
Creating Infinispan Clusters

Table of Contents
1. Clustering . 1

1.1. Which cache mode should I use? . 1

1.2. Local Mode . 2

2. Simple Cache . 3

2.1. Declarative configuration . 3

2.2. Programmatic configuration . 3

2.3. Invalidation Mode . 4

2.4. Replicated Mode . 6

2.5. Distribution Mode. 8

2.5.1. Read consistency. 10

2.5.2. Key Ownership . 11

2.5.3. Initial cluster size . 13

2.5.4. L1 Caching . 13

2.5.5. Server Hinting . 15

2.5.6. Key affinity service. 15

2.6. Scattered Mode . 20

2.7. Asynchronous Options . 21

2.7.1. Asynchronous Communications . 21

2.7.2. Asynchronous API . 21

2.7.3. Return Values. 21

2.8. Partition handling . 22

2.8.1. Split brain . 23

2.8.2. Successive nodes stopped . 25

2.8.3. Conflict Manager. 26

2.8.4. Usage . 27

2.8.5. Configuring partition handling . 28

2.8.6. Monitoring and administration. 29

Chapter 1. Clustering
A cache manager can be configured to be either local (standalone) or clustered. When clustered,
manager instances use JGroups' discovery protocols to automatically discover neighboring
instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager
constructor, or supply the following XML configuration file.

<infinispan />

To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();
DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>
 <cache-container>
 <transport/>
 </cache-container>
</infinispan>

Individual caches can then be configured in different modes:

• Local: changes and reads are never replicated. This is the only mode available in non-clustered
cache managers.

• Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are
local.

• Replicated: changes are replicated to all nodes, reads are always local.

• Distributed: changes are replicated to a fixed number of nodes, reads request the value from at
least one of the owner nodes.

1.1. Which cache mode should I use?
Which cache you should use depends on the qualities/guarantees you need for your data. The
following table summarizes the most important ones:

Simple Local Invalidatio
n

Replicated Distributed Scattered

Clustered No No Yes Yes Yes Yes

Read
performance

Highest
(local)

High
(local)

High
(local)

High
(local)

Medium
(owners)

Medium
(primary)

1

Simple Local Invalidatio
n

Replicated Distributed Scattered

Write
performance

Highest
(local)

High
(local)

Low
(all nodes,
no data)

Lowest
(all nodes)

Medium
(owner
nodes)

Higher
(single RPC)

Capacity Single node Single node Single node Smallest
node

Cluster
(sum_(i=1)^"
nodes""nod

e_capacity")/
"owners"

Cluster
(sum_(i=1)^"
nodes""nod

e_capacity")/
"2"

Availability Single node Single node Single node All nodes Owner
nodes

Owner
nodes

Features No TX,
persistence
, indexing

All All All All No TX

1.2. Local Mode
While Infinispan is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap — making migration from a map to
Infinispan trivial.

Infinispan caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

2

Chapter 2. Simple Cache
Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

• transactions and invocation batching

• persistence (cache stores and loaders)

• custom interceptors (there’s no interceptor stack!)

• indexing

• transcoding

• store as binary (which is hardly useful for local caches)

From the API perspective these features throw an exception:

• adding custom interceptors

• Distributed Executors Framework

So, what’s left?

• basic map-like API

• cache listeners (local ones)

• expiration

• eviction

• security

• JMX access

• statistics (though for max performance it is recommended to switch this off using statistics-
available=false)

2.1. Declarative configuration

<local-cache name="mySimpleCache" simple-cache="true">
 <!-- expiration, eviction, security... -->
</local-cache>

2.2. Programmatic configuration

3

CacheManager cm = getCacheManager();
ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());
Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

2.3. Invalidation Mode
In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is
written to, the cache only aims to remove data that may be stale from other nodes. This cache mode
only makes sense if you have another, permanent store for your data such as a database and are
only using Infinispan as an optimization in a read-heavy system, to prevent hitting the database for
every read. If a cache is configured for invalidation, every time data is changed in a cache, other
caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

4

Figure 1. Invalidation mode

5

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
ClusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

Transactions can be used to batch the invalidation messages. Transactions acquire the key lock on
the primary owner. To find more about how primary owners are assigned, please read the Key
Ownership section.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message (optionally
fire-and-forget) which invalidates all affected keys and releases the locks.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget, and the last message always releases the locks.

