
Using the Infinispan Hot Rod Endpoint
with Java Clients

Table of Contents
1. Using Hot Rod Server. 1

1.1. Java Hot Rod client . 1

1.1.1. Configuration . 1

1.1.2. Authentication . 2

1.1.3. Encryption . 6

1.1.4. Basic API . 8

1.1.5. RemoteCache(.keySet|.entrySet|.values) . 9

1.1.6. Remote Iterator . 10

1.1.7. Versioned API . 12

1.1.8. Streaming API . 13

1.1.9. Creating Event Listeners . 14

1.1.10. Removing Event Listeners . 16

1.1.11. Filtering Events . 16

1.1.12. Customizing Events . 19

1.1.13. Filter and Custom Events . 22

1.1.14. Event Marshalling . 24

1.1.15. Listener State Handling. 25

1.1.16. Listener Failure Handling . 25

1.1.17. Near Caching . 26

1.1.18. Unsupported methods . 27

1.1.19. Return values. 28

2. Hot Rod Transactions . 29

2.1. Configuring the Server . 29

2.2. Configuring Hot Rod Clients. 29

2.2.1. TransactionManagerLookup Interface . 30

2.2.2. Transaction Modes . 30

2.3. Overriding Configuration for Cache Instances . 31

2.4. Detecting Conflicts with Transactions . 31

2.5. Using the Configured Transaction Manager and Transaction Mode . 33

2.6. Overriding the Transaction Manager . 34

2.7. Overriding the Transaction Mode . 35

2.7.1. Client Intelligence . 35

2.7.2. Request Balancing. 36

2.7.3. Persistent connections. 36

2.7.4. Marshalling data . 36

2.7.5. Reading data in different data formats . 37

2.7.6. Statistics. 38

2.7.7. Multi-Get Operations . 38

2.7.8. Failover capabilities . 38

2.7.9. Site Cluster Failover . 39

2.7.10. Manual Site Cluster Switch. 39

2.7.11. Monitoring the Hot Rod client . 40

2.7.12. Concurrent Updates . 40

Chapter 1. Using Hot Rod Server
The Infinispan Server distribution contains a server module that implements Infinispan’s custom
binary protocol called Hot Rod. The protocol was designed to enable faster client/server
interactions compared to other existing text based protocols and to allow clients to make more
intelligent decisions with regards to load balancing, failover and even data location operations.

To connect to Infinispan over this highly efficient Hot Rod protocol you can either use one of the
clients described in this chapter, or use higher level tools such as Hibernate OGM.

1.1. Java Hot Rod client
Hot Rod is a binary, language neutral protocol. This article explains how a Java client can interact
with a server via the Hot Rod protocol. A reference implementation of the protocol written in Java
can be found in all Infinispan distributions, and this article focuses on the capabilities of this java
client.

Looking for more clients? Visit this website for clients written in a variety of
different languages.

1.1.1. Configuration

The Java Hot Rod client can be configured both programmatically and externally, through a
configuration file.

The code snippet below illustrates the creation of a client instance using the available Java fluent
API:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.tcpNoDelay(true)
 .connectionPool()
 .numTestsPerEvictionRun(3)
 .testOnBorrow(false)
 .testOnReturn(false)
 .testWhileIdle(true)
 .addServer()
 .host("localhost")
 .port(11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

For a complete reference to the available configuration option please refer to the
ConfigurationBuilder's javadoc.

It is also possible to configure the Java Hot Rod client using a properties file, e.g.:

1

http://infinispan.org/hotrod-clients
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html

infinispan.client.hotrod.transport_factory =
org.infinispan.client.hotrod.impl.transport.tcp.TcpTransportFactory
infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.marshaller =
org.infinispan.jboss.marshalling.commons.GenericJBossMarshaller
infinispan.client.hotrod.async_executor_factory =
org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory
infinispan.client.hotrod.default_executor_factory.pool_size = 1
infinispan.client.hotrod.default_executor_factory.queue_size = 10000
infinispan.client.hotrod.tcp_no_delay = true
infinispan.client.hotrod.request_balancing_strategy =
org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy
infinispan.client.hotrod.key_size_estimate = 64
infinispan.client.hotrod.value_size_estimate = 512
infinispan.client.hotrod.force_return_values = false
infinispan.client.hotrod.client_intelligence = HASH_DISTRIBUTION_AWARE
infinispan.client.hotrod.batch_Size = 10000

below is connection pooling config
maxActive=-1
maxTotal = -1
maxIdle = -1
whenExhaustedAction = 1
timeBetweenEvictionRunsMillis=120000
minEvictableIdleTimeMillis=300000
testWhileIdle = true
minIdle = 1

The properties file is then passed to one of constructors of RemoteCacheManager. You can use
property substitution to replace values at runtime with Java system properties:

infinispan.client.hotrod.server_list = ${server_list}

In the above example the value of the infinispan.client.hotrod.server_list property will be expanded
to the value of the server_list Java system property.

which means that the value should be taken from a system property named
jboss.bind.address.management and if it is not defined use 127.0.0.1.

For a complete reference of the available configuration options for the properties file please refer
to remote client configuration javadoc.

1.1.2. Authentication

If the server has set up authentication, you need to configure your client accordingly. Depending on
the mechs enabled on the server, the client must provide the required information.

2

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheManager-java.net.URL-
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/package-summary.html#package.description

DIGEST-MD5

DIGEST-MD5 is the recommended approach for simple username/password authentication
scenarios. If you are using the default realm on the server ("ApplicationRealm"), all you need to do is
provide your credentials as follows:

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .ssl()
 .username("myuser")
 .password("qwer1234!");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

PLAIN

The PLAIN mechanism is not really recommended unless the connection is also encrypted, as
anyone can sniff the clear-text password being sent along the wire.

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .authentication()
 .saslMechanism("PLAIN")
 .username("myuser")
 .password("qwer1234!");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

EXTERNAL

The EXTERNAL mechanism is special in that it doesn’t explicitly provide credentials but uses the
client certificate as identity. In order for this to work, in addition to the TrustStore (to validate the
server certificate) you need to provide a KeyStore (to supply the client certificate).

3

Hot Rod client configuration with EXTERNAL authentication (client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .ssl()
 // TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
 .trustStoreFileName("/path/to/truststore")
 .trustStorePassword("truststorepassword".toCharArray())
 // KeyStore containing this client's own certificate
 .keyStoreFileName("/path/to/keystore")
 .keyStorePassword("keystorepassword".toCharArray())
 .authentication()
 .saslMechanism("EXTERNAL");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For more details, read the Encryption section below.

GSSAPI (Kerberos)

GSSAPI/Kerberos requires a much more complex setup, but it is used heavily in enterprises with
centralized authentication servers. To successfully authenticate with Kerberos, you need to create a
LoginContext. This will obtain a Ticket Granting Ticket (TGT) which will be used as a token to
authenticate with the service.

You will need to define a login module in a login configuration file:

gss.conf

GssExample {
 com.sun.security.auth.module.Krb5LoginModule required client=TRUE;
};

If you are using the IBM JDK, the above becomes:

gss-ibm.conf

GssExample {
 com.ibm.security.auth.module.Krb5LoginModule required client=TRUE;
};

You will also need to set the following system properties:

java.security.auth.login.config=gss.conf

4

#hr_encryption

java.security.krb5.conf=/etc/krb5.conf

The krb5.conf file is dependent on your environment and needs to point to your KDC. Ensure that
you can authenticate via Kerberos using kinit.

