RichFaces Developer Guide

RichFaces framework
with a huge library of
rich components and
skinnability support

IO [N A e Yo T w3 1o Y o T 1

2. Technical ReQUITEIMENTSuuiiiiiiii et e e et e et e e e ere e aees 3
2.1, SUPPOIted JAVA VEISIONSccvueiiiieiiii e e e e e e e e e e e e e e e et eaan s 3
2.2. Supported JavaServer Faces Implementations and Frameworksccccccoeeeennnn. 3
b T YU o] oL ¢ (=10 B Y =T AV =Y PPN 3
2.4, SUPPOIEA BIOWSEIS ...ttt ettt e et e e s 4

3. Getting Started with RIChFACESoiiiiiiii e 5
3.1. Downloading RICHFACES 3.2.0 ...c.uuniiiiiiiiieei e 5
3.2, INSTAIIALION ...t e e e 5
3.3. Simple Ajax EChO PrOJECEccoouuiiiiiiii e 6

T T N 1] = = - o T PSPPSR 6
3.3.2. DAta BRAN e 7
3.3.3. faceS-CONfIG.XMI ..o 7
3.4 WD XM Lo e 8
TR T T I 1= o] o) V70 1 =T o | P 9

4. Settings for different enNVIroNMENTS ... e 11
4.1. Web Application Descriptor PArameterscveviuiieiiiieiiiiecieee e e e e 11
S 10 4 TN S PP 14
4.3, APACNE MYFACESiiiiiiii et 14
4.4, FACEIELS SUPPOIT ...ttt et e et e et e e 14
4.5, JBOSS SCAM SUPPOIT «.euiiiiiie et e e et e et e e aaes 15
4.6. POIIEt SUPPOIT «.oeneeeiit ettt 19
4.7, SYDASE EASEIVEN ..ouiiiiii e 19
4.8. OraCle AS/OCAT ..o 19

5. Basic concepts of the RichFaces Frameworkccccooviiiiiiiiiiiiic e, 21
LS00 1o o 18 od 1T o I PP 21
5.2. RichFaces ArchiteCture OVEIVIEWoviiiiuiiiiiiiii e 22
5.3. Limitations and RUIESoiiiiiiii e 24
5.4. Ajax Request OptimIiZationoooiiiiiii e e e eaens 25

5.4.1. RE-RENUEING ..oeitiiiiiii ettt 25
5.4.2. Queue and Traffic Flood Protectioncccocoviiiiiiiiiiiiiie e, 27
5.4.3. Data Processing OPLONScccuuuiiiiiiiiieiiiiie e 28
5.4.4. Action and NaVIgationccocoiiiiiiiiiii e 29
5.4.5. JavaScript INtEractionsc..iieiiiiiiiiiiiii e 30
5.4.6. Iteration components Ajax attributesccccoviviiiieiii i, 31
5.4.7. Other useful attribUtesoiiiiiii e 31
LTS T 0 I o TSP 32
5.5.1. Send an AJaX FEOUESTiiiiiii ittt et et 32
5.5.2. Decide What t0 SENduuiiiiiiiieii e 33
5.5.3. Decide What t0 Changecoouuiiiiiiiiiieiiii e 33
5.5.4. Decide What t0 PrOCESSuuiiiiuieiiiieiiii et e e e e e e e e e e e e e e eaaeees 33
5.6. Filter CoNfiQUIrationoiiiiiiiiiiii e et e e 34
5.7. Scripts and Styles Load Strategyoeeeuiiiiiieiiiieiii e e 37
5.8. Request Errors and Session Expiration Handlingoooiiiiiiiiiiieiiinei, 38

RichFaces Developer Guide

5.8.1. Request Errors Handlingcc.oviiiiiiiiiiicii e 38
5.8.2. Session Expired HaNdliNgooooiiiiiiiiiii e 38

5.9, SKINNADIILY ...vuiiiicei e 39
5.9.1. Why SKINNabilityoooiiiiiii e 39
5.9.2. Using SKINNADBIILYcouiiiiiiiie e 39
B5.9.3. EXAMPIE ... 40
5.9.4. Skin Parameters Tables in RIChFaCescccceoviiiiiiiiiiiiiiee e 41
5.9.5. Creating and Using Your Own SKin File ..o, 43
5.9.6. Built-in skinnability in RIChFacescccoooiiiiiiiiii e 44
5.9.7. Standard controls SKINNINGccoouuiiiiiiiiiii e 45
5.9.8. XCSS file fOrMaLuiiiiiiiiieie e 50
5.9.9. PIUG-N-SKIN <o 51

6. The RIChFaces COMPONENTS ...iuuiiiiiicii e e e e e e e e e e e e eaes 55
6.1, < Ad)aJaXLiStBNEr > i e 55
{00 T I T o o) o) 55
6.1.2. Creating ON @ PAGEeieeteneieiti ettt ettt e ettt e e e e 55
6.1.3. Creating the Component Dynamically Using Javacccccceveveviiieiinnennnnn. 55
6.1.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiii e 56
6.1.5. Relevant resources liNKSoooouiiiiiiiiiii e 57

6.2, < A4 KEEPALIVE > o e 57
{072 T I 1YY o) i o) o 57
6.2.2. Creating the Component with @ Page Tagcooevveviineiiiiiieeeiiiie e 57
6.2.3. Creating the Component Dynamically Using Javacccccceveveviiieiinnennnnn. 58
6.2.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiii e 58
6.2.5. Relevant resources linKSooooiiiiiiiiiiii e 58
SRSV = Tod 110 o] o T= 1= T o o PPN 59
{S0C 0 T I 1YY o) o) o P 59
6.3.2. Creating ON @ PAGEeieeee ettt ettt ettt e e 60
6.3.3. Creating the Component Dynamically Using Javacccoceeveiiiieeinnennnnn. 60
6.3.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiiieec e 60
6.3.5. Relevant resources liNKSoooouiiiiiiiiii e 61

6.4. < adj:commandBUION > ..o 61
(S T I T o) o) P 61
6.4.2. Creating ON @ PAGEeieeeen ettt ettt ettt et et e e e 65
6.4.3. Creating the Component Dynamically Using Javaccccccevevineiinnennnnn. 65
6.4.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiii e 65
6.4.5. Relevant resources linKSooooiiiiiiiiiii e 67

6.5. < adj:commandLink > ..o 67
[T T I 1YY o) o) o 67
6.5.2. Creating ON @ PAGEeieeee ettt ettt ettt et 72
6.5.3. Creating the Component Dynamically Using Javaccccccceveviiieiinneennnn. 72
6.5.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiiie e 72
6.5.5. Relevant resources linkKSoooouiiiiiiiiiii e 73

B.6. < A4 I OMM > e 73

{S 20 T I 1YY o) o) o P 73

6.6.2. Creating ON @ PAGEeieeee ettt ettt et ettt e s 76
6.6.3. Creating the Component Dynamically Using Javacccccceveviieiinnennnnn. 76
6.6.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiiiie e 77
6.6.5. Relevant resources linkKSoooouiiiiiiiiiii e 77
6.7. < adjhtmlCommandLink > ... 78
LS T I T o) o) 78
6.7.2. Creating the Component with @ Page Tagcooevveviiieiiiiiiieeiiiieeeeeie 81
6.7.3. Creating the Component Dynamically Using Javacccccceveviiieiinnennnnn. 81
6.7.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiiii e 81
6.7.5. Relevant resources liNKSooooiiiiiiiiii e 82
6.8. < A@4J:JSFUNCHION > oo e e 82
(S8 0 T I T Y=Y o) o) o P 82
6.8.2. Creating ON @ PAGEeieeeeeeeiii ettt ettt ettt a e e e 84
6.8.3. Creating the Component Dynamically Using Javacccccceeveviiievinnennnnn. 85
6.8.4. Key attributes and ways Of USBJEcccuiiiiiiiiiiiiiiiii e 85
6.8.5. Relevant resources linKSoooouiiiiiiiiii e 86
6.9. < A4JINCIUAE > oo 86
(SR T I T o) o] o P 86
6.9.2. Creating ON @ PAYEeieeee ettt ettt ettt 88
6.9.3. Creating the Component Dynamically Using Javaccccceeveviieiinnennnnn. 89
6.9.4. Relevant resources liNKSoooouiiiiiiii e 89
6.10. < a4j:10adBUNIE > ... 89
6.10.1. DESCHPLON ..ottt ettt e e e e 89
6.10.2. Creating ON @ PAJE «.ccvueirreeeieeeiie et e et e e e e e e e e e e et e e e e et e e eaeaeanaes 90
6.10.3. Creating the Component Dynamically Using Javac.ccooevvvvieerennnnnnn. 90
6.10.4. Key attributes and ways Of USAQEcceevviiiiiiiiii i, 90
6.10.5. Relevant resources lNKScoiiiiiiiii e 91
6.11. < A4Jl0A0SCrIPL > oo 91
6.11.0. DESCHIPLON ..eevtiieiiiti ettt e e e eaa s 91
6.11.2. Creating ON @ PAJE ..ccvuieirteieieeeiie et e e et e e et e e e e e et e e et e e e et e e et aannaaes 91
6.11.3. Creating the Component Dynamically Using Javac.ccoeevvviieereinnnnnn. 92
6.11.4. Key attributes and ways Of USAQEccceviiiiiiiiiii e, 92
6.11.5. Relevant resources lNKS ..o e 92
6.12. < AdJl0adStYlE > oo 92
6.12.0. DESCHIPLON ..ottt et e e e 92
6.12.2. Creating ON @ PAJE ..ceuueirieeeieeeiieeei e et e e e e e e e e e e et e e e et e e eteaaanaes 93
6.12.3. Creating the Component Dynamically Using Javac.ccoeevvvvieerennnnnnn. 93
6.12.4. Key attributes and ways Of USAQEcceeviiiiiiiiiii e, 93
6.12.5. Relevant resources lNKScooiiiiiii e 93
B.13. < A4Jl00 > oo 94
6.13.1. DESCHIPLON ..ottt 94
6.13.2. Creating the Component with a Page Tagcccoeeviiiiiiiiiiiiieci e, 95
6.13.3. Creating the Component Dynamically Using Javacc.ccoeevvvvieerennnnnnn. 95

RichFaces Developer Guide

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.13.4. Key attributes and ways Of USAQEccocevviiiiiiiiiiicii e, 96
6.13.5. Relevant resources lNKSoviiiiiii e 96
< adi:mediaOuUIPUL > ..o 96
6.14.0. DESCHIPLON ..ottt e e e e s 96
6.14.2. Creating ON @ PAGE ..ccvueiiieeiieeeiiee e et e et e e e e e e e e e e et e e e eanas 101
6.14.3. Creating the Component Dynamically Using Javaccceviveeinnnnnnn. 101
6.14.4. Key attributes and ways Of USAQEcceevviiiiiiiiiiiiiii e 102
6.14.5. Relevant resources lNKSoooiiiiiiiiiii e 103
< Ad:0ULPULPANEl > oo 103
6.15.1. DESCHIPLION ..eeuiniiiiii ettt e s 103
6.15.2. Creating ON @ PAGE ..ccuueiiiieii et ee e e e e e e e e e e e e e e e e e e eanas 105
6.15.3. Creating the Component Dynamically Using Javaccceviveeiennnnen. 105
6.15.4. Key attributes and ways Of USAQEcceevviiiiiiiiiiiiiii e 105
6.15.5. Relevant resources lNKS ..o 107
= V- 0= (o = PN 108
6.16.1. DESCHIPLION ..eetiniiiii ettt ettt 108
6.16.2. Creating ON @ PAGE ..ccvueiiieeei et e e e e e e e e e e e e e e et e e e eanas 109
6.16.3. Creating the Component Dynamically Using Javaccceviveeiennnnnn. 109
6.16.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiiiiii e 110
6.16.5. Relevant resources lNKSoooiiiiiiiiiii e 111
S = V7 0T | 111
6.17.1. DESCHIPLION ..ottt 111
6.17.2. Creating ON @ PAGE «.ccvueiiiieii e ee e e e e e e e e e e e e e e e et e e e aanas 113
6.17.3. Creating the Component Dynamically Using Javaccceviveeiennnnnn. 113
6.17.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiiii e e e 113
6.17.5. Relevant resources lINKSoooiiiiiiiiiii e 115
S A I POIIEL > o 115
6.18.1. DESCHIPLION ..eetiiiiiii ettt 115
6.18.2. Creating the Component with a Page Tagc.cccoeeviiiiiiiieeiiiiccieeeiees 115
6.18.3. Creating the Component Dynamically Using Javac..ccoeviveeeennnnnn. 116
6.18.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiici e 116
6.18.5. Relevant resources lINKSoooiiiiiiiiiii e 116
<A I PUSI > 116
6.19.1. DESCHIPLION ..eeteiiiiiii ettt 116
6.19.2. Creating ON @ PAGE «.cvvueiiiieei e ee e e et e e e e e e e e e e e ean s 119
6.19.3. Creating the Component Dynamically Using Javacccevveeeinnnnnnn. 119
6.19.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiiiii e 119
6.19.5. Relevant resources lNKSoooiiiiiiiiiii e 121
= V2 T €= [o] o S 121
6.20.1. DESCHIPLION ..eetiiieiiiii ettt 121
6.20.2. Creating ON @ PAGE «.cvvueiiieeii ettt et et e e e e e e e e e e e e e e eanas 122
6.20.3. Creating the Component Dynamically Using Javaccceviveiiennnnnn. 122
6.20.4. Key attributes and ways Of USAQEcceevviiiiiiiiiii e 123
6.20.5. Relevant resources lNKS ..o 125

vi

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

= V2 T (=T o L= | PN 125

6.21.1. DESCHIPLION oottt ettt 125
6.21.2. Creating ON @ PAGE ..cvvueiiiieiieeeiee e e e e e e e et e e e e e et e e e eanas 126
6.21.3. Creating the Component Dynamically Using Javacccevveeeeennnnnn. 126
6.21.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiiiiii e 126
6.21.5. Relevant resources lNKS ..o 127
= V2 RS v (1 1 128
6.22.1. DESCHIPLION ..eetiiiieiti ettt 128
6.22.2. Creating ON @ PAGE «.cevueiiiieiieeeiie e e e e e e e e e e e e e et e e e eanas 129
6.22.3. Creating the Component Dynamically Using Javacccevvveeiennnnnn. 130
6.22.4. Key attributes and ways Of USAQEcoevviiiiiiiiiii i 130
6.22.5. Relevant resources lNKS ..o 131
= V2 =T 0 o] o To | PP 131
6.23.1. DESCHIPLION ..eetiiiiiiii ettt 131
6.23.2. Creating ON @ PAGE «.ccvueiii et eeeii e et e e e e e e e e e e e e e e e eanas 134
6.23.3. Creating the Component Dynamically Using Javacccevieeeiennnnen. 134
6.23.4. Key attributes and ways Of USAQEceevviiiiiiiiiiiiiiii e 135
6.23.5. Relevant resources lNKSoioiiiiiiiiii e 138
S HIChICAIENUAr > oo 138
6.24.1. DESCHIPLION ..oetiiiiiiii ettt e s 138
6.24.2. KEY FRALUIES ...uieiiiiiiiii e ans 138
6.24.3. Creating the Component with a Page Tagccccooveveiiiiiiiiiiinieeeiineeeees 145
6.24.4. Creating the Component Dynamically Using Javaccccocevvevinnnnnnn. 145
6.24.5. Details Of USAQGEuuiiiiiiiiiiiiii e 145
6.24.6. JAVASCHPL APl oo 154
6.24.7. Look-and-Feel Customizationcccoveiiiiiiiiniiieecie e 154
6.24.8. Skin Parameters Redefinitioncoooiiiiiiiiiiiiii e 155
6.24.9. Definition of Custom Style ClaSSesccuiiiiiiiiieiiiiiieei e 158
6.24.10. Relevant Resources LINKScoooiiiiiiiiiiiiiie e 166
< FICh:COMBOBOX > oo e 166
(S0 R B 1= Yo g o] o T PPN 166
6.25.2. KEY FEALUIES ..ottt 166
6.25.3. Creating the Component with a Page Tagc.ccooveviiiiviiiieiiiieiieeeieees 170
6.25.4. Creating the Component Dynamically Using Javacc.cceeviveeinnnnnnn. 171
6.25.5. Details Of USAQE ...ccuuiiiiiiiiii e 171
6.25.6. JAVASCIIPL AP ..ot 174
6.25.7. Look-and-Feel CUStOMIZAtioNuiiiiiiiiiieiiiiiiieeeii e 174
6.25.8. Skin Parameters Redefinitionc.oooiiiiiiiiiiiii e, 174
6.25.9. Definition of Custom Style ClasSescccovvviiiieiiiieiii e 176
6.25.10. Relevant Resources LinKSooouiiiiiiiiiiiiii e 180
< rich:componentCoNntrol > ... 180
6.26.1. DESCHIPLION ..ottt et 180
6.26.2. KEY FRALUIES ...uiiiiiiiii e 180
6.26.3. Creating the Component with a Page Tagcccooveeeiiiieiiiiinieeiiineeeees 182

Vii

RichFaces Developer Guide

6.27.

6.28.

6.29.

6.30.

6.31.

6.26.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnnn. 182
6.26.5. Details Of USAQGEuuiiiiiiiiiiiiii e 182
6.26.6. Look-and-Feel CUStOMIZationiviiiiiiiieiiiiii e 185
6.26.7. Relevant Resources LiNKSooiiiiiiiiiiii e 185
< IChICONIEXIMENU > oo 185
6.27.1. DESCHIPLION oottt ettt 185
6.27.2. KEY FRALUIES ...uiiiiiiii e e e 185
6.27.3. Creating the Component with a Page Tagcccoooveieiiiiiiiiiinieeeiieeeees 188
6.27.4. Creating the Component Dynamically Using Javaccccocevveeinnnnnn. 188
6.27.5. Details Of USAQGEuuiiiiiiiiiiiiiii et 188
6.27.6. JAVASCHPL APl oo 192
6.27.7. Look-and-Feel Customizationccooviiiiiiiiiniiieei e 193
6.27.8. Skin Parameters Redefinitioncociiiiiiiiiiiiiiii e 193
6.27.9. Definition of Custom Style ClaSSesccuiviiiiiiieiiiiiieii e 193
6.27.10. Relevant Resources LINKScoooiiiiiiiiiiiiiee e 196
< rich:dataFilterSIder > ... 196
(S S 0 I B 1= Yo o] o T PN 196
6.28.2. KEY FEALUIES ..ottt 196
6.28.3. Creating the Component with a Page Tagccooeeviiiiviiiiiiiiiciieeeiees 201
6.28.4. Creating the Component Dynamically Using Javaccceviveeiennnnnn. 201
6.28.5. Details Of USAQEcuuiiiiiiiiii e 201
6.28.6. Look-and-Feel Customizationccooviiiiiiiiiniiiieci e 202
6.28.7. Relevant Resources LiNKScocuiiiiiiiiiiiiiii e 202
< iCh:datasCroller >iiii e 202
(S I B 1= Yo g o] o 1o PPN 202
6.29.2. KEY FEALUIES ...ttt 203
6.29.3. Creating the Component with a Page Tagc.ccoeveviiiiiiiieeiiiecciceeiees 207
6.29.4. Creating the Component Dynamically Using Javacceevneeeiinnnnnn. 208
6.29.5. Details Of USAQE ...ccvuiiiiiiiiii et 208
6.29.6. Look-and-Feel Customizationcccoviiiiiiiiiniiiieci e 210
6.29.7. Skin Parameters Redefinitioncooiiiiiiiiiiiiiiii e 210
6.29.8. Definition of Custom Style ClaSSesccuuiiiiiiiiieiiiiiiieeie e 211
6.29.9. Relevant Resources LiNKScccuiiiiiiiiiiiiiii e 213
< ICHICOIUMNS > oo a s 213
(SRCT 0 I B 1= =Y g o] o T PPN 213
6.30.2. KEY FEALUIES ...t 214
6.30.3. Creating the Component with a Page Tagc.cccoveviiiiiiiieeiiiieciiceeiees 216
6.30.4. Creating the Component Dynamically Using Javac..cceevveeeinnnnnnn. 216
6.30.5. Details Of USAQE ...ccvuiiiiiiiiii e e 217
6.30.6. Look-and-Feel Customizationcccoviiiiiiiiiniiieeci e 220
6.30.7. Skin Parameters Redefinitioncooiiiiiiiiiiiiiii e 220
6.30.8. Definition of Custom Style ClaSSesccuuiiiiiiiiieiiiiiieiii e 220
6.30.9. Relevant Resources LiNKScocuiiiiiiiiiiiiiiiii e 222
< ICh:COIUMNGIOUP > it e e e e e s 222

viii

6.32.

6.33.

6.34.

6.35.

(S0 3 I I 1= Yo o) o1 PPN 222

6.31.2. KEY FEALUIESuiiiiieiii et 223
6.31.3. Creating the Component with a Page Tagccooevviiiiiiiieeiiiiciieeeiees 224
6.31.4. Creating the Component Dynamically Using Javacc.cccevieeeiennnnnn. 225
6.31.5. Details Of USAQE ...ccvuiiiiiiiiii et 225
6.31.6. Look-and-Feel Customizationccooeiiiiiiiiiiiiiiee e 228
6.31.7. Skin Parameters Redefinitioncoiiiiiiiiiiiiii e 228
6.31.8. Definition of Custom Style ClaSSesccuiieiiiiiiieiiiiiieiiii e 228
6.31.9. Relevant Resources LiNKScccuiiiiiiiiiiiiiii e 230
S o3 o o] [0 3 o o TP 230
(SR 720 I B 1= =Y o] o 1o PN 230
6.32.2. KEY FEALUIES ..ottt 231
6.32.3. Creating the Component with a Page Tagccceveviiiiviiiieiiniciieeeiees 233
6.32.4. Creating the Component Dynamically Using Javacccevvveeiinnnnnn. 233
6.32.5. Details Of USAQE ...ccouiiiiiiiii e 234
6.32.6. Sorting and FilteriNgviiiiiiiii e 237
6.32.7. Look-and-Feel CUStOMIZationuiviviiiiiiiiiiiii e 243
6.32.8. Skin Parameters Redefinitionc.cooiiiiiiiiiii 243
6.32.9. Definition of Custom Style ClasSescccoevvviiieiiiieiiieeie e 243
6.32.10. Relevant Resources LinKScooiiiiiiiiiiiiii e 245
S HCh:dAataGrid > oo 245
6.33.1. DESCHIPLON ..eeuiiiiiiiie ettt 245
6.33.2. KEY FRALUIES ..ouieiiiiii e 246
6.33.3. Creating the Component with a Page Tagccccooveviiiiiiiiiiinieieiieeees 250
6.33.4. Creating the Component Dynamically Using Javaccccoceveeevnnnnnnn. 250
6.33.5. Details Of USAGEuuiiiiiiiiiiiiiii e 251
6.33.6. Look-and-Feel CUStOMIZationoviviiiiiieiiiiii e 253
6.33.7. Skin Parameters Redefinitionc.ooooiiiiiiiiiiii e, 253
6.33.8. Definition of Custom Style ClasSesccovvvviiiiiiiieiii e 253
6.33.9. Relevant ResoUrces LiNKSooiuiiiiiiiiiii e 255
< HICh:dAtaLiSt > oo 255
6.34.1. DESCHIPLON oottt ettt 255
6.34.2. KEY FRALUIES ...uieiiiiiii e ans 256
6.34.3. Creating the Component with a Page Tagcccoovveveviiiiiiiiiiieeeiineeees 258
6.34.4. Creating the Component Dynamically Using Javaccccocevvvevvnnnnnnn. 258
6.34.5. Details Of USAQGEuuiiiiiiiiiiiiii et 258
6.34.6. Look-and-Feel CUStOMIZAtioNiiiiiiiiiieiiiiiieeei e 260
6.34.7. Definition of Custom Style ClaSSesccuiviiiiiiieiiiiiieiei e 260
6.34.8. Relevant Resources LiNKSccoouiiiiiiiiiiiiiii e 263
< rich:dataOrderedLiSt > ...ccoiviiiiii e 263
(SRS I B 1= Yo g o] o1 PPN 263
6.35.2. KEY FEALUIES ..ottt 263
6.35.3. Creating the Component with a Page Tagc.cccevevviiiiiiiiviiiiciieeeiees 266
6.35.4. Creating the Component Dynamically Using Javacccevieeeiennnnen. 266

RichFaces Developer Guide

6.36.

6.37.

6.38.

6.39.

6.40.

6.35.5. Details Of USAQE ...ccvuiiiiiiiiii e 266
6.35.6. Look-and-Feel Customizationccooveiiiiiiiiniiiieecie e 268
6.35.7. Definition of Custom Style ClasSSesccovvvviieiiiiieiii e 268
6.35.8. Relevant Resources LiNKSooiuiiiiiiiiiiie e 270
< rich:dataDefinitioNLiSt > ... 270
6.36.1. DESCHIPLION ..oeuuniiiiii ettt 270
6.36.2. KEY FRALUIES ...uiiiiiiiiiei e 271
6.36.3. Creating the Component with a Page Tagccccooveveiiiiiiiiinieeiiineeeees 273
6.36.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnnn. 273
6.36.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 273
6.36.6. Look-and-Feel CUStOMIZAatioNiviiiiiiiiiiiiiii e 275
6.36.7. Definition of Custom Style ClaSSesccuiveiiiiiieiiiiiieiii e 275
6.36.8. Relevant Resources LiNKScocuiiiiiiiiiiiiiii e 277
<rich:dataTable > ... 277
(SR A0 I B 1= Yo o) o1 PPN 277
6.37.2. KEY FEALUIES ..ot e 278
6.37.3. Creating the Component with a Page Tagc.ccooveviiiiiiiieeiiieeiiceeiees 283
6.37.4. Creating the Component Dynamically from Javacccccovvevevinienennn. 283
6.37.5. Details Of USAQE ...ccouiiiiiiiiii e e 283
6.37.6. Look-and-Feel Customizationccooviiiiiiiiiniiieei e 285
6.37.7. Skin Parameters Redefinitioncooiiiiiiiiiiiii e 286
6.37.8. Definition of Custom Style ClaSSesccuuiieiiiiiiieiiiiiieie e 286
6.37.9. Relevant Resources LiNKSccocuiiiiiiiiiiiiiii e 289
< ICh:SUDTADIE > oo e 290
(SRS 0 I B 1= Yo g o) o1 PN 290
6.38.2. KEY FEALUIES ...t 290
6.38.3. Creating the Component with a Page Tagccoeeevviiiiiiiieiiiecciiceeieees 294
6.38.4. Creating the Component Dynamically Using Javaccceviveeennnnnen. 294
6.38.5. Details Of USAQE ...ccouiiiiiiiiii e 294
6.38.6. Look-and-Feel Customizationccooveiiiiiiiiniiiecie e 295
6.38.7. Skin Parameters Redefinitioncooiiiiiiiiiiiiiiic e 295
6.38.8. Definition of Custom Style ClaSSesccuuiviiiiiiieiiiiiieiie e 295
< FCh:ANAParam > ..o s 299
6.39.1. DESCHIPLION ..eetiiiiiiii ettt 299
6.39.2. Creating the Component with a Page Tagccceeeviiiiiiiieeiiiicciceeiees 300
6.39.3. Creating the Component Dynamically Using Javac.ccceviveeiinnnnnn. 300
6.39.4. Details Of USAQE ...ccouiiiiiiiii e 300
6.39.5. Look-and-Feel Customizationccooviiiiiiiiiniiieei e 302
6.39.6. Relevan Resources LiNKScccoiuiiiiiiiiiieiiieeee e 302
< rich:dragindiCator > ... 302
(S0 I B 1= =Y g o] o T PN 302
6.40.2. KEY FEALUIES ...ttt e 302
6.40.3. Creating the Component with a Page Tagc.ccceveviiiiiiiieeiiiicciiceeiees 303
6.40.4. Creating the Component Dynamically Using Javacc.cccevieeeinnnnnnn. 303

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.40.5. Details Of USAQE ...ccvuiiiiiiiiii et 304

6.40.6. Look-and-Feel Customizationcccoviiiiioiiiniiieee e 306
6.40.7. Relevant Resources LiNKScocuiiiiiiiiiiiiiiiii e 306
< IChIAragSUPPOIT > oo 306
L I 1= =Y o] o T PN 306
6.41.2. KEY FEALUIES ..ottt 307
6.41.3. Creating the Component with a Page Tagccoeeeviiiiiiiiieiiiiccieeeiees 310
6.41.4. Creating the Component Dynamically Using Javacceevieeeiennnnnn. 310
6.41.5. Details Of USAQE ...ccvuiiiiiiiiiii et 311
6.41.6. Look-and-Feel Customizationccooviiiiiiiiiniieci e 313
6.41.7. Relevant Resources LiNKScocuiiiiiiiiiiiiiiii e 313
S e A Mo [0] o 1T o] o] o AP 313
(S T 1= Yo o] o T PN 313
6.42.2. KEY FEALUIES ...t 313
6.42.3. Creating the Component with a Page Tagc.cccoveviiiiiiiieiiiieciieceeiees 317
6.42.4. Creating the Component Dynamically Using Javacceeviveeennnnnnn. 317
6.42.5. Details Of USAQE ...ccvuiiiiiiiiiii et 317
6.42.6. Look-and-Feel Customizationccooviiiiiiiiiiiiie e 320
6.42.7. Relevant Resources LiNKScocuuiiiiiiiiiiiiii e 320
< Ch:dragLiStENEr > ..ouiiiii e 320
LS I B 1= Yo o] o1 PN 320
6.43.2. KEY FEALUIES ...ttt e 320
6.43.3. Creating the Component with a Page Tagc.cccevevviiiiiiiieiiieciiceeiees 321
6.43.4. Creating the Component Dynamically Using Javac.ccceviveeeennnnen. 321
6.43.5. Details Of USAQE ...ccvuiiiiiiiiii e 321
6.43.6. Look-and-Feel Customizationccooviiiiiiiiiiiiieei e 322
< Ch:ArOPLISIENET > oo 322
6.44. 1. DESCHIPLION ..eeuuniiiiii ettt 322
6.44.2. KEY FRALUIES ...uieiiiiiii et ans 322
6.44.3. Creating the Component with a Page Tagcccoooveveiiiiiiiiiinieeeiineeees 323
6.44.4. Creating the Component Dynamically Using Javaccccocvvveeennnnnnn. 323
6.44.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 324
6.44.6. Look-and-Feel CUStOMIZatioNiviviiiiiieiiiiii e 324
< FCh:dropDOWNMENU > ... 325
LS L I B 1= Yo g o] o T PN 325
6.45.2. KEY FEALUIES ...ttt 325
6.45.3. Creating the Component with a Page Tagc.cccoveviiiiiiiiiiiiiicciiceeieens 327
6.45.4. Creating the Component Dynamically Using Javac..ccceviveeinnnnnen. 328
6.45.5. Details Of USAQE ...ccvuiiiiiiiiii e 328
6.45.6. Look-and-Feel Customizationccooveiiiiiiiinieii e 331
6.45.7. Skin Parameters Redefinitioncoiiiiiiiiiiiiiii e 331
6.45.8. Definition of Custom Style ClaSSesccuuiveiiiiiieiiiiiieiii e 332
6.45.9. Relevant Resources LiNKScccuiiiiiiiiiiiiiii e 335
< HCNIMENUGTOUP > oottt e eanens 335

Xi

RichFaces Developer Guide

6.47.

6.48.

6.49.

6.50.

LS I B 1= Yo g o] o1 PN 335
6.46.2. KEY FEALUIES ...ttt 335
6.46.3. Creating the Component with a Page Tagc.ccceeeviiiiiiiiiviiieciiceeiees 337
6.46.4. Creating the Component Dynamically Using Javacccevneeeiennnnen. 337
6.46.5. Details Of USAQEcouiiiiiiiii e 337
6.46.6. Look-and-Feel Customizationccooveiiiiiiiiniiiieie e 339
6.46.7. Skin Parameters Redefinitioncoiiiiiiiiiiiiiii e 339
6.46.8. Definition of Custom Style ClaSSesccuiieiiiiiiieiiiiiiieiii e 340
6.46.9. Relevant Resources LiNKScoouiiiiiiiiiiiiii e 342
< HCNIMENUITEM > e e e 342
LS T 1= Yo o] o1 PPN 342
6.47.2. KEY FEALUIES ..ottt 342
6.47.3. Creating the Component with a Page Tagc.ccoeveviiiiiiiieviiiecciieeeiees 346
6.47.4. Creating the Component Dynamically Using Javaccoeviveeiennnnnn. 346
6.47.5. Details Of USAQE ...ccuuiiiiiiiiii i 346
6.47.6. Look-and-Feel Customizationccooviiiiiiiiiniiiieci e 348
6.47.7. Skin Parameters Redefinitioncoiiiiiiiiiiiiiii e 348
6.47.8. Definition of Custom Style ClaSSeScoevveviiiiiiiiiiieiiii e 348
6.47.9. Relevant Resources LiNKSccocuiiiiiiiiiiiiiii e 351
< FIChIMENUSEPAIAtOr > oot 351
LSS I B 1= Yo g o] o1 PN 351
6.48.2. Creating the Component with a Page Tagcccoooveveiiiiiiiiinieeciineeeees 352
6.48.3. Creating the Component Dynamically Using Javaccccocevveevnnnnnnn. 352
6.48.4. Look-and-Feel Customizationccooveiiiioiiiniiiieii e 352
6.48.5. Skin Parameters Redefinitioncooiiiiiiiiiiiiii e 353
6.48.6. Definition of Custom Style ClaSSesccuiviiiiiiieiiiiiiieii e 353
6.48.7. Relevant Resources LiNKScocuiiiiiiiiiiiiiii e 354
< HIChIEIfECE > oo 354
(SR I B 1= Yo g o] o1 PN 354
6.49.2. KEY FEALUIES ...ttt 354
6.49.3. Creating the Component with a Page Tagc.ccceveviiiiiiiieviiiiciiceeieees 355
6.49.4. Creating the Component Dynamically Using Javac..cceevieeeiennnnen. 355
6.49.5. Details Of USAQE ...ccvuiiiiiiiiii e 356
6.49.6. Look-and-Feel Customizationccoviiiiiiiiiniiecie e 358
6.49.7. Relevant Resources LiNKScocuiiiiiiiiiiiiiiii e 358
< rich:fileUPIoad > ... 358
LSRS08 A B 1= =Y g o] o T PPN 358
6.50.2. KEY FEALUIES ...ttt 358
6.50.3. Creating the Component with a Page Tagcccoveviiiiiiiieeiiiiciiceeieens 363
6.50.4. Creating the Component Dynamically Using Javac..cccevvveeeennnnnn. 363
6.50.5. Details Of USAQE ...ccuuiiiiiiiiii e 363
6.50.6. JAVASCIIPL AP ..ooviiei e 369
6.50.7. Look-and-Feel CUStOMIZAtioNuiiiiiiiiiieiiiiiiieecci e 369
6.50.8. Skin Parameters Redefinitionc.cooiiiiiiiiiii 369

Xii

6.51.

6.52.

6.53.

6.54.

6.55.

6.50.9. Definition of Custom Style ClasSSescc.ovvviiiiiiiiieiii e 371

6.50.10. Relevant ResoUrces LinNKSocoouiiiiiiiiiiiiii e 374
S o o o ' =T o 374
6.51.1. DESCHIPLION ..eetiiiiii ettt 374
6.51.2. KEY FRALUIES ...uieiiiiiii e ans 375
6.51.3. Creating the Component with a Page Tagccccooveveiiiniiiiiiinieieiieeeees 377
6.51.4. Creating the Component Dynamically Using Javaccccoccuevevvnnnnnn. 377
6.51.5. Details Of USAGEuuiiiiiiiiiiiiiii et 377
6.51.6. Look-and-Feel CUStOMIZationcivieiiiiiieiiiiii e 380
6.51.7. Definition of Custom Style ClaSSesccuuiiiiiiiiiieiiiiiieii e 380
6.51.8. Relevant Resources LiNKScocuiiiiiiiiiiiiiiiii e 382
< richivirtUAlEArth > oo e 382
(SRS R B 1= Yo g o] o T o PPN 382
6.52.2. KEY FEALUIES ...ttt 382
6.52.3. Creating the Component with a Page Tagc.ccooveviiiiiiiiiviiiiciiieeeiees 384
6.52.4. Creating the Component Dynamically Using Javac..ccoevieeeiennnnnn. 384
6.52.5. Details Of USAQE ...ccuuiiiiiiiiii e 385
6.52.6. Look-and-Feel Customizationccooviiiiiiiiiniiieei e 386
6.52.7. Definition of Custom Style ClasSSesccovvviiiiiiiiieiii e 386
6.52.8. Relevant ResoUrces LiNKSooiuuiiiiiiiiiii e 386
< rCh:iNPlaCeINPUL > .o 386
6.53.1. DESCHIPLION ..oeuiiiieii ettt 386
6.53.2. KEY FRALUIES ...uieiiiiiii it ans 387
6.53.3. Creating the Component with a Page Tagccccooveveiiiniiiiiinieeciineeees 391
6.53.4. Creating the Component Dynamically Using Javaccccoccvveeinnnnnn. 391
6.53.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 391
6.53.6. JAVASCHPL APl oo 396
6.53.7. Look-and-Feel Customizationccoveiiiiiiiiiiiieeie e 396
6.53.8. Skin Parameters Redefinitioncocoiiiiiiiiiiiii e 397
6.53.9. Definition of Custom Style ClaSSesccuviiiiiiiiieiiiiiieeei e 397
6.53.10. Relevant Resources LINKScoooiiiiiiiiiiiii e 400
< rICh:iNPlACESEIECT > ..o 400
(SR I B 1= Yo o] o1 PPN 400
6.54.2. KEY FEALUIES ...ttt 401
6.54.3. Creating the Component with a Page Tagc.ccooveviiiiiiiiiiiiiicciieeeiees 405
6.54.4. Creating the Component Dynamically Using Javacccevieeeiennnnen. 405
6.54.5. Details Of USAQE ...ccvuiiiiiiiiii et 406
6.54.6. JAVASCIIPL AP ..ooiiiii e 410
6.54.7. Look-and-Feel CUStOMIZAtioNiiiiiiiiiieiiiiiiieecci e 411
6.54.8. Skin Parameters Redefinitionc.coooiiiiiiiiiiii e, 411
6.54.9. Definition of Custom Style ClasSSescc.ovviviiiiiiiieiiii e 412
6.54.10. Relevant Resources LinKScooiiiiiiiiiiiiiiii e 415
< rich:inputNUmMberSIider > ... 415
6.55.1. DESCHIPLION ..oeuiniiiii ettt 415

Xiii

RichFaces Developer Guide

6.56.

6.57.

6.58.

6.59.

6.55.2. KEY FRALUIES ...uieiiiiiii e 415
6.55.3. Creating the Component with a Page Tagccccooveeeiiiiiiiiiiinieieiieeees 419
6.55.4. Creating the Component Dynamically Using Javaccccoceveevinnnnnn. 419
6.55.5. Details Of USAQGEuuiiiiiiiiiiiiiiii e 420
6.55.6. Look-and-Feel CUStOMIZAatioNiviviiiiiiiiiiiii e 421
6.55.7. Skin Parameters Redefinitionc.ccooiiiiiiiiini e, 421
6.55.8. Definition of Custom Style ClasSesccovvvviiieiiiiiiiiiecie e 422
6.55.9. Relevant ResouUrces LiNKSooouiiiiiiiiiii e 424
< rich:inpUtNUMbBErSPINNEr > .o 424
6.56.1. DESCHIPLION ..ottt et 424
6.56.2. KEY FRALUIES ...uiiiiiiiiii e 424
6.56.3. Creating the Component with a Page Tagcccoovveveiiiiiiiiiinieeeiineeees 428
6.56.4. Creating the Component Dynamically Using Javaccccoceueveevnnnnnn. 428
6.56.5. Details Of USAGEuuiiiiiiiiiiiiiii et 428
6.56.6. Look-and-Feel CUStOMIZAtioNc.uiiiiiiiiiieiiiii e 429
6.56.7. Skin Parameters Redefinitionc.cocoiiiiiiiiiiii e, 430
6.56.8. Definition of Custom Style ClasSescccovviiiiiiiiiieiii e 430
6.56.9. Relevant ResoUrces LiNKSooiuiiiiiiiiiii e 432
S 1103 T Y= o SRR 432
6.57.1. DESCHIPLON ..ottt 432
6.57.2. KEY FRALUIES ...uieiiiiiii e ans 432
6.57.3. Creating the Component with a Page Tagccccooveeeiiiiiiiiiinieeeiieeees 433
6.57.4. Creating the Component Dynamically Using Javaccccocevvevinnnnnnn. 433
6.57.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 433
6.57.6. Look-and-Feel CUStOMIZAatioNiiiiiiiiiieiiiiii e 434
6.57.7. Relevant Resources LiNKSooiuiiiiiiiiiii e 434
S 1o o 1 U= oSN 434
6.58.1. DESCHIPLION ..eetiniiiii ettt 434
6.58.2. KEY FRALUIES ...uiiiiiiiii e 435
6.58.3. Creating the Component with a Page Tagccccooveveiiiiiiiiiinieeeiieeeees 436
6.58.4. Creating the Component Dynamically Using Javaccccocvvvveeinnnnnn. 436
6.58.5. Details Of USAGEuuiiiiiiiiiiiiii et 436
6.58.6. Look-and-Feel CUStOMIZationiveeiiiiiieiiiii e 440
6.58.7. Relevant ResoUrces LiNKSooiuiiiiiiiiiiii e 440
S ChIISISNULHIE > oo e 440
6.59.1. DESCHIPLION ..eetiiiiiiii ettt 440
6.59.2. KEY FRALUIES ...uiiiiiiiii e 440
6.59.3. Creating the Component with a Page Tagccccooveveiiiiieiiiiinieeeiineeeees 444
6.59.4. Creating the Component Dynamically Using Javaccccocvvvveeinnnnnnn. 444
6.59.5. Details Of USAGEuuiiiiiiiiiiiiiii et 445
6.59.6. JAVASCHPL APl oo 449
6.59.7. Look-and-Feel Customizationccooviiiiioiiiniiieci e 450
6.59.8. Skin Parameters Redefinitioncooiiiiiiiiiiiiii e 450
6.59.9. Definition of Custom Style ClaSSesccuviiiiiiiiiiiiiiieie e 452

Xiv

6.60.

6.61.

6.62.

6.63.

6.64.

6.59.10. Relevant RESOUICES LINKSoiuieiiiiiieieeee e 457

< FICRIMESSAGE > oot e e et et 457
(SRS 0 I B 1= =Y g o] o1 PN 457
6.60.2. KEY FEALUIES ...ttt 457
6.60.3. Creating the Component with a Page Tagc.ccooveviiiiiiiieeiiiicciceeieens 459
6.60.4. Creating the Component Dynamically Using Javacccevveeeinnnnnen. 460
6.60.5. Details Of USAQE ...ccvuiiiiiiiii e 460
6.60.6. Look-and-Feel Customizationccooeiiiiioiiiiiiiiecie e 461
6.60.7. Definition of Custom Style ClaSSesccoivviiiieiiiieiii e 461
6.60.8. Relevant ResoUrces LiNKSooiuiiiiiiiiiiiii e 463
< HICNIMESSAGES > oottt 463
6.61.1. DESCHIPLION ..eevuniiiiii ettt 463
6.61.2. KEY FRALUIES ...uieiiiiiii it ans 463
6.61.3. Creating the Component with a Page Tagccccooveveiiiniiiiiinieeiiineeeees 466
6.61.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnnn. 466
6.61.5. Details Of USAGEuuiiiiiiiiiiiiiii et 466
6.61.6. Look-and-Feel CUStOMIZatioNiiiiiiiiiieiiiiii e 467
6.61.7. Definition of Custom Style ClaSSesccuiiiiiiiiieiiiiiieee e 468
6.61.8. Relevant Resources LiNKScoouuiiiiiiiiiiiiiii e 470
< rich:modalPanel > ... 470
(S22 I B 1= Yo o] o1 PPN 470
6.62.2. KEY FEALUIES ...ttt 471
6.62.3. Creating the Component with a Page Tagc.ccoeveviiiiiiiiieiiiiciiieeeieens 474
6.62.4. Creating the Component Dynamically Using Javac..cceevvveeeennnnnn. 474
6.62.5. Details Of USAQE ...ccvuiiiiiiiiii i 474
6.62.6. JAVASCIIPL AP ..ooviiii e 479
6.62.7. Look-and-Feel CUStOMIZAtioNcc.uiiiiiiiiiiiiiiiii e 479
6.62.8. Skin Parameters Redefinitionc.ooooiiiiiiiiiiii e 480
6.62.9. Definition of Custom Style ClasSSescccovviviiiiiiiiiiii e 481
6.62.10. Relevant Resources LinKSoooiiiiiiiiiiiiii e 483
< Ch:orderingLiSt > oo 484
6.63.1. DESCHIPLION ..eetuiiiiiiii ettt 484
6.63.2. KEY FRALUIES ...uiiiiiiiii e 484
6.63.3. Creating the Component with a Page Tagccccooveieiiiiiiiiiinieeeiineeees 487
6.63.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnnn. 487
6.63.5. Details Of USAQGEuuiiiiiiiiiiiiii e 488
6.63.6. JAVASCHPL APl oot 491
6.63.7. Look-and-Feel Customizationccooveiiiiiiiiiiiiiecie e 492
6.63.8. Skin Parameters Redefinitioncociiiiiiiiiiiiiii e, 492
6.63.9. Definition of Custom Style ClaSSescccuuiviiiiiiieiiiiiieii e 494
6.63.10. Relevant Resources LINKScoooiiiiiiiiiiiiiii e 498
S HCRIPAINTIZD > oo e 498
(S I B 1= =Y o] o T PN 498
6.64.2. KEY FEALUIES ...ttt 499

XV

RichFaces Developer Guide

6.65.

6.66.

6.67.

6.68.

6.64.3. Creating the Component with a Page Tagc.cccovevviiiiiiiiviiiicciieeeiees 501
6.64.4. Creating the Component Dynamically Using Javac..cccevieeeinnnnnen. 501
6.64.5. Details Of USAQEcouiiiiiiiiii e 502
6.64.6. Look-and-Feel Customizationccooveiiiiiiiiniiiieeie e 503
6.64.7. Relevant Resources LiNKScocuiiiiiiiiiiiiii e 503
SO PANE] > e 503
6.65.1. DESCIIPLION ..ovuiiiiiieii et e e e e e e e e e e aaen 503
6.65.2. KEY FEALUIES ...t 503
6.65.3. Creating the Component with a Page Tagc.ccceveviiiiiiiiieiiieccieeeiees 505
6.65.4. Creating the Component Dynamically Using Javac.cceeviveeiennnnnn. 505
6.65.5. Details Of USAQE ...ccuuiiiiiiiiii e 505
6.65.6. Look-and-Feel Customizationccooveiiiiiiiiniiiin e 507
6.65.7. Skin Parameters Redefinitioncocoiiiiiiiiiiii e 507
6.65.8. Definition of Custom Style ClaSSesccuiviiiiiiiieiiiiiiieiii e 508
6.65.9. Relevant Resources LiNKScoouiiiiiiiiiiiiiiii e 510
S IChIPANEIBAN > oo 510
(SRS T 0 I B 1= =Y g o] o T PPN 510
6.66.2. KEY FEALUIES ...ttt 510
6.66.3. Creating the Component with a Page Tagccooveviiiiviiieeiiieeciceeiees 512
6.66.4. Creating the Component Dynamically Using Javaccceviveeiennnnnn. 513
6.66.5. Details Of USAQEcuuiiiiiiiiii e 513
6.66.6. Look-and-Feel Customizationccooviiiiiiiiiniiiieie e 513
6.66.7. Skin Parameters Redefinitioncooiiiiiiiiiiiii e 514
6.66.8. Definition of Custom Style ClaSSesccuiviiiiiiieiiiiiieiii e 514
6.66.9. Relevant Resources LiNKScocuuiiiiiiiiiiiiiiii e 517
< rich:panelBarltem > .o 517
(SR T B 1= =Y g o] o T o PN 517
6.67.2. KEY FEALUIES ...ttt 517
6.67.3. Creating the Component with a Page Tagc.ccooeevviiiviiieiiiiiiciieeeiees 518
6.67.4. Creating the Component Dynamically Using Javac..ccceviveeeinnnnen. 518
6.67.5. Details Of USAQE ...ccouiiiiiiiiiii i 519
6.67.6. Look-and-Feel Customizationcccoveiiiioiiiniiiieei e 519
6.67.7. Skin Parameters Redefinitioncociiiiiiiiiiiiii e 520
6.67.8. Definition of Custom Style ClaSSesccuuiveiiiiiiieiiiiiieii e 520
< HChIPANEIMENU > oo e 523
6.68.1. DESCHIPLION ..oeuuiiiiii ettt 523
6.68.2. KEY FRALUIES ...uieiiiiiiii e ans 524
6.68.3. Creating the Component with a Page Tagccccooveveiiiiiiiiiinieeciineeeees 529
6.68.4. Creating the Component Dynamically Using Javaccccocevvvevinnnnnnn. 530
6.68.5. Details Of USAGEuuiiiiiiiiiiiiiii e 530
6.68.6. JAVASCHPL APl oot 533
6.68.7. Look-and-Feel Customizationccooveiiiiiiiiiiiieci e 533
6.68.8. Definition of Custom Style ClasSSesccovvvviiiiiiiiiiiii e 533
6.68.9. Relevant ResoUrces LiNKSooiiiiiiiiiiiiii e 535

XVi

6.69. < rich:panelMENUGIOUPR > ..oiiuiiiiiiii e e e e e e e 535

6.69.1. DESCHIPLION ..ottt ettt 535
6.69.2. KEY FRALUIES ...uieiiiiiii it ans 535
6.69.3. Creating the Component with a Page Tagccccooveveiiiiiiiiinieceiieeees 541
6.69.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnn. 542
6.69.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 542
6.69.6. JAVASCHPL APl oo 544
6.69.7. Look-and-Feel Customizationccooviiiiiiiiiniiie e 544
6.69.8. Skin Parameters Redefinitioncoiiiiiiiiiiiiiii e 544
6.69.9. Definition of Custom Style ClaSSesccuuiviiiiiiieiiiiiie e 545
6.69.10. Relevant resources lINKScoouoiiiiiiiiiiiiii e 548
6.70. < rich:panelMenuItem > .. e 548
(ST O A B 1= Yo g o] o T PPN 548
6.70.2. KEY FEALUIES ..ottt 548
6.70.3. Creating the Component with a Page Tagccoeveviiiiiiiiieiiieeeeeeieens 552
6.70.4. Creating the Component Dynamically Using Javac..cceeviveeiennnnnn. 553
6.70.5. Details Of USAQE ...ccvuiiiiiiiii e 553
6.70.6. Look-and-Feel Customizationccooveiiiiiiiiiiiiieci e 555
6.70.7. Skin Parameters Redefinitioncooiiiiiiiiiiiiii e 555
6.70.8. Definition of Custom Style ClaSSesccuuiiiiiiiiiieiiiiiieii e 555
6.70.9. Relevant resSoUrces liNKScoioviuiiiiiiiiii e 559
6.71. < riChIPICKLIST > oo e 559
L T 1= Yo o) o1 PN 559
6.71.2. KEY FEALUIES ..ottt e 559
6.71.3. Creating the Component with a Page Tagcccoveviiiiiiiieiiiiecciceeiees 562
6.71.4. Creating the Component Dynamically Using Javacccevieeeinnnnnnn. 562
6.71.5. Details Of USAQE ...ccvuiiiiiiiiii et 562
6.71.6. Look-and-Feel Customizationccooveiiiioiiiiiiiieei e 565
6.71.7. Skin Parameters Redefinitioncooiiiiiiiiiiiiiii e 565
6.71.8. Definition of Custom Style ClaSSesccuvviiiiiiiieiiiiiiieieii e 567
6.71.9. Relevant Resources LiNKScocuiiiiiiiiiiiiiiii e 571
6.72. < FIChIPrOgreSSBar > ..o 571
(S 4720 T B 1= Yo o) o T PPN 571
6.72.2. KEY FEALUIES ...t e 571
6.72.3. Creating the Component with a Page Tagc.ccceveviiiiiiiiieiiieciieeeieees 574
6.72.4. Creating the Component Dynamically Using Javacc.ccceviveeeinnnnnn. 575
6.72.5. Details Of USAQE ...ccuuiiiiiiiii e 575
6.72.6. JAVASCIIPL AP ..ooiie e 578
6.72.7. Look-and-Feel CUStOMIZAtioNiiiiiiiiiieiiiii e 578
6.72.8. Skin Parameters Redefinitionc.ocoiiiiiiiiiiii e, 579
6.72.9. Definition of Custom Style ClasSSescccovvviiiiiiiiiiiiii e 580
6.72.10. Relevant Resources LinKSoooiiiiiiiiiiiiii e 582
6.73. < rich:scrollableDataTable > ... 582
6.73.1. DESCHIPLION oottt et et 582

XVii

RichFaces Developer Guide

6.74.

6.75.

6.76.

6.77.

6.73.2. KEY FRALUIES ..ouiiiiiiiii e ans 583
6.73.3. Creating the Component with a Page Tagccccooveveiiiniiiiiinieeeiineeeees 587
6.73.4. Creating the Component Dynamically Using Javaccccocvvvveeinnnnnnn. 587
6.73.5. Details Of USAQGEuuiiiiiiiiiiiiiii et 587
6.73.6. JAVASCHPL APl oo 591
6.73.7. Look-and-Feel Customizationccooveiiiiiiiiiiiiieei e 591
6.73.8. Skin Parameters Redefinitioncoooiiiiiiiiiiiiii e 5901
6.73.9. Definition of Custom Style ClaSSesccuuiiiiiiiiieiiiiiieiei e 592
6.73.10. Relevant Resources LINKScoooiiiiiiiiiiiiiii e 597
Sl ¢ BT o T L Lo 597
LS T B 1= =Y g o] (o1 PN 597
6.74.2. KEY FEALUIES ...ttt 597
6.74.3. Creating the Component with a Page Tagccoevevviiiviiiieiiiicciieeeiees 599
6.74.4. Creating the Component Dynamically Using Javacccevieeeiennnnnn. 599
6.74.5. Details Of USAQE ...ccuuiiiiiiiiii e 599
6.74.6. Look-and-Feel Customizationccooviiiiiiiiiiiiii e 600
6.74.7. Definition of Custom Style ClasSSescc.ovvviiiieiiiiiiiiecie e 600
6.74.8. Relevant ResoUrces LiNKSooiuiiiiiiiiiii e 602
< rich:simpleTogglePanel > ... 602
6.75.1. DESCHIPLION oottt ettt 602
6.75.2. KEY FRALUIES ...uiiiiiiiii e ans 602
6.75.3. Creating the Component with a Page Tagcccoooveveiiiiiiiiiiinieeeiineeeees 606
6.75.4. Creating the Component Dynamically Using Javaccccocvvveeennnnnnn. 606
6.75.5. Details Of USAQGEuuiiiiiiiiiiiiii et 606
6.75.6. Look-and-Feel CUStOMIZAtioNuiiiiiiiiiieiiiiii e 607
6.75.7. Skin Parameters Redefinitionc.ccooiiiiiiiiiiii 608
6.75.8. Definition of Custom Style ClasSesccovvvviiiiiiiiiiiieeie e 608
6.75.9. Relevant ResoUrces LiNKSooiiiiiiiiiiiii e 611
S 1o R 0= Lo =T P 611
6.76.1. DESCHIPLION ..eeuinieiiii ettt 611
6.76.2. KEY FRALUIES ...uiiiiiiiii et 611
6.76.3. Creating the Component with a Page Tagccccooveveiiiiiiiiiinieeeiineeeees 613
6.76.4. Creating the Component Dynamically Using Javaccccoceveeeevnnnnnn. 613
6.76.5. Details Of USAQGEuuiiiiiiiiiiiiiiii e 613
6.76.6. Look-and-Feel CUStOMIZAtioNc.iieiiiiiiieiiiiii e 613
6.76.7. Relevant ResoUrces LiNKSooiiiiiiiiiiiii e 614
< rich:suggestionboX > ..o 614
B.77.1. DESCHIPLION ..ottt ettt e s 614
B.77.2. KEY FRALUIES ...uiiiiii it ans 614
6.77.3. Creating the Component with a Page Tagcccoooveiiiiiiiiiiiiinieeeiineeeees 621
6.77.4. Creating the Component Dynamically Using Javaccccocvvvvevennnnnn. 621
6.77.5. Details Of USAQGEuuiiiiiiiiiiiiiii e 622
6.77.6. Look-and-Feel CUStOMIZAtioNiiiiiiiiiieiiiiii e 625
6.77.7. Skin Parameters Redefinitionc.coooiiiiiiiiiiii 626

XViii

6.78.

6.79.

6.80.

6.81.

6.82.

6.77.8. Definition of Custom Style ClasSSesccoevviiiiiiiiiiiii e 627

6.77.9. Relevant ReSoUrces LiNKSooiiuiiiiiiiiii e 629
< ICh:tAbPaNEl > oo 629
6.78.1. DESCHIPLION ..eeuiiiiiiii ettt 629
6.78.2. KEY FRALUIES ...uiiiiiiiiie e 629
6.78.3. Creating the Component with a Page Tagccccooveiiiiiiiiiiiiinieeeiineeeees 632
6.78.4. Creating the Component Dynamically Using Javaccccocevvveevnnnnnn. 633
6.78.5. Details Of USAQGEuuiiiiiiiiiiiiii ettt 633
6.78.6. Look-and-Feel CUStOMIZationiiiiiiiiiieiiiiii e 635
6.78.7. Skin Parameters Redefinitioncocooiiiiiiiiiii 635
6.78.8. Definition of Custom Style ClasSSescccviviiiiiiiiiiiii e 636
6.78.9. Relevant ResoUrces LiNKSooiiiiiiiiiiiii e 638
S HICNIAD > 639
6.79.1. DESCHIPLION ..eetiniiiii ettt 639
6.79.2. KEY FRALUIES ...uiiiiiiiiii e ans 639
6.79.3. Creating the Component with a Page Tagcccoooveveiiniieiiiinieeeiineeeees 643
6.79.4. Creating the Component Dynamically Using Javaccccocvvvveeinnnnnnn. 643
6.79.5. Details Of USAQGEuuiiiiiiiiiiiiii et 644
6.79.6. Look-and-Feel CUStOMIZAtioNuiiieiiiiiiiiiiii e 646
6.79.7. Skin Parameters Redefinitioncccoooiiiiiiiiiiii e, 646
6.79.8. Definition of Custom Style ClasSSesccovvviiiiiiiiiiiii e 648
< rich:togglePanEl > ... 650
(SRS 0 I B 1= =Y g o] o1 o PN 650
6.80.2. KEY FEALUIES ...ttt 651
6.80.3. Creating the Component with a Page Tagcccoveviiiiiiiieviiiiciiceeieens 653
6.80.4. Creating the Component Dynamically Using Javacccevieeeennnnnen. 654
6.80.5. Details Of USAQE ...ccvuiiiiiiiiii e 654
6.80.6. Look-and-Feel Customizationccoveiiiioiiiniiieci e 655
6.80.7. Definition of Custom Style ClasSSescc.ovvviiiieiiiieiii e 655
6.80.8. Relevant ResoUrces LiNKSooiuiiiiiiiiiii e 657
< rich:toggleCoNtrOl > ..o 657
6.81.1. DESCHIPLION ..eeuuniiiii ettt 657
6.81.2. KEY FRALUIES ...uiiiiiiiii it ans 658
6.81.3. Creating the Component with a Page Tagccccooveveiiiniiiiinieeeiineeeees 662
6.81.4. Creating the Component Dynamically Using Javaccccocevvvevinnnnnn. 662
6.81.5. Details Of USAGEuuiiiiiiiiiiiii e 662
6.81.6. Look-and-Feel CUStOMIZAtioNccuuiieiiiiiieiiiiii e 663
6.81.7. Definition of Custom Style ClaSSesccuiviiiiiiieiiiiiieiii e 663
S HICHIOOIBAr > oo 665
6.82.1. DESCHIPLION ..ottt et 665
6.82.2. KEY FRALUIES ...uiiiiiiiii e 665
6.82.3. Creating the Component with a Page Tagccccooveveiiiniiiiiinieeiiieeeees 666
6.82.4. Creating the Component Dynamically Using Javaccccocevvveeinnnnnnn. 667
6.82.5. Details Of USAGEuuiiiiiiiiiiiiiii e 667

XiX

RichFaces Developer Guide

6.83.

6.84.

6.85.

6.86.

6.82.6. Look-and-Feel CUStOMIZAtioNc.iieiiiiiiieiiiii e 669
6.82.7. Skin Parameters Redefinitionc.coooiiiiiiiiiiii 669
6.82.8. Definition of Custom Style ClasSSescccovveiiiiiiiiieiii e 669
6.82.9. Relevant ResoUrces LiNKSooiuuiiiiiiiiiiii e 671
S o gl (o T0]| 27 T T (0 U1 o P 671
6.83.1. DESCHIPLION ..ottt ettt 671
6.83.2. KEY FRALUIES ...uiiiiiiiii e ans 671
LTS 1 70 TSP 672
6.83.4. Creating the Component with a Page Tagcccoeeviiiiiiiiieiiicciieeeiees 672
6.83.5. Creating the Component Dynamically Using Javacccevieeeennnnnnn. 673
6.83.6. Details Of USAQEcouiiiiiiiiiii e 673
6.83.7. Look-and-Feel Customizationcccovviiiiiiiiiiiieeie e 674
6.83.8. Definition of Custom Style ClasSescc.ovvviiiiiiiiieiiieeie e 674
6.83.9. Relevant resources lNKSoooiioiiiiii e 675
S CNI00ITID > i 675
6.84.1. DESCHIPLION ..oetiiiiiii ettt 675
6.84.2. KEY FRALUIES ...uiiiiiiiii i 675
6.84.3. Creating the Component with a Page Tagcccooveieiiiiiiiiiinieiiiineeees 678
6.84.4. Creating the Component Dynamically Using Javaccccocvvveeinnnnnn. 678
6.84.5. Details Of USAQGEuuiiiiiiiiiiiiii e 678
6.84.6. JAVASCHPL APl oo 681
6.84.7. Look-and-Feel Customizationccooviiiiiiiiiiiiiieci e 681
6.84.8. Skin Parameters Redefinitioncociiiiiiiiiiiiii e 681
6.84.9. Definition of Custom Style ClaSSesccuiviiiiiiiieiiiiiieii e 682
6.84.10. Relevant Resources LINKScoooiiiiiiiiiiiiiie e 683
S o3 0 1 == 683
6.85.1. DESCIIPLION ..ovuiiiiieii et e e e e e e 683
6.85.2. KEY FEALUIES ...t 684
6.85.3. Creating the Component with a Page Tagccceveviiiiiiinieiiieeiieeeiees 690
6.85.4. Creating the Component Dynamically Using Javacccevieeeinnnnnen. 690
6.85.5. Details Of USAQE ...ccvuiiiiiiiiii e 691
6.85.6. BUilt-In Drag and DIOPuieiiiiiiiiiiiiiiee e 695
6.85.7. Events handlingccoouiiiiiiiiiiii e 697
6.85.8. Look-and-Feel Customizationccooveiiiiiiiiniiiieci e 698
6.85.9. Skin Parameters Redefinition:ooooiiiiiiiiiiniiii e, 698
6.85.10. Definition of Custom Style ClIasSSescccuviviiiiiiiiiiiiiieeceeeceie, 698
6.85.11. Relevant Resources LINKSccoooiiiiiiiiiiiiiie e 700
S IChIIEENOOE > oo e 700
(SRS I B 1= =Y g o] o1 PPN 700
6.86.2. KEY FEALUIES ...ttt 700
6.86.3. Creating the Component with a Page Tagccooveviiiiiiiiieiiiicciceeiees 705
6.86.4. Creating the Component Dynamically Using Javacceeviveeeennnnnn. 705
6.86.5. Details Of USAQE ...ccuuiiiiiiiiii e e 706
6.86.6. BUilt-in Drag and DIopccouuuiiiiiiiiiiiiiie e 707

XX

6.86.7. Events Handlingcccooiiiiiiii e 707

6.86.8. Look-and-Feel Customizationccooviiiiiiiiiniiiieci e 707
6.86.9. Skin Parameters Redefinitioncoiiiiiiiiiiiiii e 708
6.86.10. Definition of Custom Style ClIasSSescoouvivieiiiiiiiiiiiiieceie e 708
6.86.11. Relevant Resources LINKSccoooiiiiiiiiiiiiiee e 710
6.87. < rich:changeExXpandLiStENEr >ccooiiiiiiiiii e 710
(SRS T B 1= Yo o] o T PPN 710
6.87.2. KEY FEALUIES ...ttt 710
6.87.3. Creating the Component with a Page Tagc.ccceveviiiiiiiieiiiiicieeeiees 711
6.87.4. Creating the Component Dynamically Using Javacccevieeeiinnnnnn. 711
6.87.5. Details Of USAQE ...ccuuiiiiiiiiii e 711
6.87.6. Look-and-Feel Customizationcccoveiiiiiiiiiiiiieie e 712
6.88. < rich:n0deSeleCtLIStENEr > ... 712
6.88.1. DESCHIPLION ..eetiiiiiiii ettt ettt 712
6.88.2. KEY FRALUIES ...uieiiiiii e 712
6.88.3. Creating the Component with a Page Tagcccoooveieiiiiiiiiiinieeeiineeees 713
6.88.4. Creating the Component Dynamically Using Javaccccocevvevinnnnnnn. 713
6.88.5. Details Of USAQGEuuiiiiiiiiiiiiii e 713
6.88.6. Look-and-Feel CUStOMIZAationiiiviiiiiiiiiiiii e 714
6.89. < rich:recursiveTreeNOdeSAdapIOr >oociiiiiiiiii e 714
6.89.1. DESCIIPLION ..ovuiiiiieii e e e e e e e ae 714
6.89.2. KEY FEALUIES ...t 715
6.89.3. Creating the Component with a Page Tagc.ccoovevviiiviiiiviiiiciieeeiees 715
6.89.4. Creating the Component Dynamically Using Javac..cccevieeeinnnnnen. 716
6.89.5. Details Of USAQE ...ccvuiiiiiiiiii e 716
6.89.6. Relevant resources lINKSoooiiiiiiiiiii e 717
6.90. < rich:treeNodesSAdapIOr > ... 717
6.90.1. DESCHIPLION ..ottt ettt 717
6.90.2. KEY FRALUIES ...uieiiiiiii e ans 718
6.90.3. Creating the Component with a Page Tagccccooveviiiiiiiiiiinieeciineeees 719
6.90.4. Creating the Component Dynamically Using Javaccccocevveevnnnnnnn. 719
6.90.5. Details Of USAGEuuiiiiiiiiiiiiiii et 719
6.90.6. Relevant Resources LiNKScccuoiiiiiiiiiiiiiiii e 720

A 15 =TT o ¢ T] o SR O 721
8. Links to iNfOrmation rESOUICESciiiiiieeiiii e 723

XXi

XXii

Chapter 1.

Introduction

Rich Faces is an open source framework that adds Ajax capability into existing JSF applications
without resorting to JavaScript.

Rich Faces leverages JavaServer Faces framework including lifecycle, validation, conversion
facilities and management of static and dynamic resources. Rich Faces components with built-
in Ajax support and a highly customizable look-and-feel can be easily incorporated into JSF
applications.

Rich Faces allows to:

« Intensify the whole set of JSF benefits while working with Ajax. Rich Faces is fully integrated into
the JSF lifecycle. While other frameworks only give you access to the managed bean facility,
Rich Faces advantages the action and value change listeners, as well as invokes server-side
validators and converters during the Ajax request-response cycle.

» Add Ajax capability to the existing JSF applications. Framework provides two components
libraries (Core Ajax and Ul). The Core library sets Ajax functionality into existing pages, so
there is no need to write any JavaScript code or to replace existing components with new Ajax
ones. Rich Faces enables page-wide Ajax support instead of the traditional component-wide
support and it gives the opportunity to define the event on the page. An event invokes an Ajax
request and areas of the page which become synchronized with the JSF Component Tree after
changing the data on the server by Ajax request in accordance with events fired on the client.

« Create quickly complex View basing on out of the box components. Rich Faces Ul library
contains components for adding rich user interface features to JSF applications. It extends
the Rich Faces framework to include a large (and growing) set of powerful rich Ajax-enabled
components that come with extensive skins support. In addition, RichFaces components are
designed to be used seamlessly with other 3d-party component libraries on the same page, so
you have more options for developing your applications.

« Write your own custom rich components with built-in Ajax support. We're always working
on improvement of Component Development Kit (CDK) that was used for Rich Faces Ul
library creation. The CDK includes a code-generation facility and a templating facility using a
JSP-like syntax. These capabilities help to avoid a routine process of a component creation.
The component factory works like a well-oiled machine allowing the creation of first-class
rich components with built-in Ajax functionality even more easily than the creation of simpler
components by means of the traditional coding approach.

» Package resources with application Java classes. In addition to its core, Ajax functionality of
Rich Faces provides an advanced support for the different resources management: pictures,
JavaScript code, and CSS stylesheets. The resource framework makes possible to pack easily
these resources into Jar files along with the code of your custom components.

Chapter 1. Introduction

« Easily generate binary resources on-the-fly. Resource framework can generate images,
sounds, Excel spreadsheets etc.. on-the-fly so that it becomes for example possible to create
images using the familiar approach of the "Java Graphics2D" library.

« Create a modern rich user interface look-and-feel with skins-based technology. Rich Faces
provides a skinnability feature that allows easily define and manage different color schemes
and other parameters of the Ul with the help of named skin parameters. Hence, it is possible
to access the skin parameters from JSP code and the Java code (e.g. to adjust generated on-
the-fly images based on the text parts of the Ul). RichFaces comes with a number of predefined
skins to get you started, but you can also easily create your own custom skins.

« Test and create the components, actions, listeners, and pages at the same time. An automated
testing facility is in our roadmap for the near future. This facility will generate test cases for your
component as soon as you develop it. The testing framework will not just test the components,
but also any other server-side or client-side functionality including JavaScript code. What is
more, it will do all of this without deploying the test application into the Servlet container.

Rich Faces Ul components come ready to use out-of-the-box, so developers save their time and
immediately gain the advantage of the mentioned above features in Web applications creation.
As a result, usage experience can be faster and easily obtained.

Chapter 2.

Technical Requirements

RichFaces was developed with an open architecture to be compatible with the widest possible
variety of environments.

This is what you need to start working with RichFaces 3.2.0:

e Java
« JavaServer Faces
« Java application server or servlet container

« Browser (on client side)

Richfaces framework

2.1. Supported Java Versions

» JDK 1.5 and higher

2.2. Supported JavaServer Faces Implementations and
Frameworks

Sun JSF-RI - 1.2

e MyFaces 1.2

Facelets 1.1.1-1.2

e Seam 1.2.-2.0

2.3. Supported Servers

* Apache Tomcat 5.5 - 6.0

 BEA WebLogic 9.1 - 10.0

* Resin 3.1

o Jetty 6.1.x

e Sun Application Server 9 (J2EE 1.5)

* Glassfish (J2EE 5)

Chapter 2. Technical Requirements

e JBoss4.2.x-5

2.4. Supported Browsers

Internet Explorer 6.0 - 7.0

Firefox 1.5- 2.0

e Opera85-9.2

Safari 2.0-3.1

This list is composed basing on reports received from our users. We assume the list can be
incomplete and absence of your environment in the list doesn't mean incompatibility.

We appreciate your feedback on platforms and browsers that aren't in the list but are compatible
with RichFaces. It helps us to keep the list up-to-date.

Chapter 3.

Getting Started with RichFaces

3.1. Downloading RichFaces 3.2.0

The latest release of RichFaces is available for download at:

http://labs.jboss.com/jbossrichfaces/downloads
in the RichFaces project area under JBoss.

3.2. Installation

* Unzip "richfaces-ui-3.2.0-bin.zip" file to the chosen folder.

» Copy "richfaces-api-3.2.0.jar", "richfaces-impl-3.2.0.jar", "richfaces-ui-3.2.0.jar" files into the
"WEB-INF/lib" folder of your application.

* Add the following content into the "WEB-INF/web.xmlI" file of your application:

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>

</context-param>

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

<[filter-mapping>

» Add the following lines for each JSP page of your application.

<%@ taglib uri="http://richfaces.org/a4j" prefix="a4j"%>
<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

For XHTML pages:

http://labs.jboss.com/jbossrichfaces/downloads

Chapter 3. Getting Started wi...

<xmlins:a4j="http://richfaces.org/a4j">
<xmlns:rich="http://richfaces.org/rich">

3.3. Simple Ajax Echo Project

In our JSF project you need only one JSP page that has a form with a couple of child tags:
<h:inputText> and <h:outputText>.

This simple application let you input some text into the <h:inputText>, send data to the server,
and see the server response as a value of <h:outputText> .

3.3.1. JSP Page

Here is the necessary page (echo.jsp):

<%@ taglib uri="http://richfaces.org/a4j" prefix="a4;"%>
<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.coml/jsf/core" prefix="f"%>
<html>
<head>
<title>repeater </title>
</head>
<body>
<fview>
<h:form>
<rich:panel header="Simple Echo">
<h:inputText size="50" value="#{bean.text}" >
<adj:support event="onkeyup" reRender="rep"/>
</h:inputText>
<h:outputText value="#{bean.text}" id="rep"/>
</rich:panel>
</h:form>
</f.view>
</body>

Data Bean

</html>

Only two tags distinguish this page from a "regular" JSF one. There are <rich:panel> and
<adj:support> .

The <rich:panel> allows to place the page elements in rectangle panel that can be skinned.

The <adj:support> with corresponding attributes (as it was shown in the previous example) adds
an Ajax support to the parent <h:inputText> tag. This support is bound to "onkeyup" JavaScript
event, so that each time when this event is fired on the parent tag, our application sends an Ajax
request to the server. It means that the text field pointed to our managed bean property contains
up-to-date value of our input.

The value of "reRender" attribute of the <adj:support> tag defines which part(s) of our page is
(are) to be updated. In this case, the only part of the page to update is the <h:outputText> tag
because its ID value matches to the value of "reRender" attribute. As you see, it's not difficult to
update multiple elements on the page, only list their IDs as the value of "reRender" .

3.3.2. Data Bean

In order to build this application, you should create a managed bean:

package demo;

public class Bean {
private String text;
public Bean() {

}

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;

}

}

3.3.3. faces-config.xml
Next, it's necessary to register your bean inside of the faces-config.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE faces-config PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config
1.1//EN"

Chapter 3. Getting Started wi...

"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config>
<managed-bean>
<managed-bean-name>bean</managed-bean-name>
<managed-bean-class>demo.Bean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>
<property-name>text</property-name>
<value/>
</managed-property>
</managed-bean>
</faces-config>

3.3.4. Web.xml

It is also necessary to add jar files (see installation chapter) and modify the "web.xml" file:

<?xml version="1.0"?>
<web-app version="2.4" xmIns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

<display-name>a4jEchoText</display-name>

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>

</context-param>

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

<ffilter>

<filter-mapping>
<filter-name>richfaces</filter-name>

Deployment

<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

<listener>
<listener-class>com.sun.faces.config.ConfigureListener</listener-class>

</listener>

<l-- Faces Servlet -->

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!I-- Faces Servlet Mapping -->
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<login-config>
<auth-method>BASIC</auth-method>
</login-config>
</web-app>

Now your application should work.

3.3.5. Deployment

Finally, you should be able to place this application on your Web server.To start your project, point
your browser at http://localhost:8080/a4jEchoText/echo.jsf

http://localhost:8080/a4jEchoText/echo.jsf

10

Chapter 4.

Settings for different environments

RichFaces comes with support for all tags (components) included in the JavaServer Faces
specification. To add RichFaces capabilities to the existing JSF project you should just put the
RichFaces libraries into the lib folder of the project and add filter mapping. The behavior of the
existing project doesn't change just because of RichFaces.

4.1. Web Application Descriptor Parameters

RichFaces doesn't require any parameters to be defined in your web.xml. But the RichFaces
parameters listed below may help with development and may increase the flexibility of RichFaces
usage.

Table 4.1. Initialization Parameters

INET e Default Description

org.richfaces.SKIN DEFAULT Is a name of a skin
used in an application.
It can be a literal
string with a skin
name, or the EL
expression (#{...}) pointed
to a String property
(skin name) or a
property of a
org.richfaces.framework.skin
type. Skin in last case, this
instance is used as a current
skin
org.richfaces.LoadScriptStrategyDEFAULT Defines how the RichFaces
script files are loaded to
application. Possible values
are: ALL, DEFAULT, NONE.
For more information see
"Scripts and Styles Load
Strategy".

org.richfaces.LoadStyleStrategyDEFAULT Defines how the RichFaces
style files are loaded to
application. Possible values
are: ALL, DEFAULT, NONE.
For more information see
"Scripts and Styles Load
Strategy".

11

Chapter 4. Settings for diffe...

