
JBoss Communications

Stream Library User Guide

by Amit Bhayani, Bartosz Baranowski, and Oleg Kulikov

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to JBoss Communications Stream Library .. 1

2. Setup ... 3

2.1. JBoss Communications Stream Library Source Code .. 3

2.1.1. Release Source Code Building ... 3

2.1.2. Development Trunk Source Building .. 4

3. Design Overview ... 5

3.1. Stream protocol - Datalink ... 6

4. Source overview & Example .. 9

4.1. Stream ... 9

4.2. Datalink .. 12

A. Revision History .. 17

Index ... 19

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

bugzilla.redhat.com/bugzilla/], against the product JBoss Communications Stream Library , or

contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

StreamLibrary_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction to JBoss

Communications Stream Library
In many places there is need for asynchronous I/O operations, be it file, socket or any other. There

are asynchronous I/O libraries. However, implementations are thread safe and restricted to some

specific assumptions.

JBoss Communications Stream Library fills this gap. It aims to provide a simple API which enables

the user to abstract I/O operation in any way they desire.

2

Chapter 2.

3

Setup

2.1. JBoss Communications Stream Library Source

Code

2.1.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is ?, then add the specific

release version, lets consider 1.0.0.FINAL.

[usr]$ svn co ?/1.0.0.FINAL stream-1.0.0.FINAL

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binaries.

 [usr]$ cd stream-1.0.0.FINAL

 [usr]$ mvn install

Once the process finishes you should have the binary jar file in the target directory.

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 2. Setup

4

2.1.2. Development Trunk Source Building

Similar process as for Section 2.1.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is NOT AVAILABLE.

Chapter 3.

5

Design Overview

Important

JBoss Communications Stream Library is subject to changes as it is under active

development.

JBoss Communications Stream Library builds layers of abstraction with API, similar to NIO.

Abstraction is built with three main components:

Selector

Performs stream queries and presents the user with streams ready for I/O operations.

SelectorKey

Represents stream in selectors space.

Stream

A stream of data.

Figure 3.1. IO overview

Chapter 3. Design Overview

6

3.1. Stream protocol - Datalink

Beside a simplified stream API, there is also need for SCTP (SCTP is not available in JDK6) like

streaming. JBoss Communications Stream Library provides this feature over a defined stream

API.

Datalink is a proprietary protocol designed to provide the following functions:

• Peer to Peer Transport

• Reliable Delivery - Retransmissions

• Stream Status Metadata - provides the user with stream status info(active,inactive, down...).

Metadata is information which informs peers about readiness to receive data for instance.

• async I/O

Generally, Datalink can be imagined as follows:

Figure 3.2. Datalink overview

Datalink follows the state machine, which reassembles one as depicted below:

Stream protocol - Datalink

7

Figure 3.3. Datalink FSM

8

Chapter 4.

9

Source overview & Example

4.1. Stream

As mentioned previously, the stream module is centered on three main interfaces:

org.mobicents.protocols.stream.api.Stream

This class declares sets of methods to perform read and write operations:

public interface Stream {

 /**

 * Registers this stream with the given selector, returning a selection key.

 * This method first verifies that this channel is open and that the given initial

 * interest set is valid.

 *

 * If this stream is already registered with the given selector then the selection key

 * representing that registration is returned after setting its interest set to the

 * given value.

 *

 * @param selector

 * @param op The selector with which this channel is to be registered

 * @return

 */

 public SelectorKey register(StreamSelector selector) throws IOException;

 public int read(byte[] b) throws IOException;

 public int write(byte[] d) throws IOException;

 /**

 * Closes this streamer implementation. After closing stream its selectors are invalidated!

 */

 public void close();

 /**

 * Returns the provider that created this stream.

 *

 * @return

 */

 public SelectorProvider provider();

}

Chapter 4. Source overview & ...

10

org.mobicents.protocols.stream.api.StreamSelector

This interface defines methods that are used to interrogate registered stream for IO readiness.

public interface StreamSelector {

 public static final int OP_READ = 0x1;

 public static final int OP_WRITE = 0x2;

 /**

 * Performs query of registeres stream. Returns set of keys pointing to streams ready to perform IO.

 * @param operation - operation which streams are queried. Value is equal to on of OP_X.

 * @param timeout

 * @return

 * @throws IOException

 */

 public Collection<SelectorKey> selectNow(int operation, int timeout) throws IOException;

 /**

 * Checks if selector has been closed.

 * @return

 */

 public boolean isClosed();

 /**

 * closeses selector, removes all stream from internal register.

 */

 public void close();

 /**

 * Returns registered streams.

 * @return

 */

 public Collection<Stream> getRegisteredStreams();

}

org.mobicents.protocols.stream.api.SelectorKey

This interface declares the contract for the object representing the stream in selector:

public interface SelectorKey {

Stream

11

 /**

 * Attach application specific object to this key. When underlying stream is

 * ready for IO and key is returned, this attachment will be accessible.

 *

 * @param obj

 */

 public void attach(Object obj);

 /**

 * Gets attachemnt.

 *

 * @return

 */

 public Object attachment();

 /**

 * Returns validity indicator.

