
Apache Karaf
Users' Guide

Copyright 2010 The Apache Software Foundation

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of contents

• 1. Overview
• 2. Quick start
• 2.1. Quick Start (Source)
• 3. Installation
• 4. Understanding Karaf
• 4.1. Console and Commands
• 4.2. Remote Console
• 4.3. Logging system
• 4.4. Deployer
• 4.5. Security framework
• 4.6. Provisioning
• 4.7. Administration
• 4.8. Configuration
• 5. Using Karaf
• 5.1. Troubleshooting, Debugging and Profiling
• 5.2. Developping applications
• 5.3. Creating bundles for third party dependencies
• 6. Advanced uses
• 6.1. Extending the console
• 6.2. Building custom distributions
• 6.3. Programmatically connect to the console
• 6.4. Embedding Karaf
• 6.5. Deploying security providers
• 6.6. Installing additional features
• 6.7. Configuring Failover Deployments
• 7. Optional Features
• 7.1. Enabling Colorized Console Output On Windows

2

1. Overview

Apache Karaf is a small OSGi based runtime which provides a lightweight
container onto which various components and applications can be deployed.

Here is a short list of features supported by the Karaf:
• Hot deployment: Karaf supports hot deployment of OSGi bundles

by monitoring jar files inside the [home]/deploy directory. Each time
a jar is copied in this folder, it will be installed inside the runtime. You
can then update or delete it and changes will be handled
automatically. In addition, the Karaf also supports exploded bundles
and custom deployers (blueprint and spring ones are included by
default).

• Dynamic configuration: Services are usually configured through
the ConfigurationAdmin OSGi service. Such configuration can be
defined in Karaf using property files inside the [home]/etc directory.
These configurations are monitored and changes on the properties
files will be propagated to the services.

• Logging System: using a centralized logging back end supported by
Log4J, Karaf supports a number of different APIs (JDK 1.4, JCL, SLF4J,
Avalon, Tomcat, OSGi)

• Provisioning: Provisioning of libraries or applications can be done
through a number of different ways, by which they will be
downloaded locally, installed and started.

• Native OS integration: Karaf can be integrated into your own
Operating System as a service so that the lifecycle will be bound to
your Operating System.

• Extensible Shell console: Karaf features a nice text console where
you can manage the services, install new applications or libraries and
manage their state. This shell is easily extensible by deploying new
commands dynamically along with new features or applications.

• Remote access: use any SSH client to connect to Karaf and issue
commands in the console

• Security framework based on JAAS
• Managing instances: Karaf provides simple commands for

managing multiple instances. You can easily create, delete, start and
stop instances of Karaf through the console.

• Supports the latest OSGi 4.2 containers: Apache Felix Framework 3.0
and Eclipse Equinox 3.6

1. OVERVIEW 3

4 1. OVERVIEW

2. Quick start

If you are in a hurry to have Apache Karaf up and running right away, this
section will provide you with some basic steps for downloading, building
(when needed) and running the server in no time. This is clearly not a
complete guide so you may want to check other sections of this guide for
further information.

All you need is 5 to 10 minutes and to follow these basic steps.
• Background
• Getting the software
• Start the server
• Deploy a sample application

BACKGROUND
Apache Karaf is a small and lightweight OSGi based runtime. This provides a
small lightweight container onto which various bundles can be deployed.

GETTING THE SOFTWARE
At this time you have one option to get the software. The fastest and easiest
way is to get the binary directly from the Apache site. Since this article is
intended to help you to have Apache Karaf up and running in the fastest way
only the binary download will be covered at this time.

Prerequisites
Although this installation path is the fastest one, still you will need to install
some software before installing Karaf.

Karaf requires a Java 5 environment to run. Refer to http://java.sun.com for
details on how to download and install J2SE 1.5 or greater.

Download binaries
Depending on the platform you plan to install and run Karaf you will select
the appropriate installation image. Open a Web browser and access the
following URL, there you will find the available packages for download
(binaries and source code).

2. QUICK START 5

http://java.sun.com

Apache Karaf started life as the Apache ServiceMix kernel and then
moved as a Apache Felix subproject.
Don't be surprised by any transitional references which remain.

http://karaf.apache.org/download.html
Select the file compression format compatible with your system (zip for

windows, tar.gz for unixes) by clicking directly on the link, download it and
expand the binary to your hard drive in a new directory; for example in
z:\karaf - from now on this directory will be referenced as <KARAF_HOME>.
Please remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

The installation of Karaf is as simple as uncompressing the .zip or .tar files.
The next step is to start the server.

START THE SERVER
With Karaf already installed, open a command line console and change
directory to <KARAF_HOME>. To start the server, run the following command
in Windows:

bin\karaf.bat

respectively on Unix:

bin/karaf

You should see the following informations on the command line console:

__ __ ____
/ //_/____ __________ _/ __/

/ ,< / __ `/ ___/ __ `/ /_
/ /| |/ /_/ / / / /_/ / __/

/_/ |_|__,_/_/ __,_/_/

Apache Felix Karaf (2.0.0)

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

karaf@root>

6 2. QUICK START

http://karaf.apache.org/download.html
http://servicemix.apache.org
http://felix.apache.org

You can now run your first command. Simply type the <tab> key in the
console.

karaf@root>

admin:change-port admin:connect admin:create
admin:destroy
admin:list admin:start admin:stop
config:cancel
config:edit config:list config:propappend
config:propdel
config:proplist config:propset config:update
dev:dynamic-import
dev:framework dev:print-stack-traces dev:show-tree
features:addUrl
features:info features:install features:list
features:listUrl
features:refreshUrl features:removeUrl features:uninstall
log:display
log:display-exception log:get log:set
osgi:bundle-level
osgi:headers osgi:install osgi:list osgi:ls
osgi:refresh osgi:resolve osgi:restart
osgi:shutdown
osgi:start osgi:start-level osgi:stop
osgi:uninstall
osgi:update packages:exports packages:imports
shell:cat
shell:clear shell:each shell:echo
shell:exec
shell:grep shell:history shell:if
shell:info
shell:java shell:logout shell:new
shell:printf
shell:sleep shell:sort shell:tac ssh:ssh
ssh:sshd cat clear each
echo exec grep history
if info java logout
new printf sleep sort
tac bundle-level headers install
list ls refresh resolve
restart shutdown start
start-level
stop uninstall update
karaf@root>

You can then grab more specific help for a given command using the --help
option for this command:

karaf@root> admin:create --help
DESCRIPTION

admin:create

2. QUICK START 7

Create a new instance.

SYNTAX
admin:create [options] name

ARGUMENTS
name

The name of the new container instance

OPTIONS
--help

Display this help message
-f, --feature

Initial features. This option can be specified multiple times to
enable multiple initial

features
-p, --port

Port number for remote shell connection
-l, --location

Location of the new container instance in the file system
-furl, --featureURL

Additional feature descriptor URLs. This option can be specified
multiple times to add

multiple URLs

karaf@root>

Note that the console supports tab completion, so you just need to enter ad
<tab> cr <tab> instead of admin:create.

DEPLOY A SAMPLE APPLICATION
While you will learn in the remainder of this guide how to use and leverage
Apache Karaf, we will just use the pre-built packaging for now.

In the console, run the following commands:

features:install spring-dm
osgi:install -s mvn:org.apache.geronimo.specs/geronimo-activation_1.1_spec/1.0.2
osgi:install -s mvn:org.apache.servicemix.specs/
org.apache.servicemix.specs.stax-api-1.0/1.1.0
osgi:install -s mvn:org.apache.servicemix.specs/
org.apache.servicemix.specs.jaxb-api-2.1/1.1.0
osgi:install -s mvn:org.apache.servicemix.bundles/
org.apache.servicemix.bundles.jaxb-impl/2.1.6_1
osgi:install -s mvn:org.apache.camel/camel-core/1.4.0
osgi:install -s mvn:org.springframework/spring-tx/2.5.6.SEC01
osgi:install -s mvn:org.apache.camel/camel-spring/1.4.0

8 2. QUICK START

osgi:install -s mvn:org.apache.camel/camel-osgi/1.4.0
osgi:install -s mvn:org.apache.camel/camel-example-osgi/1.4.0

This commands will download, install and start the specified jars.
The example installed is using Camel to start a timer every 2 seconds and

output a message on the console.

>>>> MyTransform set body: Wed Jan 02 23:34:19 CET 2010
>>>> MyTransform set body: Wed Jan 02 23:34:21 CET 2010

Stopping and uninstalling the sample application
To stop this demo, run the following command:

osgi:list | grep example

In the output, locate the line containing camel-example-osgi and note the id
of the bundle in the first column. Then launch the following command:

osgi:stop [id]

If you wish, you can start again the sample by using the following command:

osgi:start [id]

To uninstall the demo, run the following command:

osgi:uninstall [id]

Common Problems
1. Launching Karaf can result in a deadlock in Felix during module

dependency resolution. This is often a result of sending a SIGINT
(control-C) to the process when it will not cleanly exit. This can
corrupt the caches and cause startup problems in the very next
launch. It is fixed by emptying the component cache:

rm -rf data/cache/*

2. QUICK START 9

http://camel.apache.org

STOPPING KARAF
To stop Karaf from the console, enter ^D in the console:

^D

Alternatively, you can also run the following command:

osgi:shutdown

SUMMARY
This document showed you how simple it is to have Apache Karaf up and
running. The overall time for getting the server running should be less than
five minutes if you have the prerequisite (Java 1.5) already installed.
Additionally, this article also showed you how to deploy and test a simple
Apache Camel application in less than five minutes.

