
Mobicents ASN Library User Guide

by Amit Bhayani, Bartosz Baranowski, and Oleg Kulikov

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents ASN Library ... 1

2. Setup ... 5

2.1. Mobicents ASN Library Source Code ... 5

2.1.1. Release Source Code Building ... 5

2.1.2. Development Trunk Source Building .. 6

3. Design Overview ... 7

4. Protocol ... 9

4.1. Supported encoding rules .. 9

4.2. API .. 9

4.3. Examples ... 9

A. Revision History .. 13

Index ... 15

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this

manual better, we would love to hear from you! Please submit a report in the the Issue Tracker

[http://code.google.com/p/mobicents/issues/list], against the product Mobicents ASN Library ,

or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier: ASNLibrary_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents ASN

Library
Abstract Syntax Notation One (ASN.1) is the standard for describing data structures in

telecommunication and computer networking world. ASN.1 provides a set of formal rules

for describing the structure of objects. The specification describes abstract objects that are

independent of machine-specific encoding techniques.

ASN defined data can be encoded using one of these encoding rules:

• Basic Encoding Rules (BER)

• Canonical Encoding Rules (CER)

• Distinguished Encoding Rules (DER)

• XML Encoding Rules (XER)

• Packed Encoding Rules (PER)

• Generic String Encoding Rules (GSER)

ASN.1, together with specific ASN.1 encoding rules, facilitates the exchange of structured data

between application programs over networks by describing data structures in a way that is

independent of machine architecture and implementation language.

ASN encoded data looks logically as follows:

Chapter 1. Introduction to Mo...

2

Figure 1.1. ASN encoding logical overview

3

Encoded data structure contains three elements:

Tag

Unique value, which identifies the type of data.

Tag carries some additional info (such as the complexity and context indicators). The actual

Tag value is unique for a single ASN definition (aside from some basic tag values which are

defined in the ASN specification).

Length

Indicates the length of the current data structure.

Payload

Depending on the definition, this can be a simple value (like an integer), or it can carry another

ASN encoded data structure.

4

Chapter 2.

5

Setup

2.1. Mobicents ASN Library Source Code

2.1.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/protocols/asn, then add the specific release version,

lets consider 1.0.0.BETA4.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/protocols/asn/1.0.0.BETA4

 asn-1.0.0.BETA4

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binaries.

 [usr]$ cd asn-1.0.0.BETA4

 [usr]$ mvn install

Once the process finishes you should have the binary jar files in the target directory of

module.

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 2. Setup

6

2.1.2. Development Trunk Source Building

Similar process as for Section 2.1.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is http://mobicents.googlecode.com/svn/trunk/protocols/asn.

Chapter 3.

7

Design Overview

Important

Mobicents ASN Library is subject to changes as it is under active development.

Mobicents ASN Library has been designed as a simple library that enables the user to encode and

decode streams according to ASN rules. It provides the user with the tools to process primitives

and build more complex objects as defined in ASN.

Note

Mobicents ASN Library does not provide an ASN compiler. Its sole purpose is to

avoid costly processing and allow the user to implement the desired functionality

in the optimal way.

8

Chapter 4.

9

Protocol

4.1. Supported encoding rules

Mobicents ASN Library supports following the encoding rules:

• BER

4.2. API

Mobicents ASN Library is stream oriented. The user accesses ASN primitives by means of stream

objects capable of proper decoding and encoding.

The following classes deserve explanation:

org.mobicents.protocols.asn.Tag

This class defines static values that are part of header(Tag). Example values are tag values

for Integer, BitString, etc.

org.mobicents.protocols.asn.BERStatics

This class defines some static values that are specific for BER encoding, such as real

encoding schemes(NR1,NR2...).

org.mobicents.protocols.asn.External

This is a special class that is used to represent the "External" type. It is a special ASN type

where "anything" can be used.

Input and Output stream

Simple classes that are the core of this library. They allow for chunks of data to be read/written.

4.3. Examples

Simple decode integer primitive example:

// integer -128

byte[] data = new byte[] { 0x2, 0x1, (byte) 0x80 }; //encoded form

ByteArrayInputStream baIs = new ByteArrayInputStream(data);

AsnInputStream asnIs = new AsnInputStream(baIs);

int tag = asnIs.readTag();

if(Tag.INTEGER==tag)

{

 long value = asnIs.readInteger();

 //do somethin

}

Chapter 4. Protocol

10

Simple encode Real primitive example:

AsnOutputStream output = new AsnOutputStream();

output.writeReal(-3145.156d, BERStatics.REAL_NR1);

Complex example - how to decode some constructed data structure:

// mandatory

 private Long invokeId;

 // optional

 private Long linkedId;

 // mandatory

 private OperationCode operationCode;

 // optional

 private Parameter parameter;

public void doDecoding(AsnInputStream ais)

{

 int len = ais.readLength();

 if (len == 0x80) {

 throw new ParseException("Unspiecified length is not supported.");

 }

 byte[] data = new byte[len];

 if (len != ais.read(data)) {

 throw new ParseException("Not enough data read.");

 }

 AsnInputStream localAis = new AsnInputStream(new ByteArrayInputStream(data));

Examples

11

 int tag = localAis.readTag();

 if (tag != _TAG_IID) {

 throw new ParseException("Expected InvokeID tag, found: " + tag);

 }

 this.invokeId = localAis.readInteger();

 if (localAis.available() <= 0) {

 return;

 }

 tag = localAis.readTag();

 if (tag == Tag.SEQUENCE) {

 // sequence of OperationCode

 len = localAis.readLength();

 if (len == 0x80) {

 throw new ParseException("Unspiecified length is not supported.");

 }

 data = new byte[len];

 int tlen = localAis.read(data);

 if (len != tlen) {

 throw new ParseException("Not enough data read. Expected: " + len + ", actaul: " + tlen);

 }

 AsnInputStream sequenceStream = new AsnInputStream(new ByteArrayInputStream(data));

 tag = sequenceStream.readTag();

 if (tag == OperationCode._TAG_GLOBAL || tag == OperationCode._TAG_LOCAL) {

 this.operationCode = TcapFactory.createOperationCode(tag, sequenceStream);

 } else {

 throw new ParseException("Expected Global|Local operation code.");

 }

 if (sequenceStream.available() > 0) {

 tag = sequenceStream.readTag();

 this.parameter = TcapFactory.createParameter(tag, sequenceStream);

 } else {

 throw new ParseException("Not enought data to decode Parameter part of result!");

 }

 } else {

Chapter 4. Protocol

12

 throw new ParseException("Expected SEQUENCE tag for OperationCode and Parameter

 part, found: " + tag);

 }

}

13

Appendix A. Revision History
Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the Mobicents ASN Library User Guide.

14

15

Index
F
feedback, viii

16

	Mobicents ASN Library User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents ASN Library
	Chapter 2. Setup
	2.1. Mobicents ASN Library Source Code
	2.1.1. Release Source Code Building
	2.1.2. Development Trunk Source Building

	Chapter 3. Design Overview
	Chapter 4. Protocol
	4.1. Supported encoding rules
	4.2. API
	4.3. Examples

	Appendix A. Revision History
	Index

