
Teiid - Scalable Information Integration

1

Teiid Client

Developer's Guide
7.7

iii

1. Connecting to Teiid Server .. 1

1.1. Driver Connection ... 1

1.1.1. URL Connection Properties .. 2

1.2. Datasource Connection ... 4

1.3. Standalone Application .. 5

1.3.1. Driver Connection .. 5

1.3.2. Datasource Connection .. 6

1.4. JBoss AS Data Source ... 6

1.4.1. DataSource Connection .. 6

1.4.2. Driver based connection ... 7

1.4.3. Local JDBC Connection ... 8

1.5. Using Multiple Hosts ... 9

1.5.1. Fail Over ... 9

1.5.2. Load Balancing .. 9

1.5.3. Advanced Configuration .. 10

1.6. Reauthentication ... 11

2. Prepared Statements ... 13

3. Teiid extensions to the JDBC API ... 15

3.1. Statement Extensions ... 15

3.2. Execution Properties ... 16

3.3. SET Statement ... 16

3.4. SHOW Statement ... 17

3.5. Transaction Statements ... 18

3.6. Partial Results Mode ... 18

3.7. XML extensions .. 19

3.7.1. Document formatting .. 20

3.7.2. Schema validation .. 20

3.8. Non-blocking Statement Execution ... 20

4. Transactions with JDBC .. 23

4.1. Local Transactions .. 23

4.1.1. Turning Off Local Transactions ... 24

4.2. Request Level Transactions .. 24

4.2.1. Multiple Insert Batches ... 25

4.3. Using Global Transactions ... 25

4.4. Restrictions ... 26

4.4.1. Application Restrictions ... 26

4.4.2. Enterprise Information System Support .. 26

5. SSL Client Connections ... 29

5.1. Default Security .. 29

5.2. SSL Modes .. 29

5.3. Client SSL Settings ... 30

5.3.1. Option 1: Java SSL properties .. 30

5.3.2. Option 2: Teiid Specific Properties .. 30

6. Using Teiid with Hibernate .. 35

Teiid - Scalable Information ...

iv

6.1. Limitations .. 35

6.2. Configuration .. 35

7. ODBC Support ... 37

7.1. Installing the ODBC Driver Client ... 37

7.1.1. Microsoft Windows ... 37

7.1.2. Other *nix Platform Installations .. 42

7.2. Configuring the Data Source Name (DSN) ... 43

7.2.1. Windows Installation ... 43

7.2.2. Other *nix Platform Installations .. 46

7.3. DSN Less Connection ... 48

A. Unsupported JDBC Methods .. 49

A.1. ResultSet Limitations .. 49

A.2. Unsupported Classes and Methods in "java.sql" ... 49

A.3. Unsupported Classes and Methods in "javax.sql" .. 55

B. Generating Self Signed Certificate with Keytool ... 57

B.1. Creating private/public key pair: ... 57

B.2. Extracting the public key ... 57

B.3. Creating the Truststore ... 58

Chapter 1.

1

Connecting to Teiid Server
The Teiid JDBC API provides Java Database Connectivity (JDBC) access to any Virtual Database

(VDB) deployed on a Teiid Server. The Teiid JDBC API is compatible with the JDBC 4.0

specification; however, it does not fully support all methods. Advanced features, such as updatable

result sets or SQL3 data types, are not supported.

Java client applications connecting to a Teiid Server will need to use Java 1.6 JDK. Previous

versions of Java are not supported.

Before you can connect to the Teiid Server using the Teiid JDBC API, please do following tasks

first.

1. Install the Teiid Server. See the "Admin Guide" for instructions.

2. Build a Virtual Database (VDB). You can either build a "Dynamic VDB" (Designer not required),

or you can use the Eclipse based GUI tool Designer [http://www.jboss.org/teiiddesigner.html].

Check the "Reference Guide" for instructions on how to build a VDB. If you do not know what

VDB is, then start with this document [http://www.jboss.org/teiid/basics/virtualdatabases.html].

3. Deploy the VDB into Teiid Server. Check "Admin Guide" for instructions.

4. Start the Teiid Server (JBoss AS), if it is not already running.

Now that you have the VDB deployed in the Teiid Server, client applications can connect

to the Teiid Server and issue SQL queries against deployed VDB using Teiid's JDBC API.

If you are new to JDBC, see Java's documentation about JDBC [http://java.sun.com/docs/

books/tutorial/jdbc/index.html]. Teiid ships with teiid-7.7-client.jar in the "jboss-install/

server/<profile>/lib" directory.

Main classes in the client JAR:

• org.teiid.jdbc.TeiidDriver - allows JDBC connections using the DriverManager [http://

java.sun.com/javase/6/docs/api/java/sql/DriverManager.html] class.

• org.teiid.jdbc.TeiidDatasource - allows JDBC connections using the DataSource

[http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html] or XADataSource [http://

java.sun.com/javase/6/docs/api/javax/sql/XADataSource.html] class. You should use this class

to create managed or XA connections.

Once you have established a connection with the Teiid Server, you can use standard JDBC API

classes to interrogate metadata and execute queries.

1.1. Driver Connection

Use org.teiid.jdbc.TeiidDriver as the driver class.

http://www.jboss.org/teiiddesigner.html
http://www.jboss.org/teiiddesigner.html
http://www.jboss.org/teiid/basics/virtualdatabases.html
http://www.jboss.org/teiid/basics/virtualdatabases.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/javase/6/docs/api/java/sql/DriverManager.html
http://java.sun.com/javase/6/docs/api/java/sql/DriverManager.html
http://java.sun.com/javase/6/docs/api/java/sql/DriverManager.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/XADataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/XADataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/XADataSource.html

Chapter 1. Connecting to Teii...

2

Use the following URL format for JDBC connections:

jdbc:teiid:<vdb-name>@mm[s]://<host>:<port>;[prop-name=prop-value;]*

URL Components

1. <vdb-name> - Name of the VDB you are connecting to. Optionally VDB name can also

contain version information inside it. For example: "myvdb.2", this is equivalent to supplying the

"version=2" connection property defined below. However, use of vdb name in this format and

the "version" property at the same time is not allowed.

2. mm - defines Teiid JDBC protocol, mms defines a secure channel (see the SSL chapter for

more)

3. <host> - defines the server where the Teiid Server is installed. If you are using IPv6 binding

address as the host name, place it in square brackets. ex:[::1]

4. <port> - defines the port on which the Teiid Server is listening for incoming JDBC connections.

5. [prop-name=prop-value] - additionally you can supply any number of name value pairs

separated by semi-colon [;]. All supported URL properties are defined in the connection

properties section. Property values should be URL encoded if they contain reserved characters,

e.g. ('?', '=', ';', etc.)

1.1.1. URL Connection Properties

The following table shows all the supported connection properties that can used with Teiid JDBC

Driver URL connection string, or on the Teiid JDBC Data Source class.

Table 1.1. Connection Properties

Property Name Type Description

ApplicationName String Name of the client application; allows the administrator to

identify the connections

FetchSize int Size of the resultset; The default size if 500. <=0

indicates that the default should be used.

partialResultsModeboolean Enable/disable support partial results mode. Default

false. See the partial results section.

autoCommitTxn String Only applies only when "autoCommit" is set to "true".

This determines how a executed command needs to

be transactionally wrapped inside the Teiid engine to

maintain the data integrity.

• ON - Always wrap command in distributed transaction

• OFF - Never wrap command in distributed transaction

URL Connection Properties

3

Property Name Type Description

• DETECT (default)- If the executed command is

spanning more than one source it automatically uses

distributed transaction.

Transactions with JDBC for more information.

disableLocalTxn boolean If "true", the autoCommit setting, commit and rollback will

be ignored for local transactions. Default false.

user String User name

Password String Credential for user

ansiQuotedIdentifiersboolean Sets the parsing behavior for double quoted entries in

SQL. The default, true, parses dobuled quoted entries as

identifiers. If set to false, then double quoted values that

are valid string literals will be parsed as string literals.

version integer Version number of the VDB

resultSetCacheModeboolean ResultSet caching is turned on/off. Default false.

autoFailover boolean If true, will automatically select a new server instance

after a communication exception. Default false. This is

typically not needed when connections are managed, as

the connection can be purged from the pool.

SHOWPLAN String (typically not set as a connection property) Can be

ON|OFF|DEBUG; ON returns the query plan along with

the results and DEBUG additionally prints the query

planner debug information in the log and returns it with

the results. Both the plan and the log are available

through JDBC API extensions. Default OFF.

NoExec String (typically not set as a connection property) Can be

ON|OFF; ON prevents query execution, but parsing and

planning will still occur. Default OFF.

PassthroughAuthenticationboolean Only applies to "local" connections. When this option is

set to "true", then Teiid looks for already authenticated

security context on the calling thread. If one found it

uses that users credentials to create session. Teiid

also verifies that the same user is using this connection

during the life of the connection. if it finds a different

security context on the calling thread, it switches the

identity on the connection, if the new user is also eligible

to log in to Teiid otherwise connection fails to execute.

useCallingThread boolean Only applies to "local" connections. When this option is

set to "true" (the default), then the calling thread will be

Chapter 1. Connecting to Teii...

