
Mobicents JAIN SLEE SIP11

Resource Adaptor User Guide

by Bartosz Baranowski and Eduardo Martins

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE SIP11 Resource Adaptor 1

2. Resource Adaptor Type ... 3

3. Resource Adaptor Implementation .. 5

3.1. Configuration .. 5

3.2. Default Resource Adaptor Entities ... 6

3.3. Traces and Alarms ... 7

3.3.1. Tracers .. 7

3.3.2. Alarms ... 7

4. Setup ... 9

4.1. Pre-Install Requirements and Prerequisites .. 9

4.1.1. Hardware Requirements ... 9

4.1.2. Software Prerequisites .. 9

4.2. Mobicents JAIN SLEE SIP11 Resource Adaptor Source Code 9

4.2.1. Release Source Code Building ... 9

4.2.2. Development Trunk Source Building .. 10

4.3. Installing Mobicents JAIN SLEE SIP11 Resource Adaptor 10

4.4. Uninstalling Mobicents JAIN SLEE SIP11 Resource Adaptor 10

5. Clustering .. 13

5.1. Failover .. 13

5.2. Load Balancing ... 13

5.2.1. Configuring the Resource Adaptor to be used with Mobicents SIP Load

Balancer .. 13

5.2.2. Mobicents SIP Load Balancer ... 13

A. Revision History .. 21

Index ... 23

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN SLEE SIP11

Resource Adaptor, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_SIP11_RA_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE SIP11 Resource Adaptor
This resource adaptor provides a SIP API for JAIN SLEE applications, adapting the JAIN SIP 1.2

specification. JAIN SIP 1.2 is a Java specification for the Session Initiation Protocol, as defined

by the protocol specs done by the IETF. Both transaction and dialog layers of the SIP protocol are

available, to support all types of SIP applications through a single API. Lower level applications,

such as SIP Proxies or Registrars typically use the transaction layer exclusively, while UAC, UAS

and B2BUA higher level SIP applications rely on the dialog layer.

Events represent SIP messages received by the SIP stack, or failure use cases such as timeouts.

Unlike the base JAIN SIP 1.2 API, SIP Requests with different SIP methods are fired as different

event types, the same happens for SIP Responses with status code. The events are fired on

transaction or dialog activities.

The Activities are the SIP Transactions and Dialogs, which applications in the SLEE may use to

send SIP Requests and Responses, and to receive the events related with incoming messages.

2

Chapter 2.

3

Resource Adaptor Type
The JAIN SIP 1.2 Resource Adaptor Type is specified in Appendix D of the JAIN SLEE

1.1 Specification. The specification can be freely downloaded from http://jcp.org/aboutJava/

communityprocess/final/jsr240/index.html and includes Sbb code examples.

http://jcp.org/aboutJava/communityprocess/final/jsr240/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr240/index.html

4

Chapter 3.

5

Resource Adaptor Implementation
The RA implementation uses the Mobicents JAIN SIP HA stack, an extension of the JAIN SIP

Reference Implementation which provides high availability and fault tolerance. The stack is the

result of the work done by Mobicents JAIN SLEE and SIP Servlets development teams, and source

code is provided in all releases.

3.1. Configuration

The Resource Adaptor supports configuration only at Resource Adaptor Entity creation time, the

following table enumerates the configuration properties:

Table 3.1. Resource Adaptor's Configuration Properties

Property Name Description Property Type Default Value

javax.sip.IP_ADDRESSthe IP address to

which the SIP stack

should attach - if value

is not specified the RA

will use the underlying

Java EE container's

bind address address

java.lang.String

javax.sip.OUTBOUND_PROXYsets the outbound

proxy of the SIP

Stack. The format

for this string

is "ipaddress:port/

transport" i.e.

129.1.22.333:5060/

UDP. This property is

optional

java.lang.String

javax.sip.PORT the port to which the

SIP stack should listen

java.lang.Integer 5060

javax.sip.TRANSPORT the list of supported

transports, separated

with ","

java.lang.String UDP

org.mobicents.ha.javax.sip.BALANCERSthe list of SIP

balancers, in the form

of "HOST:PORT",

separated by ";", it is

only used if the heart

beat service property

is defined

java.lang.String

Chapter 3. Resource Adaptor I...