10 2. QUICK START

http://camel.apache.org

2.1. Quick Start (Source)

If you are in a hurry to have Apache Karaf up and running right away, this
section will provide you with some basic steps for checking out, building and
running the server in no time. This is clearly not a complete guide so you
may want to check other sections of this guide for further information.

All you need is 15 minutes and to follow these basic steps.
• Background
• Getting the software
• Start the server
• Deploy a sample application

BACKGROUND
Apache Karaf is a small and lightweight OSGi based runtime. This provides a
small lightweight container onto which various bundles can be deployed.

GETTING THE SOFTWARE
This document describes how to build the server from the latest Karaf
source.

Prerequisites
Although this installation path is the fastest one, still you will need to install
some software before installing Karaf.

Karaf requires a Java 5 environment to run. Refer to http://java.sun.com for
details on how to download and install J2SE 1.5 or greater.

Subversion is required to checkout the source.
Maven 2 is required to build Karaf.

Checkout Source
The Karaf source is found at http://svn.apache.org/repos/asf/karaf/trunk/. To
check out with a command line client:

$ svn co http://svn.apache.org/repos/asf/karaf/trunk/

2.1. QUICK START (SOURCE) 11

http://java.sun.com
http://subversion.tigris.org
http://maven.apache.org
http://svn.apache.org/repos/asf/karaf/trunk/

Apache Felix Karaf started life as the Apache ServiceMix kernel and
then moved as a Apache Felix subproject.
Don't be surprised by any transitional references which remain.

Build
Change directory to the top level of the source checkout. Build Karaf using
Maven as follows:

$ mvn -Pfastinstall

Distributions will be created in assembly/target. Select the file compression
format compatible with your system (apache-karaf-2.0.0.zip for windows,
apache-karaf-2.0.0.tar.gz for unixes) and expand the binary in a new
directory; for example in z:\karaf - from now on this directory will be
referenced as <KARAF_HOME>. Please remember the restrictions concerning
illegal characters in Java paths, e.g. !, % etc.

The installation of Karaf is as simple as uncompressing the .zip or .tar files.
The next step is to start the server.

START THE SERVER
With Karaf already installed, open a command line console and change
directory to <KARAF_HOME>. To start the server, run the following command
in Windows:

bin\karaf.bat

respectively on Unix:

bin/karaf

You should see the following informations on the command line console:

__ __ ____
/ //_/____ __________ _/ __/

/ ,< / __ `/ ___/ __ `/ /_
/ /| |/ /_/ / / / /_/ / __/

/_/ |_|__,_/_/ __,_/_/

Apache Felix Karaf (2.0.0)

12 2.1. QUICK START (SOURCE)

http://servicemix.apache.org
http://felix.apache.org

To generate Eclipse projects for all modules, in KARAF_HOME type:

mvn -Psetup.eclipse

Then add each module location, prefixing each name with
org.apache.karaf (for example org.apache.karaf.shell.core)

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

karaf@root>

You can now run your first command. Simply type the <tab> key in the
console.

karaf@root>

admin:change-port admin:connect admin:create
admin:destroy
admin:list admin:start admin:stop
config:cancel
config:edit config:list config:propappend
config:propdel
config:proplist config:propset config:update
dev:dynamic-import
dev:framework dev:print-stack-traces dev:show-tree
features:addUrl
features:info features:install features:list
features:listUrl
features:refreshUrl features:removeUrl features:uninstall
log:display
log:display-exception log:get log:set
osgi:bundle-level
osgi:headers osgi:install osgi:list osgi:ls
osgi:refresh osgi:resolve osgi:restart
osgi:shutdown
osgi:start osgi:start-level osgi:stop
osgi:uninstall
osgi:update packages:exports packages:imports
shell:cat
shell:clear shell:each shell:echo
shell:exec
shell:grep shell:history shell:if
shell:info
shell:java shell:logout shell:new
shell:printf
shell:sleep shell:sort shell:tac ssh:ssh
ssh:sshd cat clear each

2.1. QUICK START (SOURCE) 13

echo exec grep history
if info java logout
new printf sleep sort
tac bundle-level headers install
list ls refresh resolve
restart shutdown start
start-level
stop uninstall update
karaf@root>

DEPLOY A SAMPLE APPLICATION
While you will learn in the remainder of this guide how to use and leverage
Apache Felix Karaf, we will just use the pre-built packaging for now.

In the console, run the following commands:

features:install spring-dm
osgi:install -s mvn:org.apache.geronimo.specs/geronimo-activation_1.1_spec/1.0.2
osgi:install -s mvn:org.apache.servicemix.specs/
org.apache.servicemix.specs.stax-api-1.0/1.1.0
osgi:install -s mvn:org.apache.servicemix.specs/
org.apache.servicemix.specs.jaxb-api-2.1/1.1.0
osgi:install -s mvn:org.apache.servicemix.bundles/
org.apache.servicemix.bundles.jaxb-impl/2.1.6_1
osgi:install -s mvn:org.apache.camel/camel-core/1.4.0
osgi:install -s mvn:org.springframework/spring-tx/2.5.6.SEC01
osgi:install -s mvn:org.apache.camel/camel-spring/1.4.0
osgi:install -s mvn:org.apache.camel/camel-osgi/1.4.0
osgi:install -s mvn:org.apache.camel/camel-example-osgi/1.4.0

This commands will download, install and start the specified jars.
The example installed is using Camel to start a timer every 2 seconds and

output a message on the console.

>>>> MyTransform set body: Wed Jan 02 23:34:19 CET 2010
>>>> MyTransform set body: Wed Jan 02 23:34:21 CET 2010

Stopping and uninstalling the sample application
To stop this demo, run the following command:

osgi:list | grep example

In the output, locate the line containing camel-example-osgi and note the id
of the bundle in the first column. Then launch the following command:

14 2.1. QUICK START (SOURCE)

http://activemq.apache.org/camel

osgi:stop [id]

If you wish, you can start again the sample by using the following command:

osgi:start [id]

To uninstall the demo, run the following command:

osgi:uninstall [id]

Common Problems
1. Launching SMX4 can result in a deadlock in Felix during module

dependency resolution. This is often a result of sending a SIGINT
(control-C) to the process when it will not cleanly exit. This can
corrupt the caches and cause startup problems in the very next
launch. It is fixed by emptying the component cache:

rm -rf data/cache/*

STOPPING KARAF
To stop Karaf from the console, enter ^D in the console:

^D

Alternatively, you can also run the following command:

osgi:shutdown

SUMMARY
This document showed you how simple it is to have Apache Karaf up and
running. The overall time for getting the server running should be less than
five minutes if you have the prerequisite (Java 1.5) already installed.
Additionally, this article also showed you how to deploy and test a simple
Apache Camel application in less than five minutes.

2.1. QUICK START (SOURCE) 15

http://camel.apache.org

3. Installation

This document describes how to install and configure Apache Karaf for both
Unix and Windows' platforms.
Here you will find information about what are pre requisite software, where to
download Karaf from and how to customize the installation to use custom
ports other than the defaults.

This article contains the following sections:
• Pre-Installation Requirements
• Installation Procedure for Windows
• Windows Binary Installation
• Windows Source Installation
• Installation Procedure For Unix
• Unix Binary Installation
• Unix Source Installation
• Starting Karaf
• On Windows
• On Unix
• Testing the Installation and connecting to a running Karaf
• Stopping Karaf

PRE-INSTALLATION REQUIREMENTS
Hardware:

• 5 MB of free disk space for the Apache Karaf x.y binary distribution.
• 3 MB of free disk space for the Apache Karaf x.y source distributions

or SVN checkout. The Maven build requires roughly 57 MB disk space
and for the dependencies Maven downloads during building further
76 MB are required. As a lot of small files are produced, the exact
space demands depend greatly on your cluster utilization ratio.

Operating Systems:
• Windows: Windows XP SP2, Windows 2000.
• Unix: Ubuntu Linux, Powerdog Linux, MacOS, AIX, HP-UX, Solaris, any

Unix platform that supports Java.
Environment:

• Java Developer Kit (JDK) 1.5.x or greater (http://java.sun.com/).
• The JAVA_HOME environment variable must be set to the directory

where the JDK is installed, e.g., c:\Program Files\jdk.1.5.0_06. To
accomplish that, press Windows key and Break key together, switch

16 3. INSTALLATION

http://java.sun.com/

to "Advanced" tab and click on "Environment Variables". Here, check
for the variable and, if necessary, add it.

• Apache Maven 2.0.9 (http://maven.apache.org/download.html).

INSTALLATION PROCEDURE FOR WINDOWS
This section of the Getting Started guide explains how to install binary and
source distributions of Karaf on a Windows system.

Windows Binary Installation
This procedure explains how to download and install the binary distribution
on a Windows system.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a binary distribution, the filename will be similar to: apache-
karaf-x.y.zip.

3. Extract the files from the ZIP file into a directory of your choice.
Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Proceed to the Starting Karaf section of this document.
5. Following start-up, go to the Testing the Installation section of this

document.
6. Optional: see 7.1. Enabling Colorized Console Output On Windows

Windows Source Installation
This procedure explains how to download and install the source distribution
on a Windows system. NOTE: Karaf requires Java 5 is compile, build and run.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.zip.

