Infinispan 9.0 User Guide

The Infinispan community

Table of Contents

1 INTrOAUCTION ..ottt et e 1
1.1. What is Infinispan 2. e 1
1.2. Why use INfinispan 2.t e 1

1.21. Asalocalcacheo e 1
1.2.2. Asaclustered cache.t e 1
1.2.3. As a clustering building block for your applications................cooiiiiiiiiinn.. 1
1.2.4. Asaremote CaChie. oot 1
1.25.Asadata grid.oooiiiiiiii i e 2
1.2.6. As a geographical backup foryourdatacoooiiiiiiiiiiiiiii i 2

2. ConfIgUIAtiONottt e 3

2.1. Configuring caches declarativelyooiii i e 3
2.1.1. Cache configuration templatest 4
2.1.2. Declarative configuration reference i 6

2.2. Configuring caches programmaticallyo i 6
2.2.1. ConfigurationBuilder Programmatic Configuration API oiutn. 7
2.2.2. Advanced programmatic configurationottt 9

2.3. Configuration Migration TOOISt e 10

2.4. Clustered Configuration it 10
2.4.1. Using an external JGroups filec i 10
2.4.2. Use one of the pre-configured JGroupsfiles o ... 11
24.3. Further readingttt 13

3. The CacheManager API i e e 14

3.1. Clustering Information e 14
3.1.1. Member INformation.t e 14
3.1.2. Other MethodsS. v v 14

R 0 04 L] () 55 =T L0 P 14
3.2.1. Example: Dynamically Start and Stop Clustered Cache 15

4. The Cache APL. ... o e e 16

4.1. The Cache Interfacettt e e 16
4.1.1. Performance Concerns of Certain Map Methodso it 16
4.1.2. Mortal and Immortal Datauuiiiiiii e 16
4.1.3. Example of Using Expiry and Mortal Data...............ooiiiiiiiiiiiiiinn. 16
4.1.4. putForExternalRead operationooiiiiiiiiiiiiiiiiiiiiii e 17

4.2. The AdvancedCache Interface. 18
0 - £ 18
4.2.2. Custom INtErCePIOTS ...ttt it e e 18

4.3. Listeners and NoOtifications e e 18

4.3.1. Cache-1evel NotifiCations. oot vttt et e e e e e e e e e e 19

4.3.2. Cache manager-level notifications.ooviiiini i it 21

4.3.3. SYNChroniCity Of @VENTS. . ..ottt e et ettt 21
4.4, ASYNCRTONOUS APl e e e 22
4.4.1. Why use suCh an API? o e e e 22
4.4.2. Which processes actually happen asynchronously? oo, 22
4.4.3. NOtifyINg fUtULESttt e et et e 23
444, FUurther readingttt et e ettt et 23
4.5. INVOCAtION FLags . . . oottt e e e 23
4.5.1. DecoratedCachieottt e 24
45,2, EXAIMPIES oottt e 24
4.6. Tree APIModUle.ot 25
4.6.1. Whatis Tree APL about?t e 25
4.6.2. UsiNg the Tree AP et e et i 25
4.6.3. Creating a Tree CacChettt e e et 26
4.6.4. ManipulatingdatainaTree Cache o i i 26
4.6.5. COMIMON OPETATIONS . . .ottt t ettt ettt e e e e et e et e ie e e iae e iiaeeeennn 27
4.6.6. Locking in the Tree APL.ttt e e et 28
4.6.7. Listeners for tree cache @VENtSttt 29
4. 7. Functional Map APt e 29
4.7.1. Asynchronous and Lazyttt et e 30
4.7.2. FUNCHON tranSPATEIICY . . o v vttt et e ttee ettt tee et et eae e et iee e e iie e eenaneeennn 30
4.7.3. Constructing Functional Mapsoviiiiini i it 30
4.7.4. Read-Only Map APlttt e e e e 31
4.7.5. Write-Only Map AP . ..ottt e e e e 32
4.7.6. Read-Write Map API ...t e e e 33
4.7.7. Metadata Parameter Handlingttt eeenns 34
4.7.8. INVOCAtiON Parameterttt e 36
4.7.9. Functional LIStENErSttt e 37
4.7.10. Marshalling of FUNCHONSottt e e e 40
4.7.11. Use cases for Functional APIt e 42

5. Eviction and Data CONtalnNerttt 43
5.1. ENnabling EVICHION . . . o oottt e e e e e 43
TN 00 R 28 V4 1 0 (o) U] 0 - L= <7/ PP 43

TN 0 23 V4 (4 (o) U 7 015 PP 43
TR 0 T (0 - = 1y 1< P 44
S5.1.4. More defaults. 44
ST 554 0] U6 () ¢ 44
5.2.1. Difference between Eviction and EXpirationoouuiiieiiinneeennnnnnn 45
5.3. EXpiration details.ttt 45
5.3.1. CONFIGUIATION ...ttt ettt ettt et e e ettt it e e et 45

5.3.2. Memory Based Eviction Configuration..............ciiiiiiiinniiiineennnenn 46

5.3.3. D ault Values . .ot o ettt e e e e e e 46

5.3.4. USING @XPITATION . . oottt ettt ettt e et e et e e e e e e e e it 46
5.4, EXPIration AeSigNS . oo vttt ettt ettt e e e 47
T =) Y () 4 oA 48
6.1. CONTIGUIAtiONttt e e e 48
6.2. CaChe PasSiVatiON.o vttt et et e e e e e 51
6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled 51
6.3. Cache Loaders and transactional cachest 52
6.4. Write-Through And Write-Behind Caching..............oo i 52
6.4.1. Write-Through (Synchronous)o i 53
6.4.2. Write-Behind (ASYNChronoOus).couuii i e i iieae e 53
6.5. Filesystem based cache StOres.ttt e et e 54
6.5.1. SIngle File STOTeottt e 54
6.5.2. SOft-INdeX File STOTe.ttt et i e 55
6.6. JDBC String based Cache StOrettt e et 56
6.6.1. Connection management (POOLING)ttt it it eiiaaeann 57
6.6.2. Sample configurationsooiiiuiiitiii i e 57
6.6.3. JDBC Miratorottt tt ittt ettt ettt e et e e e e i e e 59
6.7. REIMOTE STOTEottt ettt e e e e e e e 62
6.8. Cluster cache loaderoiitn it et et e 63
6.9. Command-Line Interface cache loader.ot 64
6.10. ROCKSDB Cache StOre.ottt et e e i et 64
6.10.1. INTrOAUCTHION. . . .\ o vttt ettt et e et e e ettt e ettt e e et iianeas 64
6.10.2. CONfigUIationoou ittt e it e e e 65
6.10.3. Additional References.ttt i e e 66
6.11. LevelDB Cache STOTeottt e e et e i e 66
6.12. REST CaChie StOre . ..ottt e e et e ettt 66
6.12.1. INTrOAUCTION. .« ..o e ettt et ettt e et e e ettt e et e e e ittt 66
B.12.2. JAVAAOC .« . o vttt ittt e e e e 66
6.12.3. CoNfigUIationttt e e 66
6.13. JPA CaChe StOT ...ttt ettt e e e 66
6.13.1. INtrOAUCHION. .« . .o v ettt ettt e e et e e ettt e it e e it 66
6.13.2. CONfIgUIationoiu ittt i e e 69
6.13.3. Additional References.ttt e 69
B.13.4. JAVAOC . . o vttt ittt e e 70
6.14. CUSTOM CaChE STOTES . . .\ ittt ettt ettt e et e e e e e e it 70
6.14.1. HOtROA DePIOYIMENtttt ettt i e e et eiianeas 71
6.15. Data MIGratiOnottt ettt ettt e et e e et e e e i 71
8. 16, AP . e 71
6.17. More iImpPlementationsvuut ettt ettt e e e 73

28 83 1<) 02 - PP 74

72 T o Y- 1 LY/ (oY < 74

7.1.1.SImple Cache . ..o e 75
7.2. Invalidation MOdEttt e 76
7.3. Replicated MOeo ottt ettt e e e e 78
7.4. DIStribution MOAE e 78

7.4.1. REAA CONSISTEIICY . . vttt i et ettt e ettt et e e e e e e et e e e et iee e 79

7.4.2. KeY OWINETSIID .ottt et e it e e e 80

7.4.3. Initial ClUSTEr SIZE 81

7 T R Tod 1 1 4= 82

7.A4.5. Server HINtINgottt et e i e 83

7.4.6. Key affinity SEIVICEttt ettt ettt e 83

7.4.7. The GroUPINg APottt et e it ittt e 85
7.5. ASYNChIronouS OPtioNS . ..ottt ittt e e e et e e it e 88

7.5.1. Asynchronous COmMmMUNICATIONSot v vttt ettt et iie e iiee e iianeans 88

7.5.2. ASYNChIONOUS API .. .ot e e e et e 88

7.5.3. REtUIN ValUeso e 88
7.6. Partition handlingt e 89

7.6.1. SPLIt braino e 90

7.6.2. SUCCESSIVE NOALS STOPPEA. . o v ettt ettt ittt et e i e 91

7.6.3. Configuring partition handling. i e 92

7.6.4. Monitoring and adminiStrationuuieetitineeetineeeeinneeennneann 92

8. MaArshallingottt 94
8.1. The Role Of JBoss Marshallinguouuieitiniie ittt e, 94
8.2. Support For Non-Serializable ObjJectsot e e 94

8.2.1. STOTE AS BINATY . .o v ettt ettt e 95
8.3. Advanced CONfigUrationuiuunitt ettt ittt i, 96

8.3.1. TroubleShOOtiNg oottt e e ittt 96
8.4. User Defined EXternalizerst e 99

8.4.1. Benefits of EXternalizersttt e 100

8.4.2. User Friendly EXternalizers.ouutiunint i et 100

8.4.3. Advanced EXternaliZersttt 101

9. TTANSACTIONS . . o e ettt ettt e et ettt ettt e et et e e e e 107
9.1. Configuring tranSaCtiONSttt ittt ettt ettt ittt i i 107
9.2.Isolation 1evelso 110
9.3. Transaction IoCKINGttt e e e e 110

9.3.1. Pessimistic transactional cache i 110

9.3.2. Optimistic transactional cache oo i 111

9.3.3. What do I need - pessimistic or optimistic transactions?ccovveeeen... 111
0.4, WIite SKeW . oo 112
9.5. Deadlock deteCtionui ittt 113

9.6. Dealing With @XCePUIONS v ittt e e et e i e e 113

9.7. Enlisting Synchronizationsouuiiiiiii e e 113

0.8. BatChiN g . . .ottt e 114
0.8 L. AP .o e 114
9.8.2. Batching and JTAt e e e 115

9.9. TranSaACtION TECOVETY ..t vttt ettt et ettt e e ettt ee e e et e e et et ie et e iae e eianeeans 115
9.9.1. WheN £0 USE FECOVETY & . v vttt et ettt ettt ee e e et ee e e et eae et iaa e naeeeennns 115
9.9.2. HOW d0eS It WOTK . . . oo oottt e 116
9.9.3. CONSIGUIING FECOVETY vttt ettt ettt e e ettt e e e e e et e iee e iiae e eennns 116
9.9.4. RECOVEIY CaAChE . . oo\ttt e e et e e 116
9.9.5. Integration with the transaction Manager.ouuuiiretinineeeennnneennnn. 116
9.9.6. ReCONCILIAtIONottt e 117
9.9.7. Want to KNOW IMOTE?ot 119

9.10. Total Order based commit protocolottt it eann 119
T 0 B0 =3 2 =) P 119
9.10.2. CONFIGUIAtION ... v vttt ettt et e e e e et e et 122
9.10.3. WRen tO USe 12 . . oottt 123

10. LOCKING @Nd CONCUITEIICY &+ . v ettt et ettt e ettt ee e e et e et et ee e et iae e iaeeeennns 124

10.1. Locking implementation detailsottt e 124
10.1.1. How does it work in clustered caches?......... ... o i 124
10.1.2. Transactional caches. 125
10.1.3. Isolation 1eVelsot e 125
10.1.4. The LOCKMANAZET . ..ttt ittt ettt e e et e e e et e e e et e e iia e ianeeas 125
10.1.5. LOCK STTIPINE .« . oo ettt ettt e et e e e et e e e e e 125
10.1.6. CONCUITENCY 1eVELSttt e et et ea 125
10.1.7. LOCK timMeOULo oo oottt 126
10.1.8. COMSISTOIICY & . ettt ettt et e e e e e e e e e e e e e e 126

10.2. DAta VeISIONING . . oottt ettt ettt et et e e ettt e it e e 126

0 = £ 128

11.1. Common Stream OPETAtIONSo v vttt ettt ettt et e e et iee e iiia e 128
11,11, Key fItering . . oo oot e e e 128
11.1.2. Segment based filteringottt e e 128

11.2. Local/Invalidationo et 128
1120, ERAIMIPIE « o oottt e 129

11.3. Distribution/Replication.ottt e e 129
11.3.1. Rehash AwWareot e 129
11.3.2. SerializZatiOnttt 129
11.3.3. Parallel Computationoouuiit ittt it 132
11.3.4. TasK tIMEOULo ottt et 133
S TR T 0 4=t (o) o PP 133
11.3.6. Distributed Stream eXeCULIONttt e 133

11.3.7. Key based rehash aware operatorsooiiiinint it 134

11.3.8. Intermediate operation eXCePtiONSo vvtun ittt ittt 135

114, ERAIMIPIES . o ettt e e 136
12. Distributed EXECULION. e 139
12.1. DistributedCallable APT 139
12.2. Callable and CDI.ottt e 140
12.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API 140
12.4. Distributed task failover i 141
12.5. Distributed task eXecution POLICYootuin it i et 143
12.6. ERAIMPIES . oottt e e e e 143
13. Indexing and QUETYINGttt ettt ettt e e ettt e et tee et iia e iae e ennns 145
13,0 OVeIVIBW . .ttt ettt e et et e e e e e e e et 145
13.2. Embedded QUEeTYINGo ouut ettt ettt et et e e e 145
13.2.1. Quick eXample e 145
13,2, 2. INAOXINIE o v vttt ettt et et e e et e e e e e e 148
13.2.3. QUETYING APIS . . oottt e 161
13.3. REIMOTE QUETYINE .« v vttt ettt ettt e e et et e e ettt e e e et e e e iee e i 176
13.3.1. Storing Protobuf encoded entitiest iiinr it 176
13.3.2. USING @NNOTATIONIS .\ vttt ettt ettt e et e e e et e e et iee e iia e inneeans 179
13.3.3. Indexing of Protobuf encoded entriesc.c.iiiiiiiiniiiiii i 179
13.3.4. Aremote qUEry eXamPlettt e 180
134, StAISTICS . oo ettt ettt 180
13.5. Performance TUNING oo vttt et et et et e e e e it 181
13.5.1. Batch writing in SYNC IMOAe oo vttt et et e iiae e ea 181
13.5.2. Writing using asynNC MOGeo vttt ettt et ettt iie e ean 181
13.5.3. Index reader aSYNC StrategYuuuuun ettt ettt e e iie et 182
13.5.4. LUCENE OPTIONIS . .« o vttt ettt et ettt e ettt e e et e e et i 182