4

Property Name Type Description

used to process the query. If false, then an engine thread

will be used.

QueryTimeout integer Default query timeout in seconds. Must be >=

0. 0 indicates no timeout. Can be overriden by

Statement.setQueryTimeout. Default 0.

useJDBC4ColumnNameAndLabelSemanticsboolean A change was made in JDBC4 to return unaliased

column names as the ResultSetMetadata column name.

Prior to this, if a column alias were used it was returned

as the column name. Setting this property to false will

enable backwards compatibility when JDBC3 and older

support is still required. Defaults to true.

jaasName String JAAS configuration name. Only applies when configuring

a GSS authentication. See the Admin Guide for

configuration required for GSS.

kerberosServicePrincipleNameString Kerberos authenticated principle name. Only applies

when configuring a GSS authentication. See the Admin

Guide for configuration required for GSS

1.2. Datasource Connection

To use a data source based connection, use org.teiid.jdbc.TeiidDataSource as the data

source class. The TeiidDataSource is also an XADatasource. Teiid DataSource class is also

Serializable, so it possible for it to be used with JNDI naming services.

Note

Teiid supports the XA protocol, XA transactions will be extended to Teiid sources

that also support XA.

All the properties (except for version, which is known on TeiidDataSource as

DatabaseVersion) defined in the connection propertieshave corresponding "set" methods on

the org.teiid.jdbc.TeiidDataSource. Properties that are assumed from the URL string have

addtional "set" methods, which are described in the following table.

Table 1.2. Datasource Properties

Property Name Type Description

DatabaseName String The name of a virtual database (VDB)

deployed to Teiid. Optionally Database

name can also contain "DatabaseVersion"

information inside it. For example:

"myvdb.2", this is equivalent to supplying the

Standalone Application

5

Property Name Type Description

"DatabaseVersion" property set to value of 2.

However, use of Database name in this format

and use of DatabaseVersion property at the

same time is not allowed.

ServerName String Server hostname where the Teiid runtime

installed. If you are using IPv6 binding address

as the host name, place it in square brackets.

ex:[::1]

AlternateServers String Optional delimited list of host:port entries.

See the multiple hosts section for more

information. If you are using IPv6 binding

address as the host name, place them in

square brackets. ex:[::1]

AdditionalProperties String Optional setting of properties that has the

same format as the property string in a

connection URL.

PortNumber integer Port number on which the Server process is

listening on.

secure boolean Secure connection. Flag to indicate to use

SSL (mms) based connection between client

and server

DatabaseVersion integer VDB version

DataSourceName String Name given to this data source

1.3. Standalone Application

To use either Driver or DataSource based connections, add the client JAR to your Java client

application's classpath. See the simple client example in the kit for a full Java sample of the

following.

1.3.1. Driver Connection

Sample Code:

public class TeiidClient {

 public Connection getConnection(String user, String password) throws Exception {

 String url = "jdbc:teiid:myVDB@mm://localhost:31000;ApplicationName=myApp";

 return DriverManager.getConnection(url, user, password);

 }

}

Chapter 1. Connecting to Teii...

6

1.3.2. Datasource Connection

Sample Code:

public class TeiidClient {

 public Connection getConnection(String user, String password) throws Exception {

 TeiidDataSource ds = new TeiidDataSource();

 ds.setUser(user);

 ds.setPassword(password);

 ds.setServerName("localhost");

 ds.setPortNumber(31000);

 ds.setDatabaseName("myVDB");

 return ds.getConnection();

 }

}

1.4. JBoss AS Data Source

Teiid can be configured as a JDBC data source in the JBoss Application Server to be accessed

from JNDI or injected into your JEE applications. Deploying Teiid as data source in JBoss AS is

exactly same as deploying any other RDBMS resources like Oracle or DB2.

Defining as data source is not limited to JBoss AS, you can also deploy as data source in Glassfish,

Tomcat, Websphere, Weblogic etc servers, however their configuration files are different than

JBoss AS. Consult the respective documentation of the environment in which you are deploying.

A special case is if the Teiid instance you are connecting to is in the same VM as the JBoss AS

instance. If that matches you deployment, then follow the Section 1.4.3, “Local JDBC Connection”

instructions

Installation Steps

1. If Teiid is not installed in the AS instance, copy the teiid-7.7-client.jar into <jboss-

install>/server/<profile>/lib directory.

2. Create a "<datasource name>-ds.xml" file in <jboss-install>/server/<profile>/deploy

directory. Based on the type of deployment (XA, driver, or local), the contents of the file will be

different. See the following sections for more.

The data source will then be accessable through the JNDI name specified in the -ds.xml file.

1.4.1. DataSource Connection

Make sure you know the correct DatabaseName, ServerName, Port number and credentials that

are specific to your deployment environment.

Driver based connection

7

Example 1.1. Sample XADataSource in the JBoss AS using the Teiid

DataSource class org.teiid.jdbc.TeiidDataSource

<datasources>

 <xa-datasource>

 <jndi-name>TEIID-DS</jndi-name>

 <xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>

 <xa-datasource-property name="DatabaseName">myVDB</xa-datasource-property>

 <xa-datasource-property name="serverName">localhost</xa-datasource-property>

 <xa-datasource-property name="portNumber">31000</xa-datasource-property>

 <xa-datasource-property name="user">admin</xa-datasource-property>

 <xa-datasource-property name="password">password</xa-datasource-property>

 <!-- pool and other JBoss datasource properties -->

 <check-valid-connection-sql>SELECT 1</check-valid-connection-sql>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>10</max-pool-size>

 </xa-datasource>

</datasources>

1.4.2. Driver based connection

You can also use Teiid's JDBC driver class org.teiid.jdbc.TeiidDriver to create a data

source

<datasources>

 <local-tx-datasource>

 <jndi-name>TEIID-DS</jndi-name>

 <connection-url>jdbc:teiid:myVDB@mm://localhost:31000</connection-url>

 <driver-class>org.teiid.jdbc.TeiidDriver</driver-class>

 <user-name>admin</user-name>

 <password>teiid</password>

 <!-- pool and other JBoss datasource properties -->

 <check-valid-connection-sql>SELECT 1</check-valid-connection-sql>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>10</max-pool-size>

 </local-tx-datasource>

</datasources>

Chapter 1. Connecting to Teii...

8

1.4.3. Local JDBC Connection

If you are deploying your client application on the same JBoss AS instance as the Teiid runtime

is installed, then there is a way to make connections that by-pass making a socket based JDBC

connection. You can use slightly modified data source configuration to make a "local" connection,

where the JDBC API will lookup a local Teiid runtime in the same VM.

Warning

Since DataSources start before before Teiid VDBs are deployed, leave the min

pool size of local connections as the default of 0. Otherwise errors will occur on

the startup of the Teiid DataSource.

Note

By default local connections use their calling thread to perform processing

operations rather than using an engine thread while the calling thread is blocked.

To disable this behavior set the connection property useCallingThreads=false.

Example 1.2. Local data source

<datasources>

 <xa-datasource>

 <jndi-name>TEIID-DS</jndi-name>

 <xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>

 <xa-datasource-property name="DatabaseName">myVDB</xa-datasource-property>

 <xa-datasource-property name="user">admin</xa-datasource-property>

 <xa-datasource-property name="password">password</xa-datasource-property>

 <!-- pool and other JBoss datasource properties -->

 <max-pool-size>10</max-pool-size>

 </xa-datasource>

</datasources>

This is essentially the same as the XA configuration, but "ServerName" and "PortNumber" are not

specified. Local connections have additional features such as using ???

Using Multiple Hosts

9

1.5. Using Multiple Hosts

A group of Teiid Servers in the same JBoss AS cluster may be connected using failover and load-

balancing features. To enable theses features in their simplest form, the client needs to specify

multiple host name and port number combinations on the URL connection string.

Example 1.3. Example URL connection string

jdbc:teiid:<vdb-name>@mm://host1:31000,host1:31001,host2:31000;version=2

If you are using a DataSource to connect to Teiid Server, use the "AlternateServers" property/

method to define the failover servers. The format is also a comma separated list of host:port

combinations.

The client will randomly pick one the Teiid server from the list and establish a session with that

server. If that server cannot be contacted, then a connection will be attempted to each of the

remaining servers in random order. This allows for both connection time fail-over and random

server selection load balancing.

1.5.1. Fail Over

Post connection fail over will be used, if you're using an admin connection (such as what is

used by AdminShell) or if the autoFailover connection property on JDBC URL is set to true. Post

connection failover works by sending a ping, at most every second, to test the connection prior

to use. If the ping fails, a new instance will be selected prior to the operation being attempted.

This is not true "transparent application failover" as the client will not restart the transaction/query/

recreate session scoped temp tables, etc. So this feature should be used with caution by non-

admin connections.

1.5.2. Load Balancing

Post connection load balancing can be utilized in one of two ways. First if you are using

TeiidDataSource and the Connections returned by Teiid PooledConnections have their close

method called, then a new server instance will be selected automatically. However when using

driver based connections or even when using TeiidDataSource in a connection pool (such as

JBoss AS), the automatic load balancing will not happen. Second you can explicitly trigger load

balancing through the use of the set statement:

SET NEWINSTANCE TRUE

Typically you will not need want to issue this statement manually, but instead use it as the

connection test query on your DataSource configuration.