3. Extract Karaf from the ZIP file into a directory of your choice. Please
remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

4. Build Karaf using Maven 2.0.9 or greater and Java 5.
The recommended method of building Karaf is the following:

cd [karaf_install_dir]\\src

3. INSTALLATION 17

http://maven.apache.org/download.html
http://karaf.apache.org/download.html
http://karaf.apache.org/download.html

Handy Hint
In case you have to install Karaf into a very deep path or a path
containing illegal characters for Java paths, e.g. !, % etc., you may
add a bat file to start -> startup that executes

subst S: "C:\your very % problematic path!\KARAF"

so your Karaf root directory is S: — which works for sure and is short to
type.

where [karaf_install_dir] is the directory in which Karaf was
installed.

mvn

Both steps take around 10 to 15 minutes.
5. Unzip the distribution using your favorite zip tool. The windows

distribution is available at

\[karaf_install_dir\]\assembly\target\apache-karaf-x.y.zip

6. Proceed to the Starting Karaf section of this document.
7. Following start-up, go to the Testing the Installation section of this

document.
8. Optional: see 7.1. Enabling Colorized Console Output On Windows

INSTALLATION PROCEDURE FOR UNIX

Unix Binary Installation
This procedure explains how to download and install the binary distribution
on a Unix system.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a binary Unix distribution, the filename will be similar to: apache-
karaf-x.y.tar.gz.

3. Extract the files from the gzip file into a directory of your choice. For
example:

18 3. INSTALLATION

http://karaf.apache.org/download.html

gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Proceed to the Starting Karaf section of this document.
5. Following start-up, go to the Testing the Installation section.

Unix Source Installation
This procedure explains how to download and install the source distribution
on a Unix system. This procedure assumes the Unix machine has a browser.
Please see the previous Unix Binary Installation section for ideas on how to
install Karaf without a browser. NOTE: Karaf requires Java 5 to compile, build
and run.

1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired

distribution.
For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.tar.gz.

3. Extract the files from the ZIP file into a directory of your choice. For
example:

gunzip apache-karaf-x.y-src.tar.gz
tar xvf apache-karaf-x.y-src.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

4. Build Karaf using Maven 2.0.8 or greater and Java 5:

The preferred method of building Karaf is the following:
cd [karaf_install_dir]/src
where [karaf_install_dir] is the directory in which Karaf was installed.

mvn

5. Uncompress the distribution that has just been created

cd [karaf_install_dir]/assembly/target
gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

6. Proceed to the Starting Karaf section of this document.
7. Following start-up, go to the Testing the Installation section.

3. INSTALLATION 19

http://karaf.apache.org/download.html

STARTING KARAF

On Windows
From a console window, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf_install_dir]

and for the source distribution go to the target directory, for example:

cd [karaf_install_dir]\src\assembly\target\apache-karaf-x.y-SNAPSHOT

where karaf_install_dir is the directory in which Karaf was installed, e.g.,
c:\Program Files\apache-karaf-x.y.

Then type:

bin\karaf.bat

Note: Working directories get created relative to the current directory. For the
working directories to be created in the proper place, Karaf must be launched
from its home/installation directory.

It will start a Karaf console, allowing you to administrate your Karaf
instance.

You can launch Karaf in server mode (without terminal output):

bin\start.bat

On Unix
From a command shell, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf_install_dir]

and for the source distribution go to the target directory, for example:

cd [karaf_install_dir]/src/assembly/target/apache-karaf-x.y

where karaf_install_dir is the directory in which Karaf was installed, e.g.,
/usr/local/apache-karaf-x.y.

20 3. INSTALLATION

Then type:

bin/karaf

TESTING THE INSTALLATION AND CONNECTING TO A
RUNNING KARAF
If Karaf is up and running without problems, the Window's console window or
the Unix command shell will display something similar to the following log
line:

__ __ ____
/ //_/____ __________ _/ __/

/ ,< / __ `/ ___/ __ `/ /_
/ /| |/ /_/ / / / /_/ / __/

/_/ |_|__,_/_/ __,_/_/

Apache Felix Karaf (2.0.0)

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

karaf@root>

You can use the client mode to connect to a running Karaf:
On Windows:

bin\client.bat

On Unix:

bin/client

STOPPING KARAF
For both Windows and Unix installations, you can perform a clean shutdown
of Karaf by using the following command:

osgi:shutdown

You can use the stop script too:
On Windows:

3. INSTALLATION 21

Warning
Do NOT close the console or shell in which Karaf was started, as
that will terminate Karaf (unless Karaf was started with nohup).

bin\stop.bat

On Unix:

bin/stop

22 3. INSTALLATION

4. Understanding Karaf

• 4.1. Console and Commands
• 4.2. Remote Console
• 4.3. Logging system
• 4.4. Deployer
• 4.5. Security framework
• 4.6. Provisioning
• 4.7. Administration
• 4.8. Configuration

4. UNDERSTANDING KARAF 23

4.1. Console and Commands

OVERVIEW
Karaf provides a powerful console and a set of commands that can be used
to perform various tasks. Commands can be located in the root shell or in a
sub-shell. A sub-shell is a group of related commands, like commands related
to the OSGi framework or the log system.

The following shells are available out-of-the-box, but the console can be
easily extended:

• admin
• config
• features
• log
• obr
• osgi
• package
• shell
• ssh
• wrapper

ADMIN SHELL
This shell is described extensively in section 4.7. Administration.

CONFIG SHELL
This shell is described extensively in section 4.8. Configuration.

FEATURES SHELL
The features shell contains a few commands to provision entire applications
easily.
More information is available on the chapter 4.6. Provisioning.

24 4.1. CONSOLE AND COMMANDS

LOG SHELL
The log shell contains a few commands to display the log entries, retrieve or
change the log levels:
Command Description
display Display log entries.
display-exception Display the last exception from the log.
get Show log level.
set Set log level.
See the documentation on the logging system for more informations.

OBR SHELL
OBR (OSGi Bundle Repository) is a proposed specification that defines an xml
format for repositories of OSGi bundles and an associated service to access
it. Karaf proposes a number of commands that can be used to deal with such
repositories.

Note that this feature is not installed by default. To install it, you must run
the following command:

karaf@root:/> features:install obr

Command Description
addUrl Add a list of repository URLs to the repository service
deploy Deploy
info Display the meta-data for the specified bundles.
list List

listUrl Display the repository URLs currently associated with the
repository service.

removeUrl Remove a list of repository URLs from the repository service
source Source
start Start

4.1. CONSOLE AND COMMANDS 25

http://www2.osgi.org/Repository

OSGI SHELL
The OSGi sub-shell provides commands for managing the OSGi framework:
listing OSGi bundles, services, managing bundle lifecycles.
Look at the online help (launch osgi help command) for more informations.
Command Description
bundle-level Get or set the start level of a given bundle
headers Display headers
install Install bundle
list List bundles
ls List services
refresh Refresh bundle
update Update bundle
resolve Resolve bundle
shutdown Shutdown
start Start bundle
start-level Get or set the start level
stop Stop bundle
uninstall Uninstall bundle

PACKAGE SHELL
Command Description
imports Display imported packages
exports Display exported packages

SHELL SHELL
Command Description
cat Displays the content of a file or url
echo Echoes or prints arguments to STDOUT
exec Executes system processes

26 4.1. CONSOLE AND COMMANDS

grep Prints lines matching the given pattern
info Prints system informations
java Execute a Java standard application
printf Format and print arguments
sleep Sleeps for a bit then wakes up
sort Write sorted concatenation of all files to standard output.

tac Captures the STDIN and returns it as a string. Optionally
writes the content to a file

Examples:

cat mvn:org.apache.servicemix/servicemix/3.2.1/pom

or

log:display | grep error

SSH SHELL
Command Description
ssh Connects to a remote SSH server
sshd Creates a SSH server

WRAPPER SHELL
Note that this feature is not installed by default. To install it, you must run the
following command:

karaf@root:/> features:install wrapper

Command Description
install Install the container as a system service in the OS.

4.1. CONSOLE AND COMMANDS 27

4.2. Remote Console

The remote console feature allows to connect to a running Karaf instance
from a remote computer and perform all the operations that are usually
accessible from the local console.

LAUNCH OPTIONS
The Karaf shell scripts supports a number of options to control the remote
console:

• console: launch Karaf in the default mode (both local and remote
console activated). This is the default mode

• server: launch Karaf in with a remote console but no local console
• client: launch Karaf in with a local console only

These options affect two system properties that can be set if you don't use
the standard shell scripts:

• karaf.startLocalConsole
• karaf.startRemoteShell

USING THE CLIENT JAR
It is also possible to use a more lightweight way to connect to a Karaf
instance using the following command line:

java -jar lib/karaf-client.jar

There are a few parameters that can be set on the command line to change
the URL used to connect to Karaf, the user or the password.
All these parameters are detailed in the help screen:

> java -jar lib/karaf-client.jar --help
Apache Karaf client

-a [port] specify the port to connect to
-h [host] specify the host to connect to
-u [user] specify the user name
-p [password] specify the password
--help shows this help message
-v raise verbosity
-r [attempts] retry connection establishment (up to attempts times)
-d [delay] intra-retry delay (defaults to 2 seconds)

28 4.2. REMOTE CONSOLE

[commands] commands to run
If no commands are specified, the client will be put in an interactive mode

For example, to shut down Karaf from the command line, you can run the
following command:

> java -jar lib/karaf-client.jar
smx@root:/> osgi:shutdown
smx@root:/>
>

The client jar also supports passing command line arguments to the remote
Karaf.

