
Mobicents JAIN SLEE MGCP

Resource Adaptor User Guide

by Amit Bhayani

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE MGCP Resource Adaptor 1

2. Resource Adaptor Type ... 3

2.1. Activities ... 3

2.2. Events .. 4

2.3. Activity Context Interface Factory ... 7

2.4. Resource Adaptor Interface ... 8

2.5. Restrictions .. 9

2.6. Sbb Code Examples ... 9

3. Resource Adaptor Implementation .. 19

3.1. Configuration .. 19

3.2. Default Resource Adaptor Entities ... 19

3.3. Traces and Alarms .. 20

3.3.1. Tracers .. 20

3.3.2. Alarms ... 20

4. Setup ... 21

4.1. Pre-Install Requirements and Prerequisites .. 21

4.1.1. Hardware Requirements ... 21

4.1.2. Software Prerequisites .. 21

4.2. Mobicents JAIN SLEE MGCP Resource Adaptor Source Code 21

4.2.1. Release Source Code Building .. 21

4.2.2. Development Trunk Source Building .. 22

4.3. Installing Mobicents JAIN SLEE MGCP Resource Adaptor 22

4.4. Uninstalling Mobicents JAIN SLEE MGCP Resource Adaptor 22

5. Clustering .. 25

A. Revision History .. 27

Index ... 29

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN SLEE MGCP

Resource Adaptor, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_MGCP_RA_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE MGCP Resource Adaptor
This resource adaptor provides a MGCP API for JAIN SLEE applications, adapting the JAIN

MGCP specification - JSR 23. JAIN MGCP is a Java specification for the Media Gateway Control

Protocol, as defined by the protocol specs done by the IETF RFC3435.

MGCP assumes a connection model where the basic constructs are endpoints and connections.

Endpoints are sources and/or sinks of data and can be physical or virtual.

Connections may be either point to point or multipoint. A point to point connection is an association

between two endpoints with the purpose of transmitting data between these endpoints. Once this

association is established for both endpoints, data transfer between these endpoints can take

place. A multipoint connection is established by connecting the endpoint to a multipoint session.

Both endpoints and connection constructs are available to support all type of MGCP Applications.

Examples of Application using Connections are

Transmission of audio packets using RTP and UDP over an IP network.

Transmission of packets over an internal connection, for example the TDM backplane or

the interconnection bus of a gateway. This is used, in particular, for "hairpin" connections,

connections that terminate in a gateway but are immediately rerouted over the telephone

network.

Examples of Applications using Endpoints are

An example of a virtual endpoint is an audio source in an audio-content server.

An interface on a gateway that terminates a trunk connected to a PSTN switch (e.g., Class 5,

Class 4, etc.). A gateway that terminates trunks is called a trunking gateway.

An interface on a gateway that terminates an analog POTS connection to a phone, key system,

PBX, etc. A gateway that terminates residential POTS lines (to phones) is called a residential

gateway.

Events represent MGCP Request/Response received by the MGCP stack, or failure use cases

such as timeouts.

The Activities are the MGCP Connections and Endpoints, which applications in the SLEE may

use to send MGCP Requests and Responses, and to receive the events related with incoming

Request/Response.

2

Chapter 2.

3

Resource Adaptor Type
MGCP Resource Adaptor Type is defined by Mobicents team as part of effort to standardize RA

Types.

2.1. Activities

An MGCP activity object represents a set of related events in an MGCP resource. This Ra Type

defines the following Activity objects:

MgcpConnectionActivity

The set of MGCP events regarding the managing (creation, modification, destruction and

state audit) of a MGCP connection is represented by this activity object. This activity

ends implicitly when a DeleteConnection (MGCP server role) or DeleteConnectionResponse

(MGCP Call Agent role) event is received. MGCP events related to Signal generation or Event

detection request for specific connection are also represented by this Activity. Class name is

net.java.slee.resource.mgcp.MgcpConnectionActivity

New MgcpConnectionActivity Activity objects are created by

calling JainMgcpProvider.getConnectionActivity(int transactionHandle,

EndpointIdentifier endpointIdentifier) or

JainMgcpProvider.getConnectionActivity(ConnectionIdentifier

connectionIdentifier, EndpointIdentifier endpointIdentifier)

JainMgcpProvider.getConnectionActivity(int transactionHandle,

EndpointIdentifier endpointIdentifier) is mostly used by Application behaving as

Media Gateway Controller or MGCP call Agent Role. The above method is called to create

a new MgcpConnectionActivity for unknown ConnectionIdentifier , to be used when

sending CreateConnection events and receive further related messages from a MGCP

Server.