T4, O SUP PO . . ottt et et e e e e e e e e e e e e e 183
14.1. Maven DePendencCiesuuuttttie ettt ettt e e 183
14.2. Embedded cache INtegrationouuuiititiie ettt iiiie i, 183
14.2.1. Inject an embedded cache oot e 183
14.2.2. Override the default embedded cache manager and configuration................. 185
14.2.3. Configure the transport for clustered useoviiiiiiniiiiiniiiinneen. 186
14.3. Remote cache INteZrationuutt ittt i e, 186
14.3.1. Inject aremote CAChettt e e e 186
14.3.2. Override the default remote cache managero viiiiiiniiiinneann. 188
14.4. Use a custom remote/embedded cache manager for one or more cache 188
14.5. Use JCache caching annotations.uuuirt it it 189
14.6. Use Cache events and CDIttt ittt e 190
15. JCache (JSR-107) PrOVIAETttt ettt ettt et e e e et 192
15.1. DEPEINAEIICIES . . ot ettt ettt ettt et e e et e e e e e e 192

15.2. Create alocal CaChe. . ..ottt e e e 192

15.3. StOre and FetrieVe ata. ..o v v vttt ettt e e e et e e e e 193

15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs 193
15.5. Clustering JCache INStanCes.o vttt e et et 194
16. Management TOOLINGttt et et e e et 196
16, L. TV Lo 196
16.1.1. Understanding The EXposed MBEANSutttiuineettineeiineeeinneennn 196
16.1.2. Enabling JMX StatistiCS . ..o v vttt et e e 197
16.1.3. Monitoring cluster health i i 198
16.1.4. Multiple JMX DOIMAINS . . oottt ettt ettt et e et e et et ee e iiae e ianeeans 198
16.1.5. Registering MBeans In Non-Default MBean Servers.............c.ccovivieinnnneenn. 198
16.1.6. MBeans added in Infinispan 5.0ttt e 199
16.2. Command-Line Interface (CLI).coiititiiim e iiieeeaeen 199
16.2.1. COMIMANAS . . . oot ettt ettt e e et e e e et et e 201
16.2. 2. UPBTade .ottt ettt ettt e e e e e e e e 207
16.2.3. VETSIOIL . ..ttt ettt ettt ettt et e e e e e e e e e 207
16.2.4. DaAta Ty DS .« et ittt ettt e e e e e e e e 207
16.2.5. TIMe Valuesot 208
16.3. HAWEd0 . . o oottt 208
16.4. Writing plugins for other management tools............ ..ot nn... 208
17. CuStOM INTEICEPLOTS . . o ottt ettt e e et e e e e e e e e e e et et 209
17.1. Adding custom interceptors declarativelyt 209
17.2. Adding custom interceptors programatically............. ... i 209
17.3. Custom INterceptor deSIZIo vttt ittt ettt et e et et 210
18. RUNNING 0N ClOUA SEIVICES . . . vttt e ettt ettt e e e e e e e e et 211
18.1. AmMazon Web SEeIVICESt 211
18.1.1. TCPPing, GossipRouter, S3_PINGciuuuiiitit et eann 211
18.1.2. GOSSIPROULET . . ottt ettt ettt e e e et e e 212
18.1.3. S3_PING ...ttt e 212
18.1.4. JDBC PING . . oottt ettt ettt e e e e e 212
18.2. Kubernetes and OpenShift i i ettt e 212
18.2.1. Using Kubernetes and OpenShift Rolling Updates...............ccoiiiiiiiiiin.n. 213
18.2.2. Rolling upgrades with Kubernetes and OpenShift................ oot 215

S TR0 =) L] 4= 217
19.1. Why CHIeNt/SeIVEL? . .ttt et e e ettt e et e ettt 217
19.2. Why use embedded mOde?ttt e 221
19.3.Server ModUIes 221
19.4. UsiNg HOt RO SEIVET . ..ottt ettt et e e et it 222
19.5. HOt ROA ProtocColo oot e e 223
19.5.1. HOt ROd Protocol 1.0 . ..o oottt e 223
19.5.2. HOt ROd Protocol 1.1 . ..ot e 240

19.5.3. HOt ROA ProtoCo]l 1.2 ..o v ittt e e et e e e e e e e ettt 242

19.5.4. HOt ROA ProtoCO]l 1.3 ..t vttt et e e e e e e e e et ettt 244

19.5.5. HOt RO Protocol 2.0t et et e 245
19.5.6. HOt ROd Protocol 2.1 ... oottt et et et 253
19.5.7. HOt ROA Protocol 2.2ttt et et it 254
19.5.8. HOt ROd Protocol 2.3 ... oottt e e i 255
19.5.9. HOt RO ProtocCol 2.4 . ..ottt et e et et 257
19.5.10. HOt ROd ProtoCol 2.5 ... oot et e et 260
19.5.11. HOt ROA ProtoCOL 2.6ottt et et ea 262
19.5.12. Hot Rod Hash FUNCHONS.ottt e i e ea 265
19.6.Java HOt ROA CLIENtttt e e et 266
19.6.1. Configurationoiiui i e e e 266
19.6.2. BaSIiC AP 268
19.6.3. Versioned AP e 270
10.6.4. ASYIIC APl 271
19.6.5. Streaming APl e 271
19.6.6. Creating EVENt LIStENETSttt ittt ittt et iie e iie e iiaeeean 272
19.6.7. Removing EVent LIStENerSo ottt ettt it i eiiae e ean 273
19.6.8. FIltering EVeNtS. . ..ottt ittt ettt ettt et e ittt e 273
19.6.9. CUSTOMIZING EVENLS . . oottt et et et et ea 275
19.6.10. Filter and Custom EVENLSo ottt ettt iie e eiiae e ean 278
19.6.11. Event Marshallingttt e it et ea 280
19.6.12. Listener State Handlingcouuitit it it eiiae e ean 280
19.6.13. Listener Failure Handlingooiiiiiii ittt 281
19.6.14. Near CaChing. . ..ottt e e et it e e 281
19.6.15. Unsupported methodsoouuirit i et ean 282
19.6.16. REtUIN VAlUESottt et et et e e 283
19.6.17. Client INtElligENCEottt ettt et ettt ettt aa 283
19.6.18. Request BalanCingttt e et e e 284
19.6.19. Persistent CONNECTIONSttt ittt ettt e e et ie e iia e eianeeans 284
19.6.20. Marshalling datattt et et e 284
196,20, STAtISICS « v vttt ettt ettt e e e 285
19.6.22. MUlti-Get OPerations. . ..o v vttt ettt ettt e e et ie e eas 285
19.6.23. Failover capabilitiesooitiuir i e e e 285
19.6.24. Site Cluster FallOVerttt i et i e ea 285
19.6.25. Manual Site Cluster SWitCh it i e e e 286
19.6.26. Concurrent UPdatesuttiit ettt e et i iiiaae e 286
19.6.27. JAVAUOCS .+« v o et ettt ettt et e e et e e e e e e e e e e 289
10,7, ST P I . o o vttt ettt e e e e 289
19.7.1. InStalling SCIIPES . « v vttt ettt et ettt e e e 289
19.7.2. Script metadataot e 290

19.7.3. SCript DINAINGS . . o oottt e 290

19.7.4. SCIIPt PATAIMELETS .. vttt et ettt e e ettt e e e e e e e et e e e iiae e iaeeeas 291

19.7.5. Running Scripts using the Hot Rod Javaclientt 291
19.7.6. Distributed eXeCUtiONottt 291
10,8, REST ST VT . . ottt e et ettt 292
10.8. 0. REST AP . .. e 292
19.8.2. Client SIAe COAE.ottt ittt e 294
19.9. Memcached SEIVETt 298
19.9.1. Command Clarifications.uu i e 298
19.9.2. Unsupported FEatUresttt ittt it iie e eiiaeeean 298
19.9.3. Talking To Infinispan Memcached Servers From Non-Java Clients 299
19.10. WeDSOCKEt SEIVET . . .ottt e e 300
19.10.1. JaVasCIIPt AP . . .o\ttt e e e 301
19.10.2. SAMPLE COUE ..ttt ittt ettt e e e et e e e e e e 302
19.10.3. SCIEEICAST .« . vttt ettt et et e e e e 302
19,104, STATUS. . ..ttt ettt ettt 302
19.10.5. SOULCR . .ottt e e e e 302
20. Embedded/Remote Compatibilityuiioinn i e e 303
20.1. Enable Compatibility MOGe. . ..o vttt e et e 303
20.1.1. Optional: Configuring Compatibility Marshaller 304
20.2. CoAe BXAIMPLES & o vttt ettt e e 304
0 LT o] D 305
21.1. Embedded SeCUIItY . ..ot vt et e e 305
21.1.1. Embedded PermiSSIONSttt 305
21.1.2. Embedded API e 306
21.1.3. Embedded Configuration.oouuuiniitiine ittt 307
21,2, SECUTILY AUIL . . o\ttt ittt ettt e et e e e 309
0 0 TR O 10 1= T od o /2 PP 310
08 § (LU= 4 = 1 (0) P 312
22,1, Apachie SPaTK ..o e 312
22.2. Apache Hadoop . ..ottt e 312
22.3. APaChie LUCEINEottt et e e e e e 312
22.3.1. Lucene compatibility.o ottt 312
22.3.2. Maven dePendencCies.ttt ettt e et 312
22.3.3. HOW t0 USE It . . oottt ettt e 313
22.3.4. CoNfigUrationttt et et 314
22.3.5.Using a CacheLoader.ottt e e e 315
22.3.6. Storing the indexin a databaseiuiiiiinriiiiin i, 315
22.3.7. Loading an existing Lucene Index.ooiitin i e 316
22.3.8. Architectural imitationsttt e 316
22.3.9. Suggestions for optimal performance.ouiiiiiiii i 317

22.3.00. DeIMO. . ottt e et e e 318

22.3.11. Additional LinKS . . o oottt ettt e e e 318

22.4. Directory Provider for Hibernate Search, 318
22.4.1. Maven dePendenCies.ttt ettt ettt 318
22.4.2. HOW TO USE It . o oottt ettt et 318
22.4.3. ConfigUrationttt et et e e 319
22.4.4. Architecture consSiderationsoiiiiiiiiiiiiiii i 319

22.5. JPA/Hibernate 2L Cacheo e 319

22.6. JPA [HIbernate OGM.ttt ettt et ettt e e 319

22.7. Using Infinispan with SPring BoOt.ttt e e 320

22.8. Using Infinispan as a Spring Cache providerouiiiiiiniiiiiinneiinneenn. 321
22.8.1. Activating Spring Cache SUPPOTITotut ittt e e 321
22.8.2. Telling Spring to use Infinispan as its caching provider 322
22.8.3. Adding caching to your applicationcode.ooiiuiiiiiiinn i, 323
22.8.4. Externalizing session using SPring SeSSiONvuurinritiiinneernnnneennnn. 324
22.8.5. COMCIUSION . . o oottt ettt et et e e e e et 325

22.9. Infinispan modules for WildFly i e 325
22.9.0. Installation.o oot e 325
R T T (P 325
22.9.3. TroubleshOOtiNg oottt e 328

23, GIrid FIle SYSteIMottt ettt ettt e et e e et e e e e e 329

23.1. WEDDAV AeIMO . . o e vttt et ettt e ettt ettt e e 330

24. Cross Site rePliCatiONttt ittt et e e et e e e 331

24.1. Sample deployIMent. . . . oottt e 331
24.1.1. Local cluster’s jgroups .xml configuration.c.cooiuiiiiiinneiinneeennn. 334
24.1.2. RELAY2 configuration file i e 334

24.2. Data TePliCAtION . ..ottt ettt e e 335
24.2.1. Non transactional caches. e 335
24.2.2. Transactional caches. e 335

24.3. Taking a site Offlineottt e e e 336
24.3.1. Configurationttt et e 336
24.3.2. Taking a site back online it et 337

24.4. State Transfer DetWeen SIteSottt e 337
24.4.1. Handling join/leave NOAES oottt ettt e et e e e e i 338
24.4.2. Handling broken link between sitesttt 338
24.4.3. System Administrator OPerationseeuuieeetinine e e eeeennnneeennn. 338
24.4.4. CONTIGUIAtION . ..ottt et e et e 338

24,5, R O IICE . . . oottt 339

25. ROIING UPGLrades . ..ottt ettt ettt et e e et e ettt et 340

25.1. Rolling upgrades for Infinispan library/embedded mode.................... 340

T80 0 S =] o1 340

25.2. Rolling upgrades for Infinispan SErversouuuiiiiiiin i 341

TR T (=3 01 AP 341

26. Extending INfiniSpanttt 343
26.1. CuStom COMIMANAS v vttt ettt ettt ettt ettt e e et 343
26. 1.1 AN EXaIPIe . . oo e 343
26.1.2. Preassigned Custom Command Id Rangesouiriiiiiiiinneinneennnn. 343
26.2. Extending the configuration builders and parsersc.c.ooiviiiiiinneiinnnenn. 344
26.3. Cache hierarChyo i e e e 344
26.4. COMIMANAS. . . oottt ettt e e et ettt ettt 344
26.5. VISIEOTS . . oottt ettt e 345
26.6. TN O CO P OTS . . o ottt ettt e e e e e e e e 345
26.7. Putting it all together o o e 346
26.8. SUDSYSTEIM MaANAZETS . oot o ettt ettt ettt ettt e e e et e e e it 346
26.8.1. DistribUutioNManager.ttt it ettt e e e 346
26.8.2. TranSaCtioNIMaAnAZET . . .« vttt et ettt et e e ettt e e e e e et e 346
26.8.3. RPCMaANaZeT . ..ottt e e 346
26.8.4. LOCKMANAZET ..ottt ettt ettt et ettt e e et e e e 346
26.8.5. PersSiSteNCEMANAGET ...t v vttt ettt ettt e e e 346
26.8.6. DataContainerottt 346
26.8.7. CONLIGUIAtIONttt et et e e e 347

26.9. COMPONENERE ISy . . oottt e e 347

Chapter 1. Introduction

Welcome to the official Infinispan user guide. This comprehensive document will guide you
through every last detail of Infinispan. Because of this, it can be a poor starting point if you are new
to Infinispan.