Chapter 1. Connecting to Teii...

10

Example 1.4. JBoss AS DataSource With Post Connection Load Balancing

<datasources>

 <local-tx-datasource>

 <jndi-name>TEIID-DS</jndi-name>

 <connection-url>jdbc:teiid:myVDB@mm://localhost:31000,mm://localhost:32000</connection-

url>

 <driver-class>org.teiid.jdbc.TeiidDriver</driver-class>

 <user-name>admin</user-name>

 <password>teiid</password>

 <!-- pool and other JBoss datasource properties -->

 <check-valid-connection-sql>SET NEWINSTANCE TRUE</check-valid-connection-sql>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>10</max-pool-size>

 </local-tx-datasource>

</datasources>

Teiid by default maintians a pool of extra socket connections that are reused. For load balancing,

this reduces the potential cost of switching a connection to another server instance. The default

setting is to maintain 16 connections (see org.teiid.sockets.maxCachedInstances in the client

jar's teiid-client-settings.properties file. If you're client is connecting to large numbers of Teiid

instances and you're using post connection time load balancing, then consider increasing the

number of cached instances. You may either set an analogous system property or create another

version of teiid-client-settings.properties file and place it into the classpath ahead of the client jar.

Note

Session level temporary tables, currently running transactions, session level cache

entries, and PreparedPlans for a given session will not be available on other cluster

members. Therefore, it is recommended that post connection time load balancing

is only used when the logical connection could have been closed, but the actual

connection is reused (the typical connection pool pattern).

1.5.3. Advanced Configuration

Server discovery, load balancing, fail over, retry, retry delay, etc. may be customize if the

default policy is not sufficient. See the org.teiid.net.socket.ServerDiscovery interface and

default implementaion org.teiid.net.socket.UrlServerDiscovery for how to start with your

customization. The UrlServerDiscovery implemenation provides the following: discovery of

servers from the URL hosts (DataSource server/alternativeServers), random selection for load

balancing and failover, 1 connection attempt per host, no biasing, black listing, or other advanced

Reauthentication

11

features. Typically you'll want to extend the UrlServerDiscovery so that it can be used as the

fallback strategy and to only implement the necessary changed methods. It's important to consider

that 1 ServerDiscovery instance will be created for each connection. Any sharing of information

between instances should be done through static state or some other shared lookup.

Your customized server discovery class will then need to be referenced by the discoveryStategy

connection/DataSource property by its full class name.

You may also choose to use an external tcp load balancer, such as haproxy [http://haproxy.1wt.eu/

]. The Teiid driver/DataSource should then typically be configured to just use the single host/port

of your load balancer.

1.6. Reauthentication

Teiid connections (defined by the org.teiid.jdbc.TeiidConnection interface) support the

changeUser method to reauthenticate a given connection. If the reauthentication is successful

the current connection my be used with the given identity. Existing statements/result sets

are still available for use under the old identity. See the JBossAS issue JBAS-1429 [https://

issues.jboss.org/browse/JBAS-1429] for more on using reauthentication support with JCA.

http://haproxy.1wt.eu/
http://haproxy.1wt.eu/
https://issues.jboss.org/browse/JBAS-1429
https://issues.jboss.org/browse/JBAS-1429
https://issues.jboss.org/browse/JBAS-1429

12

Chapter 2.

13

Prepared Statements
Teiid provides a standard implementation of java.sql.PreparedStatement.

PreparedStatements can be very important in speeding up common statement execution, since

they allow the server to skip parsing, resolving, and planning of the statement. See the Java

documentation for more information on PreparedStatement usage [http://download.oracle.com/

javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039].

PreparedStatement Considerations

• It is not necessary to pool client side Teiid PreparedStatements, since Teiid performs plan

caching on the server side.

• The number of cached plans is configurable (see the Admin Guide), and are purged by the least

recently used (LRU).

• Cached plans are not distributed through a cluster. A new plan must be created for each cluster

member.

• Plans are cached for the entire VDB or for just a particular session. The scope of a plan is

detected automatically based upon the functions evaluated during it's planning process.

• Stored procedures executed through a CallableStatement have their plans cached just as a

PreparedStatement.

• Bind variable types in function signatures, e.g. "where t.col = abs(?)" can be determined if the

function has only one signature or if the function is used in a predicate where the return type

can be determined. In more complex situations it may be necessary to add a type hint with a

cast or convert, e.g. upper(convert(?, string)).

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039

14

Chapter 3.

15

Teiid extensions to the JDBC API

3.1. Statement Extensions

The Teiid statement extension interface, org.teiid.jdbc.TeiidStatement, provides

functionality beyond the JDBC standard. To use the extension interface, simply cast or unwap

the statement returned by the Connection. The following methods are provided on the extension

interface:

Table 3.1. Connection Properties

Method Name Description

getAnnotations Get the query engine annotations if the statement was

last executed with SHOWPLAN ON|DEBUG. Each

org.teiid.client.plan.Annotation contains a description,

a category, a severity, and possibly a resolution of notes

recorded during query planning that can be used to

understand choices made by the query planner.

getDebugLog Get the debug log if the statement was last executed with

SHOWPLAN DEBUG.

getExecutionProperty Get the current value of an execution property on this

statement object.

getPlanDescription Get the query plan description if the statement was last

executed with SHOWPLAN ON|DEBUG. The plan is a tree

made up of org.teiid.client.plan.PlanNode objects.

Typically PlanNode.toString() or PlanNode.toXml()

will be used to convert the plan into a textual form.

getRequestIdentifier Get an identifier for the last command executed on this

statement. If no command has been executed yet, null is

returned.

setExecutionProperty Set the execution property on this statement. See the

execution properties section for more information. It is

generally preferable to use the SET statement unless the

execution property applies only to the statement being

executed.

setPayload Set a per-command payload to pass to translators. Currently

the only built-in use is for sending hints for Oracle data

source.

Chapter 3. Teiid extensions t...

16

3.2. Execution Properties

Execution properties may be set on a per statement basis through the TeiidStatement interface

or on the connection via the SET statement. For convenience, the property keys are defined by

constants on the org.teiid.jdbc.ExecutionProperties interface.

Table 3.2. Execution Properties

Property Name/String

Constant

Description

PROP_TXN_AUTO_WRAP /

autoCommitTxn

Same as the connection property.

PROP_PARTIAL_RESULTS_MODE

/ partialResultsMode

See the partial results section.

PROP_XML_FORMAT /

XMLFormat

Determines the formatting of XML documents returned by

XML document models. See the document formatting section.

PROP_XML_VALIDATION /

XMLValidation

Determines whether XML documents returned by XML

document models will be validated against their schema

after processing. See the Reference Guide's "XML SELECT

Command" chapter and "document validation" section.

RESULT_SET_CACHE_MODE /

resultSetCacheMode

Same as the connection property.

SQL_OPTION_SHOWPLAN /

SHOWPLAN

Same as the connection property.

NOEXEC / NOEXEC Same as the connection property.

JDBC4COLUMNNAMEANDLABELSEMANTICS

/ useJDBC4ColumnNameAndLabelSemantics

Same as the connection property.

3.3. SET Statement

Execution properties may also be set on the connection by using the SET statement. The SET

statement is not yet a language feature of Teiid and is handled only in the JDBC client.

SET Syntax:

• SET (parameter|SESSION AUTHORIZATION) value

Syntax Rules:

• The parameter must be a non-quoted identifier - it cannot contain spaces.

• The value may be either a non-quoted identifier or a quoted string literal value.

The SET statement is most commonly used to control planning and execution.

• SET SHOWPLAN (ON|DEBUG|OFF)

SHOW Statement

17

• SET NOEXEC (ON|OFF)

Example 3.1. Enabling Plan Debug

Statement s = connection.createStatement();

s.execute("SET SHOWPLAN DEBUG");

...

Statement s1 = connection.createStatement();

ResultSet rs = s1.executeQuery("select col from table");

ResultSet planRs = s1.exeuteQuery("SHOW PLAN");

planRs.next();

String debugLog = planRs.getString("DEBUG_LOG");

The SET statement may also be used to control authorization. A SET SESSION

AUTHORIZATION statement will perform a Section 1.6, “Reauthentication” given the credentials

currently set on the connection. The connection credentials may be changed by issuing a SET

PASSWORD statement. A SET PASSWORD statement does not perform a reauthentication.

Example 3.2. Changing Session Authorization

Statement s = connection.createStatement();

s.execute("SET PASSWORD 'someval'");

s.execute("SET SESSION AUTHORIZATION 'newuser'");

3.4. SHOW Statement

The SHOW statement can be used to see a varitey of information. The SHOW statement is not

yet a language feature of Teiid and is handled only in the JDBC client.

SHOW Usage:

• SHOW PLAN - returns a resultset with a clob column PLAN_TEXT, an xml column PLAN_XML,

and a clob column DEBUG_LOG with a row containing the values from the previously executed

query. If SHOWPLAN is OFF or no plan is available, no rows are returned. If SHOWPLAN is

not set to DEBUG, then DEBUG_LOG will return a null value.

