
RiftSaw 2.0-CR1

User Guide

by Gary Brown, Kurt Stam, and Heiko Braun

ii

1. Introduction ... 1

1.1. Overview .. 1

2. Administration .. 2

2.1. Overview .. 2

2.2. BPM Console .. 2

2.2.1. Overview ... 2

2.2.2. Logging in ... 2

2.2.3. Deployed Process Definitions .. 3

2.2.4. Process Instances ... 3

3. Deploying BPEL Processes ... 6

3.1. Overview .. 6

3.2. Direct deployment to JBossAS server .. 6

3.3. Eclipse based Deployment ... 7

4. JBoss ESB Integration ... 13

4.1. Overview .. 13

4.2. Using the BPELInvoke ESB action .. 13

4.2.1. Fault Handling ... 15

Chapter 1.

1

Introduction

1.1. Overview

This is the User Guide for the RiftSaw BPEL process engine.

RiftSaw provides a JBoss AS integration for the Apache ODE BPEL engine. For detailed information on

executing BPEL processes within Apache ODE, we would refer the reader to the Apache ODE website

and documentation.

In addition to the ability to run the Apache ODE engine within JBoss AS, the RiftSaw project also provides

a GWT based administration console, replaces the Axis2 based transport with JBossWS (which can be

configured to use Apache CXF), and provides tighter integration with JBossESB.

http://ode.apache.org

Chapter 2.

2

Administration

2.1. Overview

This section describes the administration capabilities associated with RiftSaw.

2.2. BPM Console

2.2.1. Overview

This section provides an overview of the BPEL Console. The console provides the ability to view:

• The process definitions deployed to the BPEL engine

• The process instances executing in the BPEL engine

2.2.2. Logging in

The BPEL console can be located using the URL: http://localhost:8080/bpel-console.

The first screen that is presented is the login screen:

The default username is admin with password password.

http://localhost:8080/bpel-console

Deployed Process Definitions

3

The Access Control mechanism used by the admin console is configured in the $deployFolder/bpel-

console/bpel-identity.sar/META-INF/jboss-service.xml. The JAAS login module is

initially set to use a property file based access mechanism, but can be replaced to use any appropriate

alternative implementation.

The users for the default mechanism are configured in the property file $deployFolder/bpel-

console/bpel-identity.sar/bpel-users.properties. The entries in this file represent

username=password.

The user roles for the default mechanism are configured in the property file $deployFolder/bpel-

console/bpel-identity.sar/bpel-roles.properties. The entries in this file represent

username=role. The only role of interest currently is administrator.

2.2.3. Deployed Process Definitions

Once logged in, the 'Process Definitions' tab shows the currently deployed BPEL processes.

When a process definition is selected, the details will be displayed in the lower panel.

2.2.4. Process Instances

The 'Process Instances' tab shows the currently executing BPEL process instances. Before selecting this tab,

you must choose a process definition.

Process Instances

4

When a process instance has been selected, its details will be displayed in the lower properties window. The

Instance Data button will also become enable, allowing further detail about the process to be displayed.

Process Instances

5

Chapter 3.

6

Deploying BPEL Processes

3.1. Overview

This section outlines the mechanisms that can be used to deploy a BPEL process to RiftSaw BPEL engine

running within a JBoss AS server.

3.2. Direct deployment to JBossAS server

The direct deployment approach is demonstrated using an Ant script in each of the quickstart examples.

For example,

 <!-- Import the base Ant build script... -->

 <property file="../../../install/deployment.properties" />

 <property name="version" value="1" />

 <property name="server.dir" value="${org.jboss.as.home}/server/${org.jboss.as.config}"/>

 <property name="conf.dir" value="${server.dir}/conf"/>

 <property name="deploy.dir" value="${server.dir}/deploy"/>

 <property name="server.lib.dir" value="${server.dir}/lib"/>

 <property name="sample.jar.name" value="${ant.project.name}-${version}.jar" />

 <target name="deploy">

 <echo>Deploy ${ant.project.name}</echo>

 <jar basedir="bpel" destfile="${deploy.dir}/${sample.jar.name}" />

 </target>

 <target name="undeploy">

 <echo>Undeploy ${ant.project.name}</echo>

 <delete file="${deploy.dir}/${sample.jar.name}" />

 </target>

This excerpt from the Ant build file for the hello_world quickstart example shows that deploying a RiftSaw

BPEL process using Ant is very straightforward. The main points of interest are:

• It is necessary to identify the location of the JBoss AS server in which the BPEL process will be deployed.