Q For newbies, starting with the Getting Started Guide or one of the Quickstarts is
probably a better bet.

The Frequently Asked Questions and Glossary are also useful documents to have alongside this user
guide.

1.1. What is Infinispan ?

Infinispan is a distributed in-memory key/value data store with optional schema, available under
the Apache License 2.0. It can be used both as an embedded Java library and as a language-
independent service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached and
WebSockets). It offers advanced functionality such as transactions, events, querying and distributed
processing as well as numerous integrations with frameworks such as the JCache API standard, CD],
Hibernate, WildFly, Spring Cache, Spring Session, Lucene, Spark and Hadoop.

1.2. Why use Infinispan ?

1.2.1. As alocal cache

The primary use for Infinispan is to provide a fast in-memory cache of frequently accessed data.
Suppose you have a slow data source (database, web service, text file, etc): you could load some or
all of that data in memory so that it’s just a memory access away from your code. Using Infinispan
is better than using a simple ConcurrentHashMap, since it has additional useful features such as
expiration and eviction.

1.2.2. As a clustered cache

If your data doesn’t fit in a single node, or you want to invalidate entries across multiple instances
of your application, Infinispan can scale horizontally to several hundred nodes.

1.2.3. As a clustering building block for your applications

If you need to make your application cluster-aware, integrate Infinispan and get access to features
like topology change notifications, cluster communication and clustered execution.

1.2.4. As a remote cache

If you want to be able to scale your caching layer independently from your application, or you need
to make your data available to different applications, possibly even using different languages /
platforms, use Infinispan Server and its various clients.

../getting_started/getting_started.html
http://www.infinispan.org/documentation
../faqs/faqs.html
../glossary/glossary.html

1.2.5. As a data grid

Data you place in Infinispan doesn’t have to be temporary: use Infinispan as your primary store
and use its powerful features such as transactions, notifications, queries, distributed execution,
distributed streams, analytics to process data quickly.

1.2.6. As a geographical backup for your data

Infinispan supports replication between clusters, allowing you to backup your data across
geographically remote sites.

Chapter 2. Configuration

Infinispan offers both declarative and programmatic configuration.

Declarative configuration comes in a form of XML document that adheres to a provided Infinispan
configuration XML schema.

Every aspect of Infinispan that can be configured declaratively can also be configured
programmatically In fact, declarative configuration, behind the scenes, invokes programmatic
configuration API as the XML configuration file is being processed. One can even use a combination
of these approaches. For example, you can read static XML configuration files and at runtime
programmatically tune that same configuration. Or you can use a certain static configuration
defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in Infinispan: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single
EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,
transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,
transaction, clustering, persistence etc. You can specify as many named cache configurations as you
need. One of these caches can be indicated as the default cache, which is the cache returned by the
CacheManager.getCache() API, whereas other named caches are retrieved via the
CacheManager.getCache(String name) APIL

Whenever they are specified, named caches inherit settings from the default cache while additional
behavior can be specified or overridden. Infinispan also provides a very flexible inheritance
mechanism, where you can define a hierarchy of configuration templates, allowing multiple caches
to share the same settings, or overriding specific parameters as necessary.

Embedded and Server configuration use different schemas, but we strive to
maintain them as compatible as possible so that you can easily migrate between
the two.

2.1. Configuring caches declaratively

One of the major goals of Infinispan is to aim for zero configuration. A simple XML configuration
file containing nothing more than a single infinispan element is enough to get you started. The
configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml

<infinispan />

http://www.infinispan.org/schemas/infinispan-config-9.0.xsd
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html

However, that would only give you the most basic, local mode, non-clustered cache manager with
no caches. Non-basic configurations are very likely to use customized global and default cache
elements.

Declarative configuration is the most common approach to configuring Infinispan cache instances.
In order to read XML configuration files one would typically construct an instance of
DefaultCacheManager by pointing to an XML file containing Infinispan configuration. Once the
configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.
Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration
file, and additional caches can be configured using the <local-cache><distributed-cache>
,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types
supported by Infinispan:

<infinispan>
<cache-container default-cache="local">
<transport cluster="mycluster"/>
<local-cache name="local"/>
<invalidation-cache name="invalidation" mode="SYNC"/>
<replicated-cache name="repl-sync" mode="SYNC"/>
<distributed-cache name="dist-sync" mode="SYNC"/>
</cache-container>
</infinispan>

2.1.1. Cache configuration templates

As mentioned above, Infinispan supports the notion of configuration templates. These are full or
partial configuration declarations which can be shared among multiple caches or as the basis for
more complex configurations.

The following example shows how a configuration named local-template is used to define a cache
named local.

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="local-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="1local" configuration="1ocal-template" />
</cache-container>
</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or
all of the configuration elements:

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="base-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<local-cache-configuration name="extended-template" configuration="base-

template">
<expiration lifespan="20"/>
<memory>
<object size="2000"/>
</memory>

</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="local" configuration="base-template" />
<local-cache name="local-bounded" configuration="extended-template" />
</cache-container>
</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.
The extended-template configuration inherits from base-template, overriding just a single parameter
of the expiration element (all other attributes are inherited) and adds a memory element. Finally,
two caches are defined: local which uses the base-template configuration and local-bounded which
uses the extended-template configuration.

Be aware that for multi-valued elements (such as properties) the inheritance is
A additive, i.e. the child configuration will be the result of merging the properties
from the parent and its own.

2.1.2. Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference. If
you are using XML editing tools for configuration writing you can use the provided Infinispan
schema to assist you.

2.2. Configuring caches programmatically

Programmatic Infinispan configuration 1is centered around the CacheManager and
ConfigurationBuilder API. Although every single aspect of Infinispan configuration could be set
programmatically, the most usual approach is to create a starting point in a form of XML
configuration file and then in runtime, if needed, programmatically tune a specific configuration to
suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,
a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the
cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a
manager.

Configuration ¢ = new ConfigurationBuilder().clustering().cacheMode(CacheMode
.REPL_SYNC) .build();

String newCacheName = "repl";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point
for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a
replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while
at the same time retaining all other aspects of a default cache. Therefore, the starting point would
be to read an instance of a default Configuration object and use ConfigurationBuilder to construct
and modify cache mode and L1 lifespan on a new Configuration object. As a final step the
configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration ¢ = new ConfigurationBuilder().read(dcc).clustering().cacheMode
(CacheMode.DIST_SYNC).11().1lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

http://docs.jboss.org/infinispan/9.0/configdocs
http://infinispan.org/schemas/infinispan-config-9.0.xsd

As long as the base configuration is the default named cache, the previous code works perfectly
fine. However, other times the base configuration might be another named cache. So, how can new
configurations be defined based on other defined caches? Take the previous example and imagine
that instead of taking the default cache as base, a named cache called "replicatedCache" is used as
base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration ¢ = new ConfiqurationBuilder().read(rc).clustering().cacheMode(
CacheMode .DIST_SYNC).11().1lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs
for more details.

2.2.1. ConfigurationBuilder Programmatic Configuration API

While the above paragraph shows how to combine declarative and programmatic configuration,
starting from an XML configuration is completely optional. The ConfigurationBuilder fluent
interface style allows for easier to write and more readable programmatic configuration. This
approach can be used for both the global and the cache level configuration. GlobalConfiguration
objects are constructed using GlobalConfigurationBuilder while Configuration objects are built
using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level
options with this API:

One of the most commonly configured global option is the transport layer, where you indicate how
an Infinispan node will discover the others:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
.defaultTransport()
.clusterName("qga-cluster")
.addProperty("configurationFile", "jgroups-tcp.xml")
.machineId("qa-machine").rackId("qa-rack")
.build();

Sometimes you might also want to enable collection of global JMX statistics at cache manager level
or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.enable()
.build();

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/Configuration.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/global/GlobalConfiguration.html
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just
turning off statistics collection. The corresponding MBean is still registered and can be used to
manage the cache manager in general, but the statistics attributes do not return meaningful values.

Further options at the global JMX statistics level allows you to configure the cache manager name
which comes handy when you have multiple cache managers running on the same system, or how
to locate the JMX MBean Server:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.cacheManagerName("SalesCacheManager")
.mBeanServerLookup(new JBossMBeanServerLookup())
.build();

Some of the Infinispan features are powered by a group of the thread pool executors which can
also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.replicationQueueThreadPool()
.threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())
.build();

You can not only configure global, cache manager level, options, but you can also configure cache
level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.sync()
L11() . lifespan(25000L)
.hash().numOwners(3)
.build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()
.memory()
.S1ze(20000)
.expiration()
.wakeUpInterval(5000L)
.maxIdle(120000L)
.build();

An application might also want to interact with an Infinispan cache within the boundaries of JTA
and to do that you need to configure the transaction layer and optionally tweak the locking settings.
When interacting with transactional caches, you might want to enable recovery to deal with

transactions that finished with an heuristic outcome and if you do that, you will often want to
enable JMX management and statistics gathering too:

Configuration config = new ConfigurationBuilder()

.locking()
.concurrencylLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)
.lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)
.versioning().enable().scheme(VersioningScheme.SIMPLE)

.transaction()
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()

.jmxStatistics()

.build();

Configuring Infinispan with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()
.persistence().passivation(false)
.addSingleFileStore().location("/tmp").async().enable()
.preload(false).shared(false).threadPoolSize(20).build();

2.2.2. Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as
advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.serialization()
.addAdvancedExternalizer(998, new PersonExternalizer())
.addAdvancedExternalizer (999, new AddressExternalizer())
.build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()
.customInterceptors().addInterceptor()
.interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position
.FIRST)
.interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position
.LAST)
.interceptor(new FixPositionInterceptor()).index(8)
.interceptor(new AfterInterceptor()).after(NonTransactionallockingInterceptor
.class)
.interceptor(new BeforeInterceptor()).before(Calllnterceptor.class)
.build();

For information on the individual configuration options, please check the configuration guide .

2.3. Configuration Migration Tools

The configuration format of Infinispan has changed since version 6.0 in order to align the
embedded schema with the one used by the server. For this reason, when upgrading to Infinispan
7.x or later, you should use the configuration converter included in the all distribution. Simply
invoke it from the command-line passing the old configuration file as the first parameter and the
name of the converted file as the second parameter.

To convert on Unix/Linux/macOS:
bin/config-converter.sh oldconfig.xml newconfig.xml
on Windows:

bin\config-converter.bat oldconfig.xml newconfig.xml

Q If you wish to help write conversion tools from other caching systems, please
contact infinispan-dev.

2.4. Clustered Configuration

Infinispan uses JGroups for network communications when in clustered mode. Infinispan ships
with pre-configured JGroups stacks that make it easy for you to jump-start a clustered configuration.

2.4.1. Using an external JGroups file

If you are configuring your cache programmatically, all you need to do is:

GlobalConfiguration gc = new GlobalConfiqurationBuilder()
.transport().defaultTransport()
.addProperty("configurationFile", "jgroups.xml")
.build();

and if you happen to use an XML file to configure Infinispan, just use:

10

http://docs.jboss.org/infinispan/9.0/configdocs/
https://lists.jboss.org/mailman/listinfo/infinispan-dev
http://www.jgroups.org

<infinispan>
<jgroups>
<stack-file name="external-file" path="jgroups.xml"/>
</jgroups>
<cache-container default-cache="replicatedCache">
<transport stack="external-file" />
<replicated-cache name="replicatedCache"/>
</cache-container>

</infinispan>

In both cases above, Infinispan looks for jgroups.xml first in your classpath, and then for an
absolute path name if not found in the classpath.

2.4.2. Use one of the pre-configured JGroups files

Infinispan ships with a few different JGroups files (packaged in infinispan-core.jar) which means
they will already be on your classpath by default. All you need to do is specify the file name, e.g.,
instead of jgroups.xml above, specify /default-configs/default-jgroups-tcp.xml.

The configurations available are:

* default-jgroups-udp.xml - Uses UDP as a transport, and UDP multicast for discovery. Usually
suitable for larger (over 100 nodes) clusters or if you are using replication or invalidation.
Minimises opening too many sockets.

* default-jgroups-tcp.xml - Uses TCP as a transport and UDP multicast for discovery. Better for
smaller clusters (under 100 nodes) only if you are using distribution, as TCP is more efficient as
a point-to-point protocol

¢ default-jgroups-ec2.xml - Uses TCP as a transport and S3_PING for discovery. Suitable on
Amazon EC2 nodes where UDP multicast isn’t available.

* default-jgroups-kubernetes.xml - Uses TCP as a transport and KUBE_PING for discovery.
Suitable on Kubernetes and OpenShift nodes where UDP multicast is not always available.

Tuning JGroups settings

The settings above can be further tuned without editing the XML files themselves. Passing in
certain system properties to your JVM at startup can affect the behaviour of some of these settings.
The table below shows you which settings can be configured in this way. E.g.,

$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=10.11.12.13

Table 1. default-jgroups-udp.xml

System Property Description Default Required?

11

#replicated_mode
#invalidation_mode
#distribution_mode
http://jgroups.org/manual/index.html#_s3_ping
http://aws.amazon.com/ec2/
https://github.com/jgroups-extras/jgroups-kubernetes
http://kubernetes.io/
https://www.openshift.org/

jgroups.udp.mcast_add
r

jgroups.udp.mcast_port

jgroups.udp.ip_ttl

IP address to use for 228.6.7.8
multicast (both for
communications and

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

Port to use for 46655
multicast socket

Specifies the time-to- 2
live (TTL) for IP

multicast packets. The
value here refers to the
number of network

hops a packet is

allowed to make before

it is dropped

Table 2. default-jgroups-tcp.xml

System Property

jeroups.tcp.address

jgroups.tcp.port

jgroups.udp.mcast_add
r

jgroups.udp.mcast_port

jgroups.udp.ip_ttl

Description Default

IP address to use for 127.0.0.1
the TCP transport.

Port to use for TCP 7800
socket

IP address to use for 228.6.7.8
multicast (for

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

Port to use for 46655
multicast socket

Specifies the time-to- 2
live (TTL) for IP

multicast packets. The
value here refers to the
number of network

hops a packet is

allowed to make before

it is dropped

Table 3. default-jgroups-ec2.xml

System Property

jgroups.tcp.address

12

Description Default

IP address to use for 127.0.0.1
the TCP transport.

No

No

No

Required?

No

No

No

No

No

Required?