Next up, configure your client as follows:

Hot Rod client GSSAPI configuration

LoginContext lc = new LoginContext("GssExample", new BasicCallbackHandler("krb_user",
"krb_password".toCharArray()));
lc.login();
Subject clientSubject = lc.getSubject();

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .authentication()
 .enable()
 .serverName("infinispan-server")
 .saslMechanism("GSSAPI")
 .clientSubject(clientSubject)
 .callbackHandler(new BasicCallbackHandler());
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For brevity we used the same callback handler both for obtaining the client subject and for
handling authentication in the SASL GSSAPI mech, however different callbacks will actually be
invoked: NameCallback and PasswordCallback are needed to construct the client subject, while the
AuthorizeCallback will be called during the SASL authentication.

Custom CallbackHandlers

In all of the above examples, the Hot Rod client is setting up a default CallbackHandler for you that
supplies the provided credentials to the SASL mechanism. For advanced scenarios it may be
necessary to provide your own custom CallbackHandler:

Hot Rod client configuration with authentication via callback

public class MyCallbackHandler implements CallbackHandler {
 final private String username;
 final private char[] password;
 final private String realm;

 public MyCallbackHandler(String username, String realm, char[] password) {
 this.username = username;
 this.password = password;
 this.realm = realm;

5

 }

 @Override
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (Callback callback : callbacks) {
 if (callback instanceof NameCallback) {
 NameCallback nameCallback = (NameCallback) callback;
 nameCallback.setName(username);
 } else if (callback instanceof PasswordCallback) {
 PasswordCallback passwordCallback = (PasswordCallback) callback;
 passwordCallback.setPassword(password);
 } else if (callback instanceof AuthorizeCallback) {
 AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;
 authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationID()
.equals(
 authorizeCallback.getAuthorizationID()));
 } else if (callback instanceof RealmCallback) {
 RealmCallback realmCallback = (RealmCallback) callback;
 realmCallback.setText(realm);
 } else {
 throw new UnsupportedCallbackException(callback);
 }
 }
 }
}

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .authentication()
 .enable()
 .serverName("myhotrodserver")
 .saslMechanism("DIGEST-MD5")
 .callbackHandler(new MyCallbackHandler("myuser", "ApplicationRealm",
"qwer1234!".toCharArray()));
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

The actual type of callbacks that your CallbackHandler will need to be able to handle are mech-
specific, so the above is just a simple example.

1.1.3. Encryption

Encryption uses TLS/SSL, so it requires setting up an appropriate server certificate chain. Generally,
a certificate chain looks like the following:

6

Figure 1. Certificate chain

In the above example there is one certificate authority "CA" which has issued a certificate for
"HotRodServer". In order for a client to trust the server, it needs at least a portion of the above
chain (usually, just the public certificate for "CA"). This certificate needs to placed in a keystore and
used as a TrustStore on the client and used as shown below:

Hot Rod client configuration with TLS (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .ssl()
 // TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
 .trustStoreFileName("/path/to/truststore")
 .trustStorePassword("truststorepassword".toCharArray());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

SNI

The server may have been configured with TLS/SNI support (Server Name Indication). This means
that the server is presenting multiple identities (probably bound to separate cache containers). The
client can specify which identity to connect to by specifying its name:

7

https://en.wikipedia.org/wiki/Server_Name_Indication

Hot Rod client configuration with SNI (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .ssl()
 .sniHostName("myservername")
 // TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
 .trustStoreFileName("/path/to/truststore")
 .trustStorePassword("truststorepassword".toCharArray());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Client certificates

With the above configurations the client trusts the server. For increased security, a server
administrator may have set up the server to require the client to offer a valid certificate for mutual
trust. This kind of configuration requires the client to present its own certificate, usually issued by
the same certificate authority as the server. This certificate must be stored in a keystore and used as
follows:

Hot Rod client configuration with TLS (server and client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
 .addServer()
 .host("127.0.0.1")
 .port(11222)
 .security()
 .ssl()
 // TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
 .trustStoreFileName("/path/to/truststore")
 .trustStorePassword("truststorepassword".toCharArray())
 // KeyStore containing this client's own certificate
 .keyStoreFileName("/path/to/keystore")
 .keyStorePassword("keystorepassword".toCharArray())
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Please read the KeyTool documentation for more details on KeyStores. Additionally, the KeyStore
Explorer is a great GUI tool for easily managing KeyStores.

1.1.4. Basic API

Below is a sample code snippet on how the client API can be used to store or retrieve information
from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot Rod server has been

8

{jdkroot}/technotes/tools/unix/keytool.html
http://keystore-explorer.org/
http://keystore-explorer.org/

started bound to the default location (localhost:11222)

//API entry point, by default it connects to localhost:11222
CacheContainer cacheContainer = new RemoteCacheManager();

//obtain a handle to the remote default cache
Cache<String, String> cache = cacheContainer.getCache();

//now add something to the cache and make sure it is there
cache.put("car", "ferrari");
assert cache.get("car").equals("ferrari");

//remove the data
cache.remove("car");
assert !cache.containsKey("car") : "Value must have been removed!";

The client API maps the local API: RemoteCacheManager corresponds to DefaultCacheManager
(both implement CacheContainer). This common API facilitates an easy migration from local calls
to remote calls through Hot Rod: all one needs to do is switch between DefaultCacheManager and
RemoteCacheManager - which is further simplified by the common CacheContainer interface that
both inherit.

1.1.5. RemoteCache(.keySet|.entrySet|.values)

The collection methods keySet, entrySet and values are backed by the remote cache. That is that
every method is called back into the RemoteCache. This is useful as it allows for the various keys,
entries or values to be retrieved lazily, and not requiring them all be stored in the client memory at
once if the user does not want. These collections adhere to the Map specification being that add and
addAll are not supported but all other methods are supported.

One thing to note is the Iterator.remove and Set.remove or Collection.remove methods require more
than 1 round trip to the server to operate. You can check out the RemoteCache Javadoc to see more
details about these and the other methods.

Iterator Usage

The iterator method of these collections uses retrieveEntries internally, which is described below.
If you notice retrieveEntries takes an argument for the batch size. There is no way to provide this
to the iterator. As such the batch size can be configured via system property
infinispan.client.hotrod.batch_size or through the ConfigurationBuilder when configuring the
RemoteCacheManager.

Also the retrieveEntries iterator returned is Closeable as such the iterators from keySet, entrySet
and values return an AutoCloseable variant. Therefore you should always close these `Iterator`s
when you are done with them.

9

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/CacheContainer.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/CacheContainer.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuraion/ConfigurationBuilder.html#batchSize-int-

try (CloseableIterator<Entry<K, V>> iterator = remoteCache.entrySet().iterator) {
 ...
}

What if I want a deep copy and not a backing collection?

Previous version of RemoteCache allowed for the retrieval of a deep copy of the keySet. This is still
possible with the new backing map, you just have to copy the contents yourself. Also you can do
this with entrySet and values, which we didn’t support before.