Name

org.ajax4jsf.LOGFILE

Default

none

Description

Is an URL to an application or
a container log file (if possible).
If this parameter is set, content
from the given URL is shown
on a Debug error page in the
iframe window

org.ajax4jsf.VIEW_HANDLERS

none

Is a comma-separated list

of custom ViewHandler
instances for inserting
in chain. Handlers are

inserted BEFORE RichFaces
viewhandlers in the given
order. For example, in facelets
application this parameter
must contain
com.sun.facelets.FaceletViewH
instead of declaration in faces-
config.xml

org.ajax4jsf. CONTROL_COMP

org.ajax4jsf.ENCRYPT_RESO

ONENTS

URGE_DATA

Is a comma-separated list of
names for a component as
a special control case, such
as messages bundle loader,
alias bean components, etc.
Is a type of component got
by a reflection from the static
field COMPONENT_TYPE .
For components with such
types encode methods always
are called in rendering
Ajax responses, even if a
component isn't in an updated
part

For generated resources, such
as encrypt generation data,
it's encoded in the resource
URL. For example, URL for
an image generated from
the mediaOutput component
contains a name of a
generation method, since for
a hacker attack, it is possible
to create a request for any

12

andler,

Web Application Descriptor Parameters

Name Default Description

JSF baked beans or other
attributes. To prevent such
attacks, set this parameter to
"true” in critical applications
(works with JRE > 1.4)

org.ajax4jsf.ENCRYPT_PASSWaRIdmM Is a password for encryption of
resources data. If isn't set, a
random password is used

org.ajax4jsf. COMPRESS_SCRIRTe It doesn't allow framework
to reformat JavaScript files
(makes it impossible to debug)

org.ajax4jsf.RESOURCE_URI_PREE&IX This variable just defines prefix
which is added to URIs
of generated resources. This
prefix designed to handle Rich
Faces generated resources
requests

org.ajax4jsf.DEFAULT _EXPIRE86400 Defines in seconds how long
streamed back to browser
resources can be cached

@ Note:
org.richfaces.SKIN is used in the same way as org.ajax4jsf.SKIN

Table 4.2. org.ajax4jsf.Filter Initialization Parameters

Name Default Description

log4j-init-file - Is a path (relative to web
application context) to the
log4j.xml configuration file, it
can be used to setup per-
application custom logging

enable-cache true Enable caching of framework-
generated resources
(JavaScript, CSS, images,
etc.). For debug purposes
development custom
JavaScript or Style prevents
to use old cached data in a
browser

13

Chapter 4. Settings for diffe...

Name Default Description

forceparser true Force parsing by a filter
HTML syntax checker on
any JSF page. If "false”, only
Ajax responses are parsed to
syntax check and conversion
to well-formed XML. Setting to
"false" improves performance,
but can provide visual effects
on Ajax updates

4.2. Sun JSF RI

RichFaces works with implementation of JSF (JSF 1.2) and with most JSF component libraries
without any additional settings. For more information look at:

java.sun.com [http://java.sun.com/javaee/javaserverfaces/]

4.3. Apache MyFaces

RichFaces works with Apache MyFaces 1.2 version including specific libraries like TOMAHAWK
Sandbox and Trinidad (the previous ADF Faces). However, there are some considerations to take
into account for configuring applications to work with MyFaces and RichFaces.

There are some problems with different filters defined in the web.xml file clashing. To avoid these
problems, the RichFaces filter must be the first one among other filters in the web.xml configuration
file.

For more information look at:http://myfaces.apache.org

There's one more problem while using MyFaces + Seam. If you use this combination you should
use <adj:page> inside <f:view> (right after it in your code) wrapping another content inside your
pages because of some problems in realization of <f:view> in myFaces.

The problem is to be overcome in the nearest future.

4.4. Facelets Support

A high-level support for Facelets is one of our main support features. When working with
RichFaces, there is no difference what release of Facelets is used.

You should also take into account that some JSF frameworks such as Facelets use their
own ViewHandler and need to have it first in the chain of ViewHandlers and the RichFaces
AjaxViewHandler is not an exception. At first RichFaces installs its ViewHandler in any case, so in
case of two frameworks, for example RichFaces + Facelets, no changes in settings are required.
Although, when more then one framework (except RichFaces) is used, it's possible to use the
VIEW_HANDLERS parameter defining these frameworks view handlers according to its usage
order in it. For example, the declaration:

14

http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://myfaces.apache.org

JBoss Seam Support

Example:

<context-param>
<param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
<param-value>com.sun.facelets.FaceletViewHandler</param-value>
</context-param>

says that Facelets will officially be the first, however AjaxViewHandler will be a little ahead
temporarily to do some small, but very important job.

4.5. JBoss Seam Support

RichFaces now works out-of-the-box with JBoss Seam and Facelets running inside JBoss AS
4.0.4 and higher. There is no more shared JAR files needed. You just have to package the
RichFaces library with your application.

Your web.xml for Seam 1.2 must be like this:

<?xml version="1.0" ?>
<web-app xmIns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd"
version="2.4">

<I-- richfaces -->

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<url-pattern>*.seam</url-pattern>
<[filter-mapping>

15

Chapter 4. Settings for diffe...

<context-param>
<param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
<param-value>org.jboss.seam.ui.facelet. SeamFaceletViewHandler</param-value>
</context-param>

<l-- Seam -->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<servlet>
<servlet-name>Seam Resource Servlet</serviet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</serviet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.web.SeamFilter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

<I-- MyFaces -->

<listener>
<listener-class>org.apache.myfaces.webapp.StartupServietContextListener</listener-class>
</listener>

<I-- JSF -->

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

16

JBoss Seam Support

<context-param>
<param-name>javax.faces.DEFAULT SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

</web-app>

Seam 2 supports RichFaces Filter. Thus your web.xml for Seam 2 must be like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
web-app_2_5.xsd">

<context-param>
<param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
<param-value>com.sun.facelets.FaceletViewHandler</param-value>
</context-param>

<l-- Seam -->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet. SeamResourceServlet</serviet-class>
</servlet>

17

Chapter 4. Settings for diffe...

<servlet-mapping>
<servlet-name>Seam Resource Servlet</serviet-name>
<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<ffilter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

<I-- JSF -->

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<context-param>
<param-name>facelets. DEVELOPMENT</param-name>
<param-value>true</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

</servlet-mapping>

</web-app>

Only one issue still persists while using Seam with MyFaces. Look at myFaces part of this section.

18

Portlet Support

4.6. Portlet Support

JBoss Portlets have support since version Ajax4jsf 1.1.1. This support is improved in Richfaces
3.2.0. Provide your feedback on compatible with RichFaces if you face some problems.

4.7. Sybase EAServer

The load-on-startup for the Faces Servlet had to be set to 0 in web.xml.

Example:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</serviet-class>
<load-on-startup>0</load-on-startup>
</servlet>

This is because, EAServer calls servlet init() before the ServletContextlinitializer. Not an EAServer
bug, this is in Servlet 2.3 spec.

4.8. Oracle AS/OC4J

In order to deploy your project with RichFaces components to an Oracle AS you just have to
prevent the application's class loader from importing the Oracle XML parser. Use the following
notation in orion-application.xml:

<imported-shared-libraries>
<remove-inherited name="oracle.xml"/>
<remove-inherited name="oracle.xml.security"/>
</imported-shared-libraries>

19

20

Chapter 5.

Basic concepts of the RichFaces
Framework

5.1. Introduction

The framework is implemented as a component library which adds Ajax capability into existing
pages, so you don't need to write any JavaScript code or to replace existing components with new
Ajax widgets. RichFaces enables page-wide Ajax support instead of the traditional component-
wide support. Hence, you can define the event on the page that invokes an Ajax request and
the areas of the page that should be synchronized with the JSF Component Tree after the Ajax
request changes the data on the server according to the events fired on the client.

Next Figure shows how it works:

Client

k= B Update Page

JSP Page Ajax Engine

= | JSEvent J=
ﬂ "-ﬁ
—_—

2. Submit Request |

=, 7. Send Response

RichFaces |
Vi
UiviewRoot ZML Filter — InternetResourceBuilder
. | S
".‘I\[': 5. Build Resources |
[6.Chack XML] |
Ajax\ViewRoot = = Ajax Renderkit qs—‘_m
i [4. Encade Regien |

' 3. Progress Ph ases |
sl nininbiblteie

JSF Phases

. Apply Reguest | Process E Process [. Invoke E ? Rendsrer

Restore Vie ¥ e]
R E Valiies W Validetions Lipdates Application Response

Figure 5.1. Request Processing flow

RichFaces allows to define (by means of JSF tags) different parts of a JSF page you wish to
update with an Ajax request and provide a few options to send Ajax requests to the server. Also

21

Chapter 5. Basic concepts of ...

JSF page doesn't change from a "regular" JSF page and you don't need to write any JavaScript
or XMLHttpRequest objects by hands, everything is done automatically.

5.2. RichFaces Architecture Overview

Next figure lists several important elements of the RichFaces framework

Ajax Filter Ajax Action Components

Ajax Containers Skinnability

RichFaces JavaScript
Engine

Figure 5.2. Core Ajax component structure

Ajax Filter. To get all benefits of RichFaces, you should register a Filter in web.xml file of
your application. The Filter recognizes multiple request types. Necessary information about Filter
configuration can be found in the "Filter configuration" section. The sequence diagram on Figure
3 shows the difference in processing of a "regular" JSF request and an Ajax request.

22

RichFaces Architecture Overview

In the first case the whole JSF tree will be encoded, in the second one option it depends on the
"size" of the Ajax region. As you can see, in the second case the filter parses the content of an
Ajax response before sending it to the client side.

Have a look at the next picture to understand these two ways:

WebClient DomTree Web Ajax Filter Ajax JSF Ajax Resource
Container WiewR oot Process Eender kit Builder

! ! ! ! ! ; ! !
! :]] : : : :
: JSF Request ' : ; i i !
: Senice i i i ; ;
! P Serice ; : : !
5 B S Tree ; 5
: Render Trae o ! Create .

i Resources

1

1 1
e FE T : i
i ERTEEEIE R 1 i
! e : : : :
JSF Response s 7 : ; 3 i
“'-‘C """""""""" [e Pl iR e g bR T 1 1 1 1 1
1 1 1 1 1 1
: : : | | :
1 1 1 1 1 I
: : | | | !
! ! : | : :
1 1 1 1 1 1
| | | | | |
oo . : : : : ! :
7 :]] i i i ;
1 1 1 1 1 1 ' I
v J5 Event ! ' ' 1 1 ' '
e S i B o B v 1 1 1 1 1 1
JSF Request h“' . ' ' .
Senvice] : 2 ; :
Senice ! ! ! !
Ajax Regiong | Render : !
Delta Ajax] Create :
Fezaurces _ 1
- Chedd ML ' I :
1 1 1
JESF Response [e i ; ;
T LR : : :
Update 1 1 |
—. 1 1 1
EE ; : ;
|| | | |
1 1 1
1 1 1
1 1 1

Figure 5.3. Request Processing sequence diagram

In both cases, the information about required static or dynamic resources that your application
requests is registered in the ResourseBuilder class.

When a request for a resource comes (Figure 4), the RichFaces filter checks the Resource Cache
for this resource and if it is there, the resource is sent to the client. Otherwise, the filter searches for

23

Chapter 5. Basic concepts of ...

the resource among those that are registered by the ResourceBuilder. If the resource is registered,
the RichFaces filter will send a request to the ResourceBuilder to create (deliver) the resource.

Next Figure shows the ways of resource request processing.

webClisnt DomTres 'eb fjax Filter Resource Resource Resource
Container Cache Lifecycle Buildar

L - | | 5 | |
alt [: : : : :
Resource Request > ' : ' '
Seryi i i i i
[In Cache] e . . 1
Get Resource !] i
Resource Response : : ' i
b e R P SO0 : H : ,
[elze] Fezource Request % ; ; ; | |
i Sorvice i H i :
! : : 1
: - i
i Get Fesource :
i 2 e {]
.................... A e !

.{E

bl Resource Responze

Figure 5.4. Resource request sequence diagram

AJAX Action Components.

There are Ajax Action Components: AjaxCommandButton,
AjaxCommandLink, AjaxPoll and AjaxSupport and etc. You can use them to send Ajax requests
from the client side.

AJAX Containers. AjaxContainer is an interface that describes an area on your JSF page that
should be decoded during an Ajax request. AjaxViewRoot and AjaxRegion are implementations

of this interface.

JavaScript Engine. RichFaces JavaScript Engine runs on the client-side. It knows how to
update different areas on your JSF page based on the information from the Ajax response. Do
not use this JavaScript code directly, as it is available automatically.

5.3. Limitations and Rules

In order to create RichFaces applications properly, keep the following points in mind:

24

Ajax Request Optimization

« Any Ajax framework should not append or delete, but only replace elements on the page. For
successful updates, an element with the same ID as in the response must exist on the page.
If you'd like to append any code to a page, put in a placeholder for it (any empty element). For
the same reason, it's recommended to place messages in the "AjaxOutput” component (as no
messages is also a message).

» Don't use <f:verbatim> for self-rendered containers, since this component is transient and
not saved in the tree.

» Ajax requests are made by XMLHttpRequest functions in XML format, but this XML bypasses
most validations and the corrections that might be made in a browser. Thus, create only a strict
standards-compliant code for HTML and XHTML, without skipping any required elements or
attributes. Any necessary XML corrections are automatically made by the XML filter on the
server, but lot's of unexpected effects can be produced by an incorrect HTML code.

5.4. Ajax Request Optimization

5.4.1. Re-Rendering

Ajax attributes are common for Ajax components such as <adj:support>
<adj:commandButton>, <adj:jsFunction>, <adj:poll>, <a4dj:push> and so on. Also, most
RichFaces components with built-in Ajax support have these attributes for a similar purpose. Ajax
components attributes help RichFaces to expose its features. Most of the attributes have default
values. Thus, you can start working with RichFaces without knowing the usage of these attribute.
However, their usage allows to tune the required Ajax behavior very smoothly.

"reRender" is a key attribute. The attribute allows to point to area(s) on a page that should be
updated as a response on Ajax interaction. The value of the "reRender" attribute is an id of the
JSF component or an id list.

A simple example is placed below:

<adj:commandButton value="update" reRender="infoBlock"/>
<h:panelGrid id="infoBlock">

</h:panelGrid>

The value of "reRender" attribute of the <a4j:commandButton> tag defines which part(s) of your
page is (are) to be updated. In this case, the only part of the page to update is the <h:panelGrid>
tag because its ID value matches to the value of "reRender" attribute. As you see, it's not difficult
to update multiple elements on the page, only list their IDs as the value of "reRender" .

25

Chapter 5. Basic concepts of ...

"reRender" uses UlComponent.findComponent() algorithm [http://java.sun.com/javaee/
javaserverfaces/1.2_MR1/docs/api/javax/faces/component/
UlComponent.html#findComponent(java.lang.String)] (with some additional exceptions) to find
the component in the component tree. As can you see, the algorithm presumes several steps.
Each other step is used if the previous step is not successful. Therefore, you can define how fast
the component is found mentioning it more precisely. The following example shows the difference
in approaches (both buttons will work successfully):

<h:form id="form1">

<a4j: commandButton value="Usual Way" reRender="infoBlock, infoBlock2" />
<a4j.commandButton value="Shortcut" reRender=":infoBlockl,:sv:infoBlock2" />

</h:form>
<h:panelGrid id="infoBlock">

</h:panelGrid>

<f:subview id="sv">
<h:panelGrid id="infoBlock2">

</h:panelGrid>

</f:subview>

It's also possible to use JSF EL expression as a value of the reRender attribute. It might be a
property of types Set, Collection, Array or simple String. The EL for reRender is resolved right
before the Render Response phase. Hence, you can calculate what should be re-rendered on
any previous phase during the Ajax request processing.

Most common problem with using reRender is pointing it to the component that has a "rendered"
attribute. Note, that JSF does not mark the place in the browser DOM where the outcome of the
component should be placed in case the "rendered" condition returns false. Therefore, after the
component becomes rendered during the Ajax request, RichFaces delivers the rendered code to
the client, but does not update a page, because the place for update is unknown. You need to
point to one of the parent components that has no “"rendered” attribute. As an alternative, you
can wrap the component with <adj:outputPanel> layout="none".

"ajaxRendered" attribute of the <a4dj:outputPanel> set to "true" allows to define the area of the
page that will be re-rendered even if it is not pointed in the reRender attribute explicitly. It might be
useful if you have an area on a page that should be updated as a response on any Ajax request.

26

http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String

Queue and Traffic Flood Protection

For example, the following code allows to output error messages regardless of what Ajax request
causes the Validation phase failed.

<adj.outputPanel ajaxRendered="true">
<h:messages />
</a4j.outputPanel>

"limitToList" attribute allows to dismiss the behavior of the <a4dj:outputPanel> "ajaxRendered"
attribute. "limitToList" = "false" means to update only the area(s) that mentioned in the "reRender"
attribute explicitly. All output panels with "ajaxRendered"="true"is ignored. An example is placed
below:

<h:form>
<h:inputText value="#{person.name}">
<a4j:support event="onkeyup" reRender="test" limitToList="true"/>
</h:inputText>
<h:outputText value="#{person.name}" id="test"/>
</form>

5.4.2. Queue and Traffic Flood Protection

"eventsQueue" attribute defines the name of the queue that will be used to order upcoming
Ajax requests. By default, RichFaces does not queue Ajax requests. If events are produced
simultaneously, they will come to the server simultaneously. JSF implementations (especially, the
very first ones) does not guaranty that the request that comes first will be served or passed into
the JSF lifecycle first. The order how the server side data will be modified in case of simultaneous
request might be unpredictable. Usage of eventsQueue attribute allows to avoid possible mess.
Define the queue name explicitly, if you expect intensive Ajax traffic in your application.

The next request posted in the same queue will wait until the previos one is not processed and
Ajax Response is returned back if the "eventsQueue" attribute is defined. In addition, Richfaces
starts to remove from the queue "similar" requests. "Similar*requests are the requests produced
by the same event. For example, according to the following code, only the newest request will be
sent to the server if you type very fast and has typed the several characters already before the
previous Ajax Response is back.

<h:inputText value="#{userBean.name}">

27

Chapter 5. Basic concepts of ...

<adj:support event="onkeyup" eventsQueue="foo" reRender="bar" />
</h:inputText>

"requestDelay" attribute defines the time (in ms) that the request will be wait in the queue before
it is ready to send. When the delay time is over, the request will be sent to the server or removed
if the newest "similar” request is in a queue already .

"ignoreDupResponses"” attribute orders to ignore the Ajax Response produced by the request if
the newest "similar" request is in a queue already. "ignoreDupResponses"="true" does not cancel
the request while it is processed on the server, but just allows to avoid unnecessary updates on

the client side if the response loses the actuality.

Defining the "eventsQueue" along with "requestDelay” allows to protect against unnecessary
traffic flood and synchronizes Ajax requests order. If you have several sources of Ajax requests,
you can define the same queue name there. This might be very helpful if you have Ajax
components that invoke request asynchronously from the ones produced by events from users.
For example, <adj:poll> or <adj:push> . In case the requests from such components modify
the same data, the synchronization might be very helpful.

More information can be found on the RichFaces Users Forum [http://jboss.com/
index.html?module=bb&op=viewtopic&t=105766].

"timeout" attribute is used for setting response waiting time on a particular request. If a response
is not received during this time, the request is aborted.

5.4.3. Data Processing Options

RichFaces uses form based approach for Ajax request sending. This means each time, when you
click an Ajax button or <a4j:poll> produces an asynchronous request, the data from the closest
JSF form is submitted with the XMLHTTPRequest object. The form data contains the values from
the form input element and auxiliary information such as state saving data.

When "ajaxSingle" attribute value is "true", it orders to include only a value of the current
component (along with <f:param> or <adj:action> param values if any) to the request map. In
case of <adj:support>, itis a value of the parent component. An example is placed below:

<h:form>
<h:inputText value="#{person.name}">
<adj:support event="onkeyup" reRender="test" ajaxSingle="true"/>
</h:inputText>
<h:inputText value="#{person.middleName}"/>
</form>

28

http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766

Action and Navigation

In this example the request contains only the input component causes the request generation, not

all the components contained on a form, because of "ajaxSingle"="true" usage.

Note, that "ajaxSingle"="true" reduces the upcoming traffic, but does not prevent decoding other
input components on the server side. Some JSF components, such as <h:selectOneMenu> do
recognize the missing data in the request map value as a null value and try to pass the validation
process with a failed result. Thus, use <adj:region> to limit a part of the component tree that will
be processed on the server side when it is required.

"immediate" attribute has the same purpose as any other non-JSF component. The default
"ActionListener" should be executed immediately (i.e. during the Apply Request Values phase
of a request processing lifecycle), rather than waiting until the Invoke Application phase. Using
immediate="true" is one of the ways to have some data model values updated when other cannot
be updated because of a problem with passing the Validation phase successfully. This might be
important inside the <h:dataTable> like components where using <a4j:region> is impossible
due to the <h:dataTable> component architecture.

"bypassUpdates" attribute allows to bypass the Update Model phase. It might be useful if you
need to check your input against the available validator, but not to update the model with those
data. Note, that an action will be invoked at the end of the Validation phase only if the Validation
phase is passed successfully. The listeners of the Application phase will not be invoked in any
case.

5.4.4. Action and Navigation

Ajax component is similar to any other non-Ajax JSF component like <h:commandButton> . It
allows to submit the form. You can use "action” and "actionListener" attribute to invoke the
action method and define the action event.

"action" method must return null if you want to have an Ajax Response with a partual page
update. This is regular mode called "Ajax request generates Ajax Response”. In case of action
does not return null, but the action outcome that matches one of navigation rules, RichFaces starts
to work in "Ajax request generates Non-Ajax Response” mode. This mode might be helpful in two
major cases:

* RichFaces allows to organize a page flow inside the <a4j:include> component. This is a
typical scenario for Wizard like behavior. The new content is rendered inside the <adj:include>
area. The content is taken from the navigation rule of the faces configuration file (usually, the
faces-config.xml). Note, that the content of the "wizard" is not isolated from the rest of the page.
The included page should not have own <f:view> (it does not matter if you use facelets). You
need to have an Ajax component inside the <adj:include> to navigate between the wizard
pages. Otherwize, the whole page update will be performed.

e If you want to involve the server side validators and navigate to the next page only if
the Validation phase is passed successfully, you can replace <h:commandButton> with
<adj:commandButton> and point to the action method that navigates to the next page. If

29

Chapter 5. Basic concepts of ...

Validation process fails, the partial page update will occur and you will see an error message.
Otherwize, the application proceeds to the next page. Make sure, you define <redirect/> option
for the navigation rule to avoid memory leaks.

5.4.5. JavaScript Interactions

RichFaces allows writing Ajax-enabled JSF application without writing any Javascript code.
However, you can still invoke the javascript code if you need. There are several ajax attributes
that helps to do it.

"onsubmit" attribute allows to invoke JavaScript code before an Ajax request is sent. If "onsubmit"
returns "false", the Ajax request is canceled. The code of "onsubmit" is inserted before the
RichFaces Ajax call. Hence, the "onsubmit" should not has a "return" statement if you want
the Ajax request to be sent. If you are going to invoke a JavaScript function that returns "true"
or "false", use the conditional statement to return something only when you need to cancel the
request. For example:

onsubmit="if (mynosendfunct()==false){return false}"

"onclick" attribute is similar to the "onsubmit" , but for clickable components such as
<adj:commandLink> and <adj:commandButton> . If it returns "false", the Ajax request is
canceled also.

"oncomplete" attribute allows to invoke the JavaScript code right after the Ajax Response is
returned back and the DOM tree of the browser is updated. Richfaces registers the code for further
invocation of XMLHTTP request object before an Ajax request is sent. This means the code will
not be changed during processing of the request on the server if you use JSF EL value binding.
Also, you cannot use "this™ inside the code, because it will not point the component where Ajax
reguest was initiated.

"onbeforedomupdate" attrubute defines JavaScript code for call after Ajax response receiving
and before updating DOM on a client side.

"data" attribute allows to get the additional data from the server during an Ajax call. You can use
JSF EL to point the property of the managed bean and its value will be serialized in JSON format
and be available on the client side. You can refer to it using the "data" variable. For example:

<adj:.commandButton value="Update" data="#{userBean.name}"
oncomplete="showTheName(data.name)" />

30

Iteration components Ajax attributes

Richfaces allows to serialize not only primitive types into JSON format, but also complex types
including arrays and collections. The beans should be serializable to be refered with "data" .

There is a number of useful functions which can be used in JavaScript:

« rich:clientld('id") - returns client id by short id or null if the component with the id specified hasn't
been found

« rich:element('id’) - is a shortcut for document.getElementByld(#{rich:clientld('id")})

* rich:component('id’) - is a shortcut for #{rich:clientld('id")}.component

5.4.6. Iteration components Ajax attributes

"ajaxKeys" attribute defines strings that are updated after an Ajax request. It provides possibility
to update several child components separately without updating the whole page.

<adj:poll intervall="1000" action="#{repeater.action}" reRender="text">
<table>
<tbody>
<adj.rrepeat value="#{bean.props}" var="detail" ajaxKeys="#{repeater.ajaxedRowsSet}">
<tr>
<td>
<h:outputText value="detail.someProperty" id="text"/>
</td>
</tr>
</adj.repeat>
</tbody>
</table>
</adj:poll>

5.4.7. Other useful attributes

"status" attribute for Ajax components (such as <adj:commandButton> , <adj:poll>, etc.)
points to an ID of <adj:status> component. Use this attribute if you want to share <adj:status>
component between different Ajax components from different regions. The following example
shows it.

<adj:region id="extr">
<h:form>

31

Chapter 5. Basic concepts of ...

<h:outputText value="Status:" />
<adj:status id="commonstatus" startText="In Progress...." stopText=""/>
<h:panelGrid columns="2">
<h:outputText value="Name"/>
<h:inputText id="name" value="#{userBean.name}">
<adj:support event="onkeyup" reRender="out" />
</h:inputText>
<h:outputText value="Job"/>
<adj:region id="intr">
<h:inputText id="job" value="#{userBean.job}">
<adj:support event="onkeyup" reRender="out" status="commonstatus"/>
</h:inputText>
</adj:region>
</h:panelGrid>

<adj:region>
<h:outputText id="out" value="Name: #{userBean.name}, Job: #{userBean.job}" />

<adj:commandButton ajaxSingle="true" value="Clean Up Form" reRender="name,
job, out" status="commonstatus">
<adj:actionparam name="n" value="" assignTo="#{userBean.name}" />
<adj:actionparam name="j" value="" assignTo="#{userBean.job}" />
</adj.commandButton>
</a4j.region>
</h:form>
</a4j:region>

In the example <adj:support> and <adj:.commandButton> are defined in different regions.
Values of "status" attribute for these components points to an ID of <adj:support> .Thus, the
<adj:support> component is shared between two components from different regions.

More information could be found here [http://livedemo.exadel.com/richfaces-demof/richfaces/
status.jsf?c=status].

Other useful attribute is "focus" . It points to an ID of a component where focus will be set after
an Ajax request.

55. How To...

5.5.1. Send an Ajax request

There are different ways to send Ajax requests from your JSF page. For example you can use
<adj:commandButton>, <adj:commandLink>, <adj:poll> or <a4dj:support> tags or any
other.

32

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status

Decide What to Send

All these tags hide the usual JavaScript activities that are required for an XMHttpRequest object
building and an Ajax request sending. Also, they allow you to decide which components of your
JSF page are to be re-rendered as a result of the Ajax response (you can list the IDs of these
components in the "reRender" attribute).

<adj:commandButton> and <a4dj:commandLink> tags are used to send an Ajax request on
"onclick" JavaScript event.

<adj:poll> tag is used to send an Ajax request periodically using a timer.

The <adj:support> tag allows you to add Ajax functionality to standard JSF components and
send Ajax request onto a chosen JavaScript event: "onkeyup", "onmouseover", etc.

5.5.2. Decide What to Send

You may describe a region on the page you wish to send to the server, in this way you can control
what part of the JSF View is decoded on the server side when you send an Ajax request.

The easiest way to describe an Ajax region on your JSF page is to do nothing, because the content
between the <f:view> and </f:view> tags is considered the default Ajax region.

You may define multiple Ajax regions on the JSF page (they can even be nested) by using the
<adj:region> tag.

If you wish to render the content of an Ajax response outside of the active region then the value
of the "renderRegionOnly" attribute should be set to "false" (“false" is default value). Otherwise,
your Ajax updates are limited to elements of the active region.

5.5.3. Decide What to Change

Using IDs in the "reRender" attribute to define "AJAX zones" for update works fine in many cases.

But you can not use this approach if your page contains, e.g. a <f:verbatim> tag and you wish
to update its content on an Ajax response.

The problem with the <f:verbatim/> tag as described above is related to the value of the
transientFlag of JSF components. If the value of this flag is true, the component must not
participate in state saving or restoring of process.

In order to provide a solution to this kind of problems, RichFaces uses the concept of an output
panel that is defined by the <adj:outputPanel> tag. If you put a <f:verbatim> tag inside of the
output panel, then the content of the <f:verbatim/> tag and content of other panel's child tags
could be updated on Ajax response. There are two ways to control this:

« By setting the "ajaxRendered" attribute value to "true".

« By setting the "reRender" attribute value of an Action Component to the output panel ID.

5.5.4. Decide what to process

In order to process defined components you could use the "process" attribute.

33

Chapter 5. Basic concepts of ...

The "process" attribute defines the ids of the components to be processed together with the
component which contains this attribute. In order to define processed components you could set
theirs ids into the value of the "process" attribute.

The "process" attribute has two limitations:

* it works only if "ajaxSingle" equals to "true" for given command component

« you do not have to point this attribute to one of the own parent components to avoid processing
of command component twice

Example:

<h:form>
<h:inputText id="oneA" value="#{bean.width}"/>

<h:inputText id="oneB" value="#{bean.text}"/>

<adj:commandButton value="Submit2" process="oneB" ajaxSingle="true"
reRender=":threel, :three2"/>
</h:form>
<h:outputText id="threel" value="#{bean.width}"/>

<h:outputText id="three2" value="#{bean.text}"/>

In the example above after you click on the <a4j:commandButton> only <h:inputText> with
"oneB" id is processed and entered data appears into the <h:outputText> with "three2" id. If you
doesn't use this attribute both <h:inputText> is processed and entered data appears into the both
<h:outputText>.

5.6. Filter Configuration

RichFaces uses a filter for a correction of code received on an Ajax request. In case of a "regular"
JSF request a browser makes correction independently. In case of Ajax request in order to prevent
layout destruction it's needed to use a filter, because a received code could differ from a code
validated by a browser and a browser doesn't make any corrections.

An example of how to set a Filter in a web.xml file of your application is placed below.

Example:

<filter>

34

Filter Configuration

<display-name>RichFaces Filter</display-name>

<filter-name>richfaces</filter-name>

<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

@ Note:
Fast Filter is deprecated and available only for backward compatibility with previous
RichFaces versions. Fast Filter usage isn't recomended, because there is another
way to use its functionality by means of [35].

In RichFaces 3.2 filter configuration becomes more flexible. It's possible to configure different
filters for different sets of pages for the same application.

The possible filter types are:

* TIDY

"TIDY" filter type based on the Tidy parser. This filter is recommended for applications with
complicated or non-standard markup when all necessary code corrections are made by the filter
when a response comes from the server.

* NEKO

"NEKO" filter type corresponds to the former "Fast Filter" and it's based on the Neko parser. In
case of using this filter code isn't strictly verified. Use this one if you are sure that your application
markup is really strict for this filter. Otherwise it could cause lot's of errors and corrupt a layout as
a result. This filter considerably accelerates all Ajax requests processing.

* NONE
No correction.
An example of configuration is placed below.

Example:

<context-param>
<param-name>org.ajax4jsf.xmlparser. ORDER</param-name>
<param-value>NONE,NEKO,TIDY</param-value>
</context-param>

<context-param>

35

Chapter 5. Basic concepts of ...

<param-name>org.ajax4jsf.xmlparser. NONE</param-name>

<param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>

</context-param>

<context-param>
<param-name>org.ajax4jsf.xmlparser.NEKO</param-name>
<param-value>/pages/repeat\.xhtml</param-value>
</context-param>

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
<[filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<[filter-mapping>

The example shows that ORDER parameter defines the order in which particular filter types are

used for pages code correction.

First of all "NONE" type is specified for the filter. Then two different sets of pages are defined for
which two filter types (NONE and NEKO) are used correspondingly. If a page relates to the first

set that is defined in the following way:

<param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>,

it's not corrected, because filter type for this page is defined as "NONE". If a page is not from the

first set, then "NEKO" type is set.

If a page relates to the second set that is defined in the following way:

<param-value>/pages/repeat\.xhtml</param-value>,

then "NEKQ" filter type is used for correction. If it's not related to the second set, "TIDY" type is

set for the filter ("TIDY" filter type is used for code correction).

36

Scripts and Styles Load Strategy

5.7. Scripts and Styles Load Strategy

Before the version 3.1.3, RichFaces loaded styles and script on demand. l.e. files are loaded only
if they are required on a particular page. Since RichFaces 3.1.3, it's possible to manage how the
RichFaces script and style files are loaded to application.

org.richfaces.LoadScriptStrategy

The following declaration in your web.xml allows loading the integrated script files.

<context-param>
<param-name>org.richfaces.LoadScriptStrategy</param-name>
<param-value>ALL</param-value>

</context-param>

If you do not declare the org.richfaces.LoadScriptStrategy in the web.xml, it equals to:

<context-param>
<param-name>org.richfaces.LoadScriptStrategy</param-name>
<param-value>DEFAULT</param-value>

</context-param>

The third possible value is "NONE". You have no a special reason to use it unless you obtain the
newest (or modified) version of the script and want to include it manually in a page header.

@ Note:
If you use ALL value of Scripts Load Strategy, the JavaScript files compression
turns off!

org.richfaces.LoadStyleStrategy

The following declaration allows to load only one integrated style sheet file.

<context-param>
<param-name>org.richfaces.LoadStyleStrategy</param-name>

37

Chapter 5. Basic concepts of ...

<param-value>ALL</param-value>
</context-param>

The integrated style sheet contains style for all shipped components. The skinnability feature still
works.

The "DEFAULT" value is a classical on-demand variant.

The "NONE" stops loading the styles at all. The earlier introduced plain skin resets all color and font
parameters to null. The "NONE" value for org.richfaces.LoadStyleStrategy means that predefined
styles for RichFaces are not used.

For more information see RichFaces User Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4114033].

5.8. Request Errors and Session Expiration Handling

RichFaces allows to redefine standard handlers responsible for processing of different exceptional
situations. It helps to define own JavaScript, which is executed when these situations occur.

5.8.1. Request Errors Handling

To execute your own code on the client in case of an error during Ajax request, it's necessary to
redefine the standard "A4J.AJAX.onError" method:

A4J.AJAX.onError = function(req,status,message) {
/I Custom Developer Code

The function defined this way accepts as parameters:

 req - a params string of a request that calls an error
* status - the number of an error returned by the server
* message - a default message for the given error

Thus, it's possible to create your own handler that is called on timeouts, inner server errors, and
etc.

5.8.2. Session Expired Handling

It's possible to redefine also the "onExpired" framework method that is called on the "Session
Expiration” event.

Example:

38

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033

Skinnability

A4J.AJAX.onExpired = function(loc,expiredMsg){
/I Custom Developer Code

Here the function receives in params:

* loc - URL of the current page (on demand can be updated)

» expiredMsg - a default message on "Session Expiration" event.

5.9. Skinnability

5.9.1. Why Skinnability

If you have a look at a CSS file in an enterprise application, for example, the one you're working
on now, you'll see how often the same color is noted in it. Standard CSS has no way to define
a particular color abstractly for defining as a panel header color, a background color of an active
pop-up menu item, a separator color, etc. To define common interface styles, you have to copy
the same values over and over again and the more interface elements you have the more copy-
and-paste activity that needs to be performed.

Hence, if you want to change the application palette, you have to change all interrelating values,
otherwise your interface can appear a bit clumsy. The chances of such an interface coming
about is very high, as CSS editing usually becomes the duty of a general developer who doesn't
necessarily have much knowledge of user interface design.

Moreover, if a customer wishes to have an interface look-and-feel that can be adjusted on-the-fly
by an end user, your work is multiplied, as you have to deal with several CSS files variants, each
of which contains the same values repeated numerous times.

These problems can be solved with the skinnability system built into theRichFaces project and
realized fully in RichFaces. Every named skin has some skin-parameters for the definition of a
palette and the other parameters of the user interface. By changing just a few parameters, you
can alter the appearance of dozens of components in an application in a synchronized fashion
without messing up user interface consistency.

The skinnability feature can't completely replace standard CSS and certainly doesn't eliminate
its usage. Skinnability is a high-level extension of standard CSS, which can be used together
with regular CSS declarations. You can also refer to skin parameters in CSS via JSF Expression
Language. You have the complete ability to synchronize the appearance of all the elements in
your pages.

5.9.2. Using Skinnability

RichFaces skinnability is designed for mixed usage with:

39

Chapter 5. Basic concepts of ...

« Skin parameters defined in the RichFaces framework
» Predefined CSS classes for components
» User style classes

The color scheme of the component can be applied to its elements using any of three style classes:

» A default style class inserted into the framework

This contains style parameters linked to some constants from a skin. It is defined for every
component and specifies a default representation level. Thus, an application interface could be
modified by changing the values of skin parameters.

« A style class of skin extension

This class name is defined for every component element and inserted into the framework to
allow defining a class with the same name into its CSS files. Hence, the appearance of all
components that use this class is extended.

» User style class

It's possible to use one of the styleClass parameters for component elements and define your
own class in it. As a result, the appearance of one particular component is changed according
to a CSS style parameter specified in the class.

5.9.3. Example

Here is a simple panel component:

Example:

<rich:panel>

</rich:panel>

The code generates a panel component on a page, which consists of two elements: a wrapper
<div> element and a <div> element for the panel body with the particular style properties. The
wrapper <div> element looks like:

Example:

<div class="dr-pnl rich-panel">

</div>

40

Skin Parameters Tables in RichFaces

dr-pnl is a CSS class specified in the framework via skin parameters:

» background-color is defined with generalBackgroundColor
 border-color is defined with panelBorderColor
It's possible to change all colors for all panels on all pages by changing these skin parameters.

However, if a <rich-panel> class is specified somewhere on the page, its parameters are also
acquired by all panels on this page.

A developer may also change the style properties for a particular panel. The following definition:

Example:

<rich:panel styleClass="customClass">

</rich:panel>

could add some style properties from customClass to one particular panel, as a result we get
three styles:

Example:

<div class="dr_pnl rich-panel customClass">

</div>

5.9.4. Skin Parameters Tables in RichFaces

RichFaces provides eight predefined skin parameters (skins) at the simplest level of common
customization:

DEFAULT

 plain

emeraldTown

blueSky
e wine
* japanCherry

e ruby

41

Chapter 5. Basic concepts of ...

* classic
» deepMarine
To plug one in, it's necessary to specify a skin name in the "org.richfaces.SKIN" context-param.

Here is an example of a table with values for one of the main skins, "blueSky".

Table 5.1. Colors

Parameter name Default value

headerBackgroundColor #BEDG6F8
headerGradientColor #F2F7FF
headTextColor #000000
headerWeightFont bold
generalBackgroundColor #FFFFFF
generalTextColor #000000
generalSizeFont 11px
generalFamilyFont Arial, Verdana, sans-serif
controlTextColor #000000
controlBackgroundColor #fffff
additionalBackgroundColor #ECFAFE
shadowBackgroundColor #000000
shadowOpacity 1
panelBorderColor #BEDG6F8
subBorderColor HFFEE
tabBackgroundColor #C6DEFF
tabDisabledTextColor #8DB7F3
trimColor #D6EGFB
tipBackgroundColor #FAE6BO
tipBorderColor #E5973E
selectControlColor #E79A00
generalLinkColor #0078D0
hoverLinkColor #0090FF
visitedLinkColor #0090FF

Table 5.2. Fonts

Parameter name Default value

headerSizeFont 11px

42

Creating and Using Your Own Skin File

Parameter name Default value

headerFamilyFont Arial, Verdana, sans-serif
tabSizeFont 11px

tabFamilyFont Arial, Verdana, sans-serif
buttonSizeFont 11px

buttonFamilyFont Arial, Verdana, sans-serif
tableBackgroundColor #FFFFFF
tableFooterBackgroundColor #cceecece
tableSubfooterBackgroundColor #f1f1f1

tableBorderColor #CO0OCOCO

Skin "plain" was added from 3.0.2 version. It doesn't have any parameters. It's necessary for
embedding RichFaces components into existing projecst which have its own styles.

To get detailed information on particular parameter possibilities, see the chapter where each
component has skin parameters described corresponding to its elements.

5.9.5. Creating and Using Your Own Skin File

In order to create your own skin file, do the following:

» Create a file and define in it skin constants which are used by style classes (see section "Skin
Parameters Tables in RichFaces"). The name of skin file should correspond to the following
format: <name>.skin.properties. As an example of such file you can see RichFaces predefined
skin parameters (skins): blueSky, classic, deepMarine, etc. These files are located in the
richfaces-impl-xxxxx.jar inside the /META-INF/skins folder.

« Add a skin definition <contex-param> to the web.xml of your application. An example is placed
below:

Example:

<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>name</param-value>
</context-param>

« Put your <name>.skin.properties file in one of the following classpath elements: META-INF/
skins/ or classpath folder (e.g. WEB-INF/classes).

43

Chapter 5. Basic concepts of ...

5.9.6. Built-in skinnability in RichFaces

RichFaces gives an opportunity to incorporate skinnability into Ul design. With this framework
you can easily use named skin parameters in properties files to control the appearance of the
skins that are applied consistently to a whole set of components. You can look at examples of
predefined skins at:

http://livedemo.exadel.com/richfaces-demo/

You may simply control the look-and-feel of your application by using the skinnability service of the
RichFaces framework. With the means of this service you can define the same style for rendering
standard JSF components and custom JSF components built with the help of RichFaces.

To find out more on skinnability possibilities, follow these steps:

» Create a custom render kit and register it in the faces-config.xml like this:

<render-kit>
<render-kit-id>NEW_SKIN</render-kit-id>
<render-kit-class>
org.ajax4jsf.framework.renderer.ChameleonRenderKitimpl
</render-kit-class>
</render-kit>

« Then you need to create and register custom renderers for the component based on the look-
and-feel predefined variables:

<renderer>
<component-family>javax.faces.Command</component-family>
<renderer-type>javax.faces.Link</renderer-type>
<renderer-class>
newskin.HtmlICommandLinkRenderer
</renderer-class>
</renderer>

 Finally, you need to place a properties file with skin parameters into the class path root. There
are two requirements for the properties file:

* The file must be named <skinName> .skin.properties, in this case, it would be called
newski n. ski n. properti es.

* The first line in this file should be render.kit= <render-kit-id>, in this case, it would be called
render.kit=NEW_SKIN.

44

http://livedemo.exadel.com/richfaces-demo/

Standard controls skinning

Extra information on custom renderers creation can be found at:

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html

5.9.7. Standard controls skinning

The feature is designed to unify the look and feel of standard HTML element and RichFaces
components. Skinning can be applied to all controls on a page basing on elements' name and
attribute type (where applicable). Also this feature provides a set of CSS styles so that skinning
can be applied assigning rich-* classes to particular elements or to container of elements that
nests controls.

Standard controls skinning feature provides 2 levels of skinning, while skinning is based on
detecting User Agent. If User Agent is not detected, Advanced level is used.

« Basic provides customization only basic style properties.
To the following browsers Basic level of skinning is applied:

* Internet Explorer 6

Internet Explorer 7 in BackCompat mode (see document.compatMode property in MSDN
[http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx])

* Opera
» Safari

« Advanced extends basic level introducing broader number of style properties and is applied to
browsers with rich visual styling capability of controls

The following browsers support Advanced level of skinning:
* Mozilla Firefox
* Internet Explorer 7 in Standards-compliant mode (CSS1Compat mode)

These are the elements that affected by skinning:

* input

* select
 textarea
* keygen
* isindex
* legend

 fieldset

45

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html
http://msdn2.microsoft.com/en-us/library/ms533687(VS.85
http://msdn2.microsoft.com/en-us/library/ms533687(VS.85

Chapter 5. Basic concepts of ...

* hr
 a (together with a:hover, a:visited "pseudo"-elements)

Skinning can be initialized in two ways:

e adding org.richfaces. CONTROL_SKINNING parmeter to web.xml. Values: "enable" and
"disable". This way implies that skinning style classes are applied to elements by element
name and type attribute (where applicable). No additional steps required from an application
developer. Please find below the table that contains the list of element to which skinning a
applicable.

« adding org.richfaces. CONTROL_SKINNING_CLASSES parameter to web.xml file. Possible
values "enable" and "disable". Implementation of this method implies the provision of several
style classes for different types of elements. The style classes have predefined names.
Application developer should manually assign classes to controls that needs skinning or assign
class to an element that contains controls.

By setting org.richfaces. CONTROL_SKINNING_CLASSES to "enable" you are provided with style
classes applicable to:
» Basic elements nested inside element having rich-container class, e.g.:

Example:

.rich-container select {
llclass content

« Elements that has class name corresponding to one of the basic elements hame/type mapped
by the following scheme rich-<elementName>[-<elementType>]. See the example:

Example:

.rich-select {
/Iclass content

}

.rich-input-text {
/Iclass content

}

46

Standard controls skinning

@ Note:
a elements have classes based on "link" and pseudo class name, e.g.: rich-link,
rich-link-hover, rich-link-visited

5.9.7.1. Basic level

Table 5.3. Html Elements Skin Bindings for input, select, textarea, button,
keygen, isindex, legend

CSS Properties Skin parameters
font-size ‘ generalSizeFont
font-family ‘ generalFamilyFont
color ‘ controlTextColor

Table 5.4. Htim| Elements Skin Bindings for fieldset

CSS Properties Skin parameters

border-color ‘ panelBorderColor

Table 5.5. Htm| Elements Skin Bindings for hr

CSS Properties Skin parameters

border-color ‘ panelBorderColor

Table 5.6. Html Elements Skin Bindings for a

CSS Properties Skin parameters

color generalLinkColor

Table 5.7. Html Elements Skin Bindings for a:hover

CSS Properties Skin parameters

color ‘ hoverLinkColorgeneralLinkColor

Table 5.8. Html Elements Skin Bindings for a:visited

CSS Properties Skin parameters

color ‘ visitedLinkColor

47

Chapter 5. Basic concepts of ...

Table 5.9. Rich Elements Skin Bindings for .rich-input, .rich-select,
rich-textarea, .rich-button, .rich-keygen, .rich-isindex, .rich-legend,
rich-link

CSS Properties Skin parameters

font-size generalSizeFont
font-family generalFamilyFont
color controlTextColor

Table 5.10. Rich Elements Skin Bindings for .rich-fieldset

CSS Properties Skin parameters

border-color ‘ panelBorderColor

Table 5.11. Rich Elements Skin Bindings for .rich-hr

CSS Properties Skin parameters

border-color ‘ panelBorderColor

Table 5.12. Rich Elements Skin Bindings for .rich-link

CSS Properties Skin parameters

color ‘ generalLinkColor

Table 5.13. Rich Elements Skin Bindings for .rich-link:hover

CSS Properties Skin parameters

color hoverLinkColor

Table 5.14. Rich Elements Skin Bindings for .rich-link:visited

CSS Properties Skin parameters

color visitedLinkColor

5.9.7.2. Advanced level

Table 5.15. Html Elements Skin Bindings for input, select, textarea, button,
keygen, isindex

CSS properties Skin parameters

border-width 1px
border-color panelBorderColor
color controlTextColor

48

Standard controls skinning

Table 5.16. Html Elements Skin Bindings for *|button

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color headerTextColor

background-color headerBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonBackgroundimage
Table 5.17. Html Elements Skin Bindings for
button[type=button], button[type=reset], button[type=submit],

input[type=reset], input[type=submit], input[type=button]

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color headerTextColor

background-color headerBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonBackgroundimage

Table 5.18. Html Elements Skin Bindings for *|textarea

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

background-color controlBackgroundColor

background-image org.richfaces.renderkit.html.images.InputBackgroundimage

Table 5.19. Html Elements Skin Bindings for textarea[type=textarea],
input[type=text], input[type=password], select

CSS properties Skin parameters
border-color panelBorderColor
font-size generalSizeFont
font-family generalFamilyFont

49

Chapter 5. Basic concepts of ...

CSS properties Skin parameters

color controlTextColor
background-color controlBackgroundColor
background-image org.richfaces.renderkit.html.images.InputBackg

5.9.8. XCSS file format

XCSS files are the core of Richfaces components skinnability.
XCSS is an XML formatted CSS that adds extra functionality to the skinning process

XCSS extends skinning possibilities by parsing the XCSS file that contains all look-and-feel
parameters of a particular component into a standard CSS file that a web browser can recognize.

XCSS file contains CSS properties and skin parameters mappings. Mapping of a CSS selector to
a skin parameter is performed using < u:selector > and < u:style> XML tags that form the mapping
structure. Please study the example below.

<u:selector name=".rich-component-name">
<u:style name="background-color" skin="additionalBackgroundColor" />
<u:style name="border-color" skin="tableBorderColor" />
<u:style name="border-width" skin="tableBorderWidth" />
<u:style name="border-style" value="solid" />
</u:selector>

During processing the code in the shown example will be parsed into a standard CSS format.

.rich-component-name {

background-color: additionalBackgroundColor; /*the value of the constant defined by your skin*/
border-color: tableBorderColor; /*the value of the constant defined by your skin*/

border-width: tableBorderWidth /*the value of the constant defined by your skin*/

border-style: solid;

}

The name attribute of <u:selector> tag defines the CSS selector, while name attribute of the <
u:style> tag defines what skin constant is mapped to a CSS property. The value attribute of the <
u:style> tag can also be used to assign a value to a CSS property.

CSS selectors with identical skinning properties can be set as a comma separated list.

50

roundlmage

Plug-n-Skin

<u:selector name=".rich-ordering-control-disabled, .rich-ordering-control-top, .rich-ordering-
control-bottom, .rich-ordering-control-up, .rich-ordering-control-down">

<u:style name="border-color" skin="tableBorderColor" />
</u:selector>

5.9.9. Plug-n-Skin

Plug-n-Skin feature is designed to easily create a new custom skin which extends and overrides a
base skin, it allows to redefine the look of a set of components by taking the base skin as basis and
plugging-in custom styles as well as to unify the appearance of standard controls and RichFaces
components.

In order to create your own skin using Plug-n-Skin feature, you can follow these step by step
instructions.

First of all, you need to create a template for the new skin. Creation of the template can be
performed using Maven build and deployment tool More information on how to configure Maven for
RichFaces here [http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces]. You can copy
and paste these Maven instructions to command line and execute them.

mvn archetype:create
-DarchetypeGroupld=org.richfaces.cdk
-DarchetypeArtifactld=maven-archetype-plug-n-skin
-DarchetypeVersion=RF-VERSION
-Dartifactld=ARTIFACT-ID

-Dgroupld=GROUP-ID -Dversion=VERSION

Primary keys for the command:

DarchetypeVersion Indicates the RichFaces version. For example, "3.2.1.CR8"

Dartifactld Artifact id of the project

Dgroupld Group id of the project

Dversion The version of the project you create, by default it is "1.0.-SNAPSHOT"

After this operation, a folder with the name of your "ARTIFACT-ID" appears. The folder contains
a template of Maven project.

51

http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces
http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces

Chapter 5. Basic concepts of ...

Next steps will guide you though creating of the skin itself.

In the root folder of Maven project (the one that contains "pom.xml" file) you should run the
following command in the command line:

mvn cdk:add-skin -Dname=SKIN-NAME -Dpackage=SKIN-PACKAGE

Primary keys for the command:

Additional optional keys for the command:

Dname defines the name of the new skin
Dpackage base package of the skin. By default "groupld" of the project is used.
DbaseSkin defines the name of the base skin.

DcreateExt if set to "true", extended CSS classes are added. For more information, please, see
"Standard controls skinning"

As a result of the performed operations the following files and folders are created:

Baselmage.java - the base class to store images. Location: "\src\main\java\SKIN-
PACKAGE\SKIN-NAME\images\"

BaselmageTestjava - a test version of a class that stores images. Location:
"\src\test\java\SKIN-PACKAGE\SKIN-NAME\images\"

XCSS files - XCSS files define the new look of RichFaces components affected by the new skin.
Location: "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\"

SKIN-NAME.properties - a XCSS file that contains properties of the new skin. Location:
"\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\"

The following properties are used to configure the file:

» baseSkin — the name of the base skin to be used as basis. The look of the skin you define
will be affected by new style properties.

» generalStyleSheet - a path to the style sheet (<SKIN-NAME>.xcss) that imports style sheets
of the components to be affected by the new skin.

» extendedStyleSheet - a path to a style sheet that is used to unify the appearance of RichFaces
components and standard HTML controls. For additional information please read "Standard
controls skinning" chapter.

52

Plug-n-Skin

« gradientType is a predefined property to set the type of gradient applied to the new skin.
Possible values are glass, plastic, plain. More information on gradient implementation you
can find further in this chapter.

« SKIN-NAME.xcss - a XCSS file that imports XCSS files of the components to be affected by
the new skin. Location: "src\main\resources\META-INF\skins "

« XCSS files If the command is executed with the "DcreateExt" key set to "true", XCSS files
that define style for standard controls will be created. Location:; "\src\main\resources\SKIN-
PACKAGE\SKIN-NAME\css\".

« SKIN-NAME-ext.xcss If the command is executed with the "DcreateExt" key set to "true", the
configuration SKIN-NAME-ext.xcss file that imports XCSS file defining styles for the standard
controls will be created. Location: "src\main\resources\META-INF\skins ".

» SKIN-NAME-resources.xml - the file contains the description of all listed above files. Location:
"src\main\config\resources ".

Having performed the previous steps you can proceed to building the new skin. This can be done
by executing the given below command in the command line in the root folder of you skin project
(the one that contains pom.xml file).

mvn clean install

Now, you can use your newly-created skin in your project by adding your new skin parameters
to web.xml file.

<context-param>
<param-name=>org.ajax4jsf.SKIN</param-name>
<param-value>SKIN-NAME</param-value>
</context-param>

So, now having built your new skin you can start redefining style properties in the corresponding
XCSS files(located in "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\" folder). In the
example below, it's shown how to redefine the style properties for "combobox" component.

<u:selector name=".rich-combobox-item-selected">
<u:style name="border-width" value="1px" />

53

Chapter 5. Basic concepts of ...

<u:style name="border-style" value="solid" />
<u:style name="border-color" skin="newBorder" />
<u:style name="background-position" value="0% 50%" />
<u:style name="background-image">
<firesource f:key="org.richfaces.renderkit.ntml.CustomizeableGradient">
<f:attribute name="valign" value="middle" />

<f:attribute name="gradientHeight" value="17px" />
<f:attribute name="baseColor" skin="headerBackgroundColor" />
</f:resource>
</u:style>
</u:selector>

Please notice that background-image can be used to set a predefined gradient by means of
<frresource f:key="org.richfaces.renderkit.html.CustomizeableGradient"> and the gradientType
constant set to one of the possible values.

You can also apply these style properties to background-image:

» baseColor

gradientColor

gradientHeight
* valign

 gradientType

54

Chapter 6.

The RichFaces Components

The library encompasses ready-made components built based on the Rich Faces CDK .
6.1. < adj.ajaxListener >

6.1.1. Description

The <adj:ajaxListener> component is the same one as <f:actionListener> or
<f:valueChangeListener>, but for an Ajax container.

Table 6.1. a4j : ajaxListener attributes

Attribute Name Description

Fully qualified Java class name of an
AjaxListener to be created and registered.

type

Table 6.2. Component identification parameters

NETIE Value

listener-class org.ajax4jsf.framework.ajax.AjaxListener
event-class org.ajax4jsf.framework.ajax.AjaxEvent
tag-class org.ajax4jsf.taglib.html.jsp.AjaxListenerTag

6.1.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<adj:ajaxListener type="demo.Bean"/>

6.1.3. Creating the Component Dynamically Using Java

Example:

package demo;

55

Chapter 6. The RichFaces Comp...

public class ImplBean implements import org.ajax4jsf.component.html.AjaxListener{

import demo.ImplBean;

ImpIBean myListener = new ImplBean();

6.1.4. Key attributes and ways of usage

Additional to the listeners provided by JSF specification, RichFaces add one more: ajax
Listener (<adj:ajaxListener>). Ajax Listener is invoked before the Render Response phase.
Instead of <f:actionListener> of <f:valueChangeListener> which are not invoked when
Validation of Update Model phases failed, ajax Listener is guarantied to be invoked for each
Ajax response. Thus, it is a good place for update the list of re-rendered components, for
example. Ajax Listener is not invoked for non-Ajax request and when RichFaces works in
"Ajax Request generates Non-Ajax Response” mode. Therefore, ajax Listener invocation is a
good indicator that Ajax response is going to be processed. Attribute "type" described in
the following chapter. It defines the fully qualified Java class name for listener.This class
implements org.ajax4jsf.framework.ajax.ajaxListener interface [http://labs.jboss.com/file-access/
default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html]. You can access
to the source of the event (Ajax component) using event.getSource() call.

Example:

<adj:commandLink id="cLink" value="Click it To Send Ajax Request">
<adj.ajaxListener type="demo.Bean"/>
</adj:commandLink>

Example:

package demo;
import org.ajax4jsf.framework.ajax.AjaxEvent;

public class Bean implements org.ajax4jsf.framework.ajax.AjaxListener{

56

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html

Relevant resources links

public void processAjax(AjaxEvent arg0){
/[Custom Developer Code

-

6.1.5. Relevant resources links

Some additional information about usage of component can be found here [http:/
livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener].

More information about <f:valueChangeListener> can be found here [http://java.sun.com/
javaeeljavaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html].

6.2. < adj.keepAlive >
6.2.1. Description
The <adj:keepAlive> component allows to keep a state of each bean between requests.

Table 6.3. a4j : keepAlive attributes

Attribute Name Description

ajaxOnly if true, bean value restored in ajax requests
only.
beanName name of bean for EL-expressions.

Table 6.4. Component identification parameters

Name Value

component-type org.ajax4jsf.components.KeepAlive
component-family org.ajax4djsf.components.AjaxKeepAlive
component-class org.ajax4jsf.components.AjaxKeepAlive

6.2.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<adj:keepAlive beanName = "testBean"/>

57

http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html

Chapter 6. The RichFaces Comp...

6.2.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.ajax.AjaxKeepAlive;

AjaxKeepAlive myKeepAlive = new AjaxKeepAlive();

6.2.4. Key attributes and ways of usage

If a managed bean is declared with request scope in the configuration file with the help of
managed-bean-scope tag then the life-time of this bean instance is valid only for the current
request. Any attempts to make a reference to the bean instance after the request end will throw
in lllegal Argument Exception by the server. To avoid these kinds of Exception, component
<adj:keepAlive> is used to maintain the state of the whole bean object among subsequent
request.

Example:
<adjkeepAlive beanName = "#{myClass.testBean}"/>

Note that the attribute "beanName" must point to a legal jsf EL expression which resolves to a
managed mean instance. For example for the above code the class definition may look like this:

class MyClass{

private TestBean testBean;
/I Getters and Setters for testBean.

6.2.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive] you can
see the example of <a4j:keepAlive> usage and sources for the given example.

58

http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive

< adj:actionparam >

Some additional information about usage of component can be found here [http://jboss.com/
index.html?module=bb&op=viewtopic&t=104989].

6.3. < a4dj.actionparam >

6.3.1. Description

The <adj:actionparam> component combines the functionality of both JSF components:
<f:param> and <f:actionListener>.

More information about <f:param> and <f:actionListener> can be found here [http://
java.sun.com/javaeel/javaserverfaces/1.2/docs/tlddocs/index.html].

Table 6.5. a4j : actionparam attributes

Attribute Name Description

actionListener actionListener

assignTo EL expression for updatable bean property.
This property will be wupdated if the
parent command component performs an
actionEvent.

binding The attribute takes a value-binding expression
for a component property of a backing bean

converter ID of a converter to be used or a reference to
a converter.

id Every component may have a unique id that is
automatically created if omitted

name A name of this parameter

noEscape If set to true, the value will not enclosed within
single quotes and there will be no escaping of
characters. This allows the use of the value
as JavaScript code for calculating value on the
client-side. This doesn't work with non-AJAX
components.

value An initial value or a value binding

Table 6.6. Component identification parameters

component-type org.ajax4jsf.ActionParameter

component-class org.ajax4jsf.component.html.HtmlActionParameter

59

http://jboss.com/index.html?module=bb&op=viewtopic&t=104989
http://jboss.com/index.html?module=bb&op=viewtopic&t=104989
http://jboss.com/index.html?module=bb&op=viewtopic&t=104989
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

Chapter 6. The RichFaces Comp...

6.3.2. Creating on a page

Simple component definition example:

Example:

<adj.actionparam noEscape="true" name="paraml1" value="getMyValue()"
assignTo="#{bean.propl1}" />
6.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlActionParameter;

HtmlActionParameter myActionParameter = new HtmlActionParameter();

6.3.4. Key attributes and ways of usage

The component <adj:actionparam> is a combination of the functionality of two JSF tags:
<f:param> and <f:actionListener>.

At the render phase, it's decoded by parent component (<h:commandLink> or like) as usual. At
the process request phase, if the parent component performs an action event, update the "value"
specified in the "assignTo" attribute as its "value" . If a "converter" attribute is specified, use it
to encode and decode the "value" to a string stored in the html parameter.

<adj:actionparam> has a "noEscape" attribute. If it is set to "true", the "value" is evaluated
as a JavaScript code.

Example:

<script>
var foo = "bar";
</script>

<adj:actionparam noEscape="true" name="paraml" value="foo" assign To="#{bean.prop1}"
/>

60

Relevant resources links

The <adj:param> extends <f:param>, sothe "name" attribute is mandatory. Otherwise, the
"value" misses due missing the request parameter name for it.

6.3.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam] you
can see the example of <adj:actionparam> usage and sources for the given example.

More information can be found on the Ajaxdjsf Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4063764].

6.4. <adj.commandButton >

6.4.1. Description

The <adj:commandButton>componentis very similar to the <h:commandButton> component,
the only difference is that an Ajax form submit is generated on a click and it allows dynamic
rerendering after a response comes back. It's not necessary to plug any support into the
component, as Ajax support is already built in.

Table 6.7. a4j : commandButton attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

alt

61

http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764

Chapter 6. The RichFaces Comp...

Attribute Name Description

Alternate textual description of the element
rendered by this component.

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

disabled If true, disable this component on page.

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now.

image Absolute or relative URL of the image to
be displayed for this button. If specified,
this "input" element will be of type "image".
Otherwise, it will be of the type specified by
the "type" property with a label specified by the
"value" property.

immediate True means, that the default ActionListener
should be executed immediately (i.e. during

62

Description

Attribute Name Description

Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

lang Code describing the language used in the
generated markup for this component

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

onblur HTML: script expression; the element lost the
focus
onchange HTML: script expression; the element value

was changed

onclick HTML: a script expression; a pointer button is
clicked
oncomplete JavaScript code for call after request

completed on client side

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onfocus HTML: script expression; the element got the
focus

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed

and released
onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

63

Chapter 6. The RichFaces Comp...

Attribute Name Description

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

size This attribute tells the user agent the initial
width of the control. The width is given in pixels
except when type attribute has the value "text"
or "password". In that case, its value refers to
the (integer) number of characters

status ID (in format of call
UlComponent.findComponent()) of Request
status component

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

timeout Timeout (in ms)) for request.

title Advisory title information about markup
elements generated for this component

64

Creating on a page

Attribute Name Description

type submit|reset|image|button This attribute
specifies a type of control to create. The default
value for this attribute is "submit"

value ‘ The current value for this component

Table 6.8. Component identification parameters

Name Value

component-type org.ajax4jsf.CommandButton

component-family javax.faces.Command

component-class org.ajax4jsf.component.html.HtmlAjaxCommandButton
renderer-type org.ajax4jsf.components.AjaxCommandButtonRenderer

6.4.2. Creating on a page

The simplest tag usage example:

Example:

<adj:commandButton reRender="someData" action="#{bean.action1}" value="Link"/>

6.4.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandButton;

HtmlAjaxCommandButton myButton = new HtmlAjaxCommandButton();

6.4.4. Key attributes and ways of usage

<adj:commandButton> is used in the same way as <h:commandButton>, but with definition
of the area that is updated after the response comes back from the server.

This definition of the component provides a link, a click on the link causes an Ajax form submit
on the server, actionl method performance, and rendering of the component with someData id
after the response comes back from the server.

65

Chapter 6. The RichFaces Comp...

The component <adj:commandButton> placed on a page generates the following HTML code:

<input type="submit" onclick="A4J.AJAX.Submit(...request parameters);return false;"
value="sort"/>

Hence, the utility method A4J.AJAX.Submit is called on a click, the method performs Ajax request
as the <adj:support> component

@ Note:

AJAX support is built in and it's not necessary to add nested <adj:support> to
the component.

The usage of the keyword 'this' in JavaScript code in the "oncomplete" attribute depends on the
location of <a4dj:commandButton> . If the commandButton is situated outside the re-rendered
region you can use keyword 'this' as in the following example:

<h:form id="form">
<a4j:commandButton id="cbutton" action="director.rollCamera"
onclick="this.disabled=true"
oncomplete="this.disabled=false" />
</h:form>

Otherwise if the commandButton contained in re-rendered region the "oncomplete" attribute has
a problem obtaining a reference of the commandButton object when using the keyword 'this'. In
this case you can use the "oncomplete" attribute as in the following example:

<h:form id="form">

<a4j:commandButton id="cbutton" action="director.rollCamera"
onclick="this.disabled=true"
oncomplete="document.getElementByld(‘form:cbutton’).disabled=false" />

</h:form>

66

Relevant resources links

Common JSF navigation could be performed after an Ajax submit and partial rendering, but
Navigation Case must be defined as <redirect/> in order to avoid problems with some browsers.

As any Core Ajax component sending Ajax requests and processing server responses
<adj:commandButton> has all attributes described above (see <adj:support> chapter) that
provide the required behavior of requests sending (delay, limitation of submit area and rendering,
and etc.)

Information about the "process" attribute usage you can find here.

6.4.5. Relevant resources links

Here [http:/Nlivedemo.exadel.com/richfaces-demo/richfaces/
commandButton.jsf2c=commandButton] you can see the example of <adj:commandButton>
usage and sources for the given example.

6.5. <adj.commandLink >

6.5.1. Description

The <adj:commandLink> component is very similar to the <h:commandLink> component, the
only difference is that an Ajax form submit is generated on a click and it allows dynamic rerendering
after a response comes back. It's not necessary to plug any support into the component, as Ajax
support is already built in.

Table 6.9. a4j : commandLink attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

67

http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton

Chapter 6. The RichFaces Comp...

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

charset The character encoding of a resource
designated by this hyperlink

coords This attribute specifies the position and shape
on the screen. The number and order of
values depends on the shape being defined.
Possible combinations: * rect: left-x, top-y,
right-x, bottom-y. * circle: center-x, center-
y, radius. Note. When the radius value is
percentage value, user agents should calculate
the final radius value based on the associated
object's width and height. The radius should
be the smaller value of the two. * poly: x1, y1,
X2, y2, ..., XN, yN. The first x and y coordinate
pair and the last should be the same to close
the polygon. When these coordinate values
are not the same, user agents should infer an
additional coordinate pair to close the polygon.
Coordinates are relative to the top, left corner
of the object. All values are lengths. All values
are separated by commas

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

disabled If true, disable this component on page.

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

68

Description

Attribute Name Description

hreflang

ignoreDupResponses

Base language of a resource specified with the
href attribute; hreflang may only be used with
href

Every component may have a unique id that is
automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate

lang

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

Code describing the language used in the
generated markup for this component

limitToList

onbeforedomupdate

onblur

If "true", updates on client side ONLY
elements from this 'reRender property. If
"false" (default) updates all rendered by ajax
region components

JavaScript code for call before DOM has been
updated on client side

JavaScript code. The onblur event occurs
when an element loses focus either by the
pointing device or by tabbing navigation. It may
be used with the same elements as onfocus

onclick

HTML: a script expression; a pointer button is
clicked

oncomplete

ondbilclick

JavaScript code for call after request
completed on client side

HTML: a script expression; a pointer button is
double-clicked

onfocus

JavaScript code. The onfocus event occurs
when an element gets focus

69

Chapter 6. The RichFaces Comp...

Attribute Name Description

onkeydown

HTML: a script expression; a key is pressed
down

onkeypress

HTML: a script expression; a key is pressed
and released

onkeyup

HTML: a script expression; a key is released

onmousedown

HTML: script expression; a pointer button is
pressed down

onmousemove

onmouseout

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

onmouseover

HTML: a script expression; a pointer is moved
onto

onmouseup

process

HTML: script expression; a pointer button is
released

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rel

rendered

The relationship from the current document
to the anchor specified by this hyperlink. The
value of this attribute is a space-separated list
of link types

If "false", this component is not rendered

requestDelay

reRender

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

70

Description

Attribute Name Description

rev

A reverse link from the anchor specified by this
hyperlink to the current document. The value
of this attribute is a space-separated list of link

types

shape

default|rect|circle|poly [CI] This attribute
specifies the shape of a region. Possible
values: * default: Specifies the entire region.
* rect: Define a rectangular region. * circle:
Define a circular region. * poly: Define a
polygonal region.

status

ID (in format of call
UlComponent.findComponent()) of Request
status component

style

CSS style(s) is/are to be applied when this
component is rendered

styleClass

Corresponds to the HTML class attribute

tabindex

This attribute specifies the position of the
current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

target

timeout

title

type

This attribute specifies the name of a frame
where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

Timeout (in ms) for request.

Advisory title information about markup
elements generated for this component

The content type of the resource designated by
this hyperlink

value

The current value for this component

Table 6.10. Component identification parameters

NETIE Value

component-type

org.ajax4jsf.CommandLink

component-family

javax.faces.Command

component-class

org.ajax4jsf.component.html.HtmlIAjaxComman

71

dLink

Chapter 6. The RichFaces Comp...

renderer-type org.ajax4jsf.components.AjaxCommandLinkRenderer

6.5.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<adj:commandLink reRender="someData" action="#{bean.action1}" value="Link"/>

6.5.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandLink;

HtmlAjaxCommandLink myLink = new HtmlAjaxCommandLink();

6.5.4. Key attributes and ways of usage

<adj:commandLink> is used in the same way as <h:commandLink>, but with definition of the
area that is updated after the response comes back from the server.

This definition of the component provides a link, and a click on the link causes an Ajax form submit
on the server, actionl method performance, and rendering of the component with someData id
after the response comes back from the server.

The component <adj:commandLink> placed on a page generates the following HTML code:

Link Value

Hence, the utility method A4J.AJAX.Submit is called on a click, the method performs Ajax request
as the <adj:support> component

72

Relevant resources links

E] Note:
AJAX support is built in and it's not necessary to add nested <adj:support> to
the component.

Common JSF navigation could be performed after Ajax submit and partial rendering, but
Navigation Case must be defined as <redirect/> in order to avoid problems with some browsers.

As any Core Ajax component sending Ajax requests and processing server responses
<adj:commandLink> has all attributes described above (see <adj:support> chapter) that
provide the required behavior of requests sending (delay, limitation of submit area and rendering,
etc.)

Information about the "process" attribute usage you can find here.

6.5.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink]
you can see the example of <adj:commandLink> usage and sources for the given example

6.6. <adj.form >

6.6.1. Description

The <a4j:form> component is very similar to the same component from the JSF HTML library, the
only slight difference is in generation of links inside and possibility of Ajax by-default submission.

Table 6.11. a4j : form attributes

Attribute Name Description

accept This attribute specifies a comma-separated list
of content types that a server processing this
form will handle correctly. User agents may
use this information to filter out non-conforming
files when prompting you to select files to be
sent to the server (cf. the INPUT element when
type="file")

acceptCharset This attribute specifies the list of character
encodings for input data that is accepted by
the server processing this form. The value
is a space- and/or comma-delimited list of
charset values. The client must interpret this
list as an exclusive-or list, i.e., the server is
able to accept any single character encoding
per entity received. The default value for this

73

http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink

Chapter 6. The RichFaces Comp...

Attribute Name Description

attribute is the reserved string "UNKNOWN".
User agents may interpret this value as the
character encoding that was used to transmit
the document containing this FORM element

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

ajaxSubmit If true, it becomes possible to set AJAX
submission way for any components inside .

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

enctype This attribute specifies the content type used
to submit the form to the server (when the
value of method is "post”). The default value
for this attribute is "application/x-www-form-
urlencoded". The value "multipart/form-data"
should be used in combination with the INPUT
element, type="file"

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,

74

Description

Attribute Name Description

but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

oncomplete JavaScript code for call after request
completed on client side

onreset The onreset event occurs when a form is reset.
It only applies to the FORM element

onsubmit The onsubmit event occurs when a form is
submitted. It only applies to the FORM element

prependid The flag indicating whether or not this form
should prepend its id to its descendent id during
the clientld generation process. If this flag is not
set, the default value is "true"”.

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

75

Chapter 6. The RichFaces Comp...

Attribute Name Description

status ID (in format of call
UlComponent.findComponent()) of Request
status component

target This attribute specifies the name of a frame
where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

timeout Timeout (in ms) for request.

Table 6.12. Component identification parameters

Name Value

component-type org.ajax4jsf.Form

component-family javax.faces.Form

component-class org.ajax4jsf.component.html.AjaxForm
renderer-type org.ajaxdjsf.FormRenderer

6.6.2. Creating on a page

Component definition on a page is similar to definition of the original component from JSF HTML
library.

Example:

<adj:.form>
<h:panelGrid>
<h:commandButton value="Button" action="#{userBean.nameltMark}" />
</h:panelGrid>
</a4j.form>

6.6.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxForm;

AjaxForm myForm = new AjaxForm();

Key attributes and ways of usage

6.6.4. Key attributes and ways of usage

The difference with the original component is that all hidden fields required for command links are
always rendered and it doesn't depend on links rendering on the initial page. It solves the problem
with invalid links that weren't rendered on a page immediately, but after some Ajax request.

Beginning with release 1.0.5 additional attributes that make this form variant universal have
appeared.

If "ajaxSubmit" attribute is true, it becomes possible to set Ajax submission way for
any components inside, i.e. not a page URL is used as an "action" attribute, but the
javascript:A4J.AJAX.Submit(...) call. In this case, the "reRender" attribute contains a list of Ids of
components defined for re-rendering. If you have <h:commandButton> or <h:commandLink>
inside the form, they work as <adj:commandButton> .

Example:

<adj:form id="helloForm" ajaxSubmit="true" reRender="table">
;;:dataTabIe id="table"... >
</t.:.ollataTabIe>
;;:datascroller for="table"... >
</t.:.ollatascroller>
</a;.£ij:form
This example shows that in order to make <t:datascroller> submissions to be Ajax ones it's
required only to place this <t:datascroller> into <adj:form> . In the other case it is necessary

to redefine renders for its child links elements that are defined as <h:commandLink> and can't
be made Ajax ones with using e.g. <adj:support>.

With the help of "limitToList" attribute you can limit areas, which are updated after the responses.
If "limitToList" is true, only the reRender attribute is taken in account. Therefore, if you use blocks
of text wrapped with <adj:outputPanel> and "ajaxRendered" = true, blocks of text are ignored.

Information about the "process” attribute usage you can find here.
6.6.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/form.jsf?c=form] you can see the
example of <adj:form> usage and sources for the given example.

77

http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form
http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form

Chapter 6. The RichFaces Comp...

6.7. <adj.:htmlCommandLink >

6.7.1. Description

The <adj:htmlCommandLink> component is very similar to the same component from the JSF
HTML library, the only slight difference is in links generation and problem solving that occurs when
an original component is used.

Table 6.13. a4j : htmlCommandLink attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

binding The attribute takes a value-binding expression
for a component property of a backing bean

charset The character encoding of a resource
designated by this hyperlink

coords This attribute specifies the position and shape
on the screen. The number and order of
values depends on the shape being defined.
Possible combinations: * rect: left-x, top-y,
right-x, bottom-y. * circle: center-x, center-
y, radius. Note. When the radius value is
percentage value, user agents should calculate
the final radius value based on the associated
object's width and height. The radius should
be the smaller value of the two. * poly: x1, y1,
x2,¥2, ..., XN, yN. The first x and y coordinate
pair and the last should be the same to close
the polygon. When these coordinate values
are not the same, user agents should infer an

78

Description

Attribute Name Description

additional coordinate pair to close the polygon.
Coordinates are relative to the top, left corner
of the object. All values are lengths. All values
are separated by commas

dir

disabled

Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

When set for a form control, this boolean
attribute disables the control for your input.

hreflang

Base language of a resource specified with the
href attribute; hreflang may only be used with
href

Every component may have a unique id that is
automatically created if omitted

immediate

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

lang

Code describing the language used in the
generated markup for this component

onblur

onclick

ondblclick

JavaScript code. The onblur event occurs
when an element loses focus either by the
pointing device or by tabbing navigation. It may
be used with the same elements as onfocus

HTML: a script expression; a pointer button is
clicked

HTML: a script expression; a pointer button is
double-clicked

onfocus

JavaScript code. The onfocus event occurs
when an element gets focus

onkeydown

onkeypress

HTML: a script expression; a key is pressed
down

HTML: a script expression; a key is pressed
and released

onkeyup

onmousedown

HTML: a script expression; a key is released

HTML: script expression; a pointer button is
pressed down

79

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

rel The relationship from the current document

to the anchor specified by this hyperlink. The
value of this attribute is a space-separated list

of link types
rendered If "false", this component is not rendered
rev A reverse link from the anchor specified by this

hyperlink to the current document. The value
of this attribute is a space-separated list of link
types

shape default|rect|circle|poly [CI] This attribute
specifies the shape of a region. Possible
values: * default: Specifies the entire region.
* rect: Define a rectangular region. * circle:
Define a circular region. * poly: Define a
polygonal region.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

target This attribute specifies the name of a frame
where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target”
of links defined by other elements

title Advisory title information about markup
elements generated for this component

80

Creating the Component with a Page Tag

Attribute Name Description

type The content type of the resource designated by
this hyperlink

value The current value for this component

Table 6.14. Component identification parameters

Name Value

component-type javax.faces.HtmlCommandLink
component-family javax.faces.Command

component-class javax.faces.component.html.HtmlICommandLin
renderer-type org.ajax4jsf.HtmlICommandLinkRenderer

6.7.2. Creating the Component with a Page Tag

Component definition on a page is the same as for the original component from the JSF HTML
library.

Example:

<adj:htmlCommandLink value="value" action="action"/>

6.7.3. Creating the Component Dynamically Using Java

Example:

import javax.faces.component.html.HtmlICommandLink;

HtmICommandLink myCommandLink = new HtmlICommandLink();

6.7.4. Key attributes and ways of usage

The difference with the original component is that all hidden fields required for command links with
the child <f:param> elements are always rendered and it doesn't depend on links rendering on
the initial page. It solves the problem with invalid links that weren't rendered on a page immediately,
but after some Ajax request.

