Seam Persistence

1. Seam Persistence Reference
1.1. Introduction ...
1.2. Getting Started ..ot

1.3. Transaction Management
1.3.1. Configuration

1.3.2. Declarative Transaction ManagemeNntcuuiiriiuiieit e eanes

1.4. Seam-managed persistence contexts

1.4.1. Using a Seam-managed persistence context with JPA ..o
1.4.2. Seam-managed persistence contexts and atomic conversationsc.ooeviieiiieiiiennn..

1.4.3. Using EL in EJB-QL/HQL
1.4.4. Setting up the EntityManager

Chapter 1.

Seam Persistence Reference

Seam provides extensive support for the two most popular persistence architectures for Java: Hibernate3, and
the Java Persistence API introduced with EJB 3.0. Seam's unique state-management architecture allows the most
sophisticated ORM integration of any web application framework.

1.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the previous generation
of Java application architectures. The state management architecture of Seam was originally designed to solve
problems relating to persistence — in particular problems associated with optimistic transaction processing. Scalable
online applications always use optimistic transactions. An atomic (database/JTA) level transaction should not span
a user interaction unless the application is designed to support only a very small number of concurrent clients. But
almost all interesting work involves first displaying data to a user, and then, slightly later, updating the same data.
So Hibernate was designed to support the idea of a persistence context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no construct for
representing an optimistic transaction. So, instead, these architectures provided persistence contexts scoped to the
atomic transaction. Of course, this resulted in many problems for users, and is the cause of the number one user
complaint about Hibernate: the dreaded Lazyl ni ti al i zat i onExcepti on. What we need is a construct for
representing an optimistic transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful session bean) with an
extended persistence context scoped to the lifetime of the component. This is a partial solution to the problem (and
is a useful construct in and of itself) however there are two problems:

« The lifecycle of the stateful session bean must be managed manually via code in the web tier (it turns out that this
is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic transaction is possible,
but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components scoped to the
conversation. (Most conversations actually represent optimistic transactions in the data layer.) This is sufficient for
many simple applications (such as the Seam booking demo) where persistence context propagation is not needed.
For more complex applications, with many loosly-interacting components in each conversation, propagation of the
persistence context across components becomes an important issue. So Seam extends the persistence context
management model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

1.2. Getting Started

To get started with Seam persistence you need to add the seam persi stence.jar and the seam
sol der . j ar toyou deployment. If you are in a java SE environment you will probably also require seam xni . j ar
as well for configuration purposes. The relevant maven configuration is as follows:

<dependency>
<groupl d>org. j boss. seam per si st ence</ gr oup| d>
<artifact|d>seam persi stence-api </artifactld>
<ver si on>${ seam per si st ence. ver si on} </ ver si on>
</ dependency>

<dependency>
<groupl d>or g. j boss. seam persi st ence</ gr oupl d>

Chapter 1. Seam Persistence R...

<artifact|d>seam persi stence-inpl</artifactld>
<ver si on>${ seam per si st ence. ver si on} </ ver si on>
</ dependency>

<dependency>
<groupl d>org. j boss. seam sol der </ gr oupl d>
<artifactld>seam sol der</artifactld>
<ver si on>${ seam sol der. ver si on} </ ver si on>
</ dependency>

<dependency>
<groupl d>or g. j boss. seam xm </ gr oupl d>
<artifactld>seam xm -config</artifactld>
<versi on>${seam xni . ver si on} </ ver si on>
</ dependency>

You will also need to have a JPA provider on the classpath. If you are using java EE this is taken care of for you.
If not, we recommend hibernate.

<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactl|d>hi bernate-core</artifact!d>
<version>3. 5. 1- Fi nal </ versi on>

</ dependency>

1.3. Transaction Management

Unlike EJB session beans CDI beans are not transactional by default. Seam brings declarative transaction
management to CDI beans by enabling them to use @ ansacti onAttri bute. Seam also provides the
@ransacti onal annotation, for environments where java EE APIs are not present.

1.3.1. Configuration

In order to enable declarative transaction management for managed beans you need to list the transaction interceptor
in beans.xml:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://java.sun.com xm /ns/javaee"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenaLocat i on="
http://java. sun.com xm /ns/j avaee
http://docs. | boss. org/cdi/beans_1_0. xsd">
<i ntercept ors>
<cl ass>org. j boss. seam transacti on. Transacti onl nt ercept or </ cl ass>
</interceptors>
</ beans>

If you are in a Java EE 6 environment then you are good to go, no additional configuration is required.