• SHOW ANNOTATIONS - returns a resultset with string columns CATEGORY, PRIORITY,

ANNOTATION, RESOLUTION and a row for each annotation on the previously executed query.

If SHOWPLAN is OFF or no plan is available, no rows are returned.

Chapter 3. Teiid extensions t...

18

• SHOW property - the inverse of SET, shows the property value for the given property, returns

a resultset with a single string column with a name matching the property key.

• SHOW ALL - returns a resultset with a NAME string column and a VALUE string column with

a row entry for every property value.

The SHOW statement is most commonly used to retrieve the query plan, see the plan debug

example.

3.5. Transaction Statements

In situations where the direct use of the JDBC connection is not possible, transaction statements

can be used to control a local transaction.

• START TRANSACTION - synonym for connection.setAutoCommit(false)

• COMMIT - synonym for connection.setAutoCommit(true)

• ROLLBACK - synonym for connection.rollback() and returning to auto commit mode.

3.6. Partial Results Mode

The Teiid Server supports a "partial results" query mode. This mode changes the behavior of the

query processor so the server returns results even when some data sources are unavailable.

For example, suppose that two data sources exist for different suppliers and your data Designers

have created a virtual group that creates a union between the information from the two suppliers. If

your application submits a query without using partial results query mode and one of the suppliers’

databases is down, the query against the virtual group returns an exception. However, if your

application runs the same query in “partial results” query mode, the server returns data from the

running data source and no data from the data source that is down.

When using "partial results" mode, if a source throws an exception during processing it does not

cause the user’s query to fail. Rather, that source is treated as returning no more rows after the

failure point. Most commonly, that source will return 0 rows.

This behavior is most useful when using UNION or OUTER JOIN queries as these operations handle

missing information in a useful way. Most other kinds of queries will simply return 0 rows to the

user when used in partial results mode and the source is unavailable.

For each source that is excluded from the query, a warning will be generated describing the source

and the failure. These warnings can be obtained from the Statement.getWarnings() method.

This method returns a SQLWarning object but in the case of "partial results" warnings, this will

be an object of type org.teiid.jdbc.PartialResultsWarning class. This class can be used

to obtain a list of all the failed sources by name and to obtain the specific exception thrown by

each resource adaptor.

XML extensions

19

Note

Since Teiid supports cursoring before the entire result is formed, it is possible that

a data source failure will not be determined until after the first batch of results have

been returned to the client. This can happen in the case of unions, but not joins. To

ensure that all warnings have been accumulated, the statement should be checked

after the entire result set has been read.

Partial results mode is off by default but can be turned on for all queries in a Connection with either

setPartialResultsMode("true") on a DataSource or partialResultsMode=true on a JDBC URL. In

either case, partial results mode may be toggled later with a set statement.

Example 3.3. Setting Partial Results Mode

Statement statement = ...obtain statement from Connection...

statement.execute("set partialResultsMode true");

Example 3.4. Getting Partial Results Warnings

statement.execute("set partialResultsMode true");

ResultSet results = statement.executeQuery("SELECT Name FROM Accounts");

while (results.next()) {

 ... //process the result set

}

SQLWarning warning = statement.getWarnings();

if(warning instanceof PartialResultsWarning) {

 PartialResultsWarning partialWarning = (PartialResultsWarning)warning;

 Collection failedConnectors = partialWarning.getFailedConnectors();

 Iterator iter = failedConnectors.iterator();

 while(iter.hasNext()) {

 String connectorName = (String) iter.next();

 SQLException connectorException = partialWarning.getConnectorException(connectorName);

 System.out.println(connectorName + ": " + ConnectorException.getMessage();

 }

}

3.7. XML extensions

The XML extensions apply on to XML resutls from queries to XML document models, and not to

XML produced by SQL/XML or read from some other source.

Chapter 3. Teiid extensions t...

20

3.7.1. Document formatting

The PROP_XML_FORMAT execution property can be set to modify the way that XML documents

are formatted from XML document models. Valid values for the constant are defined in the same

ExecutionProperties interface:

1. XML_TREE_FORMAT - Returns a version of the XML formatted for display. The XML will use line

breaks and tabs as appropriate to format the XML as a tree. This format is slower due to the

formatting time and the larger document size.

2. XML_COMPACT_FORMAT - Returns a version of the XML formatted for optimal performance. The

XML is a single long string without any unnecessary white space.

3. Not Set - If no format is set, the formatting flag on the XML document in the original model is

honored. This may produce either the “tree” or “compact” form of the document depending on

the document setting.

3.7.2. Schema validation

The PROP_XML_VALIDATION execution property can be set to indicate that the server should

validate XML document model documents against their schema before returning them to the client.

If schema validation is on, then the server send a SQLWarning if the document does not conform

to the schema it is associated with. Using schema validation will reduce the performance of your

XML queries.

3.8. Non-blocking Statement Execution

JDBC query execution can indefinitely block the calling thread when a statement is executed

or a resultset is being iterated. In some situations you may wish to have your calling threads

held in these blocked states. When using embedded connections, you may optionally use the

org.teiid.jdbc.TeiidStatement and org.teiid.jdbc.TeiidPreparedStatement interfaces

to execute queries with a callback org.teiid.jdbc.StatementCallback that will be notified of

statement events, such as an available row, an exception, or completion. Your calling thread will

be free to perform other work. The callback will be executed by an engine processing thread

as needed. If your results processing is itself blocking and you want query processing to be

concurrent with results processing, then your callback should implement onRow handling in a

multi-threaded manner to allow the engine thread to continue.

Example 3.5. Non-blocking Prepared Statement Execution

PreparedStatemnt stmt = connection.prepareStatement(sql);

TeiidPreparedStatement tStmt = stmt.unwrap(TeiidPreparedStatement.class);

tStmt.submitExecute(new StatementCallback() {

 @Override

 public void onRow(Statement s, ResultSet rs) {

Non-blocking Statement Execution

21

 //any logic that accesses the current row ...

 System.out.println(rs.getString(1));

 }

 @Override

 public void onException(Statement s, Exception e) throws Exception {

 s.close();

 }

 @Override

 public void onComplete(Statement s) throws Exception {

 s.close();

 }

);

Note

The non-blocking logic is limited to statement execution only. Other JDBC

operations, such as connection creation or batched executions do not yet have

non-blocking options.

22

Chapter 4.

23

Transactions with JDBC
The Teiid JDBC API supports three types of transactions from a client perspective – global, local,

and request level. All are implemented by the Teiid Server as XA transactions. See the JTA

specification [http://java.sun.com/javaee/technologies/jta/index.jsp] for more on XA Transactions.

4.1. Local Transactions

The Connection class uses the "autoCommit" flag to explicitly control local transactions. By default,

autoCommit is set to "true", which indicates request level or implicit transaction control. example

of how to use local transactions by setting the autoCommit flag to false.

Example 4.1. Local transaction control using autoCommit

// Set auto commit to false and start a transaction

connection.setAutoCommit(false);

try {

 // Execute multiple updates

 Statement statement = connection.createStatement();

 statement.executeUpdate(“INSERT INTO Accounts (ID, Name) VALUES (10, ‘Mike’)”);

 statement.executeUpdate(“INSERT INTO Accounts (ID, Name) VALUES (15, ‘John’)”);

 statement.close();

 // Commit the transaction

 connection.commit();

} catch(SQLException e) {

 // If an error occurs, rollback the transaction

 connection.rollback();

}

This example demonstrates several things:

1. Setting autoCommit flag to false. This will start a transaction bound to the connection.

2. Executing multiple updates within the context of the transaction.

3. When the statements are complete, the transaction is committed by calling commit().

4. If an error occurs, the transaction is rolled back using the rollback() method.

Any of the following operations will end a local transaction:

1. Connection.setAutoCommit(true) – if previously set to false

http://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/technologies/jta/index.jsp

Chapter 4. Transactions with JDBC

24

2. Connection.commit()

3. Connection.rollback()

4. A transaction will be rolled back automatically if it times out.

4.1.1. Turning Off Local Transactions

In some cases, tools or frameworks above Teiid will call setAutoCommit(false), commit() and

rollback() even when all access is read-only and no transactions are necessary. In the scope of

a local transaction Teiid will start and attempt to commit an XA transaction, possibly complicating

configuration or causing performance degradation.

In these cases, you can override the default JDBC behavior to indicate that these methods should

perform no action regardless of the commands being executed. To turn off the use of local

transactions, add this property to the JDBC connection URL

disableLocalTxn=true

Warning

Turning off local transactions can be dangerous and can result in inconsistent

results (if reading data) or inconsistent data in data stores (if writing data). For

safety, this mode should be used only if you are certain that the calling application

does not need local transactions.

4.2. Request Level Transactions

Request level transactions are used when the request is not in the scope of a global or local

transaction, which implies "autoCommit" is "true". In a request level transaction, your application

does not need to explicitly call commit or rollback, rather every command is assumed to be its

own transaction that will automatically be committed or rolled back by the server.

The Teiid Server can perform updates through virtual tables. These updates might result in

an update against multiple physical systems, even though the application issues the update

command against a single virtual table. Often, a user might not know whether the queried tables

actually update multiple sources and require a transaction.