6

Property Name Description Property Type Default Value

org.mobicents.ha.javax.sip.LoadBalancerHeartBeatingServiceClassNamethe name of the

class responsible

for the heart

beats exchanged with

the platform's SIP

Balancer - if not

specified the JAIN SIP

HA stack won't use

such feature

java.lang.String

Important

JAIN SLEE 1.1 Specification requires values set for properties without a default

value, which means the configuration for those properties are mandatory,

otherwise the Resource Adaptor Entity creation will fail!

3.2. Default Resource Adaptor Entities

There is a single Resource Adaptor Entity created when deploying the Resource Adaptor, named

SipRA. The SipRA entity uses the default Resource Adaptor configuration, specified in Section 3.1,

“Configuration”.

The SipRA entity is also bound to Resource Adaptor Link Name SipRA, to use it in an Sbb add

the following XML to its descriptor:

 <resource-adaptor-type-binding>

 <resource-adaptor-type-ref>

 <resource-adaptor-type-name>

 JAIN SIP

 </resource-adaptor-type-name>

 <resource-adaptor-type-vendor>

 javax.sip

 </resource-adaptor-type-vendor>

 <resource-adaptor-type-version>

 1.2

 </resource-adaptor-type-version>

 </resource-adaptor-type-ref>

 <activity-context-interface-factory-name>

Traces and Alarms

7

 slee/resources/jainsip/1.2/acifactory

 </activity-context-interface-factory-name>

 <resource-adaptor-entity-binding>

 <resource-adaptor-object-name>

 slee/resources/jainsip/1.2/provider

 </resource-adaptor-object-name>

 <resource-adaptor-entity-link>

 SipRA

 </resource-adaptor-entity-link>

 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>

3.3. Traces and Alarms

3.3.1. Tracers

Each Resource Adaptor Entity uses a single JAIN SLEE 1.1 Tracer, named SipResourceAdaptor.

3.3.2. Alarms

No alarms are set by this Resource Adaptor.

8

Chapter 4.

9

Setup

4.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

4.1.1. Hardware Requirements

The Resource Adaptor hardware's main concern is RAM memory and Java Heap size, the more

the better. For instance, while the underlying Mobicents JAIN SLEE may run with 1GB of RAM,

8GB is needed to achieve performance higher than 400 new calls per second.

Of course, memory is only needed to store the Resource Adaptor state, the faster the CPU more

calls per second are supported, yet no particular CPU is a real requirement to use the RA.

4.1.2. Software Prerequisites

The RA requires Mobicents JAIN SLEE properly set.

4.2. Mobicents JAIN SLEE SIP11 Resource Adaptor

Source Code

4.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/sip11, then add the

specific release version, lets consider 2.0.0.CR1.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/

sip11/2.0.0.CR1 slee-ra-sip11-2.0.0.CR1

http://svnbook.red-bean.com

Chapter 4. Setup

10

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Ant to build the binary.

[usr]$ cd slee-ra-sip11-2.0.0.CR1

[usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS_HOME is

pointing to its underlying JBoss Application Server directory, then the deployable unit jar will

also be deployed in the container.

4.2.2. Development Trunk Source Building

Similar process as for Section 4.2.1, “Release Source Code Building”, the only change is the

SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/servers/jain-slee/

resources/sip11.

4.3. Installing Mobicents JAIN SLEE SIP11 Resource

Adaptor

To install the Resource Adaptor simply execute provided ant script build.xml default target:

[usr]$ ant

The script will copy the RA deployable unit jar to the default Mobicents JAIN SLEE server profile

deploy directory, to deploy to another server profile use the argument -Dnode=.

4.4. Uninstalling Mobicents JAIN SLEE SIP11 Resource

Adaptor

To uninstall the Resource Adaptor simply execute provided ant script build.xml undeploy target:

http://maven.apache.org

Uninstalling Mobicents JAIN SLEE SIP11 Resource Adaptor

11

[usr]$ ant undeploy

The script will delete the RA deployable unit jar from the default Mobicents JAIN SLEE server

profile deploy directory, to undeploy from another server profile use the argument -Dnode=.

12

Chapter 5.