No

http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm

jgroups.tcp.port

jgroups.s3.access_key

jgroups.s3.secret_access
_key

jeroups.s3.bucket

Port to use for TCP 7800
socket

The Amazon S3 access
key used to access an
S3 bucket

The Amazon S3 secret
key used to access an
S3 bucket

Name of the Amazon S3
bucket to use. Must be
unique and must
already exist

Table 4. default-jgroups-kubernetes.xml

System Property

jgroups.tcp.address

jgroups.tcp.port

Description Default

IP address to use for ethO
the TCP transport.

Port to use for TCP 7800
socket

2.4.3. Further reading

JGroups also supports more system property overrides, details of which can be found on this page:

SystemProps

No

No

No

No

Required?

No

No

In addition, the JGroups configuration files shipped with Infinispan are intended as a jumping off

point to getting something up and running, and working. More often than not though, you will
want to fine-tune your JGroups stack further to extract every ounce of performance from your
network equipment. For this, your next stop should be the JGroups manual which has a detailed

section on configuring each of the protocols you see in a JGroups configuration file.

13

http://www.jgroups.org/manual4/index.html#SystemProperties
http://jgroups.org/manual/html/protlist.html
http://jgroups.org/manual/html/protlist.html

Chapter 3. The CacheManager API

Infinispan provides the EmbeddedCacheManager, as mentioned in the configuration section, as the API
for exposing various operations related to the Infinispan cache container and its supporting
elements. This section is to go over some of these pieces as well as when you may need to use them.

3.1. Clustering Information

The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is
operating. The following methods only really make sense when being used in a clustered
environment (that is when a Transport is configured).

3.1.1. Member Information

When you are using a cluster it is very important to be able to find information about membership
in the cluster including who is the owner of the cluster.

getMembers

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator

The getCoordinator() method will tell you which one of the members is the coordinator of the
cluster. For most intents you shouldn’t need to care who the coordinator is. You can use
isCoordinator method directly to see if the local node is the coordinator as well.

3.1.2. Other methods

getTransport

This method provides you access to the underlying Transport that is used to send messages to other
nodes. In most cases a user wouldn’t ever need to go to this level, but if you want to get Transport
specific information (in this case JGroups) you can use this mechanism.

getStats

The stats provided here are coalesced from all of the active caches in this manager. These stats can
be useful to see if there is something wrong going on with your cluster overall.

3.2. Cluster Executor

The cache manager comes with a nice utility that allows you to execute arbitrary code in the
cluster. Note this is unlike the Distributed Execution Service as this requires no Cache to be used.
This cluster executor can be retrieved by calling executor() of the EmbeddedCacheManager.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all
methods take a functional inteface as an argument. Also since these arguments will be sent to other
nodes they need to be serializable. We even used a nice trick to ensure our lambdas are
immediately Serializable. That is by having the arguments implement both Serializable and the
real argument type (ie. Runnable or Function). The JRE will pick the most specific class when

14

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getMembers--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#isCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getTransport--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getStats--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/ClusterExecutor.html

determining which method to invoke, so in that case your lambdas will always be serializable.

Below you will see an example of how to use the new executor.

3.2.1. Example: Dynamically Start and Stop Clustered Cache

This example shows how you can use the ClusterExecutor to dynamically start and stop a cache.

Non-Clustered

Start start/stop cache in non-clustered mode is simple. You <can use
EmbeddedCacheManager.defineConfiguration(cacheName, configuration) to define a cache, and then
call EmbeddedCacheManager.getCache(cacheName).

If you don’t define a specific configuration for the cache and directly call
EmbeddedCacheManager.getCache(...) , then a new cache would be created with default
configurations.

To stop a cache, call EmbeddedCacheManager.remove(cacheName)

Clustered

To start a clustered cache, you’ll need to do the above on every clustered node, while making sure
the cache mode is clustered, of course.

You can start the cache by calling EmbeddedCacheManager.getCache(...) To do this on every single
node though, you could write your own service to do that, or with JMX, or use the ClusterExecutor.

StartCache.java

EmbeddedCacheManager manager = null;
String cacheName = "start-this-cache";
manager .executor().submitConsumer(localManager -> {
localManager.getCache(cacheName);
return null;
}, (address, value, throwable) -> {
if (throwable !'= null) {
log.fatal("Cache startup encountered exception on node

+ address, t);
}
}).join();

The first argument is a Function that when invoked will pass the EmbeddedCacheManager local to each
node. Normally this also allows for a return value to be sent back, but unfortunately a Cache
instance is not serializable so we can’t send that back to the calling node. Thus we have to return
null. In this case the second argument TriConsumer would be called back for each node and will
contain who this response is from (address), the return value (if there was one, in our case this is
always null), and a throwable if a problem occurred. The value and throwable variables will never
both be non null. That is if the throwable is non null the value will always be null. Lastly this
returns a CompletableFuture that will be complete after all of the node’s responses have been fully
processed.

15

Chapter 4. The Cache API

4.1. The Cache interface

Infinispan exposes a simple, JSR-107 compliant Cache interface.

The Cache interface exposes simple methods for adding, retrieving and removing entries, including
atomic mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,
invoking these methods will trigger a number of things to happen, potentially even including
replicating an entry to a remote node or looking up an entry from a remote node, or potentially a
cache store.

For simple usage, using the Cache API should be no different from using the JDK
Map API, and hence migrating from simple in-memory caches based on a Map to
Infinispan’s Cache should be trivial.

4.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with
Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values
and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these
concerns, please check each method’s documentation for more details.

For more performance tips, have a look at our Performance Guide.

4.1.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information
to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry
that lives in the cache forever, until it is removed (or evicted from memory to prevent running out
of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this
creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxldle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

4.1.3. Example of Using Expiry and Mortal Data

See these examples of using mortal data with Infinispan.

16

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
../performance_guide/performance_guide.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-

4.1.4. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when Infinispan is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same
time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead is consider to be a fast operation because regardless of whether it’s successful
or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

// 1d of the person to look up, provided by the application
Personld id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

Please note that putForExternalRead should never be used as a mechanism to update the cache
with a new Person instance originating from application execution (i.e. from a transaction that
modifies a Person’s address). When updating cached values, please use the standard put operation,
otherwise the possibility of caching corrupt data is likely.

17

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

4.2. The AdvancedCache interface

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,
access certain internal components and to apply flags to alter the default behavior of certain cache
methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

4.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");

4.2.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach
custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API
methods, and the AdvancedCache interface allows developers to attach these interceptors
programmatically, at run-time. See the AdvancedCache Javadocs for more details.

For more information on writing custom interceptors, see this chapter.

4.3. Listeners and Notifications

Infinispan offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s
annotated with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can
attach listeners to either a cache or a cache manager, to receive either cache-level

or cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache:

18

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listenable.html

public class PrintWhenAdded {

public void print(CacheEntryCreatedEvent event) {
System.out.println("New entry " + event.getKey() + " created in the cache");

}

For more comprehensive examples, please see the Javadocs for @Listener.

4.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.

Please refer to the Javadocs on the
org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

(clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on

19

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/filter/KeyFilter.html

keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;

public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();

}
this.keyToAccept = keyToAccept;

}

boolean accept(String key) {
return keyToAccept.equals(key);
}

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.

The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion

o is done on the node where the event originated and not on the node where event
is listened to. This can provide benefits of not having to replicate events across
the cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

20

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html

0 This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

Infinispan internally will rectify the put operation by sending it to the new primary owner for the
given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

public class MyRetryListener {

public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

4.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation
package for a comprehensive list of all cache manager-level notifications, and their respective
method-level annotations.

4.3.3. Synchronicity of events

By default, all notifications are dispatched in the same thread that generates the event. This means
that you must write your listener such that it does not block or do anything that takes too long, as it
would prevent the thread from progressing. Alternatively, you could annotate your listener as
asynchronous , in which case a separate thread pool will be used to dispatch the notification and
prevent blocking the event originating thread. To do this, simply annotate your listener such:

21

https://issues.jboss.org/browse/ISPN-4608
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html

@Listener (sync = false)
public class MyAsyncListener { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor /> XML element in your configuration file.

4.4. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has
an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

4.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

Set<Future<?>> futures = new HashSet<Future<?>>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (Future<?> f: futures) f.qget();

4.4.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

e network calls

22

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

* marshalling
* writing to a cache store (optional)

* locking

As of Infinispan 4.0, using the async methods will take the network calls and marshalling off the
critical path. For various technical reasons, writing to a cache store and acquiring locks, however,
still happens in the caller’s thread. In future, we plan to take these offline as well. See this
developer mail list thread about this topic.

4.4.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a
NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such
that you could be notified when the future completes. Here is an example of making use of a
notifying future:

FuturelListener futurelListener = new FutureListener() {

public void futureDone(Future future) {
try {
future.qget();
} catch (Exception e) {
// Future did not complete successfully
System.out.println("Help!");

}
+

cache.putAsync("key", "value").attachListener(futurelListener);

4.4.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does
this article by Manik Surtani introducing the APL

4.5. Invocation Flags

An important aspect of getting the most of Infinispan is the use of per-invocation flags in order to
provide specific behaviour to each particular cache call. By doing this, some important
optimizations can be implemented potentially saving precious time and network resources. One of
the most popular usages of flags can be found right in Cache API, underneath the
putForExternalRead() method which is used to load an Infinispan cache with data read from an
external resource. In order to make this call efficient, Infinispan basically calls a normal put
operation passing the following flags: FAIL _SILENTLY , FORCE_ASYNCHRONOUS |,
ZERO_LOCK_ACQUISITION_TIMEOUT

What Infinispan is doing here is effectively saying that when putting data read from external read,

23

http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT

it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will fail
silently without throwing any exception related to lock acquisition. It also specifies that regardless
of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t wait for
responses from other nodes. The combination of all these flags make this kind of operation very
efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used with
the knowledge that client can always head back to a persistent store of some sorts to retrieve the
data that should be stored in memory. So, any attempt to store the data is just a best effort and if not
possible, the client should try again if there’s a cache miss.

4.5.1. DecoratedCache

Another approach would be to use the DecoratedCache wrapper. This allows you to reuse flags. For
example:

AdvancedCache cache = ...

DecoratedCache strictlylLocal = new DecoratedCache(cache, Flag.CACHE_MODE_LOCAL, Flag
.SKIP_CACHE_STORE);

strictlylocal.put("local_1", "only");

strictlylocal.put("local_2", "only");

strictlylocal.put("local_3", "only");

This approach makes your code more readable.

4.5.2. Examples

If you want to use these or any other flags available, which by the way are described in detail the
Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need
via the withFlags() method call. For example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
.put("local”, "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same
flags need to be used in several invocations, even if they’re in the same transaction, withFlags()
needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the
flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the
previous value. To do that, you need to use two flags to make sure that in a distributed
environment, no remote lookup is done to potentially get previous value, and if the cache is
configured with a cache loader, to avoid loading the previous value from the cache store. You can
see these two flags in action in the following example:

24

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/DecoratedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)
.put("local”, "only")

For more information, please check the Flag enumeration javadoc.

4.6. Tree API Module

Infinispan’s tree API module offers clients the possibility of storing data using a tree-structure like
API. This API is similar to the one provided by JBoss Cache, hence the tree module is perfect for
those users wanting to migrate their applications from JBoss Cache to Infinispan, who want to limit
changes their codebase as part of the migration. Besides, it’s important to understand that
Infinispan provides this tree API much more efficiently than JBoss Cache did, so if you’re a user of
the tree API in JBoss Cache, you should consider migrating to Infinispan.

4.6.1. What is Tree API about?

The aim of this API is to store information in a hierarchical way. The hierarchy is defined using
paths represented as Fqn or fully qualified names , for example: /this/is/a/fqn/path or /another/path .
In the hierarchy, there’s a special path called root which represents the starting point of all paths
and it’s represented as: /

Each FQN path is represented as a node where users can store data using a key/value pair style API
(i.e. a Map). For example, in /persons/john , you could store information belonging to John, for
example: surname=Smith, birthdate=05/02/1980...etc.

Please remember that users should not use root as a place to store data. Instead, users should
define their own paths and store data there. The following sections will delve into the practical
aspects of this API.

4.6.2. Using the Tree API

Dependencies

For your application to use the tree API, you need to import infinispan-tree.jar which can be located
in the Infinispan binary distributions, or you can simply add a dependency to this module in your
pom.xml:

25

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/package-summary.html
http://docs.jboss.org/jbosscache/3.2.1.GA/apidocs/org/jboss/cache/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

pom.xml
<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-tree</artifactId>
<version>$put-infinispan-version-here</version>

</dependency>

</dependencies>

4.6.3. Creating a Tree Cache

The first step to use the tree API is to actually create a tree cache. To do so, you need to create an
Infinispan Cache as you’d normally do, and using the TreeCacheFactory , create an instance of
TreeCache . A very important note to remember here is that the Cache instance passed to the

factory must be configured with invocation batching. For example:

import org.infinispan.config.Configuration;
import org.infinispan.tree.TreeCacheFactory;
import org.infinispan.tree.TreeCache;

Configuration config = new Configuration();
config.setInvocationBatchingEnabled(true);

Cache cache = new DefaultCacheManager(config).getCache();
TreeCache treeCache = TreeCacheFactory.createTreeCache(cache);

4.6.4. Manipulating data in a Tree Cache

The Tree API effectively provides two ways to interact with the data:

Via TreeCache convenience methods: These methods are located within the TreeCache interface
and enable users to store, retrieve , move , remove ...etc data with a single call that takes the Fqn,

in String or Fqn format, and the data involved in the call. For example:
treeCache.put("/persons/john", "surname", "Smith");
Or:

import org.infinispan.tree.Fqgn;

Fqn johnFgn = Fqn.fromString("persons/john");

Calendar calendar = Calendar.getInstance();
calendar.set(1980, 5, 2);

treeCache.put(johnFqn, "birthdate", calendar.getTime()));

26

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCacheFactory.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#put-java.lang.String-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#get-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#move-org.infinispan.tree.Fqn-org.infinispan.tree.Fqn-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#remove-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

Via Node API: It allows finer control over the individual nodes that form the FQN, allowing
manipulation of nodes relative to a particular node. For example:

import org.infinispan.tree.Node;

TreeCache treeCache = ...