For that reason, the Teiid Server allows your application to automatically wrap commands in

transactions when necessary. Because this wrapping incurs a performance penalty for your

queries, you can choose from a number of available wrapping modes to suit your environment. You

need to choose between the highest degree of integrity and performance your application needs.

For example, if your data sources are not transaction-compliant, you might turn the transaction

wrapping off (completely) to maximize performance.

Multiple Insert Batches

25

You can set your transaction wrapping to one of the following modes:

1. ON: This mode always wraps every command in a transaction without checking whether it is

required. This is the safest mode.

2. OFF: This mode never automatically wraps a command in a transaction or check whether it

needs to wrap a command. This mode can be dangerous as it will allow multiple source updates

outside of a transaction without an error. This mode has best performance for applications that

do not use updates or transactions.

3. DETECT: This mode assumes that the user does not know to execute multiple source updates

in a transaction. The Teiid Server checks every command to see whether it is a multiple source

update and wraps it in a transaction. If it is single source then uses the source level command

transaction.

You can set the transaction mode as a property when you establish the Connection or on a per-

query basis using the execution properties. For more information on execution properties, see the

section “Execution Properties”

4.2.1. Multiple Insert Batches

When issuing an INSERT with a query expression (or the deprecated SELECT INTO), multiple

insert batches handled by separate source INSERTS may be processed by the Teiid server. Care

should be taken to ensure that targeted sources support XA or that compensating actions are

taken in the event of a failure.

4.3. Using Global Transactions

Global or client XA transactions allow the Teiid JDBC API to participate in transactions that

are beyond the scope of a single client resource. For this use the Teiid DataSource Class for

establishing connections.

When the DataSource is used in the context of a UserTransaction in an application server, such

as JBoss, WebSphere, or Weblogic, the resulting connection will already be associated with

the current XA transaction. No additional client JDBC code is necessary to interact with the XA

transaction.

Example 4.2. >Manual Usage of XA transactions

XAConnection xaConn = null;

XAResource xaRes = null;

Connection conn = null;

Statement stmt = null;

try {

Chapter 4. Transactions with JDBC

26

 xaConn = <XADataSource instance>.getXAConnection();

 xaRes = xaConn.getXAResource();

 Xid xid = <new Xid instance>;

 conn = xaConn.getConnection();

 stmt = conn.createStatement();

 xaRes.start(xid, XAResource.TMNOFLAGS);

 stmt.executeUpdate("insert into …");

 <other statements on this connection or other resources enlisted in this transaction>

 xaRes.end(xid, XAResource.TMSUCCESS);

 if (xaRes.prepare(xid) == XAResource.XA_OK) {

 xaRes.commit(xid, false);

 }

}

catch (XAException e) {

 xaRes.rollback(xid);

}

finally {

 <clean up>

}

With the use of global transactions multiple Teiid XAConnections may participate in the same

transaction. It is important to note that the Teiid JDBC XAResource "isSameRM" method only

returns "true", if connections are made to the same server instance in a cluster. If the Teiid

connections are to different server instances then transactional behavior may not be the same as

if they were to the same cluster member. For example, if the client transaction manager uses the

same XID for each connection, duplicate XID exceptions may arise from the same physical source

accessed through different cluster members. If the client transaction manager uses a different

branch identifier for each connection, issues may arise with sources that lock or isolate changes

based upon branch identifiers.

4.4. Restrictions

4.4.1. Application Restrictions

The use of global, local, and request level transactions are all mutually exclusive. Request level

transactions only apply when not in a global or local transaction. Any attempt to mix global and

local transactions concurrently will result in an exception.

4.4.2. Enterprise Information System Support

The underlying resource adaptors that represent the EIS system and the EIS system itself must

support XA transactions if they want to participate in distributed XA transaction thru Teiid. If source

Enterprise Information System Support

27

system do not support the XA, then it can not particilate in the distributed transaction. However,

the source is still eligible to participate in data integration with out the XA support

The participation in the XA transaction is automatically determined based on the resource adaptors

XA capability. It is user's repsonsiblity to make sure that they configure a XA resource when they

require them to participate in distributed transaction.

28

Chapter 5.

29

SSL Client Connections
This chapter will shows you various security configurations that can be used with Teiid in securing

your data access. Note that data level security called as "data roles" are explained in Reference

Guide. This chapter pertains to transport level security.

5.1. Default Security

By default all JDBC/Admin sensitive (non-data) messages between client and server are

encrypted using a Diffy-Hellman [http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange] key

that is negotiated per connection. This encryption is controlled by clientEncryptionEnabled

property in JdbcSslConfiguration and AdminSslConfiguration sections in the <jboss-

install>/server/<profile>/deploy/teiid/teiid-jboss-beans.xml file.

If you are using a socket connection, then you may need to secure the channel more completely

- especially if using ODBC, which currently only supports plain text authentication.

5.2. SSL Modes

Teiid supports SSL based channel between the client JDBC application and Teiid Server. Teiid

supports the following SSL modes.

1. Anonymous – No certificates are required, but all communications are still encrypted using the

TLS_DH_anon_WITH_AES_128_CBC_SHA SSL suite.

2. 1-way – Only authenticates the server to the client traffic. Requires a private key keystore to

be created for the server and a truststore at the client that authenticates that key. The SSL

suite is negotiated.

3. 2-way – Mutual client and server authentication. The server and client applications each have

a keystore for their private keys and each has a truststore that authenticates the other.

Depending upon the SSL mode, follow the guidelines of your organization around creating/

obtaining private keys. If you have no organizational requirements, then follow this guide to create

self-signed certificates with their respective keystores and truststores.

The following keystore and truststore combinations are required for different SSL modes. The

names of the files can be chosen by the user. The following files are shown for example purposes

only.

1-way

1. server.keystore - has server's private key

2. server.truststore - has server's public key

2-way

http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Chapter 5. SSL Client Connections

30

1. server.keystore - has server's private key

2. server.truststore - has server's public key

3. client.keystore - client's private key

4. client.truststore - has client's public key

5.3. Client SSL Settings

The following sections define the properties required for each SSL mode. Note that when

connecting to Teiid Server with SSL enabled, you MUST use the "mms" protocol, instead of "mm"

in the JDBC connection URL, for example

jdbc:teiid:<myVdb>@mms://<host>:<port>

There are two different sets of properties that a client can configure to enable 1-way or 2-way SSL.

5.3.1. Option 1: Java SSL properties

These are standard Java defined system properties to configure the SSL under any JVM, Teiid is

not unique in its use of SSL. Provide the following system properties to the client VM process.

Example 5.1. 1-way SSL

-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)

-Djavax.net.ssl.trustStorePassword=<password> (optional)

-Djavax.net.ssl.keyStoreType (optional)

Example 5.2. 2-way SSL

-Djavax.net.ssl.keyStore=<dir>/client.keystore (required)

-Djavax.net.ssl.keyStrorePassword=<password> (optional)

-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)

-Djavax.net.ssl.trustStorePassword=<password> (optioanl)

-Djavax.net.ssl.keyStroreType=<keystore type> (optional)

5.3.2. Option 2: Teiid Specific Properties

Use this option for anonymous mode or when the above "javax" based properties are already

in use by the host process. For example if your client application is a Tomcat process that

is configured for https protocol and the above Java based properties are already in use, and

importing Teiid-specific certificate keys into those https certificate keystores is not allowed.

Option 2: Teiid Specific Properties

31

In this scenario, a different set of Teiid-specific SSL properties can be set as system properties

or defined inside the "teiid-client-settings.properties" file. The "teiid-client-settings.properties" file

can be found inside the "teiid-7.7-client.jar" file at the root. Extract this file, or make a copy, change

the property values required for the chosen SSL mode, and place this file in the client application's

classpath before the "teiid-7.7-client.jar" file.

SSL properties and definitions inside the "teiid-client-settings.properties" are shown below.

##

SSL Settings

##

#

The key store type. Defaults to JKS

#

org.teiid.ssl.keyStoreType=JKS

#

The key store algorithm, defaults to

the system property "ssl.TrustManagerFactory.algorithm"

#

#org.teiid.ssl.algorithm=

#

The classpath or filesystem location of the

key store.

This property is required only if performing 2-way

authentication that requires a specific private

key.

#

#org.teiid.ssl.keyStore=

#

The key store password (not required)

#

#org.teiid.ssl.keyStorePassword=

#

The classpath or filesystem location of the

Chapter 5. SSL Client Connections

32

trust store.

This property is required if performing 1-way

authentication that requires trust not provided

by the system defaults.

#

#org.teiid.ssl.trustStore=

#

The trust store password (not required)

#

#org.teiid.ssl.trustStorePassword=

#

The cipher protocol, defaults to SSLv3

#

org.teiid.ssl.protocol=SSLv3

#

Whether to allow anonymous SSL

(the TLS_DH_anon_WITH_AES_128_CBC_SHA cipher suite)

defaults to true

#

org.teiid.ssl.allowAnon=true

Example 5.3. 1-way SSL

org.teiid.ssl.trustStore=<dir>/server.truststore (required)

Example 5.4. 2-way SSL

org.teiid.ssl.keyStore=<dir>/client.keystore (required)

org.teiid.ssl.trustStore=<dir>/server.truststore (required)

Option 2: Teiid Specific Properties

33

Example 5.5. Anonymous

org.teiid.ssl.trustStore=NONE

34

Chapter 6.