Example:

<adj:.form>

81

Chapter 6. The RichFaces Comp...

<adj:htmlComandLink action="action" value="link" rendered="#{bean.rendered}">
<f:param .../>
<adj:htmlComandLink>

</a4j:form>

In this example <a4j:htmlCommandLink> works as standard <h:commandLink> , but here
hidden fields required for correct functionality are rendered before the first downloading of a page,
though it doesn't happen if its attribute isn't set to "false".

6.7.5. Relevant resources links

Here [http:/Nlivedemo.exadel.com/richfaces-demo/richfaces/
htmlCommandLink.jsf?c=htmlCommandLink] you can found some additional information for
<adj:htmlCommandLinks> component usage.

Here [http://java.sun.com/javaeel/javaserverfaces/1.1_01/docs/tiddocs/f/[param.html] you can
found some additional information about <f:param> component.

6.8. < adj:jsFunction >

6.8.1. Description

The <adj:jsFunction> component allows to invoke the server side data and return it in a JSON
format to use in a client JavaScript calls.

Table 6.15. a4j : jsFunction attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

82

http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

Description

Attribute Name Description

bypassUpdates

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data

eventsQueue

focus

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

id of element to set focus after request
completed on client side

Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

limitToList

name

onbeforedomupdate

If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

Name of generated JavaScript function
definition

JavaScript code for call before DOM has been
updated on client side

oncomplete

JavaScript code for call after request
completed on client side

83

Chapter 6. The RichFaces Comp...

Attribute Name Description

process

rendered

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

If "false", this component is not rendered

requestDelay

reRender

status

timeout

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

ID (in format of call
UlComponent.findComponent()) of Request
status component

Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

Table 6.16. Component identification parameters

Name Value

component-type

org.ajax4jsf.Function

component-family

component-class

renderer-type

org.ajax4jsf.components.ajaxFunction
org.ajax4jsf.component.html.HtmlajaxFunction

org.ajax4jsf.components.ajaxFunctionRenderer

6.8.2. Creating on a page

Simple component definition example:

Example:

84

Creating the Component Dynamically Using
Java

<head>
<script>
<I--There is some script named "myScript" that uses parameters which will be taken from
server-->
</script>
</head>
<body>

<adj:jsFunction data="#{bean.someProperty}" name="callScript"
oncomplete="myScript(data.subPropertyl, data.subProperty2)"/>

The script "myScript" is called after bean.someProperty data is returned from server(e.g. It'll be
object with two subproperties).

6.8.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlajaxFunction;

HtmlajaxFunction myFunction = new HtmlajaxFunction();

6.8.4. Key attributes and ways of usage

As the component uses Ajax request to get data from server - it has all common Ajax Action
attributes. Hence, "action" and "actionListener" can be invoked, and reRendering some parts of
the page fired after calling function.

When using the <adj:jsFunction> it's possible to initiate the Ajax request from the JavaScript
and perform partial update of a page and/or invoke the JavaScript function with data returned by
Ajax response.

<body onload="callScript()">
<h:form>

<adj:;jsFunction name="callScript" data="#{bean.someProperty1}"

85

Chapter 6. The RichFaces Comp...

reRender="someComponent" oncomplete="myScript(data.subProperty1,
data.subProperty2)">
<adj:actionParam name="param_name" assignTo="#{bean.someProperty2}"/>
</a4j:jsFunction>

</h:form>

</body>

The <adj:jsFunction> allows to use <adj:actionParam> or pure <f:param> for passing
any number of parameters of the JavaScript function into Ajax request. <adj:jsFunction> is
similar to <adj:commandButton>, but it could be activated from the JavaScript code. It allows
to invoke some server side functionality and use the returned data in the JavaScript function
invoked from "oncomplete" attribute. Hence it's possible to use <ad4j:jsFunction> instead of
<adj:commandButton> . You can put it anywhere, just don't forget to use <h:form> ... </
h:form> around it.

Information about the "process" attribute usage you can find here.

6.8.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction] you can
see the example of <a4j:jsFunction> usage and sources for the given example.

Here [http://java.sun.com/javaee/javaserverfaces/1.1_01l/docs/tlddocs/f/param.html] you can
found some additional information about <f:param> component.

6.9. <adj:include >

6.9.1. Description

The <adj:include> component is used for page areas update after an Ajax request according to
the faces-config Navigation Rules and for implementation of wizard-like parts work in Ajax mode.

Table 6.17. a4j : include attributes

Attribute Name Description

ajaxRendered Defines, whether the content of this component
must be (or not) included in AJAX response
created by parent AJAX Container, even if it
is not forced by reRender list of ajax action.
Ignored if component marked to output by Ajax
action. Default value is "false".

86

http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

Description

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

id Every component may have a unique id that is
automatically created if omitted

keepTransient Flag for mark all child components to non-
transient. If true, all children components will
be set to non-transient state and keep in saved
components tree. For output in self-renderer
region all content (By default, all content
in <f.verbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for ajax
processing).

lang Code describing the language used in the
generated markup for this component

layout HTML layout for generated markup. Possible
values: "block" for generating an HTML <div>
element, "inline" for generating an HTML
 element, and "none" for generating no
HTML element. There is a minor exception for
the "none" case where a child element has the
property "rendered" set to "false". In this case,
we create an empty element with same
ID as the child element to use as a placeholder
for later processing.

rendered If "false", this component is not rendered

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup

elements generated for this component

viewld viewld for included page.

Table 6.18. Component identification parameters

component-type org.ajax4jsf.Include

87

Chapter 6. The RichFaces Comp...

NETIE Value

component-family javax.faces.Output
component-class org.ajax4jsf.component.html.Include
renderer-type org.ajax4jsf.components.AjaxincludeRenderer

6.9.2. Creating on a page

To use the component, it's necessary to place the following strings on a page:
Example:

<h:panelGroup id="wizard">

<adjiinclude viewld="/pages/include/first.xhtml" />
</h:panelGroup>

For navigation inside a page defined in viewld any components responsible for Ajax requests to
the server generation are used.
For example, the following component on a page "/pages/include/first.xhtml"

Example:

<adj.commandButton action="next" reRender="wizard"/>

And in faces-config it's defined:

Example:

<navigation-rule>
<from-view-id>/pages/include/first.xhtml</from-view-id>
<navigation-case>
<from-outcome>next</from-outcome>
<to-view-id>/pages/include/second.xhtml</to-view-id>
</navigation-case>

</navigation-rule>

In this case after a click on a button defined inside "first.xhtml" view, navigation is performed after
an Ajax request (the same as standard JSF one) only inside this view.

88

Creating the Component Dynamically Using
Java

6.9.3. Creating the Component Dynamically Using Java

<import org.ajax4jsf.component.html.Include;

Include mylInclude = new Include();

If <adj:include> is defined this way, any Ajax request returning outcome inside generates
navigation with this <adj:include> .

Ajax Action for navigation implementation inside view must be placed inside <adj:include>
pages. Navigation defined by these pages is applied to the <a4j:include> element current for
them.

As in the general case for Ajax Action component, if the <adj:action> component inside
<adj:include> returns outcome defined as <redirect/>, Ajax submitis performed with navigation
of the whole page and not only of the current view.

6.9.4. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include] you can see
the example of <adj:include> usage and sources for the given example.

Some additional information can be found on the Ajax4Jsf Users Forum [http:/jboss.com/
index.html?module=bb&op=viewtopic&t=104158].

6.10. < adj:loadBundle >

6.10.1. Description

The <adj:loadBundle> component is similar to the same component from the JSF Core library.
The component loads a resource bundle localized for the Locale of the current view and exposes
it (as a Map) in the request attributes of the current request.

Table 6.19. a4j : loadBundle attributes

Attribute Name Description

basename Base name of the resource bundle to be
loaded.
binding The attribute takes a value-binding expression

for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

89

http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://jboss.com/index.html?module=bb&op=viewtopic&t=104158
http://jboss.com/index.html?module=bb&op=viewtopic&t=104158
http://jboss.com/index.html?module=bb&op=viewtopic&t=104158

Chapter 6. The RichFaces Comp...

Attribute Name Description
rendered ‘ If "false”, this component is not rendered
var Name of a request scope attribute under which

the resource bundle will be exposed as a Map.

Table 6.20. Component identification parameters

component-type org.ajax4jsf.Bundle
component-family ‘ org.ajax4jsf.Bundle
component-class ‘ org.ajax4jsf.component.html.AjaxLoadBundle

6.10.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<a4dj:loadBundle baseName="demo.bundle.Messages" var="Message"/>

6.10.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLoadBundle;

AjaxLoadBundle myBundle = new AjaxLoadBundle();

6.10.4. Key attributes and ways of usage

<adj:loadBundle> allows to use reference to bundle messages during the Ajax re-rendering.
<adj:loadBundle> is a substitute for the <f:loadBundle> in JSF 1.1 which is not a JSF
component originally. <f:loadBundle> is a jsp tag that load the bundle messages into the request
scope when page is rendered. As soon as each Ajax request works in own request scope, the
bundles loaded with <f:loadBundle> are unavailable. Instead of <f:loadBundle> that might
be located anywhere on a page, the <a4j:loadBundle> should be declared inside the <f:view>
(this does not matter in case on using Facelets) JSF 1.2 introduces the bundle registered in the
faces-config.xml. This fixed the problem with <f:loadBundle> . Therefore, you can use this JSF
1.2 way to declare your bundles.

90

Relevant resources links

6.10.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle] you can
found some additional information for <a4j:loadBundle> component usage.

Here [http://java.sun.com/javaeel/javaserverfaces/1.1_01/docs/tiddocs/f/loadBundle.html] you
can found some additional information about <f:loadBundle> component.

Here [http://java.sun.com/javaeel/javaserverfaces/1.1_01/docs/tiddocs/fiview.html] you can found
some additional information about <f:view> component.

6.11. <adj:loadScript >

6.11.1. Description

Inserts script links to the head element. Render the value of the component , after passing it to the
getResourceURL() method of the ViewHandler for this application, and passing the result through
the encodeResourceURL() method of the ExternalContext.

Table 6.21. a4j : loadScript attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

rendered If "false", this component is not rendered

src name of JavaScript resource to load.

Table 6.22. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadScript

component-family org.ajax4jsf.LoadScript

component-class org.ajax4jsf.component.html.HtmlLoadScript
renderer-type org.ajax4jsf.LoadScriptRenderer

6.11.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<adj:loadScript src="scripts/someScript.js"/>

91

http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/view.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/view.html

Chapter 6. The RichFaces Comp...

6.11.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlLoadScript;

HtmlLoadScript myScript = new HtmlLoadScript();

6.11.4. Key attributes and ways of usage

As it was mentioned above this component returns its value as the value of the "src" attribute
passing it to the getResourceUR() method of the ViewHandler for this application, and passing
the result through the encodeResourceURL() method of the ExternalContext.

It means that the Context is inserts automatically to the link. And calls like resource:// is properly
handled.

Except this - you may be free to put your script links right from the child page while using facelets
templates .

6.11.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript] you can see
the example of <adj:loadScript> usage and sources for the given example.

6.12. < adj:loadStyle >

6.12.1. Description

The component Inserts stylesheet links to the head element. Render the value of the component,
after passing it to the getResourceURL() method of the ViewHandler for this application, and
passing the result through the encodeResourceURL() method of the ExternalContext.

Table 6.23. a4j : loadStyle attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

rendered If "false", this component is not rendered

src name of JavaScript resource to load.

92

http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript
http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript

Creating on a page

Table 6.24. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadStyle

component-family org.ajax4jsf.LoadStyle

component-class org.ajax4jsf.component.html.HtmlLoadStyle
renderer-type org.ajax4jsf.LoadStyleRenderer

6.12.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<adj:loadStyle src="styles/style.css"/>

6.12.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlLoadStyle;

HtmlLoadScript myStyle = new HtmlLoadStyle();

6.12.4. Key attributes and ways of usage

As it was mentioned above this component returns its value as the value of the "src" attribute
passing it to the getResourceUR() method of the ViewHandler for this application, and passing
the result via the encodeResourceURL() method of the ExternalContext.

It means that the Context is inserted automatically to the link. And calls like resource:// is properly
handled.

Except this - you may be free to put your stylesheet links right from the child page while using
facelets templates.

6.12.5. Relevant resources links

Some additional information about usage of component can be found here [http:/
livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle].

93

http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle

Chapter 6. The RichFaces Comp...

6.13. <adj:log >

6.13.1. Description

The <adj:log > component generates JavaScript for opening of the window with client-side debug
information on an Ajax request.

Table 6.25. a4j : log attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

height Height of pop-up. Default value is "600".

hotkey Keyboard key for activate (in combination with
CTRL+SHIFT) log window.

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

level log level, Possible values are "FATAL",
"ERROR", "WARN", "INFO", "DEBUG", "ALL".
Component sets level 'ALL' by default.

name name of pop-up window

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout

94

Creating the Component with a Page Tag

Attribute Name Description

HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

popup Renders log as pop-up window or as div
element on the page. Default value is "true".

rendered If "false”, this component is not rendered

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup
elements generated for this component

width Width of pop-up. Default value is "800".

Table 6.26. Component identification parameters

NETIE Value

component-type

org.ajax4jsf.Log

component-family

org.ajax4jsf.Log

component-class

renderer-type

org.ajax4jsf.component.html.AjaxLog

org.ajax4jsf.LogRenderer

6.13.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<adj:log popup="false" level="ALL" style="width: 800px; height: 300px;"></a4j:log>

Then, in order to open a log window, press "CTRL+SHIFT+L" on a page with the component.

6.13.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLog;

95

Chapter 6. The RichFaces Comp...

AjaxLog myLog = new AjaxLog();

6.13.4. Key attributes and ways of usage

Usage of the appropriate component attributes could change a representation level of debug
information as well as the hot key for a window opening.

The hot key could be changed with the "hotkey" attribute, where it's necessary to define one
letter that together with "CTRL+SHIFT" opens a window.

The "level" attribute with several possible values (FATAL, ERROR, WARN, INFO, ALL) could
change a logging level.

The log could be generated not only in a new window, but also on the current page in a separate
<div>, this is also controlled with the "popup" attribute on the component.

Example:
<adj:log level="ALL" popup="false" width="400" height="200"/>

The component defined this way is decoded on a page as <div> inside a page, where all the
information beginning with informational message is generated.

@ Note:

<adj:log> is getting renewed automatically after execution of Ajax requests. Don't
renew <adj:log> by using reRender!

6.13.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log] you can see the
example of <adj:log> usage and sources for the given example.

6.14. <adj:mediaOutput >

6.14.1. Description

The <adj:mediaOutput> component implements one of the basic features specified in the
framework. The component is a facility for generating images, video, sounds and other binary
resources defined by you on-the-fly.

96

http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log
http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log

Description

Table 6.27. a4j : mediaOutput attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

align bottom|middle|top]left|right Deprecated. This
attribute specifies the position of an IMG,
OBJECT, or APPLET with respect to its
context. The following values for align
concern the object's position with respect to
surrounding text: * bottom: means that the
bottom of the object should be vertically aligned
with the current baseline. This is the default
value. * middle: means that the center of the
object should be vertically aligned with the
current baseline. * top: means that the top of
the object should be vertically aligned with the
top of the current text line

archive space-separated list of URIs

binding The attribute takes a value-binding expression
for a component property of a backing bean

border Deprecated. This attribute specifies the width
of an IMG or OBJECT border, in pixels. The
default value for this attribute depends on the
user agent

cacheable If "true”, the resource is cached (on the server
and the client sides).

charset The character encoding of a resource
designated by this hyperlink

classid identifies an implementation

codebase base URI for classid, data, archive

codetype content type for code

converter ID of a converter to be used or a reference to

a converter.

coords This attribute specifies the position and shape
on the screen. The number and order of
values depends on the shape being defined.

97

Chapter 6. The RichFaces Comp...

Attribute Name Description

Possible combinations: * rect: left-x, top-y,
right-x, bottom-y. * circle: center-x, center-
y, radius. Note. When the radius value is
percentage value, user agents should calculate
the final radius value based on the associated
object's width and height. The radius should
be the smaller value of the two. * poly: x1, y1,
X2,Y2, ..., XN, yN. The first x and y coordinate
pair and the last should be the same to close
the polygon. When these coordinate values
are not the same, user agents should infer an
additional coordinate pair to close the polygon.
Coordinates are relative to the top, left corner
of the object. All values are lengths. All values
are separated by commas

createContent Method call expression to send generated
resource to OutputStream. It must have two
parameter with a type of java.io.OutputStream
and java.lang.Object (deserialized value of
data attribute)

createContentExpression Method call expression to send generated
resource to OutputStream. It must have two
parameter with a type of java.io.OutputStream
and java.lang.Object (deserialized value of
data attribute)

declare declare but don't instantiate flag

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

element Name of html element for resource link - may
be <a> <object> <applet> <script> or
<link>

expires The attribute allows to manage caching and
defines the period after which a resource is
reloaded.

hreflang Base language of a resource specified with the
href attribute; hreflang may only be used with
href

hspace Deprecated. This attribute specifies the
amount of white space to be inserted to the left
and right of an IMG, APPLET, or OBJECT. The

98

Description

Attribute Name Description

default value is not specified, but is generally a
small, non-zero length

id Every component may have a unique id that is
automatically created if omitted

ismap use server-side image map

lang Code describing the language used in the
generated markup for this component

lastModified The attribute allows to manage caching. A
browser can send request with the header
"If-Modified-Since" for necessity of object
reloading. If time of modification is earlier,
then the framework doesn't call generation and
return code 304.

mimeType Geterated content mime-type for append to
response header ('image/jpeg’ etc)

onblur JavaScript code. The onblur event occurs
when an element loses focus either by the
pointing device or by tabbing navigation. It may
be used with the same elements as onfocus

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onfocus JavaScript code. The onfocus event occurs
when an element gets focus

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved

onto

99

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmouseup HTML: script expression; a pointer button is
released
rel The relationship from the current document

to the anchor specified by this hyperlink. The
value of this attribute is a space-separated list

of link types
rendered If "false", this component is not rendered
rev A reverse link from the anchor specified by this

hyperlink to the current document. The value
of this attribute is a space-separated list of link

types

session If "true", a session for an object generation is
restored.

shape default|rect|circle|poly [CI] This attribute

specifies the shape of a region. Possible
values: * default: Specifies the entire region.
* rect: Define a rectangular region. * circle:
Define a circular region. * poly: Define a
polygonal region.

standby message to show while loading

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

target This attribute specifies the name of a frame
where a document is to be opened. By
assigning a name to a frame via the name
attribute, authors can refer to it as the "target"
of links defined by other elements

title Advisory title information about markup
elements generated for this component

type The content type of the resource designated by
this hyperlink

uriAttribute Name of attribute for resource-link attribute (
‘href' for <a>, 'src' for or <script>, etc

100

Creating on a page

Attribute Name Description

usemap use client-side image map

value Data value calculated at render time and
stored in URI (also as part of cache Key),
at generation time passed to send method.
Can be used for update cache at change of
generating conditions, and for creating beans
as "Lightweight" pattern components (request
scope). IMPORTANT: Since serialized data
stored in URI, avoid using big objects.

vspace Deprecated. This attribute specifies the
amount of white space to be inserted above
and below an IMG, APPLET, or OBJECT. The
default value is not specified, but is generally a
small, non-zero length

Table 6.28. Component identification parameters

Name Value

component-type org.ajax4jsf.MediaOutput
component-family org.ajax4jsf.Resource

component-class org.ajax4jsf.component.html.MediaOutput
renderer-type org.ajax4jsf.MediaOutputRenderer

6.14.2. Creating on a page

Component definition on a page for graphical data output

Example:

<adj:mediaOutput element="img" cacheable="false" session="true"
createContent="#{paintBean.paint}" value="#{paintData}"
mimeType="image/jpeg"/>

6.14.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.MediaOutput;

101

Chapter 6. The RichFaces Comp...

MediaOutput myMedia = new MediaOutput ();

6.14.4. Key attributes and ways of usage

To use the component it's necessary to define it on a page and set Java methods for data keeping
and data transmission to output stream.

Here is the content of paintData that is a bean containing output data

Example:

package demo;

public class PaintData implements Serializable{
private static final long serialVersionUID = 1L;
Integer width=100;
Integer weight=50;

The Paint method of the paintBean class is a method transmitting graphical data into output
stream.

Example:

public void paint(OutputStream out, Object data) throws IOException{
<l--...Some code that puts binary data to "out" Stream-->

}

As it was shown in the example above there are two main components:

 "createContent" specifies a method accepting 2 parameters. The first (of java.io.OutputStream
type) defines a stream, where any binary data is output. The second (of java.lang.Object type)
contains deserialized object with data specified in the "value" attribute.

» Value specifies a bean class keeping data for transmitting into a method that transmits it into
a stream.

@ Note:
A bean class transmitted into value should implement Serializable interface.

102

Relevant resources links

Hence, when using the component it's possible to output your data of any type on a page with

Ajax requests.

6.14.5. Relevant resources links

Here [http:/Nlivedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput]
you can see the example of <a4dj:mediaOutput > usage and sources for the given example.

6.15. < a4dj.outputPanel >

6.15.1. Description

The component is used for components grouping in the Ajax output area, which offers several
additional output opportunities such as inserting of non-present in tree components, saving of
transient elements after Ajax request and some others.

Table 6.29. a4j : outputPanel attributes

Attribute Name Description

ajaxRendered

Defines, whether the content of this component
must be (or not) included in AJAX response
created by parent AJAX Container, even if it
is not forced by reRender list of ajax action.
Ignored if component marked to output by Ajax
action. Default value is "false".

binding

The attribute takes a value-binding expression
for a component property of a backing bean

dir

Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

Every component may have a unique id that is
automatically created if omitted

keepTransient

Flag to mark all child components to non-
transient. If true, all children components will
be set to non-transient state and keep in saved
components tree. For output in self-renderer
region all content (By default, all content
in <f:verbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for ajax
processing).

lang

Code describing the language used in the
generated markup for this component

layout

103

http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput
http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput

Chapter 6. The RichFaces Comp...

Attribute Name Description

HTML layout for generated markup. Possible
values: "block" for generating an HTML <div>
element, "inline" for generating an HTML
 element, and "none" for generating no
HTML element. There is a minor exception for
the "none" case where a child element has the
property "rendered” set to “false". In this case,
we create an empty element with same
ID as the child element to use as a placeholder
for later processing.

onclick

HTML: a script expression; a pointer button is
clicked

ondblclick

onkeydown

onkeypress

HTML: a script expression; a pointer button is
double-clicked

HTML: a script expression; a key is pressed
down

HTML: a script expression; a key is pressed
and released

onkeyup

HTML: a script expression; a key is released

onmousedown

HTML: script expression; a pointer button is
pressed down

onmousemove

onmouseout

onmouseover

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

HTML: a script expression; a pointer is moved
onto

onmouseup

HTML: script expression; a pointer button is
released

rendered

If "false", this component is not rendered

style

styleClass

CSS style(s) is/are to be applied when this
component is rendered

Corresponds to the HTML class attribute

title

Advisory title information about markup
elements generated for this component

104

Creating on a page

Table 6.30. Component identification parameters

Name Value

component-type org.ajax4jsf.OutputPanel

component-family javax.faces.Panel

component-type org.ajax4jsf.ajax.OutputPanel

component-class org.ajax4jsf.component.html.HtmlAjaxOutputPanel
renderer-type org.ajax4jsf.components.AjaxOutputPanelRenderer

6.15.2. Creating on a page

Here is the simplest way for a component creation on a page.

Example:

<adj.outputPanel>
<h:form>
<h:outputText value="Some text"/>
<h:inputText id="text1" label="text1" value="#{rsBean.text1}">
</h:inputText>
</h:form>
</adj.outputPanel>

6.15.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxOutputPanel;

HtmlAjaxOutputPanel myPanel = new HtmlAjaxOutputPanel();

6.15.4. Key attributes and ways of usage

<adj.outputPanel> allows marking of a page area, which is updated on Ajax response.
Anyway, <adj:outputPanel> usage is optional, as in RichFaces it's possible to indicate any
existing component id on a component view in order to define updating areas. To speed
up the performance, RichFaces updates only a component tree. <adj:outputPanel> usage
is recommended for wrapping components that aren't rendered during the primary non-ajax
response, as the components don't present in a component tree.

Example:

105

Chapter 6. The RichFaces Comp...

<adj:support ... reRender="mypanel"/>

<adj.outputPanel id="mypanel">
<h:panelGrid rendered="#{not empty foo.bar}">

</h:panelGrid>
</adj.outputPanel>

In addition to the areas directly indicated in "reRender" attribute of Ajax components,
<adj:outputPanel> allows to update a part of a page basing on its own flag. The flag is defined by
the "ajaxRendered" attribute. The flag is commonly used when a part of a page must be updated
or can be updated on any response.

Example:

<a4j.outputPanel ajaxRendered="true">
<h:messages/>
</adj.outputPanel>

On default <a4j:outputPanel> is output as a pair of opening and closing html tag, but
with the help of the layout attribute this output way could be changed. There are three variants
for this component value:

* inline (default)
* block
* none

If "layout" ="block" is chosen, the component is rendered as a pair of opening and closing <div>
tag, to which it's possible to apply any available style attributes available for block tags.

"layout” ="none" helps to avoid an unnecessary tag round a context that could or couldn't be
rendered according to the defined "rendered" attribute conditions. If an inner context isn’t
rendered, <adj:outputPanel> is rendered as a tag with the id equal to an id of a child
component and display:none style. If a child component is rendered, <adj:outputPanel> doesn't
present at all in a final code.

Example:

<adj:support reRender="mypanel"/>

106

Relevant resources links

<adj.outputPanel layout="none">
<h:panelGrid id="mypanel" rendered="#{not empty foo.bar}">

</h:panelGrid>
</adj.outputPanel>

As you see, the code is very similar to the one shown above, but "reRender " attribute refers
directly to the updating panelGrid and not to the framing outputPanel, and it's more semantically
correct.

<adj:outPanel> should be used for non-JSF component part framing, which is to be updated
on Ajax response, as RichFaces specifies the list of updating areas as a list of an existing JSF
component.

On default non-JSF context isn't saved in a component tree, but is rendered anew every time.
To accelerate the processing speed and Ajax response input speed, RichFaces saves non-JSF
context in a component tree on default. This option could be canceled by "keepTransient" attribute
that cancels transient flag forced setting for child components. This flag setting keeps the current
value set by child components.

@ Note:

In JSF 1.1 implementation and lower, where non-JSF context should be framed
with the <f:verbatim> component, <a4j:outputPanel> doesn't improve this
JSF implementation option in any way, so you still have to use this tag where it's
necessary without RichFaces usage.

RichFaces allows setting Ajax responses rendering directly basing on component tree nodes
without referring to the JSP (XHTML) page code. It could be defined by selfRendered attribute
setting to "true" on <adj:region> and could help considerably speed up a response output.
However, if a transient flag is kept as it is, this rapid processing could cause missing of transient
components that present on view and don’t come into a component tree. Hence, for any particular
case you could choose a way for you application optimization: speed up processing or redundant
memory for keeping tree part earlier defined a transient.

6.15.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel] you
can see the example of <adj:outputPanel> usage and sources for the given example.

Some additional information about usage of component can be found here [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4052203#4052203].

107

http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4052203#4052203
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4052203#4052203
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4052203#4052203

Chapter 6. The RichFaces Comp...

6.16. < adj.page >

6.16.1. Description

<adj:page> is used for solving of incompatibility problems in early Ajax4jsf versions. The
component encodes the full html page structure.

Table 6.31. a4j : page attributes

Attribute Name Description

ajaxListener MethodExpression representing an action
listener method that will be notified when this
component is activated by the ajax Request
and handle it. The expression must evaluate
to a public method that takes an AjaxEvent
parameter, with a return type of void

binding The attribute takes a value-binding expression
for a component property of a backing bean

contentType Set custom mime content type to response

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

format Page layout format (html, xhtml, html-
transitional, html-3.2) for encoding DOCTYPE,
namespace and Content-Type definitions

id Every component may have a unique id that is
automatically created if omitted

immediate Flag indicating that, if this component is
activated by ajaxrequest, notifications should
be delivered to interested listeners and actions
immediately (that is, during Apply Request
Values phase) rather than waiting until Invoke
Application phase

lang Code describing the language used in the
generated markup for this component

namespace Set html element default namespace

onload JavaScript code to execute on a page load.

onunload JavaScript code to execute on a page unload.

pageTitle String for output as a page title.

rendered If "false", this component is not rendered

selfRendered

108

Creating on a page

Attribute Name Description

if “"true", self-render subtree at
InvokeApplication (or Decode, if immediate
property set to true) phase

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup

elements generated for this component

Table 6.32. Component identification parameters

NETNIE Value

component-type org.ajax4djsf.components.Page
component-family org.ajax4jsf.components.AjaxRegion
component-class org.ajax4jsf.component.html.HtmIPage
renderer-type org.ajax4jsf.components.AjaxPageRenderer

6.16.2. Creating on a page

This component should be defined as a child component for <f;view>:

<f:view>
<adj:page>
<f:facet name="head">
<!l--...Head Content here-->
</f:facet>
<!--...Page Content here-->
</a4j.page>
</f:view>

6.16.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmIPage;

HtmIPage myPage = new HtmlIPage();

109

Chapter 6. The RichFaces Comp...

6.16.4. Key attributes and ways of usage

The component is mostly used to solve the following problem with MyFaces for erlier Ajax4jsf
versions: in MyFaces <f:view> doesn't get control over the RENDER_RESPONSE phase, thus
Ajax can't get control and make a response also. To avoid this problem it was necessary to use
<adj:page> on a page round the Ajax updatable area. In the last versions of both frameworks
the problem is successfully fixed and no <a4j:page> usage is required.

The component is rendered as a full HTML page template as it is shown in the example [110].
The head section is defined with the help of the corresponding "head" facet. You do not need
to use "body" facet in order to define first body section. The second and more body sections is
defined with the help of the corresponding "body" facet.

The attribute "format" defines page layout format for encoding DOCTYPE.
The attribute "pageTitle" is rendered as title section.

Example:

<adj:page format="xhtml" pageTitle="myPage">
<f:facet name="head">
<!--Head Content here-->
</f:facet>
<I--Page Content Here-->
</adj:page>

This structure is rendered as:

Example:

<IDOCTYPE htm| PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.0rg/TR/xhtmI1/
DTD/xhtml1-strict.dtd">
<html>
<head>
<title>myPage</title>
<!--Head Content here-->
</head>
<body>
<I--Page Content Here-->
</body>
</html>

110

Relevant resources links

6.16.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page] you can found
some additional information for <a4dj:page> component usage.

6.17. <adj:poll >

6.17.1. Description

The <adj:poll> component allows periodical sending of Ajax requests to a server and is used
for a page updating according to a specified time interval.

Table 6.33. a4j : poll attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

enabled Enables/disables polling. Default value is
"true”.
eventsQueue Name of requests queue to avoid send next

request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

111

http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page
http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page

Chapter 6. The RichFaces Comp...

Attribute Name Description

focus id of element to set focus after request
completed on client side

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

interval Interval (in ms) for call poll requests. Default
value is "1000"ms (1 second).

limitToList If “"true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

oncomplete JavaScript code for call after request
completed on client side

onsubmit JavaScript code for call before submission of
ajax event

process Id['s] (in format of call
UlComponent.findComponent()) of

components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest

112

Creating on a page

Attribute Name Description

caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout Timeout (in ms) for request

Table 6.34. Component identification parameters

Name Value

component-type org.ajax4jsf.Poll

component-family org.ajax4jsf.components.AjaxPoll
component-class org.ajax4jsf.component.html.AjaxPoll
renderer-type org.ajax4jsf.components.AjaxPollRenderer

6.17.2. Creating on a page

To create the simplest variant on a page use the following syntax:

Example:

<adj:poll interval="500" reRender="grid"/>

6.17.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxPoll;

AjaxPoll myPoll = new AjaxPoll();

6.17.4. Key attributes and ways of usage

The <adj:poll> componet is used for periodical polling of server data. In order to use the
component it's necessary to set an update interval. The “interval" attribute defines an interval
in milliseconds between the previous response and the next request. The total period beetween
two requests generated by the <a4j:poll> component is a sum of an "interval" attribute value

113

Chapter 6. The RichFaces Comp...

and server response time. Default value for "interval" attribute is set to "1000" milliseconds (1
second). See an example of definition in the "Creating on a page" section [113].

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received
during this period a connection is aborted and the next request is sent. Default value for "timeout"
attribute isn't set.

The "enabled" attribute defines should the <adj:poll> send request or not. It's nhecessary to
render the <adj:poll> to apply the current value of "enabled" attribute. You can use an EL-
expression for "enabled" attribute to point to a bean property. An example of usage of mentioned
above attributes [113] is placed below:

Example:

<adj.region>
<h:form>
<adj:poll id="poll" interval="1000" enabled="#{userBean.pollEnabled}"
reRender="poll,grid"/>
</h:form>
</a4j:region>
<h:form>
<h:panelGrid columns="2" width="80%" id="grid">
<h:panelGrid columns="1">
<h:outputText value="Polling Inactive" rendered="#{not userBean.pollEnabled}"></
h:outputText>
<h:outputText value="Polling Active" rendered="#{userBean.pollEnabled}"></
h:outputText>
<a4j:commandButton style="width:120px" id="control"
value="#{userBean.pollEnabled?'Stop":'Start'} Polling"
reRender="poll, grid">
<adj:actionParam name="polling" value="#{!luserBean.pollEnabled}"
assignTo="#{userBean.pollEnabled}"/>
</adj.commandButton>
</h:panelGrid>
<h:outputText id="serverDate" style="font-size:16px" value="Server Date:
#{userBean.date}"/>
</h:panelGrid>
</h:form>

The example shows how date and time are updated on a page in compliance with data taken
from a server. The <adj:poll> componet sends requests to the server every second. "reRender"

114

Relevant resources links

attribute for <a4j:poll> contains value of its own Id. Hence, it renders itself for applying the current
value of "enabled" attribute.

: Note:
G
The form around the <adj:poll> component is required.

Information about the "process" attribute usage you can find here.

6.17.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll] you can see the
example of <adj:poll> usage and sources for the given example.

The aditional information about component usage you can find here : RichFaces Users Forum
[http://jboss.com/index.html?module=bb&op=viewtopic&t=103909].

6.18. < adj:.portlet >

6.18.1. Description

The <adj:.portlet> component is DEPRECATED as far as JSR-301 was defined a same
functionality for a UlViewRoot component. So, it is implicitly defined by mandatory <f:view>
component.

Table 6.35. a4j : portlet attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

rendered If "false", this component is not rendered

Table 6.36. Component identification parameters

component-type ‘ org.ajax4jsf.Portlet
component-family ‘ org.ajax4jsf.component.Portlet
component-class ‘ org.ajax4jsf.component.html.HtmlIPortlet

6.18.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

115

http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909

Chapter 6. The RichFaces Comp...

<fview>
<adj:portlet>

</adj:portlet>
</f.view>

6.18.3. Creating the Component Dynamically Using Java

import org.ajax4jsf.component.html.HtmlPortlet;

HtmlPortlet myPortlet = new HtmlPortlet();

6.18.4. Key attributes and ways of usage

The main component purpose is realization of possibility to create several instances the same
portlet on one page. But clientld of elements should be different for each window. In that case
namespace is used for each portlet. The <adj:portlet> implemets NaimingContainer interface
and adds namespace to all componets on a page. All portlet content should be wrapped by
<adj:portlet> for resolving problems mentioned before.

6.18.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet] you can found
some additional information for <a4j:portlet> component usage.

The aditional information about component usage you can find here: Ajax4Jsf Users Forum [http:/
www.jboss.com/index.html?module=bb&op=viewtopic&t=107325].

Portlet Sample could be checked out from JBoss SVN: portal-echo application [http://
anonsvn.jboss.org/repos/ajax4jsf/itrunk/samples/portal-echo/].

Usage instructions for this demo could be found at the corresponding: portal-echo application
[http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325].

6.19. <adj:push >

6.19.1. Description

The <a4j:push> periodically perform Ajax request to server, to simulate 'push’ data.

116

http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325

Description

The main difference between <adj:push> and <adj:poll> components is that <a4j:push>
makes request to minimal code only (not to JSF tree) in order to check the presence of messages
in the queue. If the message exists the complete request is performed. The component doesn't
poll registered beans but registers EventListener which receives messages about events.

Table 6.37. a4j : push attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

enabled Enables/disables pushing. Default value is
"true".
eventProducer MethodBinding pointing at method accepting

an PushEventListener with return type void.
User bean must register this listener and send
EventObiject to this listener on ready.

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

117

Chapter 6. The RichFaces Comp...

Attribute Name Description

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar' request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

interval Interval (in ms) for call push requests. Default
value is "1000"ms (1 second).

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

oncomplete JavaScript code for call after request
completed on client side

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

118

Creating on a page

Attribute Name Description

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout ‘ Timeout (in ms) for request

Table 6.38. Component identification parameters

Name Value

component-type org.ajax4jsf.Push

component-family org.ajaxdjsf.components.AjaxPush
component-class org.ajax4jsf.component.html.AjaxPush
renderer-type org.ajax4jsf.components.AjaxPushRenderer

6.19.2. Creating on a page

<adj:push reRender="msg" eventProducer="#{messageBean.addListener}" interval="3000"/>

6.19.3. Creating the Component Dynamically Using Java

import org.ajax4jsf.component.html.AjaxPush;

AjaxPush myPush = new AjaxPush();

6.19.4. Key attributes and ways of usage

The <adj:push> implements reverse Ajax technique.

The bean, for example, could be subscribed to Java Messaging Service (JMS [http://java.sun.com/
products/jms/]) topic or it could be implemented as Message Driven Bean (MDB) in order to send
a message to the <adj:push> component about an event presence. In the presence of the event
some action occurs.

Thus, a work paradigm with the <adj:push> component corresponds to an anisochronous model,
but not to pools as for <adj:poll> component. See the simplest example below:

Example:

119

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 6. The RichFaces Comp...

class MyPushEventListener implements PushEventListener {
public void onEvent(EventObject evt) {
System.out.printin(evt.getSource());
//Some action

Code for EventListener registration in the bean is placed below:

Example:

public void addListener(EventListener listener) {
synchronized (listener) {

if (this.listener != listener) {

this.listener = (PushEventListener) listener;

A page code for this example is placed below.

Example:

<adj:status startText="in progress" stopText="done"/>
<adj:.form>
<adj.region>
<adj:pushreRender="msg" eventProducer="#{pushBean.addListener}" interval="2000"/>
</adj.region>
<adj.outputPanel id="msg" >
<h:outputText value="#{pushBean.date}">
<f.convertDateTime type="time"/>
</h:outputText>
</adj:outputPanel>
<adj:commandButton value="Push!!" action="#{pushBean.push}" ajaxSingle="true"/>
</a4j.form>

The example shows how date is updated on a page in compliance with data taken from a server. In
the example "interval" attribute has value "2000". This attribute defines an interval in milliseconds
between the previous response and the next request. Default value is set to "1000" milliseconds
(1 second). It's possible to set value equal to "0". In this case connection is permanent.

120

Relevant resources links

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received
during this period a connection is aborted and the next request is sent. Default value for "timeout"
attribute isn't set. Usage of "interval" and "timeout" attributes gives an opportunity to set short
polls of queue state or long connections, or permanent connection.

@ Note:
The form around the <adj:push> component is required.

Information about the "process" attribute usage you can find here.

6.19.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push] you can found
some additional information for <a4j:push> component usage.

6.20. < adj:region >

6.20.1. Description

The <adj:region> component defines an area that is decoded on the server after Ajax
submission.

Table 6.39. a4j : region attributes

Attribute Name Description

ajaxListener MethodExpression representing an action
listener method that will be notified when this
component is activated by the ajax Request
and handle it. The expression must evaluate
to a public method that takes an AjaxEvent
parameter, with a return type of void

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

immediate Flag indicating that, if this component is
activated by ajaxrequest, notifications should
be delivered to interested listeners and actions
immediately (that is, during Apply Request
Values phase) rather than waiting until Invoke
Application phase

rendered If "false", this component is not rendered

121

http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push
http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push

Chapter 6. The RichFaces Comp...

Attribute Name Description

renderRegionOnly Flag to disable rendering in AJAX responses
content outside of active region. If this attribute
setto "true", no one of the components outside
of region will be included to AJAX response.
If set to "false", search for components to
include in response will be performed on all
tree. Default value is "false".

selfRendered if "true", self-render subtree at
InvokeApplication (or Decode, if immediate
property set to true) phase

Table 6.40. Component identification parameters

Name Value

component-type org.ajax4jsf.AjaxRegion

component-family org.ajax4jsf.AjaxRegion

component-class org.ajax4jsf.component.html.HtmlAjaxRegion
renderer-type org.ajax4jsf.components.AjaxRegionRenderer

6.20.2. Creating on a page

Here is an example of the region decoding on a page.

<adj:region>
<h:inputText value="#{userBean.name}">
<adj:support event="onkeyup" reRender="outname" />
</h:inputText>
</a4j:region>

6.20.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRegion;

HtmlAjaxRegion newRegion = new HtmlAjaxRegion();

122

Key attributes and ways of usage

6.20.4. Key attributes and ways of usage

The region is a component used for manipulation with components sent to the server. It sets
particular processing parameters for an area on the server, i.e. the region deals with data input
on the server and has no direct impact on output. To read more on the components responsible
for out, see "reference" here [http://java.sun.com/javaeel/javaserverfaces/reference/index.html].

The region marks an area page that is decoded on the server. In most cases it is not necessary
to use the region, as ViewRoot is a default region. This component helps to reduce data quantity
processed by the server, but the region doesn't influence on the standard submission rules. It
means that:

» The area that is to be submitted onto the server should be embedded in <h:form>/<a4j:form>
component.

» The whole form is submitted on Ajax response and not a region that request is performed from.

Example:

<h:form id="form1">
<adj.region>
<adj:commandLink reRender="somelD" value="Link" id="link1"/>
<!I--..Some content that will be decoded on server after Ajax request.-->
</a4j.region>
<h:form>

Hence, the <adj:commandLink> request generation causes full "form1" form submission onto
the server, the only difference is that a component tree part decoded on the serve is the part
included into the region.

The regions could be nested in any order, the server picks out and decodes only the region, which
contains a particular component that sends a request.

Example:

<adj:region>
<adj.commandLink reRender="somelD" value="Link" id="link1"/>
<adj.region>
<a4dj.commandLink reRender="somelD" value="Link" id="link2"/>
<!--..Some content that will be decoded on server after Ajax request.-->
</adj.region >
<l--..Some content that will be decoded on server after Ajax request.-->
</adj.region >

123

http://java.sun.com/javaee/javaserverfaces/reference/index.html
http://java.sun.com/javaee/javaserverfaces/reference/index.html

Chapter 6. The RichFaces Comp...

Therefore, the external region is decoded for the "link1" and the internal one is decoded for the
"link2".

RichFaces allows setting Ajax responses rendering directly basing on component tree nodes
without referring to the JSP (XHTML) page code. It could be defined by "selfRendered" attribute
setting to "true" on <adj:region> and could help considerably speed up a response output.
However, this rapid processing could cause missing of transient components that present on view
and don't come into a component tree as well as omitting of <adj:outputPanel> usage described
below.

Example:

<adj:region selfRendered ="true">
<adj.commandLink reRender="somelD" value="Link" id="link1"/>
<!l--..Some content with HTML used ("br" ,"h1" and other tags used)-->
</adj.region >

In this case, the processing is quicker and going on without referring to a page code, but the HTML
code that isn't saved in a component tree could be lost. Thus, this optimization should be very
carefully performed and a usage of the additional components RichFaces (<a4j:outputPanel>
) is required.

The processing could be also accelerated if a region decoded for the processing passes straight
away into Encode. But to update some data out of the region or on another region, use the
"renderRegionOnly" attribute set to "false" ("true" on default) to change this behaviour.

Example:

<adj:region renderRegionOnly="true">
<a4j:commandLink reRender="somelD2" value="Link1" id="link1"/>
<h:panelGroup id="someld1">
</h:panelGroup>

</adj.region>

<a4j:region renderRegionOnly="false">
<adj.commandLink reRender="somelD1" value="Link2" id="link2"/>
<h:panelGroup id="someld1">
</h:panelGroup>

</a4j.region>

This example shows that one of the regions is decoded when a link is used inside. Nevertheless,
if after processing the "link1" is clicked, the first region passes into Encode as a root region
and encode performance time is reduced. This optimization doesn't allow data update out of
the region and should be implemented very carefully. The data out of the region described with
"renderRegionOnly" ="false" is updated successfully.

124

Relevant resources links

6.20.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region] you can see the
example of <adj:region> usage and sources for the given example.

6.21. <adj.repeat >

6.21.1. Description

The <adj:repeat> component implements a basic iteration component allowing to update a set
of its children with AJAX.

Table 6.41. a4j : repeat attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request.

binding The attribute takes a value-binding expression
for a component property of a backing bean

componentState It defines EL-binding for a component state for
saving or redefinition.

first A zero-relative row number of the first row to
display

id Every component may have a unique id that is
automatically created if omitted

rendered If "false", this component is not rendered

rowKeyConverter rowKeyConverter

rowKeyVar The attribute provides access to a row key in a
Request scope.

rows A number of rows to display, or zero for all
remaining rows in the table

stateVar The attribute provides access to a component
state on the client side.

value The current value for this component.

var A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.42. Component identification parameters

component-type

org.ajax4jsf.Repeat

125

http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region

Chapter 6. The RichFaces Comp...

NETIE Value

component-family javax.faces.Data
component-class org.ajax4jsf.component.html.HtmlAjaxRepeat
renderer-type org.ajax4jsf.components.RepeatRenderer

6.21.2. Creating on a page

The component definition on a page is the same as for the facelets component:

<adj.repeat id="detail" value="#{bean.props}" var="detail">
<h:outputText value="#{detail.someProperty}"'/>
</a4dj.repeat>

The output is generated according to a collection contained in bean.props with the detail key
passed to child components.

6.21.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRepeat;

HtmlAjaxRepeat repeater = new HtmlAjaxRepeat ();

6.21.4. Key attributes and ways of usage

The main difference of this component from iterative components of other libraries is a special
"ajaxKeys" attribute. This attribute defines row keys that are updated after an Ajax request. As
a result it becomes easier to update several child components separately without updating the
whole page.

<adj:poll intervall="1000" action="#{repeater.action}" reRender="text">

<table>
<tbody>
<adj:repeat value="#{bean.props}" var="detail" ajaxKeys="#{repeater.ajaxedRowsSet}">
<tr>
<td>
<h:outputText value="detail.someProperty" id="text"/>
</td>

126

Relevant resources links

</tr>
</adj:repeat>
</tbody>
</table>
</adj:poll>

Thus, a list with a table structure from bean.props is output.

In the above-mentioned example the component <adj:poll> sends Ajax requests every second,
calling the action method of the repeater bean.

One more benefit of this component is absence of strictly defined markup as JSF HTML DataTable
and TOMAHAWK DataTable has, hence the components could be used more flexibly anywhere
where it's necessary to output the results of selection from some collection.

The next example shows collection output as a plain HTML list

<adjrepeat ...>
...

...

</adj:repeat>

All other general attributes are defined according to the similar attributes of iterative components
(<h:dataTable> or <ui:repeat>) and are used in the same way.

6.21.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat] you can see the
example of <adj:repeat> usage and sources for the given example.

127

http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat
http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat

Chapter 6. The RichFaces Comp...

6.22. < adj.status >

6.22.1. Description

The <adj:status> component generates elements for displaying of the current Ajax requests
status. There are two status modes: Ajax request is in process or finished.

Table 6.43. a4j : status attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

for ID of the AjaxContainer component whose
status is indicated (in the format of
a javax.faces.UlIComopnent.findComponent()
call).

forceld If true, render the ID of the component in HTML
code without JSF modifications.

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

layout Define visual layout of panel, can be "block" or
"inline".

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout

128

Creating on a page

Attribute Name Description

HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onstart JavaScript code, called on the start of a
request.

onstop JavaScript code, called on the stop of a
request.

rendered If "false", this component is not rendered

startStyle CSS style class for the element displayed on
the start of a request.

startStyleClass CSS style class for the element displayed on
the start of a request.

startText Text for display on starting request.

stopStyle CSS style for element displayed on request
completion.

stopStyleClass CSS style class for element displayed on
request

stopText Text for display on request complete.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup
elements generated for this component

Table 6.44. Component identification parameters

Name Value

component-type org.ajax4jsf.Status

component-family javax.faces.Panel

component-class org.ajax4jsf.component.html.HtmlAjaxStatus
renderer-type org.ajax4jsf.components.AjaxStatusRenderer

6.22.2. Creating on a page

There are two ways to define elements indicating a request status :

129

Chapter 6. The RichFaces Comp...

« With "StartText"/"StopText" atributes:

<adj:status startText="Progress" stopText="Done" for="statl">

In this case, text elements for the corresponding status are generated.
« With "Start"/"Stop" facets definition:

<adj.status for="stat2">
<f:.facet name="start">
<h:graphiclmage value="ajax_process.png" />
</f.facet>
<f:facet name="stop">
<h:graphiclmage value="ajax_stoped.png" />
</f:facet>
</adj:status>

In this case, the elements are generated for each status and correspond the facets content.

6.22.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxStatus;

HtmlAjaxStatus myStatus = new HtmlAjaxStatus();

6.22.4. Key attributes and ways of usage

There are two ways for the components or containers definition, which Ajax requests status is
tracked by a component.

 Definition with the “for" attribute on the <a4j:status> component. Here "for" attribute should
point at an Ajax container (<adj:region>) id, which requests are tracked by a component.

« Definition with the "status" attribute obtained by any RichFaces library action component. The
attribute should point at the <adj:status> component id. Then this <a4j:status> component
shows the status for the request fired from this action component.

130

Relevant resources links

The component creates two or <div> elements depending on attribute "layout" with
content defined for each status, one of the elements (start) is initially hidden. At the beginning of
an Ajax request, elements state is inversed, hence the second element is shown and the first is
hidden. At the end of a response processing, elements display states return to its initial values.

Example:
<adj:status startText="Started" stopText="stopped" />
The code shown in the example above is decoded on a page as:

Started

Stopped

and after the generation of an Ajax response is changed to:

Started

Stopped

There is a possibility to group a <adj:status> elements content into <div> elements, instead of
. To use it, just redefine the "layout" attribute from "inline"(default) to "block".

6.22.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/status.jsf?c=status] you can see the
example of <adj:status> usage and sources for the given example.

6.23. <adj:support >

6.23.1. Description

The <adj:support> component adds an Ajax support to any existing JSF component. It allows a
component to generate asynchronous requests on the necessary event demand and with partial
update of page content after a response incoming from the server.

131

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status

Chapter 6. The RichFaces Comp...

Table 6.45. a4j : support attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled If true, disable this component on page.

disableDefault Disables default action for target event (
append "return false;" to javascript)

event Name of JavaScript event property (onclick,
onchange, etc.) of parent component, for which
we will build AJAX submission code

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest

132

Description

Attribute Name Description

'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate

limitToList

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate

JavaScript code for call before DOM has been
updated on client side

oncomplete

onsubmit

JavaScript code for call after request
completed on client side

JavaScript code for call before submission of
ajax event

process

rendered

requestDelay

reRender

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

If "false”, this component is not rendered

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

133

Chapter 6. The RichFaces Comp...

Attribute Name Description

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout ‘ Timeout (in ms) for request

Table 6.46. Component identification parameters

Name Value

component-type org.ajax4jsf.Support

component-family org.ajax4jsf.AjaxSupport

component-class org.ajax4jsf.component.html.HtmIAjaxSupport
renderer-type org.ajax4jsf.components.AjaxSupportRenderer

6.23.2. Creating on a page

To use a component, place <adj:support> as nested to the component requesting Ajax
functionality and specify an event of a parent component that generates Ajax request and the
components to be rerendered after a response from the server.

Example:

<h:inputText value="#{bean.text}">

<adj:support event="onkeyup" reRender="repeater"/>
</h:inputText>
<h:outputText id="repeater" value="#{bean.text}"/>

On every keyup event generated by an input field, a form is submitted on the server with the help
of Ajax and on a response coming from the server, element with repeater id, founded in a DOM
tree is redrawn according to a new data from the response.

6.23.3. Creating the Component Dynamically Using Java

In order to add <adj:support> in Java code you should add it as facet, not children:

Example:

HtmlinputText inputText = new HtmlinputText();
HtmlAjaxSupport ajaxSupport = new HtmlAjaxSupport();

ajaxSupport.setActionExpression(FacesContext.getCurrentinstance().getApplication().getExpressionFactory().crea

134

Key attributes and ways of usage

FacesContext.getCurrentinstance().getELContext(), “#{bean.action}", String.class, new

Class[] {}));

ajaxSupport.setEvent("onkeyup");
ajaxSupport.setReRender("output");
inputText.getFacets().put("adjsupport"”, ajaxSupport);

6.23.4. Key attributes and ways of usage

<adj:support> addition is very similar to correspondent event redefinition of a component, i.e.

Example:

<h:inputText value="#{bean.text}">
<adj:support event="onkeyup" reRender="output" action="#{bean.action}"/>
</h:inputText>

Is decoded on a page as:

Example:

<input onkeyup="A4J.AJAX.Submit(Some request parameters)"/>

As you see from the code, the onkeyup event calls a utility RichFaces method that submit a form
creating a special marks for a filter informing that it is an Ajax request. Thus, any supports quantity
could be added to every component, the supports define component behavior on these events.

@ Note

The components: <adj:commandLink>, <a4j:commandButton>, <a4j:poll>
and others from RichFaces library are already supplied with <adj:support>
functionality and there is no necessity to add the support to them.

With the help of "onsubmit” and "oncomplete” attributes the component allows using JavaScript
before (for request sending conditions checking) and after an Ajax response processing
termination (for performance of user-defined activities on the client)

Example:

135

Chapter 6. The RichFaces Comp...

<h:selectOneMenu value="#{bean.text}">

<f:selectltem itemValue="First Item " itemLabel="First ltem"/>

<f:selectltem itemValue=" Second Item " itemLabel="Second Item"/>

<f:selectltem itemValue=" Third Item " itemLabel="Third Item"/>

<adj:support event="onblur" reRender="panel" onsubmit="if(confirm('Are you sure to
change the option ?'))
{form.reset(); return false;}" oncomplete="alert('Value succesfully stored")"/>

</h:selectOneMenu>

In example there is the condition checking (confirm) is used before request sending and message
printing after the request processing is over.

The components allows different Ajax request managing ways for its various optimization in
particular conditions such as:

e Limitation of the submit area and updating area for the request.

"ajaxSingle" is an attribute that allows submission on the server only component sending a
request, as if the component presented on a separate form.

“limitToList" is an attribute that allows to limit areas, which are updated after the responses.
Only these components defined in the "reRender" attribute are updated.

Example 1:

<h:form>
<h:inputText value="#{person.name}">
<adj:support event="onkeyup" reRender="test" ajaxSingle="true"/>
</h:inputText>
<h:inputText value="#{person.middleName}"/>
</form>

In this example the request contains only the input component causes the request generation, not
all the components contained on a form, because of "ajaxSingle" ="true" usage.

Example 2:

<h:form>
<adj:.outputPanel ajaxRendered="true">
<h:messages/>
</adj.outputPanel>
<h:inputText value="#{person.name}">

136

Key attributes and ways of usage

<adj:support event="onkeyup" reRender="test" limitToList="true"/>
</h:inputText>
<h:outputText value="#{person.name}" id="test"/>
</form>

In this example the component <h:messages> is always updated (as it capturing all Ajax
requests, located in ajaxRendered <ad4j:outputPanel>), except the case when a response is
sent from the input component from the example. On sending this component marks that updating
area is limited to the defined in it components, it means that on its usage with "limitToList" ="true"
the only component updated is the one with "id" ="test".

e Limitation of requests frequency and updates quantity after the responses.

"requestDelay” is an attribute that defines a time interval in seconds minimally permissible
between responses.

"eventQueue" is an attribute for naming of the queue where the next response is kept in till its
processing, but if the next event comes in till this time is over, the waiting event is taken away,
replacing with a new one.

"ignoreDupResponces" is an attribute that allows to disable any updates on the client after an
Ajax request if another Ajax request is already sent.

"timeout” is an attribute that allows to set a time interval in millisecond to define a maximum
time period of response wait time. In case of the interval interaction, a new request is sent and
the previous one is canceled. Postprocessing of a response isn't performed.

Example:

<h:form>
<h:inputText value="#{person.name}">
<adj:support event="onkeyup" reRender="test"
requestDelay="1000" ignoreDupResponces="true" eventsQueue="myQueue"/>
</h:inputText>
<h:outputText value="#{person.name}" id="test"/>
</form>

This example clearly shows mentioned above attributes. If quick typing in a text field happens,
every next requests sending is delayed for a second and requests quantity is reduced. The
requests are kept in the queue till its the sending. Moreover, if the next request is already
sent, the rerendering after the previous request is banned, and it helps to avoid unnecessary
processing on the client.

Information about the "process" attribute usage you can find here.

137

Chapter 6. The RichFaces Comp...

6.23.5. Relevant resources links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/support.jsf?c=support] you can see
the example of <adj:support> usage and sources for the given example.

6.24. <rich:calendar >

6.24.1. Description

The <rich:calendar> component is used for creating monthly calendar elements on a page.

&g 30, 2007 [T

optionalHeader Facet

LCAES August, 0F = b
Sun Mon Tue Wed Thu Fri Sat
Ky 1 2 3 4
32 3 G 7 g 89 10 11
33 12 13 14 15 16 17 18
318 20 M 2 24 25

o 2 X 28“30 H

36
Aug 30, 2007 (=) Todary

optionalFooter Facet

Figure 6.1. <rich:calendar> component
6.24.2. Key Features

 Highly customizable look and feel

« Popup representation

« Disablement support

« Smart and user-defined positioning
 Cells customization

* Macro substitution based on tool bars customization

Table 6.47. rich : calendar attributes

Attribute Name Description

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,

138

http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support
http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support

Key Features

Attribute Name Description

conversion/validation, value applying) to the
component which send the request only.

binding The attribute takes a value-binding expression
for a component property of a backing bean
boundaryDatesMode Used for the dates boundaries in the list.

Valid values are “inactive" (Default) dates
inactive and gray colored, "scroll" boundaries
work as month scrolling controls, and "select”
boundaries work in the same way as "scroll" but
with the date clicked selection. Default value is
“inactive".

buttonClass

buttonlcon

Style Class attribute for the popup button

Defines icon for the popup button element. The
attribute is ignored if the "buttonLabel" is set

buttonlconDisabled

Defines disabled icon for the popup button
element. The attribute is ignored if the
"buttonLabel" is set

buttonLabel Defines label for the popup button element.
If the attribute is set "buttonlcon" and
"buttonlconDisabled" are ignored

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

cellHeight attribute to set fixed cells height

cellwidth attribute to set fixed cells width

converter Id of Converter to be used or reference to a
Converter

converterMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the converter
message, replacing any message that comes
from the converter

currentDate Defines current date

currentDateChangeListener

MethodBinding representing an action listener
method that will be notified after date selection

dataModel

Used to provide data for calendar elements.
If data is not provided, all Data Model related
functions are disabled

139

Chapter 6. The RichFaces Comp...

Attribute Name Description

datePattern

Defines date pattern. Default value is "MMM d,
yyyy".

dayStyleClass

defaultTime

Should be binded to some JS function that will
provide style classes for special sets of days
highlighting.

Defines time that will be wused: 1) to
set time when the value is empty 2)
to set time when date changes and flag
"resetTimeOnDateSelect" is true

direction

disabled

enableManuallnput

eventsQueue

Defines direction of the calendar popup
(top-left, top-right, bottom-left, bottom-right
(Default), auto). Default value is "bottom-right".

If "true", rendered is disabled. In "popup” mode
both controls are disabled. Default value is
"false".

If "true” calendar input will be editable and it
will be possible to change the date manualy. If
"false" value for this attribute makes a text field
“read-only", so the value can be changed only
from a handle. Default value is "false".

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

firstWeekDay

Gets what the first day of the week is; e.g.,
SUNDAY in the U.S., MONDAY in France.
Default value is "getDefaultFirstWeekDay()".

focus

id of element to set focus after request
completed on client side

horizontalOffset

Sets the horizontal offset between button and
calendar element conjunction point. Default
value is "0".

id Every component may have a unique id that is
automatically created if omitted
ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,

140

Key Features

Attribute Name Description

immediate

but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

inputClass

Style Class attribute for the text field

inputSize

Defines the size of an input field. Similar to the
"size" attribute of <h:inputText/>

inputStyle

Style attribute for text field

isDayEnabled

jointPoint

label

Should be binded to some JS function that
returns day state.

Set the corner of the button for the popup to
be connected with (top-left, top-right, bottom-
left (Default), bottom-right, auto). Default value
is "bottom-left".

A localized user presentable name for this
component.

limitToList

If "true", updates on client side ONLY
elements from this ‘reRender' property. If
"false" (default) updates all rendered by ajax
region components

locale

minDayslInFirstWeek

Used for locale definition. Default value is
"getDefaultLocale()".

Gets what the minimal days required in the first
week of the year are; e.g., if the first week is
defined as one that contains the first day of
the first month of a year, this method returns
1. If the minimal days required must be a full
week, this method returns 7. Default value is
"getDefaultMinDaysInFirstWeek()".

mode

monthLabels

Valid values: ajax or client. Default value is
“client".

Attribute that allows to customize names of
the months. Should accept list with the month
names

141

Chapter 6. The RichFaces Comp...

Attribute Name Description

monthLabelsShort

Attribute that allows to customize short names
of the months. Should accept list with the
month names

oncurrentdateselect

oncurrentdateselected

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

onchanged onChanged event handler

oncollapse onCollapse event handler

oncomplete JavaScript code for call after request

completed on client side
onCurrentDateSelect event handler

onCurrentDateSelected event handler

ondatemouseout

onDateMouseOut event handler

ondatemouseover

ondateselect

onDateMouseOver event handler

onDateSelect event handler

ondateselected onDateSelected event handler
onexpand onExpand event handler
oninputblur input onBlur event handler

oninputchange
oninputclick

oninputfocus

input onChange event handler
input onClick event handler

input onFocus event handler

oninputkeydown

input onKeyDown event handler

oninputkeypress

input onKeyPress event handler

oninputkeyup
oninputselect

ontimeselect

input onKeyUp event handler
input onSelect event handler

onTimeSelect event handler

ontimeselected

onTimeSelected event handler

popup

If "true" calendar will be rendered initially as
hidden with additional elements for calling as
popup. Default value is "true".

preloadDateRangeBegin

Define the initial range of date which will
be loaded to client from dataModel under
rendering. Default value is
"getDefaultPreloadBegin(getCurrentDateOrDef

ault())".

preloadDateRangeEnd

Defines the last range of date which will
be loaded to client from dataModel under

142

Key Features

Attribute Name Description

process

rendered

requestDelay

required

rendering. Default value is
"getDefaultPreloadEnd(getCurrentDateOrDefal
Id['s] (in format of call
UlComponent.findComponent()) of

components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

If "false”, this component is not rendered

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

If "true", this component is checked for non-
empty input

requiredMessage

reRender

resetTimeOnDateSelect

A ValueExpression enabled attribute that, if
present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

If value is true then calendar should change
time to defaultTime for newly-selected dates.

showApplyButton If false ApplyButton should not be shown.
Default value is "false".

showFooter If false Calendar's footer should not be shown.
Default value is "true".

showHeader If false Calendar's header should not be shown.
Default value is "true".

showlnput "false" value for this attribute makes text field

invisible. If "true" - input field will be shown.
Default value is "true".

143

11tQ)".

Chapter 6. The RichFaces Comp...

Attribute Name Description

showWeekDaysBar If false this bar should not be shown. Default
value is "true".

showWeeksBar If false this bar should not be shown. Default
value is "true".

status ID (in format of call
UlComponent.findComponent()) of Request
status component

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

timeZone Used for current date calculations. Default

value is "getDefaultTimeZone()".

todayControlMode

Possible values are "scroll", "select", "hidden".
Default value is "select".

validatorMessage

toolTipMode Used to specify mode to load tooltips. Valid
values are "none", "single" and "batch" Default
value is "batch".

validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value
valueChangelListener

verticalOffset

The current value of this component
Listener for value changes

Sets the vertical offset between button and
calendar element conjunction point. Default
value is "0".

weekDaylLabels

weekDayLabelsShort

List of the day names displays on the days bar
in the following way "Sun, Mon, Tue, Wed, "

Attribute that allows to customize short names
of the weeks. Should accept list with the weeks
names.

144

Creating the Component with a Page Tag

Attribute Name Description

zindex Attribute is similar to the standard HTML
attribute and can specify window placement
relative to the content. Default value is "3".

Table 6.48. Component identification parameters

Name Value

component-type org.richfaces.Calendar

component-class org.richfaces.component.html.HtmICalendar
component-family org.richfaces.Calendar

renderer-type org.richfaces.CalendarRenderer

tag-class org.richfaces.taglib.CalendarTag

6.24.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:calendar popup="false"/>

6.24.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmICalendar;

HtmICalendar myCalendar = new HtmlCalendar();

6.24.5. Details of Usage

The "popup” attribute defines calendar representation mode on a page. If it's "true" the calendar
is represented on a page as an input field and a button. Clicking on the button calls the calendar
popup as it's shown on the picture below.

145

Chapter 6. The RichFaces Comp...

Aug 30, 2007
optionalHeader Facet

L August, 0F R
Sun Mon Tue “Wed Thu Fri Sat

3 12 3

32 E 7 8 9 10

33 13 14 15 16 17

34 20 M 22 23 24

35 2r 28 i

36

Aug 30, 2007 (=) Todary
optionalFooter Facet

Figure 6.2. Using the "popup" attribute: calendar calls after you click on
the button.

Usage “"currentDate" attribute isn't available in the popup mode.

The <rich:calendar> component can render pages of days in two modes. A mode could be
defined with the "mode" attribute with two possible parameters: "ajax" and "client". Default value
is "client".

* Ajax

Calendar requests portions of data from Data Model for a page rendering. If "dataModel" attribute
has "null" value, data requests are not sent. In this case the "ajax" mode is equal to the "client".

* Client

Calendar loads an initial portion of data in a specified range and use this data to render months.
Additional data requests are not sent.

@ Note:
"preloadDateRangeBegin" and "preloadDateRangeEnd" attributes was designed
only for the "client" mode to load some data initially.

"ondataselect" attribute is used to define an event that is triggered before date selection.
"ondateselected" attribute is used to define an event that is triggered after date selection.

For example, to fire some event after date selection you should use <a4j:support>. And it should
be bound to "ondateselected" event as it's shown in the example below:

146

Details of Usage

<rich:calendar id="date" value="#{bean.dateTest}">
<adj:support event="ondateselected" reRender="mainTable"/>
</rich:calendar>

"ondataselect" could be used for possibility of date selection canceling. See an example below:

<rich:calendar id="date" value="#{bean.dateTest}" ondateselect="if (Iconfirm('Are you sure to
change date?")){return false;}"/>

"oncurrentdataselected" event is fired when the "next/previous month" or "next/previous year"
button is pressed, and the value is applied.

"oncurrentdataselect” eventis fired when the "next/previous month" or "next/previous year" button
is pressed, but the value is not applied yet (you can change the logic of upplying the value). Also
this event could be used for possibility of "next/previous month" or "next/previous year" selection
canceling. See an example below:

Example:

<rich:calendar id="date" value="#{bean.dateTest}" oncurrentdateselect="if (!confirm('Are you

sure to change month(year)?")){return false;}"
oncurrentdateselected="alert('month(year) select:'+event.rich.date.toString());"/>

How to use these attributes see also on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4092275#4092275].

Information about the "process" attribute usage you can find here.

There are three button-related attributes:

« "puttonLabel" defines a label for the button. If the attribute is set "buttonlcon" and
"buttoniconDisabled" are ignored

« "puttonlcon" defines an icon for the button

« "puttonlconDisabled" defines an icon for the disabled state of the button

147

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275

Chapter 6. The RichFaces Comp...

The "direction" and "jointPoint" attributes are used for defining aspects of calendar appearance.

The possible values for the "direction" are:

* top-left - a calendar drops to the top and left

« top-right - a calendar drops to the top and right

bottom-left - a calendar drops to the bottom and left

bottom-right - a calendar drops to the bottom and right
e auto - smart positioning activation
By default, the "direction" attribute is set to "bottom-right".

The possible values for the "jointPoint" are:

« top-left - a calendar docked to the top-left point of the button element

top-right - a calendar docked to the top-right point of the button element

bottom-left - a calendar docked to the bottom-left point of the button element

bottom-right - a calendar docked to the bottom-right point of the button element
 auto - smart positioning activation
By default, the "jointPoint" attribute is set to "bottom-left".

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines
the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM", {2} for “ShortConverter.SHORT".

The <rich:calendar> component allows to use "header" , "footer"
"optionalHeader" , "optionalFooter" facets. The following elements are available in these
facets: {currentMonthControl}, {nextMonthControl}, {nextYearControl}, {previousYearControl},
{previousMonthControl}, {todayControl}, {selectedDateControl}. These elements could be used
for labels output.

Also you can use "weekNumber" facet with available {weekNumber}, {elementld} elements
and "weekDay" facet with {weekDaylLabel}, {weekDayLabelShort}, {weekDayNumber},
{isWeekend}, {elementld} elements. {weekNumber}, {weekDayLabel}, {weekDayLabelShort},
{weekDayNumber} elements could be used for labels output, {isWeekend}, {elementld} - for
additional processing in JavaScript code.

These elements are shown on the picture below.

148

Details of Usage

{previoushlonthControl} {nextMonthControl}

{previousYearControl} [nextYearControl}
[Now 14, 2007

LC 4 Hovember, 2007 E R

S Mon Tue Wed Thu Fri Sat
{currentbonthContral} (¢ 2

45 4 5 B 7 B 1
45 11 12 13 14 15 16 17

{weekDayNumher} 47 15 18] M 22 23 M4
45 25 B 2T 2/ 29 30
49
Moy 14, 2007 () Today
{zelectedDateCantral} {todayControl}

Figure 6.3. Available elements
Simple example of usage is placed below.

Example:

<!-- Styles for cells -->
<style>
.width100{
width:100%;
}
talign{
text-align:center;

}

</style>

? | jweekDayLabelShort}
]

<rich:calendar id="myCalendar" popup="true" locale="#{calendarBean.locale}"

value="#{bean.date}"

preloadRangeBegin="#{bean.date}" preloadRangeEnd="#{bean.date}"

selectedDate="#{bean.date}" cellWidth="40px" cellHeight="40px">

<l-- Customization with usage of facets and accessible elements -->

149

Chapter 6. The RichFaces Comp...

<f:.facet name="header">
<h:panelGrid columns="2" width="100%" columnClasses="width100, fake">
<h:outputText value="{selectedDateControl}" />
<h:outputText value="{todayControl}" style="font-weight:bold; text-align:left"/>
</h:panelGrid>
</f:facet>
<f:facet name="weekDay">
<h:panelGroup style="width:60px; overflow:hidden;" layout="block">
<h:outputText value="{weekDayLabelShort}"/>
</h:panelGroup>
</f:facet>
<f:facet name="weekNumber">
<h:panelGroup>
<h:outputText value="{weekNumber}" style="color:red"/>
</h:panelGroup>
</f:facet>
<f:facet name="footer">
<h:panelGrid columns="3" width="100%" columnClasses="fake, width100 talign">
<h:outputText value="{previousMonthControl}" style="font-weight:bold;"/>
<h:outputText value="{currentMonthControl}" style="font-weight:bold;"/>
<h:outputText value="{nextMonthControl}" style="font-weight:bold;"/>
</h:panelGrid>
</f:facet>
<h:outputText value="{day}"></h:outputText>
</rich:calendar>

This is a result:

150

Details of Usage

{selectedDateControl}
today Control
fweekDayLabelShort) ttoday }
Mo 8, 2006
Moy 5, 2006 (=) Today
Sun Mon Tue Wied Thu Fri Sat
1 2 3
44
& v 8 9 10
45
13 14 15 16 17
weekMNurmber 8
20 21 22 23 24
47
27 28 29 a0
45

{previousMaonthCantral} g

= Hovember, 2006 el

lcurrenthanthContral} fnexthonthContral}

Figure 6.4. Facets usage

As it's shown on the picture above {selectedDateControl}, {todayControl} elements are placed
in the "header" facet, {previousMonthControl}, {currentMonthControl}, {nextMonthControl} -
in the "footer" facet, {weekDayLabelShort} - in the "weekDay" facet, {nextYearControl},
{previousYearControl} are absent. Numbers of weeks are red colored.

It is possible to show and manage date. Except scrolling controls you can use quick month and
year selection feature. It's necessary to click on its field, i.e. current month control, and choose
required month and year.

151

Chapter 6. The RichFaces Comp...

opticnalHeader Facet

January, 2008 L X

A | 2 A

Feb AL 2004 2009

o

har Zep 2005 2010

P

Apr Cct 2008 2011
Mary Moy 2007 202

aun o pec [EITH 2mi3

Ok Cancel

Todary

opticnalFooter Facet

Figure 6.5. Quick month and year selection

Also the <rich:calendar> component allows to show and manage time. It's necessary to define
time in a pattern (for example, it could be defined as "d/M/yy HH:mm"). Then after you choose
some data in the calendar, it becomes possible to manage time for this date. For time editing it's
necessary to click on its field (see a picture below). To clean the field click on the "Clean".

|13/12/07 12:00 PM
<< = December, 2007 = :=-:=- H

Mon Tue Wed Thu Fri

45
45

12 3 00 5 PM 3
a0
=1 il Cancel
52 24 25 2B X X
53 31

13/12/07 { Clean{12:00 PM | Taday

Figure 6.6. Timing

It's possible to handle events for calendar from JavaScript code. A simplest example of usage
JavaScript APl is placed below:

Example:

152

Details of Usage

<rich:calendar value="#{calendarBean.selectedDate}" id="calendarID"
locale="#{calendarBean.locale}"
popup="#{calendarBean.popup}"
datePattern="#{calendarBean.pattern}"
showApplyButton="#{calendarBean.showApply}" style="width:200px"/>
<adj:commandLink onclick="$(‘formlID:calendarlD"').component.doExpand(event)"
value="Expand"/>

Also the discussion about this problem can be found on the RichFaces Users Forum [http://
www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301].

The <rich:calendar> component provides the possibility to use a special Data Model to define
data for element rendering. Data Model includes two major interfaces:

* CalendarDataModel
* CalendarDataModelltem

CalendarDataModel provides the following function:

» CalendarDataModelltem[] getData(Date[]);

This method is called when it's necessary to represent the next block of CalendarDataltems.
It happens during navigation to the next (previous) month or in any other case when calendar
renders. This method is called in "Ajax" mode when the calendar renders a new page.

CalendarDataModelltem provides the following function:

Date getDate() - returns date from the item. Default implementation returns date.

« Boolean isEnabled() - returns "true" if date is "selectable" on the calendar. Default
implementation returns "true".

» String getStyleClass() - returns string appended to the style class for the date span. For example
it could be "relevant holyday". It means that the class could be defined like the "rich-cal-day-
relevant-holyday" one. Default implementation returns empty string.

« Object getData() - returns any additional payload that must be JSON-serializable object. It could
be used in the custom date representation on the calendar (inside the custom facet).

The <rich:calendar> component provides the possibility
to use internationalization method to redefine and localize
the labels. You could use application resource bundle and
define RICH_CALENDAR_APPLY_LABEL, RICH_CALENDAR_TODAY_LABEL,

153

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301

Chapter 6. The RichFaces Comp...

RICH_CALENDAR_CLOSE_LABEL,

RICH_CALENDAR_OK_LABEL,

RICH_CALENDAR_CLEAN_LABEL, RICH_CALENDAR_CANCEL_LABEL there.

You could also pack org.richfaces.renderkit.calendar resource [http://labs.jboss.com/file-access/
default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/
CalendarRendererBase.htmi#CALENDAR_BUNDLE] bundle with your JARs defining the same

properties.

6.24.6. JavaScript API

Table 6.49. JavaScript API

Function Description

selectDate(date)

Selects the date specified. If the date isn't in
current month - performs request to select

isDateEnabled(date)
enableDate(date)

disableDate(date)

Checks if given date is selectable
Enables date cell control on the calendar

Disables date cell control on the calendar

enableDates(date[])

Enables dates cell controls set on the calendar

disableDates(date[]) Disables dates cell controls set on the calendar

nextMonth() Navigates to next month

nextYear() Navigates to next year

prevMonth() Navigates to previous month

prevYear() Navigates to previous year

today() Selects today date

getSelectedDate() Returns currently selected date

Object getData() Returns additional data for the date

getCurrentMonth() Returns number of the month currently being
viewed

getCurrentYear() Returns number of the year currently being

viewed

doCollapse()
doExpand()
resetSelectedDate()

doSwitch()

Collapses calendar element
Expands calendar element
Clears a selected day value

Inverts a state for the popup calendar

6.24.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

154

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE

Skin Parameters Redefinition

There are two ways to redefine the appearance of all <rich:calendar> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:calendar> component

6.24.8. Skin Parameters Redefinition

Table 6.50. Skin parameters redefinition for a popup element

Skin parameters CSS properties

panelBorderColor border-color

Table 6.51. Skin parameters redefinition for headers (header, optional
header)

Skin parameters CSS properties

panelBorderColor border-bottom-color

additionalBackgroundColor background-color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.52. Skin parameters redefinition for footers (footer, optional footer)
and names of working days

Skin parameters CSS properties

panelBorderColor

border-top-color

panelBorderColor

border-right-color

additionalBackgroundColor

generalSizeFont

generalFamilyFont

background
font-size

font-family

Table 6.53. Skin parameters redefinition for weeks numbers

Skin parameters

CSS properties

panelBorderColor

panelBorderColor

border-bottom-color

border-right-color

additionalBackgroundColor

background

calendarWeekBackgroundColor

background-color

generalSizeFont

generalFamilyFont

font-size

font-family

155

Chapter 6. The RichFaces Comp...