Fqn johnFgn = Fgn.fromElements("persons”, "john");

Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);
john.put("surname", "Smith");

Or:

Node persons = treeCache.getRoot().addChild(Fgn.fromString("persons"));
Node<String, Object> john = persons.addChild(Fqn.fromString("john"));
john.put("surname", "Smith");

Or even:

Fqn personsFqn = Fqn.fromString("persons");

Fqn johnFgn = Fgn.fromRelative(personsFgn, Fqn.fromString("john"));
Node<String, Object> john = treeCache.getRoot().addChild(johnFqgn);
john.put("surname", "Smith");

A node also provides the ability to access its parent or children . For example:

Node<String, Object> john = ...
Node persons = john.getParent();

Or:

Set<Node<String, Object>> personsChildren = persons.getChildren();

4.6.5. Common Operations

In the previous section, some of the most used operations, such as addition and retrieval, have been
shown. However, there are other important operations that are worth mentioning, such as remove:

You can for example remove an entire node, i.e. /persons/john , using:
treeCache.removeNode("/persons/john");

Or remove a child node, i.e. persons that a child of root, via:

27

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getParent--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getChildren--

treeCache.getRoot().removeChild(Fqn.fromString("persons"));
You can also remove a particular key/value pair in a node:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.remove("surname");

Or you can remove all data in a node with:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.clearData();

Another important operation supported by Tree API is the ability to move nodes around in the tree.
Imagine we have a node called "john" which is located under root node. The following example is
going to show how to we can move "john" node to be under "persons” node:

Current tree structure:

/persons
/john

Moving trees from one FQN to another:

Node john = treeCache.getRoot().addChild(Fqn.fromString("john"));
Node persons = treeCache.getRoot().getChild(Fgn.fromString("persons"));
treeCache.move(john.getFgn(), persons.getFqn());

Final tree structure:

/persons/john

4.6.6. Locking in the Tree API

Understanding when and how locks are acquired when manipulating the tree structure is
important in order to maximise the performance of any client application interacting against the
tree, while at the same time maintaining consistency.

Locking on the tree API happens on a per node basis. So, if you’re putting or updating a key/value
under a particular node, a write lock is acquired for that node. In such case, no write locks are
acquired for parent node of the node being modified, and no locks are acquired for children nodes.

If you're adding or removing a node, the parent is not locked for writing. In JBoss Cache, this
behaviour was configurable with the default being that parent was not locked for insertion or

28

removal.

Finally, when a node is moved, the node that’s been moved and any of its children are locked, but
also the target node and the new location of the moved node and its children. To understand this
better, let’s look at an example:

Imagine you have a hierarchy like this and we want to move c/ to be underneath b/:

=y
D — N -

To make this move, locks would have been acquired on:

* /a/b - because it’s the parent underneath which the data will be put
* /c and /c/e - because they’re the nodes that are being moved

* /a/b/c and /a/b/c/e - because that’s new target location for the nodes being moved

4.6.7. Listeners for tree cache events

The current Infinispan listeners have been designed with key/value store notifications in mind, and
hence they do not map to tree cache events correctly. Tree cache specific listeners that map directly
to tree cache events (i.e. adding a child...etc) are desirable but these are not yet available. If you’re
interested in this type of listeners, please follow this issue to find out about any progress in this
area.

4.7. Functional Map API

Infinispan 8 introduces a new experimental API for interacting with your data which takes

29

https://issues.jboss.org/browse/ISPN-1935

advantage of the functional programming additions and improved asynchronous programming
capabilities available in Java 8.

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to
interact with data.

4.7.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture
which wraps the result, so you can use the resources of your system more efficiently by having the
possibility to receive callbacks when the CompletableFuture has completed, or you can chain or
compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable
interface which offers a lazy pull-style API for working with multiple results. Traversable , being a
lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the
traversable at a later stage, and the Traversable implementation itself can decide when to compute
those results.

4.7.2. Function transparency

Since the content of the functions is transparent to Infinispan, the API has been split into 3
interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)
operations respectively, in order to provide hints to the Infinispan internals on the type of work
needed to support functions.

4.7.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an Infinispan
AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache ,
static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap :

import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);

WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

At this stage, the Functional Map API is experimental and hence the way
A FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are
constructed is temporary.

30

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html

4.7.4. Read-Only Map API

Read-only operations have the advantage that no locks are acquired for the duration of the
operation. Here’s an example on how to the equivalent operation for Map.get(K) :

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",
ReadEntryView::find);

readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which
include both key and value information.

Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to
interact with the data in the cache, which include these operations:

* key() method returns the key for which this function is being executed.

» find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty
optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use
find() to verify whether there’s a value associated with the key.

* get() returns the value associated with the key. If the key has no value associated with it, calling
get() throws a NoSuchElementException. get() can be considered as a shortcut of
ReadEntryView.find().get() which should be used only when the caller has guarantees that
there’s definitely a value associated with the key.

o findMetaParam(Class<T> type) allows metadata parameter information associated with the cache
entry to be looked up, for example: entry lifespan, last accessed time...etc. See Metadata
Parameter Handling section to find out more.

31

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-

4.7.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals.
Crucially, a write-only operation does not attempt to read any previous value associated with the
key. This is an important optimization since that means neither the cluster nor any persistence
stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of
optimization was achieved using a local-only per-invocation flag, but the use case is so common
that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API, an operation equivalent to javax.cache.Cache (JCache) 's void returning
put can be achieved this way, followed by an attempt to read the stored value using the read-only
map APL:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v));

CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", ReadEntryView::get));

readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();

data.put("key1", "valuel");

data.put("key2", "value2");

CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->
view.set(v));

writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using
evalAll each cached entry is iterated over and the function is called with that entry’s information.
Using this method also results in listeners (see functional listeners section for more information)
being invoked:

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove

)

removeAllFuture.thenAccept(x -> "All entries removed");

32

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-

The alternative way to remove all entries is to call truncate operation which clears the entire cache
contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");

Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to
modify the data in the cache, which include these operations:

e set(V, MetaParam.Writable:::) method allows for a new value to be associated with the cache
entry for which this function is executed, and it optionally takes zero or more metadata
parameters to be stored along with the value (see Metadata Parameter Handling section to find
out more).

* remove() method removes the cache entry, including both value and metadata parameters
associated with this key.

4.7.6. Read-Write Map API

The final type of operations we have are readwrite operations, and within this category CAS-like
(CompareAndSwap) operations can be found. This type of operations require previous value
associated with the key to be read and for locks to be acquired before executing the function. The
vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they
can easily be implemented using the read-write map API . Moreover, with read-write map API, you
can make CASlike comparisons not only based on value equality but based on metadata parameter
equality such as version information, and you can send back previous value or boolean instances to
signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is
easy to achieve with the read-write map API:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",
"valuel",
(v, view) -> {
Optional<V> prev = rw.find();
view.set(v);
return prev;

)5
readWriteFuture.thenAccept(System.out::println);

33

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map
and if it’s equals to the value passed in as first parameter, the second value is stored, returning a
boolean indicating whether the replace was successfully completed. This operation can easily be
implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "valuel”, (v,
view) -> {
return view.find().map(prev -> {
if (prev.equals(oldValue)) {
rw.set(v);
return true; // previous value present and equals to the expected one

}

return false; // previous value associated with key does not match
}).orElse(false); // no value associated with this key

D

replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",
replaced));

0 The function in the example above captures oldValue which is an external value
to the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-
only map offerings, except that they enable previous value and metadata parameters to be read.

Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the
information associated with the key, including value and metadata parameters, and the user can
also use this read-write entry view to modify the data in the cache.

The operations are exposed by read-write entry views are a union of the operations exposed by
read-only entry views and write-only entry views

4.7.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version
information, lifespan, last accessed/used time...etc. Some of these can be provided by the user, e.g.
version, lifespan...etc, but some others are computed internally and can only be queried, e.g. last
accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache
entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and
implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,
MetaParam.Writable::-) method in write-only entry view or read-write entry view function
parameters.

34

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html

Querying metadata parameters is available via the findMetaParam(Class) method available via read-
write entry view or read-only entry view or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v, new Metalifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<Metalifespan> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", view -> view.findMetaParam(Metalifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata
parameter along with a specific type can be tricky if using .class static helper in a class because it
does not return a Class<T> but only (Class, and hence any generic information in the class is lost:

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// 1f caller depends on the typed information, this is not an ideal way to retrieve
it
// If the caller does not depend on the specific type, this works just fine.
Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
return view.get();

1)

When generic information is important the user can define a static helper method that coerces the
static class retrieval to the type requested, and then use that helper method in the call to
findMetaParam:

35

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {

public static <T> T type() { return (T) MetaEntryVersion.class; }

}
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// The caller wants quarantees that the metadata parameter for version is numeric
// e.g. to query the actual version information
Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.

type());
return view.get();

1)

Finally, users are free to create new instances of metadata parameters to suit their needs. They are
stored and retrieved in the very same way as done for the metadata parameters already provided
by the functional map API.

4.7.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of
certain aspects. Adding per invocation parameters is done using the withParams(Param<?>::+)
method.

Param.FutureMode tweaks whether a method returning a CompletableFuture will span a thread to
invoke the method, or instead will use the caller thread. By default, whenever a call is made to a
method returning a CompletableFuture , a separate thread will be span to execute the method
asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to
complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be
passed as per-invocation parameter to avoid creating that extra thread. Example:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode
.COMPLETED);

Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)

.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence
store. The default behaviour is for all write-operations to be propagated to the persistence store if
the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the
write operation skips the persistence store and its effects are only seen in the in-memory contents

36

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED

of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which
removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.¥*;

WriteOnlyMap<String, String> writeOnlyMap = ...

WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode
.SKIP);

CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:
‘remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence
store, because a write operation can skip reading previous value from the store by calling a write-
only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they
tweak how the internal logic works. So, for the most part of users, they should limit themselves to
using the Param instances exposed by the API. The exception to this rule would be advanced users
who decide to add new interceptors to the internal stack. These users have the ability to query
these parameters within the interceptors.

4.7.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events
take place. These notifications are post-event, so that means the events are received after the event
has happened.

The listeners that can be registered are split into two categories: write listeners and read-write
listeners.

Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in
either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry
modify/update events because they don’t have access to the previous value. All they know is that a
new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry
create/modify-update events because they can query what the new entry’s value via
ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both
ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to

37

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#evict-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--

onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to
add(WritelListener<K, V>) method. Either way, all these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Listeners.Writelisteners.WritelListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

IOK

AutoCloseable writeCloseHanlder = woMap.listeners().add(new WritelListener<String,
String>() {
@0verride
public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());

}
1)

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
// Write entries using read-write or write-only functional map API

}
// Or close manually

writeCloseHanlder.close();

Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and
removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write
functional map, since this is the only one that guarantees that the previous value has been read,
and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWritelListeners interface which is accessible via
ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to
either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance
that can be used to de-register the function listener:

38

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
// ‘created’ is a ReadEntryView of the created entry
System.out.printf("Created: %s%n", created.get());

19K

AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
// ‘before' is a ReadEntryView of the entry before update
// ‘after’ is a ReadEntryView of the entry after update
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

3

AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
// ‘removed' is a ReadEntryView of the removed entry
System.out.printf("Removed: %s%n", removed.get());

3

AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

1)

// Either wrap handler in a try section to have it auto close...
try(createClose) {
// Create entries using read-write functional map API

}
// Or close manually

modifyClose.close();

If listening for two or more event types, it's better to pass in an implementation of
ReadWritelistener interface via the ReadWritelisteners.add() method. ReadWritelListener offers the
same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

39

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import
org.infinispan.commons.api.functional.Listeners.ReadWritelisteners.ReadWritelistener;

ReadWriteMap<String, String> ruwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWritelistener<String,
String>() {

public void onCreate(ReadEntryView<String, String> created) {
System.out.printf("Created: %s%n", created.get());
}

public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,
String> after) {
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

}

public void onRemove(ReadEntryView<String, String> removed) {
System.out.printf("Removed: %s%n", removed.get());
Iy
)i

AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {

public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.qget());

}
)

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
// Create/update/remove entries using read-write functional map API

}
// Or close manually

writeClose.close();

4.7.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation
parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or
write-only operations, all the parameters to the method and the functions are replicated to other
nodes.

40

There are multiple ways in which a function can be marshalled. The simplest way, which is also the
most costly option in terms of payload size, is to mark the function as Serializable:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function
(Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

(value = SetStringConstant.Externalizer@.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {

public void accept(WriteEntryView<String> view) {
view.set("valuel");

}

public static final class Externalizer® implements Externalizer<Object> {
public void writeObject(ObjectOutput oo, Object o) {
// No-op
}
public Object readObject(ObjectInput input) {
return new SetStringConstant<>();

}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the
functional API comes with a helper class called
org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for
some of the most commonly user functions.

41

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map
API have been defined in MarshallableFunctions. For example, here is an implementation of
JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Boolean> future = readWriteMap.eval("key1,
MarshallableFunctions.setValuelfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

4.7.11. Use cases for Functional API

This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be
able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

* Distributed or persistent caching/inmemorydatagrid users that want to benefit from
CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.
The clear advantage here is that threads do not need to be idle waiting for remote operations to
complete, but instead these can be notified when remote operations complete and then chain
them with other subsequent operations.

» Users wanting to go beyond the standard operations exposed by ConcurrentMap and JCache , for
example, if you want to do a replace operation using metadata parameter equality instead of
value equality, or if you want to retrieve metadata information from values...etc.

42

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

Chapter 5. Eviction and Data Container

Infinispan supports eviction of entries, such that you do not run out of memory. Eviction is typically
used in conjunction with a cache store, so that entries are not permanently lost when evicted, since
eviction only removes entries from memory and not from cache stores or the rest of the cluster.

Infinispan supports storing data in a few different formats. Data can be stored as the object iself,
binary as a byte[], and off-heap which stores the byte[] in native memory.

Passivation is also a popular option when using eviction, so that only a single
copy of an entry is maintained - either in memory or in a cache store, but not

Q both. The main benefit of using passivation over a regular cache store is that
updates to entries which exist in memory are cheaper since the update doesn’t
need to be made to the cache store as well.

Eviction occurs on a local basis, and is not cluster-wide. Each node runs an
eviction thread to analyse the contents of its in-memory container and decide
what to evict. Eviction does not take into account the amount of free memory in

o the JVM as threshold to starts evicting entries. You have to set size attribute of
the eviction element to be greater than zero in order for eviction to be turned on.
If size is too large you can run out of memory. The size attribute will probably
take some tuning in each use case.

5.1. Enabling Eviction

Eviction is configured by adding the <memory /> element to your <*-cache /> configuration sections
or using MemoryConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

5.1.1. Eviction strategy

Eviction is handled by Caffeine utilizing the TinyLFU algorithm with an additional admission
window. This was chosen as provides high hit rate while also requiring low memory overhead.
This provides a better hit ratio than LRU while also requiring less memory than LIRS.