35

Using Teiid with Hibernate

6.1. Limitations

• Many Hibernate use cases assume a data source has the ability (with proper user permissions)

to process Data Definition Language (DDL) statements like CREATE TABLE and DROP TABLE

as well as Data Manipulation Language (DML) statements like SELECT, UPDATE, INSERT

and DELETE. Teiid can handle a broad range of DML, but does not support directly support

DDL against a particular source.

• Sequence and Identity generation are not supported. Identifier generation based upon table

values, such as the hilo generator, require that the identifier table(s) be exposed through Teiid.

The GUID identifier generation strategy is directly supported.

6.2. Configuration

For the most part, interacting with Teiid VDBs (Virtual Databases) from Hibernate is no different

from working with any other type of data source. First you must place Teiid JDBC API client

JAR file and Teiid's hibernate dialect JAR in Hibernate’s classpath. These files can be found in

<jboss-install>/server/<profile>/lib directory.

• teiid-7.7-client.jar

• teiid-hibernate-dialect-7.7.jar

These JAR files have the org.teiid.dialect.TeiidDialect and

org.teiid.jdbc.TeiidDriver and org.teiid.jdbc.TeiidDataSource classes.

You then configure Hibernate (via hibernate.cfg.xml) as follows:

1. Specify the Teiid driver class in the "connection.driver_class" property:

<property name="connection.driver_class">

 org.teiid.jdbc.TeiidDriver

</property>

2. Specify the URL for the VDB in the "connection.url" property (replacing terms in angle brackets

with the appropriate values):

<property name="connection.url">

 jdbc:teiid:<vdb-name>@mm://<host>:<port>;user=<user-name>;password=<password>

Chapter 6. Using Teiid with H...

36

</property>

Note

Be sure to use a Section 1.4.3, “Local JDBC Connection” if Hibernate is in the

same VM as the application server.

3. Specify the Teiid dialect class in the “dialect” property:

<property name="dialect">

 org.teiid.dialect.TeiidDialect

</property>

Alternatively, if you put your connection properties in hibernate.properties instead of

hibernate.cfg.xml, they would look like this:

hibernate.connection.driver_class=org.teiid.jdbc.TeiidDriver

hibernate.connection.url=jdbc:teiid:<vdb-name>@mm://<host>:<port>

hibernate.connection.username=<user-name>

hibernate.connection.password=<password>

hibernate.dialect=org.teiid.dialect.TeiidDialect

Note also that since your VDBs will likely contain multiple source and view models with identical

table names, you will need to fully qualify table names specified in Hibernate mapping files:

<class name="<Class name>" table="<Source/view model name>.[<schema name>.]<Table

 name>">

 ...

</class>

Example 6.1. Example Mapping

<class name="org.teiid.example.Publisher" table="BOOKS.BOOKS.PUBLISHERS">

 ...

</class>

Chapter 7.

37

ODBC Support
Open DataBase Connectivity (ODBC) is a standard database access method developed by

the SQL Access group in 1992. ODBC, just like JDBC in Java, allows consistent client access

regardless of which database management system (DBMS) is handling the data. ODBC uses a

driver to translate the application's data queries into commands that the DBMS understands. For

this to work, both the application and the DBMS must be ODBC-compliant -- that is, the application

must be capable of issuing ODBC commands and the DBMS must be capable of responding to

them.

Teiid can provide ODBC access to deployed VDBs in the Teiid runtime through PostgreSQL [http:/

/www.postgresql.org/]'s ODBC driver. This is possible because Teiid has specialized handling that

allows it emulate a PostgreSQL server and respond appropriate to expected metadata queries.

Note

By default, ODBC on the Teiid is enabled and running on on port 35432.

Before an application can use ODBC, you must first install the ODBC driver on same machine

that the application is running on and then create Data Source Name (DSN) that represents a

connection profile for your Teiid VDB.

Warning

Teiid currently only supports plain text passward authentication for ODBC. If the

client/server are not configured to use SSL, the password will be sent in plain text

over the network. If you need secure passwords in transit and are not using SSL,

then consider installing a security domain that will accept safe password values

from the client (for example encrypted or hashed).

7.1. Installing the ODBC Driver Client

A PostgreSQL ODBC driver needed to make the ODBC connection to Teiid is not bundled with

the Teiid distribution. The appropriate driver needs be downloaded [http://www.postgresql.org/ftp/

odbc/versions/] directly from the PostgreSQL web site. We have tested with 8.04.200 version of

the ODBC driver.

7.1.1. Microsoft Windows

1. Download the ODBC driver from PostgreSQL download site [http://wwwmaster.postgresql.org/

download/mirrors-ftp/odbc/versions/msi/psqlodbc_08_04_0200.zip]. If you are looking for 64-

http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/ftp/odbc/versions/
http://www.postgresql.org/ftp/odbc/versions/
http://www.postgresql.org/ftp/odbc/versions/
http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/msi/psqlodbc_08_04_0200.zip
http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/msi/psqlodbc_08_04_0200.zip
http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/msi/psqlodbc_08_04_0200.zip

Chapter 7. ODBC Support

38

bit Windows driver download the driver from here [http://code.google.com/p/visionmap/wiki/

psqlODBC].

2. Extract the contents of the ZIP file into a temporary location on your system. For example:

"c:\temp\pgodbc"

3. Double click on "psqlodbc.msi" file or (.exe file in the case of 64 bit) to start installation of the

driver.

4. The Wizard appears as

Figure 7.1. Welcome Screen

Click "Next".

5. The next step of the wizard displays.

http://code.google.com/p/visionmap/wiki/psqlODBC
http://code.google.com/p/visionmap/wiki/psqlODBC
http://code.google.com/p/visionmap/wiki/psqlODBC

Microsoft Windows

39

Figure 7.2. End-User License Agreement

Carefully read it, and check the "I accept the terms in the License Agreement", if you are

agreeing to the licensing terms. Then click "Next".

6. The next step of the wizard displays.

Chapter 7. ODBC Support

40

Figure 7.3. Setup

If you want to install in a different directory than the default that is already selected, click the

"Browse" button and select a directory. Click "Next" to start installing in the selected directory.

7. The next step of the wizard displays.

Microsoft Windows

41

Figure 7.4. Confirm the Install

This step summarizes the choices you have made in the wizard. Review this information. If

you need to change anything, you can use the Back button to return to previous steps. Click

"Install" to proceed.

8. 1.The installation wizard copies the necessary files to the location you specified. When it

finishes, the following screen displays.

Chapter 7. ODBC Support

42

Figure 7.5. Finish

Click "Finish" to complete.

7.1.2. Other *nix Platform Installations

For all other platforms other than Microsoft Windows, the ODBC driver needs

built from the source files provided. Download the ODBC driver source files from

the PostgreSQL download site [http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/

versions/src/psqlodbc-08.04.0200.tar.gz]. Untar the files to a temporary location. For example:

"~/tmp/pgodbc". Build and install the driver by running the commands below.

Note

You should use super user account or use "sudo" command for running the "make

install" command.

http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/src/psqlodbc-08.04.0200.tar.gz
http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/src/psqlodbc-08.04.0200.tar.gz
http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/src/psqlodbc-08.04.0200.tar.gz

Configuring the Data Source Name (DSN)

43

 % tar -zxvf psqlodbc-xx.xx.xxxx.tar.gz

 % cd psqlodbc-xx.xx.xxxx

 % ./configure

 % make

 % make install

Some *nix distributions may already provide binary forms of the appropriate driver, which can be

used as an alternative to building from source.

7.2. Configuring the Data Source Name (DSN)

7.2.1. Windows Installation

Once you have installed the ODBC Driver Client software on your workstation, you have to

configure it to connect to a Teiid Runtime. Note that the following instructions are specific to the

Microsoft Windows Platform.

To do this, you must have logged into the workstation with administrative rights, and you need to

use the Control Panel’s Data Sources (ODBC) applet to add a new data source name.

Each data source name you configure can only access one VDB within a Teiid System. To make

more than one VDB available, you need to configure more than one data source name.

Follow the below steps in creating a data source name (DSN)

1. From the Start menu, select Settings > Control Panel.

2. The Control Panel displays. Double click Administrative Tools.

3. Then Double-click Data Sources (ODBC).

4. The ODBC Data Source Administrator applet displays. Click the tab associated with the type

of DSN you want to add.

5. The Create New Data Source dialog box displays. In the Select a driver for which you want to

set up a data source table, select PostgreSQL Unicode.

6. Click Finish

7. The PostgreSQL ODBC DSN Setup dialog box displays.

Chapter 7. ODBC Support

44

8.

Figure 7.6. Main Screen

In the Data Source Name edit box, type the name you want to assign to this data source.

In the Database edit box, type the name of the virtual database you want to access through

this data source.

In the Server edit box, type the host name or IP address of your Teiid runtime. If connecting

via a firewall or NAT address, the firewall address or NAT address should be entered.

In the Port edit box, type the port number to which the Teiid System listens for ODBC requests.

By default, Teiid listenes for ODBC requests on port 35432

In the User Name and Password edit boxes, supply the user name and password for the Teiid

runtime access.