MgcpConnectionActivity Activity objects are created automatically when the resource

adaptor receives an incoming MGCP request (MGCP server role).

MgcpEndpointActivity

The set of MGCP events regarding a MGCP endpoint, such as event detecting/signal

generation or configuration/state audit, is represented by this activity object. Since a MGCP

endpoint doesn't have a lifecyle this activity does not end implicitly on MGCP events. Class

name is net.java.slee.resource.mgcp.MgcpConnectionActivity

New MgcpEndpointActivity Activity objects is created by

calling JainMgcpProvider.public MgcpEndpointActivity

getEndpointActivity(EndpointIdentifier endpointIdentifier);

MgcpEndpointActivity Activity objects are created automatically when the resource adaptor

receives an incoming MGCP request on an Endpoint (MGCP server role).

Chapter 2. Resource Adaptor Type

4

2.2. Events

Events represent MGCP Requests or Responses received by the MGCP stack (incoming requests

and responses) and Timer expiry. Each MGCP Requests is fired as different event types. Each

MGCP Response is fired as different event types. Events are fired on MgcpConnectionActivity

or MgcpEndpointActivity activities. There are several event types defined. Following is the

table that describes event-type (name, vendor and version), event-class and whether its fired on

MgcpConnectionActivity or MgcpEndpointActivity or both.

Important

Spaces where introduced in Name and Event Class column values, to correctly

render the table. Please remove them when using copy/paste.

Important

For proper render of this table prefixes, for entries on some columns are ommited.

For prefix values, for each column, please see list below:

Name

net.java.slee.resource.mgcp.

Event Class

jain.protocol.ip.mgcp.message.

Version for all defined events is 1.0.

Vendor for all defined events is net.java.

Table 2.1. Events fired by MGCP

Name Event Class Conn Enp Comments

CREATE_

CONNECTION

Create Connection Yes No Received by application

acting as MGCP Server.

CREATE_

CONNECTION_

RESPONSE

Create Connection

Respone

Yes No Received by application

acting as MGCP Call

Agent

MODIFY_

CONNECTION

Modify Connection Yes No Received by application

acting as MGCP Server

MODIFY_

CONNECTION_

RESPONSE

Modify Connection

Response

Yes No Received by application

acting as MGCP Call

Agent

Events

5

Name Event Class Conn Enp Comments

DELETE_

CONNECTION

Delete Connection Yes Yes Received by application

acting as MGCP Server

DELETE_

CONNECTION_

RESPONSE

Delete Connection

Response

Yes Yes Received by application

acting as MGCP Call

Agent

AUDIT_ CONNECTION Audit Connection Yes No Received by application

acting as MGCP Server

AUDIT_

CONNECTION_

RESPONSE

Audit Connection

Response

Yes No Received by application

acting as MGCP Call

Agent

NOTIFICATION_

REQUEST

Notification Request Yes Yes Received by application

acting as MGCP Server.

Whether this event

will be fired on

MgcpConnectionActivity

or MgcpEndpointActivity

Activity is decided

by RA depending

on if EventName

(Request/Signal) has

ConnectionIdentifier

included or not.

If Request/Signal has

list of EventName's

with few having

ConnectionIdentifier set

and few without

ConnectionIdentifier,

then this event will

be fired on both

the Activities. However

please note that new

Activity Object/s will

not be created unless

initial-event="True" is

specified in sbb-jar.xml

for this event-type.

NOTIFICATION_

REQUEST_

RESPONSE

Notification Request

Response

Yes Yes Received by application

acting as MGCP

Call Agent. If

EventName (Signal/

Chapter 2. Resource Adaptor Type

6

Name Event Class Conn Enp Comments

Request) in original

NotificationRequest

fired by this Application

had ConnectionIdentifier

set, then this event

will be fired on

MgcpConnectionActivity.

If Request/Signal has

list of EventName's

with few having

ConnectionIdentifier set

and few without

ConnectionIdentifier,

then this event will

be fired on both

the Activities. However

please note that event's

will be fired only

on existing Activty

Object and no new

Activity Object will

be created unless

initial-event="True" is

specified in sbb-jar.xml.