2.4. Replicated Mode
Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

6

#key_ownership
#key_ownership
#key_ownership

Figure 2. Replicated mode

7

Replicated mode can be synchronous or asynchronous.

• Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

• Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

2.5. Distribution Mode
Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the
cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

8

#key_ownership

Figure 3. Distributed mode

9

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require 0 messages if the key is present in the local cache, or up to 2 *

numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.

Cache topology changes may cause retries and additional messages, both for reads
and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

2.5.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners — in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

10

2.5.2. Key Ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of
owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup
owners. When the cache topology changes, because a node joins or leaves the cluster, the segment
ownership table is broadcast to every node. This allows nodes to locate keys without making
multicast requests or maintaining metadata for each key.

The numSegments property configures the number of segments available. However, the number of
segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments
regardless of cluster topology changes. It is important that the key-to-segment mapping evenly
distributes the number of segments allocated to each node while minimizing the number of
segments that must move when the cluster topology changes.

You can customize the key-to-segment mapping by configuring a KeyPartitioner or by using the
Grouping API.

However, Infinispan provides the following implementations:

SyncConsistentHashFactory

Uses an algorithm based on consistent hashing. Selected by default when server hinting is
disabled.

This implementation always assigns keys to the same nodes in every cache as long as the cluster
is symmetric. In other words, all caches run on all nodes. This implementation does have some
negative points in that the load distribution is slightly uneven. It also moves more segments than
strictly necessary on a join or leave.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

Achieves a more even distribution than SyncConsistentHashFactory, but with one disadvantage.
The order in which nodes join the cluster determines which nodes own which segments. As a
result, keys might be assigned to different nodes in different caches.

Was the default from version 5.2 to version 8.1 with server hinting disabled.

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting.

Was the default from version 5.2 to version 8.1 with server hinting enabled.

ReplicatedConsistentHashFactory

Used internally to implement replicated caches. You should never explicitly select this algorithm

11

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
#grouping_api
http://en.wikipedia.org/wiki/Consistent_hashing
#server_hinting
#server_hinting

in a distributed cache.

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor
can be any non-negative number, and the hashing algorithm will try to assign to each node a load
weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

Zero Capacity Node

You might need to configure a whole node where the capacity factor is 0 for every cache, user
defined caches and internal caches. When defining a zero capacity node, the node won’t hold any
data. This is how you declare a zero capacity node:

<cache-container zero-capacity-node="true" />

new GlobalConfigurationBuilder().zeroCapacityNode(true);

However, note that this will be true for distributed caches only. If you are using replicated caches,
the node will still keep a copy of the value. Use only distributed caches to make the best use of this
feature.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-factor=
"2" />

And this is how you can configure it programmatically, in Java:

12

Configuration c = new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.DIST_SYNC)
 .hash()
 .numOwners(2)
 .numSegments(100)
 .capacityFactor(2)
 .build();

2.5.3. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed
at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before
starting. While this is very flexible, it might not be suitable for applications which require a specific
number of nodes to join the cluster before caches are started. For this reason, you can specify how
many nodes should have joined the cluster before proceeding with cache initialization. To do this,
use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML
configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />

The programmatic Java configuration:

GlobalConfiguration global = new GlobalConfigurationBuilder()
 .transport()
 .initialClusterSize(4)
 .initialClusterTimeout(30000)
 .build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

2.5.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

13

Figure 4. L1 caching

14

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and
without L1 enabled and see what works best for your access pattern.

2.5.5. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site

Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport
 cluster="MyCluster"
 machine="LinuxServer01"
 rack="Rack01"
 site="US-WestCoast" />

2.5.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

15

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(
 cache,
 new RndKeyGenerator(),
 Executors.newSingleThreadExecutor(),
 100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
 void start();
 void stop();
}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t
do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

16

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

The Grouping API

Complementary to Key affinity service, the grouping API allows you to co-locate a group of entries
on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?