Provide any description about the data source in the Description field.

9. Click on the Datasource button, you will see this below figure. Configure options as shown.

Windows Installation

45

Figure 7.7. DSN Options Page-1

Click on "page2" and make sure the options are selected as shown

Chapter 7. ODBC Support

46

Figure 7.8. DSN Options Page-2

10.Click "save" and you can optionally click "test" to validate your connection if the Teiid is running.

You have configured a Teiid's virtual database as a data source for your ODBC applications. Now

you can use applications such as Excel, Access to query the data in the VDB

7.2.2. Other *nix Platform Installations

Before you can access Teiid using ODBC on any *nix platforms, you need to either install a ODBC

driver manager or verify that one already exists. As the ODBC Driver manager Teiid recommends

unixODBC [http://www.unixodbc.org/]. If you are working with RedHat Linux or Fedora you

can check the graphical "yum" installer to search, find and install unixODBC. Otherwise you

can download [http://www.unixodbc.org/unixODBC-2.3.0.tar.gz] the unixODBC manager here. To

http://www.unixodbc.org/
http://www.unixodbc.org/
http://www.unixodbc.org/unixODBC-2.3.0.tar.gz
http://www.unixodbc.org/unixODBC-2.3.0.tar.gz

Other *nix Platform Installations

47

install, simply untar the contents of the file to a temporary location and execute the following

commands as super user.

 ./configure

 make

 make install

Check unixODBC [http://www.unixodbc.org/] website site for more information, if you run into any

issues during the installation.

Now, to o verify that PostgreSQL driver installed correctly from earlier step, execute the following

command

 odbcinst -q -d

That should show you all the ODBC drivers installed in your system. Now it is time to create a

DSN. Edit "/etc/odbc.ini" file and add the following

 [<DSN name>]

 Driver = /usr/lib/psqlodbc.so

 Description = PostgreSQL Data Source

 Servername = <Teiid Host name or ip>

 Port = 35432

 Protocol = 7.4-1

 UserName = <user-name>

 Password = <password>

 Database = <vdb-name>

 ReadOnly = no

 ServerType = Postgres

 ConnSettings =

 UseServerSidePrepare=1

 ByteaAsLongVarBinary=1

 Optimizer=0

 Ksqo=0

 Debug=0

 Fetch = 10000

http://www.unixodbc.org/
http://www.unixodbc.org/

Chapter 7. ODBC Support

48

 # enable below when dealing large resultsets

 #UseDeclareFetch=1

Note that you need "sudo" permissions to edit the "/etc/odbc.ini" file. For all the available

configurable options that you can use in defining a DSN can be found here [http://

psqlodbc.projects.postgresql.org/config.html] on postgreSQL ODBC page.

Once you are done with defining the DSN, you can verify your DSN using the following command

 isql <DSN-name> [<user-name> <password>] < commands.sql

where "commands.sql" file contains the SQL commands you would like to execute.

7.3. DSN Less Connection

You can also connect to Teiid VDB using ODBC with out explicitly creating a DSN. However, in

these scenarios your application needs, what is called as "DSN less connection string". The below

is a sample connection string

For Windows:

 ODBC;DRIVER={PostgreSQL Unicode};DATABASE=<vdb-name>;SERVER=<host-

name>;PORT=<port>;Uid=<username>;Pwd=<password>

>For *nix:

 ODBC;DRIVER={PostgreSQL};DATABASE=<vdb-name>;SERVER=<host-

name>;PORT=<port>;Uid=<username>;Pwd=<password>

http://psqlodbc.projects.postgresql.org/config.html
http://psqlodbc.projects.postgresql.org/config.html
http://psqlodbc.projects.postgresql.org/config.html

49

Appendix A. Unsupported JDBC

Methods
Based upon the JDBC in JDK 1.6, this appendix details only those JDBC methods that Teiid does

not support. Unless specified below, Teiid supports all other JDBC Methods.

Those methods listed without comments throw a SQLException stating that it is not supported.

Where specified, some listed methods do not throw an exception, but possibly exhibit unexpected

behavior. If no arguments are specified, then all related (overridden) methods are not supported.

If an argument is listed then only those forms of the method specified are not supported.

A.1. ResultSet Limitations

• TYPE_SCROLL_SENSITIVE is not supported.

• UPDATABLE ResultSets are not supported.

• Returning multiple ResultSets from Procedure execution is not supported.

A.2. Unsupported Classes and Methods in "java.sql"

Table A.1. Connection Properties

Class name Methods

Array Not Supported

Blob

getBinaryStream(long, long) - throws

 SQLFeatureNotSupportedException

setBinaryStream(long) - - throws

 SQLFeatureNotSupportedException

setBytes - - throws SQLFeatureNotSupportedException

truncate(long) - throws SQLFeatureNotSupportedException

CallableStatement

getArray - throws SQLFeatureNotSupportedException

getBigDecimal(String parameterName)- throws

 SQLFeatureNotSupportedException

getBlob(String parameterName)- throws

 SQLFeatureNotSupportedException

Appendix A. Unsupported JDBC ...

50

Class name Methods

getBoolean(String parameterName)- throws

 SQLFeatureNotSupportedException

getByte(String parameterName)- throws

 SQLFeatureNotSupportedException

getBytes(String parameterName)- throws

 SQLFeatureNotSupportedException

getCharacterStream(String parameterName)- throws

 SQLFeatureNotSupportedException

getClob(String parameterName)- throws

 SQLFeatureNotSupportedException

getDate(String parameterName, *)- throws

 SQLFeatureNotSupportedException

getDouble(String parameterName)- throws

 SQLFeatureNotSupportedException

getFloat(String parameterName)- throws

 SQLFeatureNotSupportedException

getInt(String parameterName)- throws

 SQLFeatureNotSupportedException

getLong(String parameterName)- throws

 SQLFeatureNotSupportedException

getNCharacterStream - throws

 SQLFeatureNotSupportedException

getNClob - throws SQLFeatureNotSupportedException

getNString - throws SQLFeatureNotSupportedException

getObject(int parameterIndex, Map<String,

 Class<?>> map) - throws

 SQLFeatureNotSupportedException

getObject(String parameterName) - throws

 SQLFeatureNotSupportedException

getRef - throws SQLFeatureNotSupportedException

getRowId - throws SQLFeatureNotSupportedException

getShort(String parameterName) - throws

 SQLFeatureNotSupportedException

getSQLXML(String parameterName) - throws

 SQLFeatureNotSupportedException

getString(String parameterName) - throws

 SQLFeatureNotSupportedException

getTime(String parameterName, *) - throws

 SQLFeatureNotSupportedException

getTimestamp(String parameterName, *) - throws

 SQLFeatureNotSupportedException

getURL(String parameterName) - throws

 SQLFeatureNotSupportedException

Unsupported Classes and Methods in "java.sql"

51

Class name Methods

registerOutParameter - ignores

registerOutParameter(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setAsciiStream - throws SQLFeatureNotSupportedException

setBigDecimal(String parameterName, BigDecimal x)- throws

 SQLFeatureNotSupportedException

setBinaryStream(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setBlob(String parameterName, *)- throws

 SQLFeatureNotSupportedException

setBoolean(String parameterName, boolean x) - throws

 SQLFeatureNotSupportedException

setByte(String parameterName, byte x) - throws

 SQLFeatureNotSupportedException

setBytes(String parameterName, byte[] x) - throws

 SQLFeatureNotSupportedException

setCharacterStream - throws

 SQLFeatureNotSupportedException

setClob(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setDate(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setDouble(String parameterName, double x) - throws

 SQLFeatureNotSupportedException

setFloat(String parameterName, float x) - throws

 SQLFeatureNotSupportedException

setLong(String parameterName, long x) - throws

 SQLFeatureNotSupportedException

setNCharacterStream - throws

 SQLFeatureNotSupportedException

setNClob - throws SQLFeatureNotSupportedException

setNString - throws SQLFeatureNotSupportedException

setNull - throws SQLFeatureNotSupportedException

setObject(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setRowId(String parameterName, RowId x) - throws

 SQLFeatureNotSupportedException

setSQLXML(String parameterName, SQLXML xmlObject) -

 throws SQLFeatureNotSupportedException

setShort(String parameterName, short x) - throws

 SQLFeatureNotSupportedException

setString(String parameterName, String x) - throws

 SQLFeatureNotSupportedException

Appendix A. Unsupported JDBC ...