> java -jar lib/karaf-client.jar osgi:shutdown
>

USING AN SSH CLIENT
You can use any standard SSH client to connect to a Karaf instance. The
default port is 8101.

> ssh -p 8101 -l karaf localhost
karaf@localhost's password: karaf
karaf@root:/>

USING ANOTHER KARAF INSTANCE
First, open a terminal and launch Karaf in server mode (you could use a Karaf
instance in console mode too):

bin/karaf server

On another terminal, start another Karaf instance in client mode:

bin/karaf client

Once the console appears, you can run the remote rsh command to connect
to the other Kernel:

4.2. REMOTE CONSOLE 29

User another Karaf instance to start the client
At this point in time, you can not use the same Karaf installation to
start both the server and the client, so you need to create a new
instance using the 'admin create xxx' command and use that one to
start the client. If you are on a different host or already use another
copy of Karaf, this requirement does not hold.

ssh:ssh -l karaf -P karaf -p 8101 localhost

To verify that your are connected to the remote instance, run the following
command:

info

and check the system informations.

Configuration
The TCP port is configured at the following location:

[KARAF]/etc/org.apache.karaf.shell.cfg

The defaut configuration is as below:

sshPort=8102
sshHost=0.0.0.0
sshRealm=karaf
hostKey=${karaf.base}/etc/host.key

The port used can easily be changed by changing the default port 8101 in the
sshPort property.

The security realm used by the console when authenticating remote users
is named karaf, so you can override this realm as explained in the security
section.

30 4.2. REMOTE CONSOLE

4.3. Logging system

Karaf provides a powerful logging system based on OPS4j Pax Logging.
In addition to being a standard OSGi Log service, it supports the following

APIs:
• Apache Commons Logging
• SLF4J
• Apache Log4j
• Java Util Logging

Karaf also comes with a set of console commands that can be used to
display, view and change the log levels.

CONFIGURATION
The configuration of the logging system uses a standard Log4j configuration
file at the following location:

[karaf]/etc/org.ops4j.pax.logging.cfg

You can edit this file at runtime and any change will be reloaded and be
effective immediately.

COMMANDS
The log subshell comes with 3 commands:

• log:display: display the last log entries
• log:display-exception: display the last exception from the log
• log:get: show the log levels
• log:set: set the log levels

For example, if you want to debug something, you might want to run the
following commands:

> log:set DEBUG
... do something ...
> log:display

Note that the log levels set using the log:set commands are not persistent
and will be lost upon restart.
To configure those in a persistent way, you should edit the configuration file

4.3. LOGGING SYSTEM 31

http://wiki.ops4j.org/confluence/display/ops4j/Pax+Logging
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html

mentioned above.

32 4.3. LOGGING SYSTEM

4.4. Deployer

The following picture describes the architecture of the deployer.

SPRING DEPLOYER
Karaf includes a deployer that is able to deploy plain blueprint or spring-dm
configuration files.
The deployer will transform on the fly any spring configuration file dropped
into the deploy folder into a valid OSGi bundle.

The generated OSGi manifest will contain the following headers:

Manifest-Version: 2
Bundle-SymbolicName: [name of the file]
Bundle-Version: [version of the file]
Spring-Context: *;publish-context:=false;create-asynchronously:=true
Import-Package: [required packages]
DynamicImport-Package: *

The name and version of the file are extracted using a heuristic that will
match common patterns. For example my-config-1.0.1.xml will lead to

4.4. DEPLOYER 33

name = my-config and version = 1.0.1.
The default imported packages are extracted from the spring file definition
and includes all classes referenced directly.

If you need to customize the generated manifest, you can do so by
including an xml element in your spring configuration:

<spring:beans ...>
<manifest>

Require-Bundle= my-bundle
</manifest>

FEATURES DEPLOYER
To be able to hot deploy features from the deploy folder, you can just drop a
feature descriptor on that folder. A bundle will be created and its installation
(automatic) will trigger the installation of all features contained in the
descriptor. Removing the file from the deploy folder will uninstall the
features.
If you want to install a single feature, you can do so by writing a feature
descriptor like the following:

<features>
<repository>mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.0.0/xml/

features</repository>
<feature name="nmr-only">

<feature>nmr</feature>
</feature>

</features>

For more informations about features, see the provisioning section.

34 4.4. DEPLOYER

4.5. Security framework

Karaf supports JAAS with some enhancements to allow JAAS to work nicely in
an OSGi environment. This framework also features an OSGi keystore
manager with the ability to deploy new keystores or truststores at runtime.

OVERVIEW
This feature allow the deployment at runtime of JAAS based configuration for
use in various parts of the application. This includes the remote console
login, which uses the karaf realm, but which is configured with a dummy
login module by default. These realms can also be used by the NMR, JBI
components or the JMX server to authenticate users logging in or sending
messages into the bus.

In addition to JAAS realms, you can also deploy keystores and truststores
to secure the remote shell console, setting up HTTPS connectors or using
certificates for WS-Security.

A very simple XML schema for spring has been defined, allowing the
deployment of a new realm or a new keystore very easily.

SCHEMA
To deploy a new realm, you can use the following XSD which is supported by
a Spring namespace handler and can thus be defined in a spring xml
configuration file.

Listing 1. JAAS XSD Schema

<xs:schema elementFormDefault='qualified'
targetNamespace='http://karaf.apache.org/xmlns/jaas/v1.0.0'
xmlns:xs='http://www.w3.org/2001/XMLSchema'
xmlns:bp="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:tns='http://karaf.apache.org/xmlns/jaas/v1.0.0'>

<xs:import namespace="http://www.osgi.org/xmlns/blueprint/v1.0.0"/>

<xs:element name="config">
<xs:complexType>

<xs:sequence>
<xs:element name="module" minOccurs="0" maxOccurs="unbounded">

<xs:complexType mixed="true">
<xs:attribute name="className" use="required"

4.5. SECURITY FRAMEWORK 35

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

type="xs:string" />
<xs:attribute name="flags" default="required">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="required"/>
<xs:enumeration value="requisite"/>
<xs:enumeration value="sufficient"/>
<xs:enumeration value="optional"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" use="required" type="xs:string" />
<xs:attribute name="rank" use="optional" default="0" type="xs:int" />

</xs:complexType>
</xs:element>

<xs:element name="keystore">
<xs:complexType>

<xs:attribute name="name" use="required" type="xs:string" />
<xs:attribute name="rank" use="optional" default="0" type="xs:int" />
<xs:attribute name="path" use="required" type="xs:string" />
<xs:attribute name="keystorePassword" use="optional" type="xs:string" />
<xs:attribute name="keyPasswords" use="optional" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

You can find the schema at the following location.
Here are two example using this schema:

Listing 2. JAAS realm example

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

<!-- Bean to allow the $[karaf.base] property to be correctly resolved -->
<ext:property-placeholder placeholder-prefix="$[" placeholder-suffix="]"/>

<jaas:config name="karaf">
<jaas:module

className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
flags="required">

users = $[karaf.base]/etc/users.properties
</jaas:module>

</jaas:config>

</blueprint>

36 4.5. SECURITY FRAMEWORK

https://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/resources/org/apache/karaf/jaas/config/karaf-jaas.xsd

Listing 3. Keystore example

<jaas:keystore xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
id="keystore"
name="ks"
rank="1"
path="classpath:privatestore.jks"
keystorePassword="keyStorePassword"
keyPasswords="myalias=myAliasPassword">

</jaas:keystore>

The id attribute is the blueprint id of the bean, but it will be used by default
as the name of the realm if no name attribute is specified. Additional
attributes on the config elements are a rank, which is an integer. When the
LoginContext looks for a realm for authenticating a given user, the realms
registered in the OSGi registry are matched against the required name. If
more than one realm is found, the one with the highest rank will be used,
thus allowing the override of some realms with new values. The last attribute
is publish which can be set to false to not publish the realm in the OSGi
registry, hereby disabling the use of this realm.

Each realm can contain one or more module definition. Each module
identify a LoginModule and the className attribute must be set to the class
name of the login module to use. Note that this login module must be
available from the bundle classloader, so either it has to be defined in the
bundle itself, or the needed package needs to be correctly imported. The
flags attribute can take one of four values that are explained on the JAAS
documentation.
The content of the module element is parsed as a properties file and will be
used to further configure the login module.

Deploying such a code will lead to a JaasRealm object in the OSGi registry,
which will then be used when using the JAAS login module.

ARCHITECTURE
Due to constraints in the JAAS specification, one class has to be available for
all bundles. This class is called ProxyLoginModule and is a LoginModule that
acts as a proxy for an OSGi defines LoginModule. If you plan to integrate this
feature into another OSGi runtime, this class must be made available from
the system classloader and the related package be part of the boot
delegation classpath (or be deployed as a fragment attached to the system
bundle).

The xml schema defined above allow the use of a simple xml (leveraging
spring xml extensibility) to configure and register a JAAS configuration for a
given realm. This configuration will be made available into the OSGi registry

4.5. SECURITY FRAMEWORK 37

http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/java/org/apache/karaf/jaas/config/JaasRealm.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java

as a JaasRealm and the OSGi specific Configuration will look for such
services. Then the proxy login module will be able to use the information
provided by the realm to actually load the class from the bundle containing
the real login module.