13

Clustering

5.1. Failover

The SIP Stack used by the RA supports ESTABLISHED SIP DIALOG failover. This means that an

application must be in charge of properly adapting its state machine, to recover SIP transaction

or early dialogs failures, once message retransmissions are received.

5.2. Load Balancing

The RA can be used with Mobicents SIP Load Balancer. The recommended version is

1.0.BETA12.

5.2.1. Configuring the Resource Adaptor to be used with

Mobicents SIP Load Balancer

There are three properties which define how the RA connects to Mobicents SIP Load Balancer:

org.mobicents.ha.javax.sip.BALANCERS

the property must be configured with the list of load balancer IP address and internal ports. As

an example, suppose a single Mobicents SIP Load Balancer is running with IP 192.168.0.1

and internal port 5065, the property would be set with value 192.168.0.1:5065. To specify

multiple balancers use ; as separator.

org.mobicents.ha.javax.sip.LoadBalancerHeartBeatingServiceClassName

this property is optional, defines the class name of the

HeartBeating service implementation, currently the only one available is

org.mobicents.ha.javax.sip.LoadBalancerHeartBeatingServiceImpl

org.mobicents.ha.javax.sip.LoadBalancerElector

this property is optional, defines the class of the load balancer elector from JAIN SIP HA

Stack. The elector is used to define which load balancer will receive outgoing requests,

which are out of dialog or in dialog with null state. Currently only one elector implementation

is available, org.mobicents.ha.javax.sip.RoundRobinLoadBalancerElector, which, as

the class name says, uses round robin algorythm to select the balancer.

5.2.2. Mobicents SIP Load Balancer

The Mobicents SIP load balancer is used to balance the load of SIP service requests and

responses between nodes in a JAIN SLEE cluster, increasing the performance and availability of

SIP services and applications.

In terms of functionality, the Mobicents SIP Load Balancer is a simple stateless proxy server

that intelligently forwards SIP session requests and responses between User Agents (UAs) on a

Chapter 5. Clustering

14

Wide Area Network (WAN), and SIP RA nodes, which are almost always located on a Local Area

Network (LAN). All SIP requests and responses pass through the SIP load balancer.

5.2.2.1. SIP Load Balancing Basics

All User Agents send SIP messages, such as INVITE and MESSAGE, to the same SIP URI (the IP

address and port number of the SIP load balancer on the WAN). The load balancer then parses,

alters, and forwards those messages to an available node in the cluster. If the message was sent

as a part of an existing SIP session, it will be forwarded to the cluster node which processed that

User Agent's original transaction request.

The SIP RA that receives the message acts upon it and sends a response back to the SIP load

balancer. The SIP load balancer reparses, alters and forwards the message back to the original

User Agent. This entire proxying and provisioning process is carried out independent of the User

Agent, which is only concerned with the SIP service or application it is using.

By using the load balancer, SIP traffic is balanced across a pool of available SIP RAs, increasing

the overall throughput of the SIP service or application running on either individual nodes of the

cluster.

The SIP load balancer is also able to fail over requests mid-call from unavailable nodes to available

ones, thus increasing the reliability of the SIP service or application. The load balancer increases

throughput and reliability by dynamically provisioning SIP service requests and responses across

responsive nodes in a cluster. This enables SIP applications to meet the real-time demand for

SIP services.

5.2.2.2. Pluggable Balancer Algorithms

The SIP load balancer exposes an interface to allow users to customize the routing decision

algorithm. Only one algorithm is active at any time and it is specified with the algorithmClass

property in the configuration file.

It is completely up to the algorithm how and whether to support distributed architecture or how

to store the information needed for session affinity. The algorithms will be called for every SIP

request and other significant events to make proper routing decisions.

The following is a list of the built-in algorithms:

org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This algorithm does not support distributed use case. It selects nodes randomly to serve a

give Call-ID extracted from the requests and responses. It keeps a map with Call-ID ->

nodeId associations and this map is not shared with other load balancers which will cause

them to make different decisions.

org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This algorithm can be used in distributed load balancer configurations. It extracts the hash

value of specific headers from SIP messages to decide which application server node will

Mobicents SIP Load Balancer

15

handle the request. Information about the options in this algorithms is available in the balancer

configuration file comments.

org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This algorithm can be used in distributed load balancer configurations. It is similar to the

previous algorithm, but it attempts to keep session affinity even when the cluster nodes are

removed or added, which would normally cause hash values to point to different nodes.

