin.AuthenticationPlugin.

This step is really important. Without it AuthenticationPlugin is not available among other

OpenSSO authentication modules.

4. Go to tab Access control and create new realm called gatein.

5. Go to "gatein" realm and click on Authentication tab. At the bottom in the section

Authentication chaining click on ldapService. Here change the selection from "Datastore",

which is the default module in the authentication chain, to AuthenticationPlugin. This

enables authentication of "gatein" realm by using GateIn REST service instead of the

OpenSSO LDAP server.

6. Go to Advanced properties and change UserProfile from "Required" to Dynamic. This

step is needed because GateIn 3.2 users are not in OpenSSO Datastore (LDAP server), so

their profiles can't be obtained if "Required" is active. By using "Dynamic" all new users are

automatically created in OpenSSO datastore after successful authentication.

7. Increase the user privileges to allow REST access. Go to Access control -> Top level realm

-> Privileges tab -> All authenticated users, and check the last two checkboxes:

• Read and write access only for policy properties

• Read and write access to all realm and policy properties

8. Repeat previous step with increasing privileges for gatein realm as well.

6.8.5.2. Setup the OpenSSO client

1. Copy all libraries from GATEIN_SSO_HOME/opensso/gatein.ear/lib into JBOSS_HOME/

server/default/deploy/gatein.ear/lib (Or, in Tomcat, into GATEIN_HOME/lib)

2. • In JBoss AS, edit gatein.ear/META-INF/gatein-jboss-beans.xml and uncomment this

section

<authentication>

 <login-module code="org.gatein.sso.agent.login.SSOLoginModule" flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

http://localhost:8888/opensso

OpenSSO - The Open Web SSO project

167

 </login-module>

 <login-module code="org.exoplatform.services.security.j2ee.JbossLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

</authentication>

• If you are running GateIn 3.2 in Tomcat, edit GATEIN_HOME/conf/jaas.conf, uncomment

on this section and comment other parts:

org.gatein.sso.agent.login.SSOLoginModule required;

org.exoplatform.services.security.j2ee.TomcatLoginModule required

portalContainerName=portal

realmName=gatein-domain;

3. In Tomcat, edit GATEIN_HOME/webapps/portal.war/META-INF/context.xml and add

ServletAccessValve into configuration as first sub-element of Context:

<Context path='/portal' docBase='portal' ... >

 <Valve className='org.gatein.sso.agent.tomcat.ServletAccessValve' />

 ...

</Context>

4. At this point the installation can be tested:

1. Access GateIn 3.2 by going to http://localhost:8888/opensso/UI/Login?realm=gatein

(assuming that the OpenSSO server using Tomcat is still running).

2. Login with the username root and the password gtn or any account created through

the portal.

6.8.5.3. Setup the portal to redirect to OpenSSO

The next part of the process is to redirect all user authentication to the OpenSSO server.

http://localhost:8888/opensso/UI/Login?realm=gatein

Chapter 6. Authentication and...

168

Information about where the OpenSSO server is hosted must be properly configured within the

Enterprise Portal Platform instance. The required configuration is done by modifying three files:

• In the gatein.ear/web.war/groovy/groovy/webui/component/UIBannerPortlet.gtml file

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILoginForm.label.Signin")%></

a>

-->

<%=_ctx.appRes("UILoginForm.label.Signin")%>

• In the gatein.ear/web.war/groovy/portal/webui/component/UILogoPortlet.gtmpl file

modify the 'Sign In' link as follows:

<!--

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

-->

<%=_ctx.appRes("UILogoPortlet.action.signin")%>

• Replace the entire contents of gatein.ear/02portal.war/login/jsp/login.jsp with:

<html>

 <head>

 <script type="text/javascript">

 window.location = '/portal/sso';

 </script>

 </head>

 <body>

 </body>

</html>

• Add the following Filters at the top of the filter chain in gatein.ear/02portal.war/WEB-INF/

web.xml:

OpenSSO - The Open Web SSO project

169

<filter>

 <filter-name>LoginRedirectFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.LoginRedirectFilter</filter-class>

 <init-param>

 <!-- This should point to your SSO authentication server -->

 <param-name>LOGIN_URL</param-name>

 <param-value>http://localhost:8888/opensso/UI/Login?realm=gatein&goto=http://

localhost:8080/portal/initiatessologin</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>OpenSSOLogoutFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.OpenSSOLogoutFilter</filter-class>

 <init-param>

 <!-- This should point to your SSO authentication server -->

 <param-name>LOGOUT_URL</param-name>

 <param-value>http://localhost:8888/opensso/UI/Logout</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>InitiateLoginFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.InitiateLoginFilter</filter-class>

 <init-param>

 <param-name>ssoServerUrl</param-name>

 <param-value>http://localhost:8888/opensso</param-value>

 </init-param>

 <init-param>

 <param-name>loginUrl</param-name>

 <param-value>http://localhost:8080/portal/dologin</param-value>

 </init-param>

 <init-param>

 <param-name>ssoCookieName</param-name>

 <param-value>iPlanetDirectoryPro</param-value>

 </init-param>

</filter>

<!-- Mapping the filters at the very top of the filter chain -->

<filter-mapping>

 <filter-name>LoginRedirectFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>OpenSSOLogoutFilter</filter-name>

Chapter 6. Authentication and...

170

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>InitiateLoginFilter</filter-name>

 <url-pattern>/initiatessologin</url-pattern>

</filter-mapping>

From now on, all links redirecting to the user authentication pages will redirect to the OpenSSO

centralized authentication form.

6.8.6. SPNEGO

SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) is used to authenticate

transparently through the web browser after the user has been authenticated when logging-in his

session.

A typical use case is the following:

1. User logs into his desktop (Such as a Windows machine).

2. The desktop login is governed by Active Directory domain.

3. User then uses his browser (IE/Firefox) to access a web application (that uses JBoss

Negotiation) hosted on JBoss EPP.

4. The Browser transfers the desktop sign on information to the web application.

5. JBoss EAP/AS uses background GSS messages with the Active Directory (or any Kerberos

Server) to validate the Kerberos ticket from user.

6. The User has seamless SSO into the web application.

6.8.6.1. SPNEGO Server Configuration

In this section, we will describe some necessary steps for setup Kerberos server on Linux. This

server will then be used for SPNEGO authentication against GateIn 3.2

Note

If you don't have Linux but you are using Windows and Active Directory domain,

then these informations are not important for you and you may jump to the

Section 6.8.6.3, “GateIn 3.2 Configuration” to see how to integrate SPNEGO with

GateIn 3.2. Please note that Kerberos setup is also dependent on your Linux

distribution and so steps can be slightly different in your environment.

SPNEGO

171

1. Correct the setup of network on the machine. For example, if you are using the

"server.local.network" domain as your machine where Kerberos and GateIn 3.2 are located,

add the line containing the machine's IP address to the /etc/hosts file.

192.168.1.88 server.local.network

Note

It is not recommended to use loopback addresses.

2. Install Kerberos with these packages: krb5-admin-server, krb5-kdc, krb5-config, krb5-user,

krb5-clients, and krb5-rsh-server.

3. Edit the Kerberos configuration file at /etc/krb5.config, including:

• Uncomment on these lines:

default_tgs_enctypes = des3-hmac-sha1

default_tkt_enctypes = des3-hmac-sha1

permitted_enctypes = des3-hmac-sha1

• Add local.network as a default realm and it is also added to the list of realms and remove

the remains of realms. The content looks like:

[libdefaults]

 default_realm = LOCAL.NETWORK

The following krb5.conf variables are only for MIT Kerberos.

 krb4_config = /etc/krb.conf

 krb4_realms = /etc/krb.realms

 kdc_timesync = 1

 ccache_type = 4

 forwardable = true

 proxiable = true

The following encryption type specification will be used by MIT Kerberos

Chapter 6. Authentication and...

172

if uncommented. In general, the defaults in the MIT Kerberos code are

correct and overriding these specifications only serves to disable new

encryption types as they are added, creating interoperability problems.

#

Thie only time when you might need to uncomment these lines and change

the enctypes is if you have local software that will break on ticket

caches containing ticket encryption types it doesn't know about (such as

old versions of Sun Java).

 default_tgs_enctypes = des3-hmac-sha1

 default_tkt_enctypes = des3-hmac-sha1

 permitted_enctypes = des3-hmac-sha1

The following libdefaults parameters are only for Heimdal Kerberos.

 v4_instance_resolve = false

 v4_name_convert = {

 host = {

 rcmd = host

 ftp = ftp

 }

 plain = {

 something = something-else

 }

 }

 fcc-mit-ticketflags = true

[realms]

 LOCAL.NETWORK = {

 kdc = server.local.network

 admin_server = server.local.network

 }

[domain_realm]

 .local.network = LOCAL.NETWORK

 local.network = LOCAL.NETWORK

[login]

 krb4_convert = true

 krb4_get_tickets = false

4. Edit the KDC configuraton file at /etc/krb5kdc/kdc.conf that looks like.

SPNEGO

173

[kdcdefaults]

 kdc_ports = 750,88

[realms]

 LOCAL.NETWORK = {

 database_name = /home/gatein/krb5kdc/principal

 admin_keytab = FILE:/home/gatein/krb5kdc/kadm5.keytab

 acl_file = /home/gatein/krb5kdc/kadm5.acl

 key_stash_file = /home/gatein/krb5kdc/stash

 kdc_ports = 750,88

 max_life = 10h 0m 0s

 max_renewable_life = 7d 0h 0m 0s

 master_key_type = des3-hmac-sha1

 supported_enctypes = aes256-cts:normal arcfour-hmac:normal des3-hmac-sha1:normal

 des-cbc-crc:normal des:normal des:v4 des:norealm des:onlyrealm des:afs3

 default_principal_flags = +preauth

 }

[logging]

 kdc = FILE:/home/gatein/krb5logs/kdc.log

 admin_server = FILE:/home/gatein/krb5logs/kadmin.log

• Create krb5kdc and krb5logs directory for Kerberos database as shown in the configuration

file above.

• Next, create a KDC database using the following command.

sudo krb5_newrealm

• Start the KDC and Kerberos admin servers using these commands:

sudo /etc/init.d/krb5-kdc restart

sudo /etc/init.d/krb-admin-server restart

5. Add Principals and create Keys.

• Start an interactive 'kadmin' session and create the necessary Principals.

Chapter 6. Authentication and...

174

sudo kadmin.local

• Add the GateIn 3.2 machine and keytab file that need to be authenticated.

addprinc -randkey HTTP/server.local.network@LOCAL.NETWORK

ktadd HTTP/server.local.network@LOCAL.NETWORK

• Add the default GateIn 3.2 user accounts and enter the password for each created user

that will be authenticated.

addprinc john

addprinc demo

addprinc root

6. Test your changed setup by using the command.

kinit -A demo

• If the setup works well, you are required to enter the password created for this user in Step

5. Without the -A, the kerberos ticket validation involved reverse DNS lookups, which can

get very cumbersome to debug if your network's DNS setup is not great. This is a production

level security feature, which is not necessary in this development setup. In production

environment, it will be better to avoid -A option.

• After successful login to Kerberos, you can see your Kerberos ticket when using this

command.

klist

• If you want to logout and destroy your ticket, use this command.

SPNEGO

175

kdestroy

6.8.6.2. Clients

After performing all configurations above, you need to enable the Negotiate authentication of

Firefox in client machines so that clients could be authenticated by GateIn 3.2 as follows:

1. Start Firefox, then enter the command: about:config into the address field.

2. Enter network.negotiate-auth and set the value as below:

network.negotiate-auth.allow-proxies = true

network.negotiate-auth.delegation-uris = .local.network

network.negotiate-auth.gsslib (no-value)

network.negotiate-auth.trusted-uris = .local.network

network.negotiate-auth.using-native-gsslib = true

Note

Consult documentation of your OS or web browser if using different browser than

Firefox.