First, you must enable groups. If you are configuring Infinispan programmatically, then call:

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled()
 .build();

Or, if you are using XML:

<distributed-cache>
 <groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

17

#grouping_api
#key_affinity_service
#key_ownership

class User {
 ...
 String office;
 ...

 public int hashCode() {
 // Defines the hash for the key, normally used to determine location
 ...
 }

 // Override the location by specifying a group
 // All keys in the same group end up with the same owners
 @Group
 public String getOffice() {
 return office;
 }
 }
}

 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
 String computeGroup(T key, String group);

 Class<T> getKeyType();
}

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group. Let’s take a look at an example Grouper
implementation:

18

public class KXGrouper implements Grouper<String> {

 // The pattern requires a String key, of length 2, where the first character is
 // "k" and the second character is a digit. We take that digit, and perform
 // modular arithmetic on it to assign it to group "0" or group "1".
 private static Pattern kPattern = Pattern.compile("(^k)(<a>\\d)$");

 public String computeGroup(String key, String group) {
 Matcher matcher = kPattern.matcher(key);
 if (matcher.matches()) {
 String g = Integer.parseInt(matcher.group(2)) % 2 + "";
 return g;
 } else {
 return null;
 }
 }

 public Class<String> getKeyType() {
 return String.class;
 }
}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring Infinispan programmatically:

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled().addGrouper(new KXGrouper())
 .build();

Or, if you are using XML:

<distributed-cache>
 <groups enabled="true">
 <grouper class="com.acme.KXGrouper" />
 </groups>
</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

19

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when
a cache contains lots of small groups.

2.6. Scattered Mode
Scattered mode is very similar to Distribution Mode as it allows linear scaling of the cluster. It
allows single node failure by maintaining two copies of the data (as Distribution Mode with
numOwners=2). Unlike Distributed, the location of data is not fixed; while we use the same
Consistent Hash algorithm to locate the primary owner, the backup copy is stored on the node that
wrote the data last time. When the write originates on the primary owner, backup copy is stored on
any other node (the exact location of this copy is not important).

This has the advantage of single RPC for any write (Distribution Mode requires one or two RPCs),
but reads have to always target the primary owner. That results in faster writes but possibly slower
reads, and therefore this mode is more suitable for write-intensive applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to
remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which
generates some overhead. This makes scattered mode less performant in very big clusters (this
behaviour might be optimized in the future).

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the
backups and find out the last written backup copy. This process results in more network traffic
during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site ids on the transport
level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

Currently it is not possible to use scattered mode in transactional cache. Asynchronous replication
is not supported either; use asynchronous Cache API instead. Functional commands are not
implemented neither but these are expected to be added soon.

The cache is configured in a similar way as the other cache modes, here is an example of
declarative configuration:

<scattered-cache name="scatteredCache" />

And this is how you can configure it programmatically:

Configuration c = new ConfigurationBuilder()
 .clustering().cacheMode(CacheMode.SCATTERED_SYNC)
 .build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through
the Hot Rod protocol. The protocol automatically selects primary owner for the writes and
therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.
Therefore, scattered cache would not bring the performance benefit.

20

2.7. Asynchronous Options

2.7.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

2.7.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.

Prior to version 9.0, the asynchronous API was emulated by borrowing a thread
from an internal thread pool and running a blocking operation on that thread.

2.7.3. Return Values

Because the Cache interface extends java.util.Map, write methods like put(key, value) and
remove(key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.

2. When the cache is configured with unreliable-return-values="true".

3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Infinispan retry the write operations, and a retried operation’s
return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented
as repeatable-read. That means this example of "double-checked locking" won’t work:

21

https://docs.jboss.org/infinispan/10.0/configdocs/

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
 Integer v1 = cache.get(k);
 // Increment the value
 Integer v2 = cache.put(k, v1 + 1);
 if (Objects.equals(v1, v2) {
 // success
 } else {
 // retry
 }
} finally {
 tm.commit();
}

The correct way to implement this is to use
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(k).

In caches with optimistic locking, writes can also return stale previous values. Write skew checks
can avoid stale previous values.

2.8. Partition handling
An Infinispan cluster is built out of a number of nodes where data is stored. In order not to lose
data in the presence of node failures, Infinispan copies the same data — cache entry in Infinispan
parlance — over multiple nodes. This level of data redundancy is configured through the numOwners
configuration attribute and ensures that as long as fewer than numOwners nodes crash
simultaneously, Infinispan has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear
from the cluster:

Split brain

Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that
operate independently. In these circumstances, multiple clients reading/writing from different
partitions see different versions of the same cache entry, which for many application is
problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as
redundant networks or IP bonding. These only reduce the window of time for the problem to
occur, though.

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and Infinispan does not have the time to
properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to configure what
operations can be performed on a cache in the event of a split brain occurring. Infinispan provides

22

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

multiple partition handling strategies, which in terms of Brewer’s CAP theorem determine whether
availability or consistency is sacrificed in the presence of partition(s). Below is a list of the provided
strategies:

Strategy Description CAP

DENY_READ_WRITES If the partition does not have all
owners for a given segment,
both reads and writes are
denied for all keys in that
segment.