NOTIFY Notify Yes Yes Received by application

acting as MGCP Call

Agent. Whether this

event will be fired on

MgcpConnectionActivity

or MgcpEndpointActivity

Activity is decided by

RA depending on if

event is detected on

connection or endpoint

(ConnectionIdentifier

included or not)

NOTIFY_ RESPONSE Notify Response Yes Yes Received by application

acting as MGCP Server.

Whether this event

will be fired on

MgcpConnectionActivity

or MgcpEndpointActivity

Activity Context Interface Factory

7

Name Event Class Conn Enp Comments

Activity is decided

by RA depending

on if original Notify

event is detected on

connection or endpoint

(ConnectionIdentifier

included or not)

TRANSACTION_

TIMEOUT

event. Transaction

Timeout

Yes Yes Received by application

acting as MGCP Server

or MGCP Call Agent.

Basically this is fired

when Application sends

the MGCP Request

but there is no

response. The activity

ends automatically.

AUDIT_ ENDPOINT Audit Endpoint No Yes Received by application

acting as MGCP Server.

AUDIT_ ENDPOINT_

RESPONSE

Audit Endpoint

Response

No Yes Received by application

acting as MGCP Call

Agent.

ENDPOINT_

CONFIGURATION

Endpoint Configuration No Yes Received by application

acting as MGCP Server.

ENDPOINT_

CONFIGURATION_

RESPONSE

Endpoint Configuration

Response

No Yes Received by application

acting as MGCP Call

Agent.

RESTART_ IN_

PROGRESS

Restart In Progress No Yes Received by application

acting as MGCP Call

Agent.

RESTART_ IN_

PROGRESS_

RESPONSE

Restart In Progress

Response

No Yes Received by application

acting as MGCP Server.

2.3. Activity Context Interface Factory

The interface of the JAIN MGCP resource adaptor type specific Activity Context Interface Factory

is defined as follows:

Chapter 2. Resource Adaptor Type

8

package net.java.slee.resource.mgcp;

import javax.slee.ActivityContextInterface;

import javax.slee.FactoryException;

import javax.slee.UnrecognizedActivityException;

public interface MgcpActivityContextInterfaceFactory {

 public ActivityContextInterface getActivityContextInterface(MgcpEndpointActivity activity)

 throws NullPointerException, UnrecognizedActivityException, FactoryException;

 public ActivityContextInterface getActivityContextInterface(MgcpConnectionActivity activity)

 throws NullPointerException, UnrecognizedActivityException, FactoryException;

}

2.4. Resource Adaptor Interface

The JAIN MGCP Resource Adaptor SBB Interface provides SBBs with access to the JAIN MGCP

objects required for creating and sending Request/Response. It is defined as follows:

 package net.java.slee.resource.mgcp;

import jain.protocol.ip.mgcp.message.CreateConnection;

import jain.protocol.ip.mgcp.message.NotificationRequest;

import jain.protocol.ip.mgcp.message.parms.CallIdentifier;

import jain.protocol.ip.mgcp.message.parms.ConnectionIdentifier;

import jain.protocol.ip.mgcp.message.parms.EndpointIdentifier;

import jain.protocol.ip.mgcp.message.parms.RequestIdentifier;

import java.util.List;

public interface JainMgcpProvider extends jain.protocol.ip.mgcp.JainMgcpProvider {

 public MgcpConnectionActivity getConnectionActivity(ConnectionIdentifier connectionIdentifier,

 EndpointIdentifier endpointIdentifier);

Restrictions

9

 public MgcpConnectionActivity getConnectionActivity(int transactionHandle, EndpointIdentifier

 endpointIdentifier);

 public List MgcpConnectionActivity getConnectionActivities(EndpointIdentifier

 endpointIdentifier);

 public MgcpEndpointActivity getEndpointActivity(EndpointIdentifier endpointIdentifier);

 public int getUniqueTransactionHandler();

 public CallIdentifier getUniqueCallIdentifier();

 public RequestIdentifier getUniqueRequestIdentifier();

}

2.5. Restrictions

The resource adaptor implementation should prevent SBBs from adding themselves as MGCP

listeners, or changing the MGCP network configuration. Any attempt to do so should be rejected

by throwing a SecurityException.

2.6. Sbb Code Examples

The following code shows how MGCP Call Agent can send CreateConnection request to MGCP

Server

public abstract class IVRSbb implements Sbb {

 public final static String ENDPOINT_NAME = "/mobicents/media/IVR/$";

 //SIP Invite received. Send CRCX to MGCP Server

 public void onCallCreated(RequestEvent evt, ActivityContextInterface aci) {

 Request request = evt.getRequest();

 FromHeader from = (FromHeader) request.getHeader(FromHeader.NAME);

 ToHeader to = (ToHeader) request.getHeader(ToHeader.NAME);

Chapter 2. Resource Adaptor Type

10

 ActivityContextInterface daci = null;

 try {

 Dialog dialog = provider.getNewDialog(evt.getServerTransaction());

 dialog.terminateOnBye(true);

 daci = acif.getActivityContextInterface((DialogActivity) dialog);

 daci.attach(sbbContext.getSbbLocalObject());

 } catch (Exception e) {

 logger.severe("Error during dialog creation", e);

 respond(evt, Response.SERVER_INTERNAL_ERROR);

 return;

 }

 CallIdentifier callID = mgcpProvider.getUniqueCallIdentifier();

 this.setCallIdentifier(callID.toString());

 EndpointIdentifier endpointID = new EndpointIdentifier(ENDPOINT_NAME,

 JBOSS_BIND_ADDRESS + ":" + MGCP_PEER_PORT);

 CreateConnection createConnection = new CreateConnection(this, callID, endpointID,

 ConnectionMode.SendRecv);

 try {

 String sdp = new String(evt.getRequest().getRawContent());

 createConnection.setRemoteConnectionDescriptor(new ConnectionDescriptor(sdp));

 } catch (ConflictingParameterException e) {

 // should never happen

 }

 int txID = mgcpProvider.getUniqueTransactionHandler();

 createConnection.setTransactionHandle(txID);

 MgcpConnectionActivity connectionActivity = null;

 try {

 connectionActivity = mgcpProvider.getConnectionActivity(txID, endpointID);

 ActivityContextInterface epnAci = mgcpAcif.getActivityContextInterface(connectionActivity);

 epnAci.attach(sbbContext.getSbbLocalObject());

 } catch (FactoryException ex) {

 ex.printStackTrace();

 } catch (NullPointerException ex) {

 ex.printStackTrace();

 } catch (UnrecognizedActivityException ex) {

 ex.printStackTrace();

 }

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { createConnection });

Sbb Code Examples

11

 }

 //Received CRCX Response. Now Send RQNT for playing media file

 public void onCreateConnectionResponse(CreateConnectionResponse event,

 ActivityContextInterface aci) {

 ServerTransaction txn = getServerTransaction();

 Request request = txn.getRequest();

 ReturnCode status = event.getReturnCode();

 switch (status.getValue()) {

 case ReturnCode.TRANSACTION_EXECUTED_NORMALLY:

 this.setEndpointName(event.getSpecificEndpointIdentifier().getLocalEndpointName());

 ConnectionIdentifier connectionIdentifier = event.getConnectionIdentifier();

 this.setConnectionIdentifier(connectionIdentifier.toString());

 String sdp = event.getLocalConnectionDescriptor().toString();

 ContentTypeHeader contentType = null;

 try {

 contentType = headerFactory.createContentTypeHeader("application", "sdp");

 } catch (ParseException ex) {

 }

 String localAddress = provider.getListeningPoints()[0].getIPAddress();

 int localPort = provider.getListeningPoints()[0].getPort();

 Address contactAddress = null;

 try {

 contactAddress = addressFactory.createAddress("sip:" + localAddress + ":" + localPort);

 } catch (ParseException ex) {

 }

 ContactHeader contact = headerFactory.createContactHeader(contactAddress);

 sendRQNT(WELCOME, true);

 Response response = null;

 try {

 response = messageFactory.createResponse(Response.OK, request, contentType,

 sdp.getBytes());

 } catch (ParseException ex) {

Chapter 2. Resource Adaptor Type

12

 logger.severe("ParseException while trying to create OK Response", ex);

 }

 response.setHeader(contact);

 try {

 txn.sendResponse(response);

 } catch (InvalidArgumentException ex) {

 logger.severe("InvalidArgumentException while trying to send OK Response", ex);

 } catch (SipException ex) {

 logger.severe("SipException while trying to send OK Response", ex);