5.2.2.3. Distributed load balancing

When the capacity of a single load balancer is exceeded, multiple load balancers can be used.

With the help of an IP load balancer the traffic can be distributed between all SIP load balancers

based on some IP rules or round-robin. With consistent hash and jvmRoute-based balancer

algorithms it doesn't matter which SIP load balancer will process the request, because they

would all make the same decisions based on information in the requests (headers, parameters

or cookies) and the list of available nodes. With consistent hash algorithms there is no state to

be preserved in the SIP balancers.

5.2.2.4. Implementation of the Mobicents SIP Load Balancer

Each individual Mobicents JAIN SLEE SIP RA in the cluster is responsible for contacting the SIP

load balancer and relaying its health status and regular "heartbeats".

From these health status reports and heartbeats, the SIP load balancer creates and maintains

a list of all available and healthy nodes in the cluster. The load balancer forwards SIP requests

between these cluster nodes, providing that the provisioning algorithm reports that each node is

healthy and is still sending heartbeats.

If an abnormality is detected, the SIP load balancer removes the unhealthy or unresponsive node

from the list of available nodes. In addition, mid-session and mid-call messages are failed over

to a healthy node.

The SIP load balancer first receives SIP requests from endpoints on a port that is specified in its

Configuration Properties configuration file. The SIP load balancer, using a round-robin algorithm,

then selects a node to which it forwards the SIP requests. The load balancer forwards all same-

session requests to the first node selected to initiate the session, providing that the node is healthy

and available.

5.2.2.5. SIP Message Flow

The Mobicents SIP load balancer appends itself to the Via header of each request, so that returned

responses are sent to the SIP Balancer before they are sent to the originating endpoint.

The load balancer also adds itself to the path of subsequent requests by adding Record-Route

headers. It can subsequently handle mid-call failover by forwarding requests to a different node

in the cluster if the node that originally handled the request fails or becomes unavailable. The SIP

load balancer immediately fails over if it receives and unhealthy status, or irregular heartbeats

from a node.

Chapter 5. Clustering

16

5.2.2.6. SIP Load Balancer: Installing, Configuring and Running

The load balancer can be downloaded from http://repository.jboss.org/maven2/org/

mobicents/tools/sip-balancer/1.0.BETA12. There you will find the balancer's executable jar

with dependencies (sip-balancer-1.0.BETA12-jar-with-dependencies.jar) , along with

javadocs and sources jars.

5.2.2.6.1. Configuring the Mobicents SIP Load Balancer

Configuration is done through a properties file which path is then passed as argument. Below is

a configuration properties file example:

The binding address of the load balancer

host=127.0.0.1

The RMI port used for heartbeat signals

rmiRegistryPort=2000

The SIP port used where client should connect

externalPort=5060

The SIP port from where servers will receive messages

delete if you want to use only one port for both inbound and outbound)

if you like to activate the integrated HTTP load balancer, this is the entry point

internalPort=5065

The HTTP port for HTTP forwarding

httpPort=2080

#Specify UDP or TCP (for now both must be the same)

internalTransport=UDP

externalTransport=UDP

If you are using IP load balancer, put the IP address and port here

#externalIpLoadBalancerAddress=127.0.0.1

#externalIpLoadBalancerPort=111

Requests initited from the App Servers can route to this address (if you are using 2 IP load

 balancers for bidirectional SIP LB)

#internalIpLoadBalancerAddress=127.0.0.1

#internalIpLoadBalancerPort=111

Designate extra IP addresses as serer nodes

#extraServerNodes=222.221.21.12:21,45.6.6.7:9003,33.5.6.7,33.9.9.2

Mobicents SIP Load Balancer

17

Call-ID affinity algortihm settings. This algorithm is the default. No need to uncomment it.

#algorithmClass=org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This property specifies how much time to keep an association before being evitcted.

It is needed to avoid memory leaks on dead calls. The time is in seconds.