38 4.5. SECURITY FRAMEWORK

http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/java/org/apache/karaf/jaas/config/JaasRealm.java

4.6. Provisioning

Karaf provides a simple, yet flexible, way to provision applications or
"features". Such a mechanism is mainly provided by a set of commands
available in the features shell. The provisioning system uses xml
"repositories" that define a set of features.

REPOSITORIES
The xml features repositories use the following Relax NG Compact syntax:

Listing 4. Repository schema

element features {
element repository { text }*
element feature {

attribute name { text },
attribute version { text },
element feature {

attribute version { text },
text

}*,
element config {

attribute name { text },
text

}*,
element bundle { text }*

}*
}

Here is an example of such a repository:

<features>
<feature name="spring" version="2.5.6.SEC01">

<bundle>mvn:org.apache.servicemix.bundles/
org.apache.servicemix.bundles.aopalliance/1.0_1</bundle>

<bundle>mvn:org.springframework/spring-core/2.5.6.SEC01</bundle>
<bundle>mvn:org.springframework/spring-beans/2.5.6.SEC01</bundle>
<bundle>mvn:org.springframework/spring-aop/2.5.6.SEC01</bundle>
<bundle>mvn:org.springframework/spring-context/2.5.6.SEC01</bundle>
<bundle>mvn:org.springframework/spring-context-support/2.5.6.SEC01</bundle>

</feature>
</features>

A repository includes a list of feature elements, each one representing an
application that can be installed. The feature is identified by its name which

4.6. PROVISIONING 39

must be unique amongst all the repositories used and consists of a set of
bundles that need to be installed along with some optional dependencies on
other features and some optional configurations for the Configuration Admin
OSGi service.

References to features define in other repositories are allow and can be
achieved by adding a list of repository.

<features>
<repository>mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.2.0/xml/

features</repository>
<repository>mvn:org.apache.camel.karaf/apache-camel/2.2.0/xml/features</repository>
<repository>mvn:org.apache.felix.karaf/apache-felix-karaf/1.4.0/xml/

features</repository>
...

Remark : By default, all the features defined in a repository are not installed
at the launch of Apache Karaf (see section hereafter 'h2. Service
configuration' for more info).

Bundles
The main information provided by a feature is the set of OSGi bundles that
defines the application. Such bundles are URLs pointing to the actual bundle
jars. For example, one would write the following definition:

<bundle>http://repo1.maven.org/maven2/org/apache/servicemix/nmr/
org.apache.servicemix.nmr.api/1.0.0-m2/
org.apache.servicemix.nmr.api-1.0.0-m2.jar</bundle>

Doing this will make sure the above bundle is installed while installing the
feature.

However, Karaf provides several URL handlers, in addition to the usual
ones (file, http, etc...). One of these is the maven URL handler, which allow
reusing maven repositories to point to the bundles.

Maven URL Handler
The equivalent of the above bundle would be:

<bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.api/1.0.0-m2</bundle>

In addition to being less verbose, the maven url handlers can also resolve
snapshots and can use a local copy of the jar if one is available in your
maven local repository.

40 4.6. PROVISIONING

Be carefull when you define them as there is a risk of 'cycling'
dependencies.

The org.ops4j.pax.url.mvn bundle resolves mvn URLs. This flexible tool
can be configured through the configuration service. For example, to find the
current repositories type:

karaf@root:/> config:list
...
--
Pid: org.ops4j.pax.url.mvn
BundleLocation: mvn:org.ops4j.pax.url/pax-url-mvn/0.3.3
Properties:

service.pid = org.ops4j.pax.url.mvn
org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/development/karaf/assembly/

target/apache-felix-karaf-1.2.0-SNAPSHOT/system@snapshots
org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/maven2,

http://people.apache.org/repo/
m2-snapshot-repository@snapshots@noreleases,

http://repository.ops4j.org/maven2,
http://svn.apache.org/repos/asf/servicemix/

m2-repo
below = list of repositories and even before the local repository

The repositories checked are controlled by these configuration properties.
For example, org.ops4j.pax.url.mvn.repositories is a comma

separate list of repository URLs specifying those remote repositories to be
checked. So, to replace the defaults with a new repository at
http://www.example.org/repo on the local machine:

karaf@root:/> config:edit org.ops4j.pax.url.mvn
karaf@root:/> config:proplist

service.pid = org.ops4j.pax.url.mvn
org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/development/karaf/assembly/

target/apache-felix-karaf-1.2.0-SNAPSHOT/system@snapshots
org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/maven2,

http://people.apache.org/repo/
m2-snapshot-repository@snapshots@noreleases,

http://repository.ops4j.org/maven2,
http://svn.apache.org/repos/asf/servicemix/

m2-repo
below = list of repositories and even before the local repository

karaf@root:/> config:propset org.ops4j.pax.url.mvn.repositories
http://www.example.org/repo
karaf@root:/> config:update

4.6. PROVISIONING 41

http://www.example.org/repo

By default, snapshots are disable. To enable an URL for snapshots append
@snapshots. For example

http://www.example.org/repo@snapshots

Repositories on the local are supported through file:/ URLs

Bundle start-level
Available since Karaf 2.0

By default, the bundles deployed through the feature mechanism will have
a start-level equals to the value defined in the configuration file
config.properties
with the variable karaf.startlevel.bundle=60. This value can be changed
using the xml attribute start-level.

<feature name='my-project' version='1.0.0'>
<feature version='2.4.0'>camel-spring</feature>
<bundle start-level='80'>mvn:com.mycompany.myproject/myproject-dao</bundle>
<bundle start-level='85'>mvn:com.mycompany.myproject/myproject-service</bundle>
<bundle start-level='85'>mvn:com.mycompany.myproject/

myproject-camel-routing</bundle>
</feature>

The advantage to define the start-level of a bundle is that you can deploy all
your bundles including those of the project with the 'infrastructure' bundles
required (e.g : camel, activemq)
at the same time and you will have the guaranty when you use Spring
Dynamic Module (to register service through OSGI service layer), Blueprint
that by example
Spring context will not be created without all the required services installed.

Bundle 'stop/start'
Available since Karaf 2.0

The OSGI specification allows to install a bundle without starting it. To use
this functionality, simply add the following attribute in your <bundle>
definition

<feature name='my-project' version='1.0.0'>
<feature version='2.4.0'>camel-spring</feature>
<bundle start-level='80' start='false'>mvn:com.mycompany.myproject/

myproject-dao</bundle>

42 4.6. PROVISIONING

/

<bundle start-level='85' start='false'>mvn:com.mycompany.myproject/
myproject-service</bundle>

<bundle start-level='85' start='false'>mvn:com.mycompany.myproject/
myproject-camel-routing</bundle>

</feature>

Dependent features
Dependent features are useful when a given feature depends on another
feature to be installed. Such a dependency can be expressed easily in the
feature definition:

<feature name="jbi">
<feature>nmr</feature>
...

</feature>

The effect of such a dependency is to automatically install the required nmr
feature when the jbi feature will be installed.

Configurations
The configuration section allows to deploy configuration for the OSGi
Configuration Admin service along a set of bundles.
Here is an example of such a configuration:

<config name="com.foo.bar">
myProperty = myValue

</config>

The name attribute of the configuration element will be used as the
ManagedService PID for the configuration set in the Configuration Admin
service. When using a ManagedServiceFactory, the name attribute is
servicePid-aliasId, where servicePid is the PID of the ManagedServiceFactory
and aliasId is a label used to uniquely identify a particular service (an alias to
the factory generated service PID).

Deploying such a configuration has the same effect than dropping a file
named com.foo.bar.cfg into the etc folder.

The content of the configuration element is set of properties parsed
using the standard java property mechanism.

Such configuration as usually used with Spring-DM or Blueprint support for
the Configuration Admin service, as in the following example, but using plain
OSGi APIs will of course work the same way:

4.6. PROVISIONING 43

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

<bean ...>
<property name="propertyName" value="${myProperty}" />

</bean>

<osgix:cm-properties id="cmProps" persistent-id="com.foo.bar">
<prop key="myProperty">myValue</prop>

</osgix:cm-properties>
<ctx:property-placeholder properties-ref="cmProps" />

For more informations about using the Configuration Admin service in Spring-
DM, see the Spring-DM documentation.

COMMANDS

Repository management
The following commands can be used to manage the list of descriptors
known by Karaf. They use URLs pointing to features descriptors. These URLs
can use any protocol known to the Apache Karaf, the most common ones
being http, file and mvn.

features:addUrl Add a list of repository URLs to the features service
features:removeUrl Remove a list of repository URLs from the features service
features:listUrl Display the repository URLs currently associated with the
features service.
features:refreshUrl Reload the repositories to obtain a fresh list of features

Karaf maintains a persistent list of these repositories so that if you add one
URL and restart Karaf, the features will still be available.

The refreshUrl command is mostly used when developing features
descriptors: when changing the descriptor, it can be handy to reload it in the
Kernel without having to restart it or to remove then add again this URL.