6.8.6.3. GateIn 3.2 Configuration

GateIn 3.2 uses JBoss Negotiation to enable SPNEGO-based desktop SSO for the portal. Here

are the steps to integrate SPNEGO with GateIn 3.2.

1. Activate the Host authentication under the JBOSS_HOME/server/default/conf/login-

config.xml file by adding the following host login module:

<!-- SPNEGO domain -->

<application-policy name="host">

 <authentication>

 <login-module code="com.sun.security.auth.module.Krb5LoginModule" flag="required">

 <module-option name="storeKey">true</module-option>

 <module-option name="useKeyTab">true</module-option>

 <module-option name="principal">HTTP/server.local.network@LOCAL.NETWORK</

module-option>

 <module-option name="keyTab">/etc/krb5.keytab</module-option>

 <module-option name="doNotPrompt">true</module-option>

Chapter 6. Authentication and...

176

 <module-option name="debug">true</module-option>

 </login-module>

 </authentication>

 </application-policy>

The 'keyTab' value should point to the keytab file that was generated by the kadmin kerberos

tool. When using Kerberos on Linux, it should be value of parameter admin_keytab from

kdc.conf file. See the Section 6.8.6.1, “SPNEGO Server Configuration” section for more

details.

2. Extend the core authentication mechanisms to support SPNEGO

under JBOSS_HOME/server/default/deployers/jbossweb.deployer/META-INF/war-

deployers-jboss-beans.xml by adding the 'SPNEGO' authenticators property.

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<property name="authenticators">

 <map class="java.util.Properties" keyClass="java.lang.String"

 valueClass="java.lang.String">

 <entry>

 <key>BASIC</key>

 <value>org.apache.catalina.authenticator.BasicAuthenticator</value>

 </entry>

 <entry>

 <key>CLIENT-CERT</key>

 <value>org.apache.catalina.authenticator.SSLAuthenticator</value>

 </entry>

 <entry>

 <key>DIGEST</key>

 <value>org.apache.catalina.authenticator.DigestAuthenticator</value>

 </entry>

 <entry>

 <key>FORM</key>

 <value>org.apache.catalina.authenticator.FormAuthenticator</value>

 </entry>

 <entry>

 <key>NONE</key>

 <value>org.apache.catalina.authenticator.NonLoginAuthenticator</value>

 </entry>

 <!-- Add this entry -->

 <entry>

 <key>SPNEGO</key>

SPNEGO

177

 <value>org.gatein.sso.spnego.GateInNegotiationAuthenticator</value>

 </entry>

 </map>

</property>

3. Add the GateIn SSO module binaries by copying GATEIN_SSO_HOME/spnego/gatein.ear/

lib/sso-agent-VERSION.jar to the JBOSS_HOME/server/default/deploy/gatein.ear/lib

directory. File GATEIN_SSO_HOME/spnego/gatein.ear/lib/spnego-VERSION.jar needs to

be copied to the JBOSS_HOME/server/default/lib directory.

4. Download library jboss-negotiation-2.0.4.GA from location https://repository.jboss.org/

nexus/content/groups/public/org/jboss/security/jboss-negotiation/2.0.4.GA/jboss-

negotiation-2.0.4.GA.jar and copy this file to JBOSS_HOME/server/default/lib directory as

well.

5. Modify the JBOSS_HOME/server/defaut/deploy/gatein.ear/META-INF/gatein-jboss-

beans.xml file as below:

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <application-policy xmlns="urn:jboss:security-beans:1.0" name="gatein-form-auth-

domain">

 <authentication>

 <login-module code="org.gatein.wci.security.WCILoginModule" flag="optional">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <login-module code="org.exoplatform.services.security.jaas.SharedStateLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 <!-- Uncomment this part to check on each login if user is member of "/platform/users"

 group and if not

 create such membership -->

 <!--

 <login-module

 code="org.exoplatform.services.organization.idm.CustomMembershipLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

https://repository.jboss.org/nexus/content/groups/public/org/jboss/security/jboss-negotiation/2.0.4.GA/jboss-negotiation-2.0.4.GA.jar
https://repository.jboss.org/nexus/content/groups/public/org/jboss/security/jboss-negotiation/2.0.4.GA/jboss-negotiation-2.0.4.GA.jar
https://repository.jboss.org/nexus/content/groups/public/org/jboss/security/jboss-negotiation/2.0.4.GA/jboss-negotiation-2.0.4.GA.jar

Chapter 6. Authentication and...

178

 <module-option name="membershipType">member</module-option>

 <module-option name="groupId">/platform/users</module-option>

 </login-module>

 -->

 <login-module code="org.exoplatform.services.security.j2ee.JbossLoginModule"

 flag="required">

 <module-option name="portalContainerName">portal</module-option>

<!-- logout needs to be performed from 'gatein-domain' as it is used for JaasSecurityManager.

 -->

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 </authentication>

 </application-policy>

 <application-policy xmlns="urn:jboss:security-beans:1.0" name="gatein-domain">

 <authentication>

 <login-module

 code="org.gatein.sso.spnego.SPNEGOLoginModule"

 flag="requisite">

 <module-option name="password-stacking">useFirstPass</module-option>

 <module-option name="serverSecurityDomain">host</module-option>

 <module-option name="removeRealmFromPrincipal">true</module-option>

 <module-option name="usernamePasswordDomain">gatein-form-auth-domain</module-

option>

 </login-module>

 <login-module

 code="org.gatein.sso.agent.login.SPNEGORolesModule"

 flag="required">

 <module-option name="password-stacking">useFirstPass</module-option>

 <module-option name="portalContainerName">portal</module-option>

 <module-option name="realmName">gatein-domain</module-option>

 </login-module>

 </authentication>

 </application-policy>

</deployment>

This activates SPNEGO LoginModules with fallback to FORM authentication. When

SPNEGO is not available and it needs to fallback to FORM, it will use gatein-form-auth-

domain security domain. More details below.

SPNEGO

179

6. Modify JBOSS_HOME/server/default/deploy/gatein.ear/02portal.war/WEB-INF/web.xml

as below.

<!-- <login-config>

 <auth-method>FORM</auth-method>

 <realm-name>gatein-domain</realm-name>

 <form-login-config>

 <form-login-page>/initiatelogin</form-login-page>

 <form-error-page>/errorlogin</form-error-page>

 </form-login-config>

 </login-config>

-->

 <login-config>

 <auth-method>SPNEGO</auth-method>

 <realm-name>SPNEGO</realm-name>

 <form-login-config>

 <form-login-page>/initiatelogin</form-login-page>

 <form-error-page>/errorlogin</form-error-page>

 </form-login-config>

 </login-config>

This integrates SPNEGO support into the Portal web archive by switching the authentication

mechanism from the default "FORM"-based to "SPNEGO"-based authentication. You can

notice that SPNEGO part also contains element form-login-config, which is needed if

you want to enable fallback to FORM based authentication. In this case, portal will try to

authenticate user with his Kerberos ticket through SPNEGO. If user don't have Kerberos

ticket, he will be redirected to FORM (GateIn 3.2 login screen). So first attempt is for login

with SPNEGO and next attempt is for login with FORM, which is used only if login through

SPNEGO is not successful (For example user don't have valid Kerberos ticket or his browser

doesn't support SPNEGO with our Kerberos server).

If you don't want fallback to FORM, you can disable form-login-config part and have only:

 <login-config>

 <auth-method>SPNEGO</auth-method>

 <realm-name>SPNEGO</realm-name>

<!-- <form-login-config>

 <form-login-page>/initiatelogin</form-login-page>

 <form-error-page>/errorlogin</form-error-page>

 </form-login-config>

Chapter 6. Authentication and...

180

-->

 </login-config>

In this case user needs to authenticate through SPNEGO and if that fails, FORM is not shown

but user has authentication error with HTTP code 401.

7. Integrate the request pre-processing needed for SPNEGO via filters by adding the

following filters to the JBOSS_HOME/server/default/deploy/gatein.ear/02portal.war/

WEB-INF/web.xml at the top of the Filter chain.

<filter>

 <filter-name>LoginRedirectFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.LoginRedirectFilter</filter-class>

 <init-param>

 <!-- This should point to your SSO authentication server -->

 <param-name>LOGIN_URL</param-name>

 <param-value>/portal/private/classic</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>SPNEGOFilter</filter-name>

 <filter-class>org.gatein.sso.agent.filter.SPNEGOFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>LoginRedirectFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>SPNEGOFilter</filter-name>

 <url-pattern>/login</url-pattern>

</filter-mapping>

8. In JBOSS_HOME/server/default/deploy/gatein.ear/web.war/groovy/groovy/webui/

component/UIBannerPortlet.gtml file modify the 'Sign In' link as follows:

SPNEGO

181

<!--

<

%=_ctx.appRes("UILoginForm.label.Signin")%>

-->

<%=_ctx.appRes("UILoginForm.label.Signin")%>

9. Start the GateIn 3.2 portal using the command below.

sudo ./run.sh -Djava.security.krb5.realm=LOCAL.NETWORK -

Djava.security.krb5.kdc=server.local.network -c default -b server.local.network

10. Login to Kerberos with the command.

kinit -A demo

You should be able to click the 'Sign In' link on the GateIn 3.2 portal and the 'demo' user from

the GateIn 3.2 portal should be automatically logged in.

11. Let's try to destroy kerberos ticket with command

kdestroy

Then try to login again. You will now be placed to login screen of GateIn 3.2 because you

don't have active Kerberos ticket. You can login with predefined account and password

"demo"/"gtn" .

182

Chapter 7.

183

Web Services for Remote Portlets

(WSRP)

7.1. Introduction

The Web Services for Remote Portlets specification defines a web service interface for accessing

and interacting with interactive presentation-oriented web services. It has been produced through

the efforts of the Web Services for Remote Portlets (WSRP) OASIS Technical Committee. It is

based on the requirements gathered and on the concrete proposals made to the committee.

Scenarios that motivate WSRP functionality include:

• Content hosts, such as portal servers, providing Portlets as presentation-oriented web services

that can be used by aggregation engines.

• Aggregating frameworks, including portal servers, consuming presentation-oriented web

services offered by content providers and integrating them into the framework.

More information on WSRP can be found on the official website for WSRP [http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrp]. We suggest reading the primer [http://

www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html] for a good, albeit

technical, overview of WSRP.

7.2. Level of support in GateIn 3.2

The WSRP Technical Committee defined WSRP Use Profiles [http://www.oasis-open.org/

committees/download.php/3073] to help with WSRP interoperability. We will refer to terms defined

in that document in this section.

GateIn provides a Simple level of support for our WSRP Producer except that out-of-band

registration is not currently handled. We support in-band registration and persistent local state

(which are defined at the Complex level).

On the Consumer side, GateIn provides a Medium level of support for WSRP, except that we only

handle HTML markup (as GateIn itself doesn't handle other markup types). We do support explicit

portlet cloning and we fully support the PortletManagement interface.

As far as caching goes, we have Level 1 Producer and Consumer. We support Cookie handling

properly on the Consumer and our Producer requires initialization of cookies (as we have found

that it improved interoperabilty with some consumers). We don't support custom window states or

modes, as GateIn doesn't either. We do, however, support CSS on both the Producer (though it's

more a function of the portlets than inherent Producer capability) and Consumer.

While we provide a complete implementation of WSRP 1.0, we do need to go through

the Conformance statements [http://www.oasis-open.org/committees/download.php/6018] and

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html
http://www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html
http://www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html
http://www.oasis-open.org/committees/download.php/3073
http://www.oasis-open.org/committees/download.php/3073
http://www.oasis-open.org/committees/download.php/3073
http://www.oasis-open.org/committees/download.php/6018
http://www.oasis-open.org/committees/download.php/6018

Chapter 7. Web Services for R...