#callIdAffinityMaxTimeInCache=500

Uncomment to enable the consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set, cna be "from.user" or "to.user" when

 you want the SIP URI username

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

Uncomment to enable the persistent consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

#This is the JBoss Cache 3.1 configuration file (with jgroups), if not specified it will use default

#persistentConsistentHashCacheConfiguration=/home/config.xml

Call-ID affinity algortihm settings. This algorithm is the default. No need to uncomment it.

#algorithmClass=org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This property specifies how much time to keep an association before being evitcted.

It is needed to avoid memory leaks on dead calls. The time is in seconds.

#callIdAffinityMaxTimeInCache=500

Uncomment to enable the consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set, cna be "from.user" or "to.user" when

 you want the SIP URI username

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

Uncomment to enable the persistent consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

Chapter 5. Clustering

18

#httpAffinityKey=appsession

#This is the JBoss Cache 3.1 configuration file (with jgroups), if not specified it will use default

#persistentConsistentHashCacheConfiguration=/home/config.xml

#JSIP stack configuration.....

javax.sip.STACK_NAME = SipBalancerForwarder

javax.sip.AUTOMATIC_DIALOG_SUPPORT = off

// You need 16 for logging traces. 32 for debug + traces.

// Your code will limp at 32 but it is best for debugging.

gov.nist.javax.sip.TRACE_LEVEL = 32

gov.nist.javax.sip.DEBUG_LOG = logs/sipbalancerforwarderdebug.txt

gov.nist.javax.sip.SERVER_LOG = logs/sipbalancerforwarder.xml

gov.nist.javax.sip.THREAD_POOL_SIZE = 64

gov.nist.javax.sip.REENTRANT_LISTENER = true

An overview of most important properties:

host

Local IP address, or interface, on which the SIP load balancer will listen for incoming requests.

externalPort

Port on which the SIP load balancer listens for incoming requests from SIP User Agents.

internalPort

Port on which the SIP load balancer forwards incoming requests to available, and healthy,

SIP Servlets Server cluster nodes.

rmiRegistryPort

Port on which the SIP load balancer will establish the RMI heartbeat connection to the

application servers. When this connection fails or a disconnection instruction is received, an

application server node is removed and handling of requests continues without it by redirecting

the load to the lie nodes.

internalTransport

Transport protocol for the internal SIP connections associated with the internal SIP port of the

load balancer. Possible choices are UDP, TCP and TLS.

externalTransport

Transport protocol for the external SIP connections associated with the external SIP port of

the load balancer. Possible choices are UDP, TCP and TLS. It must match the transport of the

internal port.

Mobicents SIP Load Balancer

19

externalIpLoadBalancerAddress

Address of the IP load balancer (if any) used for incoming requests to be distributed in the

direction of the application server nodes. This address may be used by the SIP load balancer

to be put in SIP headers where the external address of the SIP load balancer is needed.

externalIpLoadBalancerPort

The port of the external IP load balancer. Any messages arriving at this port should be

distributed across the external SIP ports of a set of SIP load balancers.

internalIpLoadBalancerAddresst

Address of the IP load balancer (if any) used for outgoing requests (requests initiated from

the servers) to be distributed in the direction of the clients. This address may be used by

the SIP load balancer to be put in SIP headers where the internal address of the SIP load

balancer is needed.

internalIpLoadBalancerPort

The port of the internal IP load balancer. Any messages arriving at this port should be

distributed across the internal SIP ports of a set of SIP load balancers.

extraServerNodes

Comma-separated list of hosts that are server nodes. You can put here alternative names of

the application servers and they will be recognized. Names are important, because they might

be used for direction-analysis. Requests coming from these server will go in the direction of

the clients and will not be routed back to the cluster.

algorithmClass

The fully-qualified Java class name of the balancing algorithm to be used. There are three

algorithms to choose from and you can write your own to implement more complex routing

behaviour. Refer to the sample configuration file for details about the available options

for each algorithm. Each algorithm can have algorithm-specific properties for fine-grained

configuration.