 *

 * @return

 */

 public boolean isValid();

 /**

 * Indicates if underlying stream is ready to read.

 *

 * @return

 */

 public boolean isReadable();

 /**

 * Indicates if underlying stream is ready to write.

 *

 * @return

 */

 public boolean isWriteable();

 /**

 * Returns stream associated with this key

 *

 * @return

 */

 public Stream getStream();

 /**

Chapter 4. Source overview & ...

12

 * Get selector for this key.

 *

 * @return

 */

 public StreamSelector getStreamSelector();

 /**

 * Cancels this key. Equals deregistration of stream

 */

 public void cancel(); // Oleg verify this.

}

Below is an example use of this API:

Stream s =

StreamSelector selector = ...

s.register(selector);

 while(true)

 {

 byte[] buff = new byte[....];

 Collection<SelectorKey> selected = selector.selectNow(selector.OP_READ,0); //0,

 immediate check

 for(SelectorKey key : selected)

 {

 int read = ket.getStream().read(buff);

 System.err.println("Read: "+read);

 }

 selected.clear();

 }

4.2. Datalink

Datalink is basically a small extension of the async stream. The example below shows the

difference and use case:

Datalink

13

import org.mobicents.protocols.link.DataLink;

import org.mobicents.protocols.link.LinkState;

import org.mobicents.protocols.link.LinkStateListener;

import org.mobicents.protocols.stream.api.SelectorKey;

import org.mobicents.protocols.stream.api.SelectorProvider;

import org.mobicents.protocols.stream.api.StreamSelector;

class XServer implements LinkStateListener

{

 private DataLink link;

 private volatile boolean started = false;

 private StreamSelector selector;

 private int rxCount, txCount;

 private InetSocketAddress address, remote;

 public XServer(InetSocketAddress address, InetSocketAddress remote) throws Exception {

 link = DataLink.open(address, remote);

 link.setListener(this);

 selector = SelectorProvider.getSelector("org.mobicents.protocols.link.SelectorImpl");

 link.register(selector);

 }

 public void start() {

 started = true;

 new Thread(this).start();

 link.activate();

 }

 public void stop() {

 started = false;

 link.close();

 System.out.println("rx=" + rxCount);

 System.out.println("tx=" + txCount);

 }

 public void run() {

 byte[] rxBuffer = new byte[172];

 byte[] txBuffer = new byte[172];

 while (started) {

 try {

Chapter 4. Source overview & ...

14

 Collection<SelectorKey> keys = selector.selectNow(StreamSelector.OP_READ, 20);

 for (SelectorKey key : keys) {

 int len = key.getStream().read(rxBuffer);

 rxCount++;

 System.out.println("Read " + len +" bytes: "+Arrays.toString(rxBuffer));

 }

 keys.clear();

 keys = selector.selectNow(StreamSelector.OP_WRITE, 20);

 txBuffer[txCount%txBuffer]++;

 for (SelectorKey key : keys) {

 key.getStream().write(txBuffer);

 txCount++;

 }

 Thread.currentThread().sleep(1000);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 public void onStateChange(LinkState state) {

 System.err.println("DatalinkState: "+state);

 }

}

class XClient implements LinkStateListener

{

 private DataLink link;

 private volatile boolean started = false;

 private StreamSelector selector;

 private InetSocketAddress address, remote;

 public XClient(InetSocketAddress address, InetSocketAddress remote) throws Exception {

 link = DataLink.open(address, remote);

 link.setListener(this);

 selector = SelectorProvider.getSelector("org.mobicents.protocols.link.SelectorImpl");

 link.register(selector);

 }

 public void start() {

Datalink

15

 started = true;

 new Thread(this).start();

 link.activate();

 }

 public void stop() {

 started = false;

 link.close();

 }

 public void run() {

 byte[] rxBuffer = new byte[172];

 //byte[] txBuffer = new byte[172];

 while (started) {

 try {

 Collection<SelectorKey> keys = selector.selectNow(StreamSelector.OP_READ, 20);

 for (SelectorKey key : keys) {

 int len = key.getStream().read(rxBuffer);

 System.out.println("Read " + len +" bytes: "+Arrays.toString(rxBuffer));

 }

 keys.clear();

 keys = selector.selectNow(StreamSelector.OP_WRITE, 20);

 for (SelectorKey key : keys) {

 key.getStream().write(rxBuffer);

 }

 Thread.currentThread().sleep(1000);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 public void onStateChange(LinkState state) {

 System.err.println("DatalinkState: "+state);

Chapter 4. Source overview & ...

16

 }

}

17

Appendix A. Revision History
Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the JBoss Communications Stream Library User Guide.

18

19

Index
F
feedback, viii

20

	JBoss Communications Stream Library User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to JBoss Communications Stream Library
	Chapter 2. Setup
	2.1. JBoss Communications Stream Library Source Code
	2.1.1. Release Source Code Building
	2.1.2. Development Trunk Source Building

	Chapter 3. Design Overview
	3.1. Stream protocol - Datalink

	Chapter 4. Source overview & Example
	4.1. Stream
	4.2. Datalink

	Appendix A. Revision History
	Index