Table 6.54. Skin parameters redefinition for a toolBar and names of months

Skin parameters CSS properties

headerBackgroundColor background-color
headerSizeFont font-size
headerFamilyFont font-family
headerWeightFont font-weight
headerTextColor color

Table 6.55. Skin parameters redefinition for cells with days

Skin parameters CSS properties

panelBorderColor border-bottom-color
panelBorderColor border-right-color
generalBackgroundColor background-color
generalSizeFont font-size
generalFamilyFont font-family

Table 6.56. Skin parameters redefinition for holiday

Skin parameters CSS properties
calendarHolidaysBackgroundColor background-color
calendarHolidaysTextColor color

Table 6.57. Skin parameters redefinition for cell with a current date

Skin parameters CSS properties
calendarCurrentBackgroundColor ‘ background-color
calendarCurrentTextColor ‘ color

Table 6.58. Skin parameters redefinition for a selected day

Skin parameters CSS properties
headerBackgroundColor background-color
headerTextColor color
headerWeightFont font-weight

Table 6.59. Skin parameters redefinition for a popup element during quick
month and year selection

Skin parameters CSS properties

tableBackgroundColor background

156

Skin Parameters Redefinition

Skin parameters CSS properties

panelBorderColor border-color

Table 6.60. Skin parameters redefinition for a shadow

Skin parameters CSS properties

shadowBackgroundColor background-color

Table 6.61. Skin parameters redefinition for a selected month and year

Skin parameters CSS properties
calendarCurrentBackgroundColor ‘ background-color
calendarCurrentTextColor ‘ color

Table 6.62. Skin parameters redefinition for a hovered month and year

Skin parameters CSS properties
panelBorderColor ‘ border-color
calendarSpecBackgroundColor ‘ background

Table 6.63. Skin parameters redefinition for a month items near split line

Skin parameters CSS properties

panelBorderColor border-right-color

Table 6.64. Skin parameters redefinition for a hovered toolbar items

Skin parameters CSS properties

calendarWeekBackgroundColor background-color
generalTextColor color
tableBackgroundColor border-color
panelBorderColor border-right-color
panelBorderColor border-bottom-color

Table 6.65. Skin parameters redefinition for a pressed toolbar items

Skin parameters CSS properties
panelBorderColor border-color
tableBackgroundColor border-right-color
tableBackgroundColor border-bottom-color

157

Chapter 6. The RichFaces Comp...

Table 6.66. Skin parameters redefinition for "ok" and "cancel" buttons

Skin parameters CSS properties
additionalBackgroundColor background
panelBorderColor border-top-color

Table 6.67. Skin parameters redefinition for a popup element during time
selection

Skin parameters CSS properties
additionalBackgroundColor background
panelBorderColor border-color

Table 6.68. Skin parameters redefinition for a wrapper <td> element for an
input field

controlBackgroundColor background-color
panelBorderColor border-color
subBorderColor border-bottom-color
subBorderColor border-right-color

Table 6.69. Skin parameters redefinition for an input field

Skin parameters CSS properties
buttonSizeFont font-size
buttonFamilyFont font-family

Table 6.70. Skin parameters redefinition for a wrapper <td> element for
spinner buttons

Skin parameters CSS properties
headerBackgroundColor background-color
headerBackgroundColor border-color

6.24.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Definition of Custom Style Classes

rich-calendar-input rich-calendar-button

[rich-calendar-header-optional

fich-calendar-exterior optionalHeader Facet

< = August, 2007 -

Sun Mon Tue Wed Thu Froo ==t

3 | rich-calendar-month | fich-calendar-header

2ls & 7 8 1 .
tich-calendar-cell

rich-calendar-week 33 142 12 114 15 16 A7 | TF

34 119 20 M 22 23|24 |5

a5 2528 a0 _
tich-calendar-footer

rich-calendar-today

Today

optionalFooter Facet fich-calendar-toolfooter

rich-calendar-footer-aptional

Figure 6.7. Style classes

159

Chapter 6. The RichFaces Comp...

Aug 30, 2007

optionalHe .
pt tich-calendar-weeakends

EC- I ~sugust, 07 = N

; Sun Mon Tue Wed Thu Fri Sat
tich-calendar-tool

3 i 2 3 rich-calendar-hover
32 rln::h-n:alenl:iar-l:iag,rs5| 10

l
33 12 13 14 15 186 (:-('7 18
24 19 20 M 22 23 nch-calendar-select

_ T 26 27 zaﬂan 3
tich-calendar-hally

e

Aug 30, 2007 (] Today

optionalFooter Facet rich-calendar-boundary-dates
tich-calendar-htn

Figure 6.8. Style classes

160

Definition of Custom Style Classes

optT T :
_ I rich-calendar-date-layout-split
rich-calendar-date-layout o oy suary; 200 s s+ x tich-calendar-editor-layout-shadow

Febh Aug 2004 | 2009 ©

hfar Sep 2002 2M0 rich-calendar-editor-btn

2 2 Ot 2008 Sl
rich-calendar-editar-btn-over ol rich-calendar-editor-btn-selected

L Move ' a
Jun Dec 2013
(80,4 Cancel
rich-calendar-date-layout-ok rich-calendar-date-layout-cancel

[ESIF LTy

optionalFooter Facet

Figure 6.9. Style classes

161

Chapter 6. The RichFaces Comp...

Jan 25, 2008 12:00 Fhd I

optionalHeader Facet

: : rich-calendar-spinner-input-container
rich-calendar-time-layout 1 54

rich-calendar-spinner-up

?’ =] n A0 A4

|
14 | M2 ::DD:F‘M:]

tich-calendar-spinner-input Ok Cancel rich-calendar-spinner-down
20 e B -1 1 el
rich-calendar-time-layout-fields rich-calendar-time-layout-cancel

tich-calendar-time-layout-gk =% PM & Taday

optionalFooter Facet

Figure 6.10. Style classes

Table 6.71. Classes names that define an input field and a button

appearance
Class name Description
rich-calendar-input Defines styles for an input field
rich-calendar-button Defines styles for a popup button

Table 6.72. Classes names that define a days appearance

Class name Description

rich-calendar-days Defines styles for names of working days in a
header

rich-calendar-weekends Defines styles for names of weekend in a
header

rich-calendar-week Defines styles for weeks numbers

rich-calendar-today Defines styles for cell with a current date

rich-calendar-cell Defines styles for cells with days

rich-calendar-holly Defines styles for holiday

rich-calendar-select Defines styles for a selected day

162

Definition of Custom Style Classes

Class name Description

rich-calendar-hover ‘ Defines styles for a hovered day

Table 6.73. Classes names that define a popup element

Class name Description

rich-calendar-popup Defines styles for a popup element
rich-calendar-exterior Defines styles for a popup element exterior
rich-calendar-tool Defines styles for toolbars
rich-calendar-month Defines styles for names of months
rich-calendar-header-optional Defines styles for an optional header
rich-calendar-footer-optional Defines styles for an optional footer
rich-calendar-header Defines styles for a header
rich-calendar-footer Defines styles for a footer
rich-calendar-boundary-dates Defines styles for an active boundary button
rich-calendar-btn Defines styles for an inactive boundary date
rich-calendar-toolfooter Defines styles for a today control date

Table 6.74. Classes names that define a popup element during quick month
and year selection

Class name Description

rich-calendar-date-layout Defines styles for a popup element during quick
year selection

rich-calendar-editor-layout-shadow Defines styles for a shadow
rich-calendar-editor-btn Defines styles for an inactive boundary date
rich-calendar-date-layout-split Defines styles for a wrapper <td> element for

month items near split line
rich-calendar-editor-btn-selected Defines styles for an selected boundary date

rich-calendar-editor-btn-over Defines styles for a boundary date when
pointer was moved onto

rich-calendar-editor-tool-over Defines styles for a hovered toolbar items
rich-calendar-editor-tool-press Defines styles for a pressed toolbar items
rich-calendar-date-layout-ok Defines styles for a "ok" button
rich-calendar-date-layout-cancel Defines styles for a "cancel" button

163

Chapter 6. The RichFaces Comp...

Table 6.75. Classes names that define a popup element during time
selection

Class name Description

rich-calendar-time-layout Defines styles for a popup element during time
selection

rich-calendar-editor-layout-shadow Defines styles for a shadow

rich-calendar-time-layout-fields Defines styles for a wrapper <td> element for

input fields and buttons

rich-calendar-spinner-input-container Defines styles for a wrapper <td> element for
an input field

rich-calendar-spinner-input Defines styles for an input field

rich-calendar-spinner-buttons Defines styles for a wrapper <td> element for

spinner buttons

rich-calendar-spinner-up Defines styles for a "up" button
rich-calendar-spinner-down Defines styles for a "down" button
rich-calendar-time-layout-ok Defines styles for a "ok" button
rich-calendar-time-layout-cancel Defines styles for a "cancel" button

In order to redefine styles for all <rich:calendar> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-calendar-today {
background-color: #FF0000;

This is a result:

164

Definition of Custom Style Classes

<< < January, 2008 > >>i x

Sun Mon Tue Wed Thu Fri Sat

1 1 2 3 4
2 ¥ 8 9 10 N
3 14 13 16 17 15
4 22 23 024 E
3 28 29 30 AN
G
Today

Figure 6.11. Redefinition styles with predefined classes
In the example an active cell background color was changed.

Also it's possible to change styles of particular <rich:calendar> component. In this case you
should create own style classes and use them in corresponding <rich:calendar> styleClass
attributes. An example is placed below:

Example:

.myFontClass{
font-style: italic;

The "inputClass" attribute for <rich:calendar> is defined as it's shown in the example below:

Example:
<rich:calendar ... inputClass="myFontClass"/>

This is a result:

165

Chapter 6. The RichFaces Comp...

Jan 28 2008
optionalHeader Facet

<< < January, 2008 = .‘-3=- X

1 2 3 4 |5
B |7 g g 1 11 12

13 14 15 16 17 183 139

a0 | EES 24 25 oF

22| 28 500 03

Jan 25, 2008 § Clean | Today

optionalFooter Facet

Figure 6.12. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for output text was changed.
6.24.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar] you can see
the example of <rich:calendar> usage and sources for the given example.

How to use JavaScript APl see on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4078301#4078301].

6.25. <rich:comboBox >

6.25.1. Description

The <rich:comboBox> is a component, that provides editable combo box element on a page.

B -
Arizona

Arkansas

Alabama

Alaska

Figure 6.13. <rich:comboBox> component

6.25.2. Key Features

 Client side suggestions

* Browser like selection

166

http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar
http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301

Key Features

Smart user-defined positioning
Seam entity converter support
Highly customizable look and feel

Disablement support

Table 6.76. rich : comboBox attributes

Attribute Name Description

accesskey

align

binding

This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

left|center|right|justify [CI] Deprecated. This
attribute specifies the horizontal alignment of
its element with respect to the surrounding
context. Possible values: * left: text lines are
rendered flush left. * center: text lines are
centered. * right: text lines are rendered flush
right. * justify: text lines are justified to both
margins. The default depends on the base text
direction. For left to right text, the default is
align=left, while for right to left text, the default
is align=right

The attribute takes a value-binding expression
for a component property of a backing bean

buttonClass
buttonDisabledClass

buttonDisabledStyle

Style Class attribute for the button
Style Class attribute for the disabled button

CSS style rules to be applied to disabled button

buttonlcon

Defines icon for the button element

buttonlconDisabled

Defines disabled icon for the button element

buttonlconlnactive
buttonlnactiveClass

buttonInactiveStyle

Defines inactive icon for the button element
Style Class attribute for the inactive button

CSS style rules to be applied to inactive button

buttonStyle CSS style rules to be applied to button

converter Id of Converter to be used or reference to a
Converter

converterMessage

167

Chapter 6. The RichFaces Comp...

Attribute Name Description

A ValueExpression enabled attribute that, if
present, will be used as the text of the converter
message, replacing any message that comes
from the converter

defaultLabel

directinputSuggestions

Defines default label for the input field element

Defines the first value from the suggested in
input field. Default value is "false".

disabled

When set for a form control, this boolean
attribute disables the control for your input

enableManuallnput

filterNewValues

Enables keyboard input, if "false" keyboard
input will be locked. Default value is "true"

Defines the appearance of values in the list.
Default value is "true".

inputinactiveClass

inputlnactiveStyle

hideDelay Delay between losing focus and pop-up list
closing. Default value is "0".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

inputClass Style Class attribute for the input field

inputDisabledClass Style Class attribute for the disabled input

inputDisabledStyle CSS style rules to be applied to disabled input

Style Class attribute for the inactive input

CSS style rules to be applied to inactive input

inputStyle

CSS style rules to be applied to input field

itemClass

itemSelectedClass

Style Class attribute for the items

Style Class attribute for the selected item

listClass Style Class attribute for the popup list

listHeight Defines height of file pop-up list. Default value
is "200px".

listStyle CSS style rules to be applied to popup list

listWidth Defines width of file popup list

onblur HTML: script expression; the element lost the

focus

168

Key Features

Attribute Name Description

onchange HTML: script expression; the element value
was changed

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

onfocus HTML: script expression; the element got the
focus

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onlistcall A JavaScript event handler called on a list call
operation

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event
occurs when you select some text in a text field.
This attribute may be used with the INPUT and
TEXTAREA elements

rendered If "false", this component is not rendered

required If "true”, this component is checked for non-
empty input

requiredMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

selectFirstOnUpdate Defines if the first value from suggested is
selected in pop-up list. Default value is "true".

169

Chapter 6. The RichFaces Comp...

Attribute Name Description

showDelay Delay between event and pop-up list showing.
Default value is "0".

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

suggestionValues Defines the suggestion collection

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

validator MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value The current value of this component
valueChangeListener Listener for value changes
width Width of the component. Default value is "150".

Table 6.77. Component identification parameters

Name Value

component-type org.richfaces.ComboBox

component-class org.richfaces.component.html.HtmIComboBox
component-family org.richfaces.ComboBox

renderer-type org.richfaces.renderkit. ComboBoxRenderer
tag-class org.richfaces.taglib.ComboBoxTag

6.25.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

170

Creating the Component Dynamically Using
Java
<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" />

6.25.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIComboBox;

HtmIComboBox myComboBox = new HtmIComboBox();

6.25.5. Details of Usage

The <rich:comboBox> is a simplified suggestion box component, that provides input with client
side suggestions. The component could be in two states:

 Default - only input and button is shown
* Input, button and a popup list of suggestions attached to input is shown

There are two ways to get values for the popup list of suggestions:

» Using the "suggestionValues" attribute, that defines the suggestion collection

Example:
<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" />

« Usingthe <f:selectltem /> or <f:selectltems /> facets which considers only "value" attribute.

Example:

<rich:comboBox value="#{bean.state}" valueChangeListener="#{bean.selectionChanged}">
<f:selectltems value="#{bean.selectltems}"/>
<f:selectltem itemValue="Oregon"/>
<f:selectltem itemValue="Pennsylvania"/>

171

Chapter 6. The RichFaces Comp...

<f:selectltem itemValue="Rhode Island"/>
<f:selectltem itemValue="South Carolina"/>
</rich:comboBox>

Popup list content loads at page render time. No additional requests could be performed on the
popup calling.

The "value" attribute stores value from input after submit.

The "directinputSuggestions" attribute defines, how the first value from the suggested one
appears in an input field. If it's "true" the first value appears with the suggested part highlighted.

Example:

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}"
directinputSuggestions="true" />

This is a result:

Alaska
Arizona

Arkanzas
Alsbams

Figure 6.14. <rich:comboBox> with "directinputSuggestions" attribute.

The "selectFirstOnUpdate" attribute defines if the first value from suggested is selected in a popup
list. If it's "false" nothing is selected in the list before a user hovers some item with the mouse.

Example:

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}"
selectFirstOnUpdate="false" />

This is a result:

172

Details of Usage

a -
Slaska

Arizona

Alabama

Arkansas

Figure 6.15. <rich:comboBox> with "selectFirstOnUpdate" attribute.

The "defaultLabel" attribute defines the default label of the input element. Simple example is
placed below.

Example:

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}"
defaultLabel="Select a city..." />

This is a result:

| =]

Figure 6.16. <rich:comboBox> with "defaultLabel" attribute.

With the help of the "disabled" attribute you can disable the whole <rich:comboBox>
component. See the following example.

Example:

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}"
defaultLabel="Select a city..." disabled="true" />

This is a result:

| =]

Figure 6.17. <rich:comboBox> with "disabled" attribute.

The <rich:comboBox> component provides to use specific event attributes:

173

Chapter 6. The RichFaces Comp...

« "onlistcall" which is fired before the list opening and gives you a possibility to cancel list popup/
update

» "onselect" which gives you a possibility to send AJAX request when item is selected

The <rich:comboBox> component allows to use sizes attributes:

 "listWidth" and "listHeight" attributes specify popup list sizes with values in pixels

« "width" attribute customizes the size of input element with values in pixels.

6.25.6. JavaScript API

Table 6.78. JavaScript API

Function Description

showList() Shows the popup list
hideList() Hides the popup list
enable() Enables the control for input
disable() Disables the control for input

6.25.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:comboBox> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:comboBox> component

6.25.8. Skin Parameters Redefinition

Table 6.79. Skin parameters redefinition for a popup list

Skin parameters CSS properties
tableBackgroundColor ‘ background
panelBorderColor ‘ border-color

Table 6.80. Skin parameters redefinition for a button background, inactive
button background, button background in pressed and disabled state

Skin parameters CSS properties

tabBackgroundColor background-color

174

Skin Parameters Redefinition

Table 6.81. Skin parameters redefinition for a button

Skin parameters CSS properties
panelBorderColor ‘ border-top-color
panelBorderColor ‘ border-left-color

Table 6.82. Skin parameters redefinition for an inactive button

Skin parameters CSS properties
panelBorderColor ‘ border-top-color
panelBorderColor ‘ border-left-color

Table 6.83. Skin parameters redefinition for a disabled button

Skin parameters CSS properties
panelBorderColor ‘ border-top-color
panelBorderColor ‘ border-left-color

Table 6.84. Skin parameters redefinition for a hovered button

Skin parameters CSS properties

selectControlColor border-color

Table 6.85. Skin parameters redefinition for a font

Skin parameters CSS properties
generalSizeFont ‘ font-size
generalFamilyFont ‘ font-family
‘ generalTextColor ‘ color ‘

Table 6.86. Skin parameters redefinition for a font in inactive state

Skin parameters CSS properties

generalSizeFont font-size
generalFamilyFont font-family
generalTextColor color

Table 6.87. Skin parameters redefinition for a font in disabled state

Skin parameters CSS properties

headerFamilyFont font-size

175

Chapter 6. The RichFaces Comp...

Skin parameters CSS properties

headerFamilyFont ‘ font-family

Table 6.88. Skin parameters redefinition for an input field

Skin parameters CSS properties

controlBackgroundColor background-color
panelBorderColor border-bottom-color
panelBorderColor border-right-color

Table 6.89. Skin parameters redefinition for an inactive input field

Skin parameters CSS properties
controlBackgroundColor background-color
panelBorderColor ‘ border-bottom-color
panelBorderColor ‘ border-right-color

Table 6.90. Skin parameters redefinition for a disabled input field

Skin parameters CSS properties

controlBackgroundColor background-color
panelBorderColor border-bottom-color
panelBorderColor border-right-color

Table 6.91. Skin parameters redefinition for an item

Skin parameters CSS properties
generalSizeFont font-size
generalFamilyFont font-family
generalTextColor color

Table 6.92. Skin parameters redefinition for a selected item

Skin parameters CSS properties
headerBackgroundColor background-color
headerBackgroundColor border-color
generalTextColor color

6.25.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

176

Definition of Custom Style Classes

fich-cormbobox-input) .
P tich-combobox-button-icon

= B
i

rich-combobox-itemn | paine

Maortans tich-combobox-hutton
Michigan I

|r-.-1innesnta |
Mazzachuzetts
rich-combobox-font Mizzizsippi

Miszouri

tich-combobox-list-scroll

tich-combobox-iterm-selected tich-combobox-shad ow

Figure 6.18. Classes names

rich-combobox-input-disabled rich-combobox-hutton-disahled

| Ex

tich-combobox-font-disabled tich-combobox-button-icon-disabled

Figure 6.19. Classes names

Table 6.93. Classes names that define popup list representation

Class name Description

rich-combobox-shell Defines styles for a wrapper <div> element of
a list

rich-combobox-list-position Defines position of a list

rich-combobox-list-decoration Defines styles for a list

rich-combobox-list-scroll

Defines styles for a list scrolling

Table 6.94. Classes names that define font representation

Class name Description

rich-combobox-font Defines styles for a font

rich-combobox-font-inactive

rich-combobox-font-disabled

Defines styles for an inactive font

Defines styles for a disabled font

177

Chapter 6. The RichFaces Comp...

Table 6.95. Classes names that define input field representation

Class name Description

rich-combobox-input Defines styles for an input field
rich-combobox-input-disabled Defines styles for an input field in disabled state
rich-combobox-input-inactive Defines styles for an inactive input field

Table 6.96. Classes names that define item representation

Class name Description
rich-combobox-item Defines styles for an item
rich-combobox-item-selected ‘ Defines styles for a selected item

Table 6.97. Classes names that define button representation

Class name Description

rich-combobox-button Defines styles for a button
rich-combobox-button-inactive Defines styles for an inactive button
rich-combobox-button-disabled Defines styles for a button in disabled state
rich-combobox-button-hovered Defines styles for a hovered button
rich-combobox-button-background Defines styles for a button background

rich-combobox-button-background-disabled Defines styles for a disabled button
background

rich-combobox-button-background-inactive Defines styles for an inactive button
background

rich-combobox-button-pressed-background Defines styles for a pressed button background

rich-combobox-button-icon Defines styles for a button icon
rich-combobox-button-icon-inactive Defines styles for an inactive button icon
rich-combobox-button-icon-disabled Defines styles for a disabled button icon

Table 6.98. Classes names that define shadow representation

Class name Description

rich-combobox-shadow Defines styles for a wrapper <div> element of
a shadow

rich-combobox-shadow-tl Defines styles for a top-left element of a
shadow

rich-combobox-shadow-tr Defines styles for a top-right element of a
shadow

rich-combobox-shadow-bl Defines styles for a bottom-left element of a
shadow

178

Definition of Custom Style Classes

Class name Description
rich-combobox-shadow-br Defines styles for a bottom-right element of a
shadow

In order to redefine styles for all <rich:comboBox> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-combobox-list-decoration{
background-color:#ecf4fe;

This is a result:

[= -
Alaska

Arkansas

Arizona

Alabama

Figure 6.20. Redefinition styles with predefined classes
In the example background color for popup list was changed.

Also it's possible to change styles of particular <rich:comboBox> component. In this case you
should create own style classes and use them in corresponding <rich:comboBox> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight:bold;

The "listClass" attribute for <rich:comboBox> is defined as it's shown in the example below:

Example:

179

Chapter 6. The RichFaces Comp...

<rich:comboBox ... listClass="myClass"/>

This is a result:

[= -
Alaska

Arizona

Arkansas

Alabama

Figure 6.21. Redefinition styles with own classes and "styleClass"
attributes

As it could be seen on the picture above, the font weight for items was changed.

6.25.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox] you can
see an example of <rich:comboBox> usage and sources for the given example.

6.26. <rich:componentControl >

6.26.1. Description

The <rich:componentControl> allows to call JavaScript APl functions on components after
defined events.

6.26.2. Key Features

* Management of components JavaScript API
« Customizable initialization variants

» Customizable activation events

Possibility to pass parameters to the target component

Table 6.99. rich : componentControl attributes

Attribute Name Description

attachTiming Defines the page loading phase when
componentControl is attached to another
component. Default value is "onavailable"

180

http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox
http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox

Key Features

Attribute Name Description

attachTo Client identifier of the component or id of
the existing DOM element that is a source
for given event. If attachTo is defined, the
event is attached on the client according to
the AttachTiming attribute. If attachTo is not
defined, the event is attached on the server
to the closest in the component tree parent
component.

binding The attribute takes a value-binding expression
for a component property of a backing bean

disableDefault Disable default action for target event (append
"return false;" to javascript)

event The Event that is used to trigger the operation
on the target component

for Client identifier of the target component.

id Every component may have a unique id that is
automatically created if omitted

name The optional name of the function that might
be used to trigger the operation on the target
component

operation The function of Javascript API that will be

invoked. The API method is attached to the
‘component’ property of the root DOM element
that represents the target component. The
function has two parameters - event and
params. See: 'params' attribute for details.

params The set of parameters passed to the function
of Javascript API that will be invoked. The
JSON syntax is used to define the parameters,
but without open and closed curve bracket.
As an alternative, the set of f:param can be
used to define the parameters passed to the
API function. If both way are used to define
the parameters, both set are concatenated. if
names are equals, the f:param has a priority.

rendered If "false”, this component is not rendered

Table 6.100. Component identification parameters

component-type org.richfaces.ComponentControl

181

Chapter 6. The RichFaces Comp...

NETIE Value

component-class org.richfaces.component.html.HtmlIComponentControl
component-family org.richfaces.ComponentControl

renderer-type org.richfaces.ComponentControlRenderer

tag-class org.richfaces.taglib.ComponentControlTag

6.26.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:componentControl attachTo="doExpandCalendarID" for="ccCalendarID" event="onclick"
operation="Expand" />

6.26.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIComponentControl;

HtmIComponentControl myComponentControl = new HtmlComponentControl();

6.26.5. Details of Usage

In order to use the <rich:componentControl> with another components you need to take the
following steps:

» Define a name of a function that is generated (definition is similar to a definition of

<adj:jsFunction>). An "event" argument is passed to this function.

An example is placed below:

<rich:componentControl name="ffunction" for="comp_ID" operation="show"/>

182

Details of Usage

According to this code a function with name ffunction is generated. It is used in JavaScript code
to trigger an operation on the target component with defined id="comp_ID".

The generated function is shown below:

function ffunction (event) {

}

 Attach to a parent component (usage is similar to <adj:support> component).

An example is placed below:

<rich:modalPanel id="ccModalPanellD" onshow="alert(event.parameters.show)"
onhide="alert(event.parameters.hide)">

<h:outputText value="#{bean.text}"/>
</rich:modalPanel>
<h:commandButton value="Show Modal Panel">

<rich:componentControl for="ccModalPanellD" event="onclick" disableDefault="true"
operation="show">
<f:param name="show" value="componentControl work(show)"/>

<rich:componentControl/>

</h:commandButton>

In the example the "for" attribute contains value of an id of <rich:modalPanel> component. The
"operation" attribute contains a name of JavaScript API function. An "event" attribute is used
to trigger an operation defined with the "operation" attribute. A set of parameters is defined with
<f:param>. As an alternative, the "params" attribute can be used. Thus, one of main features is
that <rich:componentControl> allows to transfer parameters. The "disableDefault" attribute
with "true" value is used instead of onclick="return false;" attribute for <h:commandButton> to
avoid a problem with form submit and modalPanel showing.

« Attach with "attachTo" attribute.

An example is placed below:

<rich:calendar popup="#{componentControl.calendarPopup}" id="ccCalendarID" />

<f:verbatim>

183

Chapter 6. The RichFaces Comp...

Calendar (nextYear)
</f.verbatim>
<rich:componentControl attachTo="doExpandCalendarID" for="ccCalendarID" event="onclick"
disableDefault="true" operation="nextYear" />

In the example the "attachTo" attribute contais a value of an id of <a> element. The "for" attribute
contains value of anid of <rich:calendar> component. The "operation" attribute contains a name
of JavaScript API function. Thus, clicking on the link represents the next year on the calendar.

With the help of the "attachTiming" attribute you can define the page loading phase when
<rich:componentControl> is attached to source component. Possible values are:

« "immediate" - attached during execution of <rich:componentControl> script
« "onavailable" - attached after the target component is initialized
» "onload" - attached after the page is loaded

<rich:componentControl> interacts with such components as: <rich:contextMenu> ,
<rich:toolTip> , <rich:modalPanel > , <rich:listShuttle> , <rich:orderingList> |,
<rich:calendar>

In order to use <rich:componentControl> with another component you should place the id of
this component into "for" attribute field. All operations with defined component you can find in
the JavaScript API section of defined component.

Example:

<f.view>
<h:form>

<rich:toolTip id="toolTipFor" followMouse="false" direction="top-right" mode="ajax"
value="This is button" horizontalOffset="5" verticalOffset="5" layout="block" />
</h:form>
<h:commandButton id="ButtonID" value="Button">
<rich:componentControl for="toolTipFor" attachTo="ButtonID" operation="show"
event="onclick"/>
</h:commandButton>
</f.view>

This is a result:

184

Look-and-Feel Customization

This iz hutton

Figure 6.22. <rich:toolTip> shows with the help of
<rich:componentControl> .

As it could be seen in the picture above, the <rich:toolTip> shows after you click the button.
6.26.6. Look-and-Feel Customization

<rich:componentControl> has no skin parameters and custom style classes, as the component
isn't visual.

6.26.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/
componentControl.jsf?c=componentControl] you can see an example of
<rich:componentControl> usage and sources for the given example.

Here [http://java.sun.com/javaeel/javaserverfaces/1.1_01/docs/tlddocs/f/[param.html] you can
found some additional information about <f:param> component.

6.27. <rich:contextMenu >

6.27.1. Description

The <rich:contextMenu> component is used for creation multileveled context menus that are
activated after a user defines an event (onmouseover, onclick, etc.) on any element on the page.

Figure 6.23. <rich:contextMenu> component

6.27.2. Key Features

 Highly customizable look and feel

* "oncontextmenu" event support

185

http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

Chapter 6. The RichFaces Comp...

« Disablement support
« Pop-up appearance event customization

« Usage of shared instance of a menu on a page

Table 6.101. rich : contextMenu attributes

Attribute Name Description

attached If the value of the "attached" attribute is true,
the component is attached to the component,
specified in the "attachTo" attribute or to the
parent component, if "attachTo" is not defined.
Default value is "true".

attachTiming Defines the timing when the menu is attached
to the target element. Default value is
"onavailable".

attachTo Client identifier of the component or id of

the existing DOM element that is a source
for a given event. If attachTo is defined, the
event is attached on the client according to
the AttachTiming attribute. If both attached and
attachTo attributes are defined, and attribute
attached has value ‘'false’, it is considered to
have higher priority.

binding The attribute takes a value-binding expression
for a component property of a backing bean

disableDefaultMenu Forbids default handling for adjusted event.
Default value "true".

disableditemClass Space-separated list of CSS style class(es)
that are be applied to disabled item of this
component

disableditemStyle CSS style(s) is/are to be applied to disabled
item when this component is rendered.

event Defines an event on the parent element
to display the menu. Default value is
"oncontextmenu".

hideDelay Delay between losing focus and menu closing.
Default value is "800".

id Every component may have a unique id that is
automatically created if omitted

itemClass Space-separated list of CSS style class(es)
that are be applied to item of this component

186

Key Features

Attribute Name Description

itemStyle CSS style(s) is/are to be applied to item when
this component is rendered.

oncollapse Event must occurs on menu closure

onexpand Event must occurs on menu opening

ongroupactivate HTML: script expression; some group was

onitemselect

activated

HTML: script expression; some item was
selected

onmousemove HTML: script expression; a pointer was moved
within

onmouseout HTML.: script expression; a pointer was moved
away

onmouseover HTML: script expression; a pointer was moved
onto

popupWidth Set minimal width for the all of the lists that will
appear

rendered If "false", this component is not rendered

selectltemClass

Space-separated list of CSS style class(es)
that are be applied to selected item of this
component.

selectltemStyle

CSS style(s) is/are to be applied to selected
item when this component is rendered.

showDelay

style

styleClass

submitMode

Delay between event and menu showing.
Default value is "50".

CSS style(s) is/are to be applied when this
component is rendered

Corresponds to the HTML class attribute

Sets the submission mode for all menu items
of the menu except those where this attribute
redefined. Possible value are "ajax","server",
"none". Default value is "server".

Table 6.102. Component identification parameters

NETIE Value

component-type

org.richfaces.ContextMenu

component-class

org.richfaces.component.html.ContextMenu

component-family

org.richfaces.ContextMenu

187

Chapter 6. The RichFaces Comp...

renderer-type ‘ org.richfaces.DropDownMenuRenderer

tag-class ‘ org.richfaces.taglib.ContextMenuTagHandler

6.27.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:contextMenu event="oncontextmenu" attached="true">

6.27.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.ContextMenu;

html.ContextMenu myContextMenu = new html.ContextMenu();

6.27.5. Details of Usage

<rich:contextMenu> is a support-like component. Context menu itself is an invisible panel that
appears after a particular client side event (onmouseover, onclick, etc) occured on a parent
component. The eventis defined with an "event" attribute. The component uses "oncontextmenu"
event by default to call a context menu by clicking on the right mouse button.

<rich:menuGroup> , <rich:menultem> and <rich:menuSeparator> components are used as
nested elements for <rich:contextMenu> in the same way as for <rich:dropDownMenu> .

If a value of the "attached" attribute is defined as "true", the component is attached to the parent
component. An example is placed below.

Example:

<h:panelGrid columns="1" columnClasses="cent">
<h:panelGroup id="picture">
<h:graphiclmage value="/richfaces/jQuery/images/picl.png" id="pic"/>

188

Details of Usage

<rich:contextMenu event="oncontextmenu" attached="true" submitMode="none">
<rich:menultem value="Zoom In" onclick="enlarge();" id="zin"></rich:menultem>
<rich:menultem value="Zoom Out" onclick="decrease();" id="zout"></
rich:menultem>
</rich:contextMenu>
</h:panelGroup>
</h:panelGrid>

The "enlarge()" and "decrease()" functions definition is placed below.

<script type="text/javascript">
function enlarge(){
document.getElementByld('pic’).width=document.getElementByld('pic’).width*1.1;
document.getElementByld('pic’).height=document.getElementByld('pic').height*1.1;
}
function decrease(){
document.getElementByld('pic’).width=document.getElementByld('pic’).width*0.9;
document.getElementByld('pic).height=document.getElementByld('pic').height*0.9;
}

</script>

In the example a picture zooming possibility with <rich:contextMenu> component usage was
shown. The picture is placed on the <h:panelGroup> component. The <rich:contextMenu>
component is defined as nested to <h:panelGroup> one and has a value of the "attached"
attribute defined as "true". Thus, the context menu is attached to the parent component. The
context menu has two items to zoom in (zoom out) a picture by "onclick" event. For earch item
corresponding JavaScript function is defined to provide necessary action as a result of the clicking
on it. For the menu is defined an "oncontextmenu" event to call the context menu on a right
click mouse event.

In the example the context menu is defined for the parent <h:panelGroup> component with
a value of "id" attribute equal to "picture”. You should be careful with such definition, because
a client context menu is looked for a DOM element with a client Id of a parent component
on a server. If a parent component doesn't encode an Id on a client, it can't be found by the
<rich:contextMenu> and it's attached to its closest parent in a DOM tree.

If the “attached" attribute has "false" value, component activates via JavaScript APl with
assistance of <rich:componentControl>. An example is placed below.

Example:

189

Chapter 6. The RichFaces Comp...

<h:form id="form">
<rich:contextMenu attached="false" id="menu" submitMode="ajax">
<rich:menultem ajaxSingle="true">
{car} {model} details
<adj:actionParam name="det" assignTo="#{ddmenu.current}" value="{car}
{model} details"/>
</rich:menultem>
<rich:menuGroup value="Actions">
<rich:menultem ajaxSingle="true">
Put {car} {model} To Basket
<adj:actionParam name="bask" assignTo="#{ddmenu.current}"
value="Put {car} {model} To Basket"/>
</rich:menultem>
<rich:menultem value="Read Comments" ajaxSingle="true">
<adj:actionParam name="bask" assignTo="#{ddmenu.current}"
value="Read Comments"/>
</rich:menultem>
<rich:menultem ajaxSingle="true">
Go to {car} site
<adj:actionParam name="bask" assignTo="#{ddmenu.current}"
value="Go to {car} site"/>
</rich:menultem>
</rich:menuGroup>
</rich:contextMenu>

<h:panelGrid columns="2">
<rich:dataTable value="#{dataTableScrollerBean.tenRandomCars}" var="car"
id="table"
onRowMouseOver="this.style.backgroundColor="#F8F8F8"

onRowMouseOut="this.style.backgroundColor="#{a4jSkin.tableBackgroundColor}"
rowClasses="cur">
<rich:column>
<f:facet name="header">Make</f:facet>
<h:outputText value="#{car.make}"/>
</rich:column>
<rich:column>
<f:facet name="header">Model</f:facet>
<h:outputText value="#{car.model}"/>
</rich:column>
<rich:column>
<f:facet name="header">Price</f:facet>

190

Details of Usage

<h:outputText value="#{car.price}" />
</rich:column>

<rich:componentControl event="onRowClick" for="menu" operation="show">
<f:param value="#{car.model}' name="model"/>
<f:param value="#{car.make}"' name="car"/>
</rich:componentControl>
</rich:dataTable>

<adj.outputPanel ajaxRendered="true">
<rich:panel>
<f:facet name="header">Last Menu Action</f:facet>
<h:outputText value="#{ddmenu.current}"></h:outputText>
</rich:panel>
</adj.outputPanel>
</h:panelGrid>
</h:form>

This is a result:

Make Model Price
EhC Sierra 18636
Chewrolet Malibu 30412
eI [Yukan 397149
Ford Explarer 44995 Last Menu Action
Infiriti =35 475749
Fead Commernts
EhiZ Yukon 287
Tay GMC Yukon details Py
. actions Put GMC Yukon To Basket
ar. e ——

Read Comments
Teryota Camry Go to GMC site
Mis=an Maeima SdE45

Figure 6.24. The "attached" attribute usage

191

Chapter 6. The RichFaces Comp...

In the example the context menu is activated (by clicking on the left mouse button) on the table
via JavaScript API with assistance of <rich:componentControl>. The attribute "for" contains
a value of the <rich:contextMenu> Id. For menu appearance Java Script API function "Show"
is used. It is defined with "operation" attribute for the <rich:componentControl> component.
Context menu is recreated after the every call on a client and new {car} and {model} values are
inserted in it. In the example for a menu customization macrosubstitutions were used.

The <rich:contextMenu> component can be defined once on a page and can be used as
shared for different components (this is the main difference from the <rich:dropDownMenu>
component). It's necessary to define it once on a page (as it was shown in the example
above [189]) and activate it on required components via JavaScript APl with assistance of
<rich:componentControl> .

The <rich:contextMenu> "submitMode" attribute can be set to three possible parameters:

« Server (default)

Regular form submition request is used
* Ajax

Ajax submission is used for switching

¢ None

The "action" and "actionListener" item's attributes are ignored. Menu items don't fire any submits
themselves. The behavior is fully defined by the components nested inside items.

@ Note:
As the <rich:contextMenu> component doesn't provide its own form, use it
between <h:form> and </h:form> tags.

@ Note:
When using <rich:contextMenu> component with <h:outputText> JSF
component, specify id for <h:outputText> or move <rich:contextMenu> out
from <h:outputText> to provide component's correct work.

6.27.6. JavaScript API

Table 6.103. JavaScript API

Function Description

hide() Hide component or group Component, group

192

Look-and-Feel Customization

Function Description

show() Show component or group Component, group

6.27.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:contextMenu> components at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:contextMenu> component

6.27.8. Skin Parameters Redefinition

Table 6.104. Skin parameters redefinition for a border

Skin parameters CSS properties
panelBorderColor ‘ border-color
additionalBackgroundColor ‘ background-color

Table 6.105. Skin parameters redefinition for a background

Skin parameters CSS properties
additionalBackgroundColor border-top-color
additionalBackgroundColor ‘ border-left-color
additionalBackgroundColor ‘ border-right-color

6.27.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

193

Chapter 6. The RichFaces Comp...

rich-rmenu-list-border

Soor In

Zoorm Dut

rch-menu-list-bg

rich-rmenu-list-strut

Figure 6.25. Style classes

Table 6.106. Classes names that define the contextMenu element

Class name Description

rich-menu-list-border Defines styles for borders

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for
a strut of a popup list

In order to redefine styles for all <rich:contextMenu> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-menu-item{
font-style:italic;

194

Definition of Custom Style Classes

This is a result:

Zoom in

Zoorn oot

Figure 6.26. Redefinition styles with predefined classes
In the example the font style for row items was changed.

Also it's possible to change styles of particular <rich:contextMenu> component. In this case you
should create own style classes and use them in corresponding <rich:contextMenu> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight:bold;

The "rowClasses" attribute for <h:panelGrid> is defined as it's shown in the example below:

Example:
<h:panelGrid ... rowClasses="myClass"/>

This is a result:

e

Zoom In

Zoom Dut

Figure 6.27. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font weight for row items was changed.

195

Chapter 6. The RichFaces Comp...

6.27.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu]
you can see an example of <rich:contextMenu> usage and sources for the given example.

6.28. <rich:dataFilterSlider >

6.28.1. Description

A slider-based action component is used for filtering table data.

tich:dataFilterSlider
Table data filtered

by mileage
L ! 20000

Make Model Price Mileage
Chewrolet Corvette 28367 19307.0
Chewrolet Corvette 52071 14735.0
Chewrolet Corvette 44407 9281.0
Chewrolet Corvette 21108 16625.0
Chewrolet Corvette 45108 16164.0
Chevrolet Corvette 45432 19619.0
Chewvrolet Corvette 43359 14445.0
Chewrolet rlalibu 24960 19973.0
Chewrolet flalibu 43127 1084a8.0
Chewrolet Malibu 17195 15394.0

Figure 6.28. <rich:dataFilterSlider> component

6.28.2. Key Features

Filter any UlData based component in dependency on its child's values
« Fully skinnable control and input elements

» Optional value text field with an attribute-managed position

« Optional disablement of the component on a page

» Optional toolTip to display the current value while a handle is dragged
» Dragged state is stable after the mouse moves

« Optional manual input possible if a text input field is present

Validation of manual input

196

http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu

Key Features

Table 6.107. rich : dataFilterSlider attributes

Attribute Name Description

action

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener

ajaxSingle

MethodBinding pointing at method accepting
an ActionEvent with return type void

boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding

The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates

clientErrorMessage

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

An error message to use in client side
validation events

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

endRange A slider end point

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

fieldStyleClass The styleClass for input that displays the value
: 'manuallnput’ must be true

filterBy A getter of an object member required to
compare a slider value to. This is a value that
is used in results filtering

focus id of element to set focus after request
completed on client side

for The component using UlData (datatable id)

forvValRef

197

Chapter 6. The RichFaces Comp...

Attribute Name Description

This is a string which is used in a value attribute
of the datatable. It is used for resetting the
datatable back to the original list provided by a
backing bean

handleStyleClass
handleValue

id

ignoreDupResponses

The handleStyleClass for a handle
Current handle value

Every component may have a unique id that is
automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

increment

Amount to which a handle on each slide/move
should be incremented

limitToList

manuallnput

If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

False value for this attribute makes text field
"read-only" and "hidden". Hence, the value can
be changed only from a handle

onbeforedomupdate

onchange

JavaScript code for call before DOM has been
updated on client side

Event occur on chage

onclick

oncomplete

HTML: a script expression; a pointer button is
clicked

JavaScript code for call after request
completed on client side

ondblclick

HTML: a script expression; a pointer button is
double-clicked

198

Key Features

Attribute Name Description

onerror HTML: a script expression; event fires
whenever an JavaScript error occurs

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML.: script expression; a pointer button is
released

onslide Event occur on sliding

onSlideSubmit

DEPRECATED (use submitOnSlide). If the
slider value changes must submit a form.
Default value is "true".

process

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rangeStyleClass

rendered

The rangeStyleClass for the background div
showing a full range

If "false", this component is not rendered

requestDelay

reRender

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

Id['s] (in format of call
UlComponent.findComponent()) of

199

Chapter 6. The RichFaces Comp...

Attribute Name Description

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

sliderListener

startRange

status

MethodBinding representing an action listener
method that will be notified after changing of
slider control position

A slider begin point

ID (in format of call
UlComponent.findComponent()) of Request
status component

storeResults

Specifies if the component will store a UlData
object (your table rows) in session

style CSS style(s) is/are to be applied when this
component is rendered
styleClass The styleClass for the container div

surrounding the component

submitOnSlide

If the slider value changes must submit a form.
Default value is "true".

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

trackStyleClass The trackStyleClass for a background div

trailer It shows or hides a trailer following a handle

trailerStyleClass

The trailerStyleClass for a div following a
handle

value

The current value for this component

width

Width of the slider control. Default value is

"200pX".

Table 6.108. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.dataFilterSlider
org.richfaces.component.html.HtmIDataFilterSli

org.richfaces.DataFilterSlider

renderer-type

org.richfaces.DataFilterSliderRenderer

tag-class

org.richfaces.taglib.dataFilterSliderTag

200

der

Creating the Component with a Page Tag

6.28.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}" startRange="0"
endRange="50000" increment="10000" handleValue="1" />

6.28.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataFilterSlider;

HtmlDataFilterSlider mySlider = new HtmIDataFilterSlider();

6.28.5. Details of Usage

The dataFilterSlider component is bound to some UlData component using a "for" attribute
and filters data in a table.

Example:

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}"
startRange="0"
endRange="50000"
increment="10000"
handleValue="1"
for="carlndex"
forValRef="inventoryList.carlnventory"
filterBy="getMileage"

/>

<h:dataTable id="carlndex">

</h:dataTable>

201

Chapter 6. The RichFaces Comp...

In this example other two attributes are used for filtering:

« "forvValRef" is a string which is used in a value attribute of the target UlData component. It's
designed for resetting the UlData component back to the original list provided by a backing bean.

» "filterBy" is a getter of an object member that is to be compared to a slider value. It's a value
that is used in results filtering.

"handleValue" is an attribute for keeping the current handler position on the dataFilterSlider
component. Based on the current value, appropriate values obtained from a getter method defined
in “filterBy" are filtered.

One more important attribute is a "storeResults" one that allows the dataFilterSlider component
to keep UlData target object in session.

If it's necessary the component submits a form on event of a handler state changing, use the
"onSlide" attribute ("onChange" is its alias). When the attribute definition = true, submission on
this event is defined.

Information about the "process" attribute usage you can find here.

6.28.6. Look-and-Feel Customization

The <rich:dataFilterSlider> component has no skin parameters and special style classes ,
as it consists of one element generated with a your method on the server. To define some style

properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes
on the component.

6.28.7. Relevant Resources Links
Here [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataFilterSlider.jsf?c=dataFilterSlider] you can see the example of <rich:dataFilterSlider>
usage and sources for the given example.

6.29. <rich:datascroller >

6.29.1. Description

The component designed for providing the functionality of tables scrolling using Ajax requests.

202

http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider

Key Features

Capitals and States Table

State Flag Capital Mame

>< Martoomery

- Juneau

w Phoenix

Little Rock
g Sacramento

—

State Flag Capital Marme

e a“ 1

State Mame

Alabama

Alazks

Arizong

Arkanzas

Califarnis

State Mame

TimeZone

GhAT-6

hAT-9

GhT-7

GhAT-6

GhAT-5

TimeLone

L

g

tich:dataScraller

Figure 6.29. <rich:datascroller> component

6.29.2. Key Features

» Provides fast controls

 Skin support

Built-in Ajax processing

Provides table scrolling functionality

Table 6.109. rich : datascroller attributes

Attribute Name Description

action

MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener

ajaxSingle

align

MethodBinding pointing at method accepting
an ActionEvent with return type void

Boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only.

This attribute specifies the position of the
table with relatively to the document. Possible

203

Chapter 6. The RichFaces Comp...

Attribute Name Description

values are "left","center”,"right ". Default value
is "center".
binding The attribute takes a value-binding expression

for a component property of a backing bean

boundaryControls The attribute specifies the visibility of
boundaryControls. Possible values are: "show"
(controls are always visible). "hide" (controls
are hidden. "auto" (unnecessary controls are
hidden). Default value is "show".

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

fastControls The attribute specifies the visibility of
fastControls. Possible values are: "show"
(controls are always visible). "hide" (controls
are hidden. "auto" (unnecessary controls are
hidden). Default value is "show".

fastStep The attribute indicates pages quantity to switch
onto when fast scrolling is used. Default value
IS IIOII.

focus id of element to set focus after request

completed on client side

for ID of the table component whose data is
scrollled

handleValue Current handle value

id Every component may have a unique id that is

automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel

204

Key Features

Attribute Name Description

the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now. Default value is "true".

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

inactiveStyle Corresponds to the HTML style attribute for the
inactive cell on scroller

inactiveStyleClass Corresponds to the HTML class attribute for the
inactive cell on scroller

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

maxPages Maximum quantity of pages. Default value is
"10".
onbeforedomupdate JavaScript code for call before DOM has been

updated on client side

onclick HTML: a script expression; a pointer button is
clicked
oncomplete JavaScript code for call after request

completed on client side

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down
onkeypress HTML: a script expression; a key is pressed

and released
onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

205

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onpagechange JavaScript handler for call after the page is
changed

page If page >= 1 then it's a page number to show

pagelndexVar Name of variable in request scope containing

index of active page

pagesVar Name of variable in request scope containing
number of pages

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false”, this component is not rendered

renderlfSinglePage If renderlfSinglePage is "true" then datascroller
is displayed on condition that the data hold on
one page. Default value is "true".

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

scrollerListener MethodBinding representing an action listener
method that will be notified after scrolling

selectedStyle Corresponds to the HTML style attribute for the
selected cell on scroller

206

Creating the Component with a Page Tag

Attribute Name Description

selectedStyleClass Corresponds to the HTML class attribute for the
selected cell on scroller

status ID (in format of call
UlComponent.findComponent()) of Request
status component

stepControls The attribute specifies the visibility of
stepControls. Possible values are: "show"
(controls are always visible). "hide" (controls
are hidden. "auto" (unnecessary controls are
hidden). Default value is "show".

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

tableStyle CSS style(s) is/are to be applied to outside
table when this component is rendered

tableStyleClass Space-separated list of CSS style class(es)
that are be applied to outside table of this
component

timeout Response waiting time on a particular request.

If a response is not received during this time,
the request is aborted

value The current value for this component

Table 6.110. Component identification parameters

Name Value

component-type org.richfaces.Datascroller

component-class org.richfaces.component.html.HtmIDatascroller
component-family org.richfaces.Datascroller

renderer-type org.richfaces.DataScrollerRenderer

tag-class org.richfaces.taglib.DatascrollerTag

6.29.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<h:dataTable id="table">

207

Chapter 6. The RichFaces Comp...

</h:dataTable>

<rich:datascroller for="table"/>

6.29.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDatascroller;

HtmIDatascroller myScroll = new HtmlDatascroller();

6.29.5. Details of Usage

The <rich:datascroller> component provides table scrolling functionalitity the same as
TOMAHAWK scroller but with Ajax requests usage.

The component should be placed into footer of the parent table or be bound to it with the "for"
attribute.

The table should also have the defined "rows" attribute limiting the quantity of inputted table rows.

The scroller could limit the maximum quantity of rendered links on the table pages with the help
of the "maxPages" attribute.

Component provides two controllers groups for switching:

» Page numbers for switching onto a particular page
« The controls of fast switching: "first", "last", "next", "previous", "fastforward", "fastrewind"

The controls of fast switching are created adding the facets component with the corresponding
name:

Example:

<rich:datascroller for="table" maxPages="10">
<f:facet name="first">
<h:outputText value="First"/>
</f:facet>
<f:facet name="last">

208

Details of Usage

<h:outputText value="Last"/>
</f:facet>
</rich:datascroller>

Capitals and States Table
State Flag Capital Mame State Mame TimeZone

>< Montgomery Alabama GMT-E
- Juneau Alaska EhT-3
W Phioenix Arizona GhT-7
Little Rock Arkansas GhT-6
- Sacramento Calitornia GhT-3
—
State Flag Capital Name State Mame TimeZone
AL o 1_ L L
Third page link Fast forward to

the last page

Figure 6.30. <rich:datascroller> controls of fast switching
The screenshot shows one controller from each group.

There are also facets used to create the disabled states: “first disabled”, "last disabled",
"next_disabled", "previous_disabled", "fastforward disabled", "fastrewind_disabled" .

For the "fastforward"/"fastrewind" controls customization the additional "fastStep" attribute is
used. The attribute indicates pages quantity to switch onto when fast scrolling is used.

The "pagelndexVar" and "pagesVar" attributes provide an ability to show the current page and
the number of pages in the datascroller. These attributes are used for definition the names of
variables, that is used in the facet with name "pages”. An example can be found below:

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column>
<h:outputText value="#{cap.name}"></h:outputText>
</rich:column>
<f:facet name="footer">

209

Chapter 6. The RichFaces Comp...

<rich:datascroller pagelndexVar="pagelndex" pagesVar="pages">

<f:facet name="pages">
<h:outputText value="#{pagelndex} / #{pages}"></h:outputText>

</f:facet>

</rich:datascroller>

</f:facet>
</rich:dataTable>
</h:form>

It's possible to insert optional separators between controls. For this purpose use a
"controlSeparator" facet. An example is placed below.

<f:facet name="controlSeparator">
<h:graphiclmage value="/image/sep.png"/>
<[f:facet>

Information about the "process" attribute usage you can find here.

6.29.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:datascroller> components at once:

* Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:datascroller> component

6.29.7. Skin Parameters Redefinition

Table 6.111. Skin parameters redefinition for a wrapper element

Skin parameters CSS properties
tableBackgroundColor ‘ background-color
panelBorderColor ‘ border-color

Table 6.112. Skin parameters redefinition for a button

Skin parameters CSS properties

additionalBackgroundColor ‘ background-color

210

Definition of Custom Style Classes

panelBorderColor border-color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.113. Skin parameters redefinition for an active button

generalTextColor border-top-color
generalTextColor color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.114. Skin parameters redefinition for an inactive button

Skin parameters CSS properties

headerBackgroundColor

border-top-color

headerBackgroundColor color
generalFamilyFont font-family
generalSizeFont font-size

6.29.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-dtascroller-table tich-datascr-button

tich-datascr-button-dshbld))
rich-datascract rich-datascr-inact

tich-datascr-ctrls-separator

Figure 6.31. Style classes

Table 6.115. Classes names that define a component appearance

Class name Description

rich-datascr

211

Chapter 6. The RichFaces Comp...

Class name Description

Defines styles for a wrapper <div> element of
a datascroller

rich-dtascroller-table Defines styles for a wrapper table element of a
datascroller

rich-datascr-button Defines styles for a button

rich-datascr-ctrls-separator Defines styles for a separator between buttons

Table 6.116. Classes names that define a buttons appearance

Class name Description

rich-datascr-act Defines styles for an active button
rich-datascr-inact Defines styles for an inactive button
rich-datascr-button-dsbld Defines styles for a disabled button

In order to redefine styles for all <rich:datascroller> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the table
above) and define necessary properties in them. An example is placed below:

Example:

.rich-datascr-button{
color: #CD6600;

—

This is a result:

Figure 6.32. Redefinition styles with predefined classes
In the example an input text font style was changed.

Also it's possible to change styles of particular <rich:datascroller> component. In this case you
should create own style classes and use them in corresponding <rich:datascroller> styleClass
attributes. An example is placed below:

Example:

Relevant Resources Links

.myClass{
background-color: #C6E2FF;

The "styleClass" attribute for <rich:datascroller> is defined as it's shown in the example below:

Example:

<rich:datascroller ... selectedStyleClass="myClass"/>

This is a result:

Figure 6.33. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color of the selected cell on scroller was
changed.

6.29.9. Relevant Resources Links

Here [http:/Nlivedemo.exadel.com/richfaces-demo/richfaces/
dataTableScroller.jsf?c=dataTableScroller] you can see the example of <rich:datascroller>
usage and sources for the given example.

The solution about how to do correct pagination using datascroller (load a part of
data from database) can be found on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4060199#4060199].

How to use <rich:dataTable> and <rich:datascroller> in a context of Extended Data Model
see here [http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636].

6.30. <rich:columns >

6.30.1. Description

The <rich:columns> is a component, that allows you to create a dynamic set of columns from
your model.

213

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636

Chapter 6. The RichFaces Comp...

Hame State Time fone
Montgomery | Alabama GWT-6
Juneau Alaska -3
Phioenix Arizona EhT-7
Little Rock | Arkanzas | GMT-B
Sacramerta | California GMT-8
Denver Colorada GhT-7
Hartford Connecticut | GhT-5

Dover Delasware GhT-5
Tallahazzee | Florida GhT-5
Atlarta Geargia GhT-5

Figure 6.34. <rich:columns> component

6.30.2. Key Features

 Highly customizable look and feel

» Dynamic tables creation

» Possibility to combine columns with the help of "colspan" and "breakBefore"
* Possibility to combine rows with the help of "rowspan”

 Sorting column values

* Filtering column values

Table 6.117. rich : columns attributes

Attribute Name Description

begin The first iteration item

breakBefore if "true" next column begins from the first row
colspan Corresponds to the HTML colspan attribute
columns Number of columns to be rendered
comparator Defines value binding to the comparator that is

used to compare the values

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

end The last iteration item

filterBy Defines iterable object property which is used
when filtering performed.

214

Key Features

Attribute Name Description

filterEvent Event for filter input that forces the filtration
(default = onchange)

filterExpression Attribute defines a bean property which is used
for filtering of a column

filterMethod This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

footerClass Space-separated list of CSS style class(es)
that are be applied to any footer generated for
this table

headerClass Space-separated list of CSS style class(es)
that are be applied to any header generated for
this table

id Every component may have a unique id that is

automatically created if omitted
index The current counter

lang Code describing the language used in the
generated markup for this component

rendered If "false”, this component is not rendered
rowspan Corresponds to the HTML rowspan attribute
selfSorted Manages if the header of the column is

clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component

sortable Boolean attribute. If "true" it's possible to sort
the column content after click on the header.
Default value is "true"

sortBy Attribute defines a bean property which is used
for sorting of a column

SortExpression DEPRECATED(use sortBy)Attribute defines a
bean property which is used for sorting of a
column

sorticon Defines sort icon

sortlconAscending Defines sort icon in ascending order

sorticonDescending Defines sort icon in descending order

215

Chapter 6. The RichFaces Comp...

Attribute Name Description

sortOrder SortOrder is an enumeration of the possible
sort orderings.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup

elements generated for this component

value The current value for this component
var The current variable
width Attribute defines width of column.

Table 6.118. Component identification parameters

component-type ‘ org.richfaces.Column

tag-class ‘ org.richfaces.taglib.ColumnsTagHandler

6.30.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:columns value="#{capitalsBean.labels}" var="col" index="index">
<h:outputText value="#{cap[index]}" />
</rich:columns>
</rich:dataTable>

6.30.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumns;

HtmIColumns myColumns = new HtmIColumns();

216

Details of Usage

6.30.5. Details of Usage

The <rich:columns> component gets a list from data model and outputs corresponding set of
columns inside <rich:dataTable> on a page. It is possible to use "header" and "footer" facets
with <rich:columns> component.

The "value" and "var" attributes are used to access the values of collection.
The simple example is placed below.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:columns value="#{capitalsBean.labels}" var="col" index="index">
<f:.facet name="header">
<h:outputText value="#{col.text}" />
</f.facet>
<h:outputText value="#{cap[index]}" />
<f:.facet name="footer">
<h:outputText value="#{col.text}" />
</f:facet>
</rich:columns>
</rich:dataTable>

The "columns" attribute defines the count of columns.

The "rows" attribute defines the number of rows to be displayed. If the value of this attribute is
zero, all remaining rows in the table are displayed on a page.

The "begin" attribute contains the first iteration item. Note, that iteration begins from zero.
The "end" attribute contains the last iteration item.

With the help of the attributes described below you can customize the output, i.e. define which
columns and how many rows appear on a page.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:columns value="#{capitalsBean.labels}" var="col" index="index" rows="0"
columns="3" begin="1" end="2">
<f:.facet name="header">

217

Chapter 6. The RichFaces Comp...

<h:outputText value="#{col.text}" />
</f:facet>
<h:outputText value="#{cap[index]}" />
</rich:columns>
</rich:dataTable>

In the example below, columns from first to second and all rows are shown in the
<rich:dataTable> .

The result is:

Hame Capital
Montgomery | Alabama
Juneau Alazka
Phoenix Arizona
Little Rock | Arkansas
Sacramento | California
Derrver Colorada
Hartford Connecticut
Donveer Delaware
Tallahazsee | Floricda

Atlarta Georgia

Figure 6.35. Generated <rich:columns> with columns from first to second
and all rows

The <rich:columns> component does not prevent to use <rich:column> . In the following
example one column renders in any way and another columns could be picked from the model.

Example:

<rich:dataTable value="#{rowBean.rows}" var="row">
<rich:column>
<h:outputText value ="#{row.columnValue}"'/>
</rich:column>
<rich:columns value="#{colBean.columns}" var="col">
<f:.facet name="header">
<h:outputText value="#{col.header}"'/>
</f:facet>

218

Details of Usage

<h:outputText value="#{row.columnValue}'/>
<f:facet name="footer">
<h:outputText value="#{col.footer}"/>
</f:facet>
</rich:columns>
</rich:dataTable>

In order to group columns with text information into one row, use the "colspan" attribute, which
is similar to an HTML one. In the following example the third column contains 3 columns. In
addition, it's necessary to specify that the next column begins from the first row with the help of
the "breakBefore" attribute = true.

Example:

<rich:dataTable value="#{columns.datal}" var="data">
<rich:column>
<h:outputText value="#{column.ltem1}" />
</rich:column>
<rich:column>
<h:outputText value="#{column.ltem2}" />
</rich:column>
<rich:column>
<h:outputText value="#{column.ltem3}" />
</rich:column>
<rich:columns columns="3" colspan="3" breakBefore="true">
<h:outputText value="#{data.str0}" />
</rich:columns>
</rich:dataTable>

The same way is used for columns grouping with the "rowspan" attribute that is similar to an
HTML. The only thing to add in the example is an instruction to move onto the next row for each
next after the second column.

Example:

<rich:dataTable value="#{columns.datal}" var="data">
<rich:columns columns="2" rowspan="3">
<h:outputText value="#{data.str0}" />
</rich:columns>

219

Chapter 6. The RichFaces Comp...

<rich:column>
<h:outputText value="#{column.ltem1}" />

</rich:column>

<rich:column breakBefore="true">
<h:outputText value="#{column.ltem2}" />

</rich:column>

<rich:column breakBefore="true">
<h:outputText value="#{column.ltem3}" />

</rich:column>

</rich:dataTable>

Information about sorting and filtering you can find here.

6.30.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columns> components at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:columns> component

6.30.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columns> are the same as for the <rich:dataTable>
component.

6.30.8. Definition of Custom Style Classes

Custom style classes for <rich:columns> are the same as for the <rich:dataTable>
component.

In order to redefine styles for all <rich:columns> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-table-subheadercell{
color: #a0a0a0;

220

Definition of Custom Style Classes

This is a result:

Cars Available

Corvette Explorer Maxima Camry | Yukon | G35
359243 215463 42175% 23065F | 470053 | 222708

Corvette Explorer Maxima Camry | Yukon | G35
202018 23753 L6531F 18672% 53632% | 383208

Corvette Explorer Maxima Camey | Yuokon G35
418658 45383F 371913 53521 246513 J6690F

Corvette Explorer Maxima Camry | Yukon | G35
273778 29883% zzo04f | 19503% 18273 45485%

Corvette Explorer Maxima Camry | Yukon | G35
236498 2MET5E | 28192F | 16563F | 441598 2AS48%

Figure 6.36. Redefinition styles with predefined classes
In the example column header cells color was changed.

Also it's possible to change styles of particular <rich:columns> component. In this case you
should create own style classes and use them in corresponding <rich:columns> styleClass
attributes. An example is placed below:

Example:

.myClass {
font-style: oblique;

The "styleClass" attribute for <rich:columns> is defined as it's shown in the example below:

Example:
<rich:columns styleClass="myClass">

This is a result:

221

Chapter 6. The RichFaces Comp...

Carg Auvailable
Chevrolet | Ford Hiszan Toyota GMC | Infiniti

Caorvette Explorer | Maxima Cakwy | ¥ukon | 535
205388 27253 35577F 335603 537A6E 53130%

Convette Explorer Maxima Cawmey | ¥okon | 535
386158 429975 17940% 37E41% 43658F | 325143

Corvette Expliorer Maxima Camvy | ¥ukon | 535
442138 2T264F | 32297F 200213 2E0103 174853

Corvetle Explorer | Maxima Cakwy | ¥ukon | 535
415118 23427 420328 391943 33153F 242138

Corette Explorer Maxima Cakwwy | Yokok | 535
457623 2ATSZE 26400F £IER1T SOTIZE 29630F

Figure 6.37. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.

6.30.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/dataTable.jsf?c=columns] you can
found some additional information for <rich:columns> component usage.

6.31. <rich:columnGroup >

6.31.1. Description
The component combines columns in one row to organize complex subparts of a table.

Ztate Flag

X

Alabama | Montgomery | GMT-6

Juneau GMT-9

=
]
7]
=
@

Arizona | Phoenix GMT-F

Arkanzas Litle Rock GMWT-E
E..\
I

California | Sacramento | GMT-S

Figure 6.38. <rich:columnGroup> component

222

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns

Key Features

6.31.2. Key Features

» Completely skinned table columns and child elements

* Possibility to combine columns and rows inside

 Possibility to update a limited set of strings with Ajax

Table 6.119. rich : columnGroup attributes

Attribute Name Description

binding

columnClasses

dir

The attribute takes a value-binding expression
for a component property of a backing bean

Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

filterMethod

This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

rendered If "false", this component is not rendered

rowClasses A comma-delimited list of CSS style classes

that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,

223

Chapter 6. The RichFaces Comp...

Attribute Name Description

if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the
second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

selfSorted Manages if the header of the column is
clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component

sortOrder SortOrder is an enumeration of the possible
sort orderings.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup

elements generated for this component

Table 6.120. Component identification parameters

NETIE Value

component-type

org.richfaces.ColumnGroup

component-class

org.richfaces.component.html.HtmIColumnGrot

component-family

org.richfaces.ColumnGroup

renderer-type

tag-class

org.richfaces.ColumnGroupRenderer

org.richfaces.taglib.ColumnGroupTag

6.31.3. Creating the Component with a Page Tag

To create the simplest variant of columnGroup on a page, use the following syntax:

Example:

<rich:columnGroup>
<rich:column>

<h:outputText value="Column1"/>

</rich:column>
<rich:column>

224

p

Creating the Component Dynamically Using
Java
<h:outputText value="Column2"/>
</rich:column>
</rich:columnGroup>

6.31.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumnGroup;

HtmIColumnGroup myRow = new HtmIColumnGroup();

6.31.5. Details of Usage

The <rich:columnGroup> component combines columns set wrapping them into the <tr>
element and outputting them into one row. Columns are combined in a group the same way as
when the "breakBefore" attribute is used for columns to add a moving to the next rows, but the
first variant is clearer from a source code. Hence, the following simple examples are very same.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">
<rich:column colspan="3">
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:columnGroup>
<rich:column>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:columnGroup>
</rich:dataTable>

225

Chapter 6. The RichFaces Comp...

And representation without a grouping:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">
<rich:column colspan="3">
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.state}"'/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

The result is:

226

Details of Usage

X

=Ztate Flag

Alabama Montgomery | GMT-6

=
]
7]
-
@

Juneau GMT-9

Arizona | Phoenix GMT-F

&

Arkanzas Litle Rock GMT-6

California | Sacramento | GMT-5

Figure 6.39. Generated

"breakBefore" attribute

<rich:columnGroup>

component with

It's also possible to use the component for output of complex headers in a table. For example
adding of a complex header to a facet for the whole table looks the following way:

Example:

<f:facet name="header">
<rich:columnGroup>

<rich:column rowspan="2">
<h:outputText value="State Flag"/>
</rich:column>
<rich:column colspan="3">
<h:outputText value="State Info"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="State Name"/>
</rich:column>
<rich:column>
<h:outputText value="State Capital"/>
</rich:column>
<rich:column>
<h:outputText value="Time Zone"/>
</rich:column>

</rich:columnGroup>

227

Chapter 6. The RichFaces Comp...

</f:facet>

Generated on a page as:

State Info
State Hame State Capital Time Zone

Alabama Montgomery | GWT-B
Alaska Juneau GhT-9
Arizona Phoenix GhT-7

Arkanzas Little Raock GMT-E

PO EEX

California Sacramento GhT-5

Figure 6.40. <rich:columnGroup> with complex headers

6.31.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columnGroup> components at once:

* Redefine the corresponding skin parameters

< Add to your style sheets style classes used by a <rich:columnGroup> component

6.31.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columnGroup> are the same as for the <rich:dataTable>
component.

6.31.8. Definition of Custom Style Classes

Custom style classes for <rich:columnGroup> are the same as for the <rich:dataTable>
component.

In order to redefine styles for all <rich:columnGroup> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

228

Definition of Custom Style Classes

Example:

.rich-table-cell{
color: #316ach;

This is a result:

State Flag

X

Alabama | Montgomery

Juneau

=
m
]
-
&

Arizona | Phoenix

9

Arkanzas | Litle Rock

California | Sacramento

GhT-6

EhT-3

GhT-F

GhT-6

GhT-5

Figure 6.41. Redefinition styles with predefined classes

In the example cells color was changed.

Also it's possible to change styles of particular <rich:columnGroup> component. In this case
you should create own style classes and use them in corresponding <rich:columnGroup>

styleClass attributes. An example is placed below:

Example:

.myClass{

background-color: #c0c0cO0;

229

Chapter 6. The RichFaces Comp...

The "columnClasses" attribute for <rich:columnGroup> is defined as it's shown in the example
below:

Example:

<rich:columnGroup columnClasses="myClass">

This is a result:

State Flag

X

Alabama Montgomery GMT-B

Alaska Juneau GMT-9

Arizona Phoenix GMT-F

@

Arkanzas Litle Rock GMT-E

California Sacramento GMT-2

Figure 6.42. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.31.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup] you
can see the example of <rich:columnGroup> usage and sources for the given example.

6.32. <rich:column >

6.32.1. Description

The component for row rendering for a UlData component.

230

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup

Key Features

United States Capitals
Capitals and States Table

State Flag | Capital Mame | State Mame | TimeZone

Montgomery | Alabams GMT-E

Junesau Alasks GWT-9

Phioenizx Arizona GMWT-T

Little: Rock Arkanzas | GMT-B

PEERX

Sacramento | Califarniz GMT-2

State Flag | Capital Mame | State Mame | TimeZone
Capitals and States Table

Figure 6.43. <rich:column> component

6.32.2. Key Features

« Completely skinned table rows and child elements

 Possibility to combine columns with the help of "colspan”

 Possibility to combine rows with the help of "rowspan" and "breakBefore"
« Sorting column values

* Filtering column values

Table 6.121. rich : column attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

breakBefore if "true" next column begins from the first row
colspan Corresponds to the HTML colspan attribute
comparator Defines value binding to the comparator that is

used to compare the values

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

filterBy Defines iterable object property which is used
when filtering performed.

filterEvent Event for filter input that forces the filtration
(default = onchange)

231

Chapter 6. The RichFaces Comp...

Attribute Name Description

filterExpression Attribute defines a bean property which is used
for filtering of a column

filterMethod This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

footerClass Space-separated list of CSS style class(es)
that are be applied to any footer generated for
this table

headerClass Space-separated list of CSS style class(es)
that are be applied to any header generated for
this table

id Every component may have a unique id that is

automatically created if omitted

lang Code describing the language used in the
generated markup for this component

rendered If "false”, this component is not rendered
rowspan Corresponds to the HTML rowspan attribute
selfSorted Manages if the header of the column is

clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component

sortable Boolean attribute. If "true" it's possible to sort
the column content after click on the header.
Default value is "true"

sortBy Attribute defines a bean property which is used
for sorting of a column

SOrtExpression DEPRECATED(use sortBy)Attribute defines a
bean property which is used for sorting of a
column

sortlcon Defines sort icon

sortlconAscending Defines sort icon in ascending order

sortlconDescending Defines sort icon in descending order

sortOrder SortOrder is an enumeration of the possible

sort orderings.

style CSS style(s) is/are to be applied when this
component is rendered

232

Creating the Component with a Page Tag

Attribute Name Description

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup
elements generated for this component

width Attribute defines width of column.

Table 6.122. Component identification parameters

Name Value

component-type org.richfaces.Column

component-class org.richfaces.component.html.HtmIColumn
component-family org.richfaces.Column

renderer-type org.richfaces.ColumnRenderer

tag-class org.richfaces.taglib.ColumnTag

6.32.3. Creating the Component with a Page Tag

To create the simplest variant of column on a page, use the following syntax:

Example:

<rich:dataTable var="set">
<rich:column>
<h:outputText value="#{set.property1}"'/>
</rich:column>
<!I--Set of another columns and header/footer facets-->
</rich:dataTable>

6.32.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIColumn;

HtmIColumn myColumn = new HtmIColumn();

233

Chapter 6. The RichFaces Comp...

6.32.5. Details of Usage

To output a simple table, the <rich:column> component is used the same way as the standard
<h:column>, i.e. the following code on a page is used:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column>
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column>
<f:facet name="header">State Name</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<f:facet name="header">State Capital</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column>
<f:facet name="header">Time Zone</f:facet>
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

The result is:

State Flag | State Mame | State Capital | Time Zone

Alabama Montgomery | GhT-6
Alazka Juneau GhT-9
Arizona Phioenix GhT-7

Arkanzas | Litthe Rock GMWT-E

' O K B X

N Califarnis Sacramento | GMT-S

1
1

Figure 6.44. Generated <rich:column> component

2

w

4

Details of Usage

Now, in order to group columns with text information into one row in one column with a flag, use
the "colspan" attribute, which is similar to an HTML one, specifying that the first column contains
3 columns. In addition, it's necessary to specify that the next column begins from the first row with
the help of the "breakBefore" attribute = true.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column colspan="3">
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column >
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column>
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

As a result the following structure is rendered:

235

Chapter 6. The RichFaces Comp...

X

Alabama | Montgomery | GMWT-6

Juneau GMT-9

=
@
i
=
@

Arizona | Phoenix GWT-T

9

Arkanzas | Litle Rock GMT-E

California | Sacramento | GMT-S

Figure 6.45. <rich:column> modified with "colspan” and "breakbefore"
attributes

The same way is used for columns grouping with the "rowspan" attribute that is similar to an HTML
one responsible for rows quantity definition occupied with the current one. The only thing to add
in the example is an instruction to move onto the next row for each next after the second column.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<rich:column rowspan="3">
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column>
<f:facet name="header">State Info</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.name}"/>
</rich:column>
<rich:column breakBefore="true">
<h:outputText value="#{cap.timeZone}"/>
</rich:column>
</rich:dataTable>

236

Sorting and Filtering

As a result:

State Flag = State Info
Alabama
Montgomery
GhAT-B
Alaska
Junesu
GhAT-9

Arizons

E B X

Phioenix
GhT-7

Arkanzas

k

Little Rock
GhT-6
Califarnis

Sacramento

D

GhAT-5

Figure 6.46. <rich:column> generated with "rowspan" attribute

Hence, additionally to a standard output of a particular row provided with the <h:column>
component, it becomes possible to group easily the rows with special HTML attribute.

The columns also could be grouped in a particular way with the help of the <h:columnGroup>
component that is described in the following chapter.

6.32.6. Sorting and Filtering

6.32.6.1. Sorting

In order to sort the columns you should use "sortBy" attribute that indicates what values to be
sorted. In order to sort the column you should click on its header. See the following example.

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">
<f:facet name="header">
<h:outputText value="Sorting Example"/>

237

Chapter 6. The RichFaces Comp...

</f:facet>
<rich:column sortBy="#{cap.state}">
<f:facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column sortBy="#{cap.name}">
<f:facet name="header">
<h:outputText value="State Capital"/>
</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
</rich:dataTable>

</h:form>
This is result:
Sorting Example
State Hame = State Capital =
Alabama Mortgomery
Alazks Juneand
Arizons Phioenix
Arkanzas Little Rock
Californiz ~acramento

Figure 6.47. <rich:column> with "sortBy" attribute

The "selfSorted" attribute that would add the possibility of automatic sorting by clicking the column
header. Default value is "true". In the example below the second column is unavailable for sorting.

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">
<rich:column>
<f:facet name="header">
<h:outputText value="State Flag"/>

238

Sorting and Filtering

</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
</rich:column>
<rich:column sortBy="#{cap.state}" selfSorted="false">
<f:.facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
</rich:dataTable>

"sortOrder" attribute is used for changing the sorting of columns by means of external controls.

Possible values are:

« "ASCENDING" - column is sorted in ascending
* "DESCENDING" - column is sorted in descending
* "UNSORTED" - column isn't sorted

Example:

<h:form>
<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">
<f:facet name="header">
<h:outputText value="Sorting Example"/>
<[f:facet>
<rich:column sortBy="#{cap.state}" sortOrder="ASCENDING">
<f:facet name="header">
<h:outputText value="State Name"/>
</f:facet>
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column sortBy="#{cap.name}" sortOrder="DESCENDING">
<f:facet name="header">
<h:outputText value="State Capital"/>
</f:facet>
<h:outputText value="#{cap.name}"/>
</rich:column>
</rich:dataTable>
</h:form>

239

Chapter 6. The RichFaces Comp...

Below you can see the result:

Sorting Example
Time Zone State Hame a State Capital 2

GhT-39 Alaska Juneau
GhT-3 Califarnia Sacramerto
GhT-3 [ddzhio Boise
GMT-2 Mevads Carson City
GhT-8 Oregon Salem

Figure 6.48. <rich:column> with "sortOrder" attribute

In the example above the first column is sorted in descending order. But if recurring rows appear
in the table the relative second column are sorted in ascending order.

The "sortPriority" attribute defines a set of column ids in the order the columns could be set.

If the columns sort order changed externally sort priorities could be used to define which columns
will be sorted first.

The "sortable" attribute which is used with <rich:scrollableDataTable> component. In the
following example only the first column could be sorted.