Features management

features:install
features:uninstall
features:list

Examples
1. Install features using mvn handler

44 4.6. PROVISIONING

http://static.springframework.org/osgi/docs/1.2.0-m2/reference/html/compendium.html#compendium:cm:props

features:addUrl mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.0.0-m2/xml/
features
features:install nmr

2. Use file handler to deploy features file

features:addUrl file:base/features/features.xml

Remark : The path is relative to the Apache Karaf installation directory
3. Deploy bundles from file system without using maven
As we can use file:// as protocol handler to deploy bundles, you can use

the following syntax to deploy bundles when they are
located in a directory which is not available using maven

<features>
<feature name="spring-web" version="2.5.6.SEC01">

<bundle>file:base/bundles/spring-web-2.5.6.SEC01.jar</bundle>
</feature>

</features>

Remark : The path is relative to the Apache Karaf installation directory

SERVICE CONFIGURATION
A simple configuration file located in [FELIX:karaf]/etc/
org.apache.karaf.features.cfg can be modified to customize the
behavior when starting the Kernel for the first time.
This configuration file contains two properties:

• featuresBoot: a comma separated list of features to install at
startup

• featuresRepositories: a comma separated list of feature
repositories to load at startup

This configuration file is of interest if you plan to distribute Apache Karaf
distribution which includes pre-installed features. Such a process is detailed
in the 6.2. Building custom distributions section.

4.6. PROVISIONING 45

/

4.7. Administration

Karaf provides some commands to administer multiple instances. An
instance of Karaf is a copy that you can launch separately and deploy
applications onto. An instance does not contain a full copy of Karaf, but only
a copy of the configuration files and data folder which contains all runtime
informations, logs and temporary files.
Commands Description
change-port Changes the port of an existing container instance.
connect Connects to an existing container instance.
create Creates a new container instance.
destroy Destroys an existing container instance.
list List all existing container instances.
start Starts an existing container instance.
stop Stops an existing container instance.
Those commands are also available from outside the OSGi environment using
the admin/admin.bat script in the bin folder.

46 4.7. ADMINISTRATION

4.8. Configuration

The files in the etc directory are used to set the startup configuration.
For dynamic configuration, Karaf provides a suite of command to

administer the configuration service grouped under config. To learn about all
currently supported configuration commands type:
Command Description
cancel Change the changes to the configuration being edited.
edit Create or edit a configuration.
list List existing configurations.
propdel Delete a property from the edited configuration.
proplist List properties from the edited configuration.
propset Set a property on the edited configuration.

update Save and propagate changes from the configuration being
edited.

EDITING

Select Configuration To Edit
For example to edit configuration foo.bar:

karaf@root:/> config:edit foo.bar

Modify Properties
Use:

• config:proplist to list existing properties
• config:propdel to delete existing properties
• config:propset to set a new value for a property

Any number of properties can be modified within a single editing session.

4.8. CONFIGURATION 47

Commit Or Rollback Changes
Use

• config:update to commit all changes made in the current session
• config:cancel to roll back any changes made in the current session

48 4.8. CONFIGURATION

5. Using Karaf

• 5.1. Troubleshooting, Debugging and Profiling
• 5.2. Developping applications
• 5.3. Creating bundles for third party dependencies
• 5.4. Writing integration tests

5. USING KARAF 49

5.1. Troubleshooting,
Debugging and Profiling

TROUBLESHOOTING

Logging
Logging is easy to control through the console, with commands grouped
under log shell. To learn about the available logging commands type:

karaf@root> log<tab>

log:display log:display-exception log:get log:set
karaf@root>

Typical usage is:
1. Use log:set to dynamically change the global log level
2. Execute the problematic operation
3. Use log:display (or log:display-exception to display the log

Worst Case Scenario
If you end up with a Karaf in a really bad state (i.e. you can not boot it
anymore) or you just want to revert to a clean state quickly, you can safely
remove the data directory just in the installation directory. This folder
contains transient data and will be recreated if you remove it and relaunch
Karaf.
You may also want to remove the files in the deploy folder to avoid them
being automatically installed when Karaf is started the first time.

DEBUGGING
Usually, the easiest way to debug Karaf or any application deployed onto it is
to use remote debugging.
Remote debugging can be easily activated by setting the KARAF_DEBUG
environment variable to TRUE.

This can be done using the following command on Unix systems:

export KARAF_DEBUG=true

50 5.1. TROUBLESHOOTING, DEBUGGING AND PROFILING

On Windows, use the following command

set KARAF_DEBUG=true

Then, you can launch Karaf using the usual way:

bin/karaf

or

bin\karaf.bat

Last, inside your IDE, connect to the remote application (the default port to
connect to is 5005).

This option works fine when we have to debug a project deployed top of
Apache Karaf. Nervertheless, you will be blocked if you would like to debug
the server Karaf. In this case, you can change the following parameter
suspend=y in the karaf.bat script file. That will cause the JVM to pause just
before running main() until you attach a debugger then it will resume the
execution. This way you can set
your breakpoints anywhere in the code and you should hit them no matter
how early in the startup they are

export DEFAULT_JAVA_DEBUG_OPTS='-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005'

and on Windows,

set DEFAULT_JAVA_DEBUG_OPTS='-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005'

PROFILING

YourKit
You need a few steps to be able to profile Karaf using YourKit.
The first one is to edit the etc/config.properties configuration file and
add the following property:

org.osgi.framework.bootdelegation=com.yourkit.*

Then, set the JAVA_OPTS environment variable:

5.1. TROUBLESHOOTING, DEBUGGING AND PROFILING 51

export JAVA_OPTS='-Xmx512M -agentlib:yjpagent'

or, on Windows

set JAVA_OPTS='-Xmx512M -agentlib:yjpagent'

Run Karaf from the console, and you should now be able to connect using
YourKit standalone or from your favorite IDE.

52 5.1. TROUBLESHOOTING, DEBUGGING AND PROFILING

5.2. Developping
applications

TODO

5.2. DEVELOPPING APPLICATIONS 53

5.3. Creating bundles for
third party dependencies

TODO
Some infos available at http://gnodet.blogspot.com/2008/09/id-like-to-talk-

bit-about-third-party.html, http://blog.springsource.com/2008/02/18/creating-
osgi-bundles/ and http://felix.apache.org/site/apache-felix-maven-bundle-
plugin-bnd.html.

54 5.3. CREATING BUNDLES FOR THIRD PARTY DEPENDENCIES

http://gnodet.blogspot.com/2008/09/id-like-to-talk-bit-about-third-party.html
http://gnodet.blogspot.com/2008/09/id-like-to-talk-bit-about-third-party.html
http://blog.springsource.com/2008/02/18/creating-osgi-bundles/
http://blog.springsource.com/2008/02/18/creating-osgi-bundles/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

6. Advanced uses

• 6.1. Extending the console
• 6.2. Building custom distributions
• 6.3. Programmatically connect to the console
• 6.4. Embedding Karaf
• 6.5. Deploying security providers
• 6.6. Installing additional features
• 6.7. Configuring Failover Deployments

6. ADVANCED USES 55

6.1. Extending the console

This chapter will guide you through the steps needed to extend the console
and create a new shell. We will leverage Maven, Blueprint and OSGi, so you
will need some knowledge of those products.

You may also find some information about the console at RFC 147
Overview.

CREATE THE PROJECT USING MAVEN
We first need to create the project using maven. Let's leverage maven
archetypes for that.

Command line
Using the command line, we can create our project:

mvn archetype:create \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DgroupId=org.apache.karaf.shell.samples \
-DartifactId=shell-sample-commands \
-Dversion=1.0-SNAPSHOT

This generate the main pom.xml and some additional packages.

Interactive shell
You can also use the interactive mode for creating the skeleton project:

mvn archetype:generate

Use the following values when prompted:

Choose a number: (1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22/23/24/25/
26/27/28/29/30/31/32/33/34/35/36) 15: : 15
Define value for groupId: : org.apache.karaf.shell.samples
Define value for artifactId: : shell-sample-commands
Define value for version: 1.0-SNAPSHOT: :
Define value for package: : org.apache.karaf.shell.samples

56 6.1. EXTENDING THE CONSOLE

http://cwiki.apache.org/confluence/display/FELIX/RFC+147+Overview
http://cwiki.apache.org/confluence/display/FELIX/RFC+147+Overview

Manual creation
Alternatively, you can simply create the directory shell-sample-commands
and create the pom.xml file inside it:

Listing 5. pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.karaf.shell.samples</groupId>
<artifactId>shell-sample-commands<artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>shell-sample-commmands</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

DEPENDENCIES
We need to tell maven which libraries our project depends on. In the
dependencies section of the pom, add the following one:

<dependency>
<groupId>org.apache.karaf.shell</groupId>
<artifactId>org.apache.karaf.shell.console</artifactId>
<version>1.0.0</version>

</dependency>

This dependency is needed to have access to the base classes that are used
to define commands.

CONFIGURING FOR JAVA 5
We are using annotations to define commands, so we need to ensure maven
will actually use JDK 1.5 to compile the jar.
Just add the following snippet after the dependencies section.

6.1. EXTENDING THE CONSOLE 57

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<target>1.5</target>
<source>1.5</source>

</configuration>
</plugin>

</plugins>
</build>

LOADING THE PROJECT IN YOUR IDE
We can use maven to generate the needed files for your IDE:

Inside the project, run the following command

mvn eclipse:eclipse

or

mvn idea:idea

The project files for your IDE should now be created. Just open the IDE and
load the project.

CREATING A BASIC COMMAND CLASS
We can now create the command class HelloShellCommand.java

Listing 6. HelloShellCommand.java

package org.apache.karaf.shell.samples;

import org.apache.felix.gogo.commands.Command;
import org.apache.felix.gogo.commands.Option;
import org.apache.felix.gogo.commands.Argument;
import org.apache.karaf.shell.console.OsgiCommandSupport;

@Command(scope = "test", name = "hello", description="Says hello")
public class HelloShellCommand extends OsgiCommandSupport {

@Override
protected Object doExecute() throws Exception {

System.out.println("Executing Hello command");

58 6.1. EXTENDING THE CONSOLE

return null;
}

}

CREATING THE ASSOCIATED BLUEPRINT CONFIGURATION
FILES
The blueprint configuration file will be used to create the command and
register it in the OSGi registry, which is the way to make the command
available to Karaf console. This blueprint file must be located in the OSGI-
INF/blueprint/ directory inside the bundle.

If you don't have the src/main/resources directory yet, create it.

mkdir src/main/resources

Then, re-generate the IDE project files and reload it so that this folder is now
recognized as a source folder.

Inside this directory, create the OSGI-INF/blueprint/ directory and put
the following file inside (the name of this file has no impact at all):

Listing 7. shell-config.xml

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<command-bundle xmlns="http://karaf.apache.org/xmlns/shell/v1.0.0">
<command name="test/hello">

<action class="org.apache.karaf.shell.samples.HelloShellCommand"/>
</command>

</command-bundle>

</blueprint>

COMPILING THE JAR
Let's try to build the jar. Remove the test classes and sample classes if you
used the artifact, then from the command line, run:

mvn install

The end of the maven output should look like:

6.1. EXTENDING THE CONSOLE 59

[SMX4KNL:INFO]
--
[SMX4KNL:INFO] BUILD SUCCESSFUL
[SMX4KNL:INFO]
--

TURNING THE JAR INTO AN OSGI BUNDLE
OSGi bundles are jars but they require some manifest headers to be correctly
recognized. We will leverage Felix's maven plugin to easily generate those.

Lets turn it into a bundle: modify the line in the pom.xml to adjust the
packaging:

<packaging>bundle</packaging>

Add the following section at the bottom of the pom.xml, in the existing
build/plugins section:

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.1.0</version>
<extensions>true</extensions>
<configuration>

<instructions>
<Import-Package>org.osgi.service.command,*</Import-Package>

</instructions>
</configuration>

</plugin>

The Import-Package is required to make sure our bundle will import the
org.osgi.service.command package so that the service will be correctly
seen in Felix.

Let's compiled it again using the mvn install command.

TEST IN KARAF
Launch a Karaf instance and run the following command to install the newly
created bundle:

karaf@root> osgi:install -s mvn:org.apache.karaf.shell.samples/shell-sample-commands/
1.0-SNAPSHOT

60 6.1. EXTENDING THE CONSOLE

Let's try running the command:

karaf@root> test:hello
Executing Hello command

and for the link:

Yeah

6.1. EXTENDING THE CONSOLE 61

6.2. Building custom
distributions

TODO

62 6.2. BUILDING CUSTOM DISTRIBUTIONS

6.3. Programmatically
connect to the console

A connection to Karaf console can also be done programmatically.
The following code is a simplified version of the code from the client library.

import org.apache.sshd.ClientChannel;
import org.apache.sshd.ClientSession;
import org.apache.sshd.SshClient;
import org.apache.sshd.client.future.ConnectFuture;

public class Main {

public static void main(String[] args) throws Exception {
String host = "localhost";
int port = 8101;
String user = "karaf";
String password = "karaf";

SshClient client = null;
try {

client = SshClient.setUpDefaultClient();
client.start();
ConnectFuture future = client.connect(host, port);
future.await();
ClientSession session = future.getSession();
session.authPassword(user, password);
ClientChannel channel = session.createChannel("shell");
channel.setIn(System.in);
channel.setOut(System.out);
channel.setErr(System.err);
channel.open();
channel.waitFor(ClientChannel.CLOSED, 0);

} catch (Throwable t) {
t.printStackTrace();
System.exit(1);

} finally {
try {

client.stop();
} catch (Throwable t) { }

}
System.exit(0);

}

}

You can find a more complete example at the following location.

6.3. PROGRAMMATICALLY CONNECT TO THE CONSOLE 63

http://svn.apache.org/repos/asf/felix/trunk/karaf/client/src/main/java/org/apache/felix/karaf/client/Main.java

6.4. Embedding Karaf

TODO: an example of embedding Karaf inside a web application is provided
in the distribution

64 6.4. EMBEDDING KARAF

6.5. Deploying security
providers

Some applications require specific security providers to be available, such as
BouncyCastle. The JVM impose some restrictions about the use of such jars:
they have to be signed and be available on the boot classpath. One way to
deploy those providers is to put them in the JRE folder at $JAVA_HOME/jre/
lib/ext and modify the security policy configuration ($JAVA_HOME/jre/lib/
security/java.security) in order to register such providers.

While this approach works fine, it has a global effect and require you to
configure all your servers accordingly.

Karaf offers a simple way to configure additional security providers:
• put your provider jar in [FELIX:KARAF]/lib
• modify the [FELIX:KARAF]/etc/config.properties configuration

file to add the following property

org.apache.felix.karaf.security.providers = xxx,yyy

The value of this property is a comma separated list of the provider class
names to register.
For example:

org.apache.felix.karaf.security.providers =
org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those
providers from the system bundle so that all bundles can access those. It can
be done by modifying the org.osgi.framework.bootdelegation property in
the same configuration file:

org.osgi.framework.bootdelegation = ...,org.bouncycastle*

6.5. DEPLOYING SECURITY PROVIDERS 65

http://www.bouncycastle.org

6.6. Installing additional
features

This chapter will demonstrate how to add additional features from a remote
maven repository to a default installation of Karaf.

ADDING ADDITIONAL MAVEN REPOSITORIES
The following steps will add in the missing OPS4J and Apache Snapshot
maven repositories. Note - this has been fixed in the 1.1.0 of ServiceMix
Kernel release and can be skipped.

1. Edit the following file -

etc/org.ops4j.pax.url.mvn.cfg

2. Update org.ops4j.pax.url.mvn.repositories to include the OPS4J and
Apache Snapshot repos -

org.ops4j.pax.url.mvn.repositories=file:${user.home}/.m2/
repository@snapshots,http://repo1.maven.org/
maven2,http://repository.ops4j.org/
maven2,http://people.apache.org/repo/
m2-snapshot-repository@snapshots@noreleases

ADDING ADDITIONAL FEATURE REPOSITORIES
The following steps will add in the URLs for the Camel & ActiveMQ and
Features locations.

1. Start Karaf

cd bin
./karaf or karaf.bat

2. Add the following feature install locations

karaf@root> features:addUrl mvn:org.apache.activemq/
activemq-karaf/5.4.0/xml/features
karaf@root> features:addUrl mvn:org.apache.camel.karaf/

66 6.6. INSTALLING ADDITIONAL FEATURES

Last updated September 3, 2010 using Karaf 2.0.0

features/2.0.0/xml/features

3. Verify the feature URLs were added -

karaf@root> features:listUrl
mvn:org.apache.camel.karaf/features/2.0.0/xml/features
valid
mvn:org.apache.activemq/activemq-karaf/5.4.0/xml/
features valid
mvn:org.apache.karaf/apache-karaf/2.0.1-SNAPSHOT/xml/
features valid

INSTALLING A NEW FEATURE (WAR)
The following steps will install the "war" feature (support for deploying WAR
files with Servlet and JSPs into a Jetty server) into your Karaf instance.

1. List the available features -

karaf@root> features:list
State Name

. . .
[uninstalled] [2.0.0] obr karaf-2.0.0
[uninstalled] [2.0.0] config karaf-2.0.0
[uninstalled] [2.0.0] http karaf-2.0.0
[uninstalled] [2.0.0] war karaf-2.0.0
[uninstalled] [2.0.0] webconsole karaf-2.0.0
[installed] [2.0.0] ssh karaf-2.0.0

. . .

2. Install the war feature (and the sub-features it requires) -

karaf@root> features:install war

3. Verify the features were installed

karaf@root> features:list
State Name

6.6. INSTALLING ADDITIONAL FEATURES 67

. . .
[installed] [2.0.0] http karaf-2.0.0
[installed] [2.0.0] war karaf-2.0.0
. . .

4. Verify the installed bundles were started

karaf@root> osgi:list
START LEVEL 100

ID State Blueprint Level Name
. . .
[32] [Active] [] [60]
geronimo-servlet_2.5_spec (1.1.2)
[33] [Active] [] [60] Apache
ServiceMix :: Bundles :: jetty (6.1.22.2)
[34] [Active] [] [60] OPS4J Pax Web
- API (0.7.2)
[35] [Active] [] [60] OPS4J Pax Web
- Service SPI (0.7.2)
[36] [Active] [] [60] OPS4J Pax Web
- Runtime (0.7.2)
[37] [Active] [] [60] OPS4J Pax Web
- Jetty (0.7.2)
[38] [Active] [] [60] OPS4J Pax Web
- Jsp Support (0.7.2)
[39] [Active] [] [60] OPS4J Pax Web
- Extender - WAR (0.7.2)
[40] [Active] [] [60] OPS4J Pax Web
- Extender - Whiteboard (0.7.2)
[41] [Active] [] [60] OPS4J Pax Url
- war:, war-i: (1.1.3)
[42] [Active] [Created] [60] Apache Karaf
:: WAR Deployer (2.0.0)
. . .