Set<K> keysCopy = remoteCache.keySet().stream().collect(Collectors.toSet());

Please use extreme cautiong with this as a large number of keys can and will cause
OutOfMemoryError in the client.

Set keys = remoteCache.keySet();

1.1.6. Remote Iterator

Alternatively, if memory is a concern (different batch size) or you wish to do server side filtering or
conversion), use the remote iterator api to retrieve entries from the server. With this method you
can limit the entries that are retrieved or even returned a converted value if you dont' need all
properties of your entry.

10

// Retrieve all entries in batches of 1000
int batchSize = 1000;
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries
(null, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

// Filter by segment
Set<Integer> segments = ...
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries
(null, segments, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

// Filter by custom filter
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries(
"myFilterConverterFactory", segments, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

In order to use custom filters, it’s necessary to deploy them first in the server. Follow the steps:

• Create a factory for the filter extending KeyValueFilterConverterFactory, annotated with
@NamedFactory containing the name of the factory, example:

11

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/filter/KeyValueFilterConverterFactory.html

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter;
import org.infinispan.filter.KeyValueFilterConverter;
import org.infinispan.filter.KeyValueFilterConverterFactory;
import org.infinispan.filter.NamedFactory;
import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory")
public class MyKeyValueFilterConverterFactory implements
KeyValueFilterConverterFactory {

 @Override
 public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>
getFilterConverter() {
 return new MyKeyValueFilterConverter();
 }
 // Filter implementation. Should be serializable or externalizable for DIST caches
 static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter
<String, SampleEntity1, SampleEntity2> implements Serializable {
 @Override
 public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata
metadata) {
 // returning null will case the entry to be filtered out
 // return SampleEntity2 will convert from the cache type SampleEntity1
 }

 @Override
 public MediaType format() {
 // returns the MediaType that data should be presented to this converter.
 // When ommitted, the server will use "application/x-java-object".
 // Returning null will cause the filter/converter to be done in the storage
format.
 }
 }
}

• Create a jar with a META-INF/services/org.infinispan.filter.KeyValueFilterConverterFactory file
and within it, write the fully qualified class name of the filter factory class implementation.

• Optional: If the filter uses custom key/value classes, these must be included in the JAR so that
the filter can correctly unmarshall key and/or value instances.

• Deploy the JAR file in the Infinispan Server.

1.1.7. Versioned API

A RemoteCacheManager provides instances of RemoteCache interface that represents a handle to
the named or default cache on the remote cluster. API wise, it extends the Cache interface to which
it also adds some new methods, including the so called versioned API. Please find below some

12

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html

examples of this API link:#server_hotrod_failover[but to understand the motivation behind it, make
sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

// To use the versioned API, remote classes are specifically needed
RemoteCacheManager remoteCacheManager = new RemoteCacheManager();
RemoteCache<String, String> cache = remoteCacheManager.getCache();

remoteCache.put("car", "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

// removal only takes place only if the version has not been changed
// in between. (a new version is associated with 'car' key on each change)
assert remoteCache.remove("car", valueBinary.getVersion());
assert !cache.containsKey("car");

In a similar way, for replace:

remoteCache.put("car", "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");
assert remoteCache.replace("car", "lamborghini", valueBinary.getVersion());

For more details on versioned operations refer to RemoteCache 's javadoc.

1.1.8. Streaming API

When sending / receiving large objects, it might make sense to stream them between the client and
the server. The Streaming API implements methods similar to the Hot Rod Basic API and Hot Rod
Versioned API described above but, instead of taking the value as a parameter, they return
instances of InputStream and OutputStream. The following example shows how one would write a
potentially large object:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
OutputStream os = streamingCache.put("a_large_object");
os.write(...);
os.close();

Reading such an object through streaming:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");
for(int b = is.read(); b >= 0; b = is.read()) {
 ...
}
is.close();

13

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
#hr_basic_api
#hr_versioned_api
#hr_versioned_api

The streaming API does not apply marshalling/unmarshalling to the values. For
this reason you cannot access the same entries using both the streaming and non-
streaming API at the same time, unless you provide your own marshaller to detect
this situation.

The InputStream returned by the RemoteStreamingCache.get(K key) method implements the
VersionedMetadata interface, so you can retrieve version and expiration information:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");
int version = ((VersionedMetadata) is).getVersion();
for(int b = is.read(); b >= 0; b = is.read()) {
 ...
}
is.close();

Conditional write methods (putIfAbsent, replace) only perform the actual condition
check once the value has been completely sent to the server (i.e. when the close()
method has been invoked on the OutputStream.

1.1.9. Creating Event Listeners

Java Hot Rod clients can register listeners to receive cache-entry level events. Cache entry created,
modified and removed events are supported.

Creating a client listener is very similar to embedded listeners, except that different annotations
and event classes are used. Here’s an example of a client listener that prints out each event
received:

14

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

@ClientListener
public class EventPrintListener {

 @ClientCacheEntryCreated
 public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {
 System.out.println(e);
 }

 @ClientCacheEntryModified
 public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {
 System.out.println(e);
 }

 @ClientCacheEntryRemoved
 public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {
 System.out.println(e);
 }

}

ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide information on
the affected key, and the version of the entry. This version can be used to invoke conditional
operations on the server, such as replaceWithVersion or removeWithVersion.

ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. In other
words, if a remove operation is invoked but no entry is found or no entry should be removed, no
event is generated. Users interested in removed events, even when no entry was removed, can
develop event customization logic to generate such events. More information can be found in the
customizing client events section.

All ClientCacheEntryCreatedEvent, ClientCacheEntryModifiedEvent and ClientCacheEntryRemovedEvent
event instances also provide a boolean isCommandRetried() method that will return true if the write
command that caused this had to be retried again due to a topology change. This could be a sign
that this event has been duplicated or another event was dropped and replaced (eg:
ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be registered with the server.
To do so, execute:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener());

15

#customizing_events

1.1.10. Removing Event Listeners

When an client event listener is not needed any more, it can be removed:

EventPrintListener listener = ...
cache.removeClientListener(listener);

1.1.11. Filtering Events

In order to avoid inundating clients with events, users can provide filtering functionality to limit
the number of events fired by the server for a particular client listener. To enable filtering, a cache
event filter factory needs to be created that produces filter instances:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-filter")
class StaticCacheEventFilterFactory implements CacheEventFilterFactory {
 @Override
 public CacheEventFilterFactory<Integer, String> getFilter(Object[] params) {
 return new StaticCacheEventFilter();
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class StaticCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {
 @Override
 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 if (key.equals(1)) // static key
 return true;

 return false;
 }
}

The cache event filter factory instance defined above creates filter instances which statically filter
out all entries except the one whose key is 1.

To be able to register a listener with this cache event filter factory, the factory has to be given a
unique name, and the Hot Rod server needs to be plugged with the name and the cache event filter
factory instance. Plugging the Infinispan Server with a custom filter involves the following steps:

1. Create a JAR file with the filter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

16

client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory file
within the JAR file and within it, write the fully qualified class name of the filter class
implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this cache event filter factory by adding
the factory’s name to the @ClientListener annotation:

@ClientListener(filterFactoryName = "static-filter")
public class EventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener());

Dynamic filter instances that filter based on parameters provided when the listener is registered
are also possible. Filters use the parameters received by the filter factories to enable this option. For
example:

17

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory {
 @Override
 public CacheEventFilter<Integer, String> getFilter(Object[] params) {
 return new DynamicCacheEventFilter(params);
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {
 final Object[] params;

 DynamicCacheEventFilter(Object[] params) {
 this.params = params;
 }

 @Override
 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 if (key.equals(params[0])) // dynamic key
 return true;

 return false;
 }
}

The dynamic parameters required to do the filtering are provided when the listener is registered:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener(), new Object[]{1}, null);

Filter instances have to marshallable when they are deployed in a cluster so that
the filtering can happen right where the event is generated, even if the even is
generated in a different node to where the listener is registered. To make them
marshallable, either make them extend Serializable, Externalizable, or provide a
custom Externalizer for them.

Skipping Notifications

Include the SKIP_LISTENER_NOTIFICATION flag when calling remote API methods to perform
operations without getting event notifications from the server. For example, to prevent listener
notifications when creating or modifying values, set the flag as follows:

18

remoteCache.withFlags(Flag.SKIP_LISTENER_NOTIFICATION).put(1, "one");

1.1.12. Customizing Events

The events generated by default contain just enough information to make the event relevant but
they avoid cramming too much information in order to reduce the cost of sending them. Optionally,
the information shipped in the events can be customised in order to contain more information,
such as values, or to contain even less information. This customization is done with
CacheEventConverter instances generated by a CacheEventConverterFactory:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;
import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter")
class StaticConverterFactory implements CacheEventConverterFactory {
 final CacheEventConverter<Integer, String, CustomEvent> staticConverter = new
StaticCacheEventConverter();
 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {
 return staticConverter;
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class StaticCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {
 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {
 return new CustomEvent(key, newValue);
 }
}

// Needs to be Serializable, Externalizable or marshallable with Infinispan
Externalizers
// regardless of cluster or local caches
static class CustomEvent implements Serializable {
 final Integer key;
 final String value;
 CustomEvent(Integer key, String value) {
 this.key = key;
 this.value = value;
 }
}

In the example above, the converter generates a new custom event which includes the value as well
as the key in the event. This will result in bigger event payloads compared with default events, but

19

if combined with filtering, it can reduce its network bandwidth cost.

The target type of the converter must be either Serializable or Externalizable. In
this particular case of converters, providing an Externalizer will not work by
default since the default Hot Rod client marshaller does not support them.

Handling custom events requires a slightly different client listener implementation to the one
demonstrated previously. To be more precise, it needs to handle ClientCacheEntryCustomEvent
instances:

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

@ClientListener
public class CustomEventPrintListener {

 @ClientCacheEntryCreated
 @ClientCacheEntryModified
 @ClientCacheEntryRemoved
 public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {
 System.out.println(e);
 }

}

The ClientCacheEntryCustomEvent received in the callback exposes the custom event via getEventData
method, and the getType method provides information on whether the event generated was as a
result of cache entry creation, modification or removal.

Similar to filtering, to be able to register a listener with this converter factory, the factory has to be
given a unique name, and the Hot Rod server needs to be plugged with the name and the cache
event converter factory instance. Plugging the Infinispan Server with an event converter involves
the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory

file within the JAR file and within it, write the fully qualified class name of the converter class
implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this converter factory by adding the
factory’s name to the @ClientListener annotation:

20

@ClientListener(converterFactoryName = "static-converter")
public class CustomEventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new CustomEventPrintListener());

Dynamic converter instances that convert based on parameters provided when the listener is
registered are also possible. Converters use the parameters received by the converter factories to
enable this option. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter")
class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {
 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {
 return new DynamicCacheEventConverter(params);
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {
 final Object[] params;

 DynamicCacheEventConverter(Object[] params) {
 this.params = params;
 }

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

The dynamic parameters required to do the conversion are provided when the listener is
registered:

21

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener(), null, new Object[]{1});

Converter instances have to marshallable when they are deployed in a cluster, so
that the conversion can happen right where the event is generated, even if the
even is generated in a different node to where the listener is registered. To make
them marshallable, either make them extend Serializable, Externalizable, or
provide a custom Externalizer for them.

1.1.13. Filter and Custom Events

If you want to do both event filtering and customization, it’s easier to implement
org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter which allows both
filter and customization to happen in a single step. For convenience, it’s recommended to extend
org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter instead of
implementing org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter

directly. For example:

22

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter")
class DynamicCacheEventFilterConverterFactory implements
CacheEventFilterConverterFactory {
 public CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter
(final Object[] params) {
 return new DynamicCacheEventFilterConverter(params);
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
//
class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter
<Integer, String, CustomEvent>, Serializable {
 final Object[] params;

 DynamicCacheEventFilterConverter(Object[] params) {
 this.params = params;
 }

 public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata
oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

Similar to filters and converters, to be able to register a listener with this combined filter/converter
factory, the factory has to be given a unique name via the @NamedFactory annotation, and the Hot
Rod server needs to be plugged with the name and the cache event converter factory instance.
Plugging the Infinispan Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverterFac

tory file within the JAR file and within it, write the fully qualified class name of the converter
class implementation.

23

4. Deploy the JAR file in the Infinispan Server.

From a client perspective, to be able to use the combined filter and converter class, the client
listener must define the same filter factory and converter factory names, e.g.:

@ClientListener(filterFactoryName = "dynamic-filter-converter", converterFactoryName =
"dynamic-filter-converter")
public class CustomEventPrintListener { ... }

The dynamic parameters required in the example above are provided when the listener is
registered via either filter or converter parameters. If filter parameters are non-empty, those are
used, otherwise, the converter parameters:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new CustomEventPrintListener(), new Object[]{1}, null);

1.1.14. Event Marshalling

Hot Rod servers can store data in different formats, but in spite of that, Java Hot Rod client users
can still develop CacheEventConverter or CacheEventFilter instances that work on typed objects. By
default, filters and converter will use data as POJO (application/x-java-object) but it is possible to
override the desired format by overriding the method format() from the filter/converter. If the
format returns null, the filter/converter will receive data as it’s stored.

As indicated in the Marshalling Data section, Hot Rod Java clients can be configured to use a
different org.infinispan.commons.marshall.Marshaller instance. If doing this and deploying
CacheEventConverter or CacheEventFilter instances, to be able to present filters/converter with Java
Objects rather than marshalled content, the server needs to be able to convert between objects and
the binary format produced by the marshaller.

To deploy a Marshaller instance server-side, follow a similar method to the one used to deploy
CacheEventConverter or CacheEventFilter instances:

1. Create a JAR file with the converter implementation within it.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file
and within it, write the fully qualified class name of the marshaller class implementation.

3. Deploy the JAR file in the Infinispan Server.

Note that the Marshaller could be deployed in either a separate jar, or in the same jar as the
CacheEventConverter and/or CacheEventFilter instances.

Deploying Protostream Marshallers

If a cache stores protobuf content, as it happens when using protostream marshaller in the Hot Rod
client, it’s not necessary to deploy a custom marshaller since the format is already support by the
server: there are transcoders from protobuf format to most common formats like JSON and POJO.

24

#hot_rod_marshalling_data

When using filters/converters with those caches, and it’s desirable to use filter/converters with Java
Objects rather binary prototobuf data, it’s necessary to deploy the extra protostream marshallers so
that the server can unmarshall the data before filtering/converting. To do so, follow these steps:

1. Create a jar and include an implementation of the interface
org.infinispan.query.remote.client.ProtostreamSerializationContextInitializer, adding extra
marshallers and optionally extra protobuf files to the cache manager’s Serialization context.

2. Create a META-

INF/services/org.infinispan.query.remote.client.ProtostreamSerializationContextInitializer

file within the JAR file containing the fully qualified class name of the
ProtostreamSerializationContextInitializer class implementation.

3. Create a META-INF/MANIFEST.MF with Dependencies: org.infinispan.protostream,
org.infinispan.remote-query.client

4. Deploy the JAR file in the Infinispan Server in the standalone/deployments folder

5. Configure this deployment in the desired cache manager:

<cache-container name="local" default-cache="default">
 <modules>
 <module name="deployment.my-entities.jar"/>
 </modules>
 ...
</cache-container>

 The deployment must be available during the server startup!

1.1.15. Listener State Handling

Client listener annotation has an optional includeCurrentState attribute that specifies whether state
will be sent to the client when the listener is added or when there’s a failover of the listener.

By default, includeCurrentState is false, but if set to true and a client listener is added in a cache
already containing data, the server iterates over the cache contents and sends an event for each
entry to the client as a ClientCacheEntryCreated (or custom event if configured). This allows clients
to build some local data structures based on the existing content. Once the content has been
iterated over, events are received as normal, as cache updates are received. If the cache is
clustered, the entire cluster wide contents are iterated over.

includeCurrentState also controls whether state is received when the node where the client event
listener is registered fails and it’s moved to a different node. The next section discusses this topic in
depth.

1.1.16. Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single node in a cluster. If that node
fails, the Java Hot Rod client detects that transparently and fails over all listeners registered in the
node that failed to another node.

25

During this fail over the client might miss some events. To avoid missing these events, the client
listener annotation contains an optional parameter called includeCurrentState which if set to true,
when the failover happens, the cache contents can iterated over and ClientCacheEntryCreated
events (or custom events if configured) are generated. By default, includeCurrentState is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a callback to handle it:

@ClientCacheFailover
public void handleFailover(ClientCacheFailoverEvent e) {
 ...
}

This is very useful in use cases where the client has cached some data, and as a result of the fail
over, taking in account that some events could be missed, it could decide to clear any locally cached
data when the fail over event is received, with the knowledge that after the fail over event, it will
receive events for the contents of the entire cache.

1.1.17. Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which means that the Hot
Rod client can keep a local cache that stores recently used data. Enabling near caching can
significantly improve the performance of read operations get and getVersioned since data can
potentially be located locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to INVALIDATED. By doing that near
cache is populated upon retrievals from the server via calls to get or getVersioned operations. When
near cached entries are updated or removed server-side, the cached near cache entries are
invalidated. If a key is requested after it’s been invalidated, it’ll have to be re-fetched from the
server.

You should not use maxIdle expiration with near caches, as near-cache reads will
not propagate the last access change to the server and to the other clients.

When near cache is enabled, its size must be configured by defining the maximum number of
entries to keep in the near cache. When the maximum is reached, near-cached entries are evicted.
If providing 0 or a negative value, it is assumed that the near cache is unbounded.

Users should be careful when configuring near cache to be unbounded since it
shifts the responsibility to keep the near cache’s size within the boundaries of the
client JVM to the user.

The Hot Rod client’s near cache mode is configured using the NearCacheMode enumeration and
calling:

26

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.NearCacheMode;
...

// Unbounded invalidated near cache
ConfigurationBuilder unbounded = new ConfigurationBuilder();
unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

// Bounded invalidated near cache
ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);

Since the configuration is shared by all caches obtained from a single RemoteCacheManager, you may
not want to enable near-caching for all of them. You can use the cacheNamePattern configuration
attribute to define a regular expression which matches the names of the caches for which you want
near-caching. Caches whose name don’t match the regular expression, will not have near-caching
enabled.

// Bounded invalidated near cache with pattern matching
ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache()
 .mode(NearCacheMode.INVALIDATED)
 .maxEntries(100)
 .cacheNamePattern("near.*"); // enable near-cache only for caches whose name starts
with 'near'

Near caches work the same way for local caches as they do for clustered caches,
but in a clustered cache scenario, if the server node sending the near cache
notifications to the Hot Rod client goes down, the Hot Rod client transparently fails
over to another node in the cluster, clearing the near cache along the way.

1.1.18. Unsupported methods

Some of the Cache methods are not being supported by the RemoteCache . Calling one of these
methods results in an UnsupportedOperationException being thrown. Most of these methods do not
make sense on the remote cache (e.g. listener management operations), or correspond to methods
that are not supported by local cache as well (e.g. containsValue). Another set of unsupported
operations are some of the atomic operations inherited from ConcurrentMap :

boolean remove(Object key, Object value);
boolean replace(Object key, Object value);
boolean replace(Object key, Object oldValue, Object value);

RemoteCache offers alternative versioned methods for these atomic operations, that are also
network friendly, by not sending the whole value object over the network, but a version identifier.
See the section on versioned API.

27

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javase/8/docs/api/java/lang/UnsupportedOperationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

Each one of these unsupported operation is documented in the RemoteCache javadoc.

1.1.19. Return values

There is a set of methods that alter a cached entry and return the previous existing value, e.g.:

V remove(Object key);
V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value exists. This
approach reduces the amount of data sent over the network. However, if these return values are
needed they can be enforced on a per invocation basis using flags:

cache.put("aKey", "initialValue");
assert null == cache.put("aKey", "aValue");
assert "aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey",
 "newValue"));

This default behavior can can be changed through force-return-value=true configuration
parameter (see configuration section bellow).

28

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

Chapter 2. Hot Rod Transactions
You can configure and use Hot Rod clients in JTA Transactions.

To participate in a transaction, the Hot Rod client requires the TransactionManager with which it
interacts and whether it participates in the transaction through the Synchronization or XAResource
interface.

Transactions are optimistic in that clients acquire write locks on entries during the
prepare phase. To avoid data inconsistency, be sure to read about Detecting
Conflicts with Transactions.

2.1. Configuring the Server
Caches in the server must also be transactional for clients to participate in JTA Transactions.

The following server configuration is required, otherwise transactions rollback only:

• Isolation level must be REPEATABLE_READ.

• Locking mode must be PESSIMISTIC. In a future release, OPTIMISTIC locking mode will be
supported.

• Transaction mode should be NON_XA or NON_DURABLE_XA. Hot Rod transactions cannot use FULL_XA
because it degrades performance.

Hot Rod transactions have their own recovery mechanism.

2.2. Configuring Hot Rod Clients
When you create the RemoteCacheManager, you can set the default TransactionManager and
TransactionMode that the RemoteCache uses.