Example:

<rich:scrollableDataTable rowKeyVar="rkv" frozenColCount="1"
id="carList" columnClasses="col" value="#{dataTableScrollerBean.allCars}" var="category"
sortMode="single" binding="#{dataTableScrollerBean.table}"
selection="#{dataTableScrollerBean.selection}">
<rich:column id="make" sortable="true">
<f:.facet name="header">
<h:outputText styleClass="headerText" value="Make"/>
</f.facet>
<h:outputText value="#{category.make}"/>
</rich:column>
<rich:column id="model">
<f:.facet name="header">
<h:outputText styleClass="headerText" value="Model"/>
</f.facet>

240

Sorting and Filtering

<h:outputText value="#{category.model}"'/>

</rich:column>

<rich:column id="price">
<f:facet name="header">

<h:outputText styleClass="headerText" value="Price"/>

</f:facet>
<h:outputText value="#{category.price}"'/>

</rich:column>

</rich:scrollableDataTable>

hake | hcwciel | Price
Chesrolet Corvette 36318 =
Chesrolet filalit 2736
Chewraolet =-10 19355
Chesrolet Tahoe 3072
Ford Taurus 23592
Ford Explorer 37356
Miz=zan faxima 21021
Toyota 4-Runner e |-
Toyota Camry 196935
Toyota Avwalon 26562

-
1 | »

Figure 6.49. The "sortable" attribute usage

"sortExpression” attribute defines a bean property which is used for sorting of a column.

6.32.6.2. Filtering

There are two ways to filter the column value:

 Using built-in filtering. It uses startsWith() function to make filtering. In this case you need to
define "filterBy" attribute at column you want to be filterable. This attribute defines iterable
object property which is used when filtering performed.

The "filterValue" attribute is used to get or change current filtering value. It could be defined with
initial filtering value on the page or as value binding to get/change it on server. If the “filterValue"
attribute isn't empty from the beginning table is filtered on the first rendering.

In order to change filter event you could use 'filterEvent" attribute on column, e.g.
"onblur”(default value).

Below you can see the example:

241

Chapter 6. The RichFaces Comp...

Example:

<rich:dataTable value="#{capitalsBean.capitals}"' var="cap" width="500px">
<rich:column filterBy="#{cap.state}" filterValue="#{filterName.filterBean}"
filterEvent="onkeyup">
<h:outputText value="#{cap.state}"/>
</rich:column>
<rich:column filterBy="#{cap.name}" filterEvent="onkeyup">
<h:outputText value="#{cap.name}'/>
</rich:column>
</rich:dataTable>

This is the result:

Filtering Example

State Hame State Capital
Alabams Mantgomery
Alazka Juneau
Atizona Phoenix
Arkanzas Little Raock

Figure 6.50. Built-in filtering feature usage

» Using external filtering. In this case you need to write your custom filtering function or expression
and define controls.

The "filterExpression” attribute is used to define expression evaluated to boolean value. This
expression checks if the object satisfies filtering condition.

The "filterMethod" attribute is defined with method binding. This method accepts on Object
parameter and return boolean value. So, this method also could be used to check if the object
satisfies filtering condition. The usage of this attribute is the best way for implementing your
own complex business logic.

See the following example:

Example:

242

Look-and-Feel Customization

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" id="table">
<rich:column filterMethod="#{filteringBean.filterStates}">
<f:facet name="header">
<h:inputText value="#{filteringBean filterValue}" id="input">
<adj:support event="onkeyup" reRender="table"
ignoreDupResponses="true" requestDelay="700" focus="input" />
</h:inputText>
</f:facet>
<h:outputText value="#{cap.state}" />
</rich:column>
<rich:column filterExpression="#{fn:containslignoreCase(cap.timeZone,
filteringBean.filterZone)}"'>
<f:facet name="header">
<h:selectOneMenu value="#{filteringBean.filterZone}">
<f:selectltems value="#{filteringBean.filterZones}" />
<adj:support event="onchange" reRender="table" />
</h:selectOneMenu>
</f:facet>
<h:outputText value="#{cap.timeZone}" />
</rich:column>
</rich:dataTable>

6.32.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:column> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:column> component

6.32.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:column> are the same as for the <rich:dataTable>
component.

6.32.9. Definition of Custom Style Classes

Custom style classes for <rich:column> are the same as for the <rich:dataTable> component.

In order to redefine styles for all <rich:column> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

243

Chapter 6. The RichFaces Comp...

Example:

.rich-table-cell{
font-style: italic;

This is a result:

State Flag State Hame State Capital Time Zone
Alabama Montgomery | GMT-6
Alaska JUpeay =T
Arizoha Phoehis MT-7

Arkansas Lithie Rock EFWT-E

PEKEX

Caiitarnia Sacraimento FWT-5

Figure 6.51. Redefinition styles with predefined classes
In the example cells font style was changed.

Also it's possible to change styles of particular <rich:column> component. In this case you
should create own style classes and use them in corresponding <rich:column> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight: bolder;

The "styleClass" attribute for <rich:column> is defined as it's shown in the example below:

Example:

<rich:column styleClass="myClass">

244

Relevant Resources Links

This is a result:

State Flag State Hame State Capital Time Zone

Alabama Montgamery | GMWT-6

Alaska Juneau GMT-9

Arizona Phioenizx GMT-7

Arkansas | Little Rock GMT-E

California Sacramento GMT-2

PEKEX

Figure 6.52. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font weight for second column was changed.
6.32.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column] you can see
the example of <rich:column> usage and sources for the given example.

6.33. <rich:dataGrid >

6.33.1. Description

The component to render data as a grid that allows choosing data from a model and obtains
built-in support of Ajax updates.

Car Store
Chevrolet Corvette Chevrolet Corvette
Price: 46071 Price: 46416

Mileage: 404450 Mileage: 45531 .0

Chevrolet Corvette Chevrolet Corvette

Price: 47522 Price: 16629
Mileage: 154350 Mileage: 63237 .0
1_ O

Figure 6.53. <rich:dataGrid> component

245

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column

Chapter 6. The RichFaces Comp...

6.33.2. Key Features

» A completely skinned table and child elements
» Possibility to update a limited set of rows with AJAX

 Possibility to receive values dynamically from a model

Table 6.123. rich : dataGrid attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

align left|center|right [CI] Deprecated. This attribute
specifies the position of the table with respect
to the document. Permitted values: * left: The
table is to the left of the document. * center: The
table is to the center of the document. * right:
The table is to the right of the document

bgcolor Deprecated. This attribute sets the background
color for the document body or table cells.
This attribute sets the background color of
the canvas for the document body (the
BODY element) or for tables (the TABLE, TR,
TH, and TD elements). Additional attributes
for specifying text color can be used with
the BODY element. This attribute has been
deprecated in favor of style sheets for
specifying background color information

binding The attribute takes a value-binding expression
for a component property of a backing bean

border This attributes specifies the width of the frame
around a component. Default value is "0".

captionClass Space-separated list of CSS style class(es)
that are be applied to caption for this
component

captionStyle CSS style(s) is/are to be applied to caption

when this component is rendered

cellpadding This attribute specifies the amount of space
between the border of the cell and its contents.
Default value is "0".

cellspacing This attribute specifies the amount of space
between the border of the cell and its contents.

246

Key Features

Attribute Name Description

columnClasses

The attribute also specifies the amount of
space to leave between cells. Default value is
"0".

Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

columns Number of columns

componentState It defines EL-binding for a component state for
saving or redefinition

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

elements Number of elements in grid

first A zero-relative row number of the first row to

display

footerClass

frame

headerClass

Space-separated list of CSS style class(es)
that are be applied to footer for this component

void|above|below|hsides|lhs|rhs|vsides|box|bor
[CI] This attribute specifies which sides of
the frame surrounding a table will be visible.
Possible values: * void: No sides. This is the
default value. * above: The top side only. *
below: The bottom side only. * hsides: The top
and bottom sides only. * vsides: The right and
left sides only. * lhs: The left-hand side only.
* rhs: The right-hand side only. * box: All four
sides. * border: All four sides

Space-separated list of CSS style class(es)
that are be applied to header for this
component

247

der

Chapter 6. The RichFaces Comp...

Attribute Name Description

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onRowClick HTML: a script expression; a pointer button is
clicked on row

onRowDbIClick HTML: a script expression; a pointer button is
double-clicked on row

onRowMouseDown HTML: script expression; a pointer button is
pressed down on row

onRowMouseMove HTML: a script expression; a pointer is moved
within of row

onRowMouseOut HTML: a script expression; a pointer is moved
away of row

onRowMouseOver HTML: a script expression; a pointer is moved
onto of row

onRowMouseUp HTML: script expression; a pointer button is
released on row

248

Key Features

Attribute Name Description

rendered If "false”, this component is not rendered

rowClasses A comma-delimited list of CSS style classes
that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the
second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

rowKey RowKey is a representation of an identifier for
a specific data row

rowKeyConverter Converter for a row key object

rowKeyVar Request scoped variable for client access to
rowKey

rules This attribute specifies which rules will appear

between cells within a table. The rendering
of rules is user agent dependent. Possible
values: * none: No rules. This is the default
value. * groups: Rules will appear between row
groups (see THEAD, TFOOT, and TBODY)
and column groups (see COLGROUP and
COL) only. * rows: Rules will appear between
rows only. * cols: Rules will appear between
columns only. * all: Rules will appear between
all rows and columns

stateVar The attribute provides access to a component
state on the client side

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

summary This attribute provides a summary of the

table's purpose and structure for user agents
rendering to non-visual media such as speech
and Braille

title Advisory title information about markup
elements generated for this component

249

Chapter 6. The RichFaces Comp...

Attribute Name Description

value The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

width This attribute specifies the desired width of

the entire table and is intended for visual
user agents. When the value is percentage
value, the value is relative to the user agent's
available horizontal space. In the absence
of any width specification, table width is
determined by the user agent

Table 6.124. Component identification parameters

Name Value

component-type org.richfaces.DataGrid

component-class org.richfaces.component.html.HtmIDataGrid
component-family org.richfaces.DataGrid

renderer-type org.richfaces.DataGridRenderer

tag-class org.richfaces.taglib.DataGridTag

6.33.3. Creating the Component with a Page Tag

To create the simplest variant of dataGrid on a page, use the following syntax:

Example:

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car">
<h:outputText value="#{car.model}"/>
</rich:dataGrid>

6.33.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataGrid;

HtmIDataGrid myList = new HtmIDataGrid();

Details of Usage

6.33.5. Details of Usage

The component takes a list from a model and outputs it the same way as with <h:panelGrid> for
inline data. To define grid properties and styles, use the same definitions as for <h:panelGrid>.

The component allows to:

* Use "header" and "footer" facets for output

< Limit number of output elements ("elements” attribute) and define first element for output (
"first" attribute)

» Bind pages with <rich:datascroller> component
Here is an example:

Example:

<rich:panel style="width:150px;height:200px;">
<h:form>
<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" columns="2"
elements="4" first="1">
<f:facet name="header">
<h:outputText value="Car Store"></h:outputText>
</f:facet>
<rich:panel>
<f:facet name="header">
<h:outputText value="#{car.make} #{car.model}"></h:outputText>
</f:facet>
<h:panelGrid columns="2">
<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price}"/>
<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage}"/>
</h:panelGrid>
</rich:panel>
<f:facet name="footer">
<rich:datascroller></rich:datascroller>
</f:facet>
</rich:dataGrid>
</h:form>
</rich:panel>

251

Chapter 6. The RichFaces Comp...

This is a result:

“header’ facet
first elerment

Car Store

Chevrolet Corvette Chevrolet Corvette

Price: 34643 Price: 45459
Mileage: 7360.0 Mileage: 14014.0

Chevrolet Corvette Chevrolet Corvette

Price: 15458 Price: 24189
Mileage: 157020 Mileage: 334520
'I_ L

footer” facet

Figure 6.54. Component usage

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataGrid}" id="grid" elements="4" columns="2">
</rich:dataGrid>

<a4j:commandButton action="#{listBean.action}" reRender="grid" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataGrid>
component. As a result the component is updated after an Ajax request.

252

Look-and-Feel Customization

6.33.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataGrid> components at once:

« Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataGrid> component

6.33.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:dataGrid> are the same as for the <rich:dataTable>
component.

6.33.8. Definition of Custom Style Classes

Custom style classes for <rich:dataGrid> are the same as for the <rich:dataTable>
component.

In order to redefine styles for all <rich:dataGrid> components on a page using CSS, it's
enough to create classes with the same names (possible classes are the same as for the
<rich:dataTable>) and define necessary properties in them.

Example:

.rich-table-footercell{
color:#ff7800;

This is a result:

253

Chapter 6. The RichFaces Comp...

Car Store

Chevrolet Corvette

Price: 49672

Mileage: 49221.0

YIN: FHWUELAMOQHOK GO
Stock: PTRBEZR

Chevrolet Corvette

Price: 15122

Mileage: 15400.0

YIN: TVeQGCIFIEMEGIE
Stock: ®LIERBT

Figure 6.55. Redefinition styles with predefined classes
In the example color of footercell was changed.

Also it's possible to change styles of particular <rich:dataGrid> component. In this case you
should create own style classes and use them in corresponding <rich:dataGrid> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-style:italic;

The "columnClasses" attribute for <rich:dataGrid> is defined as it's shown in the example
below:

Example:
<rich:dataGrid ... columnClasses="myClass"/>

This is a result:

254

Relevant Resources Links

Car Store

Ghevrofet Corvette

Price: IEFIF

Mileage: 488700

I In: YFrSDONIMOERUS
Stock: HXMHOM

Ghevrofet Corvette

Price: 28834

Mileage: 459020

I In: KMNFE YRS TOMEMT Y
Stock: OWRTTAE

1 »oo

Figure 6.56. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.

6.33.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid] you can see
the example of <rich:dataGrid> usage and sources for the given example.

6.34. <rich:dataList >

6.34.1. Description

The component for unordered lists rendering that allows choosing data from a model and obtains

built-in support of Ajax updates.

+« Chevrolet Corvette
Price:41753
Mileage:10413.0

+« Chevrolet Corvette
Price:17540
Mileage:45531.0

+« Chevrolet Corvette
Price:20191
Mileage:5927.0

+« Chevrolet Corvette
Price:459a0
Mileage:13937.0

+« Chevrolet Corvette
Price:34164
Mileage:72236.0

Figure 6.57. <rich:dataList> component

255

http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid
http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid

Chapter 6. The RichFaces Comp...

6.34.2. Key Features

* A completely skinned list and child elements
» Possibility to update a limited set of rows with AJAX

 Possibility to receive values dynamically from a model

Table 6.125. rich : dataList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding The attribute takes a value-binding expression
for a component property of a backing bean

columnClasses Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

componentState It defines EL-binding for a component state for
saving or redefinition

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to
display

footerClass Space-separated list of CSS style class(es)
that are be applied to any footer generated for
this table

headerClass Space-separated list of CSS style class(es)
that are be applied to any header generated for
this table

id Every component may have a unique id that is
automatically created if omitted

256

Key Features

Attribute Name Description

lang Code describing the language used in the
generated markup for this component

rendered If "false", this component is not rendered

rowClasses A comma-delimited list of CSS style classes
that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the
second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

rowKey RowKey is a representation of an identifier for
a specific data row

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows A number of rows to display, or zero for all
remaining rows in the table

stateVar The attribute provides access to a component
state on the client side

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup

elements generated for this component

type Corresponds to the HTML DL type attribute

value The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.126. Component identification parameters

component-type org.richfaces.DatalL.ist

257

Chapter 6. The RichFaces Comp...

NETIE Value

component-class org.richfaces.component.html.HtmIDataList
component-family org.richfaces.DatalL.ist

renderer-type org.richfaces.DataListRenderer

tag-class org.richfaces.taglib.DataListTag

6.34.3. Creating the Component with a Page Tag

To create the simplest variant of dataList on a page, use the following syntax:

Example:

<rich:dataList var="car" value="#{dataTableScrollerBean.allCars}" >
<h:outputText value="#{car.model}"/>
</rich:dataList>

6.34.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataList;

HtmlIDataList myList = new HtmlDataList();

6.34.5. Details of Usage

The <rich:dataList> component allows to generate a list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the
"UL" HTML element and defines a marker type. Possible values for "type" attribute are: "disc",
"circle", "square".

Here is an example:

<h:form>
<rich:dataList var="car" value="#{dataTableScrollerBean.allCars}" rows="5" type="disc"
title="Car Store">

258

Details of Usage

<h:outputText value="#{car.make} #{car.model}"/>

<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price} "/>

<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage} "/>

</rich:dataList>
</h:form>

This is a result:

+« Chevrolet Corvette
Price:41753
Mileage:10419.0

+ Chevrolet Corvette
Price:17540
Mileage:45531.0

type ="disc" . chevrolet Corvette
Price:20191
Mileage:5927.0

+« Chevrolet Corvette
Price:de960
Mileage:13937.0

+« Chevrolet Corvette
Price:3d1le4
Mileage:72236.0

Figure 6.58. <rich:dataList> component with "type" attribute

In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title” are used for popup title. See picture below:

Chevrolet Corvette
Price:17540
Mileage:435531 .0

Chevrolet Corvette
Price: 20191
Mileage:5927 .0

Chevrolet Cu:uretteh
Price:46960

-Car Store
Mileage:1 39370

Chevrolet Corvette
Price:34164
Mileage:72236.0

Chevrolet Malibu
Price:51100
Mileage:S4739.0

Figure 6.59. <rich:dataList> component with "title" attribute

259

Chapter 6. The RichFaces Comp...

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list" rows="5" type="disc">

</rich:dataList>

<adj:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataList>
component. As a result the component is updated after an Ajax request.

6.34.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataList> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataList> component

6.34.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

260

Definition of Custom Style Classes

tich-datalist

+ Chevrolet Corvette
Price:41753
Mileage:10419.0

+« Chevrolet Corvette
Price:17540
Mileage:45531.0

rich-list-itern « Chevrolet Corvette
Price:Z0191
Mileage:5227.0

+« Chevrolet Corvette
Price:46960
Mileage:13937.0

+« Chevrolet Corvette
Price:34164
Mileage:72236.0

Figure 6.60. Style classes

Table 6.127. Classes names that define a list appearance

Class name Description
rich-datalist Defines styles for a html element
rich-list-item Defines styles for a html element

In order to redefine styles for all <rich:datalList> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-list-item{
font-style:italic;

This is a result:

261

Chapter 6. The RichFaces Comp...

Cheprolet Corrette
Price:0008

Mifeage:d4052.0

Chevrolet Corvette
Price:d0236
Mileage:75805.0

Cheprolet Corrette
Price: 21273
Mileage:31535.0

Chevrolet Corvette
Price: 3028
Mifeage:dI750.0

Cheprolet Corrette
Price:di31s
Mifeage:dqsds .0

Figure 6.61. Redefinition styles with predefined classes
In the example the font style for list item text was changed.

Also it's possible to change styles of particular <rich:dataLIst> component. In this case you
should create own style classes and use them in corresponding <rich:dataList> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color:#ffead9;

The "styleClass" attribute for <rich:datalList> is defined as it's shown in the example below:

Example:
<rich:dataList ... styleClass="myClass"/>

This is a result:

262

Relevant Resources Links

Chevrolet Corvette
Price:28174 Mileage:26199.0 WIN:GMDDGHPFLA Y GLE

Chevrolet Corvette
Price:281 45 Mileage:54302 .0 WIHOMMCH XPORWCER

Chevralet Corvette
Price:414E63 Mileage: 22651 0 WIH:KGYIDHEMGSKPAEI

Chevrolet Corvette
Price:31635 Mileage:341 700 WIH:JSABPTRPEZODIZL

Chevrolet Corvette
Price:21153 Mileage:25967 .0 WIN:MAED Y [TCCLEWHE

Figure 6.62. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color for <rich:dataList> was changed.

6.34.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/datalists.jsf?c=dataL.ist] you can see
the example of <rich:datalList> usage and sources for the given example.

6.35. <rich:dataOrderedList >

6.35.1. Description

The component for ordered lists rendering that allows choosing data from a model and obtains
built-in support of Ajax updates.

1. Chevrolet Corvette
Price:16030
Mileage:55773.0

2, Chewrolet Corvette
Price:49936
Mileage:72356.0

3. Chewrolet Corvette
Price:52167
Mileage:30749.0

4, Chevrolet Corvette
Price:21145
Mileage:55447.0

5. iChewrolet Corvette
Price:12003
Mileage:16296.0

Figure 6.63. <rich:dataOderedList> component

6.35.2. Key Features

» A completely skinned list and child elements

263

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList

Chapter 6. The RichFaces Comp...

 Possibility to update a limited set of rows with AJAX

 Possibility to receive values dynamically from a model

Table 6.128. rich : dataOrderedList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding The attribute takes a value-binding expression
for a component property of a backing bean

columnClasses Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

componentState It defines EL-binding for a component state for
saving or redefinition

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to
display

footerClass Space-separated list of CSS style class(es)
that are be applied to any footer generated for
this table

headerClass Space-separated list of CSS style class(es)
that are be applied to any header generated for
this table

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

rendered If "false", this component is not rendered

264

Key Features

Attribute Name Description

rowClasses

A comma-delimited list of CSS style classes
that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the
second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

rowKey

RowKey is a representation of an identifier for
a specific data row

rowKeyConverter

Converter for a RowKey object.

rowKeyVar

The attribute provides access to a row key in a
Request scope

rows

stateVar

A number of rows to display, or zero for all
remaining rows in the table

The attribute provides access to a component
state on the client side

style

CSS style(s) is/are to be applied when this
component is rendered

styleClass

Corresponds to the HTML class attribute

title

Advisory title information about markup
elements generated for this component

type

Corresponds to the HTML OL type attribute

value

The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.129. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.DataOrderedList
org.richfaces.component.html.HtmIDataOrdere

org.richfaces.DataOrderedList

renderer-type

org.richfaces.DataOrderedListRenderer

265

dList

Chapter 6. The RichFaces Comp...

tag-class org.richfaces.taglib.DataOrderedListTag

6.35.3. Creating the Component with a Page Tag

To create the simplest variant of dataOrderedList on a page, use the following syntax:

Example:

<rich:dataOrderedList var="car" value="#{dataTableScrollerBean.allCars}" >
<h:outputText value="#{car.model}"/>
</rich:dataOrderedList>

6.35.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataOrderedList;

HtmlIDataOrderedList myList = new HtmlDataOrderedList();

6.35.5. Details of Usage

The <rich:dataOrderedList> component allows to generate an ordered list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the
"OL" HTML element and defines a marker type. Possible values for "type" attribute are: "A",
Ilall’ lIIll, |li|l,ll1ll.

Here is an example:

<h:form>
<rich:dataOrderedList var="car" value="#{dataTableScrollerBean.allCars}" rows="5"
type="1" title="Car Store">
<h:outputText value="#{car.make} #{car.model}"/>

<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price} " />

<h:outputText value="Mileage:" styleClass="label"></h:outputText>

266

Details of Usage

<h:outputText value="#{car.mileage} " />

</rich:dataOrderedList>
</h:form>

This is a result:

1.

Chewvralet Carvette
Price:16050
Mileage:55773.0

Chewvrolet Corvette
Price:49936
Mileage:72356.0

. Chevrolet Corvette

Price:32167
Mileage:30749.0

. Chevrolet Corvette

Price:21148
Mileage:55447.0

. Chevrolet Corvette

Price:13095
Mileage:16296.0

Figure 6.64. <rich:dataOrderedList> component with "type" attribute

In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataOrderedList
ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list">

</rich:dataOrderedList>

value="#{dataTableScrollerBean.allCars}" var="car"

<a4j:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataOrderedList>

component. As a result the component is updated after an Ajax request.

267

Chapter 6. The RichFaces Comp...

6.35.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataOrderedList> components at
once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:dataOrderedList> component

6.35.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-orderadlist

1. Chevrolet Corvette
Price:16080
Mileage:55773.0

2, Chevrolet Corvette
Price:49936
Mileage:72356.0

3. Chevrolet Corvette
Price:52167
Mileage:30749.0

rich-list-iterm 4, Chevrolet Corvette
Price:Z1148
Mileage:55447.0

5, Chevrolet Corvette
Price:12003
Mileage:16296.0

Figure 6.65. Style classes

Table 6.130. Classes names that define a list appearance

Class name Description
rich-orderedlist ‘ Defines styles for an html element
rich-list-item ‘ Defines styles for an html element

In order to redefine styles for all <rich:dataOrderedList> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-orderedlist{

268

Definition of Custom Style Classes

background-color: #ebf3fd;
}

This is a result:

Chevrolet Corvette
Price:25725 Mileage:S0464 .0 WIHZ Y HFPHRNHBG AR TP

Chevrolet Corvette
Price:36506 Mileage: 20522 .0 VIH:GLAUZEMBOUFHE]

Chevrolet Corvette
Price:29736 Mileage:43560.0 VWIN:EUHBYIPPKEPUCE G

Chevrolet Corvette
Price:15514 Mileage:39912.0 VWIH:JDOGEJLMIOBEZRL

Chevrolet Corvette
Price:16541 Mileage:33920.0 VWIH AR GWYRMBJLKLEL

Chevrolet Malib
Price:32912 Mileage: 46169 .0 WIN:T.LOAER A0 0N 2y

Chevrolet Malibu
Price:25603 Mileage:10209.0 WIN:FODF BPYREUF ALK

Chevrolet Malib
Price:1 6600 Mileage:S71 02 .0 WIN:NHCHY JTLGGOATPE

Chevrolet Malibu
Price:1 7263 Mileage:56316 .0 WIH:LY ZPMUBCYWHEY 2l E

Chevrolet Malibu

Price:19603 Mileage:1 3563 .0 VWIN:QHKREBMABL JOC AP
Figure 6.66. Redefinition styles with predefined classes
In the example background color was changed.

Also it’s possible to change styles of particular <rich:dataOrderedList> component. In this case
you should create own style classes and use them in corresponding <rich:dataOrderedList>
styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

}

269

Chapter 6. The RichFaces Comp...

Example:

<rich:dataOrderedList ... styleClass="myClass"/>

This is a result:

Chevrolet Copselie
Price; 22251 Mileage: 61762 0 UIN: UGLIWRPMIKZYEHCY

Chewrolet Conette
Prico: 20940 Mfagge: 753370 WIN RXNONFREXIMEGEXG

Cheviolet Copselle
Price; 376571 Mifeage: 446130 UIN: FRIGEMPIMWZFGOXN

Chewrolet Conette
Prico: 15540 Mffagge: 243750 WINe DFENSNOR FFOUEC 1Y

Chevrolet Copselie
Price; 25005 Mfegge; 32207 .0 UIN: PLAXUCYTLOXM

Cherofet Maliby
Prico: 41530 Mfagge: 5557130 VN UL BFSEUCNAUAY L

Chevrolet Malimy
Price; 45665 Mifeage: 25634 .0 UIN: FRPCJEMIFCMORPX G TH

Chevrolet Maliby
Price: 54627 Mifaage: 9515 0 WN: HAUZNTRQQAMFREHO

Chevrolet Malimy
Price; 31355 Mifeage; 3437 7.0 UIN: FALL GdNIUNLMDZ

Chevrolet Majibn

Price: 27167 Mileage: 440160 UIN: A PLILFN G K IGIHSE
Figure 6.67. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style was changed.
6.35.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList] you
can see the example of <rich:dataOrderedList > usage and sources for the given example.

6.36. <rich:dataDefinitionList >

6.36.1. Description

The component for definition lists rendering that allows choosing data from a model and obtains
built-in support of Ajax updates.

270

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList

Key Features

Chevrolet Corvette
Price:12098
Mileage:16296.0

Chevralet Malbu

Price:36523
Mileage:46112.0

Chevralet Malibu

Price:33307
Mileage:57709.0

Chevraolet Malibu

Price:34245
Mileage:62321.0

Chevraolet Malibu

Price:51555
Mileage:51549.0

Figure 6.68. <rich:dataDefinitionList> component

6.36.2. Key Features

« Completely skinned table rows and child elements

 Possibility to update a limited set of rows with AJAX

» Possibility to receive values dynamically from a model

Table 6.131. rich : dataDefinitionList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request
binding The attribute takes a value-binding expression

for a component property of a backing bean

columnClasses

Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

componentState

It defines EL-binding for a component state for
saving or redefinition

dir

271

Chapter 6. The RichFaces Comp...

Attribute Name Description

first

Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

A zero-relative row number of the first row to
display

Every component may have a unique id that is
automatically created if omitted

lang

Code describing the language used in the
generated markup for this component

rendered

If "false", this component is not rendered

rowClasses

rowKey

rowKeyConverter

rowKeyVar

rows

A comma-delimited list of CSS style classes
that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the
second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

RowKey is a representation of an identifier for
a specific data row

Converter for a RowKey object.

The attribute provides access to a row key in a
Request scope

A number of rows to display, or zero for all
remaining rows in the table

style

CSS style(s) is/are to be applied when this
component is rendered

styleClass

Corresponds to the HTML class attribute

title

value

Advisory title information about markup
elements generated for this component

The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

272

Creating the Component with a Page Tag

Table 6.132. Component identification parameters

Name Value

component-type org.richfaces.DataDefinitionList

component-class org.richfaces.component.html.HtmIDataDefinitionList
component-family org.richfaces.DataDefinitionList

renderer-type org.richfaces.DataDefinitionListRenderer

tag-class org.richfaces.taglib.DataDefinitionListTag

6.36.3. Creating the Component with a Page Tag

To create the simplest variant of dataDefinitionList on a page, use the following syntax:

Example:

<rich:dataDefinitionList value="#{bean.capitals}" var="caps">
<f:facet name="term">Cars</f:facet>
<h:outputText value="#{car.model}"/>
</rich:dataDefinitionList>

6.36.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDataDefinitionList;

HtmIDataDefinitionList myList = new HtmIDataDefinitionList();

6.36.5. Details of Usage

The <rich:dataDefinitionList> component allows to generate an definition list from a model.

The component has the "term" facet, which corresponds to the "type" parameter for the "DT"
HTML element.

Here is an example:

<h:form>

273

Chapter 6. The RichFaces Comp...

<rich:dataDefinitionList var="car" value="#{dataTableScrollerBean.allCars}" rows="5"
first="4" title="Cars">
<f:facet name="term">
<h:outputText value="#{car.make} #{car.model}'></h:outputText>
</f:facet>
<h:outputText value="Price:" styleClass="label"></h:outputText>
<h:outputText value="#{car.price} " />

<h:outputText value="Mileage:" styleClass="label"></h:outputText>
<h:outputText value="#{car.mileage} " />

</rich:dataDefinitionList>
</h:form>

This is a result:

Chevrolet Corvette
Price:15095
Mileage:16296.0

Chevralet Malibu
Price:36523
Mileage:4611Z2.0

Chevraolet Malibu
Price:33307
Mileage:57709.0

Chevraolet Malibu
Price:34248
Mileage:n2521.0

Chevraolet Malibu
Price:51555
Mileage:51549.0

Figure 6.69. <rich:dataDefinitionList> component with "term" facet
In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <adj:repeat> component and as a result it could
be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated
after an Ajax request.

Here is an example:

Example:

<rich:dataDefinitionList ~ value="#{dataTableScrollerBean.allCars}" var="car"
ajaxKeys="#{listBean.list}"
binding="#{listBean.dataList}" id="list">

274

Look-and-Feel Customization

</rich:dataDefinitionList>

<adj:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

Inthe example "reRender" attribute contains value of "id" attribute for <rich:dataDefinitionList>
component. As a result the component is updated after an Ajax request.

6.36.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataDefinitionList> components
at once:

« Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataDefinitionList> component

6.36.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

tich-definition-term

Chevrolet Corvette
Price:15095
Mileage:16294.0

Chevrolet Malibu
Price:36523
Mileage:4511Z2.0

Chevrolet Malibu
Price:32307
Mileage:57709.0

Chevrolet Malibu
Price:34248
Mileage:62521.0

Chevrolet Malibu
Price:51555
Mileage:515493.0

rich-deflist

tich-definition

Figure 6.70. Style classes

Table 6.133. Classes names that define a list appearance

Class name Description

rich-deflist Defines styles for an html <dI> element

rich-definition Defines styles for an html <dd> element

275

Chapter 6. The RichFaces Comp...

Class name Description

rich-definition-term Defines styles for an html <dt> element

In order to redefine styles for all <rich:dataDefinitionList> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-definition-term{
font-weight:bold;
}

This is a result:

Chevrolet Corvette
Price:25005
Mileage:>9307 .0

Chevrolet Malibu
Price:41590
Mileage:55513.0

Chevrolet Malibu
Price:45E663
Mileage:256354 .10

Chevrolet Malibu
Price:o4627
Mileage:43515.10

Chevrolet Malibu
Price:31953
Mileage:34377 .0

Figure 6.71. Redefinition styles with predefined classes
In the example a term font weight was changed.

Also it's possible to change styles of particular <rich:dataDefinitionList> component.
In this case you should create own style classes and use them in corresponding
<rich:dataDefinitionList> styleClass attributes. An example is placed below:

Example:

276

Relevant Resources Links

.myClass{
font-style: italic;

}

Example:

<rich:dataDefinitionList ... rowClasses="myClass"/>

This is a result:

Chevrolet Corvette
Price: 25005
NMifegge: 39307 .10
Chevralet Malibu
Price: 41530
Milegge: 555130
Chevralet Malibu
Price: 45663
Milegge: 256340
Chewvralet Malibu
Price: 54527
NMilegge: 435150
Chewvralet Malibu
Price: 31953
NMilegge: 34377 .0

Figure 6.72. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style for rows was changed.
6.36.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/datalLists.jsf?c=dataDefinitionList]
you can see the example of <rich:dataDefinitionList> usage and sources for the given example.

6.37. <rich:dataTable >

6.37.1. Description

The component for tables rendering that allows choosing data from a model and obtains built-in
support of Ajax updates.

277

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList

Chapter 6. The RichFaces Comp...

United States Capitals
Capitals and States Table

State Flag | Capital Mame | State Mame | TimeZone

Maontgomery | Alabama GMT-E

Juneau Alazka GhT-9

Phuoenix Arizons GMT-7

Little Rock Arkanzaz | GMT-B

KB X

Sacramento | Califarnia GMT-&

State Flag | Capital Mame | State Mame | TimeZone
Capitals and States Table

Figure 6.73. <rich:dataTable> component

6.37.2. Key Features

« A completely skinned table and child elements

» Possibility to insert the complex subcomponents "colGroup” and "subTable"
 Possibility to update a limited set of strings with AJAX

 Possibility to sort and to filter of columns

« Sorting column values

* Filtering column values

Table 6.134. rich : dataTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

align left|center|right [CI] Deprecated. This attribute
specifies the position of the table with respect
to the document. Permitted values: * left: The
table is to the left of the document. * center: The
table is to the center of the document. * right:
The table is to the right of the document

bgcolor Deprecated. This attribute sets the background
color for the document body or table cells.
This attribute sets the background color of
the canvas for the document body (the

278

Key Features

Attribute Name Description

BODY element) or for tables (the TABLE, TR,
TH, and TD elements). Additional attributes
for specifying text color can be used with
the BODY element. This attribute has been
deprecated in favor of style sheets for
specifying background color information

binding The attribute takes a value-binding expression
for a component property of a backing bean

border This attributes specifies the width of the frame
around a component. Default value is "0".

captionClass Space-separated list of CSS style class(es)
that are be applied to caption for this
component

captionStyle CSS style(s) is/are to be applied to caption

when this component is rendered

cellpadding This attribute specifies the amount of space
between the border of the cell and its contents.
Default value is "0".

cellspacing This attribute specifies the amount of space
between the border of the cell and its contents.
The attribute also specifies the amount of
space to leave between cells. Default value is
"0".

columnClasses Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

columns Number of columns

columnsWidth Comma-separated list of width attribute for
every column. Specifies a default width for
each column in the table. In addition to
the standard pixel, percentage, and relative

279

Chapter 6. The RichFaces Comp...

Attribute Name Description

values, this attribute allows the special form
"0*" (zero asterisk) which means that the width
of the each column in the group should be
the minimum width necessary to hold the
column’s contents. This implies that a column's
entire contents must be known before its width
may be correctly computed. Authors should
be aware that specifying "0*' will prevent
visual user agents from rendering a table
incrementally

componentState It defines EL-binding for a component state for
saving or redefinition

dir Direction indication for text that does not inherit
directionality. Valid values are "LTR" (left-to-
right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to

display

footerClass

frame

Space-separated list of CSS style class(es)
that are be applied to footer for this component

void|above|below|hsides|lhs|rhs|vsides|box|bor
[CI] This attribute specifies which sides of
the frame surrounding a table will be visible.
Possible values: * void: No sides. This is the
default value. * above: The top side only. *
below: The bottom side only. * hsides: The top
and bottom sides only. * vsides: The right and
left sides only. * lhs: The left-hand side only.
* rhs: The right-hand side only. * box: All four
sides. * border: All four sides

der

headerClass

Space-separated list of CSS style class(es)
that are be applied to header for this
component

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is

double-clicked

280

Key Features

Attribute Name Description

onRowDDblIClick

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onRowClick HTML: a script expression; a pointer button is

clicked on row

HTML: a script expression; a pointer button is
double-clicked on row

onRowMouseDown HTML: script expression; a pointer button is
pressed down on row

onRowMouseMove HTML: a script expression; a pointer is moved
within of row

onRowMouseOut HTML: a script expression; a pointer is moved
away of row

onRowMouseOver HTML: a script expression; a pointer is moved
onto of row

onRowMouseUp HTML: script expression; a pointer button is
released on row

rendered If "false", this component is not rendered

rowClasses A comma-delimited list of CSS style classes

that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the

281

Chapter 6. The RichFaces Comp...

Attribute Name Description

second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning
again

rowKeyVar

rowKeyConverter

Converter for a RowKey object.

The attribute provides access to a row key in a
Request scope

rows

A number of rows to display, or zero for all
remaining rows in the table

rules

This attribute specifies which rules will appear
between cells within a table. The rendering
of rules is user agent dependent. Possible
values: * none: No rules. This is the default
value. * groups: Rules will appear between row
groups (see THEAD, TFOOT, and TBODY)
and column groups (see COLGROUP and
COL) only. * rows: Rules will appear between
rows only. * cols: Rules will appear between
columns only. * all: Rules will appear between
all rows and columns

sortMode

Defines mode of sorting. Possible values are
'single’ for sorting of one column and 'multi* for
some.

sortPriority

stateVar

Defines a set of columns ids in the sorting order

The attribute provides access to a component
state on the client side

style

CSS style(s) is/are to be applied when this
component is rendered

styleClass

Corresponds to the HTML class attribute

title

Advisory title information about markup
elements generated for this component

value

The current value for this component

var

A request-scope attribute via which the data
object for the current row will be used when
iterating

width

This attribute specifies the desired width of
the entire table and is intended for visual
user agents. When the value is percentage
value, the value is relative to the user agent's

282

Creating the Component with a Page Tag

Attribute Name Description

available horizontal space. In the absence
of any width specification, table width is
determined by the user agent

Table 6.135. Component identification parameters

Name Value

component-type org.richfaces.DataTable

component-class org.richfaces.component.html.HtmIDataTable
component-family org.richfaces.DataTable

renderer-type org.richfaces.DataTableRenderer

tag-class org.richfaces.taglib.DataTableTag

6.37.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>
</rich:dataTable>

6.37.4. Creating the Component Dynamically from Java

Example:

import org.richfaces.component.html.HtmIDataTable;

HtmIDataTable myTable = new HtmlDataTable();

6.37.5. Details of Usage

The <rich:dataTable> component is similar to the <h:dataTable> one, except Ajax support
and skinnability. Ajax support is possible, because the component was created basing on the

283

Chapter 6. The RichFaces Comp...

<adj:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"
attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals"
ajaxKeys="#{bean.ajaxSet}" binding="#{bean.table}" id="table">

</rich:dataTable>

<a4j:commandButton action="#{tableBean.action}" reRender="table" value="Submit"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:dataTable>
component. As a result the component is updated after an Ajax request.

The component allows to use "header", "footer" and "caption” facets for output. See an example
below:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">
<f:facet name="caption"><h:outputText value="United States Capitals" /></f:facet>
<f:facet name="header"><h:outputText value="Capitals and States Table" /></f:facet>
<rich:column>
<f:facet name="header">State Flag</f:facet>
<h:graphiclmage value="#{cap.stateFlag}"/>
<f:facet name="footer">State Flag</f:facet>
</rich:column>
<rich:column>
<f:facet name="header">State Name</f:facet>
<h:outputText value="#{cap.state}"/>
<f:facet name="footer">State Name</f:facet>
</rich:column>
<rich:column >
<f:facet name="header">State Capital</f:facet>
<h:outputText value="#{cap.name}"/>
<f:facet name="footer">State Capital</f:facet>
</rich:column>
<rich:column>

284

Look-and-Feel Customization

<f:.facet name="header">Time Zone</f:facet>
<h:outputText value="#{cap.timeZone}"/>
<f:facet name="footer">Time Zone</f:facet>
</rich:column>
<f:facet name="footer"><h:outputText value="Capitals and States Table" /></f:facet>
</rich:dataTable>

This is a result:

“caption” facet

United States Capitals
Capitals and States Table

"headar” facet for tahle apital Mame | State Name | TimeZone

Montgomery | Alabams GMWT-E
“header” facet for column
Juneau Alaska wi=a

Phioenizx Arizona GMWT-T

Little Rock Arkansas | GMT-6

b EKEX

Sacramento | Califarnia GMT-5

Ztate Flag | Capital Mame | State Mame | TimeZone

Capitals and States Table

“footer” facet for column
footer” facet for table

Figure 6.74. <rich:dataTable> component with facets
Information about sorting and filtering you can find here.
6.37.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataTable> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:dataTable> component

285

Chapter 6. The RichFaces Comp...

6.37.7. Skin Parameters Redefinition

Table 6.136. Skin parameters redefinition for a table

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.137. Skin parameters redefinition for a header

Skin parameters CSS properties

headerBackgroundColor background-color

Table 6.138. Skin parameters redefinition for a footer

Skin parameters CSS properties

tableFooterBackgroundColor background-color

Table 6.139. Skin parameters redefinition for a column header

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.140. Skin parameters redefinition for a column footer

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

Table 6.141. Skin parameters redefinition for cells

Skin parameters CSS properties
generalSizeFont font-size
generalTextColor color
generalFamilyFont font-family

6.37.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

286

Definition of Custom Style Classes

rich-table-caption
rich-table-header

tich-table-headercell
United States Capitalz

Capitals and States Tanle

rich-table-subheader
State Flag | Capita' Mame State Mame | TimeZone
rich-table-subheadercell =y | Alabams | GhT-B

Juneau Alazka GhT-9
tich-table

fich-table-cell ona | GMT-7 rich-table-row

ol 3

Little Rock Arkanzaz | GMT-G

rich-table-subfooter . . rich-table-subfootercell
Sacramenta | Cali

i
I

State Flag | Capital Mame | Staie Mame | TimeZone
Capitals and States Table

rich-table-footer rich-table-footercell

Figure 6.75. <rich:dataTable> class names

Table 6.142. Classes names that define a whole component appearance

Class name Description
rich-table Defines styles for all table
rich-table-caption ‘ Defines styles for a "caption” facet element

Table 6.143. Classes names that define header and footer elements

Class name Description

rich-table-header Defines styles for a table header row
rich-table-header-continue Defines styles for all header lines after the first
rich-table-subheader Defines styles for a column header
rich-table-footer Defines styles for a footer row
rich-table-footer-continue Defines styles for all footer lines after the first
rich-table-subfooter Defines styles for a column footer

287

Chapter 6. The RichFaces Comp...

Table 6.144. Classes names that define rows and cells of a table

Class name Description

rich-table-headercell Defines styles for a header cell
rich-table-subheadercell Defines styles for a column header cell
rich-table-cell Defines styles for a table cell
rich-table-row Defines styles for a table row
rich-table-firstrow Defines styles for a table start row
rich-table-footercell Defines styles for a footer cell
rich-table-subfootercell Defines styles for a column footer cell

In order to redefine styles for all <rich:dataTable> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-table-cell{
font-weight:bold;

This is a result:

Expenses
subtotals

Meals Hotels Transport
San Jose
25-Aug-97 | §37.74 $11200 F45.00
26-Aug-97 | F27.25 $11200 $45.00

$65.02 $224.00 $90.00 $379.02
Seattle
27-Aug-97 | 9625 F109.00 F36.00
28-Aug-97 | F35.00 F09.00 | F36.00

$131.25 $218.00 $72.00 $471.25
Totals $196.27T F442.00 $162.00 $800.27

Figure 6.76. Redefinition styles with predefined classes

In the example the font weight for table cell was changed.

288

Relevant Resources Links

Also it's possible to change styles of particular <rich:dataTable> component. In this case you
should create own style classes and use them in corresponding <rich:dataTable> styleClass

attributes. An example is placed below:

Example:

.myClass{

font-style:italic;

The "headerClass" attribute for <rich:dataTable> is defined as it's shown in the example below:

Example:

<rich:dataTable

This is a result:

San Jose
25-Aug-97
26-Aug-97

Seattle
27-Aug-ar7

28-Aug-a7

Totals

Neals

$37 74
$27 .25
$65.02

$I6 25
$35.00
$131.25
$196.27

EXpoRses

Hotefs Transport

$112.00
$112.00
$224.00

$109.00
$109.00
$215.00
$442.00

$45.00
4500
$90.00

$36.00
$36.00
$72.00
$162.00

... headerClass="myClass"/>

subtotals

$379.02

$421,25
$800.27

Figure 6.77. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for header was changed.

6.37.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable] you can
see the example of <rich:dataTable> usage and sources for the given example.

289

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable

Chapter 6. The RichFaces Comp...

The article about <rich:dataTable> flexibility can be found here [http://labs.jboss.com/wiki/
RichFacesArticleDataTable].

More information about using <rich:dataTable> and <rich:subTable>
could be found on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4059044#4059044].

How to use <rich:dataTable> and <rich:datascroller> in a context of Extended Data Model
see here [http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636].

6.38. <rich:subTable >

6.38.1. Description

The component is used for inserting subtables into tables with opportunity to choose data from a
model and built-in Ajax updates support.

Parent tahle with

Countries And Capitals one column
Country
United States
Stete - 0 o T T e Timezone
subTable with four columns
| [= [5= o= | IVILTIL Jrniery | v III-E

- Alaska Juneau GhT-9

W Atizona Phoenix GhT-7
Arkanzaz | Little Rock GMT-E

-ﬂ- California Sacramento | GMT-8
—

Figure 6.78. <rich:subTable> element

6.38.2. Key Features

Completely skinned table rows and child elements

Possibility to insert complex columnGroup subcomponents

Possibility to combine rows and columns inside

Possibility to update a limited set of rows with AJAX

290

http://labs.jboss.com/wiki/RichFacesArticleDataTable
http://labs.jboss.com/wiki/RichFacesArticleDataTable
http://labs.jboss.com/wiki/RichFacesArticleDataTable
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636

Key Features

Table 6.145. rich : subTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated
after an AJAX request

binding The attribute takes a value-binding expression
for a component property of a backing bean

columnClasses Comma-delimited list of CSS style classes that
are be applied to the columns of this table.
A space separated list of classes may also
be specified for any individual column. If the
number of elements in this list is less than the
number of columns specified in the "columns"
attribute, no "class" attribute is output for each
column greater than the number of elements in
the list. If the number of elements in the list is
greater than the number of columns specified
in the "columns" attribute, the elements at
the position in the list after the value of the
"columns" attribute are ignored

componentState It defines EL-binding for a component state for
saving or redefinition

filterMethod This attribute is defined with method binding.
This method accepts on Object parameter and
return boolean value

filterValue Defines current filtering value

first A zero-relative row number of the first row to
display

footerClass Space-separated list of CSS style class(es)
that are be applied to any footer generated for
this table

headerClass Space-separated list of CSS style class(es)
that are be applied to any header generated for
this table

id Every component may have a unique id that is

automatically created if omitted

onclick HTML: a script expression; a pointer button is
clicked
ondblclick HTML: a script expression; a pointer button is

double-clicked

onkeydown

291

Chapter 6. The RichFaces Comp...

Attribute Name Description

HTML: a script expression; a key is pressed
down

onRowDDblIClick

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onRowClick HTML: a script expression; a pointer button is

clicked on row

HTML: a script expression; a pointer button is
double-clicked on row

onRowMouseDown HTML: script expression; a pointer button is
pressed down on row

onRowMouseMove HTML: a script expression; a pointer is moved
within of row

onRowMouseOut HTML: a script expression; a pointer is moved
away of row

onRowMouseOver HTML: a script expression; a pointer is moved
onto of row

onRowMouseUp HTML: script expression; a pointer button is
released on row

rendered If "false", this component is not rendered

rowClasses A comma-delimited list of CSS style classes

that is applied to popup table rows. A space
separated list of classes may also be specified
for any individual row. The styles are applied,
in turn, to each row in the table. For example,
if the list has two elements, the first style class
in the list is applied to the first row, the second
to the second row, the first to the third row, the

292

Key Features

Attribute Name Description

second to the fourth row, etc. In other words,
we keep iterating through the list until we reach
the end, and then we start at the beginning

again
rowKeyConverter Converter for a row key object
rowKeyVar The attribute provides access to a row key in a

Request scope

rows A number of rows to display, or zero for all
remaining rows in the table

selfSorted Manages if the header of the column is
clickable, icons rendered and sorting is fired
after click on the header. You need to
define this attribute inside <rich:dataTable>
component. Default value is "true".

SortExpression DEPRECATED(use sortBy)Attribute defines a
bean property which is used for sorting of a
column

sortMode Defines mode of sorting. Possible values are
'single’ for sorting of one column and 'multi' for
some.

sortOrder SortOrder is an enumeration of the

possible sort orderings. Default value is
"Ordering. UNSORTED".

sortPriority Defines a set of column ids in the order the
columns could be set

stateVar The attribute provides access to a component
state on the client side

value The current value for this component

var A request-scope attribute via which the data
object for the current row will be used when
iterating

Table 6.146. Component identification parameters

Name Value

component-type org.richfaces.SubTable

component-class org.richfaces.component.html.HtmISubTable
component-family org.richfaces.SubTable

renderer-type org.richfaces.SubTableRenderer

293

Chapter 6. The RichFaces Comp...

tag-class org.richfaces.taglib.SubTableTag

6.38.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>
<rich:subTable value=#{capitals.details} var="detail">
<rich:column>

</rich:column>
</rich:subTable>
</rich:dataTable>

6.38.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmISubTable;

HtmISubTable mySubTable = new HtmISubTable();

6.38.5. Details of Usage

The <rich:subTable> component is similar to the <h:dataTable> one, except Ajax support
and skinnability. One more difference is that the component doesn't add the wrapping <table>
and <tbody> tags. Ajax support is possible, because the component was created basing on
the <adj:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"
attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

294

Look-and-Feel Customization

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">
<rich:column>

</rich:column>
<rich:subTable value="#{capitals.details}" var="detail" ajaxKeys="#{bean.ajaxSet}"
binding="#{bean.subtable}" id="subtable">
<rich:column>

</rich:column>
</rich:subTable>
</rich:dataTable>

<adj:commandButton action="#{tableBean.action}" reRender="subtable"/>

In the example "reRender" attribute contains value of "id" attribute for <rich:subTable>
component. As a result the component is updated after an Ajax request.

The component allows to use "header" and “footer" facets for output. See an example for
<rich:dataTable> component [284].

6.38.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:subTable> components at once:

» Redefine the corresponding skin parameters

* Add to your style sheets style classes used by a <rich:subTable> component

6.38.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:subTable> are the same as for the <rich:dataTable>
component.

6.38.8. Definition of Custom Style Classes

Table 6.147. Classes names that define a component appearance

Class name Description

rich-subtable Defines styles for all subtable

295

Chapter 6. The RichFaces Comp...

Class name Description

rich-subtable-caption ‘ Defines styles for a "caption” facet element

Table 6.148. Classes names that define header and footer elements

Class name Description

rich-subtable-header Defines styles for a subtable header row

rich-subtable-header-continue Defines styles for all subtable header lines after
the first

rich-subtable-subheader Defines styles for a column header of subtable

rich-subtable-subfooter Defines styles for a column footer of subtable

rich-subtable-footer Defines styles for a subtable footer row

rich-subtable-footer-continue Defines styles for all subtable footer lines after
the first

Table 6.149. Classes names that define rows and cells

Class name Description

rich-subtable-headercell Defines styles for a subtable header cell

rich-subtable-subheadercell Defines styles for a column header cell of
subtable

rich-subtable-cell Defines styles for a subtable cell

rich-subtable-row Defines styles for a subtable row

rich-subtable-firstrow Defines styles for a subtable start row

rich-subtable-subfootercell Defines styles for a column footer cell of
subtable

rich-subtable-footercell Defines styles for a subtable footer cell

Definition of Custom Style Classes

rich-subtable-caption

tich-subtable-headercell Ty s
United States
Countries and Capitals
Courntry -
tich-subtable-subheader
United States
Flag State Mame Capital Marme
>< rich-subtable-subheadercell Montgomery
tich-subtable-first row - Alazka Junesu

rich-subtahble w Arizana T menix
rich-subtable-cell

Arkanzas Little Rock

(ich-subtable-subfooter California SEII:ram'r!ltih-suI:utsll:uI|3-5|_||:|1’|:||:|tErcell

rich-subtable-row

Flag Capital Mame Capital Marme

Countries and Capitals

gt eulailale-ineies tich-subtable-footercell

Figure 6.79. Style classes

In order to redefine styles for all <rich:subTable> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-subtable-footer{
font-weight: bold;

This is a result:

297

Chapter 6. The RichFaces Comp...

Country and Capitals
Country
nited States
Flag Mame State Time Zone

Montgomery | Alabama | GMT-E

Junea Alaszka GhT-9

Phoenix Arvizona | GMT-F

Little Rock Arkanzas | GMT-6

Sacramento | California | GMT-S

POKEX

Flag Hame State Time Zone
United States

Figure 6.80. Redefinition styles with predefined classes
In the example a footer font weight was changed.

Also it's possible to change styles of particular <rich:subTable> component. In this case you
should create own style classes and use them in corresponding <rich:subTable> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color: #fff5ec;

}

The "columnClasses" attribute for <rich:subTable> is defined as it's shown in the example
below:

Example:
<rich:subTable ... columnClasses="myClass"/>

This is a result:

298

< rich:dndParam >

Country and Capitals
Country
nited States
Flag Mame State Time Zone

>< Montgomery | Alabama | GMT-E

Juneau Alaska GhT-9
Phioenix Arizona | GMT-7

Little Rock Arkanzas | GMT-B

'OKE

Sacramento | California | GMT-2

B
1]
1]

ul
]
= H

Marme State Titme Zone

United States

Figure 6.81. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.39. <rich:dndParam >

6.39.1. Description

This component is used for passing parameters during drag-and-drop operations.

Table 6.150. rich : dndParam attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

name A name of this parameter
rendered If "false", this component is not rendered
type This attribute defines parameter functionality.

Possible values are "drag", "drop" and
"default”. Default value is "default”.

value The current value for this component

299

Chapter 6. The RichFaces Comp...

Table 6.151. Component identification parameters

component-type ‘ org.richfaces.DndParam
component-class ‘ org.richfaces.component.html.HtmIDndParam
tag-class ‘ org.richfaces.taglib.DndParamTag

6.39.2. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page, nested in one of the drag-and-drop
components:

Example:

<rich:dragSupport dragType="file">
<rich:dndParam name="testDrag" value="testDragValue"
type="drag"/>
</rich:dragSupport>

6.39.3. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDndParam;

HtmIDndParam myDparam = new HtmIDndParam();

6.39.4. Details of Usage

dndParam is used during drag-and-drop operations to pass parameters to an indicator. At first,
a parameter type is defined with the type attribute (to specify parameter functionality), then a
parameter name could be defined with the name and value attribute. Although, it's possible to use
nested content defined inside dndParam for value definition, instead of the attribute.

Variants of usage:

« Parameters passing for a drag icon when an indicator is in drag.

In this case, dndParam is of a drag type and is defined in the following way:

300

Details of Usage

Example:

<rich:dragSupport ...>
<rich:dndParam type="drag" name="dragging">
<h:graphiclmage value="/img/productl_small.png"/>
</rich:dndParam>
<h:graphiclmage value="productl.png"/>
</rich:dragSupport>

Here dndParam defines an icon that is used by an indicator when a drag is on the place of a
default icon (e.g. a minimized image of a draggable element)

» Parameters passing for an indicator informational part during a drag.

In this case dndParam is of a drag type and is defined in the following way:

Example:

<rich.dragSupport ...>
<rich:dndParam type="drag" name="label" value="#{msg.subj}"/>

</rich:dragSupport>

The parameter is transmitted into an indicator for usage in an informational part of the
draglndicator component (inside an indicator a call to {label} happens)

« Parameters passing happens when dragged content is brought onto some zone with
dropSupport
In this case dndParam is of a drop type and is defined in the following way:

Example:

<rich:dropSupport ...>
<rich:dndParam type="drop" nhame="comp" >
<h:graphiclmage height="16" width="16" value="/images/comp.png"/>
</rich:dndParam>

301

Chapter 6. The RichFaces Comp...

</rich:dropSupport >

Here, dndParam passes icons into an indicator, if dragged content of a comp type is above the
given drop zone that processes it on the next drop event.

6.39.5. Look-and-Feel Customization

<rich:dndParam> has no skin parameters and custom style classes, as the component isn't
visual.

6.39.6. Relevan Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam] you
can see the example of <rich:dndParam> usage and sources for the given example.

6.40. <rich:dragindicator >

6.40.1. Description

This is a component for defining what appears under the mouse cursor during drag-and-drop
operations. The displayed drag indicator can show information about the dragged elements.

Single item DragWalue

Figure 6.82. <rich:dragindicator> component

6.40.2. Key Features

* Customizable look and feel

» Customizable marker according to the type of dragable elements

Table 6.152. rich : dragIndicator attributes

Attribute Name Description

acceptClass Corresponds to the HTML class attribute and
added to an indicator when a drop is accepted

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

302

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam

Creating the Component with a Page Tag

Attribute Name Description

rejectClass

Corresponds to the HTML class attribute and
added to an indicator when a drop is rejected

rendered If "false", this component is not rendered

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

Table 6.153. Component identification parameters

NETIE Value

component-type

org.richfaces.Draggable

component-class

org.richfaces.component.html.HtmIDragIndicatc

component-family

org.richfaces.Draglndicator

renderer-type

tag-class

org.richfaces.DraglIndicatorRenderer

org.richfaces.taglib.DragindicatorTag

6.40.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<dnd:dragindicator id="indicator">
<f:facet name="single">
<f:verbatim>
Single item {DragInfo}
</f.verbatim>
<[f:facet>
</dnd:dragIndicator>

<dnd:dragSupport dragType="text" dragIndicator="indicator">

6.40.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDragIndicator;

303

=

Chapter 6. The RichFaces Comp...

HtmlIDraglndicator myDraglndicator = new HtmlDraglndicator();

6.40.5. Details of Usage

In the simplest way the component could be defined empty - in that case a default indicator is
shown like this:

Figure 6.83. The simplest <rich:draglndicator>

For indicator customization you need to define one of the following facets:

 single

Indicator shown when dragging a single element.

e multiple

Indicator shown when dragging several components (for future components that will support
multiple selection).

Thus for specify a look-and-feel you have to define one of these facets and include into it a content
that should be shown in indicator.

6.40.5.1. Macro definitions

To place some data from drag or drop zones into component you can use macro definitions. They
are being defining in the following way:

« <rich:dndParam> component with a specific name and value is being included into a drag/drop
support component (an image can be defined as placed inside <rich:dndParam> without
defining a value).

 in needed place a parameter value is included into the marking of indicator using syntax (name
of parameter)

304

Details of Usage

For instance, this:

<dnd:dropSupport...>
<dnd:dndParam name="testDrop">
<h:graphicimage value="/images/file-manager.png" />
</dnd:dndParam>
</dnd:dropSupport>

..Is placed into indicator as follows:

<f:facet name="single">
{testDrop}
</f:facet>

6.40.5.2. Predefined macro definitions

Indicator can accept two default macro definitions:

* marker
 label

Thus including one of these elements in the marking of indicator, in other words after setting up
appropriate parameters in DnD components and defining only default indicator - without specifying
facets - a developer gets these parameters values displayed in indicator in the order "marker
- label".

6.40.5.3. Marker customization

The macro definition "marker" can be customized depending on what a draggable element is
located over. For that you should define one of these three parameters (specify a parameter with
one of three names):

* accept

Parameter will be set instead of {marker} into indicator when a draggable element is positioned
over drop zone that accept this type of elements

305

Chapter 6. The RichFaces Comp...

 reject

Parameter is set instead of {marker} into indicator when a draggable element is positioned over
drop zone that doesn't accept this type of elements

» default

Parameter is set instead of {marker} into indicator when a draggable element is positioned over
all the rest of page elements

@ Note:

If you use <rich:draglindicator> inside a form do not forget to use id like
"formld:indicatorID" defined in <rich:dragSupport> indicator attribute.

6.40.6. Look-and-Feel Customization

The <rich:draglndicator> component has no skin parameters and special style classes, as
it consists of one element generated with a your method on the server. To define some style
properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes
on the component.

6.40.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/dragSupport.jsf?c=draglindicator]
you can see the example of <rich:dragindicator> usage and sources for the given example.

6.41. <rich:dragSupport >

6.41.1. Description

This component defines a subtree of the component tree as draggable for drag-and-drop
operations. Within such a "drag zone," you can click the mouse button on an item and drag it
to any component that supports drop operations (a "drop zone"). It encodes all the necessary
JavaScript for supporting drag-and-drop operations.

306

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator

Key Features

Figure 6.84. <rich:dragSupport> component

6.41.2. Key Features

« Encodes all necessary JavaScript to perform drag actions
» Can be used within any component type that provides the required properties for drag operations

e Supports drag-and-drop between different forms

Table 6.154. rich : dragSupport attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

307

Chapter 6. The RichFaces Comp...

Attribute Name Description

binding

The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disableDefault

Disable default action for target event (append
"return false;" to JavaScript)

draglindicator

dragListener

Id of a component that is used as drag pointer
during the drag operation

MethodBinding representing an action listener
method that will be notified after drag operation

dragType

dragValue

A drag zone type that is used for zone
definition, which elements can be accepted by
a drop zone

Data to be sent to a drop zone after a drop
event

eventsQueue

focus

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

id of element to set focus after request
completed on client side

grabbingCursors

list of comma separated cursors that indicates
then the you has grabbed something

grabCursors List of comma separated cursors that indicates
then you can grab and drag an object

id Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates

308

Key Features

Attribute Name Description

on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

oncomplete JavaScript code for call after request
completed on client side

ondragend A JavaScript event handler called after a drag
operation

ondragstart A JavaScript event handler called before drag
operation

ondropout A JavaScript event handler called after a out
operation

ondropover A JavaScript event handler called after a drop
operation

process Id['s] (in format of call
UlComponent.findComponent()) of

components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest

309

Chapter 6. The RichFaces Comp...

Attribute Name Description

caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

value The current value for this component

Table 6.155. Component identification parameters

Name Value

component-type org.richfaces.DragSupport

component-class org.richfaces.component.html.HtmIDragSupport
component-family org.richfaces.DragSupport

renderer-type org.richfaces.DragSupportRenderer

tag-class org.richfaces.taglib.DragSupportTag

6.41.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<h:panelGrid id="drag1">
<rich:dragSupport dragType="item"/>
<I--Some content to be dragged-->
</h:panelGrid>

6.41.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDragSupport;

HtmIDragSupport myDragZone = new HtmIDragSupport();

Details of Usage

6.41.5. Details of Usage

The dragSupport tag inside a component completely specifies the events and JavaScript required
to use the component and it's children for dragging as part of a drag-and-drop operation. In order
to work, though, dragSupport must be placed inside a wrapper component that outputs child
components and that has the right events defined on it. Thus, this example won't work, because
the h:column tag doesn't provide the necessary properties for redefining events on the client:

Example:

<h:column>
<rich:dragSupport dragIndicator=":form:iii" drag Type="text">
<adj:actionParam value="#{caps.name}" name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</h:column>

However, using adj:outputPanel as a wrapper inside h:column, the following code could be used
successfully:

Example:

<h:column>
<adj.outputPanel>
<rich:dragSupport dragIndicator=":form:iii* dragType="text">
<adj:actionParam value="#{caps.name}" name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</adj:outputPanel>
</h:column>

This code makes all rows of this column draggable.

One of the main attributes for dragSupport is "dragType", which associates a hame with the
drag zone. Only drop zones with this name as an acceptable type can be used in drag-and-drop
operations. Here is an example:

311

Chapter 6. The RichFaces Comp...

Example:

<h:panelGrid id="drag1">
<rich:dragSupport dragType="singleltems" .../>
<!--Some content to be dragged-->
</h:panelGrid>

<h:panelGrid id="drag2">
<rich:dragSupport drag Type="groups" .../>
<I--Some content to be dragged-->
</h:panelGrid>

<h:panelGrid id="drop1">
<rich:dropSupport acceptedTypes="singleltems" .../>
<I--Drop zone content-->

</h:panelGrid>

In this example, the dropl panel grid is a drop zone that invokes drag-and-drop for drops of
items from the first dragl panel grid, but not the second drag2 panel grid. In the section about
dropSupport, you will find an example that shows more detailed information about moving data
between tables with drag and drop.

The dragSupport component also has a "value" attribute for passing data into the processing
after a drop event.

One more important attribute for <rich:dragSupport> is the "dragindicator" attribute that point
to the component id of the <rich:dragindicator> component to be used for dragged items from
this drag zone. If it isn't defined, a default indicator for drag operations is used.

Finally, the component has the following extra attributes for event processing on the client:

« ondragenter
« ondragexit

You can use your own custom JavaScript functions to handle these events.

@ Note:
If you define width for a outputPanel, in Internet Explorer 6 you can perform a drag
and drop operation, placing the mouse cursor on the text in the outputPanel only.

Information about the "process" attribute usage you can find here.

312

Look-and-Feel Customization

6.41.6. Look-and-Feel Customization

<rich:dragSupport> has no skin parameters and custom style classes, as the component isn't
visual.

6.41.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/dragSupport.jsf?c=dragSupport] you
can see the example of <rich:dragSupport> usage and sources for the given example.

6.42. <rich:dropSupport >

6.42.1. Description

This component transforms a parent component into a target zone for drag-and-drop operations.
When a draggable element is moved and dropped onto the area of the parent component, Ajax
request processing for this event is started.

Figure 6.85. <rich:dropSupport> component
6.42.2. Key Features
« Encodes all necessary JavaScript to perform drop actions

» Can be used within any component type that provides the required properties for drop operations

* Built-in Ajax processing

313

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport

Chapter 6. The RichFaces Comp...

» Supports drag-and-drop between different forms

Table 6.156. rich : dropSupport attributes

Attribute Name Description

acceptCursors List of comma separated cursors that indicates
when acceptable draggable over dropzone

acceptedTypes A list of drag zones types, which elements are
accepted by a drop zone

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener

ajaxSingle

MethodBinding pointing at method accepting
an ActionEvent with return type void

boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding

The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates

cursorTypeMapping

data

disableDefault

dropListener

dropValue

eventsQueue

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

Mapping between drop types and acceptable
cursors

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

Disable default action for target event (append
"return false;" to JavaScript)

MethodBinding representing an action listener
method that will be notified after drop
operation.

Data to be processed after a drop event

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of

314

Key Features

Attribute Name Description

requests of frequently events (key press,
mouse move etc.)

focus

id of element to set focus after request
completed on client side

ignoreDupResponses

immediate

limitToList

Every component may have a unique id that is
automatically created if omitted

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

If “"true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate

JavaScript code for call before DOM has been
updated on client side

oncomplete

ondragenter

ondragexit

JavaScript code for call after request
completed on client side

A JavaScript event handler called on enter
draggable object to zone

A JavaScript event handler called after a drag
object leaves zone

ondrop

A JavaScript event handler called after a drag
object is dropped to zone

ondropend

process

A JavaScript handler for event fired on a drop
even the drop for a given type is not available

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-

315

Chapter 6. The RichFaces Comp...

Attribute Name Description

separated list of Id's, or EL Expression with
array or Collection

rejectCursors List of comma separated cursors that indicates
when rejectable draggable over dropzone

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

status ID (in format of call
UlComponent.findComponent()) of Request
status component

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

typeMapping Map between a draggable type and an
indicator name on zone. it's defined with the
pair (drag type:indicator name))

value The current value for this component

Table 6.157. Component identification parameters

NETIE Value

component-type org.richfaces.DropSupport

component-class org.richfaces.component.html.HtmIDropSupport
component-family org.richfaces.DropSupport

renderer-type org.richfaces.DropSupportRenderer

tag-class org.richfaces.taglib.DropSupportTag

316

Creating the Component with a Page Tag

6.42.3. Creating the Component with a Page Tag

This simple example shows how to make a panel component a potential drop target for drag-and-
drop operations using "text" elements as the dragged items.

Example:

<rich:panel>
<rich:dropSupport accepted Types="text"/>
</rich:panel>

6.42.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDropSupport;

HtmIDropSupport myDragZone = new HtmlIDropSupport();

6.42.5. Details of Usage

As shown in the example, the key attribute for <rich:dropSupport> is "acceptedTypes" . This
attribute defines the types of draggable items that can be dropped onto the designated drop zone.

The second most important attribute for <rich:dropSupport> is "typeMapping" . This
attribute maps a specific type among the acceptable types for draggable items to a specific
<rich:dndParam> child element under <rich:dropSupport>.

Example:

<rich:dropSupport acceptedTypes="[iconsDragged, textDragged]"
typeMapping="{iconsDragged: Droplcon}">
<rich:dndParam name="Droplcon">
<h:graphiclmage value="/images/drop-icon.png"/>
</rich:dndParam>

317

Chapter 6. The RichFaces Comp...

In this example, dropping a draggable item of an "iconsDragged" type will trigger the use a
parameter named "Droplcon" in the event processing after a drop event. (Also, an Ajax request
is sent, and the action and dropListener defined for the component are called.)

Here is an example of moving records between tables. The example describes all the pieces
for drag-and-drop. (To get extra information on these components, read the sections for these
components.)

As draggable items, this table contains a list of such items designated as being of type "text":

Example:

<rich:dataTable value="#{capitalsBean.capitals}" var="caps">
<f:facet name="caption">Capitals List</f:facet>
<h:column>
<adj:outputPanel>
<rich:dragSupport dragIndicator=":form:ind" drag Type="text">
<adj:actionParam value="#{caps.name}" name="name"/>
</rich:dragSupport>
<h:outputText value="#{caps.name}"/>
</a4j.outputPanel>
</h:column>
</rich:dataTable>

As a drop zone, this panel will accept draggable items of type "text" and then rerender an element
with the ID of "box™:

Example:

<rich:panel style="width:100px;height:100px;">
<f:facet name="header">Drop Zone</f:facet>
<rich:dropSupport acceptedTypes="text" reRender="box"
dropListener="#{capitalsBean.addCapital2}"/>
</rich:panel>

As a part of the page that can be updated in a partial page update, this table has an ID of "box":

Example:

318

Details of Usage

<rich:dataTable value="#{capitalsBean.capitals2}" var="cap2" id="box">
<f:facet name="caption">Capitals chosen</f:facet>
<h:column>

<h:outputText value="#{cap2.name}"/>

</h:column>

</rich:dataTable>

And finally, as a listener, this listener will implement the dropped element:

Example:

public void addCapital2(DropEvent event) {

FacesContext context = FacesContext.getCurrentinstance();
Capital cap = new Capital();

cap.setName(context.getExternalContext().getRequestParameterMap().get("name").toString());
capitals2.add(cap);

Here is the result after a few drops of items from the first table:

Capitals List
Mortgomery
Junesu
Phoenizx
Little Rock
Sacramento
Derrver
Hartford
Dover
Tallahazses
Atlanta

Homaluly

Drop Zone

Capitals chosen
Little Rock

Derver

Figure 6.86. Results of drop actions

319

Chapter 6. The RichFaces Comp...

In this example, items are dragged element-by-element from the rendered list in the first table and
dropped on a panel in the middle. After each drop, a drop event is generated and a common Ajax
request is performed that renders results in the third table.

As with every Ajax action component, <rich:dropSupport> has all the common attributes (
"timeout”, "limitToList", "reRender", etc.) for Ajax request customization.

Finally, the component has the following extra attributes for event processing on the client:

« ondragenter

» ondragexit

e ondrop

« ondropend

Developers can use their own custom JavaScript functions to handle these events.
Information about the "process" attribute usage you can find here.

6.42.6. Look-and-Feel Customization

<rich:dropSupport> has no skin parameters and custom style classes , as the component isn't
visual.

6.42.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport] you
can see the example of <rich:dropSupport> usage and sources for the given example.

6.43. <rich:dragListener >

6.43.1. Description

The <rich:dragListener> represents an action listener method that is notified after a drag
operation.

6.43.2. Key Features

 Allows to define some drag listeners for the components with "Drag and Drop" support

Table 6.158. rich : dragListener attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

320

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport

Creating the Component with a Page Tag

Table 6.159. Component identification parameters

listener-class org.richfaces.event.DragListener
event-class org.richfaces.event.DragEvent
tag-class org.richfaces.taglib.DragListenerTag

6.43.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:dragListener type="demo.Bean"/>

6.43.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImplBean implements org.richfaces.event.DragListener{

import demo.ImplBean;

ImplBean myDragListener = new ImplBean();

6.43.5. Details of Usage

The <rich:dragListener> is used as a nested tag with components like <rich:dragSupport> ,
<rich:tree> and <rich:treeNode> .

Attribute "type" defines the fully qualified Java class name for a listener. This class should
implement org.richfaces.event.DragListener interface [http://labs.jboss.com/file-access/default/
members/jbossrichfaces/freezone/docs/apidoc_framework/index.html].

321

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html

Chapter 6. The RichFaces Comp...

The typical variant of using:

<h:panelGrid id="dragPanel">
<rich:dragSupport dragType="item">
<rich:dragListener type="demo.ListenerBean"/>
</rich:dragSupport>
<l--Some content to be dragged-->
</h:panelGrid>

Java bean source:

package demo;
import org.richfaces.event.DragEvent;
public class ListenerBean implements org.richfaces.event.DragListener{

public void processDrag(DragEvent arg0){
/ICustom Developer Code

6.43.6. Look-and-Feel Customization

<rich:dragListener> has no skin parameters and custom style classes, as the component isn't
visual.

6.44. <rich:dropListener >

6.44.1. Description

The <rich:dropListener> represents an action listener method that is notified after a drop
operation.

6.44.2. Key Features

 Allows to define some drop listeners for the components with "Drag and Drop" support

322

Creating the Component with a Page Tag

Table 6.160. rich : dropListener attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

Table 6.161. Component identification parameters

listener-class org.richfaces.event.DropListener
event-class ‘ org.richfaces.event.DropEvent
tag-class ‘ org.richfaces.taglib.DropListenerTag

6.44.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:dropListener type="demo.Bean"/>

6.44.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImpIBean implements org.richfaces.event.DropListener{

import demo.ImplBean;

ImplBean myListener = new ImplBean();

323

Chapter 6. The RichFaces Comp...

6.44.5. Details of Usage

The <rich:dropListener> is used as a nested tag with components like <rich:dropSupport>
, <rich:tree> and <rich:treeNode> .

Attribute "type" defines the fully qualified Java class name for the listener. This class should
implement org.richfaces.event.DropListener interface [http://labs.jboss.com/file-access/default/
members/jbossrichfaces/freezone/docs/apidoc_framework/index.html].

The typical variant of using:

<rich:panel style="width:100px;height:100px;">
<f:facet name="header">Drop Zone</f:facet>
<rich:dropSupport accepted Types="text">
<rich:dropListener type="demo.ListenerBean"/>
</rich:dropSupport>
</rich:panel>

Java bean source:

package demo;
import org.richfaces.event.DropEvent;
public class ListenerBean implements org.richfaces.event.DropListener{

public void processDrop(DropEvent arg0){
/ICustom Developer Code

6.44.6. Look-and-Feel Customization

<rich:dropListener> has no skin parameters and custom style classes, as the component isn't
visual.

324

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/index.html

< rich:dropDownMenu >

6.45. <rich:dropDownMenu >

6.45.1. Description

The <rich:dropDownMenu> component is used for creating multilevel drop-down menus.

File J Links

New
Open
Save As...

Close

Exit

Figure 6.87. <rich:dropDownMenu> component

6.45.2. Key Features

« Highly customizable look-and-feel
« Pop-up appearance event customization

» Different submission modes

* Ability to define a complex representation for elements

* Support for disabling

* Smart user-defined positioning

Table 6.162. rich : dropDownMenu attributes

Attribute Name Description

binding

direction

disabled

disabledlitemClass

The attribute takes a value-binding expression
for a component property of a backing bean

Defines direction of the popup list to appear.
Possible values are "top-right", "top-right",
"top-left", "bottom-right", "bottom-left", "auto".
Default value is "auto".

Attribute 'disabled' provides possibility to make
the whole menu disabled if its value equals to
"true".

Space-separated list of CSS style class(es)
that are be applied to disabled item of this
component

disableditemStyle

325

Chapter 6. The RichFaces Comp...

Attribute Name Description

CSS style(s) is/are to be applied to disabled
item when this component is rendered.

disabledLabelClass Space-separated list of CSS style class(es)
that are be applied to disabled label of DD
menu

event Defines the event on the representation
element that triggers the menu's appearance.

hideDelay Delay between losing focus and menu closing.

Default value is "800".

horizontalOffset

Sets the horizontal offset between popup
list and label element. Default value is "0".
conjunction point

id Every component may have a unique id that is
automatically created if omitted

itemClass Space-separated list of CSS style class(es)
that are be applied to item of this component

itemStyle CSS style(s) is/are to be applied to item when
this component is rendered.

jointPoint Sets the corner of the label for the pop-up to
be connected with. Possible values are "tr", "tl",
"bI", "br", "bottom-left", "auto". Default value is
"auto". "tr" stands for top-right.

oncollapse Event must occurs on menu closure

onexpand Event must occurs on menu opening

ongroupactivate HTML: script expression; some group was

activated.

onitemselect

HTML: script expression; some item was
selected.

onmousemove HTML.: script expression; a pointer was moved
within.

onmouseout HTML: script expression; a pointer was moved
away.

onmouseover HTML: script expression; a pointer was moved
onto.

popupWidth Sets minimal width for all lists that will appear.

rendered If "false", this component is not rendered

326

Creating the Component with a Page Tag

Attribute Name Description

selectedLabelClass

selectltemClass

Space-separated list of CSS style class(es)
that are be applied to selected label of DD
menu

Space-separated list of CSS style class(es)
that are be applied to selected item of this
component.

selectltemStyle

CSS style(s) is/are to be applied to selected
item when this component is rendered.

showDelay Delay between event and menu showing.
Default value is "50".

