
Seam Catch

iii

1. Seam Catch Introduction ... 1

2. Installation ... 3

3. Usage ... 5

3.1. Annotations .. 5

3.1.1. @HandlesExceptions ... 5

3.1.2. @Handles .. 6

3.2. Adding Handlers ... 6

3.3. Ordering of Handlers .. 6

3.4. Traversal of the causing container ... 6

3.5. API Objects .. 7

3.5.1. CaughtException .. 7

3.5.2. CauseContainer ... 7

4. Framework Integration ... 9

4.1. Creating and Firing an ExceptionToCatchEvent .. 9

4.2. Default Handlers and Qualifiers ... 9

4.2.1. Default Handlers .. 9

4.2.2. Qualifiers ... 9

iv

Chapter 1.

1

Seam Catch Introduction
The Seam Catch module creates a simple, yet robust base for other modules and users to create

a custom and complete exception handling process. Exception handling is done using CDI events,

keeping exception handling noninvasive and also helping the program or module to stay minimally

coupled to the exception handling framework.

2

Chapter 2.

3

Installation
The Seam Catch API is the only compile time dependency a project needs, and an implementation

must also be included, either explicitly or via some other module depending on it (and exposing

their own specialized extensions) is all that is needed during runtime. If you are using Maven [http://

maven.apache.org/] as your build tool, you can add the following dependency to your pom.xml file:

 <dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-api</artifactId>

 <version>${seam-catch-version}</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.seam.catch</groupId>

 <artifactId>seam-catch-impl</artifactId>

 <version>${seam-catch-version}</version>

 <scope>runtime</scope>

 </dependency>

Note

The runtime dependency is only needed if another Seam 3 module being used

doesn't already use it. Typically this will only be for Java SE development.

Tip

Replace ${seam-catch-version} with the most recent or appropriate version of

Seam Catch.

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

4

Chapter 3.

5

Usage
An end user of the Seam Catch Framework is typically only concerned with Exception Handlers

(methods in Handler Beans, which are similar to CDI Observers). Handler Beans are CDI beans

with the @HandlesExceptions annotation. There may be other resources made available by

other modules which can be injected into handler methods on an as needed basis. For further

information, please check the API docs, or examples.

3.1. Annotations

3.1.1. @HandlesExceptions

The @HandlesException annotation is simply a marker annotation instructing the Seam Catch

CDI extension to scan the bean for handler methods.

Example

@HandlesExceptions

public class MyHandlers

{

 public void catchAllHandler(@Handles(during = TraversalPath.DESCENDING) @MyFramework CaughtException<Throwable> event, Logger log)

 {

 log.warn("Exception occured: " + event.getException().getMessage());

 }

}

This is a complete and valid handler showing all the current features of handlers. The Handler

Bean is defined by the class level annotation @HandlesExceptions and the actual handler is

defined by the method that takes a CaughtException of type Throwable which is annotated using

the @Handles annotation. Also notice the handler is qualified using the @MyFramework qualifier.

This works the same as qualifers in CDI Observers, it will only be invoked for exceptions (it catches

typeThrowable) where the initial ExceptionToCatchEvent was created with the @MyFramework

annotation passed to the constructor. The Logger instance is also injected into the handler when

it is invoked. The handler has a default precedence of 0 and a TraversalPath of DESCENDING. It

does not modify flow control of other handlers however and simply uses the default proceed.

Note
This annotation may be deprecated favoring annotation indexing done by Seam

Solder.

Chapter 3. Usage

6

3.1.2. @Handles

@Handles is a parameter annotation that specifies a method as an exception handler. It acts similar

to the @Observes annotation from CDI. In addition to promoting a normal method to an exception

handler it also carries data about the handler:

• a precedence relative to other handlers of the same type (the heigher the precendence, the

closer to the top of the causing traversal it is placed, relative to other handlers for the same

exception type, zero being the default)

• the direction of the traversal path during which the handler is invoked (

TraversalPath.ASCENDING being default)

The @Handles annotation must be placed on the first parameter of the method, which must be

of type CaughtException. Handler methods are similar to CDI Obeservers and follow the same

principals and guidelines (such as invocation, injection of parameters, qualifiers, etc). They differ

from Observer methods in that:

• they are ordered before they are invoked

• the first parameter of the method must be a generized CaughtException object

A handler is guaranteed to only be invoked once per exception (unless it is unmuted via the

CaughtException object by callingunMute()). Handlers must not throw checked exceptions, and

should avoid throwing unchecked exceptions.

3.2. Adding Handlers

Adding a handler is simply creating a class and a method the follows the above rules

(class annotated with @HandlesExceptions and a method with the first parameter being a

CaughtException and annotated with@Handles). Catch will discover all handler methods at deploy

time. See the example above for a simple, but complete handler.