52

Class name Methods

setTime(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setTimestamp(String parameterName, *) - throws

 SQLFeatureNotSupportedException

setURL(String parameterName, URL val) - throws

 SQLFeatureNotSupportedException

Clob

getCharacterStream(long arg0, long arg1) - throws

 SQLFeatureNotSupportedException

setAsciiStream(long arg0) - throws

 SQLFeatureNotSupportedException

setCharacterStream(long arg0) - throws

 SQLFeatureNotSupportedException

setString - throws SQLFeatureNotSupportedException

truncate - throws SQLFeatureNotSupportedException

Connection

createArrayOf - throws SQLFeatureNotSupportedException

createBlob - throws SQLFeatureNotSupportedException

createClob - throws SQLFeatureNotSupportedException

createNClob - throws SQLFeatureNotSupportedException

createSQLXML - throws SQLFeatureNotSupportedException

createStatement(int resultSetType,int

 resultSetConcurrency, int resultSetHoldability) - throws

 SQLFeatureNotSupportedException

createStruct(String typeName, Object[] attributes) - throws

 SQLFeatureNotSupportedException

getClientInfo - throws SQLFeatureNotSupportedException

prepareCall(String sql, int resultSetType,int

 resultSetConcurrency, int resultSetHoldability) - throws

 SQLFeatureNotSupportedException

prepareStatement(String sql, int autoGeneratedKeys) - throws

 SQLFeatureNotSupportedException

prepareStatement(String sql, int[] columnIndexes) - throws

 SQLFeatureNotSupportedException

prepareStatement(String sql, String[] columnNames) - throws

 SQLFeatureNotSupportedException

Unsupported Classes and Methods in "java.sql"

53

Class name Methods

releaseSavepoint - throws

 SQLFeatureNotSupportedException

rollback(Savepoint savepoint) - throws

 SQLFeatureNotSupportedException

setHoldability - throws SQLFeatureNotSupportedException

setSavepoint - throws SQLFeatureNotSupportedException

setTypeMap - throws SQLFeatureNotSupportedException

DatabaseMetaData

getAttributes - throws SQLFeatureNotSupportedException

getClientInfoProperties - throws

 SQLFeatureNotSupportedException

getFunctionColumns - throws

 SQLFeatureNotSupportedException

getFunctions - throws SQLFeatureNotSupportedException

getRowIdLifetime - throws

 SQLFeatureNotSupportedException

NClob Not Supported

PreparedStatement

execute(String sql) - throws SQLException

executeQuery(String sql) - throws SQLException

executeUpdate(String sql) - throws SQLException

setArray - throws SQLFeatureNotSupportedException

setNCharacterStream - throws

 SQLFeatureNotSupportedException

setNClob - throws SQLFeatureNotSupportedException

setRef - throws SQLFeatureNotSupportedException

setRowId - throws SQLFeatureNotSupportedException

setUnicodeStream - throws

 SQLFeatureNotSupportedException

Ref Not Implemented

ResultSet

deleteRow - throws SQLFeatureNotSupportedException

getArray - throws SQLFeatureNotSupportedException

Appendix A. Unsupported JDBC ...

54

Class name Methods

getAsciiStream - throws SQLFeatureNotSupportedException

getHoldability - throws SQLFeatureNotSupportedException

getNCharacterStream - throws

 SQLFeatureNotSupportedException

getNClob - throws SQLFeatureNotSupportedException

getNString - throws SQLFeatureNotSupportedException

getObject(*, Map<String, Class<?>> map) - throws

 SQLFeatureNotSupportedException

getRef - throws SQLFeatureNotSupportedException

getRowId - throws SQLFeatureNotSupportedException

getUnicodeStream - throws

 SQLFeatureNotSupportedException

getURL - throws SQLFeatureNotSupportedException

insertRow - throws SQLFeatureNotSupportedException

moveToInsertRow - throws

 SQLFeatureNotSupportedException

refreshRow - throws SQLFeatureNotSupportedException

rowDeleted - throws SQLFeatureNotSupportedException

rowInserted - throws SQLFeatureNotSupportedException

rowUpdated - throws SQLFeatureNotSupportedException

setFetchDirection - throws

 SQLFeatureNotSupportedException

update* - throws SQLFeatureNotSupportedException

RowId Not Supported

Savepoint not Supported

SQLData Not Supported

SQLInput not Supported

SQLOutput Not Supported

Statement

execute(String, int)

execute(String, int[])

execute(String, String[])

executeUpdate(String, int)

executeUpdate(String, int[])

executeUpdate(String, String[])

getGeneratedKeys()

getResultSetHoldability()

setCursorName(String)

Unsupported Classes and Methods in

"javax.sql"

55

Class name Methods

Struct Not Supported

A.3. Unsupported Classes and Methods in "javax.sql"

Table A.2. Connection Properties

Class name Methods

RowSet* Not Supported

StatementEventListener Not Supported

56

57

Appendix B. Generating Self Signed

Certificate with Keytool
To generate a self-signed certificate, you need a program called “keytool”, which is supplied with

any version of the Java SDK. The instructions below walk through the creation of both the key

store and the trust store files for a 1-way SSL configuration with the security keys.

B.1. Creating private/public key pair:

keytool -genkey -alias teiid -keyalg RSA -validity 365 –keystore

server.keystore –storetype JKS

 Enter keystore password: <enter password>

 What is your first and last name?

 [Unknown]: <user’s name>

 What is the name of your organizational unit?

 [Unknown]: <department name>

 What is the name of your organization?

 [Unknown]: <company name>

 What is the name of your City or Locality?

 [Unknown]: <city name>

 What is the name of your State or Province?

 [Unknown]: <state name>

 What is the two-letter country code for this unit?

 [Unknown]: <country name>

 Is CN=<user’s name>, OU=<department name>, O="<company name>",

 L=<city name>, ST=<state name>, C=<country name> correct?

 [no]: yes

 Enter key password for <server>

 (Return if same as keystore password)

The "server.keystore" can be used as keystore based upon the newly created private key.

B.2. Extracting the public key

From the "server.keystore" created above we can extract a public key for creating a trust store

Appendix B. Generating Self S...

58

keytool -export -alias teiid –keystore server.keystore -rfc -file public.cert

 Enter keystore password: <enter passsword>

This creates the "public.cert" file that contains the public key based on the private key in the

"server.keystore"

B.3. Creating the Truststore

keytool -import -alias teiid -file public.cert –storetype JKS -keystore server.truststore

Enter keystore password: <enter password>

Owner: CN=<user's name>, OU=<dept name>, O=<company name>, L=<city>, ST=<state>,

 C=<country>

Issuer: CN=<user's name>, OU=<dept name>, O=<company name>, L=<city>, ST=<state>,

 C=<country>

Serial number: 416d8636

Valid from: Fri Jul 31 14:47:02 CDT 2009 until: Sat Jul 31 14:47:02 CDT 2010

Certificate fingerprints:

 MD5: 22:4C:A4:9D:2E:C8:CA:E8:81:5D:81:35:A1:84:78:2F

 SHA1: 05:FE:43:CC:EA:39:DC:1C:1E:40:26:45:B7:12:1C:B9:22:1E:64:63

Trust this certificate? [no]: yes

Now this has created "server.truststore". There are many other ways to create self signed

certificates, the above procedure is just one way. If you would like create them using "openssl",

see this tutorial [http://www.akadia.com/services/ssh_test_certificate.html].

http://www.akadia.com/services/ssh_test_certificate.html
http://www.akadia.com/services/ssh_test_certificate.html

	Teiid - Scalable Information Integration
	Table of Contents
	Chapter 1. Connecting to Teiid Server
	1.1. Driver Connection
	1.1.1. URL Connection Properties

	1.2. Datasource Connection
	1.3. Standalone Application
	1.3.1. Driver Connection
	1.3.2. Datasource Connection

	1.4. JBoss AS Data Source
	1.4.1. DataSource Connection
	1.4.2. Driver based connection
	1.4.3. Local JDBC Connection

	1.5. Using Multiple Hosts
	1.5.1. Fail Over
	1.5.2. Load Balancing
	1.5.3. Advanced Configuration

	1.6. Reauthentication

	Chapter 2. Prepared Statements
	Chapter 3. Teiid extensions to the JDBC API
	3.1. Statement Extensions
	3.2. Execution Properties
	3.3. SET Statement
	3.4. SHOW Statement
	3.5. Transaction Statements
	3.6. Partial Results Mode
	3.7. XML extensions
	3.7.1. Document formatting
	3.7.2. Schema validation

	3.8. Non-blocking Statement Execution

	Chapter 4. Transactions with JDBC
	4.1. Local Transactions
	4.1.1. Turning Off Local Transactions

	4.2. Request Level Transactions
	4.2.1. Multiple Insert Batches

	4.3. Using Global Transactions
	4.4. Restrictions
	4.4.1. Application Restrictions
	4.4.2. Enterprise Information System Support

	Chapter 5. SSL Client Connections
	5.1. Default Security
	5.2. SSL Modes
	5.3. Client SSL Settings
	5.3.1. Option 1: Java SSL properties
	5.3.2. Option 2: Teiid Specific Properties

	Chapter 6. Using Teiid with Hibernate
	6.1. Limitations
	6.2. Configuration

	Chapter 7. ODBC Support
	7.1. Installing the ODBC Driver Client
	7.1.1. Microsoft Windows
	7.1.2. Other *nix Platform Installations

	7.2. Configuring the Data Source Name (DSN)
	7.2.1. Windows Installation
	7.2.2. Other *nix Platform Installations

	7.3. DSN Less Connection

	Appendix A. Unsupported JDBC Methods
	A.1. ResultSet Limitations
	A.2. Unsupported Classes and Methods in "java.sql"
	A.3. Unsupported Classes and Methods in "javax.sql"

	Appendix B. Generating Self Signed Certificate with Keytool
	B.1. Creating private/public key pair:
	B.2. Extracting the public key
	B.3. Creating the Truststore