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

submitMode Sets the submission mode for all menu
items of the menu except ones where
this attribute redefined. Possible values are
"ajax","server","none". Default value is "sever".

value Defines representation text for Label used for
menu calls.

verticalOffset Sets the vertical offset between popup list and

label element. Default value is "0". conjunction
point

Table 6.163. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.DropDownMenu
org.richfaces.component.html.HtmIDropDownM

org.richfaces.DropDownMenu

renderer-type

org.richfaces.DropDownMenuRenderer

tag-class

org.richfaces.taglib.DropDownMenuTag

6.45.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dropDownMenu value="Item1">

327

enu

Chapter 6. The RichFaces Comp...

<!--Nested menu components-->
</rich:dropDownMenu>

6.45.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIDropDownMenu;

HtmIDropDownMenu myDropDownMenu = new HtmIDropDownMenu();

6.45.5. Details of Usage

All attributes except "value" are optional. The "value" attribute defines text to be represented.
If you can use the "label" facet, you can even not use the "value" attribute.

Here is an example:

Example:

<f:facet name="label">
<h:graphiclmage value="/images/imgl.png"/>
</f:facet>

Use the "event" attribute to define an event for the represented element that triggers a menu
appearance. An example of a menu appearance on a click can be seen below.

Example:

<rich:dropDownMenu event="onclick" value="ltem1">
<!--Nested menu components-->
</rich:dropDownMenu>

The <rich:dropDownMenu> "submitMode" attribute can be set to three possible parameters:

« Server (default)

328

Details of Usage

Regular form submission request is used.
* Ajax
Ajax submission is used for switching.

¢ None

The "action" and "actionListener" item's attributes are ignored. Menu items don't fire any submits
themselves. The behavior is fully defined by the components nested into items.

@ Note:
As the <rich:dropDownMenu> component doesn't provide its own form, use it
between <h:form> and </h:form> tags.

The "direction” and "jointPoint" attributes are used for defining aspects of menu appearance.

Possible values for the "direction" attribute are:

« top-left - a menu drops to the top and left

« top-right - a menu drops to the top and right

bottom-left - a menu drops to the bottom and left

bottom-right - a menu drops to the bottom and right
* auto - smart positioning activation

Possible values for the "jointPoint" attribute are:

e tr - amenu is attached to the top-right point of the button element

 tl - a menu is attached to the top-left point of the button element

* br - amenu is attached to the bottom-right point of the button element
« bl - amenu is attached to the bottom-left point of the button element
 auto - smart positioning activation

By default, the "direction” and "“jointPoint" attributes are setto "auto” .
Here is an example:

Example:

<rich:dropDownMenu value="File" direction="bottom-right" jointPoint="tr">
<rich:menultem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>

329

Chapter 6. The RichFaces Comp...

<rich:menultem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>
<rich:menuGroup value="Save As...">
<rich:menultem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>
<rich:menultem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>
<rich:menuSeparator id="menuSeparatorl1"/>
<rich:menultem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>
</rich:dropDownMenu>

This is the result:

File Y Links
Mew
Open
Save As... » Text File
Close PDF File
Exit

Figure 6.88. Using the "direction” and "joinPoint" attributes

You can correct an offset of the pop-up list relative to the label using the following attributes:
"horizontalOffset" and "verticalOffset" .

Here is an example:

Example:

<rich:dropDownMenu value="File" direction="bottom-right" jointPoint="tr" horizontal Offset="-
15" vertical Offset="0">
<rich:menultem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>
<rich:menultem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>
<rich:menuGroup value="Save As...">
<rich:menultem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>
<rich:menultem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>
<rich:menuSeparator id="menuSeparator11"/>
<rich:menultem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>
</rich:dropDownMenu>

330

Look-and-Feel Customization

This is the result:

Fil MNeuw
Open
Save As... 1 Text File
Close PDF File
Exit

Figure 6.89. Using the "horizontalOffset" and "verticalOffset” attributes

The "disabled" attribute is used for disabling whole <rich:dropDownMenu> component. In this
case it is necessary to define "disabled" attribute as "true". An example is placed below.

Example:

<rich:dropDownMenu value="File" disabled="true">

</rich:dropDownMenu>

6.45.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dropDownMenu> components at
once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:dropDownMenu> component

6.45.7. Skin Parameters Redefinition

Table 6.164. Skin parameters redefinition for a label <div> element

Skin parameters CSS properties
generalFamilyFont font-family
generalSizeFont ‘ font-size

Table 6.165. Skin parameters redefinition for a selected label

Skin parameters CSS properties

panelBorderColor ‘ border-color

331

Chapter 6. The RichFaces Comp...

Skin parameters

controlBackgroundColor

generalTextColor

CSS properties

‘ background-color

‘ background-colorcolor

Table 6.166. Skin parameters redefinition for a border

Skin parameters

panelBorderColor

additionalBackgroundColor

CSS properties
border-color

background-color

Table 6.167. Skin parameters redefinition for a background

Skin parameters CSS properties
additionalBackgroundColor border-top-color
additionalBackgroundColor border-left-color
additionalBackgroundColor border-right-color

6.45.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-ddmenu-label-select fich-ddmenu-label

File ‘Y Links

New
rich-labektext-decor per rich-ddmenu-labelunselect
| Save As... L 1ext File
Close PDF File
Exit

Figure 6.90. Classes names

Table 6.168. Classes names that define a label

Class name Description

rich-label-text-decor Defines text style for a representation element

rich-ddmenu-label Defines styles for a wrapper <div> element of
a representation element

rich-ddmenu-label-select Defines styles for a wrapper <div> element of
a selected representation element

332

Definition of Custom Style Classes

Class name Description

rich-ddmenu-label-unselect Defines styles for a wrapper <div> element of
an unselected representation element

rich-ddmenu-label-disabled Defines styles for a wrapper <div> element of
a disabled representation element

On the screenshot there are classes names that define styles for component elements.

File QLinks tich-renu-list-border
Mew
Open
Save As... L Text File
Close PDF File
Exit

rich-menu-list-bg
rich-renu-list-strot

Figure 6.91. Classes names

Table 6.169. Classes names that define a popup element

Class name Description

rich-menu-list-border Defines styles for borders

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for
a strut of a popup list

In order to redefine styles for all <rich:dropDownMenu> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the table
above) and define necessary properties in them. An example is placed below:

Example:

.rich-ddmenu-label-select{
background-color: #fae6b0;
border-color: #€5973¢€;

333

Chapter 6. The RichFaces Comp...

This is a result:

File YLinks

Figure 6.92. Redefinition styles with predefined classes
In the example a label select background color and border color were changed.

Also it's possible to change styles of particular <rich:dropDownMenu> component. In this case
you should create own style classes and use them in corresponding <rich:dropDownMenu>
styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

The "itemClass" attribute for <rich:dropDownMenu> is defined as it's shown in the example
below:
Example:

<rich:dropDownMenu ... itemClass="myClass"/>

This is a result:

File Links
S Now

S5ave As...]
Exit

Figure 6.93. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for items was changed.

334

Relevant Resources Links

6.45.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/
dropDownMenu.jsf?c=dropDownMenu] you can see the example of <rich:dropDownMenu>
usage and sources for the given example.

6.46. <rich:menuGroup >

6.46.1. Description

The <rich:menuGroup> component is used to define an expandable group of items inside a
pop-up list or another group.

File Y Links
Neuwr
Open
Save As... L Text File
Close PDF File
Exit

Figure 6.94. <rich:menuGroup> component
6.46.2. Key Features

* Highly customizable look-and-feel

* Grouping of any menu's items

« Pop-up appearance event customization
» Support for disabling

* Smart user-defined positioning

Table 6.170. rich : menuGroup attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

converter Id of Converter to be used or reference to a
Converter
direction Defines direction of the popup sublist to appear

(right, left, auto(Default), left-down, left-up,
right-down, right-up)

disabled If "true" sets state of the item to disabled state.
Default value is "false".

335

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu

Chapter 6. The RichFaces Comp...

Attribute Name Description

event Defines the event on the representation
element that triggers the menu's appearance.
Default value is "onmouseover".

icon Path to the icon to be displayed for the enabled
item state

iconClass Class to be applied to icon element

iconDisabled Path to the icon to be displayed for the disabled
item state

iconFolder Path to the folder icon to be displayed for the

enabled item state

iconFolderDisabled Path to the folder icon to be displayed for the
enabled item state

iconStyle CSS style rules to be applied to icon element

id Every component may have a unique id that is
automatically created if omitted

labelClass Class to be applied to label element

onclose HTML: script expression; group was closed

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onopen HTML: script expression; group was opened

rendered If "false”, this component is not rendered

selectClass Class to be applied to selected items

selectStyle CSS style rules to be applied to selected items

showDelay Delay between event and menu showing.

Default value is "300".

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

value Defines representation text for menultem

336

Creating the Component with a Page Tag

Table 6.171. Component identification parameters

NETIE Value

component-type org.richfaces.MenuGroup

component-class org.richfaces.component.html.HtmIMenuGroup
component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.MenuGroupRenderer

tag-class org.richfaces.taglib.MenuGroupTag

6.46.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:.dropDownMenu value="Active">
<rich:menuGroup value="Active">
<!--Nested menu components-->

</rich:menuGroup>

</rich:dropDownMenu >

6.46.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIMenuGroup;

HtmIMenuGroup myMenuGroup = new HtmIMenuGroup();

6.46.5. Details of Usage

The "value" attribute defines the text representation of a group element in the page.

The "icon" attribute defines an icon for the component. The "iconDisabled" attribute defines an
icon for when the group is disabled. Also you can use the "icon" and "iconDisabled" facets. If
the facets are defined, the corresponding "icon" and “iconDisabled" attributes are ignored and
the facets' contents are used as icons. This could be used for an item check box implementation.

337

Chapter 6. The RichFaces Comp...

Here is an example:

<f:facet name="icon">
<h:selectBooleanCheckbox value="#{bean.property}'/>
</f:facet>

The "iconFolder® and “iconFolderDisabled" attributes are defined for using icons as folder
icons. The "iconFolder" and "iconFolderDisabled" facets use their contents as folder icon
representations in place of the attribute values.

The "direction” attribute is used to define which way to display the menu as shown in the example
below:

Possible values are:

« left - down - a submenu is attached to the left side of the menu and is dropping down

* left - up - a submenu is attached to the left side of the menu and is dropping up

* right - down - a submenu is attached to the right side of the menu and is dropping down
* right - up - a submenu is attached to the right side of the menu and is dropping up

e auto - smart positioning activation

By default, the "direction" attribute is setto "auto" .

Here is an example:

<rich:menuGroup value="Save As..." direction="left-down">

<rich:menultem submitMode="ajax" value="Text File"
action="#{ddmenu.doSaveText}"/>
<rich:menultem submitMode="ajax" value="PDF File"

action="#{ddmenu.doSavePDF}"/>
</rich:menuGroup>

This would be the result:

338

Look-and-Feel Customization

File Y Links
Meuwr
Open
Text File Save As... 3
PDF File Close
Exit

Figure 6.95. Using the "direction" attribute

E] Note:
The <rich:menuGroup> component was designed to be used only for pop-up
menu list creation.

6.46.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:menuGroup> components at once:

* Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:menuGroup> component

6.46.7. Skin Parameters Redefinition

Table 6.172. Skin parameters redefinition for a group

Skin parameters CSS properties
generalFamilyFont ‘ font-family
generalSizeFont ‘ font-size

Table 6.173. Skin parameters redefinition for a disabled group

Skin parameters CSS properties

tabDisabledTextColor color

Table 6.174. Skin parameters redefinition for a label

Skin parameters CSS properties

generalTextColor color

339

Chapter 6. The RichFaces Comp...

6.46.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

File W Links
tich-menu-iterm-folder
New
Open
Save As... k Text File
Close PDF File

rich-menu-iterm-label i rich-menu-group

Figure 6.96. Classes names

Table 6.175. Classes names that define an appearance of group elements

Class name Description

rich-menu-group Defines styles for a wrapper <div> element for
a group

rich-menu-item-label Defines styles for a label of an item

rich-menu-item-icon Defines styles for the left icon of an item

rich-menu-item-folder Defines styles for the right icon of an item

Table 6.176. Classes names that define different states

Class name Description

rich-menu-item-label-disabled Defines styles for a label of a disabled item

rich-menu-item-icon-disabled Defines styles for the left icon of a disabled item

rich-menu-item-folder-disabled Defines styles for the right icon of a disabled
item

rich-menu-group-hover Defines styles for a wrapper <div> element of

a hover group

rich-menu-item-icon-enabled Defines styles for the left icon of an enabled
item
rich-menu-item-icon-selected Defines styles for the left icon of a selected item

In order to redefine styles for all <rich:menuGroup> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

Definition of Custom Style Classes

.rich-menu-item-label-disabled{
font-style: italic;

This is a result:

File Links
% Hew
Save As...] Save
Cloze Save All
Exit

Figure 6.97. Redefinition styles with predefined classes

In the example a disabled label font style was changed.

Also it's possible to change styles of particular <rich:menuGroup> component. In this case you
should create own style classes and use them in corresponding <rich:menuGroup> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color: #achece;
border: none;

The "selectClass" attribute for <rich:menuGroup> is defined as it's shown in the example
below:

Example:

<rich:menuGroup value="Save As..." selectClass="myClass">

341

Chapter 6. The RichFaces Comp...

This is a result:

File Links
. Hew
Open
Save A=... 3 Save

Close Save All
Exit

Figure 6.98. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for selected class was changed.
Also selected class has no border.

6.46.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup]
you can see the example of <rich:menuGroup> usage and sources for the given example.

6.47. <rich:menultem >

6.47.1. Description

The <rich:menultem> component is used for the definition of a single item inside a pop-up list.

File Y Links
e
Open
Save As... k Text File
Close PDF File
Exit

Figure 6.99. <rich:menultem> component

6.47.2. Key Features

« Highly customizable look-and-feel

Different submission modes

» Support for disabling

+ Custom content support

342

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup

Key Features

Table 6.177. rich : menultem attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled If "true" sets state of the item to disabled state.
. Default value is "false".

eventsQueue Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

icon Path to the icon to be displayed for the enabled
item state

iconClass Class to be applied to icon element

iconDisabled Path to the icon to be displayed for the disabled
item state.

iconStyle CSS style rules to be applied to icon element

id Every component may have a unique id that is

automatically created if omitted

343

Chapter 6. The RichFaces Comp...

Attribute Name Description

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

labelClass Class to be applied to label element

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

onclick HTML: a script expression; a pointer button is
clicked
oncomplete JavaScript code for call after request

completed on client side

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event

occurs when you select some menu item

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-

344

Key Features

Attribute Name Description

5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already
reRender Id['s] (in format of call
UlComponent.findComponent()) of

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

selectClass Class to be applied to selected items
selectStyle CSS style rules to be applied to selected items
status ID (in format of call

UlComponent.findComponent()) of Request
status component

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

submitMode Sets the submission mode. Possible values

are "ajax", "server", "none". Default value is

"server".

target Name of a frame where the resource retrieved
via this hyperlink is to be displayed

timeout Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

value The current value for this component

Table 6.178. Component identification parameters

component-type ‘ org.richfaces.Menultem

component-class ‘ org.richfaces.component.html.HtmIMenultem

345

Chapter 6. The RichFaces Comp...

NETIE Value

component-family org.richfaces.DropDownMenu
renderer-type org.richfaces.MenultemRenderer
tag-class org.richfaces.taglib.MenultemTag

6.47.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dropDownMenu>
<rich:menultem value="Active"/>

<rich:dropDownMenu>

6.47.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIMenultem;

HtmIMenultem myMenultem = new HtmIMenultem();

6.47.5. Details of Usage

The "value" attribute defines the text representation for an item element.

There are two icon-related attributes. The "icon" attribute defines an icon. The "iconDisabled"
attribute defines an icon for a disabled item. Also you can use the "icon" and "iconDisabled"
facets. If the facets are defined, the corresponding "icon" and "iconDisabled" attributes are
ignored and the facets content is shown as an icon. It could be used for an item check box
implementation.

Here is an example:

<f:facet name="icon">

346

Details of Usage

<h:selectBooleanCheckbox value="#{bean.property}"'/>
</f:facet>

The <rich:menultem> "submitMode" attribute can be set to three possible parameters:

» Server (default)

Regular form submission request is used.

e Ajax

Ajax submission is used for switching.

¢ None

The "action" and "actionListener" item's attributes are ignored. Menu items don' fire any submits
themselves. The behavior is fully defined by the components nested into items.

For example, you can put any content into an item, but, in this case, you should set the "mode"
attribute as "none" .

Here is an example:

<rich:dropDownMenu>

<rich:menultem submitMode="none">
<h:outputLink value="www.jboss.org"/>
</rich:menultem>

<rich:dropDownMenu>

You can use the "disabled" attribute to set the item state.

Here is an example:

<rich:dropDownMenu>
<rich:menultem value="Disable" disabled="true"/>
<rich:dropDownMenu>

347

Chapter 6. The RichFaces Comp...

E] Note:
The <rich:menultem> component was designed to be used only for pop-up menu
list creation.

Information about the "process" attribute usage you can find here.

6.47.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:menultem> components at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:menultem> component

6.47.7. Skin Parameters Redefinition

Table 6.179. Skin parameters redefinition for an item

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Table 6.180. Skin parameters redefinition for a hovered item

Skin parameters CSS properties
tipBorderColor border-color
tipBackgroundColor ‘ background-color

Table 6.181. Skin parameters redefinition for a disabled item

Skin parameters CSS properties

tabDisabledTextColor ‘ color

Table 6.182. Skin parameters redefinition for a label

Skin parameters CSS properties

generalTextColor ‘ color

6.47.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

348

Definition of Custom Style Classes

File I Links
Newr
Open
Save As... r Text File
tich-menu-iterm-lahe| ose PDF File
Exit

rich-menu-item

Figure 6.100. Classes names

Table 6.183. Classes names that define an appearance of item elements

Class name Description

rich-menu-item Defines styles for a wrapper <div> element for
an item

rich-menu-item-label Defines styles for a label of an item

rich-menu-item-icon Defines styles for the left icon of an item

Table 6.184. Classes names that define different states

Class name Description

rich-menu-item-disabled Defines styles for a wrapper <div> element of
an item

rich-menu-item-enabled Defines styles for a wrapper <div> element of
an enabled item

rich-menu-item-hover Defines styles for a wrapper <div> element of
a hover item

rich-menu-item-label-disabled Defines styles for a label of a disabled item

rich-menu-item-icon-disabled Defines styles for the left icon of a disabled item

rich-menu-item-label-enabled Defines styles for a label of an enabled item

rich-menu-item-icon-enabled Defines styles for the left icon of an enabled
item

rich-menu-item-label-selected Defines styles for a label of a selected item

rich-menu-item-icon-selected Defines styles for the left icon of a selected item

In order to redefine styles for all <rich:menultem> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

349

Chapter 6. The RichFaces Comp...

.rich-menu-item-disabled{
font-style: italic;

This is a result:

File Links
. Hew
Save A=... 3
Close
Exit

Figure 6.101. Redefinition styles with predefined classes
In the example a disabled item font style was changed.

Also it's possible to change styles of particular <rich:menultem> component. In this case you
should create own style classes and use them in corresponding <rich:menultem> styleClass
attributes. An example is placed below:

Example:

.myClass{
border-color: #bed6f8;
background-color: #ffffff;

The "styleClass" attribute for <rich:menultem> is defined as it's shown in the example below:

Example:

<rich:menultem ... selectStyle="myClass">

350

Relevant Resources Links

This is a result:

L[File Links

.j' Hew

Save As... » [Save
Close =l Save Al

Exit

Figure 6.102. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color and border color for selected item
were changed.

6.47.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menultem]
you can see the example of <rich:menultem> usage and sources for the given example.

6.48. <rich:menuSeparator >

6.48.1. Description

The <rich:menuSeparator> component is used for the definition of a horizontal separator that
can be placed between groups or items.

File J Links
e
Open
Save As... r Text File
Close PDF File
Exit

Figure 6.103. <rich:menuSeparator> component

Table 6.185. rich : menuSeparator attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

351

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem

Chapter 6. The RichFaces Comp...

Attribute Name Description

id Every component may have a unique id that is
automatically created if omitted

rendered If "false", this component is not rendered

Table 6.186. Component identification parameters

NETIE Value

component-type org.richfaces.MenuSeparator

component-class org.richfaces.component.html.HtmIMenuSeparator
component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.MenuSeparatorRenderer

tag-class org.richfaces.taglib.MenuSeparatorTag

6.48.2. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:dropDownMenu/>
<rich:menuSeparator/>

<rich:dropDownMenu/>

6.48.3. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIMenuSeparator;

HtmIMenuSeparator myMenuSeparator = new HtmIMenuSeparator();

6.48.4. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

Skin Parameters Redefinition

There are two ways to redefine the appearance of all <rich:menuSeparator> components at
once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:menuSeparator> component

6.48.5. Skin Parameters Redefinition

Table 6.187. Skin parameters redefinition for an item

Skin parameters CSS properties

panelBorderColor border-top-color

6.48.6. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Item 1 Item 2 Item 3
= Active
|4 Active b active
Active [Active |
[T Active [®l Active
Active 3 Active
Ciic=hla N

tich-renu-separator

Figure 6.104. Classes names

Table 6.188. Classes names that define separator element appearance.

Class name Description

rich-menu-separator Defines styles for a wrapper <div> element for
a separator

In order to redefine styles for all <rich:menuSeparator> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-menu-separator{
border-color: #acbece;

353

Chapter 6. The RichFaces Comp...

This is a result:

L 'File Links
:f- Hew
Save A=... [
Close
Exit

Figure 6.105. Redefinition styles with predefined classes

In the example a menu separator border color was changed.

6.48.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/
dropDownMenu.jsf?c=menuSeparator] you can see the example of <rich:menuSeparator>
usage and sources for the given example.

6.49. <rich:effect >

6.49.1. Description

The <rich:effect> utilizes a set of effects provided by the scriptaculous JavaScript library. It
allows to attach effects to JSF components and html tags.

6.49.2. Key Features

* No developers JavaScript writing needed to use it on pages

» Presents scriptaculous JavaScript library functionality

Table 6.189. rich : effect attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

disableDefault Disable default action for target event (append
"return false;" to javascript). Default value is
"false".

354

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator

Creating the Component with a Page Tag

Attribute Name Description

event Event on the component or html tag the effect
is attached to

for Id of the target component.

id Every component may have a unique id that is
automatically created if omitted

name Generated Javascript name.
params Parameters passed to the effect
function. Example

params="{duration:0.2,from:1.0,t0:0.1}"
rendered If "false", this component is not rendered

targetid The id of the element the effect apply to. Might
be component id or client id of jsf component
or html tag. If targetld is not defined the value
of the attribute 'for' or the 'targetld’ option effect
play its role

type Defines the type of effect. Possible values:
"Fade", "Blind", "Opacity".

Table 6.190. Component identification parameters

Name Value

component-type org.richfaces.Effect

component-class org.richfaces.component.html.HtmIEffect
component-family org.richfaces.Effect

renderer-type org.richfaces.EffectRenderer

tag-class org.richfaces.taglib.EffectTag

6.49.3. Creating the Component with a Page Tag

To create the simplest variant of <rich:effect> on a page, use the following syntax:

Example:

<rich:effect for="componentld" type="Appear"/>

6.49.4. Creating the Component Dynamically Using Java

Example:

355

Chapter 6. The RichFaces Comp...

import org.richfaces.component.html.HtmIRichEffect;

HtmIRichEffect myEffect = new HtmlIRichEffect();

6.49.5. Details of Usage

It is possible to use <rich:effect> in two modes:

* attached to the JSF components or html tags and triggered by a particular event. Wiring effect
with JSF components might occur on the server or client. Wiring with html tag is possible only
on the client side

* invoking from the JavaScript code by an effect name. During the rendering, <rich:effect>
generates the JavaScript function with defined name. When the function is called, the effect
is applied

Those a the typical variants of using:

<l-- attaching by event -->

<rich:panel>
<rich:effect event="onmouseout" type="Opacity" params="duration:0.8,from:1.0,t0:0.3" />
.... panel content

</rich:panel>

<!-- invoking from JavaScript -->
<div id="contentDiv">

..... div content
</div>

<input type="button" onclick="hideDiv({duration:0.7})" value="Hide" />
<input type="button" onclick="showDiv()" value="Show" />

<rich:effect name="hideDiv" for="contentDiv" type="Fade" />
<rich:effect name="showDiv" for="contentDiv" type="Appear" />

<l-- attaching to window on load and applying on particular page element -->
<rich:effect for="window" event="onload" type="Appear"
params="targetld:'contentDiv',duration:0.8,from:0.3,t0:1.0" />

356

Details of Usage

Figure 6.106. Initial

The opacity of thiz panel will be =t to 0.3 when the mouse
cursar iz out =et to 1.0f the mouse iz aver. The default
opacity is et ta 0.3 when the page is loaded.

Figure 6.107. When the mouse cursor is over

"name"” attribute defines a name of the JavaScript function that is be generated on a page when the
component is rendered. You can invoke this function to activate the effect. The function accesses
one parameter. It is a set of effect options in JISON format.

"type" attribute defines the type of an effect. For example, "Fade", "Blind", "Opacity". Have a look
at scriptaculous documentation [http://script.aculo.us] for set of available effect.

"for" attribute defines the id of the component or html tag, the effect is attached to. Richfaces
converts the "for" attribute value to the client id of the component if such component is found.
If not, the value is left as is for possible wiring with on the DOM element's id on the client side.
By default, the target of the effect is the same element that effect pointed to. However, the target
element is might be overridden with "targetld" option passed with "params" attribute of with
function paramenter.

"params" attribute allows to define the set of options possible for particurar effect. For example,
‘duration’, 'delay’, 'from’, 'to’. Additionally to the options used by the effect itself, there are two
option that might override the rich:effect attribute. Those are:

« "targetld" allows to re-define the target of effect. The option is override the value of "for
attribute.

« "type" defines the effect type. The option is override the value of "type" attribute.

You can use a set of effects directly without defining the <rich:effect> component on a page if
it's convenient for you. For that, load the scriptaculous library to the page with the following code:

Example:
<a4j:loadScript src="resource://scriptaculous/effect.js" />

If you do use the <rich:effect> component, there is no need to include this library because it's
already here.

357

http://script.aculo.us
http://script.aculo.us

Chapter 6. The RichFaces Comp...

For more information look at RichFaces Users Forum [http://jboss.com/
index.html?module=bb&op=viewtopic&t=119044].

6.49.6. Look-and-Feel Customization

<rich:effect> has no skin parameters and custom style classes, as the component isn't visual.

6.49.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/effect.jsf?c=effect] you can see the
example of <rich:effect> usage.

How to save <rich:effect> status see on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&t=118833].

6.50. <rich:fileUpload >

6.50.1. Description
The <rich:fileUpload> component designed to perform Ajax-ed files upload to server.

4 sdd.. [Stop | ® Clear Al

Cfile_Uplozd1 Hml

Clear
Done

ChfileUpload exe

g

39mMB from 120MB uploaded --- 004

Figure 6.108. <rich:fileUpload> component

6.50.2. Key Features

» ProgressBar shows the status of downloads

* File types, file sizes and files count restrictions
« Multiple files upload support

» Possibility to cancel the request

« One request for every upload

« Automatic uploads

» Supports standard JSF internationalization

 Highly customizable look and feel

358

http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://livedemo.exadel.com/richfaces-demo/richfaces/effect.jsf?c=effect
http://livedemo.exadel.com/richfaces-demo/richfaces/effect.jsf?c=effect
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833

Key Features

« Disablement support

Table 6.191. rich : fileUpload attributes

Attribute Name Description

addControlLabel

ajaxSingle

alt

acceptedTypes Files types allowed to upload

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

addButtonClass CSS style for add button

addButtonClassDisabled CSS style for add button disabled

Defines a label for an add button

Boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only.

For a user agents that cannot display images,
forms, or applets, this attribute specifies
alternate text. The language of the alternate
text is specified by the lang attribute

autoclear

If this attribute is "true" files will be immediately
removed from list after upload completed.
Default value is "false".

binding

The attribute takes a value-binding expression
for a component property of a backing bean

cancelButtonClass

CSS style for cancel button

cancelButtonClassDisabled
cancelEntryControlLabel

cleanButtonClass

CSS style for cancel button disabled
Defines a label for a cancel control

CSS style for clean button

cleanButtonClassDisabled

CSS style for clean button disabled

clearAllControlLabel

Defines a label for a clearAll button

clearControlLabel

disabled

doneLabel

Defines a label for a clear control

Attribute 'disabled' provides a possibility to
make the whole component disabled if its value
equals to "true". Default value is "false".

Defines a label for a done label

fileEntryClass

CSS style upload file entry

359

Chapter 6. The RichFaces Comp...

Attribute Name Description

fileEntryClassDisabled CSS style upload file entry disabled
fileEntryControlClass CSS style for upload enrty control
fileEntryControlClassDisabled CSS style for upload enrty control disabled

fileUploadListener

MethodExpression representing an action
listener method that will be notified after file
uploaded.

id Every component may have a unique id that is
automatically created if omitted
immediate A flag indicating that this component value

must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

immediateUpload

If this attribute is true files will be immediately
uploaded after they have been added in list.
Default value is "false".

listHeight Defines height of file list. Default value is
"210px".

listWidth Defines width of file list. Default value is
"400px".

locale Used for locale definition

maxFilesQuantity

Defines max files count allowed for upload
(optional). Default value is "1".

noDuplicate Defines if component should allow to add files
that were already in list. Default value is "false".

onblur HTML: script expression; the element lost the
focus

onchange HTML: script expression; the element value
was changed

onclear A JavaScript event handler called when the file
entries were cleared

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onerror A JavaScript event handler called when the file

upload was interrupted according to any errors

360

Key Features

Attribute Name Description

onfocus HTML: script expression; the element got the
focus

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML.: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event

occurs when you select some text in a text field.
This attribute may be used with the INPUT and
TEXTAREA elements

onsizerejected

A JavaScript event handler called when the file
uploading was rejected by fiel size overflow

onuploadcanceled

onuploadcomplete

ontyperejected A JavaScript event handler called when the
file type was rejected according to file types
allowed

onupload A JavaScript event handler called on an upload

operation

A JavaScript event handler called when upload
is cancelled

A JavaScript event handler called when upload
is completed

progressLabel
rendered

required

Defines a label for a progress label
If "false", this component is not rendered

If "true”, this component is checked for non-
empty input

requiredMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the

361

Chapter 6. The RichFaces Comp...

Attribute Name Description

validation message for the "required” facility, if
the "required" facility is used

sizeErrorLabel Defines a label for a size error label

status ID (in format of call
UlComponent.findComponent()) of Request
status component

stopControlLabel Defines a label for a stop button

stopEntryControlLabel Defines a label for a stop control

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

transferErrorLabel Defines a label for a transfer error label
uploadButtonClass CSS style for upload button
uploadButtonClassDisabled CSS style for upload button disabled
uploadControlLabel Defines a label for an upload button
uploadData Collection of files uploaded

uploadListClass CSS style for upload list
uploadListClassDisabled CSS style for upload list disabled

validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

Table 6.192. Component identification parameters

Name Value

component-type org.richfaces.component.FileUpload
component-class org.richfaces.component.html.HtmlIFileUpload
component-family org.richfaces.component.FileUpload

362

Creating the Component with a Page Tag

renderer-type ‘ org.richfaces.renderkit.html.FileUploadRenderer

tag-class ‘ org.richfaces.taglib.FileUploadTag

6.50.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:fileUpload />

6.50.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlIFileUpload,;

HtmlFileUpload myFileUpload = new HtmlFileUpload();

6.50.5. Details of Usage

The <rich:fileUpload> component consists of two parts:

« List of files which contains the list of currently chosen files to upload with possibility to manage
every file

« Component controls - the bar with controls for managing the whole component

There are two places where uploaded files are stored:

 Inthe temporary folder (depends on OS) if the value of the createTempFile parameter in Ajax4jsf
Filter section is "true" (by Default)

<init-param>
<param-name>createTempFiles</param-name>
<param-value>true</param-value>

363

Chapter 6. The RichFaces Comp...

</init-param>

* Inthe RAM if the value of the createTempFile parameter in Ajax4jsf Filter section is "false". This
is a better way for storing small-sized files.

The "uploadData" attribute defines the collection of files uploaded. See the example below.

Example:
<rich:fileUpload uploadData="#{bean.data}"/>

The “fileUploadedListener" is called at server side after every file uploaded and used for the
saving files from temporary folder or RAM.

Example:
<rich:fleUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}"'/>

Automatically files uploading could be performed by means of the "immediateUpload" attribute.
If the value of this attribute is "true" files are uploaded automatically once they have been added
into the list. All next files in the list are uploaded automatically one by one. If you cancel uploading
process next files aren't started to upload till you press the "Upload" button or clear the list.

Example:

<rich:fileUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}"
immediateUpload="true"/>

The "autoclear" attribute is used to remove automatically files from the list after upload completed.
See the simple example below.

Example:

364

Details of Usage

<rich:fileUpload uploadData="#{bean.data}" autoclear="true"/>

The <rich:fileUpload> component provides following restrictions:

« By file types, use "acceptedTypes" attribute to define file types accepted by component. In the
example below only files with "html" and "jpg" extensions are accepted to upload.

Example:

<rich:fileUpload accepted Types="html, jpg"/>

« By file size, use the maxRequestSize parameter(value in bytes) inside Ajax4jsf Filter section
in web.xml:

<init-param>
<param-name>maxRequestSize</param-name>
<param-value>1000000</param-value>
</init-param>

« By maxfiles quantity, use the "maxFilesQuantity” attribute to define max number of files allowed
to be uploaded. After a number of files in the list equals to the value of this attribute "Add" button
is disabled and nothing could be uploaded even if you clear the whole list. In order to upload
files again you should rerender the component. As it could be seen in the example below, only
2 files are accepted for uploading.

Example:

<rich:fileUpload maxFilesQuantity="2"/>

This is the result:

365

Chapter 6. The RichFaces Comp...

X Clear Al
Cfile_Uplosd] Hml
Clear
Done
Coifile_Upload2 Hml
Clear

Done

Figure 6.109. <rich:fileUpload> with "maxFilesQuantity" attribute

The <rich:fileUpload> component provides a number of specific event attributes:

e The "onupload" which gives you a possibility to cancel the upload at client side

« The "onuploadcomplete" which is called after all files from the list are uploaded

* The "onuploadcanceled" which is called after upload has been canceled via cancel control
e The "onerror" which is called if the file upload was interrupted according to any errors

In order to customize the information regarding the ongoing process you could use "label" facet
with the following macrosubstitution:

- {B}, {KB}, {MB} contains the size of file uploaded in bytes, kilobytes, megabytes respectively

« { B}, { KB}, { MB} contains the remain file size to upload in bytes, kilobytes, megabytes
respectively

» {ss}, {mm}, {hh} contains elapsed time in seconds, minutes and hours respectively

Example:

<rich:fileUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}'>
<f:facet name="label">
<h:outputText value="{_KB}KB from {KB}KB uploaded --- {mm}:{ss}" />
</f:facet>
</rich:fileUpload>

This is the result:

366

Details of Usage

Cfileldpload exe

g

24741 KB from 1 23706KB uploaded --- 0:3

Figure 6.110. <rich:fileUpload> with "label" facet

You could define labels of the component controls with the help of

"addControlLabel" ,

"clearAllControlLabel" , "clearControlLabel" , "stopEntryControlLabel" , "uploadControlLabel"

attributes. See the following example.

Example:

<rich:fileUpload addControlLabel="Add file..." clearAllControlLabel="Clear all”

clearControlLabel="Clear"

stopEntryControlLabel="Stop process" uploadControlLabel="Upload file"/>

This is the result:

Ao file... % Upload file A Clear all

C:ifile_Uploadt Hml

Clear
Done

Cifile _Uplosd2 Html Cancel

Figure 6.111. <rich:fileUpload> with labels

The <rich:fileUpload> component allows to use sizes attributes:

 "listHeight" attribute specify height for list of files in pixels

 "listWidth" attribute specify width for list of files in pixels

In order to disable the whole component you could use the "disabled" attribute. See the following

example.

367

Chapter 6. The RichFaces Comp...

Example:
<rich:fileUpload disabled="true"/>

This is the result:

Figure 6.112. <rich:fileUpload> with "disabled" attribute

It's possible to handle events for fileUpload from JavaScript code. A simplest example of usage
JavaScript APl is placed below:

Example:

<rich:fileUpload id="upload" disabled="false"/>
<h:commandButton onclick="${rich:component(‘upload’)}.disable(event); return false;"
value="Disable" />

The <rich:fileUpload> component allows to use internationalization method to
redefine and localize the labels. You could use application resource bundle and define

RICH_FILE_UPLOAD_CANCEL_LABEL, RICH_FILE_UPLOAD_STOP_LABEL,
RICH_FILE_UPLOAD_ADD_LABEL, RICH_FILE_UPLOAD_UPLOAD_LABEL,
RICH_FILE_UPLOAD_CLEAR_LABEL, RICH_FILE_UPLOAD_CLEAR_ALL_LABEL,

RICH_FILE_UPLOAD_PROGRESS_LABEL, RICH_FILE_UPLOAD_SIZE_ERROR_LABLE,
RICH_FILE_UPLOAD_TRANSFER_ERROR_LABLE,
RICH_FILE_UPLOAD_ENTRY_STOP_LABEL,
RICH_FILE_UPLOAD_ENTRY_CLEAR_LABEL,
RICH_FILE_UPLOAD_ENTRY_CANCEL_LABEL there.

The <rich:fileUpload> component could work together with Seam framework.
Here [http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/
en/fag/faq.html#fileUploadConf] you can see how to configure Seam Filter in order to handle
<rich:fileUpload> requests.

368

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf

JavaScript API

6.50.6. JavaScript API

Table 6.193. JavaScript API

Function Description

enable() Enables the component
disable() Disables the component
stop() Stops the uploading process
clear() Clears list of files

6.50.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:fileUpload> components at once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:fileUpload> component

6.50.8. Skin Parameters Redefinition

Table 6.194. Skin parameters redefinition for a component

Skin parameters CSS properties
tableBackgroundColor ‘ background-color
tableBorderColor ‘ border-color

Table 6.195. Skin parameters redefinition for a font

Skin parameters CSS properties
generalFamilyFont font-family
generalSizeFont font-size

Table 6.196. Skin parameters redefinition for a toolbar

Skin parameters CSS properties
additionalBackgroundColor background-color
tableBorderColor border-bottom-color
tableBackgroundColor border-top-color

369

Chapter 6. The RichFaces Comp...

Skin parameters CSS properties

tableBackgroundColor ‘ border-left-color

Table 6.197. Skin parameters redefinition for items in the list

Skin parameters CSS properties

tableBorderColor ‘ border-bottom-color

Table 6.198. Skin parameters redefinition for a "Cancel", "Clear" links

Skin parameters CSS properties

generalLinkColor ‘ color

Table 6.199. Skin parameters redefinition for a button

Skin parameters CSS properties

trimColor ‘ background-color

Table 6.200. Skin parameters redefinition for a button border

Skin parameters CSS properties

tableBorderColor ‘ border-color

Table 6.201. Skin parameters redefinition for a highlighted button

Skin parameters CSS properties

trimColor background-color

selectControlColor border-color

Table 6.202. Skin parameters redefinition for a pressed button

Skin parameters CSS properties
selectControlColor border-color
additionalBackgroundColor background-color

Table 6.203. Skin parameters redefinition for "Upload"”, "Clean" buttons

Skin parameters CSS properties

generalTextColor ‘ color

Table 6.204. Skin parameters redefinition for a disabled "Start" button icon

Skin parameters CSS properties

tableBorderColor ‘ color

370

Definition of Custom Style Classes

Table 6.205. Skin parameters redefinition for a disabled "Clear" button icon

Skin parameters CSS properties

tableBorderColor color

6.50.9. Definition of Custom Style Classes

The following picture illustrates how CSS classes define styles for component elements.

rich-fileupload-list-decor

tich-fileupload-toolbar-decar

o= Add... & Upload 2 Clear Al
tich-fileupload-button ile_Uploadt bt
| i Clear
rich-fileupload-fant
[file_Uploacd2 Fml tich-fileupload-table-td | corcel

rich-fileupload-anc

rich-fileupload-list-overflow

Figure 6.113. Classes names

tich-fileupload-ico-start-dis

rich-fileupload-ico-add-dis rich-fileupload-ico-clear-dis
Lrone
Chfile_Uplosd2 Html Cancel

Figure 6.114. Classes names

Table 6.206. Classes names that define a component representation

Class name Description

rich-fileupload-list-decor Defines styles for a wrapper <div> element of
a fileUpload
rich-fileupload-font Defines styles for a font of buttons and items

371

Chapter 6. The RichFaces Comp...

Class name Description
rich-fileupload-toolbar-decor ‘ Defines styles for a toolbar
rich-fileupload-list-overflow ‘ Defines styles for a list of files

Table 6.207. Classes names that define buttons representation

Class name Description

rich-fileupload-button Defines styles for a buttons
rich-fileupload-button-border Defines styles for a border of buttons
rich-fileupload-button-light Defines styles for a highlight of button
rich-fileupload-button-press Defines styles for a pressed button
rich-fileupload-button-dis Defines styles for a disabled button
rich-fileupload-button-selection Defines styles for "Upload”, "Clean" buttons

Table 6.208. Classes names that define the representation of the buttons’
icons

Class name Description

rich-fileupload-ico Defines styles for an icon
rich-fileupload-ico-add Defines styles for a "Add" button icon
rich-fileupload-ico-start Defines styles for a "Upload" button icon
rich-fileupload-ico-stop Defines styles for a "Stop" button icon
rich-fileupload-ico-clear Defines styles for a "Clear" button icon
rich-fileupload-ico-add-dis Defines styles for a disabled "Add" button icon
rich-fileupload-ico-start-dis Defines styles for a disabled "Upload" button
icon
rich-fileupload-ico-clear-dis Defines styles for a disabled "Clear" button icon

Table 6.209. Classes names that define list items representation

Class name Description

rich-fileupload-table-td Defines styles for a wrapper <td> element of a
list items

rich-fileupload-anc Defines styles for "Cancel", "Stop", "Clear"
links

In order to redefine styles for all <rich:fileUpload> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

372

Definition of Custom Style Classes

.rich-fileupload-anc{
font-weight:bold;
text-decoration:none;

This is the result:

Ploag ~ ear
o L & Upload Clear Al

C:ifile_Uploadt Hml
Done

Clear

Cifile _Uplosd2 Html Cancel

Figure 6.115. Redefinition styles with predefined classes

In the example above the font weight and text decoration for "Cancel" and "Clear" links are
changed.

Also it's possible to change styles of particular <rich:fileUpload> component. In this case you
should create own style classes and use them in the corresponding <rich:fileUpload> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight:bold;

The "addButtonClass" attribute for <rich:fileUpload> is defined as it's shown in the example
below:

Example:

<rich:fileUpload ... addButtonClass="myClass"/>

373

Chapter 6. The RichFaces Comp...

This is the result:

&= Add...

Figure 6.116. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style for "Add" button is changed.
6.50.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload] you can
see an example of <rich:fileUpload> usage and sources for the given example.

6.51. <rich:gmap >

6.51.1. Description

Component that presents the Google map in the JSF applications.

T Y

Ay

]

Figure 6.117. <rich:gmap> component

374

http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload
http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload

Key Features

6.51.2. Key Features

» Presents all the Google map functionality
« Highly customizable via attributes

» No developers JavaScript writing needed to use on a pages

Table 6.210. rich : gmap attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

enableContinuousZoom Enables continuous smooth zooming for
selected browsers. Default value is "false".

enableDoubleClickZoom Enables zooming in by a double click. Default
value is "false".

enableDragging Enables a map dragging with the mouse.
Default value is "true".

enablelnfoWindow Enables Info Window. Default value is "true".

gmapKey Google Map key. A single Map API key is valid
for a single "directory" on your web server.
Default value is "internal".

gmapVar The JavaScript variable that is used to access
the Google Map API. If you have more than one
Google Map components on the same page,
use individual key for each of them. The default
variable name is "map" (without quotes).

id Every component may have a unique id that is
automatically created if omitted

lat Initial latitude coordinate in degrees, as a
number between -90 and +90. Default value is
"37.9721046".

Ing Initial longitude coordinate in degrees, as a

number between -180 and +180. Default value
is "-122.0424842834".

locale Used for locale definition. Default value is
"getDefaultLocale()".

mapType Initial map type. The possible values
are G_NORMAL_MAP, G_SATELLITE_MAP,
G_HYBRID_MAP. Default value is
"G_SATELLITE_MAP".

375

Chapter 6. The RichFaces Comp...

Attribute Name Description

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

oninit JavaScript code invoked just after the Google
Map object is initiated.

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

rendered If "false", this component is not rendered

showGLargeMapControl Shows the GLarge control. Default value is
"true".

showGMapTypeControl Shows the Type switch control. Default value
is "true".

showGScaleControl It shows the scale control. Default value is
"true"”.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

warningMessage

Zzoom

The warning message that appears if a
browser is not compatible with Google Map.
Default value is "Your browser does not
support Google Maps".

Initial zoom level as a number between 1 and
18. Default value is "17".

376

Creating the Component with a Page Tag

Table 6.211. Component identification parameters

Name Value

component-type org.richfaces.Gmap

component-class org.richfaces.component.html.HtmIGmap
component-family org.richfaces.Gmap

renderer-type org.richfaces.GmapRenderer

tag-class org.richfaces.taglib.GmapTag

6.51.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:gmap gmapKey="..."/>

6.51.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIGmap;

HtmIGmap myMap = new HtmIGmap();

6.51.5. Details of Usage

To use Google Map in your application, generate a key on Google Map official resource [http://
google.com/apis/maps]. One key could be used for one directory on the server.

Here are the main settings of initial rendering performed with a component map that are accessible
with the following attributes:

« "zoom" defines an approximation size (boundary values 1-18)
* "lat" specifies an initial latitude coordinate in degrees, as a number between -90 and +90

* "Ing" specifies an initial longitude coordinate in degrees, as a number between -180 and +180

377

http://google.com/apis/maps
http://google.com/apis/maps
http://google.com/apis/maps

Chapter 6. The RichFaces Comp...

* "mapType" specifies a type of a rendered map (G_NORMAL_MAP, G_SATELLITE_MAP
(DEFAULT), G_HYBRID_MAP)

For example, the city of Paris is shown after rendering with the following initial settings: "lat" =
48.44, "Ing" = 2.24 and "zoom" = 5.

.
TN (NI BT

" e I el L1 .r'f
Bnm;llas /]

; 3“?! Elmn.
Belglé = “h
Belglque . -

v
[1
2
3
g

1]
He
o

+] (<]

GE:

; o E'gj" o

Figure 6.118. <rich:gmap> initial rendering

It's also possible to set accessible controls on the map with the help of the attributes:

« "showGMapTypeControl" determines whether the controls for a map type definition are
switched on

» "showGScaleControl" determines whether the controls for scaling are switched on

+ "showGLargeMapControl" determines whether the control for map scale rendering is rendered

378

Details of Usage

| Map | Satelite || Hybrid

?ﬁ -~ showGMapTypeControl
W, |
{ vt "_lu

showGLargehapControl

Figure 6.119. <rich:gmap> accessible controls

To set all these parameters and perform some activity (Zoom In/Out etc.) is possible with your
JavaScript, i.e. declare a hame of an object on a map in the "gmapVar" attribute and then call
the object directly with APl Google Map.

For example, to approximate a map for "gmapVar" = "map" declared inside the component, call
map.zoomin() on an event.

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

e onmouseover
» onclick
e onmouseout

* etc.

379

Chapter 6. The RichFaces Comp...

<f.view contentType="text/html">...</f:view>

6.51.6. Look-and-Feel Customization

<rich:gmap> component isn't tied to skin parameters, as there is no additional elements on it,
except the ones provided with Google Map.

6.51.7. Definition of Custom Style Classes

Table 6.212. Classes names that define a component appearance

Class name Description

rich-gmap Defines styles for a wrapper <div> element of
a component

In order to redefine styles for all <rich:gmap> components on a page using CSS, it's enough to
create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-gmap{
font-style:italic;

This is a result:

380

Definition of Custom Style Classes

m;
l

I
T
i E_],,
*‘g:

] A
Bnmellas e dp T
i-.

2]
e
4]

Belglé

+] <

e

e Limoges l.'.‘.l-urmnnt-Furral'hd it Lyon

s '\ gﬂﬂt‘ﬁf 22007

Figure 6.120. Redefinition styles with predefined classes

In the example the font style for buttons was changed.

Also it's possible to change styles of particular <rich:gmap> component. In this case you should
create own style classes and use them in corresponding <rich:gmap> styleClass attributes. An
example is placed below:

Example:

.myClass{
font-weight:bold;

381

Chapter 6. The RichFaces Comp...

The "styleClass" attribute for <rich:gmap> is defined as it's shown in the example below:

Example:

<rich:gmap ... styleClass="myClass"/>

This is a result:

Figure 6.121. Redefinition styles with own classes and "styleClass"
attributes

As it could be seen on the picture above, the font weight for buttons was changed.
6.51.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap] you can see the
example of <rich:gmap> usage and sources for the given example.

6.52. <rich:virtualEarth >

6.52.1. Description

The component presents the Microsoft Virtual Earth map in the JSF applications.

Road

Aerial

Hybrid

Aarkspur

Figure 6.122. <rich:virtualEarth> component

6.52.2. Key Features

« Presents the Microsoft Virtual Earth map functionality

382

http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap
http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap

Key Features

« Highly customizable via attributes

* No developers JavaScript writing is needed to use it on a pages

Table 6.213. rich : virtualEarth attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

dashboardSize Initial map type. The possible values are
Normal,Small,Tiny. Default value is "Normal".

id Every component may have a unique id that is
automatically created if omitted

lat Initial latitude coordinate in degrees, as a
number between -90 and +90. Default value is
"37.9721046".

Ing Initial longitude coordinate in degrees, as a
number between -180 and +180. Default value
is "-122.04248428346".

mapStyle Navigation control size. Possible values are
"Road", "Aerial", "Hybrid", "Birdseye". Default
value is Road

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onLoadMap JavaScript code invoked just after the Virtual
Earth object is initiated.

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

383

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmouseup HTML: script expression; a pointer button is
released

rendered If "false", this component is not rendered

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

var The JavaScript variable that is used to access

the Virtual Earth API. If you have more than one
Virtual Earth components on the same page,
use individual key for each of them. Default
value name is "map".

version Virtual earth version, Default value is "6".

zoom Initial zoom level as a number between 1 and
18. Default value is "17".

Table 6.214. Component identification parameters

Name Value

component-type org.richfaces.VirtualEarth

component-class org.richfaces.component.html.HtmlVirtualEarth
component-family org.richfaces.VirtualEarth

renderer-type org.richfaces.VirtualEarthRenderer

tag-class org.richfaces.taglib.VirtualEarthTag

6.52.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:virtualEarth lat="..." Ing="..."/>

6.52.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlVirtualEarth;

384

Details of Usage

HtmlVirtualEarth myMap = new HtmlVirtualEarth();

6.52.5. Details of Usage

Here are the main settings of initial rendering performed with a component map that are accessible
with the following attributes:

« "zoom" defines an approximation size (boundary values 1-18)

« "lat" specifies an initial latitude coordinate in degrees, as a number between -90 and +90

* "Ing" specifies an initial longitude coordinate in degrees, as a number between -180 and +180
» "dashboardSize" specifies a type of a rendered map (Normal, Small, Tiny)

For example, the city of Paris is shown after rendering with the following initial settings: "lat" =
48.833, "Ing" =2.40 and "zoom" =11.

Figure 6.123. <rich:virtualEarth> initial rendering
Code for this example is placed below:

Example:

<rich:virtualEarth style="width:800px;" id="vm" lat="48.833" Ing="2.40"
dashboardSize="Normal" zoom="11" mapStyle="Hybrid" var="map" />

To set all these parameters and perform some activity (Zoom In/Out etc.) is possible with your
JavaScript, i.e. declare a name of an object on a map in the "var" attribute and then call the
object directly with APl Microsoft Virtual Earth map.

For example, to approximate a map for "var® = "map" declared inside the component, call
map.Zoomin() on an event.

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

* onmouseover

385

Chapter 6. The RichFaces Comp...

» onclick
e onmouseout

* etc.

@ Note
Virtual Earth does not support XHTML format of the page. Thus, if you use Facelets
and JSF 1.2, do not forget to put the following tags somewhere on the page:

<f.view contentType="text/html">...</f:view>

6.52.6. Look-and-Feel Customization

<rich:virtualEarth> component isn't tied to skin parameters, as there is no additional elements
on it, except the ones provided with Virtual Earth map.

6.52.7. Definition of Custom Style Classes

Table 6.215. Classes names that define a component appearance

Class name Description

rich-virtualEarth Defines styles for a wrapper <div> element of
a component

In order to redefine styles for all <rich:virtualEarth> components on a page using CSS, it's
enough to create class with the same name and define necessary properties in it.

To change styles of particular <rich:virtualEarth> components, define your own style class in
the corresponding <rich:virtualEarth> attribute.

6.52.8. Relevant Resources Links

Here [http://msdn2.microsoft.com/en-us/library/bb429619.aspx] you can found additional
information about Microsoft Virtual Earth map.

6.53. <rich:inplacelnput >

6.53.1. Description

The <rich:inplacelnput> is an input component used for displaying and editing data inputted.

386

http://msdn2.microsoft.com/en-us/library/bb429619.aspx
http://msdn2.microsoft.com/en-us/library/bb429619.aspx

Key Features

The opening of a new click to edit by Ford Maotar Company involved rehiring personnel.

The apening of & new ﬁa,j,:.r\y.- o thd Matar Campany invalved rehiring personnel.

The opening of & new ’rractn:nr'f by Ford Motor Company involved rehiving personnel.

Figure 6.124. <rich:inplacelnput> component

6.53.2. Key Features

» View/changed/edit states highly customizable representations

» Changing state event customization

 Possibility to call custom JavaScript function on state changes

* Optional "inline" or "block™” element rendering on a page

» Edit mode activation when the component gets focus with the "Tab"

 Sizes synchronizations between modes

* Controls customization

Table 6.216. rich : inplacelnput attributes

Attribute Name Description

binding

cancelControllcon

changedClass

The attribute takes a value-binding expression
for a component property of a backing bean

Defines custom cancel icon

CSS style class for changed state

changedHoverClass

controlClass

controlHoverClass

CSS style class for hovered text in changed
state

CSS style class for controls

CSS style class for hovered control

controlPressedClass

CSS style class for pressed press controls

controlsHorizontalPosition

controlsVerticalPosition

Positions the controls horizontally. Possible
values are "left", "center", "right". Default value
is "right".

Positions the controls vertically. Possible
values are "bottom", "top"

387

Chapter 6. The RichFaces Comp...

Attribute Name Description

converter Id of Converter to be used or reference to a
Converter
converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter

defaultLabel The attribute is used to display text while value
is undefined

editClass CSS style class for edit state

editEvent Provides an option to assign an JavaScript

action that initiates the change of the state.
Default value is "onclick".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations

phase
inputWidth Sets width of the input field
layout Defines how the component is displayed in the

layout. Possible values are "block”, "inline". .
Default value is "inline".

maxInputWidth Sets the maximum width of the input field.
Default value is "500px".

mininputWidth Sets the minimum width of the input field.
Default value is "40px".

onblur HTML: script expression; the element lost the
focus

onchange HTML: script expression; the element value

was changed

onclick HTML: a script expression; a pointer button is
clicked
ondblclick HTML: a script expression; a pointer button is

double-clicked

oneditactivated Provides a possibility to assign JavaScript to be
executed when edit state is activated

388

Key Features

Attribute Name Description

oneditactivation

Provides a possibility to assign JavaScript on
edit state activation

oninputdblclick

oninputkeydown

onfocus HTML: script expression; the element got the
focus
oninputclick HTML: a script expression; a pointer button is

clicked

HTML: a script expression; a pointer button is
double-clicked

HTML: a script expression; a key is pressed
down

oninputkeypress

oninputkeyup

HTML: a script expression; a key is pressed
and released

HTML: a script expression; a key is released

oninputmousedown

oninputmousemove

oninputmouseout

HTML: script expression; a pointer button is
pressed down

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

oninputmouseover

HTML: a script expression; a pointer is moved
onto

oninputmouseup

HTML: script expression; a pointer button is
released

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved

onto

389

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; the onselect event
occurs when you select some menu item

onviewactivated Provides a possibility to assign JavaScript to be
executed when view state is activated

onviewactivation Provides a possibility to assign JavaScript on
view state activation

rendered If "false”, this component is not rendered

required If "true”, this component is checked for non-

empty input

requiredMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

saveControllcon

Defines custom save icon

selectOnEdit

Makes the input field select when switched to
edit state. Default value is “false"

showControls

Serves to display "save" and "cancel" controls.
Default value is "false".

validatorMessage

value

valueChangelListener

styleClass Corresponds to the HTML class attribute
tabindex Serves to define the tabbing order
validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

The current value of this component

Listener for value changes

viewClass

CSS style class for view state

viewHoverClass

CSS style class for hovered text in view state

390

Creating the Component with a Page Tag

Table 6.217. Component identification parameters

Name Value

component-type org.richfaces.inplacelnput

component-class org.richfaces.component.html.HtmlInplacelnput
component-family org.richfaces.inplacelnput

renderer-type org.richfaces.renderkit.inplacelnputRenderer
tag-class org.richfaces.taglib.inplacelnputTag

6.53.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

<rich:inplacelnput value="#{bean.value}"/>

6.53.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.inplacelnput;

Htmlinpacelnput mylnplacelnput = new Inplacelnput();

6.53.5. Details of Usage

The <rich:inplacelnput> component was designed to facilitate displaying and inputting(editing)
some data.

The "value" attribute is a value-binding expression for the current value of the component.

The component has three functional states:

» View state displays default label with the value taken from "value" or "defaultLabel" attributes.

If the initial value of the "value" attribute is "null" or empty string the "defaultLabel" attribute
is used to define default label.

391

Chapter 6. The RichFaces Comp...

Example:

<rich:inplacelnput value="#{bean.value}" defaultLabel="click to edit"/>

In the example above the "value" attribute is not initialized therefore "click to edit" text, that
"defaultLabel" , contains is displayed.

This is the result:

The opening of a newy click to edit by Ford Maotar Company invalved rehiring personnel.

Figure 6.125. View state

« Edit state - input representation to allow value edit

The opening of & neswy ﬁac‘tnry v xhrd Mator Campany invalved rehiring personnel.

Figure 6.126. Edit state

» Changed state - value representation after it was changed

The opening of & nesy ?actl:ury by Ford Motor Company invalved rehiring personnel.

Figure 6.127. Changed state

392

Details of Usage

The "editEvent" attribute provides an option to assign a JavaScript action to initiate the change
of the state from view/changed to edit. The default value is "onclick".

Example:
<rich:inplacelnput value="#{bean.value}" editEvent="ondblclick"/>

The <rich:inplacelnput> component provides specific event attributes:

 "oneditactivation" which is fired on edit state activation

« "oneditactivated" which is fired when edit state is activated

 "onviewactivation" which is fired on view state activation

» "onviewactivated" which is fired after the component is changed to representation state

Example:

<rich:inplacelnput value="#{bean.value}" oneditactivation="if (confirm('Are you sure you want to
change value?")){return false;}" />

The given code illustrates how "oneditactivation™ attribute works, namely when the state is being
changed from view to edit, a confirmation window with a message "Are you sure you want to
change value?" comes up.

Using the boolean "selectOnEdit" attribute set to true, the text in the input field will be selected
when the change from view/changed state to edit occurs.

This is the result:

o <))

Figure 6.128. Usage of the "selectOnEdit" attribute

If the <rich:inplacelnput> loses focus, input data is saved automatically and the component
displays a new value. Additionally, the data is saved when "Enter" is pressed. Nevertheless, you
can use the "showControls" attribute, which makes "Save" and "Cancel" buttons appear next
to the input field. If the controls are used, data is not saved automatically when the form loses

393

Chapter 6. The RichFaces Comp...

focus: user has to confirm that he/she wants to save/discard the data explicitly. In both cases(with
controls or without them) the input data can be discarded by pressing "Esc" key.

Example:

<rich:inplacelnput value="#{bean.value}" showControls="true"/>

ﬁan:tn:nry Jﬂr

Figure 6.129. Usage "showControls" attribute
You can also position the controls relatively to the input field, by means of

« The "controlsHorizontalPosition" attribute with "left", "right" and "center" definitions

e The "controlsVerticalPosition " attribute with "bottom", "center" and "top" definitions

Example:

<rich:inplacelnput value="#{bean.value}" showControls="true
controlsVerticalPosition="bottom" controlsHorizontalPosition="left"/>

This is the result:

actony

|}

Figure 6.130. Positioning of "Save" and "Cancel" buttons

Itis also possible to use "controls" facet in order to replace the default controls with facets content.
See the example below.

Example:

394

Details of Usage

<rich:inplacelnput defaultLabel="Click here to edit” showControls="true"
controlsHorizontalPosition="left" controlsVerticalPosition="bottom" id="inplacelnput">

<f:facet name="controls">

<button onclick="#{rich:component('inplacelnput’)}.save();" type="button">Save</button>
<button onclick="#{rich:component(‘inplacelnput’)}.cancel();" type="button">Cancel</

button>

</f:facet>
</rich:inplacelnput>

This is the result:

factary
Save | Cancel |

Figure 6.131. "controls" facet usage

Redefinition of the "save" and "cancel" icons can be performed using "saveControllcon" and
"cancelControllcon" attributes. You need to define the path to where your images are located.

Example:

<rich:inplacelnput value="#{bean.value}" defaultLabel="click to edit'
showControls="true"
controlsHorizontalPosition="left"
controlsVerticalPosition="top"
saveControllcon="/images/cancel.qgif"
cancelControllcon="/images/save.gif"/>

2T -

Figure 6.132. Redefining of "save" and "cancel" buttons

395

Chapter 6. The RichFaces Comp...

The <rich:inplacelnput> component could be rendered with or <div> elements to
display its value. In order to change default output, use "layout" attribute with "block"
value.

The <rich:inplacelnput> component supports standard “"tabindex" attribute. When the
component gets focus the edit mode is activated.

The "inputWidth" , "minlnputWidth" , "maxInputWidth" attributes are provided to specify the
width, minimal width and maximal width for the input element respectively.

Table 6.218. Keyboard usage

Keys and combinations Description

ENTER Saves the input data, and changes the state
from edit to changed

ESC Changes the state from edit to view or
changed, value is not affected

TAB Switches between the components

6.53.6. JavaScript API

Table 6.219. JavaScript API

Function Description

edit() Changes the state to edit

cancel() Changes its state to the previous one before
editing (changed or view)

save() Changes its state to changed with a new value
getValue() Gets the current value
setValue(newValue) Sets the current value

6.53.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:inplacelnput> components at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:inplacelnput> component

Skin Parameters Redefinition

6.53.8. Skin Parameters Redefinition

Table 6.220. Skin parameters redefinition for "save" and "cancel" controls

Skin parameters CSS properties

tabBackgroundColor background-color
panelBorderColor border-color
panelBorderColor border-color

Table 6.221. Skin parameters redefinition for view state

Skin parameters CSS properties

editorBackgroundColor background-color

generalTextColor border-bottom-color

Table 6.222. Skin parameters redefinition for "Changed" state

Skin parameters CSS properties
editorBackgroundColor ‘ background-color
generalTextColo ‘ border-bottom-color

Table 6.223. Classes names that define input field look and feel in edit state

Skin parameters CSS properties
editBackgroundColor background-color
panelBorderColor border-color

6.53.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

397

Chapter 6. The RichFaces Comp...

rich-inplace-input-view-howvar rich-inplace-view

lick to edit

fich-inplace-field fich-inplace-contral

fractary [+x]

rich-inplace-input-changed-hover

Eau:tu:ury

fich-inplace-shadow

fich-inplace-changed

Figure 6.133. Classes names

Table 6.224. Class name for the view state

Class name Description
rich-inplace-view ‘ Defines styles for the view state
rich-inplace-input-view-hover ‘ Defines styles for hovered text in the view state

Table 6.225. Class name for the input field in edit state

Class name Description

Defines styles for input field look and feel in edit
state

rich-inplace-field

Table 6.226. Class name for the "Changed" state

Class name Description

rich-inplace-changed Defines styles for the "Changed" state

Defines styles for the hovered text in the
"Changed" state

rich-inplace-input-changed-hover

Table 6.227. Classes names "save" and "cancel" controls in Edit state

Class name Description

rich-inplace-control Defines styles for the controls

398

Definition of Custom Style Classes

Class name Description

rich-inplace-control-press Defines styles for the controls when either of
the buttons is pressed

rich-inplace-shadow-size Defines size of the shadow

rich-inplace-shadow-tl Defines styles for the shadow in the top left
corner

rich-inplace-shadow-tr Defines styles for the shadow in the top right
corner

rich-inplace-shadow-bl Defines styles for the shadow in the bottom left
corner

rich-inplace-shadow-br Defines styles for the shadow in the bottom
right corner

In order to redefine styles for all <rich:inplacelnput> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-inplace-field {
font-style: italic;

This is the result:

facion

Figure 6.134. Redefinition styles with predefined classes
In the shown example the font in edit state is changed to bold.

It's aslo possible to change styles of a particular <rich:inplacelnput> component. In this case you
should create own style classes and use them in corresponding <rich:inplacelnput> styleClass
attributes. An example is placed below:

Example:

399

Chapter 6. The RichFaces Comp...

.myClass {
color: #008cca,;

The "viewClass" attribute for the <rich:inplacelnput> is defined as it's shown in the example
below:

Example:
...<rich:inplacelnput value="click to edit" styleClass="myClass"/>

This is a result:

click to edit

Figure 6.135. Modificaton of alook and feel with own classes and styleClass
attributes

As it could be seen on the picture above, the font color of the text on the component was changed.
6.53.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/inplacelnput.jsf?c=inplacelnput] you
can see the example of <rich:inplacelput> usage and sources for the given example.

6.54. <rich:inplaceSelect >

6.54.1. Description

The <rich:inplaceSelect> is used for creation select based inputs: it shows the value as text in
one state and enables editing the value, providing a list of options in another state

400

http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceInput.jsf?c=inplaceInput
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceInput.jsf?c=inplaceInput

Key Features

The opening of a new click to edit Ford Company involved rehiring personnel.

The opening of a new ||:Ii|:k to edit =~ 1 Company invalved rehiring personnel,
il well
factory
newspaper

Figure 6.136. Three states of <rich:inplaceSelect> component

6.54.2. Key Features

« View/changed/edit states highly customizable representations

« Optional "inline" or "block" element rendering on a page

« Changing state event customization

» Possibility to call custom JavaScript function on state changes

« Edit mode activation when the component got focus with the "Tab"
 Sizes synchronizations between modes

 Highly customizable look and feel

Table 6.228. rich : inplaceSelect attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

cancelControllcon Defines custom cancel icon
changedClass CSS style class for changed state
controlClass CSS style class for controls
controlHover CSS style class for hovered control
controlPressed CSS style class for controls pressed

controlsHorizontalPosition

401

Chapter 6. The RichFaces Comp...

Attribute Name Description

The attribute positions the controls horizontally.
Possible values are 'right","center","left".
Default value is "right".

controlsVerticalPosition The attribute positions the controls vertically.
Possible values are "bottom","top"

converter Id of Converter to be used or reference to a
Converter
converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter

defaultLabel The attribute is used to display text while value
is undefined

editClass CSS style class for edit state

editEvent The attribute provides an option to assign an

JavaScript action that initiates the change of
the state. Default value is "onclick".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

layout Defines how the component is displayed in
the layout. Possible values are "block”, "inline".
Default value is "inline".

listHeight The attribute defines the height of option list.
Default value is "200px".

listWidth The attribute defines the width of option list.
Default value is "200px".

maxSelectWidth Sets the maximum width of the select element.
Default value is "200px".

minSelectWidth Sets the minimum width of the select element.
Default value is "100px".

onblur HTML: script expression; the element lost the
focus
onchange HTML: script expression; the element value

was changed

402

Key Features

Attribute Name Description

onclick HTML: a script expression; a pointer button is
clicked
ondblclick HTML: a script expression; a pointer button is

double-clicked

oneditactivated

The attributes provide a possibility to assign
JavaScript to be executed when edit state is
activated

oneditactivation

The attributes provide a possibility to assign
JavaScript on edit state activation

onfocus HTML.: script expression; the element got the
focus

oninputblur HTML.: script expression; the element lost the
focus

oninputclick HTML: a script expression; a pointer button is

clicked

oninputdblclick

oninputfocus

oninputkeydown

HTML: a script expression; a pointer button is
double-clicked

HTML: script expression; the element got the
focus

HTML: a script expression; a key is pressed
down

oninputkeypress

HTML: a script expression; a key is pressed
and released

oninputkeyup

HTML: a script expression; a key is released

oninputmousedown

oninputmousemove

oninputmouseout

HTML: script expression; a pointer button is
pressed down

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

oninputmouseover

HTML: a script expression; a pointer is moved
onto

oninputmouseup

HTML: script expression; a pointer button is
released

onkeydown HTML: a script expression; a key is pressed
down
onkeypress HTML: a script expression; a key is pressed

and released

403

Chapter 6. The RichFaces Comp...

Attribute Name Description

requiredMessage

onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; the onselect event
occurs when you select some menu item

onviewactivated The attributes provide a possibility to assign
JavaScript to be executed when view state is
activated

onviewactivation The attributes provide a possibility to assign
JavaScript on view state activation

openOnEdit The attribute opens the list once edit activated.
Default value is "true".

rendered If "false", this component is not rendered

required If "true", this component is checked for non-

empty input
A ValueExpression enabled attribute that, if
present, will be used as the text of the

validation message for the "required” facility, if
the "required" facility is used

saveControllcon

Defines custom save icon

showControls

selectOnEdit The attribute make the input field select when
switched to edit state. Default value is "false".
selectWidth Sets width of the select element

The attribute serves to display "save" and
"cancel" controls. Default value is "false".

tabindex

The attribute serves to define the tabbing order

validator

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

404

Creating the Component with a Page Tag

Attribute Name Description

validatorMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value
valueChangelListener

viewClass

The current value of this component
Listener for value changes

Style class for view state

viewHover

Table 6.229. Component identification

CSS style class for hovered text in view state

parameters

Name Value

component-type

org.richfaces.InplaceSelect

component-class
component-family

renderer-type

org.richfaces.component.html.HtmlInplaceSele
org.richfaces.InplaceSelect

org.richfaces.renderkit.InplaceSelectRenderer

tag-class

org.richfaces.taglib.InplaceSelectTag

6.54.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

<rich:inplaceSelect value="#{bean.inputValue}">

<f:selectltem itemValue="1" itemLabel="factory"/>

</rich:inplaceSelect>

6.54.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.inplaceSelect;

HtmlinpaceSelect mylnplaceSelect = new InplaceSelect();

405

"

—

Chapter 6. The RichFaces Comp...

6.54.5. Details of Usage

The "value" attribute is a value-binding expression for the current value of the component.

The <rich:inplaceSelect> component has three functional states:

* View state displays default label with the value taken from "value" or "defaultLabel" attributes.

If the initial value of the "value" attribute is "null" or empty string the "defaultLabel" attribute
is used to define default label.

Example:

<rich:inplaceSelect value="#{bean.value}" defaultLabel="click to edit">
<f:selectltems value="#{bean.selectltems}" />
</rich:inplaceSelect>

In the example above the "value" attribute is not initialized therefore "click to edit" text, that
"defaultLabel" , contains is displayed.

This is the result:

The opening of a new click to edit Ford Company invaolved rehiring personn

Figure 6.137. View state

» Edit state - select representation to allow value edit

The opening of a new ||:Ii|::I=: to edit ~ 41 Company involved rehiring persor
ail well

factary
newspaper

Figure 6.138. Edit state

« Changed state - value representation after it was changed

406

Details of Usage

Figure 6.139. Changed state
You can form the list of the options using <f:selectltem/> and <f:selectltems/> facets.
Please, see the example below.

Example:

<rich:inplaceSelect value="#{bean.inputValue}" defaultLabel="click to edit">
<f:selectltems value="#{bean.selectltems}"/>
<f:selectltem itemValue="1" itemLabel="factory"/>
<f:selectltem itemValue="2" itemLabel="newspaper"/>
</rich:inplaceSelect>

In the example above the value of the selected item is available via "value" attribute.

The "editEvent" attribute provides an option to assign an JavaScript action that initiates the
change of the state from view to edit. The default value is "onclick".

Example:

<rich:inplaceSelect value="#{bean.inputValue}' defaultLabel="Double Click to edit"
editEvent="ondblclick">

<f:selectltems value="#{demo.selectltems}" />
</rich:inplaceSelect>

The <rich:inplaceSelect> component provides specific event attributes:

"oneditactivation" fired on edit state activation

"oneditactivated" fired when edit state is activated

"onviewactivation" fired on view state activation

» "onviewactivated" fired after the component is changed to representation state

407

Chapter 6. The RichFaces Comp...

Example:

<rich:inplaceSelect value="#{bean.inputValue}" oneditactivation="if (confirm('Are you sure you
want to change value?")){return false;}">

<f:selectltems value="#{demo.selectltems}" />
</rich:inplaceSelect>

The given code illustrates how "oneditactivation" attribute works, namely when the state is being
changed from view to edit, a confirmation window with a message "Are you sure you want to
change value?" comes up.

Another useful attribute boolean is "openOnEdit" , when set to "true" it opens drop-down list with
items after edit state is activated.

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true" openOnEdit="true">
<f:selectltems value="#{bean.selectltems}"/>
</rich:inplaceSelect>

This is the result:

fil el -
ail weell

factory

MEwSPaper

Figure 6.140. The "selectOnEdit" attribute usage

Nowever, if you want to confirm the data saving explicitly you can use the "showControls"
attribute, which makes "Save" and "Cancel" buttons (displayed as icons) appear next to the input
field. Edit state can be deactivated by pressing "Esc" key. An option in the drop-drown list can be
also selected by pressing "Enter".

Example:

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true">
<f:selectltems value="#{bean.selectltems}"/>

408

Details of Usage

</rich:inplaceSelect>

This is the result:

Click here to edit = %]

il wwell
factory

MEvwspaper

Figure 6.141. The "showControls" attribute usage

You can also position the controls relatively to the input field, by means of

« The "controlsHorizontalPosition" attribute with "left", "right" and "center” definitions
« The "controlsVerticalPosition " attribute with "bottom" and "top" definitions

Example:

<rich:inplaceSelect value="#{bean.inputValue}" controlsHorizontalPosition="left"
controlsVerticalPosition="center" showControls="true">

<f:selectltems value="#{bean.selectltems}"/>
</rich:inplaceSelect>

This is the result:

| % \Click here to edit -
il weell
factory
nesyspaper

Figure 6.142. Controls positioning

Itis also possible to use "controls" facet in order to replace the default controls with facets content.
See the example below.

Please, see the example.

Example:

409

Chapter 6. The RichFaces Comp...

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true">
<f:facet name="controls">
<button onclick="#{rich.component(‘inplaceSelect’)}.save();" type="button">Save</button>
<button onclick="#{rich.component('inplaceSelect')}.cancel();" type="button">Cancel</
button>
</f:facet>
<f:selectltems value="#{bean.selectltems}"/>
</rich:inplaceSelect>

This is the result:

Save | Cancel ||C|i|:k here -

Figure 6.143. "controls" facet usage

: Note:
(1]
The "controls" facet also implies using "showControls" attribute and it has to be
defined as "true".

The <rich:inplaceSelect> component could be rendered with or <div> elements
to display its value. In order to change default output, use the "layout" attribute with
"block" value.

The <rich:inplaceSelect> component supports standard "tabindex" attribute. When the
component gets focus the edit mode is activated and drop-down list is opened.

The "selectWidth" , "minSelectWidth" and "maxSelectWidth" attributes are provided to specify
the width, minimal width and maximal width for the input element respectively.

In order to specify the height and width parameters for the list items of the component, you can
use "listHeight" and " listwidth" attributes.

6.54.6. JavaScript API

Table 6.230. JavaScript API

Function Description

edit() Changes the state to edit

410

Look-and-Feel Customization

Function Description

cancel() Changes its state to the previous one before
editing (changed or view)

save() Changes its state to changed with a new value
getValue() Gets the current value
setValue(newValue) Sets the current value

6.54.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:inplaceSelect> components at once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:inplaceSelect> component

6.54.8. Skin Parameters Redefinition

Table 6.231. Skin parameters redefinition for view state

Skin parameters CSS properties
editorBackgroundColor background-color
generaTextColor border-bottom-color

Table 6.232. Skin parameters redefinition for input field in edit state

Skin parameters CSS properties
editBackgroundColor ‘ background-color
panelBorderColor ‘ border-color

Table 6.233. Skin parameters redefinition for control

Skin parameters CSS properties

tabBackgroundColor background-color

panelBorderColor border-color

Table 6.234. Skin parameters redefinition for pressed control

Skin parameters CSS properties

tabBackgroundColor background-color

411

Chapter 6. The RichFaces Comp...