5.1.2. Eviction types

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count
of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an
entry when the total size of all entries is larger than the configured size. This type only works with
primitive wrapper, String and byte[] types, thus if custom types are desired you must enable
storeAsBinary. Also MEMORY based eviction only works with LRU policy.

43

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html
https://github.com/ben-manes/caffeine

5.1.3. Storage type

Infinispan allows the user to configure in what form their data is stored. Each form supports the
same features of Infinispan, however eviction can be limited for some forms. There are currently
three storage formats that Infinispan provides, they are:

0BJECT

Stores the keys and values as objects in the Java heap Only COUNT eviction type is supported.

BINARY

Stores the keys and values as a byte[] in the Java heap. This will use the configured marshaller for
the cache if there is one. Both COUNT and MEMORY eviction types are supported.

OFF-HEAP

Stores the keys and values in native memory outside of the Java heap as bytes. The configured
marshaller will be used if the cache has one. Both COUNT and MEMORY eviction types are supported.

5.1.4. More defaults

By default when no <memory /> element is specified, no eviction takes place and 0BJECT storage type
is used.

In case there is an memory element, this table describes the behaviour of eviction based on

information provided in the xml configuration ("-" in Supplied size or Supplied strategy column
means that the attribute wasn’t supplied)

Supplied size Example Eviction behaviour

- <memory /> no eviction as an object

>0 <memory> <object size="100" /> eviction takes place and stored
</memory> as objects

>0 <memory> <off-heap size="100" eviction takes place and stored
/> </memory> in off-heap

0 <memory> <object size="0" /> o eviction
</memory>

<0 <memory> <object size="-1" /> pg eviction
</memory>

5.2. Expiration

Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or
maximum idle times to entries. Entries that exceed these times are treated as invalid and are
removed. When removed expired entries are not passivated like evicted entries (if passivation is
turned on).

Q Unlike eviction, expired entries are removed globally - from memory, cache
stores, and cluster-wide.

44

By default entries created are immortal and do not have a lifespan or maximum idle time. Using
the cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,
default lifespans and/or maximum idle times can be configured by adding the <expiration />
element to your <*-cache /> configuration sections.

When an entry expires it will reside in the data container or cache store until it is accessed again by
a user request. There is also an optional expiration reaper that can run at a given configurable
interval of milliseconds which will check for expired entries and remove them.

5.2.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding
the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is
exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,
LIRS, etc...). Eviction can be setup to work with passivation (evicting to a cache store).

With expiration you set time criteria for entries, how long you want to keep them in cache. Either
you set maximum lifespan of the entry - time it is allowed to stay in the cache or maximum idle time
, time it’s allowed to be untouched (no operation performed with given key).

5.3. Expiration details

1. Expiration is a top-level construct, represented in the configuration as well as in the cache APIL

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespans
and maxlIdle values are replicated along with the cache entry.

3. While maxIdle is replicated, expiration due to maxIdle is not cluster wide, only lifespan. As
such it is not recommended to use maxIdle in a clustered cache.

4. Expiration lifespan and maxlIdle are also persisted in CacheStores, so this information survives
eviction/passivation.

5.3.1. Configuration
Eviction may be configured using the Configuration bean or the XML file. Eviction configuration is

on a per-cache basis. Valid eviction-related configuration elements are:

<memory>
<object size="2000"/>
</memory>
<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

45

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html

Configuration ¢ = new ConfigurationBuilder()
.memory().size(2000)
.expiration().wakeUpInterval(50001).1ifespan(10001).maxIdle(5001)
.build();

5.3.2. Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your
own custom types (as Infinispan is normally used). In this case Infinispan cannot estimate the
memory usage of your classes and as such you are required to use storeAsBinary when memory
based eviction is used.

<!-- Enable memory based eviction with 1 GB/>
<memory>

<binary size="1000000000" eviction="MEMORY"/>
</memory>

Configuration ¢ = new ConfigurationBuilder()
.memory()
.storageType(StorageType.BINARY)
.evictionType(EvictionType.MEMORY)
.size(1_000_000_000)

.build();

5.3.3. Default values
Eviction is disabled by default. Default values are used:

* size: -1 is used if not specified, which means unlimited entries.

* 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1.

5.3.4. Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored
in the cache. This can either be set cache-wide using the configuration, as described above, or it
can be defined per-key/value pair using the Cache interface. Any values defined per key/value pair
overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

46

// this entry will expire in 1000 millis
cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis
cache.put("chardonnay", chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed
cache.put("pinot grigio”, pinotGrigioPrice, -1,
TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or
// in 5000 millis, which ever triggers first
cache.put("riesling", rieslingPrice, 5,

TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

5.4. Expiration designs

Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges
items from the DataContainer. If the expiration thread is disabled (wakeuplInterval set to -1)
expiration can be kicked off manually using ExprationManager.processExpiration(), for example
from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

2. Causes cache stores (if any) to purge expired entries

47

Chapter 6. Persistence

Persistence allows configuring external (persistent) storage engines complementary to the default
in memory storage offered by Infinispan. An external persistent storage might be useful for several
reasons:

* Increased Durability. Memory is volatile, so a cache store could increase the life-span of the
information store in the cache.

* Write-through. Interpose Infinispan as a caching layer between an application and a (custom)
external storage engine.

* Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory
and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,
CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following
sections).

These SPIs allow for the following features:

* Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the
loader and writer in JSR 107. This should considerably help writing portable stores across
JCache compliant vendors.

» Simplified Transaction Integration. All necessary locking is handled by Infinispan automatically
and implementations don’t have to be concerned with coordinating concurrent access to the
store. Even though concurrent writes on the same key are not going to happen (depending
locking mode in use), implementors should expect operations on the store to happen from
multiple/different threads and code the implementation accordingly.

* Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in
parallel.

* Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries
in serialized format. If an entry is fetched from persistent storage for the sole purpose of being
sent remotely, we no longer need to deserialize it (wWhen reading from the store) and serialize it
back (when writing to the wire). Now we can write to the wire the serialized format as read
from the storage directly.

6.1. Configuration

Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the
specified Cacheloader s, in the order they are configured, until it finds a valid and non-null element
of data. When performing writes all cache CacheWlriter s are written to, except if the
ignoreModifications element has been set to true for a specific cache writer.

48

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html

Implementing both a CacheWriter and CacheLoader

o it is possible and recommended for a store provider to implement both the
CacheWriter and the CachelLoader interface. The stores that do this are considered
both for reading and writing(assuming read-only=false) data.

This is the confiquration of a custom(not shipped with infinispan) store:
<local-cache name="myCustomStore">
<persistence passivation="false">
<store
class="org.acme.CustomStore"
fetch-state="false" preload="true" shared="false"
purge="true" read-only="false" singleton="false">

<write-behind modification-queue-size="123" thread-pool-size="23" />

<property name="myProp">${system.property}</property>
</store>
</persistence>
</local-cache>

Explanation of the configuration options:

* passivation (false by default) has a significant impact on how Infinispan interacts with the
loaders, and is discussed in the Cache Passivation section.

* class defines the class of the store and must implement CacheLoader, CacheWriter or both

» fetch-state (false by default) determines whether or not to fetch the persistent state of a cache
when joining a cluster. The aim here is to take the persistent state of a cache and apply it to the
local cache store of the joining node. Fetch persistent state is ignored if a cache store is
configured to be shared, since they access the same data. Only one configured cache loader may
set this property to true; if more than one cache loader does so, a configuration exception will
be thrown when starting your cache service.

* preload (false by default) if true, when the cache starts, data stored in the cache loader will be
pre-loaded into memory. This is particularly useful when data in the cache loader is needed
immediately after startup and you want to avoid cache operations being delayed as a result of
loading this data lazily. Can be used to provide a 'warm-cache' on startup, however there is a
performance penalty as startup time is affected by this process. Note that preloading is done in
a local fashion, so any data loaded is only stored locally in the node. No replication or
distribution of the preloaded data happens. Also, Infinispan only preloads up to the maximum
configured number of entries in eviction.

» shared (false by default) indicates that the cache loader is shared among different cache
instances, for example where all instances in a cluster use the same JDBC settings to talk to the
same remote, shared database. Setting this to true prevents repeated and unnecessary writes of
the same data to the cache loader by different cache instances.

* purge (false by default) empties the specified cache loader (if read-only is false) when the cache
loader starts up.

49

» read-only (false by default) prevents new data to be persisted to the store.

* write-behind (disabled by default) element has to do with a persisting data asynchronously to
the actual store. It is discussed in detail here.

* singleton (disabled by default) attribute enables modifications to be stored by only one node in
the cluster, the coordinator. Essentially, whenever any data comes in to some node it is always
replicated(or distributed) so as to keep the caches in-memory states in sync; the coordinator,
though, has the sole responsibility of pushing that state to disk. This functionality must be
configured by setting the enabled attribute to true in all nodes. Only the coordinator of the
cluster will persist data, but all nodes must have this configured to prevent others from
persisting as well. You cannot configure a store as shared and singleton.

* additional attributes can be configures within the properties section. These attributes configure
aspects specific to each cache loader, e.g. the myProp attribute in the previous example. Other
loaders, with more complex configuration, also introduce additional sub-elements to the basic
configuration. See for example the JDBC cache store configuration examples below

The configuration above is used for a generic store implementation. However the store
implementation provided by default with Infinispan have a more rich configuration schema, in
which the properties section is replaced with XML attributes:

<persistence passivation="false">
<!-- note that class is missing and is induced by the fileStore element name -->
<file-store
shared="false" preload="true"
fetch-state="true"
read-only="false"
purge="false"
path="${java.io.tmpdir}">
<write-behind thread-pool-size="5" />
</file-store>
</persistence>

The same configuration can be achieved programmatically:

50

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.passivation(false)
.addSingleFileStore()
.preload(true)
.shared(false)
.fetchPersistentState(true)
.ignoreModifications(false)
.purgeOnStartup(false)
.location(System.getProperty("java.io.tmpdir"))

.async()
.enabled(true)
.threadPoolSize(5)

.singleton()
.enabled(true)
.pushStateWhenCoordinator(true)
.pushStateTimeout(20000);

6.2. Cache Passivation

A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache
passivation is the process of removing an object from in-memory cache and writing it to a
secondary data store (e.g., file system, database) on eviction. Cache activation is the process of
restoring an object from the data store into the in-memory cache when it’s needed to be used. In
order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In
both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a
notification that the entry is being passivated will be emitted to the cache listeners and the entry
will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)
loaded from the cache loader into memory. When the entry and its children have been loaded,
they’re removed from the cache loader and a notification is emitted to the cache listeners that the
entry has been activated. In order to enable passivation just set passivation to true (false by
default). When passivation is used, only the first cache loader configured is used and all others are
ignored.

6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is
basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is
basically a superset of what’s in memory (i.e. it includes entries that have been evicted from
memory). When passivation is enabled, there is a direct relationship between eviction and the
cache loader. Writes to the persistent store via the cache loader only occur as part of the eviction
process. Data is deleted from the persistent store when the application reads it back into memory.
In this case, what’s in memory and what’s in the persistent store are two subsets of the total

51

information set, with no intersection between the subsets.

The following is a simple example, showing what state is in RAM and in the persistent store after
each step of a 6 step process:

. Insert keyOne

. Insert keyTwo

. Eviction thread runs, evicts keyOne

1
2
3
4. Read keyOne
5. Eviction thread runs, evicts keyTwo
6

. Remove keyTwo

When passivation is disabled

1. Memory: keyOne Disk: keyOne
. Memory: keyOne, keyTwo Disk: keyOne, keyTwo
. Memory: keyTwo Disk: keyOne, keyTwo

2
3
4. Memory: keyOne, keyTwo Disk: keyOne, keyTwo
5. Memory: keyOne Disk: keyOne, keyTwo

6

. Memory: keyOne Disk: keyOne

When passivation is enabled

1. Memory: keyOne Disk: (none)
Memory: keyOne, keyTwo Disk: (none)
Memory: keyTwo Disk: keyOne
Memory: keyOne, keyTwo Disk: (none)
Memory: keyOne Disk: keyTwo

S T

Memory: keyOne Disk: (none)

6.3. Cache Loaders and transactional caches

When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in
the transaction in which the cache is part. That means that it is possible to have inconsistencies at
cache loader level: the transaction to succeed applying the in-memory state but (partially) fail
applying the changes to the store. Manual recovery would not work with caches stores.

6.4. Write-Through And Write-Behind Caching

Infinispan can optionally be configured with one or several cache stores allowing it to store data in
a persistent location such as shared JDBC database, a local filesystem, etc. Infinispan can handle
updates to the cache store in two different ways:

* Write-Through (Synchronous)

52

* Write-Behind (Asynchronous)

6.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a
Cache.put() invocation, the call will not return until Infinispan has gone to the underlying cache
store and has updated it. Normally, this means that updates to the cache store are done within the
boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,
hence the cache store is consistent with the cache contents. On the other hand, using this mode
reduces performance because the latency of having to access and update the cache store directly
impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular
configuration option. By default, unless marked explicitly as write-behind or asynchronous, all
cache stores are write-through or synchronous. Please find below a sample configuration file of a
write-through unshared local file cache store:

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}"/>
</persistence>

6.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. Normally, this
means that updates to the cache store are done by a separate thread to the client thread interacting
with the cache.

One of the major advantages of this mode is that the performance of a cache operation does not get
affected by the update of the underlying store. On the other hand, since the update happens
asynchronously, there’s a time window during the which the cache store can contain stale data
compared to the cache. Even within write-behind, there are different strategies that can be used to
store data:

Unscheduled Write-Behind Strategy

In this mode, which is supported in version 4.0, Infinispan tries to store changes as quickly as
possible by taking the pending changes and applying them in parallel. Normally, this means that
there are several threads waiting for modifications to occur and once they’re available, they apply
them to underlying cache store.

This strategy is suited for cache stores with low latency and cheap operation cost. One such
example would a local unshared file based cache store, where the cache store is local to the cache
itself. With this strategy, the window of inconsistency between the contents of the cache and the
cache store are reduced to the lowest possible time. Please find below a sample configuration file of

53

this strategy:

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}">
<!-- write behind configuration starts here -->
<write-behind />
<!-- write behind configuration ends here -->
</file-store>
</persistence>

Scheduled Write-Behind Strategy

First of all, please note that this strategy is not included in version 4.0 but it will be implemented at
a later stage. ISPN-328 has been created to track this feature request. If you want it implemented,
please vote for it on that page, and watch it to be notified of any changes. The following explanation
refers to how we envision it to work.

In this mode, Infinispan would periodically store changes to the underlying cache store. The
periodicity could be defined in seconds, minutes, days, etc.