The RemoteCacheManager lets you create only one configuration for transactional caches, as in the
following example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
//other client configuration parameters
cb.transaction().transactionManagerLookup(GenericTransactionManagerLookup.getInstance(
));
cb.transaction().transactionMode(TransactionMode.NON_XA);
cb.transaction().timeout(1, TimeUnit.MINUTES)
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

The preceding configuration applies to all instances of a remote cache. If you need to apply
different configurations to remote cache instances, you can override the RemoteCache
configuration. See Overriding RemoteCacheManager Configuration.

29

https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
#hr_transactions_force_return_value
#hr_transactions_force_return_value
https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
#hr_transactions_override_rcm

See ConfigurationBuilder Javadoc for documentation on configuration parameters.

You can also configure the Java Hot Rod client with a properties file, as in the following example:

infinispan.client.hotrod.transaction.transaction_manager_lookup =
org.infinispan.client.hotrod.transaction.lookup.GenericTransactionManagerLookup
infinispan.client.hotrod.transaction.transaction_mode = NON_XA
infinispan.client.hotrod.transaction.timeout = 60000

2.2.1. TransactionManagerLookup Interface

TransactionManagerLookup provides an entry point to fetch a TransactionManager.

Available implementations of TransactionManagerLookup:

GenericTransactionManagerLookup

A lookup class that locates TransactionManagers running in Java EE application servers.
Defaults to the RemoteTransactionManager if it cannot find a TransactionManager.

In most cases, GenericTransactionManagerLookup is suitable. However, you can
implement the TransactionManagerLookup interface if you need to integrate a
custom TransactionManager.

RemoteTransactionManagerLookup

A basic, and volatile, TransactionManager if no other implementation is available. Note that this
implementation has significant limitations when handling concurrent transactions and
recovery.

2.2.2. Transaction Modes

TransactionMode controls how a RemoteCache interacts with the TransactionManager.

Configure transaction modes on both the Infinispan server and your client
application. If clients attempt to perform transactional operations on non-
transactional caches, runtime exceptions can occur.

Transaction modes are the same in both the Infinispan configuration and client settings. Use the
following modes with your client, see the Infinispan configuration schema for the server:

NONE

The RemoteCache does not interact with the TransactionManager. This is the default mode and
is non-transactional.

NON_XA

The RemoteCache interacts with the TransactionManager via Synchronization.

NON_DURABLE_XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities

30

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/transaction/lookup/GenericTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/transaction/manager/RemoteTransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/transaction/lookup/GenericTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/transaction/lookup/RemoteTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html

are disabled.

FULL_XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities
are enabled. Invoke the XaResource.recover() method to retrieve transactions to recover.

2.3. Overriding Configuration for Cache Instances
Because RemoteCacheManager does not support different configurations for each cache instance.
However, RemoteCacheManager includes the getCache(String) method that returns the
RemoteCache instances and lets you override some configuration parameters, as follows:

getCache(String cacheName, TransactionMode transactionMode)

Returns a RemoteCache and overrides the configured TransactionMode.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode)

Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionManager transactionManager)

Returns a RemoteCache and overrides the configured TransactionManager.

getCache(String cacheName, boolean forceReturnValue, TransactionManager transactionManager)

Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionMode transactionMode, TransactionManager
transactionManager)

Returns a RemoteCache and overrides the configured TransactionManager and
TransactionMode. Uses the configured values, if transactionManager or transactionMode is null.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode,
TransactionManager transactionManager)

Same as previous, but can also force return values for write operations.

The getCache(String) method returns RemoteCache instances regardless of
whether they are transaction or not. RemoteCache includes a
getTransactionManager() method that returns the TransactionManager that the
cache uses. If the RemoteCache is not transactional, the method returns null.

2.4. Detecting Conflicts with Transactions
Transactions use the initial values of keys to detect conflicts. For example, "k" has a value of "v"
when a transaction begins. During the prepare phase, the transaction fetches "k" from the server to
read the value. If the value has changed, the transaction rolls back to avoid a conflict.

 Transactions use versions to detect changes instead of checking value equality.

The forceReturnValue parameter controls write operations to the RemoteCache and helps avoid
conflicts. It has the following values:

31

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

• If true, the TransactionManager fetches the most recent value from the server before
performing write operations. However, the forceReturnValue parameter applies only to write
operations that access the key for the first time.

• If false, the TransactionManager does not fetch the most recent value from the server before
performing write operations. Because this setting

This parameter does not affect conditional write operations such as replace or
putIfAbsent because they require the most recent value.

The following transactions provide an example where the forceReturnValue parameter can prevent
conflicting write operations:

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.put("k", "v1");
tm.commit();

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.put("k", "v2");
tm.commit();

In this example, TX1 and TX2 are executed in parallel. The initial value of "k" is "v".

• If forceReturnValue = true, the cache.put() operation fetches the value for "k" from the server in
both TX1 and TX2. The transaction that acquires the lock for "k" first then commits. The other
transaction rolls back during the commit phase because the transaction can detect that "k" has a
value other than "v".

• If forceReturnValue = false, the cache.put() operation does not fetch the value for "k" from the
server and returns null. Both TX1 and TX2 can successfully commit, which results in a conflict.
This occurs because neither transaction can detect that the initial value of "k" changed.

The following transactions include cache.get() operations to read the value for "k" before doing the
cache.put() operations:

32

https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.get("k");
cache.put("k", "v1");
tm.commit();

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.get("k");
cache.put("k", "v2");
tm.commit();

In the preceding examples, TX1 and TX2 both read the key so the forceReturnValue parameter does
not take effect. One transaction commits, the other rolls back. However, the cache.get() operation
requires an additional server request. If you do not need the return value for the cache.put()
operation that server request is inefficient.

2.5. Using the Configured Transaction Manager and
Transaction Mode
The following example shows how to use the TransactionManager and TransactionMode that you
configure in the RemoteCacheManager:

33

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
);
cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//The my-cache instance uses the RemoteCacheManager configuration.
RemoteCache<String, String> cache = rcm.getCache("my-cache");

//Return the transaction manager that the cache uses.
TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.
tm.begin();
cache.put("k1", "v1");
System.out.println("K1 value is " + cache.get("k1"));
tm.commit();

2.6. Overriding the Transaction Manager
The following example shows how to override TransactionManager with the getCache method:

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
);
cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//Define a custom TransactionManager.
TransactionManager myCustomTM = ...

//Override the TransactionManager for the my-cache instance. Use the default
configuration if null is returned.
RemoteCache<String, String> cache = rcm.getCache("my-cache", null, myCustomTM);

//Perform a simple transaction.
myCustomTM.begin();
cache.put("k1", "v1");
System.out.println("K1 value is " + cache.get("k1"));
myCustomTM.commit();

34

2.7. Overriding the Transaction Mode
The following example shows how to override TransactionMode with the getCache method:

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
);
cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//Override the transaction mode for the my-cache instance.
RemoteCache<String, String> cache = rcm.getCache("my-cache", TransactionMode
.NON_DURABLE_XA, null);

//Return the transaction manager that the cache uses.
TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.
tm.begin();
cache.put("k1", "v1");
System.out.println("K1 value is " + cache.get("k1"));
tm.commit();

2.7.1. Client Intelligence

HotRod defines three level of intelligence for the clients:

1. basic client, interested in neither cluster nor hash information

2. topology-aware client, interested in cluster information

3. hash-distribution-aware client, that is interested in both cluster and hash information

The java client supports all 3 levels of intelligence. It is transparently notified whenever a new
server is added/removed from the HotRod cluster. At startup it only needs to know the address of
one HotRod server (ip:host). On connection to the server the cluster topology is piggybacked to the
client, and all further requests are being dispatched to all available servers. Any further topology
change is also piggybacked.

Distribution-aware client

Another aspect of the 3rd level of intelligence is the fact that it is hash-distribution-aware. This
means that, for each operation, the client chooses the most appropriate remote server to go to: the
data owner. As an example, for a put(k,v) operation, the client calculates k’s hash value and knows
exactly on which server the data resides on. Then it picks up a tcp connection to that particular
server and dispatches the operation to it. This means less burden on the server side which would
otherwise need to lookup the value based on the key’s hash. It also results in a quicker response

35

from the server, as an additional network roundtrip is skipped. This hash-distribution-aware aspect
is only relevant to the distributed HotRod clusters and makes no difference for replicated server
deployments.

2.7.2. Request Balancing

Request balancing is only relevant when the server side is configured with replicated Infinispan
cluster (on distributed clusters the hash-distribution-aware client logic is used, as discussed in the
previos paragraph). Because the client is topology-aware, it knows the list of available servers at all
the time. Request balancing has to do with how the client dispatches requests to the available
servers.

The default strategy is round-robin: requests are being dispatched to all existing servers in a
circular manner. E.g. given a cluster of servers {s1, s2, s3} here is how request will be dispatched:

CacheContainer cacheContainer = new RemoteCacheManager();
Cache<String, String> cache = cacheContainer.getCache();

cache.put("key1", "aValue"); //this goes to s1
cache.put("key2", "aValue"); //this goes to s2
String value = cache.get("key1"); //this goes to s3

cache.remove("key2"); //this is dispatched to s1 again, and so on...

Custom types of balancing policies can defined by implementing the
FailoverRequestBalancingStrategy and by specifying it through the infinispan.client.hotrod.request-
balancing-strategy configuration property. Please refer to configuration section for more details on
this.

2.7.3. Persistent connections

In order to avoid creating a TCP connection on each request (which is a costly operation), the client
keeps a pool of persistent connections to all the available servers and it reuses these connections
whenever it is possible. The validity of the connections is checked using an async thread that
iterates over the connections in the pool and sends a HotRod ping command to the server. By using
this connection validation process the client is being proactive: there’s a hight chance for broken
connections to be found while being idle in the pool and no on actual request from the application.

The number of connections per server, total number of connections, how long should a connection
be kept idle in the pool before being closed - all these (and more) can be configured. Please refer to
the javadoc of RemoteCacheManager for a list of all possible configuration elements.

2.7.4. Marshalling data

The Hot Rod client allows one to plug in a custom marshaller for transforming user objects into
byte arrays and the other way around. This transformation is needed because of Hot Rod’s binary
nature - it doesn’t know about objects.

36

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html

The marshaller can be plugged through the "marshaller" configuration element (see Configuration
section): the value should be the fully qualified name of a class implementing the Marshaller
interface. This is a optional parameter, if not specified it defaults to the GenericJBossMarshaller - a
highly optimized implementation based on the JBoss Marshalling library.

Since version 6.0, there’s a new marshaller available to Java Hot Rod clients based on Protostream
which generates portable payloads.

WARNING: If developing your own custom marshaller, take care of potential injection attacks.

To avoid such attacks, make the marshaller verify that any class names read, before instantiating it,
is amongst the expected/allowed class names.

The client configuration can be enhanced with a list of regular expressions for classes that are
allowed to be read.

WARNING: These checks are opt-in, so if not configured, any class can be read.

In the example below, only classes with fully qualified names containing Person or Employee would
be allowed:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

...
ConfigurationBuilder configBuilder = ...
configBuilder.addJavaSerialWhiteList(".*Person.*", ".*Employee.*");

2.7.5. Reading data in different data formats

By default, every Hot Rod client operation will use the configured marshaller when reading and
writing from the server for both keys and values. See Marshalling Data. Using the DataFormat API,
it’s possible to decorate remote caches so that all operations can happen with a custom data format.

Using different marshallers for Key and Values

Marshallers for Keys and Values can be overridden at run time. For example, to bypass all
serialization in the Hot Rod client and read the byte[] as they are stored in the server:

// Existing Remote cache instance
RemoteCache<String, Pojo> remoteCache = ...

// IdentityMarshaller is a no-op marshaller
DataFormat rawKeyAndValues = DataFormat.builder().keyMarshaller(IdentityMarshaller
.INSTANCE).valueMarshaller(IdentityMarshaller.INSTANCE).build();

// Will create a new instance of RemoteCache with the supplied DataFormat
RemoteCache<byte[], byte[]> rawResultsCache = remoteCache.withDataFormat
(rawKeyAndValues);

37

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/marshall/jboss/GenericJBossMarshaller.html
http://www.jboss.org/jbossmarshalling
#hot_rod_marshalling_data

Reading data in different formats

Apart from defining custom key and value marshallers, it’s also possible to request/send data in
different formats specified by a org.infinispan.commons.dataconversion.MediaType:

// Existing remote cache using ProtostreamMarshaller
RemoteCache<String, Pojo> protobufCache = ...

// Request values returned as JSON, using the UTF8StringMarshaller that converts
between UTF-8 to String:
DataFormat jsonString = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new UTF8StringMarshaller().build();

RemoteCache<String, String> jsonStrCache = remoteCache.withDataFormat(jsonString);

// Alternativelly, it's possible to request JSON values but marshalled/unmarshalled
with a custom value marshaller that returns `org.codehaus.jackson.JsonNode` objects:
DataFormat jsonNode = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new CustomJacksonMarshaller().build();

RemoteCache<String, JsonNode> jsonNodeCache = remoteCache.withDataFormat(jsonNode);

The data conversions happen in the server, and if it doesn’t support converting
from the storage format to the request format and vice versa, an error will be
returned.

Using different marshallers and formats for the key, with .keyMarshaller() and
.keyType() may interfere with the client intelligence routing mechanism, causing it
contact the server that is not the owner of the key during Hot Rod operations. This
will not result in errors but can result in extra hops inside the cluster to execute
the operation. If performance is critical, make sure to use the keys in the format
stored by the server.

2.7.6. Statistics

Various server usage statistics can be obtained through the RemoteCache .stats() method. This
returns a ServerStatistics object - please refer to javadoc for details on the available statistics.

2.7.7. Multi-Get Operations

The Java Hot Rod client does not provide multi-get functionality out of the box but clients can build
it themselves with the given APIs.

2.7.8. Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request balancing and
more importantly, with the ability to failover operations if one or several of the servers fail.

38

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/ServerStatistics.html

Some of the conditional operations mentioned above, including putIfAbsent, replace with and
without version, and conditional remove have strict method return guarantees, as well as those
operations where returning the previous value is forced.