Important

The remaining keys and properties in the configuration properties file can be used

to tune the JAIN SIP stack, but are not specifically required for load balancing. To

assist with tuning, a comprehensive list of implementing classes for the SIP Stack

is available from the Interface SIP Stack page on nist.gov [http://snad.ncsl.nist.gov/

proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html]. For a comprehensive list

of properties associated with the SIP Stack implementation, refer to Class

SipStackImpl page on nist.gov [http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/

javadoc/gov/nist/javax/sip/SipStackImpl.html].

http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html

Chapter 5. Clustering

20

5.2.2.6.2. Running Mobicents SIP Balancer

Start the SIP load balancer, ensuring the Configuration Properties file (lb.properties in this

example) is specified. In the Unix terminal, or using the Windows Command Prompt, the SIP Load

Balancer is started by issuing a command similar to this one:

java -jar sip-balancer-1.0.BETA12-jar-with-dependencies.jar -mobicents-

balancer-config=lb-configuration.properties

Executing the SIP load balancer produces output similar to the following example:

[user]$ java -jar sip-balancer-1.0.BETA12-jar-with-dependencies.jar -

mobicents-balancer-config=lb-configuration.properties

Oct 21, 2008 1:10:58 AM

 org.mobicents.tools.sip.balancer.SIPBalancerForwarder start

INFO: Sip Balancer started on address 127.0.0.1, external port : 5060,

 port : 5065

Oct 21, 2008 1:10:59 AM org.mobicents.tools.sip.balancer.NodeRegisterImpl

 startServer

INFO: Node registry starting...

Oct 21, 2008 1:10:59 AM org.mobicents.tools.sip.balancer.NodeRegisterImpl

 startServer

INFO: Node expiration task created

Oct 21, 2008 1:10:59 AM org.mobicents.tools.sip.balancer.NodeRegisterImpl

 startServer

INFO: Node registry started

The output shows the IP address on which the SIP load balancer is listening, as well as the external

and internal listener ports.

5.2.2.6.3. Stopping

Assuming that you started the load balancer as a foreground process in the OS terminal, the

easiest way to stop it is by pressing the Ctrl+C key combination in the same terminal in which

you started it.

This should produce similar output to the following:

^COct 21, 2008 1:11:57 AM

 org.mobicents.tools.sip.balancer.SipBalancerShutdownHook run

INFO: Stopping the sip forwarder

5.2.2.6.4. Uninstalling

To uninstall the SIP load balancer, delete the JAR file you installed.

21

Appendix A. Revision History
Revision History

Revision 1.0 Tue Dec 30 2009 EduardoMartins

Creation of the Mobicents JAIN SLEE SIP11 RA User Guide.

22

23

Index
F
feedback, viii

24

	Mobicents JAIN SLEE SIP11 Resource Adaptor User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE SIP11 Resource Adaptor
	Chapter 2. Resource Adaptor Type
	Chapter 3. Resource Adaptor Implementation
	3.1. Configuration
	3.2. Default Resource Adaptor Entities
	3.3. Traces and Alarms
	3.3.1. Tracers
	3.3.2. Alarms

	Chapter 4. Setup
	4.1. Pre-Install Requirements and Prerequisites
	4.1.1. Hardware Requirements
	4.1.2. Software Prerequisites

	4.2. Mobicents JAIN SLEE SIP11 Resource Adaptor Source Code
	4.2.1. Release Source Code Building
	4.2.2. Development Trunk Source Building

	4.3. Installing Mobicents JAIN SLEE SIP11 Resource Adaptor
	4.4. Uninstalling Mobicents JAIN SLEE SIP11 Resource Adaptor

	Chapter 5. Clustering
	5.1. Failover
	5.2. Load Balancing
	5.2.1. Configuring the Resource Adaptor to be used with Mobicents SIP Load Balancer
	5.2.2. Mobicents SIP Load Balancer
	5.2.2.1. SIP Load Balancing Basics
	5.2.2.2. Pluggable Balancer Algorithms
	5.2.2.3. Distributed load balancing
	5.2.2.4. Implementation of the Mobicents SIP Load Balancer
	5.2.2.5. SIP Message Flow
	5.2.2.6. SIP Load Balancer: Installing, Configuring and Running
	5.2.2.6.1. Configuring the Mobicents SIP Load Balancer
	5.2.2.6.2. Running Mobicents SIP Balancer
	5.2.2.6.3. Stopping
	5.2.2.6.4. Uninstalling

	Appendix A. Revision History
	Index