Consistency

ALLOW_READS Allows reads for a given key if it
exists in this partition, but only
allows writes if this partition
contains all owners of a
segment. This is still a
consistent approach because
some entries are readable if
available in this partition, but
from a client application
perspective it is not
deterministic.

Consistency

ALLOW_READ_WRITES Allow entries on each partition
to diverge, with conflict
resolution attempted upon the
partitions merging.

Availability

The requirements of your application should determine which strategy is appropriate. For example,
DENY_READ_WRITES is more appropriate for applications that have high consistency
requirements; i.e. when the data read from the system must be accurate. Whereas if Infinispan is
used as a best-effort cache, partitions maybe perfectly tolerable and the ALLOW_READ_WRITES
might be more appropriate as it favours availability over consistency.

The following sections describe how Infinispan handles split brain and successive failures for each
of the partition handling strategies. This is followed by a section describing how Infinispan allows
for automatic conflict resolution upon partition merges via merge policies. Finally, we provide a
section describing how to configure partition handling strategies and merge policies.

2.8.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the
nodes from the other partition(s). We don’t have a direct way of determining whether the has been
split into two or more partitions, since the partitions are unaware of each other. Instead, we
assume the cluster has split when one or more nodes disappear from the JGroups cluster without
sending an explicit leave message.

Split Strategies

In this section, we detail how each partition handling strategy behaves in the event of split brain
occurring.

23

http://en.wikipedia.org/wiki/CAP_theorem
#split_brain
#successive_node_failures
#merge_policies
#partition_handling_configuration

ALLOW_READ_WRITES

Each partition continues to function as an independent cluster, with all partitions remaining in
AVAILABLE mode. This means that each partition may only see a part of the data, and each
partition could write conflicting updates in the cache. During a partition merge these conflicts are
automatically resolved by utilising the ConflictManager and the configured EntryMergePolicy.

DENY_READ_WRITES

When a split is detected each partition does not start a rebalance immediately, but first it checks
whether it should enter DEGRADED mode instead:

• If at least one segment has lost all its owners (meaning at least numOwners nodes left since the
last rebalance ended), the partition enters DEGRADED mode.

• If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the
latest stable topology, the partition also enters DEGRADED mode.

• Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator
determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions
enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

• Requests (reads and writes) for entries that have all the copies on nodes within this partition
are honoured.

• Requests for entries that are partially or totally owned by nodes that disappeared are rejected
with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),
and also that one partition can not read keys that have been updated in the other partitions (no
stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with
numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)
such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in
two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

• on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available
and accessing them results in an AvailabilityException

• on N2, k1 and k2 are not available for read/write, k3 is available

A relevant aspect of the partition handling process is the fact that when a split brain happens, the
resulting partitions rely on the original segment mapping (the one that existed before the split
brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache
or not, their availability is the same.

24

#conflict_manager
#merge_policies

If at a further point in time the network heals and N1 and N2 partitions merge back together into the
initial cluster M, then M exits the degraded mode and becomes fully available again. During this
merge operation, because M has once again become fully available, the ConflictManager and the
configured EntryMergePolicy are used to check for any conflicts that may have occurred in the
interim period between the split brain occurring and being detected.

As another example, the cluster could split in two partitions O1 = {A, B, C} and O2 = {D}, partition
O1 will stay fully available (rebalancing cache entries on the remaining members). Partition O2,
however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned
keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions O1 and O2 merge back into M, then the ConflictManager attempts to resolve
any conflicts and D once again becomes fully available.

ALLOW_READS

Partitions are handled in the same manner as DENY_READ_WRITES, except that when a partition is
in DEGRADED mode read operations on a partially owned key WILL not throw an
AvailabilityException.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write
inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain
node is part of the cluster, or check that an external machine is accessible) that could handle that
situation as well.