In spite of failures, these methods return values need to be guaranteed, and in order to do so, it’s
necessary that these methods are not applied partially in the cluster in the event of failure. For
example, imagine a replace() operation called in a server for key=k1 with Flag.FORCE_RETURN_VALUE,
whose current value is A and the replace wants to set it to B. If the replace fails, it could happen that
some servers contain B and others contain A, and during the failover, the original replace() could
end up returning B, if the replace failovers to a node where B is set, or could end up returning A.

To avoid this kind of situations, whenever Java Hot Rod client users want to use conditional
operations, or operations whose previous value is required, it’s important that the cache is
configured to be transactional in order to avoid incorrect conditional operations or return values.

2.7.9. Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover to different clusters, which
could be represented as an independent site.

The way site cluster failover works is that if all the main cluster nodes are not available, the client
checks to see if any other clusters have been defined in which cases it tries to failover to the
alternative cluster. If the failover succeeds, the client will remain connected to the alternative
cluster until this becomes unavailable, in which case it’ll try any other clusters defined, and
ultimately, it’ll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details must be provided for each of
the clusters configured. For example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.addCluster().addClusterNode("remote-cluster-host", 11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Remember that regardless of the cluster definitions, the initial server(s)
configuration must be provided unless the initial servers can be resolved using the
default server host and port details.

2.7.10. Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients can also switch between
site clusters manually by calling RemoteCacheManager’s switchToCluster(clusterName) and
switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters pre-
defined in the Hot Rod client configuration. To switch to the initial servers defined in the client
configuration, call switchToDefaultCluster().

39

2.7.11. Monitoring the Hot Rod client

The Hot Rod client can be monitored and managed via JMX. By enabling statistics, an MBean will be
registered for the RemoteCacheManager as well as for each RemoteCache obtained through it. Through
these MBeans it is possible to obtain statistics about remote and near-cache hits/misses and
connection pool usage.

2.7.12. Concurrent Updates

Data structures, such as Infinispan Cache , that are accessed and modified concurrently can suffer
from data consistency issues unless there’re mechanisms to guarantee data correctness. Infinispan
Cache, since it implements ConcurrentMap , provides operations such as conditional replace ,
putIfAbsent , and conditional remove to its clients in order to guarantee data correctness. It even
allows clients to operate against cache instances within JTA transactions, hence providing the
necessary data consistency guarantees.

However, when it comes to Hot Rod protocol backed servers, clients do not yet have the ability to
start remote transactions but they can call instead versioned operations to mimic the conditional
methods provided by the embedded Infinispan cache instance API. Let’s look at a real example to
understand how it works.

Data Consistency Problem

Imagine you have two ATMs that connect using Hot Rod to a bank where an account’s balance is
stored. Two closely followed operations to retrieve the latest balance could return 500 CHF (swiss
francs) as shown below:

Figure 2. Concurrent readers

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based on the last
value read, the ATM could calculate what the new balance is, which is 100 CHF, and request a put
with this new value. Let’s imagine now that around the same time another customer connects to
the ATM and requests 200 CHF to be retrieved. Let’s assume that the ATM thinks it has the latest
balance and based on its calculations it sets the new balance to 300 CHF:

40

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#remove-java.lang.Object-java.lang.Object-
http://community.jboss.org/wiki/HotRodProtocol

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect account
balance. The second update should not have been allowed since the balance the second ATM had
was incorrect. Even if the ATM would have retrieved the balance before calculating the new
balance, someone could have updated between the new balance being retrieved and the update.
Before finding out how to solve this issue in a client-server scenario with Hot Rod, let’s look at how
this is solved when Infinispan clients run in peer-to-peer mode where clients and Infinispan live
within the same JVM.

Embedded-mode Solution

If the ATM and the Infinispan instance storing the bank account lived in the same JVM, the ATM
could use the conditional replace API referred at the beginning of this article. So, it could send the
previous known value to verify whether it has changed since it was last read. By doing so, the first
operation could double check that the balance is still 500 CHF when it was to update to 100 CHF.
Now, when the second operation comes, the current balance would not be 500 CHF any more and
hence the conditional replace call would fail, hence avoiding data consistency issues:

Figure 3. P2P solution

41

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

Client-Server Solution

In theory, Hot Rod could use the same p2p solution but sending the previous value would be not
practical. In this example, the previous value is just an integer but the value could be a lot bigger
and hence forcing clients to send it to the server would be rather wasteful. Instead, Hot Rod offers
versioned operations to deal with this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which uniquely
identifies each modification. So, using an operation called getVersioned or getWithVersion , clients
can retrieve not only the value associated with a key, but also the current version. So, if we look at
the previous example once again, the ATMs could call getVersioned and get the balance’s version:

Figure 4. Get versioned

When the ATMs wanted to modify the balance, instead of just calling put, they could call
replaceIfUnmodified operation passing the latest version number of which the clients are aware of.
The operation will only succeed if the version passed matches the version in the server. So, the first
modification by the ATM would be allowed since the client passes 1 as version and the server side
version for the balance is also 1. On the other hand, the second ATM would not be able to make the
modification because after the first ATMs modification the version would have been incremented
to 2, and now the passed version (1) and the server side version (2) would not match:

Figure 5. Replace if versions match

42

http://community.jboss.org/wiki/HotRodProtocol#getWithVersion_response
http://community.jboss.org/wiki/HotRodProtocol#removeIfUnmodified_request

	Using the Infinispan Hot Rod Endpoint with Java Clients
	Table of Contents
	Chapter 1. Using Hot Rod Server
	1.1. Java Hot Rod client
	1.1.1. Configuration
	1.1.2. Authentication
	1.1.3. Encryption
	1.1.4. Basic API
	1.1.5. RemoteCache(.keySet|.entrySet|.values)
	1.1.6. Remote Iterator
	1.1.7. Versioned API
	1.1.8. Streaming API
	1.1.9. Creating Event Listeners
	1.1.10. Removing Event Listeners
	1.1.11. Filtering Events
	1.1.12. Customizing Events
	1.1.13. Filter and Custom Events
	1.1.14. Event Marshalling
	1.1.15. Listener State Handling
	1.1.16. Listener Failure Handling
	1.1.17. Near Caching
	1.1.18. Unsupported methods
	1.1.19. Return values

	Chapter 2. Hot Rod Transactions
	2.1. Configuring the Server
	2.2. Configuring Hot Rod Clients
	2.2.1. TransactionManagerLookup Interface
	2.2.2. Transaction Modes

	2.3. Overriding Configuration for Cache Instances
	2.4. Detecting Conflicts with Transactions
	2.5. Using the Configured Transaction Manager and Transaction Mode
	2.6. Overriding the Transaction Manager
	2.7. Overriding the Transaction Mode
	2.7.1. Client Intelligence
	2.7.2. Request Balancing
	2.7.3. Persistent connections
	2.7.4. Marshalling data
	2.7.5. Reading data in different data formats
	2.7.6. Statistics
	2.7.7. Multi-Get Operations
	2.7.8. Failover capabilities
	2.7.9. Site Cluster Failover
	2.7.10. Manual Site Cluster Switch
	2.7.11. Monitoring the Hot Rod client
	2.7.12. Concurrent Updates