 }

 break;

 default:

 try {

 response = messageFactory.createResponse(Response.SERVER_INTERNAL_ERROR,

 request);

 txn.sendResponse(response);

 } catch (Exception ex) {

 logger.severe("Exception while trying to send SERVER_INTERNAL_ERROR Response", ex);

 }

 }

 }

 private void sendRQNT(String mediaPath, boolean createActivity) {

 EndpointIdentifier endpointID = new EndpointIdentifier(this.getEndpointName(),

 JBOSS_BIND_ADDRESS + ":"

 + MGCP_PEER_PORT);

 NotificationRequest notificationRequest = new NotificationRequest(this, endpointID,

 mgcpProvider

 .getUniqueRequestIdentifier());

 ConnectionIdentifier connectionIdentifier = new

 ConnectionIdentifier(this.getConnectionIdentifier());

 EventName[] signalRequests = { new EventName(PackageName.Announcement,

 MgcpEvent.ann.withParm(mediaPath), connectionIdentifier) };

 notificationRequest.setSignalRequests(signalRequests);

 RequestedAction[] actions = new RequestedAction[] { RequestedAction.NotifyImmediately };

 RequestedEvent[] requestedEvents = {

 new RequestedEvent(new EventName(PackageName.Announcement, MgcpEvent.oc,

 connectionIdentifier), actions),

Sbb Code Examples

13

 new RequestedEvent(new EventName(PackageName.Announcement, MgcpEvent.of,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf0,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf1,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf2,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf3,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf4,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf5,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf6,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf7,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf8,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf9,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfA,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfB,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfC,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfD,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfStar,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfHash,

 connectionIdentifier), actions) };

 notificationRequest.setRequestedEvents(requestedEvents);

 notificationRequest.setTransactionHandle(mgcpProvider.getUniqueTransactionHandler());

 NotifiedEntity notifiedEntity = new NotifiedEntity(JBOSS_BIND_ADDRESS,

 JBOSS_BIND_ADDRESS, MGCP_PORT);

 notificationRequest.setNotifiedEntity(notifiedEntity);

 if (createActivity) {

Chapter 2. Resource Adaptor Type

14

 MgcpEndpointActivity endpointActivity = null;

 try {

 endpointActivity = mgcpProvider.getEndpointActivity(endpointID);

 ActivityContextInterface epnAci = mgcpAcif.getActivityContextInterface(endpointActivity);

 epnAci.attach(sbbContext.getSbbLocalObject());

 } catch (FactoryException ex) {

 ex.printStackTrace();

 } catch (NullPointerException ex) {

 ex.printStackTrace();

 } catch (UnrecognizedActivityException ex) {

 ex.printStackTrace();

 }

 } // if (createActivity)

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { notificationRequest });

 logger.info(" NotificationRequest sent");

 }

 public void onNotificationRequestResponse(NotificationRequestResponse event,

 ActivityContextInterface aci) {

 logger.info("onNotificationRequestResponse");

 ReturnCode status = event.getReturnCode();

 switch (status.getValue()) {

 case ReturnCode.TRANSACTION_EXECUTED_NORMALLY:

 logger.info("The Announcement should have been started");

 break;

 default:

 ReturnCode rc = event.getReturnCode();

 logger.severe("RQNT failed. Value = " + rc.getValue() + " Comment = " + rc.getComment());

 break;

 }

 }

 public void onNotifyRequest(Notify event, ActivityContextInterface aci) {

 logger.info("onNotifyRequest");

 NotificationRequestResponse response = new

 NotificationRequestResponse(event.getSource(),

 ReturnCode.Transaction_Executed_Normally);

Sbb Code Examples

15

 response.setTransactionHandle(event.getTransactionHandle());

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { response });

 EventName[] observedEvents = event.getObservedEvents();

 for (EventName observedEvent : observedEvents) {

 switch (observedEvent.getEventIdentifier().intValue()) {

 case MgcpEvent.REPORT_ON_COMPLETION:

 logger.info("Announcemnet Completed NTFY received");

 break;

 case MgcpEvent.REPORT_FAILURE:

 logger.info("Announcemnet Failed received");

 break;

 case MgcpEvent.DTMF_0:

 logger.info("You have pressed 0");

 sendRQNT(DTMF_0, false);

 break;

 case MgcpEvent.DTMF_1:

 logger.info("You have pressed 1");

 sendRQNT(DTMF_1, false);

 break;