5. The Jetty server should now be listening on http://localhost:8181/, but
with no published applications available.

HTTP ERROR: 404
NOT_FOUND
RequestURI=/
Powered by jetty://

68 6.6. INSTALLING ADDITIONAL FEATURES

http://localhost:8181/

DEPLOYING A WAR TO THE INSTALLED WEB FEATURE
The following steps will describe how to install a simple WAR file (with JSPs or
Servlets) to the just installed web feature.

1. To deploy a WAR (JSP or Servlet) to Jetty, update its MANIFEST.MF to
include the required OSGi headers as described here -
http://wiki.ops4j.org/confluence/display/ops4j/Pax+Web+Extender+-
+War+-+OSGi-fy

2. Copy the updated WAR (archive or extracted files) to the deploy
directory.

6.6. INSTALLING ADDITIONAL FEATURES 69

http://wiki.ops4j.org/confluence/display/ops4j/Pax+Web+Extender+-+War+-+OSGi-fy
http://wiki.ops4j.org/confluence/display/ops4j/Pax+Web+Extender+-+War+-+OSGi-fy

6.7. Configuring Failover
Deployments

This chapter will demonstrate how to configure failover deployments.

SIMPLE LOCK FILE
The simple lock file mechanism is intended for failover configurations where
instances reside on the same host machine.

To use this feature, edit the $KARAF_HOME/etc/system.properties file as
follows on each system in the master/slave setup:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.SimpleFileLock
karaf.lock.dir=<PathToLockFileDirectory>
karaf.lock.delay=10

Note: Ensure that the karaf.lock.dir property points to the same directory
for both the master and slave instance, so that the slave can only acquire the
lock when the master releases it.

JDBC LOCKING
The JDBC locking mechanism is intended for failover configurations where
instances exist on separate machines. In this deployment, the master
instance holds a lock on a Karaf locking table hosted on a database. If the
master loses the lock, a waiting slave process gains access to the locking
table and fully starts its container.

To use this feature, do the following on each system in the master/slave
setup:

• Update the classpath to include the JDBC driver
• Update the $KARAF_HOME/bin/karaf script to have unique JMX

remote port set if instances reside on the same host
• Update the $KARAF_HOME/etc/system.properties file as follows:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.DefaultJDBCLock
karaf.lock.level=50

70 6.7. CONFIGURING FAILOVER DEPLOYMENTS

karaf.lock.delay=10
karaf.lock.jdbc.url=jdbc:derby://dbserver:1527/sample
karaf.lock.jdbc.driver=org.apache.derby.jdbc.ClientDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

Note:
• Will fail if JDBC driver is not on classpath.
• The database name "sample" will be created if it does not exist on

the database.
• The first Karaf instance to acquire the locking table is the master

instance.
• If the connection to the database is lost, the master instance tries to

gracefully shutdown, allowing a slave instance to become master
when the database service is restored. The former master will require
manual restart.

JDBC locking on Oracle
If you are using Oracle as your database in a JDBC locking scenario, the
karaf.lock.class property in the $KARAF_HOME/etc/system.properties
file must point to org.apache.felix.karaf.main.OracleJDBCLock.

Otherwise, configure the system.properties file as normal for your setup,
for example:

karaf.lock=true
karaf.lock.class=org.apache.felix.karaf.main.OracleJDBCLock
karaf.lock.jdbc.url=jdbc:oracle:thin:@hostname:1521:XE
karaf.lock.jdbc.driver=oracle.jdbc.OracleDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

As with the default JDBC locking setup, the Oracle JDBC driver JAR file must
be in your classpath. You can ensure this by copying the ojdbc14.jar into
Karaf's lib folder before starting Karaf.

Note: The karaf.lock.jdbc.url requires an active SID, which means you
must manually create a database instance before using this particular lock.

6.7. CONFIGURING FAILOVER DEPLOYMENTS 71

CONTAINER-LEVEL LOCKING
Container-level locking allows bundles to be preloaded into the slave kernel
instance in order to provide faster failover performance. Container-level
locking is supported in both the simple file and JDBC locking mechanisms.

To implement container-level locking, add the following to the
$KARAF_HOME/etc/system.properties file on each system in the master/
slave setup:

karaf.lock=true
karaf.lock.level=50
karaf.lock.delay=10

The karaf.log.level property tells the Karaf instance how far up the boot
process to bring the OSGi container. Bundles assigned the same start level or
lower will then also be started in that Karaf instance.

Bundle start levels are specified in $KARAF_HOME/etc/
startup.properties, in the format jar.name=level. The core system
bundles have levels below 50, where as user bundles have levels greater
than 50.
Level Behavior

1 A 'cold' standby instance. Core bundles are not loaded into
container. Slaves will wait until lock acquired to start server.

<50
A 'hot' standby instance. Core bundles are loaded into the
container. Slaves will wait until lock acquired to start user level
bundles. The console will be accessible for each slave instance at
this level.

>50 This setting is not recommended as user bundles will be started.
Note: When using a 'hot' spare on the same host you need to set the JMX
remote port to a unique value to avoid bind conflicts. You can edit the Karaf
start script to include the following:

DEFAULT_JAVA_OPTS="-server $DEFAULT_JAVA_OPTS
-Dcom.sun.management.jmxremote.port=1100
-Dcom.sun.management.jmxremote.authenticate=false"

72 6.7. CONFIGURING FAILOVER DEPLOYMENTS

7. Optional Features

• 7.1. Enabling Colorized Console Output On Windows

7. OPTIONAL FEATURES 73

7.1. Enabling Colorized
Console Output On Windows

The default Karaf installation does not produce colorized console output on
Windows like it does on Unix based systems. To enable it, you must install
LGPL licensed library JNA. This can be done using a few simple commands in
the Karaf console:

You first need to install the JNA library:

osgi:install wrap:mvn:http://download.java.net/maven/2!net.java.dev.jna/jna/3.1.0

Next you need either restart karaf or you run the following Karaf commands
to refresh the Karaf Console:

osgi:list | grep "Apache Felix Karaf :: Shell Console"

Take note of the ID of the bundle, in my case it was 14 and then run:

osgi:refresh 14

74 7.1. ENABLING COLORIZED CONSOLE OUTPUT ON WINDOWS

https://jna.dev.java.net/

	1. Overview
	2. Quick start
	Background
	Getting the software
	Prerequisites
	Download binaries

	Start the server
	Deploy a sample application
	Stopping and uninstalling the sample application
	Common Problems

	Stopping Karaf
	Summary

	2.1. Quick Start (Source)
	Background
	Getting the software
	Prerequisites
	Checkout Source
	Build

	Start the server
	Deploy a sample application
	Stopping and uninstalling the sample application
	Common Problems

	Stopping Karaf
	Summary

	3. Installation
	Pre-Installation Requirements
	Installation Procedure for Windows
	Windows Binary Installation
	Windows Source Installation

	Installation Procedure For Unix
	Unix Binary Installation
	Unix Source Installation

	Starting Karaf
	On Windows
	On Unix

	Testing the Installation and connecting to a running Karaf
	Stopping Karaf

	4. Understanding Karaf
	4.1. Console and Commands
	Overview
	Admin shell
	Config shell
	Features shell
	Log shell
	OBR shell
	OSGi shell
	Package shell
	Shell shell
	SSH shell
	Wrapper shell

	4.2. Remote Console
	Launch options
	Using the client jar
	Using an SSH client
	Using another Karaf instance
	Configuration

	4.3. Logging system
	Configuration
	Commands

	4.4. Deployer
	Spring deployer
	Features deployer

	4.5. Security framework
	Overview
	Schema
	Architecture

	4.6. Provisioning
	Repositories
	Bundles
	Maven URL Handler
	Bundle start-level
	Bundle 'stop/start'

	Dependent features
	Configurations

	Commands
	Repository management
	Features management
	Examples

	Service configuration

	4.7. Administration
	4.8. Configuration
	Editing
	Select Configuration To Edit
	Modify Properties
	Commit Or Rollback Changes

	5. Using Karaf
	5.1. Troubleshooting, Debugging and Profiling
	Troubleshooting
	Logging
	Worst Case Scenario

	Debugging
	Profiling
	YourKit

	5.2. Developping applications
	5.3. Creating bundles for third party dependencies
	6. Advanced uses
	6.1. Extending the console
	Create the project using maven
	Command line
	Interactive shell
	Manual creation

	Dependencies
	Configuring for Java 5
	Loading the project in your IDE
	Creating a basic command class
	Creating the associated blueprint configuration files
	Compiling the jar
	Turning the jar into an OSGi bundle
	Test in Karaf

	6.2. Building custom distributions
	6.3. Programmatically connect to the console
	6.4. Embedding Karaf
	6.5. Deploying security providers
	6.6. Installing additional features
	Adding additional maven repositories
	Adding additional feature repositories
	Installing a new feature (war)
	Deploying a WAR to the installed web feature

	6.7. Configuring Failover Deployments
	Simple lock file
	JDBC locking
	JDBC locking on Oracle

	Container-level locking

	7. Optional Features
	7.1. Enabling Colorized Console Output On Windows