Skin parameters CSS properties

panelBorderColor ‘ border-color

Table 6.235. Skin parameters redefinition for list

Skin parameters CSS properties

editBackgroundColor background-color

panelBorderColor border-color

Table 6.236. Skin parameters redefinition for selected item

Skin parameters CSS properties
headerTextColor color
headerBackgroundColor ‘ background-color
headerBackgroundColor ‘ border-color

6.54.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

tich-inplace-select-view

click to edit

rich-inplace-select-control

eilglee-ealaeiiely tich-inplace-select-shadow

tich-inplace-select-selected-tem [lick to edit - ek
oil well
|fa|::t|:|rﬁ_,r
newspaper

tich-inplace-select-changed

Figure 6.144. Classes names

Table 6.237. Class name for the view state

Class name Description

rich-inplace-select-view Defines styles for the select view

412

Definition of Custom Style Classes

Table 6.238. Class name for the input field in edit state

Class name Description

rich-inplace-select-field Defines styles for the select field

Table 6.239. Class name for the control

Class name Description
rich-inplace-select-control Defines styles for the select control
rich-inplace-select-control-press Defines styles for the pressed select control

Table 6.240. Class name for the list

Class name Description

rich-inplace-select-list-decoration Defines styles for a wrapper <table> element
of an inplaceSelect

Table 6.241. Classes names for the selected item

Class name Description

rich-inplace-select-selected-item ‘ Defines styles for the selected item

Table 6.242. Classes names for the shadow

Class name Description

rich-inplace-select-shadow-tl Defines styles for the top-left shadow
rich-inplace-select-shadow-tr Defines styles for the top-right shadow
rich-inplace-select-shadow-bl Defines styles for the bottom-left shadow
rich-inplace-select-shadow-br Defines styles for the bottom-right shadow

In order to redefine styles for all <rich:inplaceSelect> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

rich-inplace-select-list-decoration{
background-color: #ecf4fe;

413

Chapter 6. The RichFaces Comp...

This is the result:

Click -

ol weell
factory

NEWspaper

Figure 6.145. Redefinition styles with predefined classes
In the shown example the background color for list is changed.

It's aslo possible to change styles of a particular <rich:inplaceSelect> component. In this
case you should create own style classes and use them in corresponding <rich:inplaceSelect>
styleClass attributes. An example is placed below:

Example:

.myClass {
background-color:#bed6f8;
font-style:italic;}

The "viewClass" attribute for <rich:inplaceSelect> is defined as it's shown in the example
below:

Example:

<rich:inplaceSelect value="click to edit" viewClass="myClass"/>

This is a result:

The apening of a new click to edit Ford Company invalved rehiring personnel

Figure 6.146. Modificaton of alook and feel with own classes and styleClass
attributes

As it could be seen on the picture above, the font style and background color in view state is
changed.

414

Relevant Resources Links

6.54.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect]
you can see the example of <rich:inplaceSelect> usage and sources for the given example.

6.55. <rich:inputNumberSlider >

6.55.1. Description

A component that lets selecting a number from a numeric region. It's a horizontal aligned scroll-like
control with its own input field (optional) present. The keyboard inputin a field is possible (optional).
Also it's possible to see the current value in the toolTip above a dragged handle control.

0 37 100 IT

Figure 6.147. <rich:InputNumberSlider> component
6.55.2. Key Features

 Fully skinnable control and input elements

« Optional value text field with an attribute-managed position

» Optional disablement of the component on a page

« Optional toolTip to display the current value while a handle is dragged
» Dragged state is stable after the mouse moves

« Optional manual input possible if a text input field is present

 Validation of manual input

Table 6.243. rich : inputNumberSlider attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an

accesskey
barClass A name of CSS class for the bar element
barStyle Style for a slider control line
binding The attribute takes a value-binding expression

for a component property of a backing bean

clientErrorMessage

415

http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect

Chapter 6. The RichFaces Comp...

Attribute Name Description

an error message to use in client side validation

events

converter Id of Converter to be used or reference to a
Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter

disabled When set for a form control, this boolean
attribute disables the control for your input

enableManuallnput If set to "false" this attribute makes the text field
“read-only", so the value can be changed only
from a handle. Default value is "true".

handleClass A name of CSS class for a control handle
element
handleSelectedClass A name of CSS class for a selected control

handle element

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations

phase
inputClass Style Class attribute for a text field
inputPosition If "right" the InputText Box would be rendered

on the right side of the ruler

inputSize Similar to the "Size" attribute of h:inputText.
Default value is "3".

inputStyle Style attribute for text field

label A localized user presentable name for this
component.

maxlength When the type attribute has the value "text"

or "password", this attribute specifies the
maximum number of characters you may enter.
This number may exceed the specified size,
in which case the user agent should offer a
scrolling mechanism. The default value for this
attribute is an unlimited number

416

Key Features

Attribute Name Description

maxValue Attribute to set an "end" value. Default value is
IIlOOII

minValue Attribute to set the "start" value. Default value
iS "0"_

onblur HTML: script expression; the element lost the
focus

onchange HTML: script expression; the element value
was changed

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

onerror This error is called when a non-number value or
a number value that is out of the range is input

onfocus HTML: script expression; the element got the
focus

oninputclick HTML: a script expression; a pointer button is

clicked

oninputdblclick

oninputkeydown

HTML: a script expression; a pointer button is
double-clicked

HTML: a script expression; a key is pressed
down

oninputkeypress

HTML: a script expression; a key is pressed
and released

oninputkeyup

HTML: a script expression; a key is released

oninputmousedown

HTML: script expression; a pointer button is
pressed down

oninputmousemove

oninputmouseout

oninputmouseover

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

HTML: a script expression; a pointer is moved
onto

onhinputmouseup

onmousedown

HTML: script expression; a pointer button is
released

HTML: script expression; a pointer button is
pressed down

417

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event
occurs when you select some text in a text field.
This attribute may be used with the INPUT and
TEXTAREA elements

onslide Event occur on slide

rendered If "false", this component is not rendered

required If "true", this component is checked for non-

empty input

requiredMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

showBoundaryValues

showlnput

If the min/max values are shown on the right/
left borders of a control. . Default value is "true”.

False value for this attribute makes text a field
invisible. Default value is "true".

showToolTip

step

style

If "true"the current value is shown in the tooltip
when a handle control is in a "dragged" state.
Default value is "true".

Parameter that determines a step between the
nearest values while using a handle. Default
value is "1".

Styles for main div element of the slider control

styleClass

Name of a CSS class

tabindex

tipClass

This attribute specifies the position of the
current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

A name of CSS class for the tool tip element

418

Creating the Component with a Page Tag

Attribute Name Description

tipStyle

validator

validatorMessage

A style for the tool tip element

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value
valueChangeListener
width

The current value of this component
Listener for value changes

The width of a slider control. Default value is
IIZOOpXII

Table 6.244. Component identification parameters

Name Value

component-type

org.richfaces.inputNumberSlider

component-class
component-family

renderer-type

org.richfaces.component.html.HtmlInputNumbe
org.richfaces.inputNumberSlider

org.richfaces.InputNumberSliderRenderer

tag-class

org.richfaces.taglib.InputNumberSliderTag

6.55.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

6.55.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlInputNumberSlider;

419

rSlider

Chapter 6. The RichFaces Comp...

HtmlinputNumberSlider mySlider = new HtmlinputNumberSlider();

6.55.5. Details of Usage

<rich:inputNumberSlider> is used to facilitate your data input with rich Ul Controls.

Here is the simplest variant of a slider definition with "minValue", "maxValue" and "step" (on
default = "1") attributes, which define the beginning and the end of a numerical area and a slider
property step.

Example:
<rich:inputNumberSlider></rich:inputNumberSlider>

It generates on a page:

0 100
= 1]

Figure 6.148. Generated <rich:InputNumberSlider>

Using "showlnput" (default is true) and "enableManuallnput" (default value is true) attributes,
it's possible to output the input area near the slider, and make it read-only or editable.

To remove input area use "showlnput="false" :

Example:
<rich:inputNumberSlider minValue="1" maxValue="100" showInput="false"/>

It looks at page like:

0 100
-

Figure 6.149. <rich:inputNumberSlider> without input field

It's also possible to switch off displaying of "boundary values" and a toolTip showing on a
handle drawing. This could be performed with the help of the component defined attributes:
"showBoundaryValues" which is responsible for "boundary values" displaying (default is true) and
"showToolTip" which is responsible for tooltTip displaying (default is true).

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

420

Look-and-Feel Customization

« onchange

e onmouseover
 onclick

« onfocus

¢ onmouseout
 efc.

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines
the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM?”, {2} for “ShortConverter. SHORT".

6.55.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:inputNumberSlider> components
at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:imputNumberSlider> component

6.55.7. Skin Parameters Redefinition

Table 6.245. Skin parameters redefinition for a bar

Skin parameters CSS properties

controlBackgroundColor ‘ background-color

Table 6.246. Skin parameters redefinition for numbers

Skin parameters CSS properties

generalFamilyFont font-family
generalSizeFont font-size
generalTextColor color
panelBorderColor border-color
generalSizeFont line-height

421

Chapter 6. The RichFaces Comp...

Table 6.247. Skin parameters redefinition for a text field

Skin parameters CSS properties

controlBackgroundColor background-color
generalFamilyFont font-family
generalSizeFont font-size
controlTextColor color
panelBorderColor border-color
subBorderColor border-bottom-color
subBorderColor border-right-color

Table 6.248. Skin parameters redefinition for a hint

Skin parameters CSS properties
tipBackgroundColor background-color
tipBorderColor border-color
generalFamilyFont font-family
generalSizeFont font-size

6.55.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-inslider-handler-selected fich-inslider-tip tich-inslider-handler tich-inslider-right-nurm

0 37 100
vD ER 0 100 [

rich-inslider-track tich-inslider-left-num

tich-slider tich-inslider-field

Figure 6.150. Style classes

Table 6.249. Classes names that define a component appearance

Class name Description

rich-slider Defines styles for a wrapper table element of a
component

rich-inslider-track Defines styles for a bar

rich-inslider-handler Defines styles for a slider handler

rich-inslider-handler-selected Defines styles for a selected handler

rich-inslider-field Defines styles for a text field

422

Definition of Custom Style Classes

Class name Description

rich-inslider-right-num Defines styles for the right number
rich-inslider-left-num Defines styles for the left number
rich-inslider-tip Defines styles for a hint

In order to redefine styles for all <rich:inputNumberSlider> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the table
above) and define necessary properties in them. An example is placed below:

Example:

.rich-inslider-tip{
background-color: #FFDAB9;
font-family: Arial Black;

This is a result:

0 S0 100
50

Figure 6.151. Redefinition styles with predefined classes
In the example a tip background color and font family was changed.

Also it's possible to change styles of particular <rich:inputNumberSlider> component.
In this case you should create own style classes and use them in corresponding
<rich:inputNumberSlider> styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;
font-weight:bold;
font-size:12px;

The "inputClass" attribute for <rich:inputNumberSlider> is defined as it's shown in the example
below:

423

Chapter 6. The RichFaces Comp...

Example:
<rich: inputNumberSlider ... inputClass="myClass"/>

This is a result:
] . 100 50
Figure 6.152. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for input text was changed.

6.55.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/
inputNumberSlider.jsf?c=inputNumberSlider] you can see the example of
<rich:inputNumberSlider> usage and sources for the given example.

6.56. <rich:inputNumberSpinner >

6.56.1. Description

A single line input field that lets selecting a number using controls near a text field. It's possible
to change a value using "Up/Down" keyboard keys. The keyboard input in a field is possible if it
isn't locked by the "manuallnput” attribute. When arrow controls are pressed, the cursor can be
moved in any way without losing a dragged state.

20 &
Figure 6.153. <rich:InputNumberSpinner> component

6.56.2. Key Features

* Fully skinnable control and input elements

« 3D look and feel with an easily customizable appearance

« Attribute-managed positions of the controls (inside/outside of the input field)
« Keyboard controls support

» Optional disablement of the component on a page

» Optional "cycled" mode of scrolling values

« Optional manual/controls-only input into a value text field

 Validation of manual input

424

http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider

Key Features

Table 6.250. rich : inputNumberSpinner attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

binding The attribute takes a value-binding expression
for a component property of a backing bean

clientErrorMessage client error message

converter Id of Converter to be used or reference to a
Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter

cycled If "true" after the current value reaches the
border value it is reversed to another border
value after next increasing/decreasing. In
other case possibilities of next increasing (or
decreasing) will be locked. Default value is "
true ".

disabled When set for a form control, this boolean
attribute disables the control for your input

enableManuallnput if "false" your's input to the text field using
keyboard will be locked. Default value is "true"

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations

phase
inputClass Class attribute for text field
inputSize Attribute specifies the initial length of input in

characters. Default value is "10".

inputStyle Style attribute for text field
label A localized user presentable name for this
component.

425

Chapter 6. The RichFaces Comp...

Attribute Name Description

oninputdblclick

maxValue Maximum value. . Default value is "100".

minValue Minimum value. Default value is "0".

onblur HTML: script expression; the element lost the
focus

onchange HTML: script expression; the element value
was changed

onclick HTML: a script expression; a pointer button is
clicked

ondblclick HTML: a script expression; a pointer button is
double-clicked

ondownclick HTML: a script expression; a button "Down" is
clicked

onerror HTML: a script expression; event fires
whenever an JavaScript error occurs

onfocus HTML: script expression; the element got the
focus

oninputclick HTML: a script expression; a pointer button is

clicked

HTML: a script expression; a pointer button is
double-clicked

oninputkeydown

HTML: a script expression; a key is pressed
down

oninputkeypress

oninputkeyup

HTML: a script expression; a key is pressed
and released

HTML: a script expression; a key is released

oninputmousedown

oninputmousemove

oninputmouseout

HTML: script expression; a pointer button is
pressed down

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

oninputmouseover

oninputmouseup

onmousedown

HTML: a script expression; a pointer is moved
onto

HTML: script expression; a pointer button is
released

HTML: script expression; a pointer button is
pressed down

426

Key Features

Attribute Name Description

requiredMessage

step

style

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event
occurs when you select some text in a text field.
This attribute may be used with the INPUT and
TEXTAREA elements

onupclick HTML: a script expression; a button "Up" is
clicked

rendered If "false", this component is not rendered

required If "true”, this component is checked for non-

empty input
A ValueExpression enabled attribute that, if
present, will be used as the text of the

validation message for the "required" facility, if
the "required" facility is used

Parameter that determines the step between
nearest values while using controls. Default
value is "1"

CSS style(s) is/are to be applied when this
component is rendered

styleClass

tabindex

validator

validatorMessage

Corresponds to the HTML class attribute

This attribute specifies the position of the
current element in the tabbing order for the
current document. This value must be a
number between 0 and 32767. User agents
should ignore leading zeros

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator

427

Chapter 6. The RichFaces Comp...

Attribute Name Description

message, replacing any message that comes
from the validator

value

valueChangelListener

The current value of this component

Listener for value changes

Table 6.251. Component identification parameters

Name Value

component-type

org.richfaces.inputNumberSpinner

component-class

org.richfaces.component.html.HtmlInputNumbe

component-family

renderer-type

tag-class

org.richfaces.inputNumberSpinner

org.richfaces.InputNumberSpinnerRenderer

org.richfaces.taglib.InputNumberSpinnerTag

6.56.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:inputNumberSpinner minValue="0" maxValue="100" step="1"/>

6.56.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlInputNumberSpinner;

HtmlinputNumberSpinner mySpinner = new HtmllnputNumberSpinner ();

6.56.5. Details of Usage

<rich:inputNumberSpinner> is used to facilitate your data input with rich Ul Controls.

Here is the simplest variant of spinner definition with "minValue", "maxValue" and "step" (on
default = "1") attributes, which define the beginning and the end of nhumerical area and a spinner

step.

rSpinner

Look-and-Feel Customization

Example:

<rich:inputNumberSpinner minValue="1" maxValue="100"/>

It generates on a page:
1 >

Figure 6.154. Generated <rich:InputNumberSpinner>

There are also several attributes to define functionality peculiarities:

« "cycled" if the attribute is "true" after the current value reaches the border value it's be reversed
to another border value after next increasing/decreasing. In other case possibilities of next
increasing/decreasing are locked

» "disabled" is an attribute that defines whether a component is active on a page

* "manuallnput" is an attribute that defines whether a keyboard input is possible or only Ul
controls could be used

Moreover, to add e.g. some JavaScript effects, events defined on it are used

« onchange

e onmouseover
 onclick

» onfocus

« onmouseout
* etc.

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines
the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM”", {2} for “ShortConverter.SHORT".

6.56.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

429

Chapter 6. The RichFaces Comp...

There are two ways to redefine the appearance of all <rich:inputNumberSpinner> components
at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:inputNumberSpinner> component

6.56.7. Skin Parameters Redefinition

Table 6.252. Skin parameters redefinition for a container

Skin parameters CSS properties
controlBackgroundColor background-color
panelBorderColor border-color
subBorderColor border-bottom-color
subBorderColor border-right-color

Table 6.253. Skin parameters redefinition for an input field

Skin parameters CSS properties
buttonSizeFont ‘ font-size
buttonFamilyFont ‘ font-family

6.56.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-spinner-input-container tich-spinner-c :
tich-spinner-buttons
|2EI :
tich-spinner-input tich-spinner-button

Figure 6.155. Style classes

Table 6.254. Classes names that define a component appearance

Class name Description

rich-spinner-c Defines styles for a wrapper table element of a
component

rich-spinner-input-container Defines styles for a container

rich-spinner-input Defines styles for an input field

rich-spinner-button Defines styles for a button

430

Definition of Custom Style Classes

Class name Description

rich-spinner-buttons Defines styles for buttons

In order to redefine styles for all <rich:inputNumberSpinner> components on a page using
CSS, it's enough to create classes with the same names (possible classes could be found in the
table above) and define necessary properties in them. An example is placed below:

Example:

.rich-spinner-input{
font-style:italic;

This is a result:

1

4k

Figure 6.156. Redefinition styles with predefined classes
In the example an input text font style was changed.

Also it's possible to change styles of particular <rich:inputNumberSpinner> component.
In this case you should create own style classes and use them in corresponding
<rich:inputNumberSpinner> styleClass attributes. An example is placed below:

Example:

.myClass{
font-family: Arial Black;

The "inputClass" attribute for <rich:inputNumberSpinner> is defined as it's shown in the
example below:

Example:

<rich: inputNumberSpinner ... inputClass="myClass"/>

431

Chapter 6. The RichFaces Comp...

This is a result:

Figure 6.157. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font family for input text was changed.
6.56.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/
inputNumberSpinner.jsf?c=inputNumberSpinner] you can see the example of
<rich:inputNumberSpinner> usage and sources for the given example.

6.57. <rich:insert >

6.57.1. Description

The <rich:insert> component is used for highlighting, source code inserting and, optionally,
format the file from the application context into the page.

6.57.2. Key Features

» Source code highlighting

 Variety of formats for source code highlighting

Table 6.255. rich : insert attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

content Defines the String, inserted with this
component. This attribute is alternative to "src"
attribute.

encoding Attribute defines encoding for inserted content

errorContent Attribute defines the alternative content that

will be shown in case component cannot
read the resource defined with 'src' attribute.
If "errorContent” attribute is not defined, the
component shown the actual error message in
the place where the content is expected

highlight Defines a type of code

id Every component may have a unique id that is
automatically created if omitted

432

http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner

Creating the Component with a Page Tag

Attribute Name Description
rendered ‘ If "false", this component is not rendered
src ‘ Defines the path to the file with source code

Table 6.256. Component identification parameters

Name Value

component-type org.richfaces.ui.Insert

component-class org.richfaces.ui.component.html.Htmlinsert
component-family org.richfaces.ui.Insert

renderer-type org.richfaces.ui.InsertRenderer

tag-class org.richfaces.ui.taglib.InsertTag

6.57.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:insert src="/pages/sourcePage.xhtml" highlight="xhtml"/>

6.57.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.ui.component.html.Htmlinsert;

HtmlIinsert mylnsert = new Htmlinsert();

6.57.5. Details of Usage

The are two basic attributes. The "src" attribute defines the path to the file with source code. The
"highlight" attribute defines the type of a syntax highlighting.

If "highlight" attribute is defined and JHighlight [https://jhighlight.dev.java.net/] open source library
is in the classpath, the text from the file is formated and colorized.

An example is placed below.

Example:

433

https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/

Chapter 6. The RichFaces Comp...

<rich:insert src="/pages/sourcePage.xhtml" highlight="xhtml"/>

The result of using <rich:insert> component is shown on the picture:

=0 composition xmilns ="kt Sy o3 org M 99905 ktml"
xmins:ui="http: Mava.sun comizfifacelets"
smins:h="rttp: Mava . zun.comijsthtm"
xmins:adj="http: Mrichfaces orgfad"
rmins:rich="http: Srichfaces orgirich"=

=h: farm=
=rich: panel=
=adj. commandButton value="=et Mame to Alex" reRender="rep" =
=adj.actionparam mame="uzername" value="4lex" assignTo="#{uzerBean.name "i=
=fadj.commandButton=
=rich:zpacer width="20" /=
=adj. commandButton value="=et Mame to John" reRender="rep" =
=adj.actionparam mame="uzername" value="John" assignTo="#{uzerBean. name}"i=
=fadj.commandButton=
=lrich: panel=
=rich: panel=
=hioutput Text id="rep" value="=elected Mame:#{uzerBean name ' =
=rich: panel=
=i form=
=i composition=

Figure 6.158. Source code highlighting

The <rich:insert> component provides the same functionality as JHighlight [https://
jhighlight.dev.java.net/]. Thus, all names of highlight style classes for source code of particular
language could be changed to your names, which are used by the JHighlight [https://
jhighlight.dev.java.net/] library.

6.57.6. Look-and-Feel Customization

<rich:insert> has no skin parameters and custom style classes, as the component doesn't have
own visual representation.

6.57.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert] you can found
some additional information for <rich:insert> component usage.

6.58. <rich:jQuery >

6.58.1. Description

The <rich:jQuery> allows to apply styles and behaviour to DOM objects.

434

https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert
http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert

Key Features

6.58.2. Key Features

» Presents jQuery JavaScript framework functionality
* Able to apply onto JSF components and other DOM objects.

» Works without conflicts with prototype.js library

Table 6.257. rich : jQuery attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

id Every component may have a unique id that is
automatically created if omitted

name The name of a function that will be generated
to execute a query. The "name" attribute
is required if "timing" attribute equals to

"onJScall"
query The query string that is executed for a given
selector.
rendered If "false", this component is not rendered
selector Selector for query. The "selector" attribute uses

defined by w3c consortium syntax for CSS rule
selector with some jQuery extensions.

timing The attribute that defines when to
perform the query. The possible values
are ‘"immediate","onload" and "onJScall".
"immediate" performs the query right away.
"onload" adds the task to the time when a
document is loaded (the DOM tree is created).
"onJScall" allows to invoke the query by
Javascipt function name defined with "name"

attribute. The default value is "immediate".

Table 6.258. Component identification parameters

Name Value

component-type org.richfaces.JQuery

component-class org.richfaces.component.html.HtmlJQuery
component-family org.richfaces.JQuery

renderer-type org.richfaces.JQueryRenderer

435

Chapter 6. The RichFaces Comp...

tag-class org.richfaces.taglib.JQueryTag

6.58.3. Creating the Component with a Page Tag

To create the simplest variant on a page, use the following syntax:

Example:

<rich:jQuery selector="#customList tr:odd" timing="onload" query="addClass(odd)" />

6.58.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIJQuery;

HtmlJQuery myJQuery = new HtmlJQuery();

6.58.5. Details of Usage

<rich:jQuery> can be used in two main modes:

* as a one-time query applied immediately or on a document ready event
 as a JavasScript function that can be invoked from the JavaScript code

The mode is chosen with "timing" attribute that has the following options:

« immediate - applying a query immediately
» onload - applying a query when a document is loaded
« onJScall - applying a query by invoked JavaScript function defined with the "name" attribute

Definition of the "name" attribute is mandatory when the value of "timing" attribute is "onJScall".
If the "name" attribute is defined when "timing" value equals to "immediate" or "onload", the query
is applied according to this value, but you still have an opportunity to invoke it by a function name.

436

Details of Usage

The "selector" attribute defines an object or a list of objects. The query is defined with the "query"

attribute.

Here is an example of how to highlight odd rows in a table:

Example:

<style>
.odd {
background-color: #FFC;
}

</style>

<rich:table id="customList" ...>

</rich:table>

<rich:jQuery selector="#customList tr;odd" timing="onload" query="addClass(odd)" />

The "selector" attribute uses defined by w3c consortium syntax for CSS rule selector [http://
www.w3.0rg/TR/IREC-CSS2/selector.html] with some jQuery extensions

Those are typical examples of using selector in the <rich:jQuery> component.

Table 6.259. Examples of using selector

Selector Comment

"input[@name=bar]"

"p[al" In a document all "p" tags with "a" tag inside
are selected

"ul/li All "li" elements of unordered "ul" lists are
selected

"p.foo[a]" All "p" tags with "foo" class and inserted "a" tag

are selected

All "input" tags with "name" attribute which
value is "bar" are selected

"input{@type=radio][@checked]"

All"input" tags with attribute "type"="radio" and
attribute value = "chekced" are selected

"p,span,td"

437

http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/selector.html

Chapter 6. The RichFaces Comp...

Selector Comment

All tag elements "p" or"span" or "td" are

selected

"p#secret” "p" paragraph element with "id" identification =
"secret” is selected

"p span" "span” tag is a (direct or non-direct) child of "p"
tag. If it's necessary, use "p > span" or "p/span”
is selected

"p[@foo™=bar]" "p" tag containing “foo" attribute with textual

value beginning with "bar" word is selected

"p[@foo$=bar] " "p" tag containing "foo" attribute with textual
value ending with "bar" word is selected

"p[@foo*=bar] " "p" tag with "foo" attribute containing substring
"bar" in any place is selected

"p//span " "span" tag that is a (direct or non-direct) child
of "p" tag is selected

"pl../span" "span" tag that is a grandchild of "p" tag is
selected

In addition, RichFaces allows using either a component id or client id if you apply the query to a
JSF component. When you define a selector, RichFaces examines its content and tries to replace
the defined in the selector id with a component id if it's found.

For example, you have the following code:

<h:form id="form">
<h:panelGrid id="menu">
<h:graphiclmage ... />

<h:graphiclmage ... />

</h:panelGrid>
</h:form>

The actual id of the <h:panelGrid> table in the browser DOM is "form:menu”. However, you still
can reference to images inside this table using the following selector:

<rich:jQuery selector="#menu img" query="..." />

438

Details of Usage

You can define the exact id in the selector if you want. The following code reference to the same
set of a DOM object:

<rich:jQuery selector="#form\\:menu img" query="..." />

Pay attention to double slashes that escape a colon in the id.

In case when the "name" attribute is defined, <rich:jQuery> generates a JavaScript function
that might be used from any place of JavaScript code on a page.

There is an example of how to enlarge the picture smoothly on a mouse over event and return
back to the normal size on mouse out:

<h:graphiclmage onmouseover="enlargePic(this)" width="50" value="/images/price.png"
onmouseover="enlargePic(this, {pwidth:'60px'})" onmouseover="releasePic(this)" />
<h:graphiclmage onmouseover="enlargePic(this)" width="50" value="/images/discount.png"
onmouseover="enlargePic(this, {pwidth:'100px})" onmouseover="releasePic(this)" />

<rich:jQuery name="enlargePic" timing="onJScall" query="animate({width:param.pwidth})" />
<rich:jQuery name="releasePic" timing="onJScall" query="animate({width:'50px'})"/>

The JavaScript could use two parameters. The first parameter is a replacement for the selector
attribute. Thus, you can share the same query, applying it to the different DOM objects. You can
use a literal value or a direct reference for an existing DOM object. The second parameter can
be used to path the specific value inside the query. The JSON syntax is used for the second
parameter. The "param."” namespace is used for referencing data inside the parameter value.

<rich:jQuery> adds styles and behavior to the DOM object dynamically. This means if you replace
something on a page during an Ajax response, the applied artifacts is overwritten. But you are
allowed to apply them again after the Ajax response is complete.

Usually, it could be done with reRendering the <rich:jQuery> components in the same Ajax
interaction with the components these queries are applied to. Note, that queries with "timing"
attribute set to "onload" are not invoked even if the query is reRendered, because a DOM
document is not fully reloaded during the Ajax interaction. If you need to re-applies query with
"onload" value of "timing" attribute , define the "name attribute and invoke the query by name
in the "oncomplete" attribute of the Ajax component.

439

Chapter 6. The RichFaces Comp...

RichFaces includes jQuery JavaScript framework. You can use the futures of jQuery directly
without defining the <rich:jQuery> component on a page if it is convenient for you. To start using
the jQuery feature on the page, include the library into a page with the following code:

<adj:loadScript src="resource://jquery.js"/>

Refer to the jQuery documentation [http://docs.jquery.com/] for the right syntax. Remember to use
jQuery() function instead of $(), as soon as jQuery works without conflicts with prototype.js.

6.58.6. Look-and-Feel Customization
<rich:jQuery> has no skin parameters and custom style classes, as the component isn't visual.
6.58.7. Relevant Resources Links

More information about jQuery framework and its features you can read here [http://jquery.com/].

How to use jQuery with other libraries see here [http://docs.jquery.com/
Using_jQuery_with_Other_Libraries].

6.59. <rich:listShuttle >

6.59.1. Description

The <rich:listShuttle> component is used for moving chosen items from one list into another
with their optional reordering there.

Cars Store #1 Cars Store 2

Cars Price City Cars Price City
Bertley 54745 Mew York W Copy &l By 47491 Mew York % First
Ford 3284 Mewy “ark » Copy Yolkwagen 35391 Mewy Yark - Lp
Chevrolet 55563 Mesny Yark Audi 57927 Mew York

4 Remove » Dawen

Lincaln 54504 Mesay Yark Mercedes 30456 Meww York
Tovata 47744 Mew York W Remove Al pazds 37973 Mew ¥ork ¥ Last

Figure 6.159. <rich:ListShuttle> component

6.59.2. Key Features

 Highly customizable look and feel
« Reordering possibility for lists items

» Multiple selection of lists items

440

http://docs.jquery.com/
http://docs.jquery.com/
http://jquery.com/
http://jquery.com/
http://docs.jquery.com/Using_jQuery_with_Other_Libraries
http://docs.jquery.com/Using_jQuery_with_Other_Libraries
http://docs.jquery.com/Using_jQuery_with_Other_Libraries

Key Features

« Keyboard support

Table 6.260. rich : listShuttle attributes

Attribute Name Description

activeltem

ajaxKeys

binding

Stores active item

Defines row keys that are updated after an Ajax
request

The attribute takes a value-binding expression
for a component property of a backing bean

bottomControlClass

CSS class for bottom control

bottomControlLabel

columnClasses

Defines a label for a bottom control

Comma-separated list of CSS classes for
columns

componentState

It defines EL-binding for a component state for
saving or redefinition

controlsType

controlsVerticalAlign

converter

Defines type of a control: button or none.
Default value is "button".

Customizes vertically a position of move/
copy and order controls relatively to lists

Id of Converter to be used or reference to a
Converter

copyAllControlClass

CSS class for copy all control

copyAllControlLabel
copyControlClass

copyControlLabel

Defines a label for a copyAll control
CSS class for copy control

Defines a label for a copy control

disabledControlClass

CSS class for a disabled control

downControlClass

CSS class for down control

downControlLabel

fastMoveControlsVisible

Defines a label for a down control

If "false”, 'Copy All' and 'Remove All' controls
aren't displayed. Default value is "true".

fastOrderControlsVisible

If "false", 'Top' and 'Bottom' controls aren't
displayed. Default value is "true".

first

immediate

A zero-relative row number of the first row to
display

Every component may have a unique id that is
automatically created if omitted

A flag indicating that this component value
must be converted and validated immediately

441

Chapter 6. The RichFaces Comp...

Attribute Name Description

(that is, during Apply Request Values phase),
rather than waiting until a Process Validations

phase
listClass CSS class for a list
listsHeight Defines height of the list. Default value is "140".
moveControlsVisible If “false", 'Copy' and 'Remove' controls aren't

displayed. Default value is "true".

onbottomclick A JavaScript event handler; a button "Bottom"
is clicked

onclick HTML: a script expression; a pointer button is
clicked

oncopyallclick A JavaScript event handler; a button "Copy All"
is clicked

oncopyclick HTML: a script expression; a button "Copy" is
clicked

ondbilclick HTML: a script expression; a pointer button is

double-clicked

ondownclick A JavaScript event handler; a button "Down" is
clicked
onlistchanged A JavaScript event handler called on a list

change operation

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onorderchanged HTML: script expression; called after ordering
action

onremoveallclick A JavaScript event handler; a button "Remove
All" is clicked

onremoveclick A JavaScript event handler; a button "Remove”
is clicked

ontopclick A JavaScript event handler; a button "Top" is
clicked

onupclick HTML: a script expression; a button "Up" is
clicked

442

Key Features

Attribute Name Description

orderControlsVisible

If “false”, 'Up' and 'Down' controls aren't
displayed. Default value is "true".

removeAllControlClass
removeAllControlLabel

removeControlClass

CSS class for remove all control
Defines a label for a removeAll control

CSS class for remove control

removeControlLabel

Defines a label for a remove control

showButtonLabels

rendered If "false", this component is not rendered

required If "true”, this component is checked for non-
empty input

rowClasses CSS class for a row

rowKey RowKey is a representation of an identifier for
a specific data row

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows A number of rows to display, or zero for all

remaining rows in the table

Shows a label for a button. Default value is
"true".

sourceCaptionLabel

sourceListWidth

Defines source list caption representation text

Defines width of a source list. Default value is
"140".

sourceRequired

sourceSelection

Defines the case when source value is being
validated. If the value is "true", there should be
at least one item in the source list

Manages selection in a source list from the
server side

sourceValue

style

styleClass

switchByClick

Defines a List or Array of items to be shown in
a source list

CSS style(s) is/are to be applied when this
component is rendered

Corresponds to the HTML class attribute

If "true”, dragging between lists realized by click

targetCaptionLabel

Defines target list caption representation text

targetListWidth

Defines width of a target list. Default value is
"140".

443

Chapter 6. The RichFaces Comp...

Attribute Name Description

targetRequired Defines the case when target value is being
validated. If the value is "true", there should be
at least one item in the target list

targetSelection Manages selection in a target list from the
server side

targetValue Defines a List or Array of items to be shown in
a target list

topControlClass CSS class for top control

topControlLabel Defines a label for a "Top" control

upControlClass CSS class for up control

upControlLabel Defines a label for an "Up" control

validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

valueChangelListener Listener for value changes

var Defines a list on the page

6.59.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:listShuttle ~ var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}"
converter="listShuttleconverter">
<h:column>
<f:.facet name="header">
<h:outputText value="Cars" />
</f:facet>
<h:outputText value="#{item.name}" />
</h:column>
</rich:listShuttle>

6.59.4. Creating the Component Dynamically Using Java

Example:

444

Details of Usage

import org.richfaces.component.html.HtmlIListShuttle;

HtmlListShuttle myListShuttle = new HtmliListShuttle();

6.59.5. Details of Usage

The <rich:listShuttle> component consists of the following parts:

two item lists (source and target). List consists of items. Each item has three different
representations: common, selected, active

 optional caption element

optional ordering controls set is a set of controls that performs reordering

e move controls set is a set of controls, which performs moving items between lists

The "sourceValue" attribute defines a List or Array of items to be shown in the source list.
The "targetValue" attribute defines a List or Array of items to be shown in the target list.
The "var" attribute could be shared between both Lists or Arrays to define lists on the page.

The "sourceRequired" and "targetRequired" attributes define the case when source and target
values are being validated. If the value of both attributes is "true" there should be at least one item
in source and target lists. Otherwise validation fails.

Example:

<h:form id="myForm">
<rich:messages>
<f:facet name="errorMarker">
<h:graphiclmage value="/images/ajax/error.gif" />
</f.facet>
</rich:messages>
<rich:listShuttle id="myListShuttle" sourceValue="#{toolBar.freeltems}"
targetValue="#{toolBar.items}"
sourceRequired = "true" targetRequired = "true" var="items"
converter="listShuttleconverter"
sourceCaptionLabel="Source List" targetCaptionLabel="Target List">
<rich:column>
<h:graphicimage value="#{items.iconURI}" />
</rich:column>
<rich:column>

445

Chapter 6. The RichFaces Comp...

<h:outputText value="#{items.label}" />
</rich:column>
</rich:listShuttle>
<adj:commandButton value="Submit" />
</h:form>

In the example above the source list is empty. If you submit the form validation fails and error
message appears on a page.

This is the result:

&cjmyFDrm:myListShuttle: “Walidation Error: Value is reguired.

Source List Target List
lE) Create Folder
A Create Doc

== Open
Save
Wi Remowve & Save Al
A Delete

Zubmit

Figure 6.160. Style classes

The "converter" attribute is used to convert component data to a particular component's value.
For example, when you select items in a list, a converter is used to format a set of objects to a
strings to be displayed.

@ Note
It is necessary to override the "equals" and "hashCode" methods in your own
class!

The "sourceSelection" attribute stores the collection of items selected by you in the source list.
The "targetSelection" attribute stores the collection of items selected by you in the target list.

Captions could be added to a list only after it was defined as a "sourceCaption" and
"targetCaption" named facets inside the component or defined with the "sourceCaptionLabel"
and "targetCaptionLabel" attribute.

446

Details of Usage

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}"
sourceSelection="#{bean.sourceSelection}"
targetSelection="#{bean.targetSelection}" converter="listShuttleconverter">
<f:facet name="sourceCaption">
<h:outputText value="Cars Store #1" />
</f:facet>
<f:facet name="targetCaption">
<h:outputText value="Cars Store #2" />
<[f:facet>
<rich:column>
<h:outputText value="#{items.name}" />
</rich:column>
</rich:listShuttle>

The <rich:listShuttle> component provides the possibility to use ordering controls set, which
performs reordering in the target item list. Every control has possibility to be disabled.

An ordering controls set could be defined with "topControlLabel" , "bottomControlLabel" ,
"upControlLabel", "downControlLabel" attributes.

It is also possible to use "topControl" , "topControlDisabled" , "bottomControl"
, "bottomControlDisabled" , "upControl* , "upControlDisabled" , "downControl"
"downControlDisabled" facets in order to replace the default controls with facets content.

Example:

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}"
converter="listShuttleconverter">

<f:facet name="topControl">
<h:outputText value="Move to top" />

</f:facet>

<f:facet name="upControl">
<h:outputText value="Move up" />

</f:facet>

<f:facet name="downControl">
<h:outputText value="Move down" />

</f:facet>

<f:facet name="bottomControl">
<h:outputText value="Move to bottom" />

</f:facet>

</rich:listShuttle>

447

Chapter 6. The RichFaces Comp...

The <rich:listShuttle> component also provides 4 predefined controls in move controls set for
moving items between source and target lists. Every control has possibility to be disabled.

A move controls set could be defined with "copyControlLabel" , "removeControlLabel" ,
"copyAllControlLabel", "removeAllControlLabel" attributes.

Itis also possible to use "copyControl", "removeControl", "copyAllControl", "removeAllControl"
facets in order to replace the default controls with facets content.

<rich:listShuttle var="item" sourceValue="#{bean.source}' targetValue="#{bean.target}"
converter="listShuttleconverter"
copyControlLabel="Copy" removeControlLabel="Remove"
copyAllControlLabel="Copy all" removeAllControlLabel="Remove all">
<h:column>
<f:facet name="header">
<h:outputText value="Cars" />
</f:facet>
<h:outputText value="#{item.name}" />
</h:column>
</rich:listShuttle>

Controls rendering is based on the "controlsType" attribute. Possible types are button and none.

@ Note

Currently the button controls type is based on <div> element.

The <rich:listShuttle> component allows to use internationalization method to
redefine and localize the labels. You could use application resource bundle and

define RICH_SHUTTLES_TOP_LABEL, RICH_SHUTTLES_BOTTOM_LABEL,
RICH_SHUTTLES_UP_LABEL, RICH_SHUTTLES_DOWN_LABEL
RICH_LIST_SHUTTLE_COPY_ALL_LABEL, RICH_LIST_SHUTTLE_COPY_LABEL,

RICH_LIST SHUTTLE_REMOVE_ALL LABEL, RICH_LIST SHUTTLE_REMOVE_LABEL
there.

You could also pack org.richfaces.renderkit.listShuttle resource bundle with your JARs defining
the same properties.

448

JavaScript API

Table 6.261. Keyboard usage for elements selection

Keys and combinations Description
CTRL+click Inverts selection for an item
SHIFT+click Selects all rows from active one to a clicked row

if they differ, else select the actve row. All other
selections are cleared

CTRL+A Selects all elements inside the list if some
active element is already present in a list

Up, Down arrows Changes the active element to the next or
previous in a list and make it the only selected.
Scroll follows the selection to keep it visible

Table 6.262. Keyboard usage for elements reordering

Home Moves selected set to the top of a list

End Moves selected set to the bottomof a list
CTRL+Up arrow Moves selected item to one position upper
CTRL+Down arrow Moves selected item to one position lower

6.59.6. JavaScript API

Table 6.263. JavaScript API

hide() Hides ordering control

show() Shows ordering control

isShown() Checks if current control is shown

enable() Enables ordering control

disable() Disables ordering control

isEnabled() Checks if current control is enabled

Up() Moves up selected item in the list

Down() Moves down selected item in the list

Top() Moves top selected item in the list

Bottom() Moves bottom selected item in the list

copy() Copies selected item from the source list to the
target list

remove() Removes selected item from the target list to
the source list

449

Chapter 6. The RichFaces Comp...

Function Description

copyAll() Copies all items from the source list to the
target list

removeAll() Removes all items from the target list to the
source list

getSelection() Returns currently selected item

getltems() Returns the collection of all items

6.59.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:listShuttle> components at once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:listShuttle> component

6.59.8. Skin Parameters Redefinition

Table 6.264. Skin parameters redefinition for items in the source and target
lists

Skin parameters CSS properties
generalBackgroundColor background-color
tableBorderColor ‘ border-color
tableBorderWidth \ border-width

Table 6.265. Skin parameters redefinition for caption in the source and
target lists

Skin parameters CSS properties

headerFamilyFont font-family
headerSizeFont font-size
headerWeightFont font-weight

Table 6.266. Skin parameters redefinition for a selected rows in the source
and target lists

Skin parameters CSS properties

additionalBackgroundColor background-color

450

Skin Parameters Redefinition

Table 6.267. Skin parameters redefinition for a header cell

Skin parameters

headerBackgroundColor

CSS properties

background-color

headerTextColor color
headerFamilyFont font-family
headerSizeFont font-size
tableBorderWidth border-width

subBorderColor
panelBorderColor

panelBorderColor

border-top-color
border-bottom-color

border-right-color

Table 6.268. Skin parameters redefinition for a selected cell

Skin parameters CSS properties

generalTextColor color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.269. Skin parameters redefinition for an active cell

Skin parameters

CSS properties

generalSizeFont

generalFamilyFont

‘ font-size

‘ font-family

Table 6.270. Skin parameters redefinition for controls

Skin parameters

CSS properties

tableBorderColor

‘ border-color

Table 6.271. Skin parameters redefinition for a button

Skin parameters

CSS properties

trimColor

background-color

generalTextColor
headerFamilyFont

headerSizeFont

color
font-family

font-size

Table 6.272. Skin parameters redefinition for a disabled button

Skin parameters

CSS properties

trimColor

background-color

451

Chapter 6. The RichFaces Comp...

Skin parameters CSS properties

tabDisabledTextColor color
headerFamilyFont font-family
headerSizeFont font-size

Table 6.273. Skin parameters redefinition for a button highlight

Skin parameters

trimColor

selectControlColor

CSS properties
background-color

border-color

tableBorderWidth border-width
headerFamilyFont font-family
headerSizeFont font-size
generalTextColor color

Table 6.274. Skin parameters redefinition for a pressed button

Skin parameters

additionalBackgroundColor

CSS properties

background-color

tableBorderColor

border-color

tableBorderWidth border-width
headerFamilyFont font-family
headerSizeFont font-size
generalTextColor color

Table 6.275. Skin parameters redefinition for a button content

Skin parameters

headerFamilyFont

CSS properties

‘ font-family

headerSizeFont

‘ font-size

Table 6.276. Skin parameters redefinition for a button selection

Skin parameters

generalTextColor

CSS properties

color

6.59.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

452

Definition of Custom Style Classes

rich-shuttle-source-caption fich-shuttle-headertab-cell
tich-shuttle-controls
Cars Store #1 L wrs Store #2 rich.ghuttle.tgp
tich-shuttle-row-source-selected _ tich-shuttle-source-cell-selected = =
Pric Cars Prira Cih G——————1
Bientley s4748 [mewy ttl o =l o 474 tich-shuttle-up ‘
tich-shuttle-source-cell-active
Ford 3284 e . en 35391 Mew York
Clevrolet 55563 ey ork Audi 57927 Mew York
4 Remove - w Dovvn
rich-shuttle-row-source-active 24504 Mew York Mercedes 20482 blmene
— 47744 [Mew vork WA Remove & Mazds fich-shuttle-down | 3 Last
rich-shuttle-source-row rich-shuttle-source-cell rich-shuttle-bottom
el e rich-shuttle-target-caption
Cars Store #1 rich-shuttle-copyAll Cars Store #2 |
Cars Price City rich-shuttle-rove-target-selected 5 rich-shuttle-target-cell-selected
. . irh- . o Copy all : g
ich-shuttle-list-header ¥ 54 fich-shuttle-copy | B 47491 [New York |
— 3284 Mewy Yark » Copy “olkwagen 35391 Mew York |
Chevrolet 25563 ey ark Audi 27927 | Mew York . .
| 4 Remove - — - Down tich-shuttle-control-disabled
rich-shuttle-rermove Mercedes 30456 Mew York |
. W Remove Al pgazge 37973 [Mew vork

i rich-shuttle-target-cell-active
— tich-shuttle-removad)] - fich-shuttle-row-target-active _ |

rich-shuttle-list-content
rich-shuttle-target-rowe rich-shuttle-target-cell

Figure 6.161. Style classes

Table 6.277. Classes names that define a list representation

Class name Description

rich-list-shuttle Defines styles for a wrapper table element of a
listShuttle

rich-list-shuttle-caption Defines styles for a list caption

rich-shuttle-body Defines styles for a list body

rich-shuttle-list-content Defines styles for a list content

rich-shuttle-source-items Defines styles for a wrapper <div> element for
source list

rich-shuttle-target-items Defines styles for a wrapper <div> element for
target list

rich-shuttle-list-header Defines styles for a lists header

rich-shuttle-header-tab-cell Defines styles for a header cell

Table 6.278. Classes names that define a caption representations in a
source and target lists

Class name Description

rich-shuttle-source-caption Defines styles for a caption in a source list

453

Chapter 6. The RichFaces Comp...

Class name Description

rich-shuttle-target-caption Defines styles for a caption in a target list

Table 6.279. Classes names that define a rows representations in a source
list

Class name Description

rich-shuttle-source-row Defines styles for a row in a source list
rich-shuttle-source-row-selected ‘ Defines styles for a selected row in a source list
rich-shuttle-source-row-active ‘ Defines styles for an active row in a source list

Table 6.280. Classes names that define a rows representations in a target
list

Class name Description

rich-shuttle-target-row Defines styles for a row in a target list
rich-shuttle-target-row-selected ‘ Defines styles for a selected row in a target list
rich-shuttle-target-row-active ‘ Defines styles for an active row in a target list

Table 6.281. Classes names that define a cells representations in a source
list

Class name Description

rich-shuttle-source-cell Defines styles for a cell in a source list
rich-shuttle-source-cell-selected ‘ Defines styles for a selected cell in a source list
rich-shuttle-source-cell-active ‘ Defines styles for an active cell in a source list

Table 6.282. Classes names that define a cells representations in atarget list

Class name Description

rich-shuttle-target-cell ‘ Defines styles for a cell in a target list
rich-shuttle-target-cell-selected ‘ Defines styles for a selected cell in a target list
rich-shuttle-target-cell-active ‘ Defines styles for an active cell in a target list

Table 6.283. Classes names that define controls representations

Class name Description

rich-shuttle-controls Defines styles for a controls group
rich-shuttle-top Defines styles for a "Top" control
rich-shuttle-bottom Defines styles for a "Bottom" control

454

Definition of Custom Style Classes

Class name Description

rich-shuttle-up Defines styles for a "Up" control
rich-shuttle-down Defines styles for a "Down" control
rich-shuttle-copy Defines styles for a "Copy" control
rich-shuttle-remove Defines styles for a "Remove" control
rich-shuttle-copyAll Defines styles for a "copyAll" control
rich-shuttle-removeAll Defines styles for a "removeAll" control
rich-shuttle-control-disabled Defines styles for a control in a disabled state

Table 6.284. Classes names that define a button representation

Class name Description

rich-list-shuttle-button Defines styles for a button
rich-list-shuttle-button-disabled Defines styles for a disabled button
rich-list-shuttle-button-light Defines styles for a button highlight
rich-list-shuttle-button-press Defines styles for a pressed button
rich-list-shuttle-button-content Defines styles for a button content
rich-list-shuttle-button-selection Defines styles for a button selection

In order to redefine styles for all <rich:listShuttle> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-shuttle-source-row-active{
background-color:#FFE4B5;

—

This is a result:

455

Chapter 6. The RichFaces Comp...

Available tems

= Open

”S;av.e
Save Al

X Delete

Currently Active kems
E:- Create Folder

m oy all N Creste Doc
b Copy “§ Find

4 Remove

W Remaove Al

Z First
e I-IF:'
 Dowen

¥ Last

Figure 6.162. Redefinition styles with predefined classes

In the example an active row background color in the source list was changed.

Also it's possible to change styles of particular <rich:listShuttle> component. In this case you
should create own style classes and use them in corresponding <rich:listShuttle> styleClass
attributes. An example is placed below:

Example:

.myClass{

font-style:italic;

The "rowClasses" attribute for <rich:listShuttle> is defined as it's shown in the example below:

Example:

<rich:listShuttle ...

This is a result:

Available kems
= Open
Save
Save All
A Delete

rowClasses="myClass"/>

Currently Active kems
& Create Folder

W Copy all N Create Doc
i Fiee

M Remove &l

Figure 6.163. Redefinition styles with own classes and styleClass attributes

456

Relevant Resources Links

As it could be seen on the picture above, font style for row items was changed.

6.59.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle] you can
see an example of <rich:listShuttle> usage and sources for the given example.

6.60. <rich:message >

6.60.1. Description

The component is used for rendering a single message for a specific component.

@ Minitnurn 5 characters recuired

Figure 6.164. <rich:message> component
6.60.2. Key Features

» Highly customizable look and feel

Tracking both traditional and Ajax based requests

Optional toolTip to display the detail portion of the message

Additionally customizable with attributes and facets

Additionally provides two parts to be optionally defined: marker and label

Table 6.285. rich : message attributes

Attribute Name Description

ajaxRendered Define, must be (or not) content of this
component will be included in AJAX response
created by parent AJAX Container, even if not
forced by reRender list of ajax action. ignored
if component marked to output by Ajax action.

binding The attribute takes a value-binding expression
for a component property of a backing bean

errorClass CSS style class to apply to any message with
a severity class of "ERROR"

errorLabelClass CSS style class to apply to any message label
with a severity class of "ERROR"

errorMarkerClass CSS style class to apply to any message
marker with a severity class of "ERROR"

fatalClass

457

http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle
http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle

Chapter 6. The RichFaces Comp...

Attribute Name Description

CSS style class to apply to any message with
a severity class of "FATAL"

fatalLabelClass CSS style class to apply to any message label
with a severity class of "FATAL"

fatalMarkerClass CSS style class to apply to any message
marker with a severity class of "FATAL"

for Client identifier of the component for which to
display messages

id Every component may have a unique id that is
automatically created if omitted

infoClass CSS style class to apply to any message with
a severity class of "INFO"

infoLabelClass CSS style class to apply to any message label
with a severity class of "INFO"

infoMarkerClass CSS style class to apply to any message
marker with a severity class of "INFO"

keepTransient Flag for mark all child components to non-
transient. If "true”, all children components will
be set to non-transient state and keep in saved
components tree. For output in self-renderer
region all content (By default, all content in
<fiverbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for ajax
processing).

labelClass CSS style class to apply to label

level A comma-separated list of messages
categories which should be displayed. Default
value is "ALL".

markerClass CSS style class to apply to marker

markerStyle CSS style(s) is/are to be applied to marker
when this component is rendered

passedLabel Attribute should define the label to be displayed
when no message appears

rendered If "false”, this component is not rendered

showDetail Flag indicating whether the summary portion

of displayed messages should be included.
Default value is "true".

458

Creating the Component with a Page Tag

Attribute Name Description

showSummary

style

Flag indicating whether the summary portion
of displayed messages should be included.
Default value is "false".

The CSS style for message

styleClass

title

tooltip

warnClass

Space-separated list of CSS style class(es) to
be applied when this element is rendered. This
value must be passed through as the "class"
attribute on generated markup

Advisory title information about markup
elements generated for this component

Flag indicating whether the detail portion of
the message should be displayed as a tooltip.
Default value is "false".

CSS style class to apply to any message with
a severity class of "WARN"

warnLabelClass

CSS style class to apply to any message label
with a severity class of "WARN"

warnMarkerClass

CSS style class to apply any message marker
with a severity class of "WARN"

Table 6.286. Component identification parameters

Name Value

component-type

org.richfaces.component.RichMessage

component-class
component-family

renderer-type

org.richfaces.component.html.HtmIRichMessag
org.richfaces.component.RichMessage

org.richfaces.renderkit.html.RichMessagesHtm

tag-class

org.richfaces.taglib.RichMessageTag

6.60.3. Creating the Component with a Page Tag

To create the simplest variant of message on a page, use the following syntax:

Example:

<rich:message for="id"/>

459

BaseRenderer

Chapter 6. The RichFaces Comp...

6.60.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIRichMessage;

HtmIRichMessage myMessage = new HtmIRichMessage();

6.60.5. Details of Usage

The component has the same behavior as standard <h:message> component except next two
features:

« It's ajaxRendered. It means that the component is reRendered after Ajax request automatically
without outputPanel usage

* The component optionally provides "passed” state which will be shown if no message is
displayed

» Provides possibility to add some marker to message. By default a marker element isn't shown

A set of facets which can be used for marker defining:

» passedMarker. This facet is provided to allow setting a marker to display if there is no message

« errorMarker. This facet is provided to allow setting a marker to display if there is a message
with a severity class of "ERROR"

- fatalMarker. This facet is provided to allow setting a marker to display if there is a message with
a severity class of "FATAL"

« infoMarker. This facet is provided to allow setting a marker to display if there is a message with
a severity class of "INFO"

» warnMarker. This facet is provided to allow setting a marker to display if there is a message
with a severity class of "WARN"

The following example shows different variants for component customization. The attribute
'‘passedLabel' is used for definition of the label to display when no message appears. But the
message component doesn't appear before the form submission even when state is defined
as passed (on initial rendering). Boolean attribute "showSummary" defines possibility to display
summary portion of displayed messages. The facets "errorMarker" and 'passedMarker' set
corresponding images for markers.

Example:

460

Look-and-Feel Customization

<rich:message for="id" passedLabel="No errors' showSummary="true">
<f:facet name="errorMarker">
<h:graphiclmage url="/image/error.png"/>
</f:facet>
<f:facet name="passedMarker">
<h:graphiclmage url="/image/passed.png"/>
</f:facet>
</rich:message>

6.60.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

There are no skin parameters and default predefined values. To redefine the appearance of all
<rich:message> components at once, you should only add to your style sheets style classes
used by a <rich:message> component.

6.60.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-message rich-message-labeal

Q@ Minimum 5 characters recuired

rich-message-marker

Figure 6.165. Classes names

Table 6.287. Classes names that define a component appearance

Class name Description

rich-message Defines styles for a wrapper element
rich-message-marker ‘ Defines styles for a marker
rich-message-label ‘ Defines styles for a label

In order to redefine styles for all <rich:message> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

461

Chapter 6. The RichFaces Comp...

Example:

.rich-message-label
font-style:italic

This is a result:

Form Validation. Using richimessage

Mame: testMame

Job: X Job lalidation Exrvar! lalue is required.

Address: X Address: lFaiidation Error! laius (s regquired,

Zip: %:i Fip: Walidation Ervor! lfafue is required,
Validate

Figure 6.166. Redefinition styles with predefined classes
In the example the font style for message was changed.

Also it's possible to change styles of particular <rich:message> component. In this case you
should create own style classes and use them in corresponding <rich:message> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-weight:bold;

The "styleClass" attribute for <rich:message> is defined as it's shown in the example below:

Example:

462

Relevant Resources Links

<rich:message ... styleClass="myClass"/>

This is a result:

Form Validation. Using richimessage

Mame: testMame

Job: E:i Job: ¥Yalidation Error: Yalue is required

Address: &) Address: validation Error: Yalue is reqt

Zip: @ Zip: ¥alidation Error: ¥alue is required.
Validate

Figure 6.167. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font weight for message was changed.
6.60.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message] you can
see the example of <rich:message> usage and sources for the given example.

6.61. <rich:messages >

6.61.1. Description

The <rich:messages> component is similar to <rich:message> component but used for
rendering all messages for the components.

©Minimurm 5 characters required for: 1 mput
O linimurm 3 characters required for 2 mput

Figure 6.168. <rich:messages> component
6.61.2. Key Features
 Highly customizable look and feel

« Track both traditional and Ajax based requests

« Optional ToolTip to display a detailed part of the messages

463

http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message
http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message

Chapter 6. The RichFaces Comp...

« Additionally customizable via attributes and facets

» Additionally provides of three parts to be optionally defined: marker, label and header

Table 6.288. rich : messages attributes

Attribute Name Description

ajaxRendered Define, must be (or not) content of this
component will be included in AJAX response
created by parent AJAX Container, even if not
forced by reRender list of ajax action. ignored
if component marked to output by Ajax action.

binding The attribute takes a value-binding expression
for a component property of a backing bean

errorClass CSS style class to apply to any message with
a severity class of "ERROR"

errorLabelClass CSS style class to apply to any message label
with a severity class of "ERROR"

errorMarkerClass CSS style class to apply to any message
marker with a severity class of "ERROR"

fatalClass CSS style class to apply to any message with
a severity class of "FATAL"

fatalLabelClass CSS style class to apply to any message label
with a severity class of "FATAL"

fatalMarkerClass CSS style class to apply to any message
marker with a severity class of "FATAL"

globalOnly Flag indicating that only global messages (that
is, messages not associated with any client
identifier) are to be displayed. Default value is
"false"

id Every component may have a unique id that is
automatically created if omitted

infoClass CSS style class to apply to any message with
a severity class of "INFO"

infoLabelClass CSS style class to apply to any message label
with a severity class of "INFO"

infoMarkerClass CSS style class to apply to any message
marker with a severity class of "INFO"

keepTransient Flag for mark all child components to non-
transient. If "true”, all children components will
be set to non-transient state and keep in saved

464

Key Features

Attribute Name Description

components tree. For output in self-renderer
region all content (By default, all content in
<fiverbatim> tags and non-jsf elements in
facelets, marked as transient - since, self-
rendered ajax regions don't plain output for ajax
processing).

labelClass

layout

level

CSS style class to apply to label

The type of layout markup to use when
rendering error messages. Possible values are
"table" (an HTML table), "list" (an HTML list)
and iterator. If not specified, the default value
is "list".

A comma-separated list of messages
categories which should be displayed. Default
value is "ALL".

markerClass

CSS style class to apply to marker

markerStyle CSS style(s) is/are to be applied to marker
when this component is rendered

passedLabel Attribute should define the label to be displayed
when no message appears

rendered If "false”, this component is not rendered

showDetail Flag indicating whether the summary portion
of displayed messages should be included.
Default value is "true"

showSummary Flag indicating whether the summary portion
of displayed messages should be included.
Default value is "false"

style The CSS style for message

styleClass Space-separated list of CSS style class(es) to
be applied when this element is rendered. This
value must be passed through as the "class"
attribute on generated markup

title Advisory title information about markup
elements generated for this component

tooltip Flag indicating whether the detail portion of
the message should be displayed as a tooltip.
Default value is "false".

warnClass CSS style class to apply to any message with

a severity class of "WARN"

465

Chapter 6. The RichFaces Comp...

Attribute Name Description

warnLabelClass CSS style class to apply to any message label
with a severity class of "WARN"

warnMarkerClass CSS style class to apply any message marker
with a severity class of "WARN"

Table 6.289. Component identification parameters

Name Value

component-type org.richfaces.component.RichMessages
component-class org.richfaces.component.html.HtmIRichMessag
component-family org.richfaces.component.RichMessages
renderer-type org.richfaces.renderkit.html.HtmIRichMessages
tag-class org.richfaces.taglib.RichMessagesTag

6.61.3. Creating the Component with a Page Tag

To create the simplest variant of message on a page, use the following syntax:

Example:

<rich:messages/>

6.61.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIRichMessages;

HtmIRichMessages myMessages = new HtmIRichMessages();

6.61.5. Details of Usage

The component has the same behavior as standard <h:message> component except next
features:

« It's ajaxRendered. It means that the component is reRendered after Ajax request automatically
without outputPanel usage.

466

es

Rendere

Look-and-Feel Customization

« The component optionally provides "passed" state which will be shown if no message to be
displayed.

 Provides possibility to add some marker to message. By default, a marker element isn't shown.

The component provides two parts to be optionally defined: marker and informational label before
the marker for every message.

Set of facet which can be used for a marker defining:

» passedMarker. This facet is provided to allow setting a marker to be displayed if there is no
message.

 errorMarker. This facet is provided to allow setting a marker to be displayed if there is a message
with a severity class of "ERROR".

« fatalMarker. This facet is provided to allow setting a marker to be displayed if there is a message
with a severity class of "FATAL".

« infoMarker. This facet is provided to allow setting a marker to be displayed if there is a message
with a severity class of "INFO".

« warnMarker. This facet is provided to allow setting a marker to be displayed if there is an
message with a severity class of "WARN".

The following example shows different variants of customization of the component.

Example:

<rich:messages layout="table" tooltip="true" showDetail="false" showSummary="true"
passedLabel="No Errors" var="messages">
<f:facet name="errorMarker">
<h:graphiclmage url="/image/error.png"/>
</f:facet>
<f:facet name="infoMarker">
<h:graphicimage url="/image/info.png"/>
</f:facet>
<f:facet name="passedMarker">
<h:graphiclmage url="/image/passed.png"/>
</f:facet>
</rich:messages>

6.61.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

467

Chapter 6. The RichFaces Comp...

There are no skin parameters and default predefined values. To redefine the appearance of all
<rich:messages> components at once, you should only add to your style sheets style classes
used by a <rich:messages> component.

6.61.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-messages-label

O linimurm 5 characters required for: 1 mput
Olinitum 3 characters required for: 2 mput

rich-messages-marker
rich-rmessages

Figure 6.169. Classes names

Table 6.290. Classes names that define a component appearance

Class name Description

rich-messages Defines styles for a wrapper element
rich-messages-marker ‘ Defines styles for a marker
rich-messages-label ‘ Defines styles for a label

In order to redefine styles for all <rich:messages> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-messages-label{
font-style:italic;

This is a result:

468

Definition of Custom Style Classes

Form Validation. Using richimessages

X Job Walidation Ervor! lWaiue is reguired.
X Address: lalidation Error: Walue s required,
X i VWalidation Ervor: lfalve is reguired.

Mame: testiMame
Jab:
Address:

Zip:

Yalidate

Figure 6.170. Redefinition styles with predefined classes
In the example the font style for messages was changed.

Also it's possible to change styles of particular <rich:messages> component. In this case you
should create own style classes and use them in corresponding <rich:messages> styleClass
attributes. An example is placed below:

Example:

.myClass{
color:red;

The "errorClass" attribute for <rich:messages> is defined as it's shown in the example below:

Example:
<rich:messages ... errorClass="myClass"/>

This is a result:

469

Chapter 6. The RichFaces Comp...

Form Validation. Using richemessages

@ Job: validation Error: Walue is required.
@ Address: Yalidation Error: Walue is required,
E:i Zip: Walidation Error: Walue is required.

Marme: testMame

Jaob:
address:

Zip:

Yalidate

Figure 6.171. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, color of messages was changed.
6.61.8. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/messsages.jsf?c=messages] you
can see the example of <rich:messages> usage and sources for the given example.

6.62. <rich:modalPanel >

6.62.1. Description

The component implements a modal dialog window. All operations in the main application window
are locked out while this window is active. Opening and closing the window is done through client
JavaScript code.

470

http://livedemo.exadel.com/richfaces-demo/richfaces/messsages.jsf?c=messages
http://livedemo.exadel.com/richfaces-demo/richfaces/messsages.jsf?c=messages

Key Features

Cpen Window!

-:.:'?";‘..'-luludal Panel

*

CALIFORNIA REPUBLIC

Close YWindow |

Figure 6.172. <rich:modalPanel> component

6.62.2. Key Features

 Highly customizable look and feel

» Support of draggable operations and size changes by you

 Easy positioning for the modal dialog window

 Possibility to restore of the previous component state on a page (including position on the

screen) after submitting and reloading

Table 6.291. rich : modalPanel attributes

Attribute Name Description

autosized If "true"” modalPanel should be autosizeable.
Default value is "false".
binding The attribute takes a value-binding expression

for a component property of a backing bean

controlsClass

headerClass

height

CSS style(s) is/are to be applied to component
controls when this component is rendered

CSS style(s) is/are to be applied to component
header when this component is rendered

Attribute defines height of component. Default
value is "200".

471

Chapter 6. The RichFaces Comp...

Attribute Name Description

id

Every component may have a unique id that is
automatically created if omitted

keepVisualState

If "true" modalPanel should save state after
submission. Default value is "false".

label

left

minHeight

A localized user presentable name for this
component.

Attribute defines X position of component left-
top corner. Default value is "auto".

Attribute defines min height of component.
Default value is "10". If the value is less then
10, a "lllegalArgumentException™" exception is
thrown.

minWidth

moveable

onbeforehide

Attribute defines min width of component.
Default value is "10". If the value is less then
10, a "lllegalArgumentException” exception is
thrown.

if "true" there is possibility to move component.
Default value is "true".

Event must occurs before panel is hiding

onmaskdblclick

onbeforeshow Event must occurs before panel is opening
onhide Event must occurs after panel closed
onmaskclick HTML: a script expression; a pointer button is
clicked outside modalPanel
onmaskcontextmenu JavaScript handler to be called on right click

outside modalPanel

HTML: a script expression; a pointer button is
double-clicked outside modalPanel

onmaskmousedown HTML: a script expression; a pointer button is
pressed down outside modalPanel

onmaskmousemove HTML: a script expression; a pointer button is
moved outside modalPanel

onmaskmouseout HTML: a script expression; a pointer button is
moved away modalPanel

onmaskmouseover HTML: a script expression; a pointer button is
moved onto modalPanel

onmaskmouseup HTML: a script expression; a pointer button is
released outside modalPanel

onmove Event must occurs before panel is moving

472

Key Features

Attribute Name Description

onresize Event must occurs than panel is resizing

onshow Event must occurs after panel opened

rendered If "false", this component is not rendered

resizeable if “"true" there is possibility to change
component size. Default value is "true".

shadowDepth Pop-up shadow depth for suggestion content

shadowOpacity HTML CSS class attribute of element for pop-
up suggestion content

showWhenRendered If "true" value for this attribute makes a modal
panel opened as default.

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

top Attribute defines Y position of component left-

top corner. Default value is "auto".

tridentlVEngineSelectBehavior

How to handle HTML SELECT-based controls
in IE 67 - "disable" - default, handle as usual,
use disabled="true" to hide SELECT controls -
"hide" - use visibility="hidden" to hide SELECT
controls

validator

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage

value

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

The current value of this component

visualOptions

width

zindex

Defines options that were specified on the
client side

Attribute defines width of component. Default
value is "300".

Attribute is similar to the standard HTML
attribute and can specify window. Default value
is "100". placement relative to the content

473

Chapter 6. The RichFaces Comp...

Table 6.292. Component identification parameters

Name Value

component-type org.richfaces.ModalPanel

component-class org.richfaces.component.html.HtmIModalPanel
component-family org.richfaces.ModalPanel

renderer-type org.richfaces.ModalPanelRenderer

tag-class org.richfaces.taglib.ModalPanelTag

6.62.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:modalPanel id="panel">
<f:facet name="header">
<h:outputText value="header" />
</f:facet>

<!--Any Content inside-->

Hide
</rich:modalPanel>

Show

6.62.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIModalPanel;

HtmIModalPanel myPanel = new HtmIModalPanel();

6.62.5. Details of Usage

The component is defined as a panel with some content inside that displays its content as a modal
dialog. To call it and to close it, the client API for the window is used.

474

Details of Usage

Table 6.293. Functions description

Function Description
RichFaces.showModalPanel (client Id) Opens a window with a specified client Id
RichFaces.hideModalPanel (client Id) Closes a window with a specified client Id

Important:

In order to avoid a bug in IE, the root node of the dialog is moved on the top of a
DOM tree. However, you should have a separate form inside the modal panel if
you want to perform submits from this panel.

It's possible to add a "header" facet to the component to set the content for the header.

Example:

<form jsfc="h:form" id="form">
<rich:modalPanel id="panel" width="400" height="300">
<f:facet name="header">
<h:outputText value="Modal Panel"/>
<[f.facet>
<h:graphiclmage value="/pages/california_large.png"/>
Close
</rich:modalPanel>
0Open
</form>

This defines a window with a particular size and ID. It includes one "Open" link. Clicking on this
link makes the modal window content appear.

475

Chapter 6. The RichFaces Comp...

DREN podal Panel

*

CALIFORNIA REPUBLIC

_ Close

Figure 6.173. <rich:modalPanel> with links
A facet named "controls" can be added to the component to place control elements on a header.

Example:

<rich:modalPanel id="mp">

<f:.facet name="header">

<h:outputText value="Modal Panel"/>
</f:facet>
<f:facet name="controls">
<h:graphiclmage value="/pages/close.png

onclick="Richfaces.hideModalPanel('mp")" />

</f:facet>

<h:graphicimage value="/pages/california_large.png"/>
</rich:modalPanel>

style="cursor:pointer

The result is displayed here:

476

Details of Usage

Modal Panel

*

CALIFORNIA REPUBLIC

Figure 6.174. <rich:modalPanel> with control element

To manage the placement of inserted windows, use the "zindex" attribute that is similar to the
standard HTML attribute and can specify window placement relative to the content.

To manage window placement relative to the component, there are "left" and "top" attributes
defining a window shifting relative to the top-left corner of the window.

Modal windows can also support resize and move operations on the client side. To allow or
disallow these operations, set the "resizeable" and "moveable" attributes to "true" or "false"
values. Window resizing is also limited by "minWidth" and "minHeight" attributes specifying the
minimal window sizes.

You can pass your parameters during modalPanel opening or closing. This passing could be
performed in the following way:

Example:

Richfaces.showModalPanel('panelld’, {left: auto}, {param1: valuel});

Thus, except the standard modalPanel parameters you can pass any of your own parameters.

Also modalPanel allows to handle its own opening and closing events on the client side. The
"onshow" and "onclose" attributes are used in this case.

The following example shows how on the client side to define opening and closing event handling
in such a way that your own parameters could also be obtained:

Example:

477

Chapter 6. The RichFaces Comp...

onshow="alert(event.parameters.param1)"

Here, during modalPanel opening the value of a passing parameter is output.

More information about this problem could be found on the RichFaces Development Forum [http:/
ww.jboss.com/index.html?module=bb&op=viewtopic&t=111804].

There is a possibility to restore of the previous component state on a page (including position
on the screen) after submitting and reloading. The modalPanel has some special attributes like
"showWhenRendered" and "keepVisualState" .

"showWhenRendered" - This boolean attribute is used if modalPanel should be rendered after
first page loading.

"keepVisualState" - Used if modalPanel should save state after submission. If "keepVisualState"
=true then parameters which modalPanel has during opening should be submitted and passed
to new page.

Example:

<a href="javascript:Richfaces.showModalPanel('_panel’, {top:'10px’, left:'10px’,
height:'400'});">Show

Here, if you open modal dialog window using current link and after submits data then modalPanel
destination and height on new loaded page is restored.

if you need the content of the modalPanel to be submitted - you need to remember two important
rules:

« modalPanel must have its own form if it has form elements (input or/and command components)
inside (as it was shown in the example above)

» modalPanel must not be included into the form (on any level up) if it has the form inside.
Simple example of using commandButton within modalPanel is placed below.

Example:

<rich:modalPanel>
<f:facet name="header">
<h:outputText value="Test" />
</f.facet>

478

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804

JavaScript API

<f:facet name="controls">

<h:commandLink value="Close" style="cursor:pointer"
onclick="Richfaces.hideModalPanel('mp")" />
</f:facet>
<h:form>

<h:commandButton value="Test" action="#{TESTCONTROLLER.test}" />
</h:form>
</rich:modalPanel>

<h:form>
<!--Some other Page content-->
</h:form>

See also discussion about this problem on the RichFaces Users Forum [http://www.jboss.com/
index.html?module=bb&op=viewtopic&p=4064191].

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines
the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM", {2} for “ShortConverter.SHORT".

6.62.6. JavaScript API

Table 6.294. JavaScript API

Function Description

show() Opens the corresponding modalPanel

hide() Closes the corresponding modalPanel

6.62.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:modalPanel> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:modalPanel> component

479

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191

Chapter 6. The RichFaces Comp...

6.62.8. Skin Parameters Redefinition

Table 6.295. Skin parameters for a component

Skin parameters CSS properties

generalBackgroundColor

background-color

panelBorderColor

border-color

Table 6.296. Skin parameters redefinition for a header element

Skin parameters

headerBackgroundColor

CSS properties

‘ background-color

headerBackgroundColor ‘ border-color

Table 6.297. Skin parameters redefinition for a header content

Skin parameters CSS properties

headerSizeFont background-color
headerTextColor font-size
headerWeightFont color
headerFamilyFont font-family

Table 6.298. Skin parameters redefinition for a body element

Skin parameters

CSS properties

generalSizeFont ‘ font-size
generalTextColor ‘ color
generalFamilyFont ‘ font-family

480

Definition of Custom Style Classes

6.62.9. Definition of Custom Style Classes

rich-rpnl-text

rich-mpnl-resizer

rich-mpnl_panel

rich-mpnl-header rich-mpnl-contrals

Header

|

rich-mpnl-headar-cell

*

rich-mpnl-shadow

CALIFORNIA REPUBLIC

rich-mpnl-body

tich-rnodalpanel
rich-mpnl-rmask-div

Figure 6.175. <rich:modalPanel> class name

The screenshot shows the classes nhames for defining different elements.

Table 6.299. Classes names that define a component appearance

Class name Description

rich-modalpanel

Defines styles for a wrapper <div> element of
a modalpanel

rich-mpnl_panel

Defines styles for a modalpanel

rich-mpnl-mask-div

Defines styles for a wrapper <div> element of
a mask

rich-mpnl-resizer

rich-mpnl-shadow

Defines styles for a wrapper <div> element of
a resizing element

Defines styles for a modalpanel shadow

rich-mpnl-header

Defines styles for a modalpanel header

rich-mpnl-header-cell

rich-mpnl-text

Defines styles for a header cell

Defines styles for a wrapper <div> element of
a header text

481

Chapter 6. The RichFaces Comp...

Class name Description

rich-mpnl-body Defines styles for a content inside a
modalpanel

rich-mpnl-controls Defines styles for a wrapper <div> element of
a modalpanel control

In order to redefine styles for all <rich:modalPanel> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-mpnl-mask-div{
background-color:#fae6b0;

This is a result:

Maodal Panel

*

CALIFORNIA REPUBLIC

Figure 6.176. Redefinition styles with predefined classes
In the example the background color for mask was changed.

Also it's possible to change styles of particular <rich:modalPanel> component. In this case you
should create own style classes and use them in corresponding <rich:modalPanel> styleClass
attributes. An example is placed below:

Example:

482

Relevant Resources Links

.myClass{
font-style:italic;

The "headerClass" attribute for <rich:modalPanel> is defined as it's shown in the example
below:
Example:

<rich:modalPanel ... headerClass="myClass"/>

This is a result:

Nodal Panaf

*

CALIFORNIA REPUBLIC

Figure 6.177. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above,the font style for header was changed.
6.62.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel] you
can see the example of <rich:modalPanel> usage and sources for the given example.

483

http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel

Chapter 6. The RichFaces Comp...

Information about wizards using the <rich:modalPanel> component could be
found in the Wiki article [http://labs.jboss.com/wiki/ModalPanelWizards] and in the
FAQ [http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/
en/fag/faq.html#Organizewizards] chapter of the guide.

Examples of validation in <rich:modalPanel> could be found in the Wiki article
[http:/Nlabs.jboss.com/wiki/ModalPanelValidation] and on the RichFaces Users Forum [http://
www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517].

6.63. <rich:orderingList >

6.63.1. Description

The <rich:orderingList> is a component for ordering items in a list. This component provides
possibilities to reorder a list and sort it on the client side.

Cars Store

Cars Price Stock
Bentley 22554 Mews York
Fard 53181 Mew vork | =~ Up
Chewrolet 11931 Mewy Yark - Down
Lirzaln 38109 Mewe York
Toyota 58932 Mewr York

£ First

¥ Last

Figure 6.178. <rich:orderingList> component

6.63.2. Key Features

» Highly customizable look and feel

* Reordering possibility for list items

Multiple selection of list items

» Keyboard support

Table 6.300. rich : orderingList attributes

Attribute Name Description

activeltem Stores active item

ajaxKeys Defines row keys that are updated after an Ajax
request

binding The attribute takes a value-binding expression

for a component property of a backing bean

bottomControlLabel Defines a label for a ‘Bottom' control

captionLabel Defines caption representation text

484

http://labs.jboss.com/wiki/ModalPanelWizards
http://labs.jboss.com/wiki/ModalPanelWizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://labs.jboss.com/wiki/ModalPanelValidation
http://labs.jboss.com/wiki/ModalPanelValidation
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517

Key Features

Attribute Name Description

columnClasses CSS class for a column

componentState It defines EL-binding for a component state for
saving or redefinition

controlsHorizontalAlign Controls horizontal rendering. Possible values:
left - controls should be rendered to the left side
of a list. right- controls should be rendered to
the right side of a list. Default value is "right".

controlsType Defines type of a control: button or none.
Default value is "button".

controlsVerticalAlign Controls vertical rendering. Possible values:
top - controls should be rendered aligned to
top side of a list. bottom - controls should
be rendered aligned to bottom side of a list.
middle (default) - controls should be rendered
centered relatively to a list.

converter Id of Converter to be used or reference to a
Converter

downControlLabel Defines a label for a 'Down' control

fastOrderControlsVisible If "“false”, Top' and 'Bottom' controls aren't

displayed. Default value is "true".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations

phase
listHeight Defines height of a list. Default value is "140".
listWidth Defines width of a list. Default value is "140".
onbottomclick A JavaScript event handler; a button "Bottom"
is clicked
onclick HTML: a script expression; a pointer button is
clicked
ondblclick HTML: a script expression; a pointer button is

double-clicked

ondownclick A JavaScript event handler; a button "Down" is
clicked
onheaderclick A JavaScript event handler; a header is clicked

485

Chapter 6. The RichFaces Comp...