 case MgcpEvent.DTMF_2:

 logger.info("You have pressed 2");

 sendRQNT(DTMF_2, false);

 break;

 case MgcpEvent.DTMF_3:

 logger.info("You have pressed 3");

 sendRQNT(DTMF_3, false);

 break;

 case MgcpEvent.DTMF_4:

 logger.info("You have pressed 4");

 sendRQNT(DTMF_4, false);

 break;

 case MgcpEvent.DTMF_5:

 logger.info("You have pressed 5");

 sendRQNT(DTMF_5, false);

 break;

 case MgcpEvent.DTMF_6:

 logger.info("You have pressed 6");

 sendRQNT(DTMF_6, false);

 break;

 case MgcpEvent.DTMF_7:

Chapter 2. Resource Adaptor Type

16

 logger.info("You have pressed 7");

 sendRQNT(DTMF_7, false);

 break;

 case MgcpEvent.DTMF_8:

 logger.info("You have pressed 8");

 sendRQNT(DTMF_8, false);

 break;

 case MgcpEvent.DTMF_9:

 logger.info("You have pressed 9");

 sendRQNT(DTMF_9, false);

 break;

 case MgcpEvent.DTMF_A:

 logger.info("You have pressed A");

 sendRQNT(A, false);

 break;

 case MgcpEvent.DTMF_B:

 logger.info("You have pressed B");

 sendRQNT(B, false);

 break;

 case MgcpEvent.DTMF_C:

 logger.info("You have pressed C");

 sendRQNT(C, false);

 break;

 case MgcpEvent.DTMF_D:

 logger.info("You have pressed D");

 sendRQNT(D, false);

 break;

 case MgcpEvent.DTMF_STAR:

 logger.info("You have pressed *");

 sendRQNT(STAR, false);

 break;

 case MgcpEvent.DTMF_HASH:

 logger.info("You have pressed C");

 sendRQNT(POUND, false);

 break;

 }

 }

 }

 public void onCallTerminated(RequestEvent evt, ActivityContextInterface aci) {

Sbb Code Examples

17

 EndpointIdentifier endpointID = new EndpointIdentifier(this.getEndpointName(),

 JBOSS_BIND_ADDRESS + ":"

 + MGCP_PEER_PORT);

 DeleteConnection deleteConnection = new DeleteConnection(this, endpointID);

 deleteConnection.setTransactionHandle(mgcpProvider.getUniqueTransactionHandler());

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { deleteConnection });

 ServerTransaction tx = evt.getServerTransaction();

 Request request = evt.getRequest();

 try {

 Response response = messageFactory.createResponse(Response.OK, request);

 tx.sendResponse(response);

 } catch (Exception e) {

 logger.severe("Error while sending DLCX ", e);

 }

 }

}

18

Chapter 3.

19

Resource Adaptor Implementation
The RA implementation uses the Mobicents JAIN MGCP Implementation.

3.1. Configuration

The Resource Adaptor supports configuration only at Resource Adaptor Entity creation time, the

following table enumerates the configuration properties:

Table 3.1. Resource Adaptor's Configuration Properties

Property Name Description Property Type Default

Value

jain.mgcp.PORT the port to which the

MGCP stack should

listen

java.lang.Integer 2727

jain.mgcp.IP_ADDRESS the IP address to

which the MGCP

stack should attach

- if value is not

specified the RA will

use the underlying

Java EE container's

bind address address

java.lang.String

Important

JAIN SLEE 1.1 Specification requires values set for properties without a default

value, which means the configuration for those properties are mandatory,

otherwise the Resource Adaptor Entity creation will fail!

3.2. Default Resource Adaptor Entities

There is a single Resource Adaptor Entity created when deploying the Resource Adaptor, named

MGCPRA. The MGCPRA entity uses the default Resource Adaptor configuration, specified in

Section 3.1, “Configuration”. The MGCPRA entity is also bound to Resource Adaptor Link Name

MGCPRA, to use it in an Sbb add the following XML to its descriptor:.

 <resource-adaptor-type-binding>

 <resource-adaptor-type-ref>

Chapter 3. Resource Adaptor I...