184

perform more interoperability testing (an area that needs to be better supported by the WSRP

Technical Committee and Community at large).

GateIn supports WSRP 2.0 with a complete implementation of the non-optional features. The only

features that we have not implemented is support for lifetimes and leasing support.

Note

As of version 3.2 of GateIn, WSRP is only activated and supported when GateIn

is deployed on JBoss Application Server.

7.3. Deploying GateIn's WSRP services

GateIn provides a complete support of WSRP 1.0 and 2.0 standard interfaces and offers both

consumer and producer services. Starting with version 2.1.0-GA of the component, WSRP is

packaged as a GateIn extension and is now self-contained in an easy to install package named

$JBOSS_PROFILE_HOME/deploy/gatein-wsrp-integration.ear where $JBOSS_PROFILE_HOME

refers to your JBoss AS profile directory (default, for instance).

The extension itself is composed of the following components, assuming $WSRP_VERSION (at the

time of the writing, it was 2.1.0-GA) is the version of the WSRP component and $PORTAL_VERSION

(at the time of the writing, it was 3.2.0-GA) is the current GateIn version:

• META-INF contains files necessary for EAR packaging. The only file that is of interest from a

user perspective is gatein-wsse-consumer.xml which allows you to configure WS-Security

support for the consumer. Please see the WSRP and WS-Security section for more details.

• extension-component-$PORTAL_VERSION.jar, which contains the components needed to

integrate the WSRP component into GateIn. It also includes the default configuration files for

the WSRP producer and the default WSRP consumers.

• extension-config-$PORTAL_VERSION.jar, which contains the configuration file needed by

the GateIn extension mechanism to properly register this EAR as an extension.

• extension-war-$PORTAL_VERSION.war, which contains the configuration files needed by

the GateIn extension mechanism to properly setup the WSRP service. It includes

wsrp-configuration.xml which, in particular, configures several options for the

WSRPServiceIntegration component at the heart of the WSRP integration in GateIn.

• lib, which contains the different libraries needed by the WSRP service.

• wsrp-admin-gui-$WSRP_VERSION.war, which contains the WSRP Configuration portlet with

which you can configure consumers to access remote servers and how the WSRP producer

is configured.

• wsrp-producer-jb5wsss-$WSRP_VERSION.war, which contains the producer-side support for

WS-Security. The only file of interest from a user perspective is gatein-wsse-producer.xml

Considerations to use WSRP when running GateIn on a non-default port or hostname

185

which allows you to configure WS-Security support for the producer. Please see the WSRP and

WS-Security section for more details.

If you're not going to use WSRP in GateIn, it won't adversely affect your installation to leave it as-

is. Otherwise, you can just remove the gatein-wsrp-integration.ear file from your AS deploy

directory.

7.3.1. Considerations to use WSRP when running GateIn on a

non-default port or hostname

JBoss WS (the web service stack that GateIn uses) should take care of the details of updating

the port and host name used in WSDL. See the JBoss WS user guide on that subject [http://

community.jboss.org/wiki/JBossWS-UserGuide#Configuration] for more details.

Of course, if you have modified the host name and port on which your server runs, you will need

to update the configuration for the consumer used to consume GateIn's 'self' producer. Please

refer to the Section 7.7, “Consuming remote WSRP portlets in GateIn” to learn how to do so.

7.4. Securing WSRP

7.4.1. Considerations to use WSRP with SSL

It is possible to use WSRP over SSL for secure exchange of data. Please refer to the instructions

[http://community.jboss.org/wiki/ConfiguringWSRPforuseoverSSL] on how to do so from GateIn's

wiki [http://community.jboss.org/wiki/GateIn].

7.4.2. WSRP and WS-Security

Portlets may present different data or options depending on the currently authenticated user. For

remote portlets, this means having to propagate the user credentials from the consumer back to

the producer in a safe and secure manner. The WSRP specification does not directly specify how

this should be accomplished, but delegates this work to the existing WS-Security standards.

Web Container Compatibility

WSRP and WS-Security is currently only supported on GateIn when running on

top of JBoss AS 5.

Encryption

You will want to encrypt the credentials being sent between the consumer and

producer, otherwise they will be sent in plain text and could be easily intercepted.

You can either configure WS-Security to encrypt and sign the SOAP messages

http://community.jboss.org/wiki/JBossWS-UserGuide#Configuration
http://community.jboss.org/wiki/JBossWS-UserGuide#Configuration
http://community.jboss.org/wiki/JBossWS-UserGuide#Configuration
http://community.jboss.org/wiki/ConfiguringWSRPforuseoverSSL
http://community.jboss.org/wiki/ConfiguringWSRPforuseoverSSL
http://community.jboss.org/wiki/GateIn
http://community.jboss.org/wiki/GateIn
http://community.jboss.org/wiki/GateIn

Chapter 7. Web Services for R...

186

being sent, or secure the transport layer by using an https endpoint. Failure to

encrypt the soap message or transport layer will result in the username and

password being sent in plain text. Use of encryption is strongly recommended.

Credentials

When the consumer sends the user credentials to the producer, it is sending

the credentials for the currently authenticated user in the consumer. This makes

signing in to remote portlets transparent to end users, but also requires that the

producer and consumer use the same credentials. This means that the username

and password must be the same and valid on both servers.

The recommended approach for this situation would be to use a common ldap

configuration. Please see the user guide on how to configure ldap for use with

GateIn

The GateIn Wiki article, GateIn WSRP and Web Service Security [http://community.jboss.org/wiki/

GateInWSRPAndWebServiceSecurity], also provides a step-by-step example on how to configure

WSRP with WS-Security.

7.4.2.1. WS-Security Configuration

GateIn uses JBossWS Native to handle ws-security. Please see the WS-Security section of the

JBoss AS 5 Administration and Configuration Guide [http://www.jboss.org/jbossas/docs/5-x] for

indepth configuration options. Please note that since the consumer passes its credentials to the

producer, the consumer will act as the wss client and the producer will act as the wss server.

The following are the JBossWS Native configuration files which need to be configure for WSRP:

• gatein-wsrp-integration.ear/META-INF/gatein-wsse-consumer.xml: JBossWS

configuration file for the consumer.

• gatein-wsrp-integration.ear/wsrp-producer-jb5wss.war/WEB-INF/conf/gatein-

wsse-producer.xml : JBossWS configuration file for the producer.

7.4.2.2. WS-Security Producer Configuration

Other than the JBossWS configuration file mention above, no other configuration changes should

be necessary for the producer.

7.4.2.3. WS-Security Consumer Configuration

The consumer requires a few changes before it will function properly with WS-Security. The

consumer needs access to the current servlet request since this is used to retrieve the currently

http://community.jboss.org/wiki/GateInWSRPAndWebServiceSecurity
http://community.jboss.org/wiki/GateInWSRPAndWebServiceSecurity
http://community.jboss.org/wiki/GateInWSRPAndWebServiceSecurity
http://www.jboss.org/jbossas/docs/5-x
http://www.jboss.org/jbossas/docs/5-x

WSRP and WS-Security

187

authenticated user. In order for the consumer to access this information, it needs a special servlet-

filter added to the portal.

In gatein.ear/02portal.war/WEB-INF/web.xml add the following information:

<!-- Filter to put request and response in ServletAccess -->

 <filter>

 <filter-name>ServletAccessFilter</filter-name>

 <filter-class>org.gatein.wsrp.servlet.ServletAccessFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>ServletAccessFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Finally, in the WSRP Configuration portlet, in the consumer configuration options, you will need

to check the 'Enable WS Security' checkbox:

WS-Security Consumer Checklist

In order for the consumer to handle ws-security, the following steps must be

completed properly

• The JBossWS configuration files must be configured.

• The filter must be added to the portal's web.xml.

• The enable wss feature must be check in the wsrp admin.

Chapter 7. Web Services for R...

188

The consumer will not properly handle ws-security unless all 3 are properly

configured.

7.5. Making a portlet remotable

Important

Only JSR-286 (Portlet 2.0) portlets can be made remotable as the mechanism to

expose a portlet to WSRP relies on a JSR-286-only functionality.

GateIn does NOT, by default, expose local portlets for consumption by remote WSRP

consumers. In order to make a portlet remotely available, it must be made "remotable" by

marking it as such in the associated portlet.xml. This is accomplished by using a specific

org.gatein.pc.remotable container-runtime-option. Setting its value to true makes the

portlet available for remote consumption, while setting its value to false will not publish it remotely.

As specifying the remotable status for a portlet is optional, you do not need to do anything if you

don't need your portlet to be available remotely.

In the following example, the "BasicPortlet" portlet is specified as being remotable.

Example 7.1.

<?xml version="1.0" standalone="yes"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://

java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

<portlet-app>

 <portlet>

 <portlet-name>BasicPortlet</portlet-name>

 ...

 <container-runtime-option>

 <name>org.gatein.pc.remotable</name>

 <value>true</value>

 </container-runtime-option>

 </portlet>

</portlet-app>

Making a portlet remotable

189

It is also possible to specify that all the portlets declared within a given portlet application to be

remotable by default. This is done by specifying the container-runtime-option at the portlet-

app element level. Individual portlets can override that value to not be remotely exposed. Let's

look at an example:

Example 7.2.

<?xml version="1.0" standalone="yes"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://

java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

<portlet-app>

 <portlet>

 <portlet-name>RemotelyExposedPortlet</portlet-name>

 ...

 </portlet>

 <portlet>

 <portlet-name>NotRemotelyExposedPortlet</portlet-name>

 ...

 <container-runtime-option>

 <name>org.gatein.pc.remotable</name>

 <value>false</value>

 </container-runtime-option>

 </portlet>

 <container-runtime-option>

 <name>org.gatein.pc.remotable</name>

 <value>true</value>

 </container-runtime-option>

</portlet-app>

In the example above, we defined two portlets. The org.gatein.pc.remotable container-

runtime-option being set to true at the portlet-app level, all portlets defined in this

particular portlet application are exposed remotely by GateIn's WSRP producer. Note,

however, that it is possible to override the default behavior: specifying a value for the

org.gatein.pc.remotable container-runtime-option at the portlet level will take

precedence over the default. In the example above, the RemotelyExposedPortlet inherits the

remotable status defined at the portlet-app level since it does not specify a value for the

Chapter 7. Web Services for R...

190

org.gatein.pc.remotable container-runtime-option. TheNotRemotelyExposedPortlet,

however, overrides the default behavior and is not remotely exposed. Note that in the absence of

a top-level org.gatein.pc.remotable container-runtime-option value set to true, portlets

are NOT remotely exposed.

7.6. Consuming GateIn's WSRP portlets from a remote

Consumer

WSRP Producers vary a lot as far as how they are configured. Most of them require that you specify

the URL for the Producer's WSDL definition. Please refer to the remote producer's documentation

for specific instructions. For instructions on how to do so in GateIn, please refer to Section 7.7,

“Consuming remote WSRP portlets in GateIn”.

GateIn's Producer is automatically set up when you deploy a portal instance with the WSRP

service. You can access the WSDL file at http://{hostname}:{port}/wsrp-producer/

v2/MarkupService?wsdl. If you wish to use only the WSRP 1 compliant version of the

producer, please use the WSDL file found at http://{hostname}:{port}/wsrp-producer/v1/

MarkupService?wsdl. The default hostname is localhost and the default port is 8080.

7.7. Consuming remote WSRP portlets in GateIn

7.7.1. Overview

To be able to consume WSRP portlets exposed by a remote producer, GateIn's WSRP consumer

needs to know how to access that remote producer. One can configure access to a remote

producer using the provided configuration portlet. Alternatively, it is also possible to configure

access to remote producers using an XML descriptor, though it is recommended (and easier) to

do so via the configuration portlet.