2.8.2. Successive nodes stopped

As mentioned in the previous section, Infinispan can’t detect whether a node left the JGroups view
because of a process/machine crash, or because of a network failure: whenever a node leaves the
JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available
and will try to make new replicas of the data on the crashed node. However, other nodes might
crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,
there is a chance that some cache entries have disappeared from the cluster altogether. In this case,
with the DENY_READ_WRITES or ALLOW_READS strategy enabled, Infinispan assumes (incorrectly)
that there is a split brain and enters DEGRADED mode as described in the split-brain section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the
loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,
Infinispan knows that the node can’t come back. However, the cluster doesn’t keep track of how
each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating
it on restart with the data from an external source. Clusters are expected to be configured with an
appropriate numOwners in order to avoid numOwners successive node failures, so this situation should
be pretty rare. If the application can handle losing some of the data in the cache, the administrator
can force the availability mode back to AVAILABLE via JMX.

25

#conflict_manager
#merge_policies
#conflict_manager

2.8.3. Conflict Manager

The conflict manager is a tool that allows users to retrieve all stored replica values for a given key.
In addition to allowing users to process a stream of cache entries whose stored replicas have
conflicting values. Furthermore, by utilising implementations of the EntryMergePolicy interface it
is possible for said conflicts to be resolved automatically.

Detecting Conflicts

Conflicts are detected by retrieving each of the stored values for a given key. The conflict manager
retrieves the value stored from each of the key’s write owners defined by the current consistent
hash. The .equals method of the stored values is then used to determine whether all values are
equal. If all values are equal then no conflicts exist for the key, otherwise a conflict has occurred.
Note that null values are returned if no entry exists on a given node, therefore we deem a conflict
to have occurred if both a null and non-null value exists for a given key.

Merge Policies

In the event of conflicts arising between one or more replicas of a given CacheEntry, it is necessary
for a conflict resolution algorithm to be defined, therefore we provide the EntryMergePolicy
interface. This interface consists of a single method, "merge", whose returned CacheEntry is utilised
as the "resolved" entry for a given key. When a non-null CacheEntry is returned, this entries value
is "put" to all replicas in the cache. However when the merge implementation returns a null value,
all replicas associated with the conflicting key are removed from the cache.

The merge method takes two parameters: the "preferredEntry" and "otherEntries". In the context of
a partition merge, the preferredEntry is the primary replica of a CacheEntry stored in the partition
that contains the most nodes or if partitions are equal the one with the largest topologyId. In the
event of overlapping partitions, i.e. a node A is present in the topology of both partitions {A},
{A,B,C}, we pick {A} as the preferred partition as it will have the higher topologId as the other
partition’s topology is behind. When a partition merge is not occurring, the "preferredEntry" is
simply the primary replica of the CacheEntry. The second parameter, "otherEntries" is simply a list
of all other entries associated with the key for which a conflict was detected.

EntryMergePolicy::merge is only called when a conflict has been detected, it is not
called if all CacheEntrys are the same.

Currently Infinispan provides the following implementations of EntryMergePolicy:

26

#merge_policies
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/conflict/EntryMergePolicy.html

Policy Description

MergePolicy.NONE (default) No attempt is made to resolve conflicts. Entries
hosted on the minority partition are removed
and the nodes in this partition do not hold any
data until the rebalance starts. Note, this
behaviour is equivalent to prior Infinispan
versions which did not support conflict
resolution. Note, in this case all changes made to
entries hosted on the minority partition are lost,
but once the rebalance has finished all entries
will be consistent.

MergePolicy.PREFERRED_ALWAYS Always utilise the "preferredEntry".
MergePolicy.NONE is almost equivalent to
PREFERRED_ALWAYS, albeit without the
performance impact of performing conflict
resolution, therefore MergePolicy.NONE should
be chosen unless the following scenario is a
concern. When utilising the
DENY_READ_WRITES or DENY_READ strategy, it
is possible for a write operation to only partially
complete when the partitions enter DEGRADED
mode, resulting in replicas containing
inconsistent values.
MergePolicy.PREFERRED_ALWAYS will detect
said inconsistency and resolve it, whereas with
MergePolicy.NONE the CacheEntry replicas will
remain inconsistent after the cluster has
rebalanced.

MergePolicy.PREFERRED_NON_NULL Utilise the "preferredEntry" if it is non-null,
otherwise utilise the first entry from
"otherEntries".

MergePolicy.REMOVE_ALL Always remove a key from the cache when a
conflict is detected.

Fully qualified class name The custom implementation for merge will be
used Custom merge policy

2.8.4. Usage

During a partition merge the ConflictManager automatically attempts to resolve conflicts utilising
the configured EntryMergePolicy, however it is also possible to manually search for/resolve
conflicts as required by your application.

The code below shows how to retrieve an EmbeddedCacheManager’s ConflictManager, how to
retrieve all versions of a given key and how to check for conflicts across a given cache.