Attribute Name Description

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onorderchanged A JavaScript event handler called on an order
operation

ontopclick A JavaScript event handler; a button "Top" is
clicked

onupclick HTML: a script expression; a button "Up" is

orderControlsVisible

clicked

If "false”, 'Up' and 'Down' controls aren't
displayed. Default value is "true".

rendered If "false”, this component is not rendered

required If "true", this component is checked for non-
empty input

rowClasses CSS class for a row

rowKey RowKey is a representation of an identifier for
a specific data row

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a
Request scope

rows A number of rows to display, or zero for all
remaining rows in the list

selection Collection which stores a set of selected items

showButtonLabels

If "true”, shows a label for a button

style CSS style(s) is/are to be applied when this
component is rendered
styleClass Corresponds to the HTML class attribute

topControlLabel
upControlLabel

validator

Defines a label for a "Top' control
Defines a label for a 'Up’ control

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

486

Creating the Component with a Page Tag

Attribute Name Description

value Defines a List or Array of items to be shown in
a list

valueChangeListener Listener for value changes

var Defines a list on the page

Table 6.301. Component identification parameters

Name Value

component-type org.richfaces.OrderingList

component-class org.richfaces.component.html.HtmIOrderingList
component-family org.richfaces.OrderingList

renderer-type org.richfaces.OrderingListRenderer

6.63.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:orderingList value="#{bean.list}" var="list">
<rich:column>
<f:facet name="header">
<h:outputText value="Name" />
</f:facet>
<h:inputText value="#{list.name}" />
</rich:column>
<rich:orderingList>

6.63.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIOrderingList;

HtmlOrderingList myOrderingList = new HtmlOrderingList();

487

Chapter 6. The RichFaces Comp...

6.63.5. Details of Usage

The <rich:orderingList> component consists of

* Item list element that displays a list of items. It has three different representations for a single
element: common, selected, active. Combination of these states is possible.

» Ordering controls set
The "value" and "var" attributes are used to access the values of a list.

Controls rendering is based on the "controlsType" attribute. Possible types are button or none.

@ Note

Currently the button controls type is based on <div> element.

The "selection" attribute stores the collection of items selected by you. In the example below
after submitting the form the current collection is placed in the object's property and then
<rich:dataTable> with selected items is shown.

Example:

<h:form>
<rich:orderingList value="#{bean.simpleltems}" var="item" selection="#{bean.selection}"
controlsType="button">
<rich:column>
<f:facet name="header">
<h:outputText value="Cars" />
</f:facet>
<h:outputText value="#{item}" />
</rich:column>
</rich:orderingList>
<rich:dataTable id="infoPanellD" value="#{bean.info}" var="info" rendered="true">
<rich:column>
<h:outputText value="#{info}" />
</rich:column>
</rich:dataTable>
<adj:commandButton value="reRender" reRender="infoPanellD" />
</h:form>

488

Details of Usage

The <rich:orderingList> component allows to use "caption" facet. A caption could be also
defined with “"captionLabel" attribute.

Simple example is placed below.

Example:

<rich:orderingList value="#{bean.simpleltems}" var="item" controlsType="button"
selection="#{bean.selection}"'>
<f:facet name="caption">
<h:outputText value="Caption Facet" />
</f:facet>
<rich:column>
<f:facet name="header">
<h:outputText value="Cars" />
</f:facet>
<h:outputText value="#{item.name}" />
</rich:column>
<rich:column>
<f:facet name="header">
<h:outputText value="Price" />
</f:facet>
<h:outputText value="#{item.price}" />
</rich:column>
</rich:orderingList>

The <rich:orderingList> component provides the possibility to use ordering controls set, which
performs reordering. Every control has possibility to be disabled.

An ordering controls set could be defined with "topControlLabel" , "bottomControlLabel" ,
"upControlLabel", "downControlLabel" attributes.

It is also possible to use "topControl" , "topControlDisabled" , "bottomControl"
, "bottomControlDisabled" , "upControl* , "upControlDisabled" , "downControl"
"downControlDisabled" facets in order to replace the default controls with facets content.

Example:

<rich:orderingList value="#{bean.simpleltems}" var="item" controlsType="button"
selection="#{bean.selection}">
<f:facet name="topControl">

489

Chapter 6. The RichFaces Comp...

<h:outputText value="Move to top" />
</f:facet>
<f:facet name="upControl">
<h:outputText value="Move up" />
</f:facet>
<f:facet name="downControl">
<h:outputText value="Move down" />
</f:facet>
<f:facet name="bottomControl">
<h:outputText value="Move to bottom" />
</f:facet>
<rich:orderingList>

The position of the controls relatively to a list could be customized with:

 "controlsHorizontalAlign" attribute. Possible values:
* left - controls render to the left side of a list
* right(default) - controls render to the right side of a list
* center - controls is centered
 "controlsVerticalAlign" attribute. Possible values:
« top - controls render aligned to the top side of a list
» bottom - controls render aligned to the bottom side of a list
» center(default) - controls is centered relatively to a list

The <rich:orderingList> component has a possibility to hide any of the controls by pairs using
following attributes:

« "orderControlsVisible" attribute has two values: true or false. If false Up and Down controls
are not displayed.

» "fastOrderControlsVisible" attribute has two values: true or false. If false Top and Bottom
controls are not displayed.

The <rich:orderingList> component allows to use internationalization method
to redefine and localize the labels. You could wuse application resource
bundle and define RICH_SHUTTLES_TOP_LABEL, RICH_SHUTTLES BOTTOM_LABEL,
RICH_SHUTTLES_UP_LABEL, RICH_SHUTTLES_DOWN_LABEL there.

490

JavaScript API

You could also pack org.richfaces.renderkit.orderingList resource bundle with your JARs defining

the same properties.

Table 6.302. Keyboard usage for elements selection

Keys and combinations

Description

CTRL+click Inverts selection for an item

SHIFT+click Selects all rows from active one to a clicked row
if they differ, else select the active row. All other
selections are cleared

CTRL+A Selects all elements inside the list if some

Up, Down arrows

active element is already present in a list

Changes the active and selected elements to
the next or previous in a list

Table 6.303. Keyboard usage for elements reordering

Keys and combinations

Page Up

Description

Moves selected set to the top of a list

Page Down

Moves selected set to the bottomof a list

CTRL+Up arrow

CTRL+Down arrow

Moves selected item to one position upper

Moves selected item to one position lower

6.63.6. JavaScript API

Table 6.304. JavaScript API

hide() Hides ordering control

show() Shows ordering control

isShown() Checks if current control is shown
enable() Enables ordering control

disable() Disables ordering control
isEnabled() Checks if current control is enabled
Up() Moves up selected item in the list
Down() Moves down selected item in the list
Top() Moves top selected item in the list
Bottom() Moves bottom selected item in the list
getSelection() Returns currently selected item
getltems() Returns the collection of all items

491

Chapter 6. The RichFaces Comp...

6.63.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:orderingList> components at once:
» Redefine the corresponding skin parameters
« Add to your style sheets style classes used by a <rich:orderingList> component

6.63.8. Skin Parameters Redefinition

Table 6.305. Skin parameters redefinition for a wrapper <div> element of a
list

Skin parameters CSS properties

tableBackgroundColor background-color

tableBorderColor border-color

Table 6.306. Skin parameters redefinition for a header cell of a list

Skin parameters CSS properties

trimColor background-color
generalTextColor color
headerFamilyFont font-family
headerSizeFont font-size
tableBorderWidth border-right-width
tableBorderWidth border-bottom-width
tableBorderColor border-right-color
tableBorderColor border-bottom-color

Table 6.307. Skin parameters redefinition for caption element

Skin parameters CSS properties
headerFamilyFont font-family
headerSizeFont font-size
headerWeightFont font-weight

Table 6.308. Skin parameters redefinition for row element

Skin parameters CSS properties

headerGradientColor background-color

492

Skin Parameters Redefinition

Table 6.309. Skin parameters redefinition for selected row element

Skin parameters CSS properties

additionalBackgroundColor ‘ background-color

Table 6.310. Skin parameters redefinition for cell element

Skin parameters CSS properties

generalTextColor color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.311. Skin parameters redefinition for selected cell element

Skin parameters CSS properties

generalTextColor color
generalFamilyFont font-family
generalSizeFont font-size

Table 6.312. Skin parameters redefinition for active cell element

Skin parameters CSS properties
generalFamilyFont ‘ font-family
generalSizeFont ‘ font-size

Table 6.313. Skin parameters redefinition for a button

Skin parameters CSS properties
trimColor background-color
generalTextColor color
headerFamilyFont font-family
headerSizeFont font-size

Table 6.314. Skin parameters redefinition for a disabled button

Skin parameters

CSS properties

trimColor background-color
tabDisabledTextColor color
headerFamilyFont font-family
headerSizeFont font-size

493

Chapter 6. The RichFaces Comp...

Table 6.315. Skin parameters redefinition for a button highlight

Skin parameters CSS properties

trimColor

background-color

selectControlColor

border-color

tableBorderWidth border-width
headerFamilyFont font-family
headerSizeFont font-size
generalTextColor color

Table 6.316. Skin parameters redefinition for a pressed button

Skin parameters

additionalBackgroundColor

CSS properties

background-color

tableBorderColor

border-color

tableBorderWidth border-width
headerFamilyFont font-family
headerSizeFont font-size
generalTextColor color

Table 6.317. Skin parameters redefinition for a button content

Skin parameters

headerFamilyFont

headerSizeFont

CSS properties

‘ font-family

‘ font-size

Table 6.318. Skin parameters redefinition for a button selection

Skin parameters

generalTextColor

CSS properties

color

Table 6.319. Skin parameters redefinition for top, bottom, up, down controls

and for controls in disabled state

Skin parameters

panelBorderColor

CSS properties

border-color

6.63.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

494

Definition of Custom Style Classes

rich-ordering-list-caption

rich-ordering-list-row b
Cars Price
Bertley 22554
Ford F31E

_ o < urolet 11931
rich-ordering-list-row-selected |, 35409

Tovyaota 18932

tich-ordering-list-raw-active

Cars Store

rich-ordering-list-cell =
Cars Price

Bentley (22534

Ford 2318

Chevrolet 11931

h-arderinalistcell-celected Lincaln 38109
fich-oraering-lisi-cell-selecie
‘_'[Dy-'ata SE932

rich-ordering-list-cell-active

Figure 6.179. Classes names

tich-ordeting-contral-tap

LU Ye— tich-ordering-control-up
Meny York
Mews work |~ Up
Mewy S ork - Diowen
Mesy S ark
New vork | IERE rich-ordering-contral-doman

tich-ordering-contral-bottom

fich-ordering-contrals

Stock
ey S ark
Mewy S ark
Mesny Yark
ey S ark
Mesy S ark

% First

& |p

rich-ordering-contral-disabled

Table 6.320. Classes names that define a list representation

Class name Description

rich-ordering-list-body

rich-ordering-list-output

Defines styles for a wrapper table element of
an orderingList

Defines styles for a wrapper <div> element of
a list

rich-ordering-list-items

Defines styles for a wrapper table element of
items in the list

rich-ordering-list-content

Defines styles for a list content

rich-ordering-list-header

Defines styles for a wrapper <div> element for
a list header

rich-ordering-list-table-header

rich-ordering-list-table-header-cell

Defines styles for a wrapper <tr> element for a
list header

Defines styles for a header cell

495

Chapter 6. The RichFaces Comp...

Table 6.321. Classes names that define a caption representation

Class name Description

rich-ordering-list-caption Defines styles for a caption
rich-ordering-list-caption-disabled ‘ Defines styles for a caption in disabled state
rich-ordering-list-caption-active ‘ Defines styles for a caption in active state

Table 6.322. Classes names that define rows representation

rich-ordering-list-row Defines styles for a row
rich-ordering-list-row-selected Defines styles for a selected row
rich-ordering-list-row-active Defines styles for an active row
rich-ordering-list-row-disabled Defines styles for a disabled row

Table 6.323. Classes names that define cells representation

rich-ordering-list-cell Defines styles for a cell
rich-ordering-list-cell-selected Defines styles for a selected cell
rich-ordering-list-cell-active Defines styles for an active cell
rich-ordering-list-cell-disabled Defines styles for a disabled cell

Table 6.324. Classes names that define a button representation

rich-ordering-list-button Defines styles for a button
rich-ordering-list-button-disabled Defines styles for a disabled button
rich-ordering-list-button-light Defines styles for a button highlight
rich-ordering-list-button-press Defines styles for a pressed button
rich-ordering-list-button-content Defines styles for a button content
rich-ordering-list-button-selection Defines styles for a button selection
rich-ordering-list-button-valign Defines styles for a wrapper <td> element for
buttons vertical align
rich-ordering-list-button-layout Defines styles for a wrapper <div> element of
buttons layout

Table 6.325. Classes names that define controls representation

Class name Description

rich-ordering-controls Defines styles for a controls group

496

Definition of Custom Style Classes

Class name Description

rich-ordering-control-top Defines styles for a "top" control
rich-ordering-control-bottom Defines styles for a "bottom" control
rich-ordering-control-up Defines styles for a "up" control
rich-ordering-control-down Defines styles for a "down" control
rich-ordering-control-disabled Defines styles for controls in disabled state

In order to redefine styles for all <rich:orderingList> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-ordering-list-table-header-cel{
font-weight:bold;

This is a result:

Song MName Artist Name
The Foad Ta Hell (Part 2) Chriz Rea “ E First
Teile There's A Heaven " Givises T
Loaking For & Rainkow Chriz Rea “ e
Diaytons Chris Res - Dovwvn
That™ = What They Always Say Chriz Rea ¥ Last
“'ou hust Be Evil Chriz Rea -

Figure 6.180. Redefinition styles with predefined classes
In the example the font weight for header text was changed.

Also it's possible to change styles of particular <rich:orderingList> component. In this case you
should create own style classes and use them in corresponding <rich:orderingList> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-style:italic;

497

Chapter 6. The RichFaces Comp...

The "rowClasses" attribute for <rich:orderingList> is defined as it's shown in the example
below:

Example:

<rich:orderingList ... rowClasses="myClass"/>

This is a result:

Song Mame Artist Mame
The Rogd To Hell (Pairt 2) Chels Reg * X First
Teiiiie There's A peaven " Civis rea
Looking For A Ralnbow Cheis Reg “ He
Davtona Chris Reg > Dowen
That™s What They Afways Say Chiis Rea F Last

You Must Be Evif Cheis Reg -

Figure 6.181. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the font style for rows was changed.
6.63.10. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/orderingList.jsf?c=orderingList] you
can see an example of <rich:orderingList> usage and sources for the given example.

6.64. <rich:paint2D >

6.64.1. Description

Create image by painting from a managed bean method, same as "paint" (Graphics2D) in
"SWING" components.

Rich Faces

Figure 6.182. <rich:paint2D> component

498

http://livedemo.exadel.com/richfaces-demo/richfaces/orderingList.jsf?c=orderingList
http://livedemo.exadel.com/richfaces-demo/richfaces/orderingList.jsf?c=orderingList

Key Features

6.64.2. Key Features

» Simple Graphics2D - painting style directly on the Web page
» Supports client/server caching for generated images

e Fully supports "JPEG" (24-bit, default), "GIF" (8-bit with transparency), and "PNG" (32-bit
with transparency) formats for sending generated images

 Easily customizable borders and white space to wrap the image

« Dynamically settable paint parameters using tag attributes

Table 6.326. rich : paint2D attributes

Attribute Name Description

align bottom|middle|top]left|right Deprecated. This
attribute specifies the position of an IMG,
OBJECT, or APPLET with respect to its
context. The following values for align
concern the object's position with respect to
surrounding text: * bottom: means that the
bottom of the object should be vertically aligned
with the current baseline. This is the default
value. * middle: means that the center of the
object should be vertically aligned with the
current baseline. * top: means that the top of
the object should be vertically aligned with the
top of the current text line

bgcolor Background color of painted image. Default
value is ‘transparent’ which means no
background fill. Hex colors can be used, as well
as common color names. Invalid values are
treated as transparent. Note, that JPEG format
doesn't support transparency, and transparent
background is painted black. Also note, that
several browsers (e.g. IE6) do not support PNG
transparency

binding The attribute takes a value-binding expression
for a component property of a backing bean

border Deprecated. This attribute specifies the width
of an IMG or OBJECT border, in pixels. The
default value for this attribute depends on the
user agent

cacheable

499

Chapter 6. The RichFaces Comp...

Attribute Name Description

Supported (or not) client/server caching
for generated images. Caching on client
supported by properly sending and processing
of HTTP headers (Last-Modified, Expires, If-
Modified-Since, etc.) Server-side caching is
supported by application-scope object cache.
For build of cache key use "value" attribute,
serialized to URI

data Value calculated at render time and stored in
Image URI (as part of cache Key), at paint time
passed to a paint method. It can be used for
updating cache at change of image generating
conditions, and for creating paint beans as
"Lightweight" pattern components (request
scope). IMPORTANT: Since serialized data
stored in URI, avoid using big objects

format format Name of format for sending a generated
image. It currently supports "jpeg" (24 bit,
default), "gif" (8 bit with transparency), "png"
(32 bit with transparency)

height Height in pixels of image (for paint canvas and
HTML attribute). Default value is "10".

hspace Deprecated. This attribute specifies the
amount of white space to be inserted to the left
and right of an IMG, APPLET, or OBJECT. The
default value is not specified, but is generally a
small, non-zero length

id Every component may have a unique id that is
automatically created if omitted

lang Code describing the language used in the
generated markup for this component

paint The method calls expression to paint Image
on prepared Buffered image. It must have two
parameters with a type of java.awt.Graphics2D
(graphics to paint) and Object (restored from
URI "data" property). For painting used 32-
bit RGBA color model (for 8-bit images used
Diffusion filtration before sending)

rendered If "false", this component is not rendered

500

Creating the Component with a Page Tag

Attribute Name Description

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

title Advisory title information about markup
elements generated for this component

value The current value of this component

vspace Deprecated. This attribute specifies the
amount of white space to be inserted above
and below an IMG, APPLET, or OBJECT. The
default value is not specified, but is generally a
small, non-zero length

width Width in pixels of image (for paint canvas and
HTML attribute). Default value is "10".

Table 6.327. Component identification parameters

Name Value

component-type

org.richfaces.Paint2D

component-class

org.richfaces.component.html.HtmIPaint2D

component-family

javax.faces.Output

renderer-type

tag-class

org.richfaces.Paint2DRenderer

org.richfaces.taglib.Paint2DTag

6.64.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:paint2D paint="#{paint2D.paint}" data="#{paint2DModel}"/>

Here "paint" specifies the method performing drawing and "data" specifies Managed Bean

property keeping the data used by the method.

6.64.4. Creating the Component Dynamically Using Java

Example:

501

Chapter 6. The RichFaces Comp...

import org.richfaces.component.html.HtmIPaint2D;

HtmlIPaint2D mylmage = new HtmlIPaint2D();

6.64.5. Details of Usage

The example shows two main attributes of the component:

° llpaintn

Specify a method receiving an object specified in data as a parameter and sending graphical
information into the stream

« "data"

Specifies a bean class keeping your data for rendering

@ Note:
data object should implement serializable interface

The "format" attribute of the component defines a format of visual data passing to the server.

Generated data can be used as a cacheable or non-cacheable resource. It's defined with
"cacheable" attribute. If cache support is turned on, a key is created in URI with a mix of size
(width/height), "paint” method, "format" and "data" attributes.

Example:

paintBean.java:
public void paint(Graphics2D g2, Object obj) {
/I code that gets data from the data Bean (PaintData)

PaintData data = (PaintData) obj;

/[a code drawing a rectangle
g2.drawRect(0, 0, data.Width, data.Height);

/l some more code placing graphical data into g2 stream below

dataBean.java:

502

Look-and-Feel Customization

public class PaintData implements Serializable{
private static final long serialVersionUID = 1L;
Integer Width=100;
Integer Height=50;

page.xhtml:

<rich:paint2D paint="#{paint2D.paint}" data="#{paint2DModel.data}"/>

6.64.6. Look-and-Feel Customization

Paint2D has no skin parameters and special style classes, as it consists of one element generated
with a your method on the server.

To define some style properties such as an indent or a border, it's possible to use "style" and
"styleClass" attributes on the component.

6.64.7. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/paint2D.jsf?c=paint2d] you can see
the example of <rich:paint2D> usage and sources for the given example.

6.65. <rich:panel >

6.65.1. Description

A skinnable panel that is rendered as a bordered rectangle with or without a header.

Olympus EVOLT E-500

8 Megapixels - SLRE ! Large Digital Camera - 2.5 in LCD Screen -
Storage: Compact Flash, xD-Picture Card, Compact Flash Typell -
Built In Flash Perfect for producing elabarate photography from the
professional or the beginner, this Olympus digital camera packs tons
of features into itz compact body.

Figure 6.183. <rich:panel> component

6.65.2. Key Features

 Highly customizable look and feel

« Support for any content inside

503

http://livedemo.exadel.com/richfaces-demo/richfaces/paint2D.jsf?c=paint2d
http://livedemo.exadel.com/richfaces-demo/richfaces/paint2D.jsf?c=paint2d

Chapter 6. The RichFaces Comp...

» Header adding feature

Table 6.328. rich : panel attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

bodyClass A class that defines a style for a panel content

header Label text appears on a panel header

headerClass A class that defines a style for a panel header

id Every component may have a unique id that is
automatically created if omitted

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

rendered If "false”, this component is not rendered

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

Table 6.329. Component identification parameters

component-type

org.richfaces.panel

504

Creating the Component with a Page Tag

NETIE Value

component-class org.richfaces.component.html.HtmIPanel
component-family org.richfaces.panel

renderer-type org.richfaces.PanelRenderer

tag-class org.richfaces.taglib.PanelTag

6.65.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

<rich:panel header="Panel Header">
<!--Any Content inside-->

</rich:panel>

6.65.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIPanel;

HtmlIPanel myPanel = new HtmlPanel();

6.65.5. Details of Usage

The "header" attribute defines text to be represented. If you can use the "header" facet, you
can even not use the "header" attribute.

Example:

<rich:panel>
<f:facet name="header">
<h:graphiclmage value="/images/imgl.png"/>
</f:facet>

505

Chapter 6. The RichFaces Comp...

<!--Any Content inside-->

</rich:panel>

<rich:panel> components are used to group page content pieces on similarly formatted
rectangular panels.

Example:

<rich:panel>

</rich:panel>

It's generating on a page in the following way:

8 Megapixels - SLRE / Large Digital Camera - 2.5 in LED Screen -
Storage: Compact Flash, xD-Picture Card, Compact Flazh Type |l -
Built In Flash Perfect for producing elabarste photography from the
professional ar the beginner, this Clympus digital camera packs tons
of features into itz compact body.

Figure 6.184. <rich:panel> without header
The example shows that similar rectangular areas are formed with a particular style.

When creating a panel with a header element, one more <div> element is added with content
defined for a header.

Example:

<rich:panel>
<f:facet name="header">
<h:outputText value="Olympus EVOLT E-500 "/>
</f:facet>

</rich:panel>

506

Look-and-Feel Customization

It's displayed on a page in the following way:

Olymipus EVOLT E-500

g Megapizels - SLE f Large Digital Camera - 2.5 in LED Screen -
Storage: Compact Flash, xD-Picture Card, Compact Flash Type |l -
Built In Flazh Perfect for producing elabarate photograpkey from the
professzional or the beginner, this Olympus digital camera packs tons
of features into itz compact bady.

Figure 6.185. <rich:panel> with header

As it has been mentioned above, the component is mostly used for a page style definition, hence
the main attributes are style ones.

 "styleClass" and "style"

» "headerClass" and "headerStyle"

* "bodyClass" and "bodyStyle"

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

¢ "onmouseover"
* "onclick"
e "onmouseout"

* etc.

6.65.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panel> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:panel> component

6.65.7. Skin Parameters Redefinition

Table 6.330. Skin parameters redefinition for a whole component

Skin parameters CSS properties

generalBackgroundColor background-color

507

Chapter 6. The RichFaces Comp...

Skin parameters

panelBorderColor

CSS properties

‘ border-color

Table 6.331. Skin parameters redefinition for a header element

Skin parameters CSS properties

headerBackgroundColor

background-color

headerBackgroundColor

border-color

headerSizeFont font-size
headerTextColor color
headerWeightFont font-weight
headerFamilyFont font-family

Table 6.332. Skin parameters redefinition for a body element

Skin parameters

CSS properties

generalSizeFont font-size
generalTextColor color
generalFamilyFont font-family

6.65.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Olympus EVOLT E-500

rich-panel-header

rich-panel 8 Megapixels - SLR fLarge Digital Camera - 2.5in LCD Screen -
Storage: Compact Flash, xD-Picture Card, Compact Flash Type |l -
Built In Flash Perfect for producing elsborate photography from the
professional ar the beginner, this Qlympus digital camera packs tons

of features into itz compact body.

Figure 6.186. Style classes

rich-panel-body

Table 6.333. Classes names that define a component appearance

Class name

Class description

rich-panel

Defines styles for a wrapper <div> element of
a component

508

Definition of Custom Style Classes

Class name Class description
rich-panel-header ‘ Defines styles for a header element
rich-panel-body ‘ Defines styles for a body element

In order to redefine styles for all <rich:panel> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the table above) and
define necessary properties in them. An example is placed below:

Example:

.rich-panel-body{
background-color: #ebf3fd;

This is a result:

Olympus

& megapixels - SLRLarge Digital Camera - 2.5 in LCD Screen - Storage:
Compact Flash, xD-Picture, Card, Compact Flash Type || - Buitt In Flash for
producing elaborate from the professional or the beginner, this Olimpus digital
camera packs tons of features into compact body.

Figure 6.187. Redefinition styles with predefined classes
In the example a body background color was changed.

Also it's possible to change styles of particular <rich:panel> component. In this case you should
create own style classes and use them in corresponding <rich:panel> styleClass attributes.
An example is placed below:

Example:

.myClass{
text-align: justify;

The "bodyClass" attribute for <rich:panel> is defined as it's shown in the example below:

Example:

509

Chapter 6. The RichFaces Comp...

<h:panel... bodyClass="myClass"/>

This is a result:

Olympus

8 megapixels - SLRALarge Digtal Camera - 2.5 in LCD Screen - Storage:
Compact Flazh, xD-Picture, Card, Compact Flazh Type Il - Buit In Flash faor
producing elaborate from the professional or the beginner, this Olimpus digital
camera packs tons of features into compact body.

Figure 6.188. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, text align of body was changed.

6.65.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demol/richfaces/panel.jsf?c=panel] you can see the
example of <rich:panel> usage and sources for the given example.

6.66. <rich:panelBar >

6.66.1. Description

panelBar is used for grouping any content which is loaded on the client side and appears as
groups divided on child panels after the header is clicked.

CGlhympus EVOLT E-500

& Megapixels - SLR FLarge Digital Camera - 2.5 in LCD Screen
- Storage! Compact Flash, x0-Ficture CTard, Compact Flash
Type IT - Buift In Flash

Perfect for producing elaborate photography from the
professional or the beginner, this Olyrpus digital camera
packs tons of features into its compact body, Delivering SLR
performance at an affordable price, this digital camera offers
a Dust Reduction Systemn to clean photos of unwanted spots,

Hikon DT0s
Canon EOS Digital Rebel XT

Figure 6.189. <rich:panelBar> with content inside

6.66.2. Key Features

» Skinnable slide panel and child items

510

http://livedemo.exadel.com/richfaces-demo/richfaces/panel.jsf?c=panel
http://livedemo.exadel.com/richfaces-demo/richfaces/panel.jsf?c=panel

Key Features

« Groups any content inside each panel

Table 6.334. rich : panelBar attributes

Attribute Name Description

binding

contentClass

The attribute takes a value-binding expression
for a component property of a backing bean

The component content style class

headerClass

headerClassActive

contentStyle The component content style

converter Id of Converter to be used or reference to a
Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter.

The component header style class

The component header style class active

headerStyle The component header style

headerStyleActive The component header style active

height The height of the slide panel. Might be defined
as pixels or as percentage. Default value is
"100%".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

label A localized user presentable name for this
component.

onclick JavaScript code for call before header onclick

onitemchange

Event must occurs on than item has been
changed

onmousemove Event must occurs on than item has been
changed

onmouseout Event must occurs on than item has been
changed

onmouseover Event must occurs on than item has been

changed

511

Chapter 6. The RichFaces Comp...

Attribute Name Description

rendered If "false”, this component is not rendered

required If "true", this component is checked for non-
empty input

requiredMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the
validation message for the "required” facility, if
the "required" facility is used.

selectedPanel Attribure defines name of selected item

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute.

validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator.

value The current value of this component

valueChangeListener Listener for value changes

width The width of the slide panel. Might be defined
as pixels or as percentage. Default value is
"100%".

Table 6.335. Component identification parameters

NETIE Value

component-type org.richfaces.PanelBar

component-class org.richfaces.component.html.HtmIPanelBar
component-family org.richfaces.PanelBar

renderer-type org.richfaces.PanelBarRenderer

tag-class org.richfaces.taglib.PanelBarTag

6.66.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

512

Creating the Component Dynamically Using
Java

<rich:panelBar>
<l--/[...-->
<rich:panelBarltem label="Canon">

</rich:panelBarltem>
<rich:panelBarltem label="Nikon">

</rich:panelBarltem>
</rich:panelBar>

6.66.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIPanelBar;

HtmlPanelBar myBar = new HtmlPanelBar();

6.66.5. Details of Usage

As it was mentioned above, panelBar is used for grouping any content on the client, thus its
customization deals only with specification of sizes and styles for rendering.

"width" and "height" (both are 100% on default) attributes stand apatrt.
Style attributes are described further.

panelBar could contain any number of child panelBarltem components inside, which content is
uploaded onto the client and headers are controls to open the corresponding child element.

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines
the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM?", {2} for “ShortConverter.SHORT".

6.66.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

513

Chapter 6. The RichFaces Comp...

There are two ways to redefine the appearance of all <rich:panelBar> components at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:panelBar> component

6.66.7. Skin Parameters Redefinition

Table 6.336. Skin parameter redefinition for a whole component

Skin parameter CSS properties

headerBackgroundColor border-color

6.66.8. Definition of Custom Style Classes

There is one predefined class for the <rich:panelBar>, which is applicable to a whole component,
specifying padding, borders, and etc.

Olympus EVOLT E-500

& Megapixels - 508 FLarge Digital Camera - 2.5 in LC0D Soreen
- Starage) Compact Flash, xD-Fictere Card, Compact Flash
T¥pe IT - Bullt In Alash

Perfect for producing elaborate photography from the)
professional or the beginner, this Slympos digital camera rich-panelbar
packs tons of features into its compact body, Delivering SLR

performance at an affordable price, this digital camera offers

a Dust Reduction System to clean photos of unwanted spots,

Hikon DT{s
Canon EOS Digital Rebel XT

Figure 6.190. Style classes

Table 6.337. Class name that define a component appearance

Class name Class description

rich-panelbar Defines styles for a wrapper <div> element of
a component

Other classes responsible for elements rendering are described for child <rich:panelBarltem>
elements and could be found in the components chapters.

Table 6.338. Style component classes

A class attribute A component element defined by an

attribute

styleClass

514

Definition of Custom Style Classes

A class attribute A component element defined by an
attribute
Applicable to a whole component (together with
headers)

headerClass Applicable to a header element

contentClass Applicable to a content

In order to redefine styles for all <rich:panelBar> components on a page using CSS, it's enough
to create classes with the same names (possible classes could be found in the tables above) and
define necessary properties in them.

Example:

.rich-panelbar{
font-style: italic;

This is a result:

Canon EQOS Digtal Bebel XT
8.2 Megapaeels - SLE / Large Digital Camera - 1.5 in LCD Screen - Sterage: Compact Flash, Compact Flash Type II - But In Flash
Actoeve the same profeznional results as Bbm cameras m a Qexble, dptal format wath the Canon EOS Digital Eebel XT. The EOS dyztal Rebel XT
Bawlessly combines ease of use with unequalled SLE performance, This compact diptal casnera Feahares not only hghbweight design and compatibdiy
wnith over 50 EF lenses, but also an 8 0 megapoe] CWOS sensor and DIGIC I image processor. Boastng a 7-pomt wade area AF system and one
battery pack, this compact camera comes with dygital storage media (CF card Type I and IT). Take advantage of the 10 second self-tmer delay
offered by this Canon camera Correct the color of any image with these whate balance settings: auto, preset, dayighe, shad, cloudy, rwilight, sunset,
Tungsten hght, Whate Susrescent bght, Sash, and custom Wah USE 2.0 cormector and FiciBridge prnter compatibdty, this digtal camera alse
feabares a 1,3" TFT color monstor. Enjoy the ease of uze, affordabidity, and powerfil performance of the Canon EOS Digital Rebel XT

Nzom
Oy s

Figure 6.191. Redefinition styles with predefined classes
In the example a header font style was changed.

Also it's possible to change styles of particular <rich:panelBar> component. In this case you
should create own style classes and use them in corresponding <rich:panelBar> styleClass
attributes. An example is placed below:

515

Chapter 6. The RichFaces Comp...

Example:

.myClass{
color: #900000;
font-size: 14px;

The "contentClass" attribute for <rich:panelBar> is defined as it's shown in the example below:

Example:
<rich:panelBar ... contentClass="myClass"/>

This is a result:

Canon EOS Digital Febel XT

3.1 Megapoeeds - SLR / Large Dagital Camera - 1.8 @ LCD Sereen - Storage Compact Flash, Compact Flash Type Il - Bult In F
Acheeve the same profesnonal resulls &5 Aim cameras na Aeoble, dipial format with the Canon EOS Deptal Rebd XT. The EO;
combines ease of use with unequaled SLR performance Thas compact digtal carmera features not ondy Eghtweght design and ¢
lenges, but alro an 3.0 megapoed CMOS sensor and DIGIC 11 mnage processor. Boasting a T-point wide area AF system and one
camera commes with digital storage medsa (CF card Type | and 11). Take advantage of the 10 second self-timer delsy offered by
the color of any image with these white balance seltings: aulo, presel, dayight, shad, cloudy, twilight, sunset, Tungsten Bght, W
and custorm. With USE 2.0 connector and PiciBridge printer compatibdity, this digital camera also features a 1,87 TFT color mor
affordabdly, and powerfal parformance of the Canen EQOS Digial Rebel KT

B sy
Ofympus

Figure 6.192. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font size and color for content were changed.

516

Relevant Resources Links

6.66.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar] you can
see the example of <rich:panelBar> usage and sources for the given example.

6.67. <rich:panelBarltem >

6.67.1. Description

panelBarltem is used for grouping any content inside within one panelBar which is loaded on client
side and appears as groups divided on child panels after header is clicked.

Olympus EVOLT E-500

& Megapixels - 508 FLarge Digital Camerg - 2.5 in LTD Soreen
- Storage: Compact Flash, x0-Ficture Card, Compact Flash
Type [T - Buitt In Flash

Perfect for producing elaborate photography from the
professional or the beginner, this Olympus digital carmera
packs tons of features into its compact body, Delivering SLR
. performance at an affordable price, this digital camera offers
rich:panelBarltem a Dust Reduction Systern to clean photos of unwanted spots,

Hiicon DT s
Canon EOS Digital Rebel XT

Figure 6.193. <rich:panelBarltem> component

6.67.2. Key Features

 Highly customizable look and feel

« Groups any content inside each Panels

Table 6.339. rich : panelBarltem attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

contentClass The component content style class

contentStyle The component content style

headerClass The component header style class

headerClassActive The component header style class active

headerStyle The component header style

headerStyleActive The component header style active

517

http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar
http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar

Chapter 6. The RichFaces Comp...

Attribute Name Description

id Every component may have a unique id that is
automatically created if omitted

label Label text appears on a panel item header

name Attribute defines item name. Default value is
"getld()".

onenter Event must occurs on than item has been
entered

onleave Event must occurs on than item has been
leaved

rendered If "false", this component is not rendered

Table 6.340. Component identification parameters

NETIE Value

component-type

org.richfaces.PanelBarltem

component-class

org.richfaces.component.html.HtmIPanelBarltem

component-family

org.richfaces.PanelBarltem

renderer-type

tag-class

org.richfaces.PanelBarltemRenderer

org.richfaces.taglib.PanelBarltemTag

6.67.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:panelBar>

<rich:panelBarltem label="Canon">

</rich:panelBarltem>
<rich:panelBarltem label="Nikon">

</rich:panelBarltem>
</rich:panelBar>

6.67.4. Creating the Component Dynamically Using Java

Example:

Details of Usage

import org.richfaces.component.html.HtmIPanelBarltem;

HtmlPanelBarltem myBarltem = new HtmlPanelBarltem();

6.67.5. Details of Usage

The "label" attribute defines text to be represented. If you can use the "label" facet, you can
even not use the "label" attribute.

Example:

<rich:panelBarltem...>
<f:facet name="label">
<h:graphiclmage value="/images/imgl.png"/>
</f:facet>

<l--Any Content inside-->

</rich:panelBarltem>

As it was mentioned above, panelBarltem is used for grouping any content inside within one
panelBar, thus its customization deals only with specification of sizes and styles for rendering.

panelBar could contain any number of child panelBarltem components inside, which content is
uploaded onto the client and headers are controls to open the corresponding child element.

6.67.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelBarltem> components at once:

* Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:panelBarltem> component

519

Chapter 6. The RichFaces Comp...

6.67.7. Skin Parameters Redefinition

Table 6.341. Skin parameters redefinition for a content

Skin parameters CSS properties

generalTextColor color
preferableDataSizeFont font-size
preferableDataFamilyFont font-family

Table 6.342. Skin parameters redefinition for a header element (active or

inactive)

Skin parameters CSS properties

headerTextColor

color

headerBackgroundColor

background-color

headerSizeFont

headerWeightFont

headerFamilyFont

font-size
font-weight

font-family

6.67.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Definition of Custom Style Classes

rich-panelbar-header-act

Olympus EVOLT E-500

& Megapixels - 5LR Flarge Digital Camera - 2.5 {n LCD Screen
- Storage! Compact Alash, x0-Sicture Card, Compact Flash
T¥pe [T - Buitt In Flash

Perfect for producing elaborate photography from the
professional or the beginner, this Qlvmpus digital cam
packs tons of features into its compact body, Deliver
performance at an affordable price, this digital camera offers
a Dust Reduction System to clean photos of unwanted spots,

rich-panelbar-content

Hikon DT0s
Canon EOS Digital Rebel XT

rich-panelbar-header

Figure 6.194. Style classes

Table 6.343. Classes names that define a component appearance

Class name Class description

rich-panelbar-header Defines styles for a wrapper <div> element of
a header element

rich-panelbar-header-act Defines styles for a wrapper <div> element of
an active header element

rich-panelbar-content Defines styles for a content

Table 6.344. Style component classes

A class attribute A component element defined by an
attribute

headerClass Applicable to a header element

contentClass Applicable to a content

In order to redefine styles for all <rich:panelBarltem> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

521

Chapter 6. The RichFaces Comp...

.rich-panelbar-header{
font-style: italic;

}

This is a result:

Canon EOS Digtal Rebel XT
8.2 Megapreels - SLE f Large Dugieal Camera - 1.8 in LCD Screen - Storage: Compact Flash, Compact Flash Type I - Bkt In Flash
Achaeve the same professional results as Blm cameras in a Bexable, dyptal format with the Canon EOS Digital Bebel XT. The EOS &ptal Eebel XT
fawdessly combaves ease of wse with unequalled SLE performance. This compact digtal camera fratures not only Eghtweight design and compabibikty
with over 50 EF lenses, but also an 8.0 megapoeel CMOS sensor and DIGIC I image processor. Boasting a 7-pomt wide area AF system and one
battery pack, this compact camera comes with digital storage mecha (CF card Type [and IT). Take advantage of the 10 second self-tner delay
offered by this Canon camera Correct the color of any mnage with these whate balance setings: auto, preset, dayhoht, chad, cloudy, rankght, sunset,
Tungsten bght, White facrescent kght, fash, and custem With USE 2.0 cormector and PictBndge prnter compatbity, this digtal camera also
features a 18" TFT color montor. Engoy the ease of use, affordabalty, and powerfid performance of the Canon EOS Digtal Eebel XT

R
Oiymrpus

Figure 6.195. Redefinition styles with predefined classes

In the example a header font style was changed.

Also it's possible to change styles of particular <rich:panelBarltem> component. In this case you
should create own style classes and use them in corresponding <rich:panelBarltem> styleClass
attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

The "contentClass" attribute for <rich:panelBarltem> is defined as it's shown in the example
below:

Example:

522

<rich:panelMenu >

<rich:panelBarltem ... contentClass="myClass"/>

This is a result:

Canomn

Canon BOF Digital Rebel XT
8.2 Megapixels - SLR S Large Dxgital Camwera - 1.8 in LCD Screen - Storage: Compact Flagk, Compact Flash Tvpe Il - Built In Flash
Ackigve the same professonal resulis as filwm cameras 1 a_fTexrble, digital format with the Canon EOF Digital Rebel XT, The EQE digital
Febel XT flovwleesly combines ease of uee with umequalled SLR performance. Thiz compact digital camera featiures ot onjy Ephivwenght
design and compatibility with over 50 EF lenses, but ales an 8.0 megapizel CMOS songor and DIGIC I image precessor. Boasting a Fapoint
wide area AF gystem and one battery pack, this compact camena comes with digital storage media (CF card Type Jand I]). Take advantage
af the [0 evcond selftmer delqy affered by thiz Canon camera, Correet the color of any irage with theer white balznce setitngs: auls,
proset, daylight, shad, cloudy, twilight, sumser. Tungsten light, Wiite fluorescant Sght, flash, and custom. With USE 2.0 connector and
FictBridge prinier compatibility, vz digital camera alse features @ 18" TFT color monior, Sypoy the sase of use, qifordabilily, and
povwerfil perfermance of the Canen B0 Digtial Rebel XT

Heaom
DTS

Figure 6.196. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for content was changed.

6.68. <rich:panelMenu >

6.68.1. Description

The <rich:panelMenu> component is used to define an in line vertical menu on a page.

* Group1
A fem 1.1
fem 1.2
Group 1.1
* fem1.14
Group 1.1.1
* lftem1.1.1.1

Group 2
ftem 2.1

Group 3

Figure 6.197. <rich:panelMenu> component

523

Chapter 6. The RichFaces Comp...

6.68.2. Key Features

* Highly customizable look and feel

+ Different submission modes

» Collapsing/expanding sublevels with optional request sending
» Custom and predefined icons support

« Disablement support

Table 6.345. rich : panelMenu attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

converter Id of Converter to be used or reference to a
Converter
converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter
message, replacing any message that comes
from the converter

disabled If true sets state of the item to disabled state.
Default value is "false".

disabledGroupClass Space-separated list of CSS style class(es)
that are be applied to disabled group of this
component

disabledGroupStyle CSS style(s) is/are to be applied to disabled
group when this component is rendered

disableditemClass Space-separated list of CSS style class(es)
that are be applied to disabled item of this
component

disableditemStyle CSS style(s) is/are to be applied to disabled
item when this component is rendered.

event Defines the event on the representation
element that triggers the submenu's expand/
collapse. Default value is "onclick".

expandMode Set the submission mode for all panel menu
groups after expand/collapse except ones
where this attribute redefined. Possible values
none". Default value is

are "ajax", "server",
"none".

expandSingle

524

Key Features

Attribute Name Description

Whether only one panel menu node on top
level can be opened at atime. If the value of this
attribute is true, the previously opened node on
the top level is closed. If the value is false, the
node is left opened. Default value is "false".

groupClass Space-separated list of CSS style class(es)
that are be applied to group of this component

groupStyle CSS style(s) is/are to be applied to group when
this component is rendered

hoveredGroupClass Space-separated list of CSS style class(es)
that are be applied to hovered group of this
component

hoveredGroupStyle CSS style(s) is/are to be applied to hovered
group when this component is rendered

hovereditemClass Space-separated list of CSS style class(es)
that are be applied to hovered item of this
component

hovereditemStyle CSS style(s) is/are to be applied to hovered

item when this component is rendered

iconCollapsedGroup Path to the icon to be displayed for the
collapsed Group state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconCollapsedTopGroup Path to the icon to be displayed for the
collapsed top group state.\ You can also
use predefined icons, setting the attribute
to one of these possible values: "triangle",
“"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconDisabledGroup Path to the icon to be displayed for the
disabled group state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", "triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

525

Chapter 6. The RichFaces Comp...

Attribute Name Description

iconDisabledltem Path to the icon to be displayed for the
disabled item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", “triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconExpandedGroup Path to the icon to be displayed for the
expanded Group state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
“triangleUp", "triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconExpandedTopGroup Path to the icon to be displayed for the
expanded top group state. You can also
use predefined icons, setting the attribute
to one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconGroupPosition Position of the icon for the group icon. Possible
values are "left","right","none". Default value is
Illeﬂll.

iconGroupTopPosition Position of the icon for the top group
icon. Possible values are "left","right","none".
Default value is "left".

iconltem Path to the icon to be displayed for the

enabled item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",

"triangleUp"”, "triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconltemPosition Position of the icon for the item icon. Possible
values are "left","right","none". Default value is
"left",

iconltemTopPosition Position of the icon for the top item

icon. Possible values are "left","right
Default value is "left".

,'none".

526

Key Features

Attribute Name Description

iconTopDisableditem Path to the icon to be displayed for the
disabled top item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", “triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconTopDisableGroup Path to the icon to be displayed for the
disabled top Group state. You can also
use predefined icons, setting the attribute
to one of these possible values: "triangle",
“triangleUp", "triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconTopltem Path to the icon to be displayed for the
enabled top item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".

id Every component may have a unique id that is
automatically created if omitted

immediate A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

itemClass Space-separated list of CSS style class(es)
that are be applied to item of this component

itemStyle CSS style(s) is/are to be applied to item when
this component is rendered.

label A localized user presentable name for this
component.

mode Set the submission mode for all panel menu

items on the panel menu except ones where
this attribute redefined. Possible values are
"ajax", "server", "none". Default value is
"server".

527

Chapter 6. The RichFaces Comp...

Attribute Name Description

onclick HTML: a script expression; a pointer button is
clicked
ondblclick HTML: a script expression; a pointer button is

double-clicked

ongroupcollapse HTML: script expression; some group was
closed

ongroupexpand HTML: script expression; some group was
activated

onitemhover HTML: script expression; some item was
hovered

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed

and released
onkeyup HTML: a script expression; a key is released

onmousedown HTML.: script expression; a pointer button is
pressed down

onmousemove HTML: script expression; a pointer was moved
within.

onmouseout HTML: script expression; a pointer was moved
away.

onmouseover HTML: script expression; a pointer was moved
onto.

onmouseup HTML: script expression; a pointer button is
released

rendered If "false", this component is not rendered

required If "true", this component is checked for non-
empty input

requiredMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

selectedChild contain the name or the clientld of any of the
item or group, the child defined in this attribute
should be highlighted on PanelMenu rendering

style The CSS style for the panel menu.

styleClass The CSS class for the panel menu.

528

Creating the Component with a Page Tag

Attribute Name Description

topGroupClass Space-separated list of CSS style class(es)
that are be applied to top group of this
component

topGroupStyle CSS style(s) is/are to be applied to top group
when this component is rendered

topltemClass Space-separated list of CSS style class(es)
that are be applied to top item of this
component

topltemStyle CSS style(s) is/are to be applied to top item

when this component is rendered

validator MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value The current value of this component

valueChangeListener Listener for value changes

width Set minimal width for the menu. Default value
is "100%".

Table 6.346. Component identification parameters

Name Value

component-type org.richfaces.PanelMenu

component-class org.richfaces.component.html.HtmIPanelMenu
component-family org.richfaces.PanelMenu

renderer-type org.richfaces.PanelMenuRenderer

tag-class org.richfaces.taglib.PanelMenuTag

6.68.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:panelMenu event="onmouseover">

529

Chapter 6. The RichFaces Comp...

<!--Nested panelMenu components-->
</rich:panelMenu>

6.68.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIPanelMenu;

HtmlPanelMenu myPanelMenu = new HtmlPanelMenu();

6.68.5. Details of Usage

All attributes are not required.

Use "event" attribute to define an event for appearance of collapsing/expanding sublevels. Default
value is "onclick" . An example could be seen below.

Example:

<rich:panelMenu event="onmouseover">
<l--Nested panelMenu components-->
</rich:panelMenu>

Switching mode could be chosen with the "mode" attribute for all panelMenu items except ones
where this attribute was redefined. By default all items send traditional request.

The “expandMode" attribute defines the submission modes for all collapsing/expanding
panelMenu groups except ones where this attribute was redefined.

The "mode" and "expandMode" attributes could be used with three possible parameters. The
"mode" attribute defines parameters for all included <rich:panelMenultem> elements.

» Server (default)
The common submission of the form is performed and a page is completely refreshed.

Example:

530

Details of Usage

<rich:panelMenu mode="server">
<rich:panelMenuGroup label="test Group" action="#{bean.action}">
<rich:panelMenultem label="test" action="#{capitalsBean.action}">
<f:param value="test value" name="test"/>
</rich:panelMenultem>
</rich:panelMenuGroup>
</rich:panelMenu>

« Ajax

An Ajax form submission is performed, and additionally specified elements in the "reRender"
attribute are reRendered.

Example:

<rich:panelMenu mode="ajax">
<rich:panelMenuGroup label="test Group" action="#{bean.action}">
<rich:panelMenultem label="test" reRender="test" action="#{capitalsBean.action}">
<f:param value="test value" name="test"/>
</rich:panelMenultem>
</rich:panelMenuGroup>
</rich:panelMenu>

¢ None

"Action” and "ActionListener" item's attributes are ignored. ltems don't fire any submits itself.
Behavior is fully defined by the components nested into items.

Example:

<rich:panelMenu event="onclick" submitMode="none">
<rich:panelMenultem label="Link to external page">
<h:outputLink ... >
<rich:panelMenultem>
</rich:panelMenu>

531

Chapter 6. The RichFaces Comp...

. Note:
L1
As the <rich:panelMenu> component doesn't provide its own form, use it
between <h:form> and </h:form> tags.

The "expandSingle" attribute is defined for expanding more than one submenu on the same
level. The default value is "false" . If it's true the previously opened group on the top level closes
before opening another one. See the picture below.

* Group1
A tem 1.
ftem 1.2
Group 1.1
* fem1.14
Group 1.1.1
* lftem1.1.1.1

Group 2
ftem 2.1

Group 3

Figure 6.198. Using the "expandSingle" attribute

The "selectedChild" attribute is used for defining the name of the selected group or item. An
example for group is placed below:

Here is an example:

Example:

<rich:panelMenu selectedChild="thisChild">
<rich:panelMenuGroup label="Groupl" name="thisChild">
<!I--Nested panelMenu components-->
</rich:panelMenuGroup>
</rich:panelMenu>

The "label" attribute is a generic attribute. The "label" attribute provides an association between
a component, and the message that the component (indirectly) produced. This attribute defines

532

JavaScript API

the parameters of localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. With the help of
this attribute you can replace the last parameter substitution token shown in the messages. For
example, {1} for “DoubleRangeValidator. MAXIMUM”, {2} for “ShortConverter.SHORT".

6.68.6. JavaScript API

In Java Script code for expanding/collapsing group element creation it's necessary to use
expand()/collapse() function.

Table 6.347. JavaScript API

Function Description

expand() Expands group element

collapse() Collapses group element

6.68.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

There are no skin parameters. To redefine the appearance of all <rich:panelMenu> components
at once, you should add to your style sheets the style class used by a <rich:panelMenu>
component.

6.68.8. Definition of Custom Style Classes

Table 6.348. Classes names that define a component appearance

Class name Class description

rich-pmenu Defines styles for a wrapper <div> element of
a component

In order to redefine styles for all <rich:panelMenu> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-pmenu-group-self-label{
font-style:italic;

533

Chapter 6. The RichFaces Comp...

This is a result:

Group I i
Itern 1.1
Itern 1.2
Itern 1.3
Group 2 w
Group 3 W

Figure 6.199. Redefinition styles with predefined classes

In the example the font style for mask was changed.

Also it's possible to change styles of particular <rich:panelMenu> component. In this case you
should create own style classes and use them in corresponding <rich:panelMenu> styleClass
attributes. An example is placed below:

Example:

.myClass{
background-color:#ffead9;

The "hoveredltemClass" attribute for <rich:panelMenu> is defined as it's shown in the example
below:

Example:
<rich:panelMenu ... hoveredltemClass="myClass"/>

This is a result:

534

Relevant Resources Links

Group I 2
Item 1.1
¥ Ttemn 1.2
i Itern 1.3
Group 2 ¥
Group 3 ¥

Figure 6.200. Redefinition styles with own classes and "styleClass"
attributes

As it could be seen on the picture above,background color for hovered item was changed.

6.68.9. Relevant Resources Links

Here [http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu] you
can see the example of <rich:panelMenu> usage and sources for the given example.

6.69. <rich:panelMenuGroup >

6.69.1. Description

The <rich:panelMenuGroup> componentis used to define an expandable group of items inside
the panel menu or other group.

* Group1
Hem 11
i ftem 1.2
Group 1.1
» ltem1.1.1
Group 1.1.1
* fem1.1.4.1

Groap 2
' ttem 24

Group 3
Figure 6.201. <rich:panelMenuGroup> component

6.69.2. Key Features

 Highly customizable look-and-feel
« Different submission modes inside every group

» Optional submissions on expand collapse groups

535

http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu

Chapter 6. The RichFaces Comp...

» Custom and predefined icons supported

» Support for disabling

Table 6.349. rich : panelMenuGroup attributes

Attribute Name Description

accesskey This attribute assigns an access key to an
element. An access key is a single character
from the document character set. Note:
Authors should consider the input method
of the expected reader when specifying an
accesskey

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

align left|center|right|justify [CI] Deprecated. This
attribute specifies the horizontal alignment of
its element with respect to the surrounding
context. Possible values: * left: text lines are
rendered flush left. * center: text lines are
centered. * right: text lines are rendered flush
right. * justify: text lines are justified to both
margins. The default depends on the base text
direction. For left to right text, the default is
align=left, while for right to left text, the default
is align=right

alt For a user agents that cannot display images,
forms, or applets, this attribute specifies
alternate text. The language of the alternate
text is specified by the lang attribute

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates

536

Key Features

Attribute Name Description

If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

converter

Id of Converter to be used or reference to a
Converter

data

converterMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the converter
message, replacing any message that comes
from the converter

Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled

disabledClass

disabledStyle

When set for a form control, this boolean
attribute disables the control for your input

Class to be applied to disabled items.

CSS style rules to be applied to disabled items.

eventsQueue

Name of requests queue to avoid send next
request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

expanded

If true group will be displayed expanded
initially. Default value is "false".

expandMode

Set the submission mode for all panel menu
groups after expand/collapse except ones
where this attribute redefined. Possible value

are "ajax", "server",
"none".

none". Default value is

focus

id of element to set focus after request
completed on client side

hoverClass

Class to be applied to hovered items.

hoverStyle

CSS style rules to be applied to hovered items.

iconClass

iconCollapsed

Class to be applied to icon element.

Path to the icon to be displayed for the
collapsed item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron”,

537

Chapter 6. The RichFaces Comp...

Attribute Name Description

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconDisabled Path to the icon to be displayed for the disabled
item state.

iconExpanded Path to the icon to be displayed for the

expanded item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".
iconStyle CSS style rules to be applied
id Every component may have a unique id that is

automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

immediate True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

label Displayed node's text

limitToList If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

maxlength When the type attribute has the value "text"
or "password", this attribute specifies the
maximum number of characters you may enter.
This number may exceed the specified size,
in which case the user agent should offer a
scrolling mechanism. The default value for this
attribute is an unlimited number

538

Key Features

Attribute Name Description

name Refers to group/item with the same name.
Default value is "getld()".

onbeforedomupdate JavaScript code for call before DOM has been
updated on client side

onblur HTML: script expression; the element lost the
focus

onchange HTML: script expression; the element value
was changed

onclick HTML: a script expression; a pointer button is
clicked

oncollapse HTML: script expression; group was closed

oncomplete JavaScript code for call after request
completed on client side

ondblclick HTML: a script expression; a pointer button is
double-clicked

onexpand HTML.: script expression; group was opened

onfocus HTML: script expression; the element got the
focus

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is
released

onselect HTML: script expression; The onselect event
occurs when you select some text in a text field.
This attribute may be used with the INPUT and
TEXTAREA elements

539

Chapter 6. The RichFaces Comp...

Attribute Name Description

process Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

rendered If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue

already

required If "true", this component is checked for non-
empty input

requiredMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the
validation message for the "required" facility, if
the "required" facility is used

reRender Id['s] (in format of call
UlComponent.findComponent()) of
components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of 1d's, or EL Expression
with array or Collection

size This attribute tells the user agent the initial
width of the control. The width is given in pixels
except when type attribute has the value "text"
or "password". In that case, its value refers to
the (integer) number of characters

status ID (in format of call
UlComponent.findComponent()) of Request
status component

style CSS style(s) to be applied when this
component is rendered.

styleClass Corresponds to the HTML class attribute.

tabindex This attribute specifies the position of the

current element in the tabbing order for the
current document. This value must be a

540

Creating the Component with a Page Tag

Attribute Name Description

number between 0 and 32767. User agents
should ignore leading zeros

target

timeout

validator

validatorMessage

Target frame for action to execute.

Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

MethodBinding pointing at a method that is
called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator
message, replacing any message that comes
from the validator

value

The current value for this component

valueChangeListener

Listener for value changes

Table 6.350. Component identification parameters

Name Value

component-type

org.richfaces.PanelMenuGroup

component-class

org.richfaces.component.html.HtmIPanelMenud

component-family

renderer-type

tag-class

org.richfaces.PanelMenuGroup

org.richfaces.PanelMenuGroupRenderer

org.richfaces.taglib.PanelMenuGroupTag

6.69.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:panelMenu>
<rich:panelMenuGroup label="Group1">
<l--Nested panelMenu components-->
</rich:panelMenuGroup>
</rich:panelMenu>

541

Sroup

Chapter 6. The RichFaces Comp...

6.69.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIPanelMenuGroup;

HtmlPanelMenuGroup myPanelMenuGroup = new HtmIPanelMenuGroup();

6.69.5. Details of Usage

All attributes except "label" are optional. The "label" attribute defines text to be represented.

Switching mode could be chosen with the "expandMode" attribute for the concrete panelMenu
group.

The "expandMode" attribute could be used with three possible parameters:
« Server (default)

Regular form submission request is used.

* Ajax

Ajax submission is used for switching.

* None

"Action" and "actionListener" attributes are ignored. Items don't fire any submits itself. Behavior
is fully defined by the components nested into items.

There are three icon-related attributes. The "iconExpanded" attribute defines an icon for an
expanded state. The "iconCollapsed" attribute defines an icon for a collapsed state. The
"iconDisabled" attribute defines an icon for a disabled state.

Default icons are shown on the picture below:

p triangle » chevron
A ftriangleUp 2~ chevronUp

w triangleDown ¥ chevronDown
@® disc =s grid

Figure 6.202. Default icons
Here is an example:

Example:

542

Details of Usage

<rich:panelMenu>
<rich:panelMenuGroup label="Groupl" iconExpanded="disc" iconCollapsed="chevron">
<!--Nested panelMenu components-->
</rich:panelMenuGroup>
</rich:panelMenu>

As the result the pictures are shown below. The first one represents the collapsed state, the
second one - expanded state:

2 Group ¥
Group 2

Group 3

Figure 6.203. Collapsed state

* Group T
fem 1
ftem 1.2
Group 1.1

Group 2

Group 3

Figure 6.204. Expanded state

It's also possible to define a path to the icon. Simple code is placed below.

<rich:panelMenu>
<rich:panelMenuGroup label="Groupl" iconExpanded="\images\imgl.png"
iconCollapsed="\images\img2.png">
<!--Nested menu components-->
</rich:panelMenuGroup>
</rich:panelMenu>

Information about the "process" attribute usage you can find here.

543

Chapter 6. The RichFaces Comp...

6.69.6. JavaScript API

In Java Script code for expanding/collapsing group element creation it's necessary to use
Expand()/Collapse() function.

Table 6.351. JavaScript API

Function Description
expand() ‘ Expand group element
collapse() ‘ Collapse group element

6.69.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelMenuGroup> components
at once:

» Redefine the corresponding skin parameters

« Add to your style sheets style classes used by a <rich:panelMenuGroup> component

6.69.8. Skin Parameters Redefinition

Table 6.352. Skin parameters redefinition for atable element of the first level
group

Skin parameters CSS properties
headerWeightFont font-weight
generalFamilyFont font-family
headerSizeFont font-size
headerTextColor color
headerBackgroundColor background-color

Table 6.353. Skin parameters redefinition for a table element of second and
next level groups

Skin parameters CSS properties

headerWeightFont font-weight
headerFamilyFont font-family
headerSizeFont font-size
generalTextColor color
tableBorderColor border-top-color

544

Definition of Custom Style Classes

Table 6.354. Skin parameters redefinition for wrapper div element of the first

level group

Skin parameters CSS properties

panelBorderColor border-color

Table 6.355. Skin parameters redefinition for a hovered group element

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.356. Skin parameters redefinition for a disabled group element

Skin parameters CSS properties

tabDisabledTextColor color

6.69.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

rich-pmenu-disabled-element

Group T
ftem 1.2
_ 13
rich-pmenu-hovered-element
Group 2 L3
Group 3 L

Figure 6.205. Classes names

545

Chapter 6. The RichFaces Comp...

* Group T
tem 1.1
rich-pmenu-top-group-selft-icon
Ll G 1.1
Group 2

e ey

rich-pmenu-top-group-=elf-label

Figure 6.206. Classes names

Table 6.357. Classes names that define an upper level groups

Class name Description
rich-pmenu-top-group-self-icon Defines styles for a top group icon
rich-pmenu-top-group-self-label Defines styles for a top group label

Table 6.358. Classes names that define a second and lower level groups

Class name Description

rich-pmenu-group Defines styles for a group
rich-pmenu-group-self-icon ‘ Defines styles for a group icon
rich-pmenu-group-self-label ‘ Defines styles for a group label

Table 6.359. Classes names that define a group state

Class name Description
rich-pmenu-hovered-element ‘ Defines styles for a hovered group element
rich-pmenu-disabled-element ‘ Defines styles for a disabled group element

In order to redefine styles for all <rich:panelMenuGroup> components on a page using CSS,
it's enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-pmenu-disabled-element{
color: #87b9ff;
font-style: italic;

546

Definition of Custom Style Classes

This is a result:

* Group1
e 1
ttem
Group 2
ftem 3
Group 3
ltem 3

Group 3

Figure 6.207. Redefinition styles with predefined classes
In the example a disabled element font style and color were changed.

Also it's possible to change styles of particular <rich:panelMenuGroup> component. In this case
you should create own style classes and use them in corresponding <rich:panelMenuGroup>
styleClass attributes. An example is placed below:

Example:

.myClass{
font-style: italic;

The "hoverClass" attribute for <rich:panelMenuGroup> is defined as it's shown in the example
below:

Example:
<rich:panelMenuGroup ... hoverClass="myClass"/>

This is a result:

547

Chapter 6. The RichFaces Comp...

Group 1 2]
#ofem 1
s ftem1.2
s oftem1.3
Group 2 ¥
Group 3 ¥

Figure 6.208. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for hovered item was changed.

6.69.10. Relevant resources links

Some additional information about usage of component can be found here [http:/
livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup].

6.70. <rich:panelMenultem >

6.70.1. Description

The <rich:panelMenultem> component is used to define a single item inside popup list.

* Group1
ftem 1.1
o fem 1.2
Group 1.1
w* [tem1.1.1
Group 1.1.1
* ftem1.1.1.1

Group 2
t fem 21

Group 3
Figure 6.209. <rich:panelMenultem> component

6.70.2. Key Features

* Highly customizable look-and-feel

» Different submission modes

Optionally supports any content inside

« Custom and predefined icons supported

548

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup

Key Features

» Support for disabling

Table 6.360. rich : panelMenultem attributes

Attribute Name Description

action MethodBinding pointing at the application
action to be invoked, if this UIComponent is
activated by you, during the Apply Request
Values or Invoke Application phase of the
request processing lifecycle, depending on the
value of the immediate property

actionListener MethodBinding pointing at method accepting
an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility
to limit JSF tree processing(decoding,
conversion/validation, value applying) to the
component which send the request only

binding The attribute takes a value-binding expression
for a component property of a backing bean

bypassUpdates If "true", after process validations phase it
skips updates of model beans on a force
render response. It can be used for validating
components input

data Serialized (on default with JSON) data passed
on the client by a developer on AJAX request.
It's accessible via "data.foo" syntax

disabled If true sets state of the item to disabled state.
Default value is "false".

disabledClass Class to be applied to disabled items.
disabledStyle CSS style rules to be applied to disabled items.
eventsQueue Name of requests queue to avoid send next

request before complete other from same
event. Can be used to reduce number of
requests of frequently events (key press,
mouse move etc.)

focus id of element to set focus after request
completed on client side

hoverClass Class to be applied to hovered items.
hoverStyle CSS style rules to be applied to hovered items.
icon Path to the icon or the default one name to be

displayed for the enabled item state. You can

549

Chapter 6. The RichFaces Comp...

Attribute Name Description

iconClass

also use predefined icons, setting the attribute
to one of these possible values: "triangle",
"triangleUp", “triangleDown", "disc", "chevron”,
"chevronUp", "chevronDown", "grid". Default

value is "grid".

Class to be applied to icon element.

iconDisabled

Path to the icon to be displayed for the
disabled item state. You can also use
predefined icons, setting the attribute to
one of these possible values: "triangle",
"triangleUp", "triangleDown", "disc", "chevron",
"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconStyle

id

CSS style rules to be applied

Every component may have a unique id that is
automatically created if omitted

ignoreDupResponses

immediate

Attribute allows to ignore an Ajax Response
produced by a request if the newest
'similar’ request is in a queue already.
ignoreDupResponses="true" does not cancel
the request while it is processed on the server,
but just allows to avoid unnecessary updates
on the client side if the response isn't actual
now

True means, that the default ActionListener
should be executed immediately (i.e. during
Apply Request Values phase of the request
processing lifecycle), rather than waiting until
the Invoke Application phase

label

Defines representation text for menultem.

limitToList

If "true", updates on client side ONLY
elements from this 'reRender' property. If
"false" (default) updates all rendered by ajax
region components

mode

name

Set the submission mode. Possible values are

"ajax", "server"”, "none". Default value is "none".

'selectedChild’ attribute of PanelMenu refers to
group/item with the same name. Default value
is "getld()".

550

Key Features

Attribute Name Description

onbeforedomupdate

JavaScript code for call before DOM has been
updated on client side

onclick

HTML: a script expression; a pointer button is
clicked

oncomplete

ondbilclick

onkeydown

JavaScript code for call after request
completed on client side

HTML: a script expression; a pointer button is
double-clicked

HTML: a script expression; a key is pressed
down

onkeypress

onkeyup

HTML: a script expression; a key is pressed
and released

HTML: a script expression; a key is released

onmousedown

onmousemove

onmouseout

HTML: script expression; a pointer button is
pressed down

HTML: a script expression; a pointer is moved
within
HTML: a script expression; a pointer is moved
away

onmouseover

HTML: a script expression; a pointer is moved
onto

onmouseup

process

rendered

HTML: script expression; a pointer button is
released

Id['s] (in format of call
UlComponent.findComponent()) of
components, processed at the phases 2-
5 in case of AjaxRequest caused by this
component. Can be single id, comma-
separated list of Id's, or EL Expression with
array or Collection

If "false", this component is not rendered

requestDelay

reRender

Attribute defines the time (in ms.) that the
request will be wait in the queue before it is
ready to send. When the delay time is over, the
request will be sent to the server or removed
if the newest 'similar' request is in a queue
already

Id['s] (in format of call
UlComponent.findComponent()) of

551

Chapter 6. The RichFaces Comp...

Attribute Name Description

components, rendered in case of AjaxRequest
caused by this component. Can be single id,
comma-separated list of Id's, or EL Expression
with array or Collection

status

style

ID (in format of call
UlComponent.findComponent()) of Request
status component

CSS style(s) is/are to be applied when this
component is rendered

styleClass
target

timeout

value

Corresponds to the HTML class attribute
Target frame for action to execute.

Response waiting time on a particular request.
If a response is not received during this time,
the request is aborted

The current value for this component

Table 6.361. Component identification parameters

Name Value

component-type
component-class

component-family

org.richfaces.PanelMenultem
org.richfaces.component.html.HtmIPanelMenul

org.richfaces.PanelMenultem

tem

renderer-type

org.richfaces.PanelMenultemRenderer

tag-class

org.richfaces.taglib.PanelMenultemTag

6.70.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<rich:panelMenu>
<rich:panelMenultem value="ltem1"/>

</rich:panelMenu>

552

Creating the Component Dynamically Using
Java

6.70.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmIPanelMenultem;

HtmlPanelMenultem myPanelMenultem = new HtmIPanelMenultem();

6.70.5. Details of Usage

All attributes except "label" are optional. The "label" attribute defines text to be represented.

The "mode" attribute could be used with three possible parameters:

» Server (default)

Regular form submission request is used.

» Ajax

Ajax submission is used for switching.

¢ None

"Action” and "actionListener" attributes are ignored. Items don't fire any submits itself. Behavior
is fully defined by the components nested into items.

Here is an example for value "none":

Example:

<rich:panelMenu>

<rich:panelMenultem submitMode="none" onclick="document.location.href="http://
labs.jboss.com/jbossrichfaces/">
<h:outputLink value="http://labs.jboss.com/jbossrichfaces/">
<h:outputText value="RichFaces Home Page"></h:outputText>
</h:outputLink>
</rich:panelMenultem>

553

Chapter 6. The RichFaces Comp...

</rich:panelMenu>

There are two icon-related attributes. The "icon" attribute defines an icon. The "iconDisabled"
attribute defines an icon for a disabled item.

Default icons are shown on the picture below:

p triangle » chevron

A triangleUp 2 chevronUp
w triangleDown ¥ chevronDown
@ disc =s grid

Figure 6.210. Default icons
Here is an example:

Example:

<rich:panelMenu>
<rich:panelMenultem ="ltem 1.1" icon="chevronUp" />

</rich:panelMenu>

As the result the picture is shown below:

Figure 6.211. Using an "icon" attribute

It's also possible to define a path to the icon. Simple code is placed below.

<rich:panelMenu>

<rich:panelMenultem ="ltem 1.1" icon="\images\imgl1.png" />

554

Look-and-Feel Customization

</rich:panelMenu>

Information about the "process" attribute usage you can find here.

6.70.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default
style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelMenultem> components at
once:

» Redefine the corresponding skin parameters

» Add to your style sheets style classes used by a <rich:panelMenultem> component

6.70.7. Skin Parameters Redefinition

Table 6.362. Skin parameters redefinition for atable element of the first level
item

Skin parameters CSS properties
generalFamilyFont font-family
generalWeightFont font-weight
generalSizeFont font-size
generalTextColor color
panelBorderColor border-top-color

Table 6.363. Skin parameter redefinition for a disabled item

Parameter for disabled item CSS properties

tabDisabledTextColor color

6.70.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

555

Chapter 6. The RichFaces Comp...

Group 1
rich-pmenu-item-selected ftem 1.2

& tem 1.3
Group 2

Group 3

Figure 6.212. Classes names

tich-prmenu-item
= s £
& fem 1.
: ftem1.2
Groun 1.1

rich-pmenu-item-icon

Group 3

Figure 6.213. Classes names

rich-pmenu-item-label

rich-pmenu-disabled-element

rich-pmenu-hovered-element

¥

Table 6.364. Classes names that define the first level items

Class name

Description

rich-pmenu-top-item

Defines styles for a top panel menu item

rich-pmenu-top-item-icon

rich-pmenu-top-item-label

Defines styles for a top panel menu item icon

Defines styles for a top panel menu item label

556

Definition of Custom Style Classes

Table 6.365. Classes names that define the second and lower level items

Class name Description

rich-pmenu-item Defines styles for a panel menu item
rich-pmenu-item-icon ‘ Defines styles for a panel menu item icon
rich-pmenu-item-label ‘ Defines styles for a panel menu item label

Table 6.366. Classes names that define items state

Class name Description

rich-pmenu-item-selected Defines styles for a panel menu selected item
rich-pmenu-disabled-element ‘ Defines styles for a disabled panel menu item
rich-pmenu-hovered-element ‘ Defines styles for a hovered panel menu item

In order to redefine styles for all <rich:panelMenultem> components on a page using CSS, it's
enough to create classes with the same names (possible classes could be found in the tables
above) and define necessary properties in them.

Example:

.rich-pmenu-hovered-element {
background-color: #ff7800;

}

This is a result:

557

Chapter 6. The RichFaces Comp...

Group 1 i
5 fem1d
¥ oftemd 2

¥ oftem1.3

Group 2 #
s femn 21
s fem 2.2
e 2.3
* Group 2.4

5oftem2s

Group 3 W

Figure 6.214. Redefinition styles with predefined classes
In the example a hovered element background color was changed.

Also it's possible to change styles of particular <rich:panelMenultem> component. In this case
you should create own style classes and use them in corresponding <rich:panelMenultem>
styleClass attributes. An example is placed below:

Example:

.myClass {
color: #a0a0ao;

The "disabledClass" attribute for <rich:panelMenultem> is defined as it's shown in the example
below:

Example:
<rich:panelMenultem ... disabledClass="myClass"/>

This is a result:

558

Relevant resources links

Groap 1 #
N
5 ofem1.3
Group 2 W
Group 3 W

Figure 6.215. Redefinition styles with own classes and styleClass attributes
As it could be seen on the picture above, the text color for disabled item was changed.
6.70.9. Relevant resources links

Some additional information about usage of component can be found here [http:/
livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menultem].

6.71. <rich:pickList >

6.71.1. Description

The <rich:pickList> component is used for moving selected item(s) from one list into another.

BETHEY e M Capy all B
L S Wolkvwagen
Chevrolet S A
Lircoln Mercedes
hazd Tovyot
AzEs Hd Remowve Al oy

Figure 6.216. <rich:pickList> component

6.71.2. Key Features

Multiple selection of list items
» Keyboard support
» Supports standard JSF internationalization

 Highly customizable look and feel

Table 6.367. rich : pickList attributes

Attribute Name Description

binding The attribute takes a value-binding expression
for a component property of a backing bean

559

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem

Chapter 6. The RichFaces Comp...

Attribute Name Description

controlClass

converter

converterMessage

CSS class for a list

Id of Converter to be used or reference to a
Converter

A ValueExpression enabled attribute that, if
present, will be used as the text of the converter
message, replacing any message that comes
from the converter

copyAllControlLabel
copyControlLabel
disabled
disabledStyle

disabledStyleClass
enabledStyle

enabledStyleClass
id

Defines a label for a copyAll control
Defines a label for a copy control
disabled

CSS style rules to be applied to disabled
controls

The disabledStyleClass for disabled controls

CSS style rules to be applied to enabled
controls

The enabledStyleClass for enabled controls

Every component may have a unique id that is
automatically created if omitted

immediate

listClass

listsHeight

A flag indicating that this component value
must be converted and validated immediately
(that is, during Apply Request Values phase),
rather than waiting until a Process Validations
phase

CSS class for a list

Defines height of the list

moveControlsVerticalAlign

Customizes vertically a position of move/copy
controls relatively to lists. Default value is
"center".

onclick HTML: a script expression; a pointer button is
clicked

ondbilclick HTML: a script expression; a pointer button is
double-clicked

onkeydown HTML: a script expression; a key is pressed
down

onkeypress HTML: a script expression; a key is pressed
and released

onkeyup HTML: a script expression; a key is released

560

Key Features

Attribute Name Description

onlistchanged

A JavaScript event handler called on a list
change operation

onmousedown HTML: script expression; a pointer button is
pressed down

onmousemove HTML: a script expression; a pointer is moved
within

onmouseout HTML: a script expression; a pointer is moved
away

onmouseover HTML: a script expression; a pointer is moved
onto

onmouseup HTML: script expression; a pointer button is

removeAllControlLabel

released

Defines a label for a removeAll control

removeControlLabel

Defines a label for a remove control

rendered

required

If "false", this component is not rendered

If "true", this component is checked for non-
empty input

requiredMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the
validation message for the "required" facility, if
the "required” facility is used

showButtonsLabel Shows a label for a button

sourceListWidth Defines width of a source list

style CSS style(s) is/are to be applied when this
component is rendered

styleClass Corresponds to the HTML class attribute

switchByClick

If "true”, dragging between lists realized by click

targetListWidth Defines width of a target list

title Advisory title information about markup
elements generated for this component

validator MethodBinding pointing at a method that is

called during Process Validations phase of the
request processing lifecycle, to validate the
current value of this component

validatorMessage

A ValueExpression enabled attribute that, if
present, will be used as the text of the validator

561

Chapter 6. The RichFaces Comp...

Attribute Name Description

message, replacing any message that comes
from the validator

value The current value of this component

valueChangelListener Listener for value changes

Table 6.368. Component identification parameters

Name Value

component-type org.richfaces.PickList

component-class org.richfaces.component.html.HtmlIPickList
component-family org.richfaces.PickList

renderer-type org.richfaces.PickListRenderer

tag-class org.richfaces.taglib.PickListTag

6.71.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the foll