Once a remote producer has been configured, the portlets that it exposes are then available in

the Application Registry to be added to categories and then to pages.

7.7.2. Configuring a remote producer using the configuration

portlet

Let's work through the steps of defining access to a remote producer using the configuration portlet

so that its portlets can be consumed within GateIn. We will configure access to NetUnity's public

WSRP producer.

Note

Some WSRP producers do not support chunked encoding that is activated

by default by JBoss WS. If your producer does not support chunked

encoding, your consumer will not be able to properly connect to the

producer. This will manifest itself with the following error: Caused by:

Configuring a remote producer using the configuration portlet

191

org.jboss.ws.WSException: Invalid HTTP server response [503]

- Service Unavailable. Please see this GateIn's wiki page [http://

community.jboss.org/wiki/Workaroundwhenchunkedencodingisnotsupported] for

more details.

GateIn provides a portlet to configure access (among other functions) to remote WSRP

Producers graphically. Starting with 3.2, the WSRP configuration portlet is installed by default.

You can find it at http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic

%2FwsrpConfigurationp&username=root&password=gtn [http://localhost:8080/portal/login?

initialURI=%2Fportal%2Fprivate%2Fclassic

%2FwsrpConfiguration&username=root&password=gtn]

You should see a screen similar to:

This screen presents all the configured Consumers associated with their status and possible

actions on them. A Consumer can be active or inactive. Activating a Consumer means that it is

ready to act as a portlet provider. Note also that a Consumer can be marked as requiring refresh

meaning that the information held about it might not be up to date and refreshing it from the remote

Producer might be a good idea. This can happen for several reasons: the service description for

that remote Producer has not been fetched yet, the cached version has expired or modifications

have been made to the configuration that could potentially invalidate it, thus requiring re-validation

of the information.

Note

The WSRP configuration didn't use to be installed by default in previous versions

of GateIn. We include here the legacy instructions on how to install this portlet in

case you ever need to re-install it.

Use the usual procedure to log in as a Portal administrator and go

to the Application Registry. With the default install, you can just go

to http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic

%2Fadministration%2Fregistry&username=root&password=gtn [http://

localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic

http://community.jboss.org/wiki/Workaroundwhenchunkedencodingisnotsupported
http://community.jboss.org/wiki/Workaroundwhenchunkedencodingisnotsupported
http://community.jboss.org/wiki/Workaroundwhenchunkedencodingisnotsupported
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2FwsrpConfiguration&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2FwsrpConfiguration&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2FwsrpConfiguration&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2FwsrpConfiguration&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2FwsrpConfiguration&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2Fadministration%2Fregistry&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2Fadministration%2Fregistry&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2Fadministration%2Fregistry&username=root&password=gtn
http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2Fadministration%2Fregistry&username=root&password=gtn

Chapter 7. Web Services for R...

192

%2Fadministration%2Fregistry&username=root&password=gtn] Add the WSRP

Configuration portlet to the Administration category. If you use the Import

Applications functionality, the WSRP Configuration portlet will be automatically

added to the Administration category.

Now that the portlet is added to a category, it can be added to a page and used. We

recommend adding it to the same page as the Application Registry as operations

relating to WSRP and adding portlets to categories are somewhat related as we

will see. Go ahead and add the WSRP Configuration portlet to the page using the

standard procedure.

Next, we create a new Consumer which we will call netunity. Type "netunity" in the "Create a

consumer named:" field then click on "Create consumer":

You should now see a form allowing you to enter/modify the information about the Consumer. Set

the cache expiration value to 300 seconds, leave the default timeout value for web services (WS)

operations and enter the WSDL URL for the producer in the text field and press the "Refresh &

Save" button:

This will retrieve the service description associated with the Producer which WSRP interface

is described by the WSDL file found at the URL you just entered. In our case, querying the

service description will allow us to learn that the Producer requires registration, requested three

registration properties and that we are missing values for these properties:

http://localhost:8080/portal/login?initialURI=%2Fportal%2Fprivate%2Fclassic%2Fadministration%2Fregistry&username=root&password=gtn

Configuring a remote producer using the configuration portlet

193

This particular producer requests simple Yes or No values for the three registration properties.

Entering No, Yes and No (in that order) for the values and then pressing the "Refresh & Save"

button should result in:

Chapter 7. Web Services for R...

194

Note

At this point, there is no automated way to learn about which possible values (if

any) are expected by the remote Producer. Sometimes, the possible values will be

indicated in the registration property description but this is not always the case...

Please refer to the specific Producer's documentation.

If we had been dealing with a producer which required registration but didn't require any

registration properties, as is the case for the selfv2 consumer (the consumer that accesses the

portlets made remotely available by GateIn's producer via WSRP 2), we'd have seen something

similar to the screenshot below, after pressing the "Refresh & Save" button:

7.7.3. Configuring access to remote producers via XML

While we recommend you use the WSRP Configuration portlet to configure Consumers, we

provide an alternative way to configure consumers by adding an XML file called wsrp-consumers-

config.xml in the $JBOSS_PROFILE_HOME/conf/gatein/ directory.

Note

An XML Schema defining which elements are available

to configure Consumers via XML can be found

in $JBOSS_PROFILE_HOME/deploy/gatein-wsrp-integration.ear/lib/wsrp-

integration-api-$WSRP_VERSION.jar/xsd/gatein_wsrp_consumer_1_0.xsd

Configuring access to remote producers via XML

195

Important

It is important to note that once the XML configuration file for consumers has been

read upon the WSRP service first start, the associated information is put under

control of JCR (Java Content Repository). Subsequent launches of the WSRP

service will use the JCR-stored information and ignore the content of the XML

configuration file.

7.7.3.1. Required configuration information

Let's now look at which information needs to be provided to configure access to a remote producer.

First, we need to provide an identifier for the producer we are configuring so that we can refer to it

afterwards. This is accomplished via the mandatory id attribute of the <wsrp-producer> element.

GateIn also needs to learn about the remote producer's endpoints to be able to connect to the

remote web services and perform WSRP invocations. This is accomplished by specifying the URL

for the WSDL description for the remote WSRP service, using the <endpoint-wsdl-url> element.

Both the id attribute and <endpoint-wsdl-url> elements are required for a functional remote

producer configuration.

7.7.3.2. Optional configuration

It is also possible to provide addtional configuration, which, in some cases, might be important to

establish a proper connection to the remote producer.

One such optional configuration concerns caching. To prevent useless roundtrips between the

local consumer and the remote producer, it is possible to cache some of the information sent

by the producer (such as the list of offered portlets) for a given duration. The rate at which the

information is refreshed is defined by the expiration-cache attribute of the <wsrp-producer>

element which specifies the refreshing period in seconds. For example, providing a value of 120 for

expiration-cache means that the producer information will not be refreshed for 2 minutes after it has

been somehow accessed. If no value is provided, GateIn will always access the remote producer

regardless of whether the remote information has changed or not. Since, in most instances, the

information provided by the producer does not change often, we recommend that you use this

caching facility to minimize bandwidth usage.

It is also possible to define a timeout after which WS operations are considered as failed. This is

helpful to avoid blocking the WSRP service, waiting forever on the service that doesn't answer.

Use the ws-timeout attribute of the <wsrp-producer> element to specify how many milliseconds

the WSRP service will wait for a response from the remote producer before timing out and giving

up.

Additionally, some producers require consumers to register with them before authorizing them to

access their offered portlets. If you know that information beforehand, you can provide the required

Chapter 7. Web Services for R...

196

registration information in the producer configuration so that the consumer can register with the

remote producer when required.

Note

At this time, though, only simple String properties are supported and it is not

possible to configure complex registration data. This should, however, be sufficient

for most cases.

Registration configuration is done via the <registration-data> element. Since GateIn can

generate the mandatory information for you, if the remote producer does not require any

registration properties, you only need to provide an empty <registration-data> element. Values

for the registration properties required by the remote producer can be provided via <property>

elements. See the example below for more details. Additionally, you can override the default

consumer name automatically provided by GateIn via the <consumer-name> element. If you

choose to provide a consumer name, please remember that this should uniquely identify your

consumer.

7.7.3.3. Examples

Here is the configuration of the selfv1 and selfv2 consumers as

found in $JBOSS_PROFILE_HOME/deploy/gatein-wsrp-integration.ear/lib/extension-

component-$WSRP_VERSION.jar/conf/wsrp-consumers-config.xml with a cache expiring

every 500 seconds and with a 50 second timeout for web service operations.

Note

This file contains the default configuration and you shouldn't need to edit it. If you

want to make modifications to it, we recommend that you follow the procedure

detailed in Section 7.7.2, “Configuring a remote producer using the configuration

portlet”.

Example 7.3.

<?xml version='1.0' encoding='UTF-8' ?>

<deployments xmlns="http://www.gatein.org/xml/ns/gatein_wsrp_consumer_1_0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_wsrp_consumer_1_0 http://

www.jboss.org/portal/xsd/gatein_wsrp_consumer_1_0.xsd">

 <deployment>

 <wsrp-producer id="selfv1" expiration-cache="500" ws-timeout="50000">

Configuring access to remote producers via XML

197

 <endpoint-wsdl-url>http://localhost:8080/wsrp-producer/v1/MarkupService?wsdl</endpoint-

wsdl-url>

 <registration-data/>

 </wsrp-producer>

 </deployment>

 <deployment>

 <wsrp-producer id="selfv2" expiration-cache="500" ws-timeout="50000">

 <endpoint-wsdl-url>http://localhost:8080/wsrp-producer/v2/MarkupService?wsdl</endpoint-

wsdl-url>

 <registration-data/>

 </wsrp-producer>

 </deployment>

</deployments>

Here is an example of a WSRP descriptor with registration data and cache expiring every minute:

Example 7.4.

<?xml version='1.0' encoding='UTF-8' ?>

<deployments xmlns="http://www.gatein.org/xml/ns/gatein_wsrp_consumer_1_0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_wsrp_consumer_1_0 http://

www.jboss.org/portal/xsd/gatein_wsrp_consumer_1_0.xsd">

<deployments>

 <deployment>

 <wsrp-producer id="AnotherProducer" expiration-cache="60">

 <endpoint-wsdl-url>http://example.com/producer/producer?WSDL</endpoint-wsdl-url>

 <registration-data>

 <property>

 <name>property name</name>

 <lang>en</lang>

 <value>property value</value>

 </property>

 </registration-data>

 </wsrp-producer>

 </deployment>

</deployments>

Chapter 7. Web Services for R...

198

7.7.4. Adding remote portlets to categories

If we go to the Application Registry and examine the available portlets by clicking on the Portlet

link, you will now be able to see remote portlets if you click on the REMOTE tab in the left column:

These portlets are, of course, available to be used such as regular portlets: they can be used in

categories and added to pages. If you use the Import Applications functionality, they will also be

automatically imported in categories based on the keywords they define.

More specifically, if you want to add a WSRP portlet to a category, you can access these portlets

by selecting wsrp in the Application Type drop-down menu:

7.7.5. Adding remote portlets to pages

Since remote portlets can be manipulated just like regular portlets, you can add them to pages just

like you would do for a regular portlet. Please refer to the appropriate section of the documentation

for how to do so.

Of note, though, is that, starting with version 3.2 of GateIn (5.2 of EPP), it is now possible

to also add a remote portlet to a pages.xml configuration file. This is accomplished using the

<wsrp> element instead of the <portlet> element in your pages.xml document. While <portlet>

references a local portlet using the name of the application in which the portlet is contained and

the portlet name itself to identify which portlet to use, <wsrp> references a remote portlet using

a combination of the consumer identifier for the producer publishing the portlet and the portlet

handle identifying the portlet within the context of the producer.

Adding remote portlets to pages

199

The format for such a reference to a remote portlet is a follows: first, the identifier of the consumer

that accesses the remote producer publishing the remote portlet, then a separator (currently a

period (.)) and finally the portlet handle for that portlet, which is a string provided by the producer

to identify the portlet.