Since this strategy is oriented at cache stores with high latency or expensive operation cost, it
makes sense to coalesce changes, so that if there are multiple operations queued on the same key,
only the latest value is applied to cache store. With this strategy, the window of inconsistency
between the contents of the cache and the cache store depends on the delay or periodicity
configured. The higher the periodicity, the higher the chance of inconsistency.

6.5. Filesystem based cache stores

A filesystem-based cache store is typically used when you want to have a cache with a cache store
available locally which stores data that has overflowed from memory, having exceeded size and/or
time restrictions.

Usage of filesystem-based cache stores on shared filesystems like NFS, Windows
shares, etc. should be avoided as these do not implement proper file locking and

A can cause data corruption. File systems are inherently not transactional, so when
attempting to use your cache in a transactional context, failures when writing to
the file (which happens during the commit phase) cannot be recovered.

6.5.1. Single File Store

Starting with Infinispan 6.0, a new file cache store has been created called single file cache store.
The old pre-6.0 file cache store has been completely removed, and it’s no longer configurable.

0 Check Data Migration section for information on how to migrate old file based
cache store data to the new single file cache store.

54

https://jira.jboss.org/jira/browse/ISPN-328

The new single file cache store keeps all data in a single file. The way it looks up data is by keeping
an in-memory index of keys and the positions of their values in this file. This results in greater
performance compared to old file cache store. There is one caveat though. Since the single file
based cache store keeps keys in memory, it can lead to increased memory consumption, and hence
it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger
values, the space is not reused and instead the entry is appended at the end of the file. The space
(now empty) is reused only if you write another entry that can fit there. Also, when you remove all
entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

* path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is
Infinispan-SingleFileStore.

* max-entries specifies the maximum number of entries to keep in this file store. As mentioned
before, in order to speed up lookups, the single file cache store keeps an index of keys and their
corresponding position in the file. To avoid this index resulting in memory consumption
problems, this cache store can bounded by a maximum number of entries that it stores. If this
limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-
memory index and the underlying file based cache store. So, setting a maximum limit only
makes sense when Infinispan is used as a cache, whose contents can be recomputed or they can
be retrieved from the authoritative data store. If this maximum limit is set when the Infinispan
is used as an authoritative data store, it could lead to data loss, and hence it’s not recommended
for this use case. The default value is -1 which means that the file store size is unlimited.

<persistence>
<file-store path="/tmp/myDataStore" max-entries="5000"/>
</persistence>

ConfiqurationBuilder b = new ConfigurationBuilder();
b.persistence()
.addSingleFileStore()
.location("/tmp/myDataStore")
.maxEntries(5000);

6.5.2. Soft-Index File Store

In Infinispan 7.0 we have added a new experimental local file-based cache store - Soft-Index File
Store. It is a pure Java implementation that tries to get around Single File Store’s drawbacks by
implementing a variant of B+ tree that is cached in-memory using Java’s soft references - here’s
where the name Soft-Index File Store comes from. This B+ tree (called Index) is offloaded on
filesystem to single file that does not need to be persisted - it is purged and rebuilt when the cache
store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -

55

that means that if you store this on conventional magnetic disk, it does not have to seek when
writing a burst of entries. It is not stored in single file but set of files. When the usage of any of
these files drops below 50% (the entries from the file are overwritten to another file), the file starts
to be collected, moving the live entries into different file and in the end removing that file from
disk.

Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of
OOMEs. For example, you can configure the limits for concurrently open files as well.

Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>
<soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:8.0">
<index path="/tmp/sifs/testCache/index" />
<data path="/tmp/sifs/testCache/data" />
</soft-index-file-store>
</persistence>

Programmatic configuration would look as follows:

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
.addStore(SoftIndexFileStoreConfigurationBuilder.class)
.indexLocation("/tmp/sifs/testCache/index");
.datalocation("/tmp/sifs/testCache/data")

Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This
size also limits the key length (or rather the length of the serialized form): you can’t use keys longer
than size of the node - 15 bytes. Moreover, the key length is stored as 'short’, limiting it to 32767
bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is
longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.
Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not
implemented). This can lead to excessive file-system space usage.

6.6. JDBC String based Cache Store

A cache store which relies on the provided JDBC driver to load/store values in the underlying
database.

Each key in the cache is stored in its own row in the database. In order to store each key in its own

56

row, this store relies on a (pluggable) bijection that maps the each key to a String object. The
bijection is defined by the Key2StringMapper interface. Infinispans ships a default implementation
(smartly named DefaultTwoWayKey2StringMapper) that knows how to handle primitive types.

6.6.1. Connection management (pooling)

In order to obtain a connection to the database the JDBC cache store relies on a ConnectionFactory
implementation. The connection factory is specified programmatically using one of the
connectionPool(), dataSource() or simpleConnection() methods on the
JdbcStringBasedStoreConfigurationBuilder class or declaratively using one of the <connectionPool
/>, <dataSource /> or <simpleConnection /> elements.

Infinispan ships with three ConnectionFactory implementations:

* PooledConnectionFactory is a factory based on HikariCP. Additional properties for HikariCP can
be provided by a properties file, either via placing a hikari.properties file on the classpath or
by specifying the path to the file via PooledConnectionFactoryConfiguration.propertyFile or
properties-file in the connection pool’s xml config. N.B. a properties file specified explicitly in
the configuration is loaded instead of the hikari.properties file on the class path and
Connection pool characteristics which are explicitly set in
PooledConnectionFactoryConfiguration always override the values loaded from a properties
file.

Refer to the official documentation for details of all configuration properties.

* ManagedConnectionFactory is a connection factory that can be used within managed
environments, such as application servers. It knows how to look into the JNDI tree at a certain
location (configurable) and delegate connection management to the DataSource. Refer to
javadoc javadoc for details on how this can be configured.

» SimpleConnectionFactory is a factory implementation that will create database connection on a

per invocation basis. Not recommended in production.

The PooledConnectionFactory is generally recommended for stand-alone deployments (i.e. not
running within AS or servlet container). ManagedConnectionFactory can be used when running in a
managed environment where a DataSource is present, so that connection pooling is performed
within the DataSource.

6.6.2. Sample configurations

Below is a sample configuration for the JdbcStringBasedStore. For detailed description of all the
parameters used refer to the JdbcStringBasedStore.

57

http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/PooledConnectionFactory.html
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/SimpleConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html

<persistence>
<string-keyed-jdbc-store fetch-state="false" read-only="false" purge="false">
<connection-pool connection-url=
"jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1" username="sa" driver=
"org.h2.Driver"/>
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>
</persistence>

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_STRING_TABLE")
.idColumnName ("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName ("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.connectionPool()
.connectionUr1("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")
.username("sa")
.driverClass("org.h2.Driver");

Finally, below is an example of a JDBC cache store with a managed connection factory, which is
chosen implicitly by specifying a datasource JNDI location:

<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:7.0" fetch-state=
"false" read-only="false" purge="false">
<data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>

58

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false).ignoreModifications(false).purgeOnStartup(false)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_STRING_TABLE")
.idColumnName ("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.dataSource()
.jndiUr1("java:/StringStoreWithManagedConnectionTest/DS");

Apache Derby users

If you’re connecting to an Apache Derby database, make sure you set
dataColumnType to BLOB: <data-column name="DATA_COLUMN" type="BLOB"/>

6.6.3. JDBC Migrator

The JDBC Mixed and Binary stores have been removed in Infinispan 9.0.0 due to the poor
performance associated with storing entries in buckets. Storing entries in buckets is non-optimal as
each read/write to the store requires an existing bucket for a given hash to be retrieved,
deserialised, updated, serialised and then re-inserted back into the db. To assist users, we have
created a migration tool JDBCMigrator.java, that reads data from an existing Mixed/Binary store and
then stores it in a string keyed table via the JdbcStringBasedStore.

The marshaller changes introduced in Infinispan 9 mean that existing stores that

0 were populated by 8.x are no longer compatible. The JDBCMigrator can be used to
migrate existing JdbcStringBasedStores from the legacy 8.x marshaller to the
latest 9.x compatible marshaller.

Usage

The Jdbc migrator org.infinispan.tools.jdbc.migrator.JDBCMigrator takes a single argument, the
path to a .properties file which must contain the configuration properties for both the source and
target stores. An example properties file containing all applicable configuration options can be
found here.

To use the migrator, you need the infinispan-tools-9.0.jar as well as the jdbc drivers required by
your source and target databases on your classpath. An example maven pom, that will execute the
migrator via mvn exec:java is presented below:

59

https://github.com/infinispan/infinispan/blob/master/tools/src/main/resources/migrator.properties

60

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.infinispan.example</groupId>
<artifactId>jdbc-migrator-example</artifactId>
<version>1.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupId>org.infinispan</groupIld>
<artifactId>infinispan-tools</artifactId>
<version>9.0.0-SNAPSHOT</version>
</dependency>

<!-- ADD YOUR REQUIRED JDBC DEPENDENCIES HERE -->
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>
org.infinispan.tools.jdbc.migrator.JDBCMigrator</mainClass>
<arguments>
<argument><!-- PATH TO YOUR MIGRATOR.PROPERTIES FILE --
></arqument>
</arquments>
</confiquration>
</plugin>
</plugins>
</build>
</project>

Properties

All migrator properties are configured within the context of a source or target store and so each
properties must start with either source. or target.. All of the properties listed below are
applicable to both source and target stores, with the exception of table.binary.* properties as it is
not possible to migrate to a binary table.

The property *.marshaller.type denotes whether the marshaller from infinispan 8.2x (LEGACY), 9.x
(CURRENT) or a custom marshaller should be utilised. Note, that the LEGACY marshaller can only
be specified for the source store.

Property Description Example value Required

type [STRING,BINARY MIXE MIXED TRUE
D]

cache name The name of the cache persistentMixedCache TRUE
associated with the
store

dialect The dialect of the POSTGRES TRUE
underlying database

marshaller.type [LEGACY,CURRENT,CUS CURRENT TRUE
TOM]

marshaller.class The class of the org.example.CustomMa
marshaller if rshaller

type=CUSTOM

marshaller.externalizer A comma-separated list 25:Externalizerl,org.ex
S of custom ample.Externalizer2
AdvancedExternalizer
implementations to
load[id]:<Externalizer
class>

connection_pool.conne The JDBC connection jdbc:postgresql:postgre TRUE
ction_url url S

connection_pool.driver The class of the JDBC org.postrgesql.Driver = TRUE
_class driver

connection_pool.userna Database username TRUE
me
connection_pool.passw Database password TRUE
ord
db.major_version Database major version 9
db.minor_version Database minor 5
version
db.disable_upsert Disable db upsert false

61

Property Description Example value Required

db.disable_indexing Prevent table index false
being created

table.<binary|string>.ta Additional prefix for tablePrefix

ble_name_prefix table name

table.<binary|string>.<i Name of the column id_column TRUE
d|data|timestamp>.nam

e

table.<binary|string>.<i Type of the column VARCHAR TRUE

d|data|timestamp>.type

key_to_string_ mapper TwoWayKey2StringMa 0rg.1 Eﬁ nispan.persist
ence.keymappers.
pper Class DefaultTwoWayKey2Strin

gMapper

6.7. Remote store

The RemoteStore is a cache loader and writer implementation that stores data in a remote infinispan
cluster. In order to communicate with the remote cluster, the RemoteStore uses the HotRod
client/server architecture. HotRod bering the load balancing and fault tolerance of calls and the
possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster. Please
refer to Hot Rod for more information on the protocol, client and server configuration. For a list of
RemoteStore configuration refer to the javadoc . Example:

<persistence>
<remote-store xmlns="urn:infinispan:config:store:remote:8.0" cache="mycache" raw-
values="true">
<remote-server host="one" port="12111" />
<remote-server host="two" />
<connection-pool max-active="10" exhausted-action="CREATE_NEW" />
<write-behind />
</remote-store>
</persistence>

62

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.remoteCacheName("mycache")
.rawValues(true)
.addServer()
.host("one").port(12111)
.addServer()
Lhost("two")
.connectionPool()
.maxActive(10)
.exhaustedAction(ExhaustedAction.CREATE_NEW)
.async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named
"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom
transport executor. Additionally the cache store is asynchronous.

6.8. Cluster cache loader

The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster
members.

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like
fetchPersistentState (and like) are not applicable.

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not
already available in the local node are fetched on-demand from other nodes in the cluster. This is a
kind of lazy-loading of the cache content.

<persistence>
<cluster-loader remote-timeout="500"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()

.addClusterlLoader()

.remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .

o The ClusterCacheLoader does not support preloading(preload=true). It also won’t
provide state if fetchPersistentSate=true.

63

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html

6.9. Command-Line Interface cache loader

The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves
data from another Infinispan node using the CLI. The node to which the CLI connects to could be a
standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it
will only be used to retrieve data, and hence, won’t be used when persisting data.

The CLI cache loader is configured with a connection URL pointing to the Infinispan node to which
connect to. Here is an example:

o Details on the format of the URL and how to make sure a node can receive
invocations via the CLI can be found in the Command-Line Interface chapter.

<persistence>
<cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()
.addStore(CLInterfacelLoaderConfigurationBuilder.class)
.connectionString("jmx://1.2.3.4:4444/MyCacheManager/myCache");

6.10. RocksDB Cache Store

The Infinispan Community

6.10.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s
LevelDB, but provides superior performance and reliability, especially in highly concurrent
scenarios.

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains
a RocksDB database: one location is used to store non-expired data, while the second location is
used to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

64

http://rocksdb.org/

6.10.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfiqurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.location("/tmp/rocksdb/data")
.expiredLocation("/tmp/rocksdb/expired")

.build();

Parameter

location

expiredLocation

expiryQueueSize

clearThreshold

compressionType

blockSize

cacheSize

Sample XML Configuration

Description

Directory to use for RocksDB to store primary
cache store data. The directory will be auto-
created if it does not exit.

Directory to use for RocksDB to store expiring
data pending to be purged permanently. The
directory will be auto-created if it does not exit.

Size of the in-memory queue to hold expiring
entries before it gets flushed into expired
RocksDB store

There are two methods to clear all entries in
RocksDB. One method is to iterate through all
entries and remove each entry individually. The
other method is to delete the database and re-
init. For smaller databases, deleting individual
entries is faster than the latter method. This
configuration sets the max number of entries
allowed before using the latter method

Configuration for RocksDB for data
compression, see CompressionType enum for
options

Configuration for RocksDB - see documentation
for performance tuning

Configuration for RocksDB - see documentation
for performance tuning

65

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

infinispan.xml
<local-cache name="vehicleCache">
<persistence>
<rocksdb-store path="/tmp/rocksdb/data">
<expiration path="/tmp/rocksdb/expired"/>
</rocksdb-store>

</persistence>
</local-cache>

6.10.3. Additional References
Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

6.11. LevelDB Cache Store

The LevelDB Cache Store has been deprecated in Infinispan 9.0 and has been

A replaced with the RocksDB Cache Store. If you have existing data stored in a
LevelDB Cache Store, the RocksDB Cache Store will convert it to the new SST-
based format on the first run.