If you are not in an EE environment you may need to configure some things with seam-xml. You may need the
following entries in your beans.xml file:

Configuration

<beans xm ns="http://java.sun.com xm /ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: s="urn:java: ee"
xm ns:t="urn:java:org.jboss.seamtransaction”
xsi : schenaLocat i on="
http://java. sun.com xm / ns/j avaee
http://docs. | boss. org/cdi/beans_1_0. xsd">

<t: SeSynchroni zati ons>
<s:nodi fies/>
</t:SeSynchroni zati ons>

<t:EntityTransacti on>
<s:nodifies />
</t:EntityTransaction>

</ beans>

Let's look at these individually.

<t: SeSynchroni zati ons>
<s:nodi fies/>
</t: SeSynchroni zati ons>

Seam will attempt to use JTA synchronizations if possible. If not then you need to install the SeSynchr onzat i ons
bean to allow seam to handle synchronizations manually. Synchronizations allow seam to respond to transaction
events such as bef or eConpl eti on() and af t er Conpl eti on(), and are needed for the proper operation
of the Seam Managed Persistence Context.

<t:EntityTransacti on>
<s:nodifies />
</t:EntityTransaction>

By default seam will attempt to look up j ava: conp/ User Tr ansact i on from JNDI (or alternatively retrieve it
from the EJBCont ext if a container managed transaction is active). Installing Ent i t yTr ansact i on tells seam
to use the JPAEnt i t yTr ansact i on instead. To use this you must have a Seam Managed Persistence Context
installed with qualifier @Def aul t .

If your entity manager is installed with a different qualifier, then you need to use the following configuration (this
assumes that my has been bound to the namespace that contains the appropriate qualifier, see the Seam Config
XML documentation for more details):

<t:EntityTransacti on>
<s:nodifies />
<t:entityManager>
<nmy: SonmeQual i fier/>
</tentityManager>
</t:EntityTransaction>

Chapter 1. Seam Persistence R...

Note

j=deo

You should avoid Ent i t yTransact i on if you have more than one persistence unit in your
application. Seam does not support installing multiple Ent i t yTr ansact i on beans, and the
EntityTransacti on interface does not support two phase commit, so unless you are careful
you may have data consistency issues. If you need multiple persistence units in your application
then we highly recommend using an EE 6 compatible server, such as JBoss 6.

1.3.2. Declarative Transaction Management

Seam adds declarative transaction support to managed beans. Seam re-uses the EJB
@ransacti onAttri bute for this purpose, however it also provides an alternative @ ansacti onal

annotation for environments where the EJB API's are not available. An alternative to @\ppl i cat i onExcepti on,
@eamAppl i cati onExcept i onis also provided. Unlike EJBs, managed beans are not transactional by default,
you can change this by adding the @Tr ansacti onAttri but e to the bean class.

Unlike in Seam 2, transactions will not roll back whenever a non-application exception propagates out of a bean,
unless the bean has the transaction intercepter enabled.

If you are using seam managed transactions as part of the seam-faces module you do not need to worry about
declarative transaction management. Seam will automatically start a transaction for you at the start of the faces
request, and commit it before the render response phase.

Warning

@eamAppl i cati onExcept i on will not control transaction rollback when using EJB container
managed transactions. If you are in an EE environment then you should always use the EJB API's,
namely @r ansacti onAttri but e and @\ppl i cati onExcepti on.

Note

=de

Transacti onAttri but eType. REQUI RES_NEW and
Transacti onAttri but eType. NOT_SUPPORTEDare not yet supported on managed beans.
This will be added before seam-persistence goes final.

Let's have a look at some code. Annotations applied at a method level override annotations applied at the class level.

@ransactionAttribute /*Defaults to Transacti onAttributeType. REQUI RED */
cl ass Transacti onaBean

{

/* This is a transactional nethod, when this nethod is called a transaction
* will be started if one does not already exist.

* This behavior is inherited fromthe @Transacti onAttri bute annotati on on
* the class.

*/

voi d dowWork()

{

Seam-managed persistence contexts

}
/* A transaction will not be started for this nethod, however it]
/* will not conplain if there is an existing transaction active. */

@ransacti onAttributeType(Transacti onAttri but eType. SUPPORTED)
voi d doMor eWor k()

{
}
/* This nethod will throw an exception if there is no transaction active when */
/* it is invoked. * [

@ransacti onAttributeType(Transacti onAttri but eType. MANDATORY)
voi d doEvenMor eWor k()
{

/* This nethod will throw an exception if there is a transaction active when */
/* it is invoked. */
@ransacti onAttributeType(Transacti onAttri but eType. NOT_SUPPORTED)

voi d doQt her Wor k()

{

1.4. Seam-managed persistence contexts

If you're using Seam outside of a Java EE environment, you can't rely upon the container to manage the persistence
context lifecycle for you. Even if you are in an EE environment, you might have a complex application with many
loosely coupled components that collaborate together in the scope of a single conversation, and in this case you
might find that propagation of the persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session (for Hibernate) in
your components. A Seam-managed persistence context is just a built-in Seam component that manages an instance
of Enti t yManager or Sessi on in the conversation (or any other) context. You can inject it with @ nj ect .