27

#partition_handling_custom_merge_policy

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<Integer, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache
.getAdvancedCache());

// Get All Versions of Key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, InternalCacheEntry<Integer, String>>> stream = crm.getConflicts();
stream.forEach(map -> {
 CacheEntry<Object, Object> entry = map.values().iterator().next();
 Object conflictKey = entry.getKey();
 cache.remove(conflictKey);
});

// Detect and then resolve conflicts using the configured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator is in fact lazily-loading cache entries on a per segment basis.

2.8.5. Configuring partition handling

Unless the cache is distributed or replicated, partition handling configuration is ignored. The
default partition handling strategy is ALLOW_READ_WRITES and the default EntryMergePolicy is
MergePolicies::PREFERRED_ALWAYS.

<distributed-cache name="the-default-cache">
 <partition-handling when-split="ALLOW_READ_WRITES" merge-policy="
PREFERRED_NON_NULL"/>
</distributed-cache>

The same can be achieved programmatically:

ConfigurationBuilder dcc = new ConfigurationBuilder();
dcc.clustering().partitionHandling()
 .whenSplit(PartitionHandling.ALLOW_READ_WRITES)
 .mergePolicy(MergePolicies.PREFERRED_ALWAYS);

Implement a custom merge policy

It’s also possible to provide custom implementations of the EntryMergePolicy

28

<distributed-cache name="the-default-cache">
 <partition-handling when-split="ALLOW_READ_WRITES" merge-policy=
"org.example.CustomMergePolicy"/>
</distributed-cache>

ConfigurationBuilder dcc = new ConfigurationBuilder();
dcc.clustering().partitionHandling()
 .whenSplit(PartitionHandling.ALLOW_READ_WRITES)
 .mergePolicy(new CustomMergePolicy());

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

 @Override
 public CacheEntry<String, String> merge(CacheEntry<String, String> preferredEntry,
List<CacheEntry<String, String>> otherEntries) {
 // decide which entry should be used

 return the_solved_CacheEntry;
 }

Deploy custom merge policies to a Infinispan server instance

To utilise a custom EntryMergePolicy implementation on the server, it’s necessary for the
implementation class(es) to be deployed to the server. This is accomplished by utilising the java
service-provider convention and packaging the class files in a jar which has a META-
INF/services/org.infinispan.conflict.EntryMergePolicy file containing the fully qualified class name
of the EntryMergePolicy implementation.

list all necessary implementations of EntryMergePolicy with the full qualified name
org.example.CustomMergePolicy

In order for a Custom merge policy to be utilised on the server, you should enable object storage, if
your policies semantics require access to the stored Key/Value objects. This is because cache entries
in the server may be stored in a marshalled format and the Key/Value objects returned to your
policy would be instances of WrappedByteArray. However, if the custom policy only depends on the
metadata associated with a cache entry, then object storage is not required and should be avoided
(unless needed for other reasons) due to the additional performance cost of marshalling data per
request. Finally, object storage is never required if one of the provided merge policies is used.

2.8.6. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The
attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED
mode back to AVAILABLE (at the cost of consistency).

29

https://docs.jboss.org/infinispan/10.0/apidocs/jmxComponents.html#Cache

The availability mode is also accessible via the AdvancedCache interface:

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability
if (!available) {
 ac.setAvailability(AvailabilityMode.AVAILABLE);
}

30

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html

	Creating Infinispan Clusters
	Table of Contents
	Chapter 1. Clustering
	1.1. Which cache mode should I use?
	1.2. Local Mode

	Chapter 2. Simple Cache
	2.1. Declarative configuration
	2.2. Programmatic configuration
	2.3. Invalidation Mode
	2.4. Replicated Mode
	2.5. Distribution Mode
	2.5.1. Read consistency
	2.5.2. Key Ownership
	2.5.3. Initial cluster size
	2.5.4. L1 Caching
	2.5.5. Server Hinting
	2.5.6. Key affinity service

	2.6. Scattered Mode
	2.7. Asynchronous Options
	2.7.1. Asynchronous Communications
	2.7.2. Asynchronous API
	2.7.3. Return Values

	2.8. Partition handling
	2.8.1. Split brain
	2.8.2. Successive nodes stopped
	2.8.3. Conflict Manager
	2.8.4. Usage
	2.8.5. Configuring partition handling
	2.8.6. Monitoring and administration