20

 <resource-adaptor-type-name>

 jain-mgcp

 </resource-adaptor-type-name>

 <resource-adaptor-type-vendor>

 net.java

 </resource-adaptor-type-vendor>

 <resource-adaptor-type-version>

 2.0

 </resource-adaptor-type-version>

 </resource-adaptor-type-ref>

 <activity-context-interface-factory-name>

 slee/resources/jainmgcp/2.0/acifactory/demo

 </activity-context-interface-factory-name>

 <resource-adaptor-entity-binding>

 <resource-adaptor-object-name>

 slee/resources/jainmgcp/2.0/provider/demo

 </resource-adaptor-object-name>

 <resource-adaptor-entity-link>

 MGCPRA

 </resource-adaptor-entity-link>

 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>

3.3. Traces and Alarms

3.3.1. Tracers

Each Resource Adaptor Entity uses a single JAIN SLEE 1.1 Tracer, named

MgcpResourceAdaptor.

3.3.2. Alarms

No alarms are set by this Resource Adaptor.

Chapter 4.

21

Setup

4.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

4.1.1. Hardware Requirements

The Resource Adaptor hardware's main concern is RAM memory and Java Heap size, the more

the better. For instance, while the underlying Mobicents JAIN SLEE may run with 1GB of RAM.

Of course, memory is only needed to store the Resource Adaptor state, the faster the CPU more

calls per second are supported, yet no particular CPU is a real requirement to use the RA.

4.1.2. Software Prerequisites

The RA requires Mobicents JAIN SLEE properly set.

4.2. Mobicents JAIN SLEE MGCP Resource Adaptor

Source Code

4.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/mgcp, then add the

specific release version, lets consider 2.4.0.FINAL.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/

mgcp/2.4.0.FINAL slee-ra-mgcp-2.4.0.FINAL

http://svnbook.red-bean.com

Chapter 4. Setup

22

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the deployable unit binary.

 [usr]$ cd slee-ra-mgcp-2.4.0.FINAL

 [usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS_HOME is

pointing to its underlying JBoss Application Server directory, then the deployable unit jar will

also be deployed in the container.

4.2.2. Development Trunk Source Building

Similar process as for Section 4.2.1, “Release Source Code Building” , the only change is the

SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/servers/jain-slee/

resources/mgcp.

4.3. Installing Mobicents JAIN SLEE MGCP Resource

Adaptor

To install the Resource Adaptor simply execute provided ant script build.xml default target:

[usr]$ ant

The script will copy the RA deployable unit jar to the default Mobicents JAIN SLEE server profile

deploy directory, to deploy to another server profile use the argument -Dnode= .

4.4. Uninstalling Mobicents JAIN SLEE MGCP

Resource Adaptor

To uninstall the Resource Adaptor simply execute provided ant script build.xml undeploy target:

http://maven.apache.org

 Uninstalling Mobicents JAIN SLEE MGCP Resource Adaptor

23

[usr]$ ant undeploy

The script will delete the RA deployable unit jar from the default Mobicents JAIN SLEE server

profile deploy directory, to undeploy from another server profile use the argument -Dnode= .

24

Chapter 5.

25

Clustering
Clustering is not yet supported by MGCP RA

26

27

Appendix A. Revision History
Revision History

Revision 1.0 Mon Feb 08 2010 AmitBhayani

Creation of the Mobicents JAIN SLEE MGCP RA User Guide.

28

29

Index
F
feedback, viii

30

	Mobicents JAIN SLEE MGCP Resource Adaptor User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE MGCP Resource Adaptor
	Chapter 2. Resource Adaptor Type
	2.1. Activities
	2.2. Events
	2.3. Activity Context Interface Factory
	2.4. Resource Adaptor Interface
	2.5. Restrictions
	2.6. Sbb Code Examples

	Chapter 3. Resource Adaptor Implementation
	3.1. Configuration
	3.2. Default Resource Adaptor Entities
	3.3. Traces and Alarms
	3.3.1. Tracers
	3.3.2. Alarms

	Chapter 4. Setup
	4.1. Pre-Install Requirements and Prerequisites
	4.1.1. Hardware Requirements
	4.1.2. Software Prerequisites

	4.2. Mobicents JAIN SLEE MGCP Resource Adaptor Source Code
	4.2.1. Release Source Code Building
	4.2.2. Development Trunk Source Building

	4.3. Installing Mobicents JAIN SLEE MGCP Resource Adaptor
	4.4. Uninstalling Mobicents JAIN SLEE MGCP Resource Adaptor

	Chapter 5. Clustering
	Appendix A. Revision History
	Index