1.4.1. Using a Seam-managed persistence context with JPA

@Ext ensi onManaged

@r oduces

@Per si stencelni t

@onver sat i onScoped

Ent it yManager Factory producerFi el d;

This is just an ordinary resource producer field as defined by the CDI specification, however the presence of
the @xt ensi onManaged annotation tells seam to create a seam managed persistence context from this
Enti t yManager Fact or y. This managed persistence context can be injected normally, and has the same scope
and qualifiers that are specified on the resource producer field.

Chapter 1. Seam Persistence R...

This will work even in a SE environment where @er si st enceUni t injection is not normally supported. This is
because the seam persistence extensions will bootstrap the Ent i t yManager Fact ory for you.

Now we can have our Ent i t yManager injected using:

@nject EntityManager entityMnager;

° Note

The more eagle eyed among you may have noticed that the resource producer field appears
to be conversation scoped, which the CDI specification does not require containers to support.
This is actually not the case, as the @ConversationScoped annotation is removed by the
seam persistence portable extension. It only specifies the scope of the created SMPC, not the
EntityManagerFactory.

Warning

If you are using EJB3 and mark your class (o] method
@ransacti onAttri but e(REQU RES_NEW then the transaction and persistence context
shouldn't be propagated to method calls on this object. However as the Seam-managed
persistence context is propagated to any component within the conversation, it will be propagated
to methods marked REQUI RES _NEW Therefore, if you mark a method REQUI RES NEWthen you
should access the entity manager using @PersistenceContext.

1.4.2. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions that span multiple
requests to the server without the need to use the ner ge() operation , without the need to re-load data at the
beginning of each request, and without the need to wrestle with the Lazyl niti al i zati onExcepti on or
NonUni queCbj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be achieved via use of
optimistic locking. Fortunately, both Hibernate and EJB 3.1 make it very easy to use optimistic locking, by providing
the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of each transaction.
This is sometimes the desired behavior. But very often, we would prefer that all changes are held in memory and
only written to the database when the conversation ends successfully. This allows for truly atomic conversations.
Unfortunately there is currently no simple, usable and portable way to implement atomic conversations using EJB
3.1 persistence. However, Hibernate provides this feature as a vendor extension to the FI ushModeTypes defined
by the specification, and it is our expectation that other vendors will soon provide a similar extension.

1.4.3. Using EL in EJB-QL/HQL

Seam proxies the Ent i t yManager or Sessi on object whenever you use a Seam-managed persistence context.
This lets you use EL expressions in your query strings, safely and efficiently. For example, this:

Setting up the EntityManager

User user = emcreateQuery("from User where usernanme=#{user. usernane}")
.get Singl eResul t();

is equivalent to:

User user = emcreateQuery("from User where usernane=: usernane")
. set Par anet er ("user nane", user.getUsernane())
.get Singl eResul t () ;

Of course, you should never, ever write it like this:

User user = em createQuery("from User where username=" + user.getUsernane()) //BAD!
.get Singl eResul t () ;

(It is inefficient and vulnerable to SQL injection attacks.)

Warning

This only works with seam managed persistence contexts, not persistence contexts that are
injected with @er si st enceCont ext .

1.4.4. Setting up the EntityManager

Sometimes you may want to perform some additional setup on the EntityManager after it has been
created. For example, if you are using Hibernate you may want to set a filter. Seam persistence fires a
SeamvanagedPer si st enceCont ext Cr eat ed event when a Seam managed persistence context is created.
You can observe this event and perform any setup you require in an observer method. For example:

public void setupEntityManager (@bserves SeanVanagedPer si st enceCont ext Created event) {
Sessi on session = (Session)event.getEntityManager().getDel egate();
session.enableFilter("nyfilter");

	Seam Persistence
	Table of Contents
	Chapter 1. Seam Persistence Reference
	1.1. Introduction
	1.2. Getting Started
	1.3. Transaction Management
	1.3.1. Configuration
	1.3.2. Declarative Transaction Management

	1.4. Seam-managed persistence contexts
	1.4.1. Using a Seam-managed persistence context with JPA
	1.4.2. Seam-managed persistence contexts and atomic conversations
	1.4.3. Using EL in EJB-QL/HQL
	1.4.4. Setting up the EntityManager