3.3. Ordering of Handlers

The ordering of handlers is multifaceted. Based on the traversal path of the causing container

handlers are ordered according to the hiearchy of the excption type (most specific first if

TraversalPath.ASCENDING, least specific first if TraversalPath.DESCENDING traversal), and the

precedence when two handlers are for the same exception type.

The precedence of a handler helps determine the order of the handler relative to other handlers

of the same exception type. It follows a high-to-low integer schema (the higher the precedence,

the sooner the handler is invoked during traversal of the causing chain).

3.4. Traversal of the causing container

When an exception is handled with Catch the causing container is unwrapped to get at each

exception. The first pass (TraversalPath.DESCENDING) starts with the outer most exception

API Objects

7

working it's way to the root exception. The traversal is then reversed and traversed from root cause

up. This allows handlers to take part in various stages of the causing container. At each entry

in the container, handlers are invoked based on the exception type (either an exact match or a

super type) of the entry. For example if the exception type isSocketException, handlers for types

SocketException, IOException, Exception and Throwable would all invoked (in that order),

however, a handler for BindException would not be invoked.

3.5. API Objects

There are other objects used in Catch that should be familiar to handler writers namely

• CaughtException

• CauseContainer

3.5.1. CaughtException

CaughtException contains methods to interact with the handling procces, allowing a level of

flow control to be available to handler (such as re-throwing the exception, or aborting), and

allowing a handler to be unmuted. Once a handler is invoked it is muted, meaning it will

not be run again for that causing container, unless it is explicitly marked as unmuted via the

CaughtException.unMute() object.

Five methods exist on the CaughtException object to give flow control to the handler

• abort() - terminate all handling immediately after this handler, does not mark the exception as

handled, does not re-throw the exception.

• rethrow() - continues through all handlers, but once all handlers have been called (assuming

another handler does not call abort() or handled()) the initial exception passed to Catch is

rethrown. Does not mark the exception as handled.

• handled() - marks the exception as handled and terminates further handling.

• proceed() - default. Marks the exception as handled and proceeds with the rest of the handlers.

• proceedToCause() - marks the exception as handled, but proceeds to the next cause in the

cause container, without calling other handlers for the current cause.

3.5.2. CauseContainer

CauseContainer contains information about the cause container relative to the current cause.

Please see API docs for more information, all methods are fairly self-explanatory.

8

Chapter 4.

9

Framework Integration
Integration of Seam Catch with other frameworks consists of one main step, and one other optional

(but highly encouraged) step:

• creating and firing an ExceptionToCatchEvent

• adding any default handlers and qualifiers with annotation literals (optional)

4.1. Creating and Firing an ExceptionToCatchEvent

An ExceptionToCatchEvent is constructed by passing a Throwable and optionally qualifiers for

handlers. Firing the event is done via CDI events (either straight from the BeanManager or injecting

a Event<ExceptionToCatchEvent> and calling fire).

To ease the burden on the application developers, the integration should tie into the exception

handling mechanism of the integrating framework, if any exist. By tying into the framework's

exception handling, any uncaught exceptions should be routed through the Seam Catch system

and allow handlers to be invoked. This is the typical way of using the Seam Catch framework. Of

course, it doesn't stop the application developer from firing their own ExceptionToCatchEvent

within a catch block.

4.2. Default Handlers and Qualifiers

4.2.1. Default Handlers

An integration with Catch can define it's own handlers to always be used. It's recommended

that any built-in handler from an integration have a very low precedence, be a handler for as

generic an exception as is suitable (i.e. Seam Persistence could have a built-in handler for

PersistenceExceptions to rollback a transaction, etc), and make use of qualifiers specific for the

integration. This helps limit any collisions with handlers the application developer may create.

Note
Hopefully at some point there will be a way to conditionally enable handlers so

the application developer will be able to selectively enable any default handlers.

Currently this does not exist, but is something that will be explored.

4.2.2. Qualifiers

Catch supports qualifiers for theCaughtException. To add a qualifier to be used when firing

handlers they must be add to the ExceptionToCatchEvent via the constructor (please see API

docs for more info). Qualifiers for integrations should be used to avoid collisions in the application

error handling both when defining handlers and when firing events from the integration.

10

	Seam Catch
	Table of Contents
	Chapter 1. Seam Catch Introduction
	Chapter 2. Installation
	Chapter 3. Usage
	3.1. Annotations
	3.1.1. @HandlesExceptions
	3.1.2. @Handles

	3.2. Adding Handlers
	3.3. Ordering of Handlers
	3.4. Traversal of the causing container
	3.5. API Objects
	3.5.1. CaughtException
	3.5.2. CauseContainer

	Chapter 4. Framework Integration
	4.1. Creating and Firing an ExceptionToCatchEvent
	4.2. Default Handlers and Qualifiers
	4.2.1. Default Handlers
	4.2.2. Qualifiers