This is achieved in this example by referring to the deployment.properties file that has been

configured in the RiftSaw distribution (install folder).

• If a versioned approach is being used, so that multiple versions of the same BPEL process may be

deployed at one time, then the name of the archive (jar) containing the BPEL process (and associated

artifacts) has a version number suffix. This would need to be manually incremented for each distinct

version of the BPEL process being deployed.

Eclipse based Deployment

7

• The next step is to define the deploy target, which will create the BPEL process archive, using the contents

of the bpel sub-folder in this case, and store it within the JBoss AS server's deploy folder.

• The final step is to define the undeploy target, which simply removes the BPEL process archive from

the JBoss AS server's deploy folder.

3.3. Eclipse based Deployment

This section will explain how to deploy an Eclipse BPEL project to the RiftSaw BPEL engine running in

a JBossAS server.

The first step is to create or import the Eclipse BPEL project. In this case we are going to import an existing

project from the ${RiftSaw}/samples/quickstart/hello_world folder. This can be achieved

by selecting the Import ... menu item associated with the lefthand navigator panel in Eclipse, and then select

the General->Existing Projects into Workspace entry and press the Next button.

Then press the Browse button and navigate to the hello_world quickstart folder. Once located, press

the Finish button.

Eclipse based Deployment

8

Once the project has been imported, you can inspect the contents, such as the BPEL process and WSDL

description.

Eclipse based Deployment

9

The next step is to create a server configuration for the JBoss AS environment in which the RiftSaw BPEL

engine has previously been installed. From the Eclipse Java EE perspective, the Server tab should be visible

in the lower region of the Eclipse window. If this view is not present, then go to the Window->Show Views-

>Servers menu item to open the view explicitly.

In the Servers view, right click and select the New->Server menu item.

Eclipse based Deployment

10

Select the appropriate JBoss AS version, and then press Finish.

Before being able to deploy an example, we should start the new server. This can be achieved by right

clicking on the server in the Servers tab, and selecting the Start menu item. The output from the server will

be displayed in the Console tab.

Once the server has been started, right click on the server entry again, and select the Add and Remove ...

menu item.

Eclipse based Deployment

11

Select the Quickstart_bpel_hello_world project, press the Add button and the press the Finish button. This

will cause the project to be deployed to the server.

Once the project has been deployed, it will show up as an entry below the server in the Servers tab.

The final step is to test the deployed BPEL process. In this example, we can do this using the ant script

provided with the quickstart sample. Right click on the build.xml file in the root folder of the project,

and select the Run As->Ant Build ... menu item. NOTE: It is important to select the menu item with the "...",

as this provides a dialog window to enable you to select which ant target you wish to perform.

Eclipse based Deployment

12

Deselect the deploy target, and select the sendhello target, before pressing the Run button. This was send a

test 'hello' message to the server, and then display the response in the Console tab.

You can then use the menu associated with the project, contained in the server, to undeploy the project

(using the Add and Remove ... menu item) and finally use the menu associated with the server itself to Stop

the server.

Chapter 4.

13

JBoss ESB Integration

4.1. Overview

This section outlines the support provided for the direct integration between RiftSaw and JBossESB.

Bi-directional loose integration is available through the use of web services. For example, an ESB action

may invoke a BPEL process running within RiftSaw by invoking the appropriate web service represented

by a WSDL interface. Similarly, a BPEL process can invoke an ESB managed service that is capable of

presenting itself as a web service.

However this section will describe how integration between RiftSaw and JBossESB actions can be achieved

without the use of web services (i.e. WSDL and SOAP).

4.2. Using the BPELInvoke ESB action

The BPELInvoke ESB action can be used within a jboss-esb.xml to request an invocation on a BPEL process

running inside RiftSaw. The only constraints are that RiftSaw is installed within the same Java VM and that

the requested BPEL process must have been deployed to the local RiftSaw engine.

The following example illustrates the BPELInvoke ESB action being used as part of the bpel_helloworld

sample.

<action name="action2" class="org.jboss.soa.esb.actions.bpel.BPELInvoke">

 <property name="service" value="{http://www.jboss.org/bpel/examples/wsdl}HelloService"/>

 <property name="operation" value="hello" />

 <property name="requestPartName" value="TestPart" />

 <property name="responsePartName" value="TestPart" />

</action>

The ESB action class is org.jboss.soa.esb.actions.bpel.BPELInvoke.

The properties for this ESB action are:

• service

This property is mandatory, and defines the service name registered in the WSDL associated with the

deployed BPEL process.

• operation

This property is mandatory, and represents the WSDL operation that is being invoked.

• requestPartName

Using the BPELInvoke ESB action

14

This optional property can be used to define the WSDL message part that the inbound ESB message

content should be mapped to. This property should be used where the ESB message does not already

represent a multi-part message.

• responsePartName

This optional property can be used to extract the content of a response multi-part WSDL message, and

place this in the ESB message being passed to the next ESB action in the pipeline. If this property is not

defined, then the complete multi-part message value will be placed in the ESB message.

This ESB action supports inbound messages with content defined as either:

• DOM

If the message content is a DOM document or element, then this can either be used as the complete

multi-part message, or as the content of a message part defined using the requestPartName property.

If the message content is a DOM text node, then this can ONLY be used if a multi-part name has been

defined in the requestPartName property.

• Java String

If the message content is a string representation of an XML document, then the requestPartName is

optional. If not specified, then the document must represent the multipart message.

If the message content is a string that does not represent an XML document, then the requestPartName

must be specified.

When the message content represents the complete multipart message, this must be defined as a top level

element (whose name is irrelevant) with immediate child elements that represent each of the multiple parts

of the message. Each of these elements must then have a single element/node, that represents the value of

the named part.

<message>

 <TestPart>

 Hello World

 </TestPart>

</message>

This shows an example of a multipart message structure. The top element (i.e. message) is unimportant.

The elements at the next level represent the part names - in this case there is only a single part, with name

TestPart. The value of this part is defined as a text node, with value "Hello World". However this could

have been an element representing the root node of a more complex XML value.

The following diagram illustrates the inter-relationship of the JBossESB bpel_helloworld quickstart and the

RiftSaw BPEL process configuration files.

Fault Handling

15

4.2.1. Fault Handling

The normal response from a WSDL operation will be returned from the BPELInvoke ESB action as a normal

message and placed on the action pipeline ready for processing by the next ESB action, or alternatively if

no further actions have been defined, then returned back to the service client.

Faults, associated with a WSDL operation, are handled slightly differently. Depending on configuration

it is possible to receive the fault as an ESB message or for the fault to be treated as an exception which

aborts the action pipeline. The configuration property used to determine which behaviour is used is called

abortOnFault. The default value for this property is "true". As an example, from the loan fault quickstart

sample,

<action name="action2" class="org.jboss.soa.esb.actions.bpel.BPELInvoke">

 <property name="service" value="{http://example.com/loan-approval/wsdl/}loanService"/>

 <property name="operation" value="request" />

 <property name="abortOnFault" value="true" />

</action>

A WSDL fault has two relevant pieces of information, the fault type (or code) and the fault details. These

are both returned in specific parts of ESB message's body.

Fault Handling

16

1. Fault code (as javax.xml.namespace.QName)

ESB message body part: org.jboss.soa.esb.message.fault.detail.code

This body part identifies the specific WSDL fault returned by the BPEL process, associated with the

WSDL operation that was invoked.

Warning
The specific version of the QName used by the JBoss server is from the stax-api.jar

found in the server's lib/endorsed directory. If the client does not also include this jar

in a folder that is in its endorsed directories, then a class version exception will occur

when this ESB message part is accessed.

2. Fault code (as textual representation of QName)

ESB message body part: org.jboss.soa.bpel.message.fault.detail.code

This body part will return the textual representation of the QName for the fault code. The textual

representation is of the form "{namespace}localpart" and can be converted back into a QName using the

javax.xml.namespace.QName.valueOf(String) method.

3. Fault details

ESB message body part: org.jboss.soa.esb.message.fault.detail.detail

This body part will contain the textual representation of the message content associated with the fault.

	RiftSaw 2.0-CR1
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview

	Chapter 2. Administration
	2.1. Overview
	2.2. BPM Console
	2.2.1. Overview
	2.2.2. Logging in
	2.2.3. Deployed Process Definitions
	2.2.4. Process Instances

	Chapter 3. Deploying BPEL Processes
	3.1. Overview
	3.2. Direct deployment to JBossAS server
	3.3. Eclipse based Deployment

	Chapter 4. JBoss ESB Integration
	4.1. Overview
	4.2. Using the BPELInvoke ESB action
	4.2.1. Fault Handling