Since there currently is no easy way to determine the correct portlet handle, we recommend that

you use the graphical user interface to add remote portlets to pages instead of using pages.xml.

Note

For remote portlets published by GateIn's WSRP producer, the portlet handles are,

at the time of this writing, following the /<portlet application name>.<portlet

name> format.

7.7.5.1. Example

In the following example, we define 2 portlets for a page named Test in our pages.xml

configuration. They are actually references to the same portlet, albeit one accessed locally and the

other one accessing it via the selfv2 consumer which consumes GateIn's WSRP producer. You

can see that the first one is local (the <portlet-application> with the 'Added locally' title) and

follows the usual declaration. The second portlet (the one with the 'Added from selfv2 consumer'

title) comes from the selfv2 consumer and uses the <wsrp> element instead of <portlet>

element and follows the format for portlets coming from the GateIn's WSRP producer.

Example 7.5.

<page>

 <name>Test</name>

 ...

 <portlet-application>

 <portlet>

 <application-ref>richFacesPortlet</application-ref>

 <portlet-ref>richFacesPortlet</portlet-ref>

 </portlet>

 <title>Added locally</title>

 ...

 </portlet-application>

 <portlet-application>

Chapter 7. Web Services for R...

200

 <wsrp>selfv2./richFacesPortlet.richFacesPortlet</wsrp>

 <title>Added from selfv2 consumer</title>

 ...

 </portlet-application>

</page>

7.8. Consumers maintenance

7.8.1. Modifying a currently held registration

7.8.1.1. Registration modification for service upgrade

Producers often offer several levels of service depending on consumers' subscription levels (for

example). This is implemented at the WSRP level with the registration concept: producers can

assert which level of service to provide to consumers based on the values of given registration

properties.

There might also be cases where you just want to update the registration information because it

has changed. For example, the producer required you to provide a valid email and the previously

email address is not valid anymore and needs to be updated.

It is therefore sometimes necessary to modify the registration that concretizes the service

agreement between a consumer and a producer. Let's take the example of a producer requiring a

valid email (via an email registration property) as part of its required information that consumers

need to provide to be properly registered.

Suppose now that we would like to update the email address that we provided to the remote

producer when we first registered. We will need to tell the producer that our registration data

has been modified. Let's see how to do this. Select the consumer for the remote producer in

the available consumers list to display its configuration. Assuming you want to change the email

you registered with to foo@example.com, change its value in the field for the email registration

property:

Now click on "Update properties" to save the change. A "Modify registration" button should now

appear to let you send this new data to the remote producer:

Modifying a currently held registration

201

Click on this new button and, if everything went well and your updated registration has been

accepted by the remote producer, you should see something similar to:

7.8.1.2. Registration modification on producer error

It can also happen that a producer administrator decided to change its requirement for registered

consumers. GateIn will attempt to help you in this situation. Let's walk through an example using

the selfv2 consumer. Let's assume that registration is requiring a valid value for an email

registration property. If you go to the configuration screen for this consumer, you should see:

Chapter 7. Web Services for R...

202

Now suppose that the administrator of the producer now additionaly requires a value to be

provided for a name registration property. We will actually see how to do perform this operation in

GateIn when we examine how to configure GateIn's producer in Section 7.9, “Configuring GateIn's

WSRP Producer”. Operations with this producer will now fail. If you suspect that a registration

modification is required, you should go to the configuration screen for this remote producer and

refresh the information held by the consumer by pressing "Refresh & Save":

Modifying a currently held registration

203

As you can see, the configuration screen now shows the currently held registration information

and the expected information from the producer. Enter a value for the name property and then click

on "Modify registration". If all went well and the producer accepted your new registration data, you

should see something similar to:

Chapter 7. Web Services for R...

204

Note

WSRP 1 makes it rather difficult to ascertain for sure what caused an

OperationFailedFault as it is the generic exception returned by producers if

something didn't quite happen as expected during a method invocation. This

means that OperationFailedFault can be caused by several different reasons,

one of them being a request to modify the registration data. Please take a look at

the log files to see if you can gather more information as to what happened. WSRP

2 introduces an exception that is specific to a request to modify registrations thus

reducing the ambiguity that exists when using WSRP 1.

7.8.2. Consumer operations

Several operations are available from the consumer list view of the WSRP configuration portlet:

The available operations are:

• Configure: displays the consumer details and allows user to edit them

Importing and exporting portlets

205

• Refresh: forces the consumer to retrieve the service description from the remote producer to

refresh the local information (offered portlets, registration information, etc.)

• Activate/Deactivate: activates/deactivates a consumer, governing whether it will be available to

provide portlets and receive portlet invocations

• Register/Deregister: registers/deregisters a consumer based on whether registration is required

and/or acquired

• Delete: destroys the consumer, after deregistering it if it was registered

• Export: exports some or all of the consumer's portlets to be able to later import them in a different

context

• Import: imports some or all of previously exported portlets

Note

Import/Export functionality is only available to WSRP 2 consumers of producers

that support this optional functionality. Import functionality is only available if

portlets had previously been exported.

7.8.3. Importing and exporting portlets

Import and export are new functionalities added in WSRP 2. Exporting a portlet allows a consumer

to get an opaque representation of the portlet which can then be use by the corresponding import

operation to reconstitute it. It is mostly used in migration scenarios during batch operations. Since

GateIn does not currently support automated migration of portal data, the functionality that we

provide as part of WSRP 2 is necessarily less complete than it could be with full portal support.

The import/export implementation in GateIn (available since 3.1) allows users to export portlets

from a given consumer. These portlets can then be used to replace existing content on pages.

This is accomplished by assigning previously exported portlets to replace the content displayed

by windows on the portal's pages. Let us walk through an example to make things clearer.

Clicking on the "Export" action for a given consumer will display the list of portlets currently made

available by this specific consumer. An example of such a list is shown below:

Chapter 7. Web Services for R...

206

Once portlets have been selected, they can be exported by clicking on the "Export" button thus

making them available for later import:

You can re-import the portlets directly by pressing the "Use for import" button or, on the Consumers

list page, using the "Import" action for a given consumer. Let's assume that you used that second

option and that you currently have several available sets of previously exported portlets to import

from. After clicking the action link, you should see a screen similar to the one below:

As you can see this screen presents the list of available exports with available operations for each.

• View: displays the export details as previously seen when the export was first performed

Importing and exporting portlets

207

• Delete: deletes the selected export, asking you for confirmation first

• Use for import: selects the export to import portlets from

Once you've selected an export to import from, you will see a screen similar to the one below:

The screen displays the list of available exported portlets for the previously selected export. You

can select which portlet you want to import by checking the checkbox next to its name. Next, you

need to select the content of which window the imported portlet will replace. This process is done

in three steps. Let's assume in this example that you have the following page called page1 and

containing two windows called NetUnity WSRP 2 Interop - Cache Markup (remote) and /

samples-remotecontroller-portlet.RemoteControl (remote) as shown below:

Chapter 7. Web Services for R...

208

In this example, we want to replace the content of the /samples-remotecontroller-

portlet.RemoteControl (remote) by the content of the /ajaxPortlet.JSFAJAXPortlet

portlet that we previously exported. To do so, we will check the checkbox next to the /

ajaxPortlet.JSFAJAXPortlet portlet name to indicate that we want to import its data and then

select the page1 in the list of available pages. The screen will then refresh to display the list of

available windows on that page, similar to the one seen below:

Importing and exporting portlets

209

Note that, at this point, we still need to select the window which content we want to replace before

being able to complete the import operation. Let's select the /samples-remotecontroller-

portlet.RemoteControl (remote) window, at which point the "Import" button will become

enabled, indicating that we now have all the necessary data to perform the import. If all goes well,

pressing that button should result in a screen similar to the one below:

Chapter 7. Web Services for R...

210

If you now take a look at the page1 page, you should now see that the content /samples-

remotecontroller-portlet.RemoteControl (remote) window has been replaced by the

content of the /ajaxPortlet.JSFAJAXPortlet imported portlet and the window renamed

appropriately:

Erasing local registration data

211

7.8.4. Erasing local registration data

There are rare cases where it might be required to erase the local information without being able

to deregister first. This is the case when a consumer is registered with a producer that has been

Chapter 7. Web Services for R...

212

modified by its administrator to not require registration anymore. If that ever was to happen (most

likely, it won't), you can erase the local registration information from the consumer so that it can

resume interacting with the remote producer. To do so, click on "Erase local registration" button

next to the registration context information on the consumer configuration screen:

Warning: This operation is dangerous as it can result in inability to interact with the remote

producer if invoked when not required. A warning screen will be displayed to give you a chance

to change your mind:

7.9. Configuring GateIn's WSRP Producer

7.9.1. Overview

The preferred way to configure the behavior of Portal's WSRP Producer is via the WSRP

configuration portlet. Alternatively, it is possible to add an XML file called wsrp-producer-

config.xml in the $JBOSS_PROFILE_HOME/conf/gatein/ directory. Several aspects can be

modified with respects to whether registration is required for consumers to access the Producer's

services.

Note

An XML Schema defining which elements are available

to configure Consumers via XML can be found

Default configuration

213

in $JBOSS_PROFILE_HOME/deploy/gatein-wsrp-integration.ear/lib/wsrp-

integration-api-$WSRP_VERSION.jar/xsd/gatein_wsrp_producer_1_0.xsd

Important

It is important to note that once the XML configuration file for the producer has been

read upon the WSRP service first start, the associated information is put under

control of JCR (Java Content Repository). Subsequent launches of the WSRP

service will use the JCR-stored information and ignore the content of the XML

configuration file.

Note

The default configuration file for the producer can be

found at $JBOSS_PROFILE_HOME/deploy/gatein-wsrp-integration.ear/lib/

extension-component-$WSRP_VERSION.jar/conf/wsrp-producer-

config.xml

7.9.2. Default configuration

The default producer configuration is to require that consumers register with it before providing

access its services but does not require any specific registration properties (apart from what is

mandated by the WSRP standard). It does, however, require consumers to be registered before

sending them a full service description. This means that our WSRP producer will not provide the

list of offered portlets and other capabilities to unregistered consumers. The producer also uses

the default RegistrationPolicy paired with the default RegistrationPropertyValidator. We

will look into property validators in greater detail later inSection 7.9.3, “Registration configuration”.

Suffice to say for now that this allows users to customize how Portal's WSRP Producer decides

whether a given registration property is valid or not.

GateIn provides a web interface to configure the producer's behavior. You can access it by clicking

on the "Producer Configuration" tab of the "WSRP" page of the "admin" portal. Here's what you

should see with the default configuration:

Chapter 7. Web Services for R...

214

As would be expected, you can specify whether or not the producer will send the full service

description to unregistered consumers, and, if it requires registration, which RegistrationPolicy

to use (and, if needed, which RegistrationPropertyValidator), along with required registration

property description for which consumers must provide acceptable values to successfully register.

New in GateIn 3.2, we now display the WSDL URLs to access GateIn's WSRP producer either

in WSRP 1 or WSRP 2 mode.

7.9.3. Registration configuration

In order to require consumers to register with Portal's producer before interacting with it, you

need to configure Portal's behavior with respect to registration. Registration is optional, as are

registration properties. The producer can require registration without requiring consumers to pass

any registration properties as is the case in the default configuration. Let's configure our producer

starting with a blank state:

We will allow unregistered consumers to see the list of offered portlets so we leave the first

checkbox ("Access to full service description requires consumers to be registered.") unchecked.

We will, however, specify that consumers will need to be registered to be able to interact with

our producer. Check the second checkbox ("Requires registration. Modifying this information will

trigger invalidation of consumer registrations."). The screen should now refresh and display:

Registration configuration

215

You can specify the fully-qualified name for your RegistrationPolicy and

RegistrationPropertyValidator there. We will keep the default value. See Section 7.9.3.1,

“Customization of Registration handling behavior” for more details. Let's add, however, a

registration property called email. Click "Add property" and enter the appropriate information in

the fields, providing a description for the registration property that can be used by consumers to

figure out its purpose:

Press "Save" to record your modifications.

Note

At this time, only String (xsd:string) properties are supported. If your application

requires more complex properties, please let us know.

Note

If consumers are already registered with the producer, modifying the configuration

of required registration information will trigger the invalidation of held registrations,

requiring consumers to modify their registration before being able to access the

producer again. We saw the consumer side of that process in Section 7.8.1.2,

“Registration modification on producer error”.

7.9.3.1. Customization of Registration handling behavior

Registration handling behavior can be customized by users to suit their Producer needs. This

is accomplished by providing an implementation of the RegistrationPolicy interface. This

interface defines methods that are called by Portal's Registration service so that decisions can

be made appropriately. A default registration policy that provides basic behavior is provided and

should be enough for most user needs.

While the default registration policy provides default behavior for most registration-related

aspects, there is still one aspect that requires configuration: whether a given value for a

registration property is acceptable by the WSRP Producer. This is accomplished by plugging a

Chapter 7. Web Services for R...

216

RegistrationPropertyValidator in the default registration policy. This allows users to define

their own validation mechanism.

Please refer to the Javadoc™ for org.gatein.registration.RegistrationPolicy and

org.gatein.registration.policies.RegistrationPropertyValidator for more details on

what is expected of each method.

Defining a registration policy is required for the producer to be correctly configured. This is

accomplished by specifying the qualified class name of the registration policy. Since we anticipate

that most users will use the default registration policy, it is possible to provide the class name of

your custom property validator instead to customize the default registration policy behavior. Note

that property validators are only used by the default policy.

Note

Since the policy or the validator are defined via their class name and dynamically

loaded, it is important that you make sure that the identified class is available

to the application server. One way to accomplish that is to deploy your policy

implementation as JAR file in your AS instance deploy directory. Note also that,

since both policies and validators are dynamically instantiated, they must provide

a default, no-argument constructor.

7.9.4. WSRP validation mode

The lack of conformance kit and the wording of the WSRP specification leaves room for differing

interpretations, resulting in interoperability issues. It is therefore possible to encounter issues when

using consumers from different vendors. We have experienced such issues and have introduced

a way to relax the validation that our WSRP producer performs on the data provided by consumers

to help with interoperability by accepting data that would normally be invalid. Note that we only

relax our validation algorithm on aspects of the specification that are deemed harmless such as

invalid language codes.

By default, the WSRP producer is configured in strict mode. If you experience issues with a given

consumer, you might want to try to relax the validation mode. This is accomplished by unchecking

the "Use strict WSRP compliance." checkbox on the Producer configuration screen.

Chapter 8.

217

Advanced Development

8.1. Foundations

8.1.1. GateIn Kernel

GateIn 3.2 is built as a set of services on top of a dependency injection kernel. The kernel provides

configuration, lifecycle handling, component scopes, and some core services.

Service components exist in two scopes. First scope is represented by RootContainer - it contains

services that exist independently of any portal, and can be accessed by all portals.

Second scope is portal-private in the form of PortalContainer. Each portal lives in an instance of

PortalContainer. This scope contains services that are common for a set of portals, and services

which should not be shared by all portals.

Whenever a specific service is looked up through PortalContainer, and the service is not available,

the lookup is delegated further up to RootContainer. We can therefore have default instance of a

certain component in RootContainer, and portal specific instances in some or all PortalContainers,

that override the default instance.

Whenever your portal application has to be integrated more closely with GateIn services, the way

to do it is by looking up these services through PortalContainer. Be careful though - only officially

documented services should be accessed this way, and used according to documentation, as

most of the services are an implementation detail of GateIn, and subject to change without notice.

Chapter 8. Advanced Development

218

8.1.2. Configuring services

GateIn Kernel uses dependency injection to create services based on configuration.xml

configuration files. The location of the configuration files determines if services are placed into

RootContainer scope, or into PortalContainer scope. All configuration.xml files located at conf/

configuration.xml in the classpath (any directory, or any jar in the classpath) will have their

services configured at RootContainer scope. All configuration.xml files located at conf/portal/

configuration.xml in the classpath will have their services configured at PortalContainer scope.

Additionally, portal extensions can contain configuration in WEB-INF/conf/configuration.xml,

and will also have their services configured at PortalContainer scope.

Note

Portal extensions are described later on.

8.1.3. Configuration syntax

8.1.3.1. Components

A service component is defined in configuration.xml by using <component> element.

There is only one required information when defining a service - the service implementation class,

specified using <type>

Every component has a <key> that identifies it. If not explicitly set, a key defaults to the value of

<type>. If key can be loaded as a class, a Class object is used as a key, otherwise a String is used.

The usual approach is to specify an interface as a key.

Example 8.1. Example of service component configuration:

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd

 http://www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <component>

 <key>org.exoplatform.services.database.HibernateService</key>

 <type>org.exoplatform.services.database.impl.HibernateServiceImpl</type>

 ...

Configuration syntax

219

 </component>

</configuration>

8.1.3.2. External Plugins

GateIn Kernel supports non-component objects that can be configured, instantiated, and injected

into registered components, using method calls. The mechanism is called 'plugins', and allows

portal extensions to add additional configurations to core services.

External plugin is defined by using <external-component-plugins> wrapper element which

contains one or more <component-plugin> definitions. <external-component-plugins> uses

<target-component> to specify a target service component that will receive injected objects.

Every <component-plugin> defines an implementation type, and a method on target component

to use for injection (<set-method>).

A plugin implementation class has to implement org.exoplatform.container.component.

ComponentPlugin interface.

In the following example PortalContainerDefinitionPlugin implements ComponentPlugin:

Example 8.2. PortalContainerDefinitionPlugin

<?xml version="1.0" encoding="UTF-8"?>

<configuration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd

 http://www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>

 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-

component>

 <component-plugin>

 <!-- The name of the plugin -->

 <name>Add PortalContainer Definitions</name>

 <!-- The name of the method to call on the PortalContainerConfig

 in order to register the PortalContainerDefinitions -->

 <set-method>registerPlugin</set-method>

 <!-- The fully qualified name of the PortalContainerDefinitionPlugin -->

 <type>org.exoplatform.container.definition.PortalContainerDefinitionPlugin</type>

Chapter 8. Advanced Development

220

 ...

 </component-plugin>

 </external-component-plugins>

</configuration>

8.1.3.3. Includes, and special URLs

It is possible to break configuration.xml file into many smaller files, that are then included into

a 'master' configuration file. The included files are complete configuration xml documents by

themselves - they are not fragments of text.

An example configuration.xml that 'outsources' its content into several files:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd

 http://www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <import>war:/conf/sample-ext/jcr/jcr-configuration.xml</import>

 <import>war:/conf/sample-ext/portal/portal-configuration.xml</import>

</configuration>

We see a special URL being used to reference another configuration file. URL schema 'war:'

means, that the path that follows is resolved relative to current PortalContainer's servlet context

resource path, starting at WEB-INF as a root.

Note

Current PortalContainer is really a newly created PortalContainer, as war: URLs

only make sense for PortalContainer scoped configuration.

Also, thanks to extension mechanism, the servlet context used for resource loading is a unified

servlet context (as explaned in a later section).

To have include path resolved relative to current classpath (context classloader), use 'jar:' URL

schema.

Configuration syntax

221

8.1.3.4. Special variables

Configuration files may contain a special variable reference ${container.name.suffix}. This

variable resolves to the name of the current portal container, prefixed by underscore (_). This

facilitates reuse of configuration files in situations where portal specific unique names need to be

assigned to some resources (i.e. JNDI names, Database / DataSource names, JCR repository

names, etc ...).

This variable is only defined when there is a current PortalContainer available - only for

PortalContainer scoped services.

A good example for this is HibernateService:

Example 8.3. HibernateService using variables

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd

 http://www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <component>

 <key>org.exoplatform.services.database.HibernateService</key>

 <jmx-name>database:type=HibernateService</jmx-name>

 <type>org.exoplatform.services.database.impl.HibernateServiceImpl</type>

 <init-params>

 <properties-param>

 <name>hibernate.properties</name>

 <description>Default Hibernate Service</description>

 <property name="hibernate.show_sql" value="false" />

 <property name="hibernate.cglib.use_reflection_optimizer" value="true" />

 <property name="hibernate.connection.url"

 value="jdbc:hsqldb:file:../temp/data/exodb${container.name.suffix}" />

 <property name="hibernate.connection.driver_class" value="org.hsqldb.jdbcDriver" />

 <property name="hibernate.connection.autocommit" value="true" />

 <property name="hibernate.connection.username" value="sa" />

 <property name="hibernate.connection.password" value="" />

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect" />

 <property name="hibernate.c3p0.min_size" value="5" />

 <property name="hibernate.c3p0.max_size" value="20" />

 <property name="hibernate.c3p0.timeout" value="1800" />

 <property name="hibernate.c3p0.max_statements" value="50" />

 </properties-param>

Chapter 8. Advanced Development

222

 </init-params>

 </component>

</configuration>

8.1.4. InitParams configuration object

InitParams is a configuration object that is essentially a map of key-value pairs, where key is

always a String, and value can be any type that can be described using kernel configuration xml.

Service components that form the GateIn 3.2 insfrastructure use InitParams object to configure

themselves. A component can have one instance of InitParams injected at most. If the service

component's constructor takes InitParams as any of the parameters it will automatically be injected

at component instantiation time. The xml configuration for a service component that expects

InitParams object must include <init-params> element (even if an empty one).

Let's use an example to see how the kernel xml configuration syntax looks for creating InitParams

instances.

Example 8.4. InitParams - properties-param

<component>

 <key>org.exoplatform.services.naming.InitialContextInitializer</key>

 <type>org.exoplatform.services.naming.InitialContextInitializer</type>

 <init-params>

 <properties-param>

 <name>default-properties</name>

 <description>Default initial context properties</description>

 <property name="java.naming.factory.initial"

 value="org.exoplatform.services.naming.SimpleContextFactory" />

 </properties-param>

 </init-params>

</component>

InitParams object description begins with <init-params> element. It can have zero or more

children elements each of which is one of <value-param>, <values-param>, <properties-param>,

or <object-param>. Each of these child elements takes a <name> that serves as a map entry key,

and an optional <description>. It also takes a type-specific value specification.

For <properties-param> the value specification is in the form of one or more <property> elements,

each of which specifies two strings - a property name, and a property value. Each <properties-

InitParams configuration object

223

params> defines one java.util.Properties instance. Also see Example 8.3, “HibernateService

using variables” for an example.

Example 8.5. InitParams - value-param

<component>

 <key>org.exoplatform.services.transaction.TransactionService</key>

 <type>org.exoplatform.services.transaction.impl.jotm.TransactionServiceJotmImpl</type>

 <init-params>

 <value-param>

 <name>timeout</name>

 <value>5</value>

 </value-param>

 </init-params>

</component>

For <value-param> the value specification is in the form of <value> element, which defines one

String instance.

Example 8.6. InitParams - values-param

<component>

 <key>org.exoplatform.services.resources.ResourceBundleService</key>

 <type>org.exoplatform.services.resources.impl.SimpleResourceBundleService</type>

 <init-params>

 <values-param>

 <name>classpath.resources</name>

 <description>The resources

 that start with the following package name should be load from file system</description>

 <value>locale.portlet</value>

 </values-param>

 <values-param>

 <name>init.resources</name>

 <description>Store the following resources into the db for the first launch </description>

 <value>locale.test.resources.test</value>

 </values-param>

 <values-param>

 <name>portal.resource.names</name>

Chapter 8. Advanced Development

224

 <description>The properties files of the portal , those file will be merged

 into one ResourceBundle properties </description>

 <value>local.portal.portal</value>

 <value>local.portal.custom</value>

 </values-param>

 </init-params>

</component>

For <values-param> the value specification is in the form of one or more <value> elements, each

of which represents one String instance, where all the String values are then collected into a

java.util.List instance.

Example 8.7. InitParams - object-param

<component>

 <key>org.exoplatform.services.cache.CacheService</key>

 <jmx-name>cache:type=CacheService</jmx-name>

 <type>org.exoplatform.services.cache.impl.CacheServiceImpl</type>

 <init-params>

 <object-param>

 <name>cache.config.default</name>

 <description>The default cache configuration</description>

 <object type="org.exoplatform.services.cache.ExoCacheConfig">

 <field name="name">

 <string>default</string>

 </field>

 <field name="maxSize">

 <int>300</int>

 </field>

 <field name="liveTime">

 <long>300</long>

 </field>

 <field name="distributed">

 <boolean>false</boolean>

 </field>

 <field name="implementation">

 <string>org.exoplatform.services.cache.concurrent.ConcurrentFIFOExoCache</string>

 </field>

 </object>

 </object-param>

 </init-params>

Configuring a portal container

225

</component>

For <object-param> in our case, the value specification comes in a form of <object> element,

which is used for POJO style object specification (you specify an implementation class - <type>,

and property values - <field>).

Also see Example 8.8, “Portal container declaration example” for an example of specifying a field

of Collection type.

The InitParams structure - the names and types of entries is specific for each service, as it is

the code inside service components's class that decides what entry names to look up and what

types it expects to find.

8.1.5. Configuring a portal container

A portal container is defined by several attributes.

First, there is a portal container name, which is always equal to URL context to which the current

portal is bound.

Second, there is a REST context name, which is used for REST access to portal application -

every portal has exactly one (unique) REST context name.

Then, there is a realm name which is the name of security realm used for authentication when

users log into the portal.

Finally, there is a list of Dependencies - other web applications, whose resources are visible to

current portal (via extension mechanism described later), and are searched in the specified order.

Example 8.8. Portal container declaration example

<?xml version="1.0" encoding="UTF-8"?>

<configuration

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd

 http://www.exoplaform.org/xml/ns/kernel_1_2.xsd"

 xmlns="http://www.exoplaform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>

 <!-- The full qualified name of the PortalContainerConfig -->

 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-

component>

 <component-plugin>

Chapter 8. Advanced Development

226

 <!-- The name of the plugin -->

 <name>Add PortalContainer Definitions</name>

 <!-- The name of the method to call on the PortalContainerConfig

 in order to register the PortalContainerDefinitions -->

 <set-method>registerPlugin</set-method>

 <!-- The full qualified name of the PortalContainerDefinitionPlugin -->

 <type>org.exoplatform.container.definition.PortalContainerDefinitionPlugin</type>

 <init-params>

 <object-param>

 <name>portal</name>

 <object type="org.exoplatform.container.definition.PortalContainerDefinition">

 <!-- The name of the portal container -->

 <field name="name"><string>portal</string></field>

 <!-- The name of the context name of the rest web application -->

 <field name="restContextName"><string>rest</string></field>

 <!-- The name of the realm -->

 <field name="realmName"><string>exo-domain</string></field>

 <!-- All the dependencies of the portal container ordered by loading priority -->

 <field name="dependencies">

 <collection type="java.util.ArrayList">

 <value>

 <string>eXoResources</string>

 </value>

 <value>

 <string>portal</string>

 </value>

 <value>

 <string>dashboard</string>

 </value>

 <value>

 <string>exoadmin</string>

 </value>

 <value>

 <string>eXoGadgets</string>

 </value>

 <value>

 <string>eXoGadgetServer</string>

 </value>

Configuring a portal container

227

 <value>

 <string>rest</string>

 </value>

 <value>

 <string>web</string>

 </value>

 <value>

 <string>wsrp-producer</string>

 </value>

 <!-- The sample-ext has been added at the end of the dependency list

 in order to have the highest priority -->

 <value>

 <string>sample-ext</string>

 </value>

 </collection>

 </field>

 </object>

 </object-param>

 </init-params>

 </component-plugin>

 </external-component-plugins>

</configuration>

Note

Dependencies are part of the extension mechanism.

Every portal container is represented by a PortalContainer instance, which contains:

• associated ExoContainerContext, which contains information about the portal

• unified servlet context, for web-archive-relative resource loading

• unified classloader, for classpath based resource loading

• methods for retrieving services

Unified servlet context, and unified classloader are part of the extension mechanism

(explained in next section), and provide standard API (ServletContext, ClassLoader) with specific

resource loading behavior - visibility into associated web application archives, configured with

Dependencies property of PortalContainerDefinition. Resources from other web applications are

queried in the order specified by Dependencies. The later entries in the list override the previous

ones.

Chapter 8. Advanced Development

228

8.1.6. GateIn Extension Mechanism, and Portal Extensions

Extension mechanism is a functionality that makes it possible to override portal resources in an

almost plug-and-play fashion - just drop in a .war archive with the resources, and configure its

position on the portal's classpath. This way any customizations of the portal don't have to involve

unpacking and repacking the original portal .war archives. Instead, you create your own .war

archive with changed resources, that override the resources in the original archive.

A web archive packaged in a way to be used through extension mechanism is called portal

extension.

There are two steps necessary to create a portal extension.

First, declare PortalConfigOwner servlet context listener in web.xml of your web application.

Example 8.9. Example of a portal extension called sample-ext:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE web-app PUBLIC -//Sun Microsystems, Inc.//DTD Web Application 2.3//EN

 http://java.sun.com/dtd/web-app_2_3.dtd>

<web-app>

 <display-name>sample-ext</display-name>

 <listener>

 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>

 </listener>

 ...

</web-app>

Then, add the servlet context name of this web application in proper place in the list of

Dependencies of the PortalContainerDefinition of all the portal containers that you want to have

access to its resources.

After this step your web archive will be on portal's unified classpath, and unified servlet context

resource path. The later in the Dependencies list your application is, the higher priority it has when

resources are loaded by portal.

Running Multiple Portals

229

Note

See 'Configuring a portal' section for example of PortalContainerDefinition, that

has sample-ext at the end of its list of Dependencies.

8.1.7. Running Multiple Portals

It is possible to run several independent portal containers - each bound to a different URL context -

within the same JVM instance. This kind of setup is very efficient from administration and resource

consumption aspect. The most elegant way to reuse configuration for different coexisting portals

is by way of extension mechanism - by inheriting resources and configuration from existing web

archives, and just adding extra resources to it, and overriding those that need to be changed

by including modified copies.

In order for a portal application to correctly function when deployed in multiple portals, the

application may have to dynamically query the information about the current portal container. The

application should not make any assumptions about the name, and other information of the current

portal, as there are now multiple different portals in play.

At any point during request processing, or lifecycle event processing, your application can

retrieve this information through org.exoplatform.container. ExoContainerContext. Sometimes

your application needs to make sure that the proper PortalContainer - the source of

ExoContainerContext - is associated with the current call.

If you ship servlets or servlet filters as part of your portal application, and if you need to access

portal specific resources at any time during the processing of the servlet or filter request, then you

need to make sure the servlet/filter is associated with the current container.

The proper way to do that is to make your servlet extend org.exoplatform.container.web.

AbstractHttpServlet class. This will not only properly initialize current PortalContainer for you,

but will also set the current thread's context classloader to one that looks for resources in

associated web applications in the order specified by Dependencies configuration (as explained

in Extension mechanism section).

Similarly for filters, make sure your filter class extends org.exoplatform.container.web.

AbstractFilter. Both AbstractHttpServlet, and AbstractFilter have a method getContainer(),

which returns the current PortalContainer. If your servlet handles the requests by implementing

a service() method, you need to rename that method to match the following signature:

/**

 * Use this method instead of Servlet.service()

 */

protected void onService(ExoContainer container, HttpServletRequest req,

 HttpServletResponse res) throws ServletException, IOException;

Chapter 8. Advanced Development

230

Note

The reason is that AbstractHttpServlet implements service() to perform its

interception, and you don't want to overwrite (by overriding) this functionality.

You may also need to access portal information within your HttpSessionListener.

Again, make sure to extend the provided abstract class - org.exoplatform.container.web.

AbstractHttpSessionListener. Also, modify your method signatures as follows:

/**

 * Use this method instead of HttpSessionListener.sessionCreated()

 */

protected void onSessionCreated(ExoContainer container, HttpSessionEvent event);

/**

 * Use this method instead of HttpSessionListener.sessionDestroyed()

 */

protected void onSessionDestroyed(ExoContainer container, HttpSessionEvent event);

There is another method you have to implement in this case:

/**

 * Method should return true if unified servlet context,

 * and unified classloader should be made available

 */

protected boolean requirePortalEnvironment();

If this method returns true, current thread's context classloader is set up according to

Dependencies configuration, and availability of the associated web applications. If it returns false,

the standard application separation rules are used for resource loading (effectively turning off the

extension mechanism). This method exists on AbstractHttpServlet and AbstractFilter as well,

where there is a default implementation that automatically returns true, when it detects there is a

current PortalContainer present, otherwise it returns false.

Running Multiple Portals

231

We still have to explain how to properly perform ServletContextListener based initialization,

when you need access to current PortalContainer.

GateIn has no direct control over the deployment of application archives (.war, .ear files) - it is the

application server that performs the deployment. For extension mechanism to work properly,

the applications, associated with the portal via Dependencies configuration, have to be deployed

before the portal, that depends on them, is initialized. On the other hand, these applications may

require an already initialized PortalContainer to properly initialize themselves - we have a recursive

dependency problem. To resolve this problem, a mechanism of initialization tasks, and task

queues, was put in place. Web applications that depend on current PortalContainer for their

initialization have to avoid performing their initialization directly in some ServletContextListener

executed during their deployment (before any PortalContainer was initialized). Instead, a web

application should package its initialization logic into an init task of appropriate type, and only use

ServletContextListener to insert the init task instance into the proper init tasks queue.

An example of this is Gadgets application which registers Google gadgets with the current

PortalContainer:

public class GadgetRegister implements ServletContextListener

{

 public void contextInitialized(ServletContextEvent event)

 {

 // Create a new post-init task

 final PortalContainerPostInitTask task = new PortalContainerPostInitTask() {

 public void execute(ServletContext context, PortalContainer portalContainer)

 {

 try

 {

 SourceStorage sourceStorage =

 (SourceStorage) portalContainer.getComponentInstanceOfType(SourceStorage.class);

 ...

 }

 catch (RuntimeException e)

 {

 throw e;

 }

 catch (Exception e)

 {

 throw new RuntimeException("Initialization failed: ", e);

 }

 }

 };

Chapter 8. Advanced Development

232

 // Add post-init task for execution on all the portal containers

 // that depend on the given ServletContext according to

 // PortalContainerDefinitions (via Dependencies configuration)

 PortalContainer.addInitTask(event.getServletContext(), task);

 }

}

The above example uses PortalContainerPostInitTask, which gets executed after the portal

container has been initialized. In some situations you may want to execute initialization after portal

container was instantiated, but before it was initialized - use PortalContainerPreInitTask in that

case. Or, you may want to execute initialization after all the post-init tasks have been executed -

use PortalContainerPostCreateTask in that case.

One more area that may need your attention are LoginModules. If you

use custom LoginModules, that require current ExoContainer, make sure they

extend org.exoplatform.services.security.jaas.AbstractLoginModule for proper initialization.

AbstractLoginModule also takes care of the basic configuration - it recognizes two initialization

options - portalContainerName, and realmName whose values you can access via protected

fields of the same name.

	GateIn Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Related Links

	Chapter 2. Configuration
	2.1. Database Configuration
	2.1.1. Overview
	2.1.2. Configuring the database for JCR
	2.1.3. Configuring the database for the default identity store

	2.2. E-Mail Service Configuration
	2.2.1. Overview
	2.2.2. Configuring the outgoing e-mail account

	2.3. HTTPS Configuration
	2.3.1. Overview
	2.3.2. Generate your key
	2.3.3. Setup Jboss configuration to use your key
	2.3.4. Setup Tomcat configuration to use your key

	2.4. Configuration of custom data validators
	2.4.1. Overview
	2.4.2. Validator configuration
	2.4.3. Developer information

	Chapter 3. Portal Development
	3.1. Skinning the portal
	3.1.1. Overview
	3.1.2. Skin Components
	3.1.3. Skin Selection
	3.1.3.1. Skin Selection Through the User Interface
	3.1.3.2. Setting the Default Skin within the Configuration Files

	3.1.4. Skins in Page Markups
	3.1.5. The Skin Service
	3.1.5.1. Skin configuration
	3.1.5.2. Resource Request Filter

	3.1.6. The Default Skin
	3.1.7. Creating New Skins
	3.1.7.1. Creating a New Portal Skin
	3.1.7.1.1. Portal Skin Configuration
	3.1.7.1.2. Portal Skin Preview Icon

	3.1.7.2. Creating a New Window Style
	3.1.7.2.1. Window Style Configuration
	3.1.7.2.2. Window Style CSS
	3.1.7.2.3. How to Set the Default Window Style

	3.1.7.3. How to Create New Portlet skins
	3.1.7.3.1. Change portlet icons

	3.1.7.4. How to create a new Portlet Specification CSS Classes

	3.1.8. Tips and Tricks
	3.1.8.1. Easier css debugging
	3.1.8.2. Some CSS techniques
	3.1.8.2.1. Decorator pattern
	3.1.8.2.2. Left margin left pattern

	3.2. Portal Lifecycle
	3.2.1. Overview
	3.2.2. Application Server start and stop
	3.2.3. The Command Servlet

	3.3. Default Portal Configuration
	3.3.1. Overview
	3.3.2. Configuration

	3.4. Portal Default Permission Configuration
	3.4.1. Overview
	3.4.2. Overwrite Portal Default Permissions

	3.5. Portal Navigation Configuration
	3.5.1. Overview
	3.5.2. Portal Navigation
	3.5.3. Group Navigation
	3.5.4. User Navigation

	3.6. Data Import Strategy
	3.6.1. Introduction
	3.6.2. Import Mode
	3.6.3. Data Import Strategy
	3.6.3.1. Navigation Data
	3.6.3.2. Portal Config
	3.6.3.3. Page Data

	3.7. Internationalization Configuration
	3.7.1. Overview
	3.7.2. Locales configuration
	3.7.3. ResourceBundleService
	3.7.4. Navigation Resource Bundles
	3.7.5. Portlets
	3.7.5.1. Standard portlet resource keys
	3.7.5.2. Debugging resource bundle usage

	3.7.6. Translating the language selection form

	3.8. Pluggable Locale Policy
	3.8.1. LocalePolicy API
	3.8.2. Default LocalePolicy
	3.8.3. Custom LocalePolicy
	3.8.4. LocalePolicy Configuration
	3.8.5. Keeping non-bridged resources in sync with current Locale

	3.9. RTL (Right To Left) Framework
	3.9.1. Groovy templates
	3.9.2. Stylesheet
	3.9.3. Images
	3.9.4. Client side JavaScript

	3.10. XML Resources Bundles
	3.10.1. Motivation
	3.10.2. XML format
	3.10.3. Portal support

	3.11. JavaScript Inter Application Communication
	3.11.1. Overview
	3.11.2. Library
	3.11.3. Syntax
	3.11.4. Example of Javascript events usage

	3.12. Upload Component
	3.12.1. Upload Service

	3.13. Deactivation of the Ajax Loading Mask Layer
	3.13.1. Purpose
	3.13.2. Synchronous issue

	3.14. Javascript Configuration
	3.15. Navigation Controller
	3.15.1. Description
	3.15.2. Controller in Action
	3.15.2.1. Controller
	3.15.2.2. Building controller
	3.15.2.3. Controller Configuration (controller.xml)
	3.15.2.3.1. Route parameters
	3.15.2.3.2. Path parameters - Regular expression support
	3.15.2.3.3. Request parameters
	3.15.2.3.4. Route precedence
	3.15.2.3.5. Route nesting

	3.15.3. Integrate to GateIn WebUI framework
	3.15.3.1. Routing
	3.15.3.2. Rendering
	3.15.3.2.1. PortalURL
	3.15.3.2.2. Node URL
	3.15.3.2.3. Component URL
	3.15.3.2.4. Portlet URLs
	3.15.3.2.5. Webui URLBuilder
	3.15.3.2.6. Groovy Templates

	3.15.4. Changes and migration from GateIn 3.1.x
	3.15.4.1. Migration of navigation node URL
	3.15.4.2. Security changes
	3.15.4.3. Default handler
	3.15.4.4. Legacy handler
	3.15.4.5. Static resource handler
	3.15.4.6. portal.war's web.xml changes
	3.15.4.7. Dashboard changes
	3.15.4.8. Remove unused files

	Chapter 4. Portlet development
	4.1. Portlet Primer
	4.1.1. JSR-168 and JSR-286 overview
	4.1.1.1. Portal Pages
	4.1.1.2. Rendering Modes
	4.1.1.3. Window States

	4.1.2. Tutorials
	4.1.2.1. Deploying your first Portlet
	4.1.2.1.1. Compiling
	4.1.2.1.2. Package Structure
	4.1.2.1.3. Portlet Class
	4.1.2.1.4. Application Descriptors

	4.1.2.2. JavaServer Pages Portlet Example
	4.1.2.2.1. Package Structure
	4.1.2.2.2. Portlet Class
	4.1.2.2.3. JSP files and the Portlet Tag Library
	4.1.2.2.4. JSF example using the JBoss Portlet Bridge

	4.2. Global portlet.xml file
	4.2.1. Global portlet.xml usecase
	4.2.2. Global metadata
	4.2.2.1. Location
	4.2.2.2. Global metadata elements
	4.2.2.2.1. Portlet filter
	4.2.2.2.2. Portlet Mode and Window State

	Chapter 5. Gadget development
	5.1. Gadgets
	5.1.1. Existing Gadgets
	5.1.2. Create a new Gadget
	5.1.3. Remote Gadget
	5.1.4. Gadget Importing
	5.1.5. Gadget Web Editing
	5.1.6. Gadget IDE Editing
	5.1.7. Dashboard Viewing

	5.2. Setup a Gadget Server
	5.2.1. Virtual servers for gadget rendering
	5.2.2. Configuration
	5.2.2.1. Security key
	5.2.2.2. Gadget proxy and concat configuration
	5.2.2.3. Proxy

	Chapter 6. Authentication and Identity
	6.1. Authentication and Authorization intro
	6.1.1. Authentication overview
	6.1.2. Login modules
	6.1.2.1. Existing login modules
	6.1.2.1.1. SVN location of login modules

	6.1.2.2. Creating your own login module
	6.1.2.2.1. Authentication on application server level
	6.1.2.2.2. Authentication on GateIn 3.2 level

	6.1.2.3. Authenticator and RolesExtractor

	6.1.3. Different authentication workflows
	6.1.3.1. RememberMe authentication
	6.1.3.1.1. How does it work
	6.1.3.1.2. Reauthentication
	6.1.3.1.3. RemindPasswordTokenService

	6.1.3.2. BASIC authentication
	6.1.3.3. Cluster login
	6.1.3.4. SSO login

	6.1.4. Authorization overview
	6.1.4.1. Servlet container authorization
	6.1.4.2. Portal level authorization

	6.2. Password Encryption
	6.3. Predefined User Configuration
	6.3.1. Overview
	6.3.2. Plugin for adding users, groups and membership types
	6.3.3. Membership types
	6.3.4. Groups
	6.3.5. Users
	6.3.6. Plugin for monitoring user creation

	6.4. Authentication Token Configuration
	6.4.1. What is Token Service?
	6.4.2. Implementing the Token Service API
	6.4.3. Configuring token services

	6.5. PicketLink IDM integration
	6.5.1. Configuration files

	6.6. Organization API
	6.7. Accessing User Profile
	6.8. Single-Sign-On (SSO)
	6.8.1. Overview
	6.8.1.1. Prerequisites

	6.8.2. Enabling SSO using JBoss SSO Valve
	6.8.3. Central Authentication Service (CAS)
	6.8.3.1. CAS server
	6.8.3.1.1. Obtaining CAS
	6.8.3.1.2. Modifying the CAS server

	6.8.3.2. Setup the CAS client
	6.8.3.3. Redirect to CAS

	6.8.4. JOSSO
	6.8.4.1. JOSSO server
	6.8.4.1.1. Obtaining JOSSO
	6.8.4.1.2. Modifying the JOSSO server

	6.8.4.2. Setup the JOSSO client
	6.8.4.3. Setup the portal to redirect to JOSSO

	6.8.5. OpenSSO - The Open Web SSO project
	6.8.5.1. OpenSSO server
	6.8.5.1.1. Obtaining OpenSSO
	6.8.5.1.2. Modifying the OpenSSO server

	6.8.5.2. Setup the OpenSSO client
	6.8.5.3. Setup the portal to redirect to OpenSSO

	6.8.6. SPNEGO
	6.8.6.1. SPNEGO Server Configuration
	6.8.6.2. Clients
	6.8.6.3. GateIn 3.2 Configuration

	Chapter 7. Web Services for Remote Portlets (WSRP)
	7.1. Introduction
	7.2. Level of support in GateIn 3.2
	7.3. Deploying GateIn's WSRP services
	7.3.1. Considerations to use WSRP when running GateIn on a non-default port or hostname

	7.4. Securing WSRP
	7.4.1. Considerations to use WSRP with SSL
	7.4.2. WSRP and WS-Security
	7.4.2.1. WS-Security Configuration
	7.4.2.2. WS-Security Producer Configuration
	7.4.2.3. WS-Security Consumer Configuration

	7.5. Making a portlet remotable
	7.6. Consuming GateIn's WSRP portlets from a remote Consumer
	7.7. Consuming remote WSRP portlets in GateIn
	7.7.1. Overview
	7.7.2. Configuring a remote producer using the configuration portlet
	7.7.3. Configuring access to remote producers via XML
	7.7.3.1. Required configuration information
	7.7.3.2. Optional configuration
	7.7.3.3. Examples

	7.7.4. Adding remote portlets to categories
	7.7.5. Adding remote portlets to pages
	7.7.5.1. Example

	7.8. Consumers maintenance
	7.8.1. Modifying a currently held registration
	7.8.1.1. Registration modification for service upgrade
	7.8.1.2. Registration modification on producer error

	7.8.2. Consumer operations
	7.8.3. Importing and exporting portlets
	7.8.4. Erasing local registration data

	7.9. Configuring GateIn's WSRP Producer
	7.9.1. Overview
	7.9.2. Default configuration
	7.9.3. Registration configuration
	7.9.3.1. Customization of Registration handling behavior

	7.9.4. WSRP validation mode

	Chapter 8. Advanced Development
	8.1. Foundations
	8.1.1. GateIn Kernel
	8.1.2. Configuring services
	8.1.3. Configuration syntax
	8.1.3.1. Components
	8.1.3.2. External Plugins
	8.1.3.3. Includes, and special URLs
	8.1.3.4. Special variables

	8.1.4. InitParams configuration object
	8.1.5. Configuring a portal container
	8.1.6. GateIn Extension Mechanism, and Portal Extensions
	8.1.7. Running Multiple Portals