6.12. REST Cache Store

The Infinispan Community

6.12.1. Introduction

TODO

6.12.2. Javadoc

TODO

6.12.3. Configuration

TODO

6.13. JPA Cache Store

The Infinispan Community

6.13.1. Introduction

The implementation depends on JPA 2.0 specification to access entity meta model.

66

https://github.com/infinispan/infinispan/blob/master/persistence/rocksdb/src/test/java/org/infinispan/persistence/rocksdb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/rocksdb/src/test/resources/config/

In normal use cases, it’s recommended to leverage Infinispan for JPA second level cache and/or
query cache. However, if you’d like to use only Infinispan API and you want Infinispan to persist
into a cache store using a common format (e.g., a database with well defined schema), then JPA
Cache Store could be right for you.

Things to note

* When using JPA Cache Store, the key should be the ID of the entity, while the value should be
the entity object.

* Only a single @Id or @EmbeddedId annotated property is allowed.
* Auto-generated ID is not supported.

* Lastly, all entries will be stored as immortal entries.

Sample Usage
For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:
persistence.xml

<persistence-unit name="myPersistenceUnit">

</persistence-unit>

User entity class

User.java

public class User implements Serializable {
private String username;

private String firstName;
private String lastName;

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into
the cache, the data would be persisted into the database based on JPA configuration.

67

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

Normally a single Infinispan cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");
usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");
teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would
only be able to store ONE type of data.

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured
for User entity class

usersCache.put("raytsang”, new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot
do this when this cache is configured to use a JPA cache store

teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

68

@Entity

public class Vehicle implements Serializable {
@EmbeddedId
private Vehicleld 1id;
private String color;

}

@Embeddable
public class VehicleId implements Serializable

{

private String state;
private String licensePlate;

Lastly, auto-generated IDs (e.g., @GeneratedValue) is not supported. When putting things into the
cache with a JPA cache store, the key should be the ID value!

6.13.2. Configuration

Sample Programatic Configuration

Confiquration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
Parameter Description
persistenceUnitName JPA persistence unit name in JPA configuration
(persistence.xml) that contains the JPA entity
class
entityClass JPA entity class that is expected to be stored in

this cache. Only one class is allowed.

Sample XML Configuration

<local-cache name="vehicleCache">

<persistence passivation="false">

<jpa-store xmlns="urn:infinispan:config:store:jpa:7.0"
persistence-unit="org.infinispan.persistence.jpa.configurationTest"
entity-class="org.infinispan.persistence.jpa.entity.Vehicle">
/>

</persistence>

</local-cache>

Parameter Description

persistence-unit JPA persistence unit name in JPA configuration
(persistence.xml) that contains the JPA entity
class

entity-class Fully qualified JPA entity class name that is

expected to be stored in this cache. Only one
class is allowed.

6.13.3. Additional References
Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

69

https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/java/org/infinispan/persistence/jpa/JpaConfigurationTest.java
https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/resources/config/jpa-config.xml

6.13.4. Javadoc

TODO

6.14. Custom Cache Stores

If the provided cache stores do not fulfill all of your requirements, it is possible for you to
implement your own store. The steps required to create your own store are as follows:

1.

2.

4.

70

Write your custom store by implementing one of the following interfaces:

« org.infinispan.persistence.spi.AdvancedCacheliriter

« org.infinispan.persistence.spi.AdvancedCacheloader

« org.infinispan.persistence.spi.Cacheloader

« org.infinispan.persistence.spi.Cacheliriter

« org.infinispan.persistence.spi.ExternalStore

« org.infinispan.persistence.spi.AdvancedLoadWriteStore

« 0rg.infinispan.persistence.spi.TransactionalCacheWriter

Annotate your store class with the @Store annotation and specify the properties relevant to your
store, e.g. is it possible for the store to be shared in Replicated or Distributed mode:
@Store(shared = true).

Create a custom cache store configuration and builder. This requires extending
AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. As an optional step, you
should add the following annotations to your configuration - @ConfigurationFor, @BuiltBy as well
as adding @ConfiguredBy to your store implementation class. These additional annotations will
ensure that your custom configuration builder is used to parse your store configuration from
xml. If these annotations are not added, then the CustomStoreConfigurationBuilder will be used
to parse the common store attributes defined in AbstractStoreConfiguration and any additional
elements will be ignored. If a store and its configuration do not declare the @Store and
@ConfigurationFor annotations respectively, a warning message will be logged upon cache
initialisation.

Add your custom store to your cache’s configuration:

a. Add your custom store to the ConfigurationBuilder, for example:

Configuration config = new ConfigurationBuilder()
.persistence()
.addStore(CustomStoreConfiqgurationBuilder.class)
.build();

b. Define your custom store via xml:

<local-cache name="customStoreExample">
<persistence>
<store class="org.infinispan.persistence.dummy.DummyInMemoryStore" />
</persistence>
</local-cache>

6.14.1. HotRod Deployment

A Custom Cache Store can be packaged into a separate JAR file and deployed in a HotRod server
using the following steps:

1. Follow steps 1-3 in the previous section and package your implementations in a JAR file (or use
a Custom Cache Store Archetype).

2. In your Jar create a proper file under META-INF/services/, which contains the fully qualified
class name of your store implementation. The name of this service file should reflect the
interface that your store implements. For example, if your store implements the
AdvancedCachelriter interface than you need to create the following file:

« /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

3. Deploy the JAR file in the Infinispan Server.

6.15. Data Migration

The format in which data is persisted has changed in Infinispan 6.0, so this means that if you stored
data using Infinispan 4.x or Infinispan 5., Infinispan 6.0 won’t be able to read it. The best way to
upgrade persisted data from Infinispan 4.x/5.x to Infinispan 6.0 is to use the mechanisms explained
in the Rolling Upgrades section. In other words, by starting a rolling upgrade, data stored in
Infinispan 4.x/5.x can be migrated to a Infinispan 6.0 installation where persitence is configured
with a different location for the data. The location configuration varies according to the specific
details of each cache store.

Following sections describe the SPI and also discuss the SPI implementations that Infinispan ships
out of the box.

6.16. API

The following class diagram presents the main SPI interfaces of the persistence API:

71

MarshalledEntry ByteBuffer

+ getkeyBytes() : ByteBuffer + getBuf() : byte[]
+ getValueBytes() : ByteBuffer b - m = =—==N > getOffset() : int
+ getiey() : Object + getLength() : int
+ getvalue() : Object + copy() : ByteBuffer

+ getMetadataBytes() : ByteBuffer
+ getMetadata() : InternalMetadata

Lifecycle

+ start() : void
+ stop() : void

.'\7
CacheWriter Cacheloader

+ write(e : MarshalledEntry) : void + loadik : Object) : MarshalledEntry

+ delete(key : Object) : boolean + contains(k : Object) : boolean

+ intili : InitializationContext) : void + init{i : InitializationContext) : void

AdvancedCacheWriter AdvancedCacheLoader

+ clearf) : void + process(f : KeyFilter, t : CacheloaderTask, e : Executor, fetchValue : boolean, fetchMetatda : boolean) : void
+ purgele : Executor, p : PurgeListener) : void + size() :int

Figure 1. Persistence SPI
Some notes about the classes:

» ByteBuffer - abstracts the serialized form of an object

* MarshalledEntry - abstracts the information held within a persistent store corresponding to a
key-value added to the cache. Provides method for reading this information both in serialized
(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in
serialized format and lazily deserialized on demand, within the MarshalledEntry
implementation

* CacheWriter and CacheLoader provide basic methods for reading and writing to a store
* AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the
underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.
A provider might choose to only implement a subset of these interfaces:
* Not implementing the AdvancedCacheWriter makes the given writer not usable for purging
expired entries or clear
 If aloader does not implement the AdvancedCacheWriter inteface, then it will not participate in

preloading nor in cache iteration (required also for stream operations).

If you're looking at migrating your existing store to the new API or to write a new store
implementation, the SingleFileStore might be a good starting point/example.

72

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java

6.17. More implementations

Many more cache loader and cache store implementations exist. Visit this website for more details.

73

http://infinispan.org/cache-store-implementations

Chapter 7. Clustering

A cache manager can be configured to be either local (standalone) or clustered. When clustered,
manager instances use JGroups' discovery protocols to automatically discover neighboring
instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager
constructor, or supply the following XML configuration file.

<infinispan/>
To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();
DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>
<cache-container>
<transport/>
</cache-container>
</infinispan>

Individual caches can then be configured in different modes:
* Local: changes and reads are never replicated. This is the only mode available in standalone
cache managers.

» Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are
local.

* Replicated: changes are replicated to all nodes, reads are always local.

 Distributed: changes are replicated to a fixed number of nodes, reads request the value from at
least one of the owner nodes.

7.1. Local Mode

While Infinispan is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap—making migration from a map to
Infinispan trivial.

74

Infinispan caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

7.1.1. Simple Cache

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

* transactions and invocation batching

 persistence (cache stores and loaders)

* custom interceptors (there’s no interceptor stack!)

* indexing

» compatibility (embedded/server mode)

* store as binary (which is hardly useful for local caches)
From the API perspective these features throw an exception:

* adding custom interceptors

e Distributed Executors Framework
So, what’s left?

* basic map-like API

* cache listeners (local ones)
* expiration

* eviction

* security

* JMX access

* statistics (though for max performance it is recommended to switch this off using statistics-
available=false)

Declarative configuration

75

<local-cache name="mySimpleCache" simple-cache="true">
<!-- expiration, eviction, security... -->
</local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

7.2. Invalidation Mode

In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is
written to, the cache only aims to remove data that may be stale from other nodes. This cache mode
only makes sense if you have another, permanent store for your data such as a database and are
only using Infinispan as an optimization in a read-heavy system, to prevent hitting the database for
every read. If a cache is configured for invalidation, every time data is changed in a cache, other
caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

76

originator

7%

|

put(K, V

Figure 2. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

0 Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
(lusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

77

Transactions can be used to batch the invalidation messages. They won’t behave like regular
transactions though, as locks are only acquired on the local node, and entries can be invalidated by
other transactions at any time.

7.3. Replicated Mode

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

Replicated mode can be synchronous or asynchronous.

* Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

» Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

* With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

* With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

7.4. Distribution Mode

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the
cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to

78

server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require @ messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.

o Cache topology changes may cause retries and additional messages, both for
reads and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

7.4.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

79

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners—in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

7.4.2. Key ownership

Distributed caches split entries into a fixed number of segments, and assign each segment to a list
of owner nodes. Replicated caches do the same, except every node is an owner.

The first node in the owners list is called the primary owner, and the others are called backup
owners. The segment ownership table is broadcast to every node when the cache topology changes
(i.e. a node joins or leaves the cluster). This way, a node can compute the location of a key itself,
without resorting to multicast requests or maintaining per-key metadata.

The number of segments is configurable (numSegments), but it cannot be changed without restarting
the cluster. The mapping of keys to segments is also fixed —a key must map to the same segment,
regardless of how the topology of the cluster changes. The key-to-segment mapping can be
customized by configuring a KeyPartitioner or by using the Grouping API.

There is no hard rule on how segments must be mapped to owners, but the goal is to balance the
number of segments allocated to each node and at the same time minimize the number of segments
that have to move after a node joins or leaves the cluster. The segment mapping is customizable,
and in fact there are five implementations that ship with Infinispan:

SyncConsistentHashFactory

An algorithm based on consistent hashing. It always assigns a key to the same node in every
cache as long as the cluster is symmetric (i.e. all caches run on all nodes). It does have some
weaknesses: the load distribution is a bit uneven, and it also moves more segments than strictly
necessary on a join or leave. Selected by default when server hinting is disabled.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

It achieves a more even distribution than SyncConsistentHashFactory, but it has one
disadvantage: the mapping of segments to nodes depends on the order in which caches joined
the cluster, so a key’s owners are not guaranteed to be the same in all the caches running in a
cluster. Used to be the default from version 5.2 to version 8.1 (with server hinting disabled).

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting. Used to be the default
with from version 5.2 to version 8.1 (with server hinting enabled).

ReplicatedConsistentHashFactory

This algorithm is used internally to implement replicated caches. Users should never select this
explicitly in a distributed cache.

80

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
http://en.wikipedia.org/wiki/Consistent_hashing

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor
can be any non-negative number, and the hashing algorithm will try to assign to each node a load
weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-
factor="2" />

And this is how you can configure it programmatically, in Java:

Configuration ¢ = new ConfigurationBuilder()
.clustering()
.cacheMode (CacheMode.DIST_SYNC)
.hash()
.numOwners(2)
.numSegments(100)
.capacityFactor(2)
.build();

7.4.3. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed
at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before
starting. While this is very flexible, it might not be suitable for applications which require a specific
number of nodes to join the cluster before caches are started. For this reason, you can specify how
many nodes should have joined the cluster before proceeding with cache initialization. To do this,
use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML
configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />

The programmatic Java configuration:

81

GlobalConfiguration global = new GlobalConfigurationBuilder()
.transport()
.initialClusterSize(4)
.initialClusterTimeout(30000)
.build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

7.4.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

originator primary

get(K)
. SO

get(K)

Figure 5. L1 caching

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and

82

without L1 enabled and see what works best for your access pattern.

7.4.5. Server Hinting
The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site
Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration
The hints are configured at transport level:
<transport
cluster="MyCluster"
machine="LinuxServer@1"

rack="Rack01"
site="US-WestCoast" />

7.4.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

83

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(

cache,

new RndKeyGenerator(),

Executors.newSingleThreadExecutor(),

100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
void start();
void stop();

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t
do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

84

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

7.4.7. The Grouping API

Complementary to Key affinity service and similar to AtomicMap, the grouping API allows you to
co-locate a group of entries on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?
First, you must enable groups. If you are configuring Infinispan programmatically, then call:
Configuration ¢ = new ConfigurationBuilder()

.clustering().hash().groups().enabled()
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

85

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/atomic/AtomicMap.html

class User {

String office;

public int hashCode() {
// Defines the hash for the key, normally used to determine location

}

// Override the location by specifying a group
// A1l keys in the same group end up with the same owners
@Group
public String getOffice() {
return office;

}
}

0 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic