
Integrating Infinispan 11.0

Table of Contents

1. Infinispan modules for WildFly / EAP . 2

1.1. Installation . 2

1.2. Application Dependencies . 2

2. Apache Lucene . 4

2.1. Lucene compatibility . 4

2.2. Maven dependencies . 4

2.3. How to use it . 4

2.4. Configuration. 6

2.4.1. Lock Cache . 6

2.4.2. Metadata Cache . 6

2.4.3. Data Cache . 7

2.5. Using a CacheLoader . 7

2.6. Storing the index in a database . 7

2.7. Loading an existing Lucene Index . 8

2.8. Architectural limitations. 8

2.9. Suggestions for optimal performance . 9

2.9.1. JGroups and networking stack. 9

2.9.2. Using a CacheStore . 9

2.9.3. Apply standard Lucene tuning . 9

2.9.4. Disable batching and transactions . 9

2.9.5. Set the right chunk size . 9

2.10. Demo . 10

2.11. Additional Links . 10

3. Directory Provider for Hibernate Search. 11

3.1. Maven dependencies . 11

3.2. How to use it . 11

3.3. Configuration. 11

3.4. Architecture considerations. 12

4. JPA/Hibernate 2L Cache . 13

4.1. Deployment Scenarios. 15

4.1.1. Single-Node Standalone Hibernate Application . 15

4.1.2. Single-Node Standalone Spring Application. 15

4.1.3. Single-Node WildFly Application . 16

4.1.4. Multi-Node Standalone Hibernate Application . 16

4.1.5. Multi-Node Standalone Spring Application . 17

4.1.6. Multi-Node WildFly Application . 17

4.2. Configuration Reference. 17

4.2.1. Default Local Configuration . 18

4.2.2. Default Cluster Configuration . 18

4.2.3. Configuration Properties. 20

4.3. Cache Strategies . 23

4.4. Using minimal puts . 24

5. JPA/Hibernate OGM . 25

6. Using Infinispan with Spring. 27

6.1. Setting Up Infinispan as a Spring Cache Provider . 27

6.1.1. Adding Spring Cache Support . 27

6.1.2. Configuring Infinispan as the Spring Cache Provider . 28

6.2. Adding Caching to Your Application . 29

6.2.1. Adding Cache Entries . 29

6.2.2. Deleting Cache Entries. 29

6.3. Configuring Timeouts for Cache Operations . 30

6.4. Externalizing Sessions Using Spring Session . 31

Find out how to integrate Infinispan with other projects.

1

Chapter 1. Infinispan modules for WildFly /

EAP

The Infinispan modules have been deprecated and will be removed in a future

release.

As the Infinispan modules shipped with WildFly / EAP are tailored to its internal usage, it is

recommend to install separate modules if you want to use Infinispan in your application that is

deployed to WildFly / EAP. By installing these modules, it is possible to deploy user applications

without packaging the Infinispan JARs within the deployments (WARs, EARs, etc), thus minimizing

their size. Also, there will be no conflict with WildFly / EAP’s internal modules since the slot will be

different.

1.1. Installation

The modules for WildFly / EAP are available in the downloads section of our site. After extracting

the zip, copy the contents of the modules directory to the WILDFLY_HOME/modules directory, so that for

example the Infinispan core module would be under WILDFLY_HOME/modules/system/add-

ons/{moduleprefix}/org/infinispan/core.

1.2. Application Dependencies

The Infinispan functionality is packaged as a single module, org.infinispan. In order to use

Infinispan functionality in your application, add the follow to the manifest:

MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.infinispan:ispn-11.0 services

If you are using Maven to build your application, mark the Infinispan dependencies as provided

and configure your artifact archiver to generate the appropriate MANIFEST.MF file:

2

pom.xml

<dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-core</artifactId>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-cachestore-jdbc</artifactId>

 <scope>provided</scope>

 </dependency>

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.infinispan:ispn-11.0 services</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

3

Chapter 2. Apache Lucene

Infinispan includes a highly scalable distributed Apache Lucene Directory implementation.

This directory closely mimics the same semantics of the traditional filesystem and RAM-based

directories, being able to work as a drop-in replacement for existing applications using Lucene and

providing reliable index sharing and other features of Infinispan like node auto-discovery,

automatic failover and rebalancing, optionally transactions, and can be backed by traditional

storage solutions as filesystem, databases or cloud store engines.

The implementation extends Lucene’s org.apache.lucene.store.Directory so it can be used to store

the index in a cluster-wide shared memory, making it easy to distribute the index. Compared to

rsync-based replication this solution is suited for use cases in which your application makes

frequent changes to the index and you need them to be quickly distributed to all nodes. Consistency

levels, synchronicity and guarantees, total elasticity and auto-discovery are all configurable; also

changes applied to the index can optionally participate in a JTA transaction, optionally supporting

XA transactions with recovery.

Two different LockFactory implementations are provided to guarantee only one IndexWriter at a

time will make changes to the index, again implementing the same semantics as when opening an

index on a local filesystem. As with other Lucene Directories, you can override the LockFactory if

you prefer to use an alternative implementation.

2.1. Lucene compatibility

Apache Lucene versions 5.5.x

2.2. Maven dependencies

All you need is the following:

pom.xml

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-lucene-directory</artifactId>

</dependency>

2.3. How to use it

See the below example of using the Infinispan Lucene Directory in order to index and query a

single Document:

4

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.document.StringField;

import org.apache.lucene.index.DirectoryReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.index.Term;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.TermQuery;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.infinispan.lucene.directory.DirectoryBuilder;

import org.infinispan.manager.DefaultCacheManager;

// Create caches that will store the index. Here the programmatic configuration is

used

DefaultCacheManager defaultCacheManager = new DefaultCacheManager();

Cache metadataCache = defaultCacheManager.getCache("metadataCache");

Cache dataCache = defaultCacheManager.getCache("dataCache");

Cache lockCache = defaultCacheManager.getCache("lockCache");

// Create the directory

Directory directory = DirectoryBuilder.newDirectoryInstance(metadataCache, dataCache,

lockCache, indexName).create();

// Use the directory in Lucene

IndexWriterConfig indexWriterConfig = new IndexWriterConfig(new StandardAnalyzer())

.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);

IndexWriter indexWriter = new IndexWriter(directory, indexWriterConfig);

// Index a single document

Document doc = new Document();

doc.add(new StringField("field", "value", Field.Store.NO));

indexWriter.addDocument(doc);

indexWriter.close();

// Querying the inserted document

DirectoryReader directoryReader = DirectoryReader.open(directory);

IndexSearcher searcher = new IndexSearcher(directoryReader);

TermQuery query = new TermQuery(new Term("field", "value"));

TopDocs topDocs = searcher.search(query, 10);

System.out.println(topDocs.totalHits);

The indexName in the DirectoryBuilder is a unique key to identify your index. It takes the same role

as the path did on filesystem based indexes: you can create several different indexes giving them

5

different names. When you use the same indexName in another instance connected to the same

network (or instantiated on the same machine, useful for testing) they will join, form a cluster and

share all content. Using a different indexName allows you to store different indexes in the same set

of Caches.

The metadataCache, dataCache and lockCache are the caches that will store the indexes. More

details provided below.

New nodes can be added or removed dynamically, making the service administration very easy and

also suited for cloud environments: it’s simple to react to load spikes, as adding more memory and

CPU power to the search system is done by just starting more nodes.

2.4. Configuration

Infinispan can be configured as LOCAL clustering mode, in which case it will disable clustering

features and serve as a cache for the index, or any clustering mode. A transaction manager is not

mandatory, but when enabled the changes to the index can participate in transactions.

Batching was required in previous versions, it’s not strictly needed anymore.

As pointed out in the javadocs of DirectoryBuilder, it’s possible for it to use more than a single

cache, using specific configurations for different purposes. Each cache is explained below:

2.4.1. Lock Cache

The lock cache is used to store a single entry per index that will function as the directory lock.

Given the small storage requirement this cache is usually configured as REPL_SYNC. Example of

declarative configuration:

<replicated-cache name="LuceneIndexesLocking" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing enabled="false" />

 <memory>

 <object size="-1"/>

 </memory>

</replicated-cache>

2.4.2. Metadata Cache

The metadata cache is used to store information about the files of the directory, such as buffer sizes

and number of chunks. It uses more space than the Lock Cache, but not as much as the Data Cache,

so using a REPL_SYNC cache should be fine for most cases. Example of configuration:

6

<replicated-cache name="LuceneIndexesMetadaData" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing enabled="false" />

 <memory>

 <object size="-1"/>

 </memory>

</replicated-cache>

2.4.3. Data Cache

The Infinispan Lucene directory splits large (bigger than the chunkSize configuration) files into

chunks and stores them in the Data cache. This is the largest of the 3 index caches, and both

DIST_SYNC/REPL_SYNC cache modes can be used. Usage of REPL_SYNC offers lower latencies for

queries since each node holds the whole index locally; DIST_SYNC, on the other hand, will affect

query latency due to remote calls to fetch for chunks, but offers better scalability.

Example of configuration:

<distributed-cache name="LuceneIndexesData" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing enabled="false" />

 <memory>

 <object size="-1"/>

 </memory>

</distributed-cache>

2.5. Using a CacheLoader

Using a CacheLoader you can have the index content backed up to a permanent storage; you can

use a shared store for all nodes or one per node, see cache passivation for more details.

When using a CacheLoader to store a Lucene index, to get best write performance you would need

to configure the CacheLoader with async=true .

2.6. Storing the index in a database

It might be useful to store the Lucene index in a relational database; this would be very slow but

Infinispan can act as a cache between the application and the JDBC interface, making this

configuration useful in both clustered and non-clustered configurations. When storing indexes in a

JDBC database, it’s suggested to use the JdbcStringBasedCacheStore , which will need the key-to-

string-mapper attribute to be set to org.infinispan.lucene.LuceneKey2StringMapper:

<jdbc:string-keyed-jdbc-store preload="true" key-to-string-mapper=

"org.infinispan.lucene.LuceneKey2StringMapper">

7

2.7. Loading an existing Lucene Index

The org.infinispan.lucene.cachestore.LuceneCacheLoader is an Infinispan CacheLoader able to have

Infinispan directly load data from an existing Lucene index into the grid. Currently this supports

reading only.

Property Description Default

location The path where the indexes are

stored. Subdirectories (of first

level only) should contain the

indexes to be loaded, each

directory matching the index

name attribute of the Infinispan

Directory constructor.

none (mandatory)

autoChunkSize A threshold in bytes: if any

segment is larger than this, it

will be transparently chunked

in smaller cache entries up to

this size.

32MB

It’s worth noting that the IO operations are delegated to Lucene’s standard

org.apache.lucene.store.FSDirectory , which will select an optimal approach for the running

platform.

Implementing write-through should not be hard: you’re welcome to try implementing it.

2.8. Architectural limitations

This Directory implementation makes it possible to have almost real-time reads across multiple

nodes. A fundamental limitation of the Lucene design is that only a single IndexWriter is allowed to

make changes on the index: a pessimistic lock is acquired by the writer; this is generally ok as a

single IndexWriter instance is very fast and accepts update requests from multiple threads. When

sharing the Directory across Infinispan nodes the IndexWriter limitation is not lifted: since you can

have only one instance, that reflects in your application as having to apply all changes on the same

node. There are several strategies to write from multiple nodes on the same index:

Index write strategies

• One node writes, the other delegate to it sending messages

• Each node writes on turns

• You application makes sure it will only ever apply index writes on one node

The Infinispan Lucene Directory protects its content by implementing a distributed locking strategy,

though this is designed as a last line of defense and is not to be considered an efficient mechanism

to coordinate multiple writes: if you don’t apply one of the above suggestions and get high write

contention from multiple nodes you will likely get timeout exception.

8

2.9. Suggestions for optimal performance

2.9.1. JGroups and networking stack

JGroups manages all network IO and as such it is a critical component to tune for your specific

environment. Make sure to read the JGroups reference documentation, and play with the

performance tests included in JGroups to make sure your network stack is setup appropriately.

Don’t forget to check also operating system level parameters, for example buffer sizes dedicated for

networking. JGroups will log warning when it detects something wrong, but there is much more

you can look into.

2.9.2. Using a CacheStore

Currently all CacheStore implementations provided by Infinispan have a significant slowdown; we

hope to resolve that soon but for the time being if you need high performance on writes with the

Lucene Directory the best option is to disable any CacheStore; the second best option is to configure

the CacheStore as async . If you only need to load a Lucene index from read-only storage, see the

above description for org.infinispan.lucene.cachestore.LuceneCacheLoader .

2.9.3. Apply standard Lucene tuning

All known options of Lucene apply to the Infinispan Lucene Directory as well; of course the effect

might be less significant in some cases, but you should definitely read the Apache Lucene

documentation .

2.9.4. Disable batching and transactions

Early versions required Infinispan to have batching or transactions enabled. This is no longer a

requirement, and in fact disabling them should provide little improvement in performance.

2.9.5. Set the right chunk size

The chunk size can be specified using the DirectoryBuilder fluent API. To correctly set this variable

you need to estimate what the expected size of your segments is; generally this is trivial by looking

at the file size of the index segments generated by your application when it’s using the standard

FSDirectory. You then have to consider:

• The chunk size affects the size of internally created buffers, and large chunk sizes will cause

memory usage to grow. Also consider that during index writing such arrays are frequently

allocated.

• If a segment doesn’t fit in the chunk size, it’s going to be fragmented. When searching on a

fragmented segment performance can’t peak.

Using the org.apache.lucene.index.IndexWriterConfig you can tune your index writing to

approximately keep your segment size to a reasonable level, from there then tune the chunksize,

after having defined the chunksize you might want to revisit your network configuration settings.

9

2.10. Demo

There is a simple command-line demo of its capabilities distributed with Infinispan under

demos/lucene-directory; make sure you grab the "Binaries, server and demos" package from

download page, which contains all demos.

Start several instances, then try adding text in one instance and searching for it on the other. The

configuration is not tuned at all, but should work out-of-the box without any changes. If your

network interface has multicast enabled, it will cluster across the local network with other

instances of the demo.

2.11. Additional Links

• Issue tracker: https://jira.jboss.org/browse/ISPN/component/12312732

• Source code: https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/

main/java/org/infinispan/lucene

10

Chapter 3. Directory Provider for Hibernate

Search

Hibernate Search applications can use Infinispan as a directory provider, taking advantage of

Infinispan’s distribution and low latency capabilities to store the Lucene indexes.

3.1. Maven dependencies

pom.xml

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-directory-provider</artifactId>

</dependency>

3.2. How to use it

The directory provider alias is "infinispan", and to enable it for an index, the following property

should be in the Hibernate Search configuration:

hibernate.search.MyIndex.directory_provider = infinispan

to enable it by default for all indexes:

hibernate.search.default.directory_provider = infinispan

The Infinispan cluster will start with a default configuration, see below how to override it.

3.3. Configuration

Optional properties allow for a custom Infinispan configuration or to use an existent

EmbeddedCacheManager:

Property Description Example value

hibernate.search.infinispan.co
nfiguration_resourcename

Custom configuration for

Infinispan

config/infinispan.xml

hibernate.search.infinispan.co
nfiguration.transport_override
_resourcename

Overrides the JGroups stack in

the Infinispan configuration file

jgroups-ec2.xml

11

Property Description Example value

hibernate.search.infinispan.ca
chemanager_jndiname

Specifies the JNDI name under

which the

EmbeddedCacheManager to use

is bound. Will cause the

properties above to be ignored

when present

java:jboss/infinispan/containe
r/hibernate-search

3.4. Architecture considerations

The same limitations presented in the Lucene Directory apply here, meaning the index will be

shared across several nodes and only one IndexWriter can have the lock.

One common strategy is to use Hibernate Search’s JMS Master/Slave or JGroups backend together

with the Infinispan directory provider: instead of sending updates directly to the index, they are

sent to a JMS queue or JGroups channel and a single node applies all the changes on behalf of all

other nodes.

Refer to the Hibernate Search documentation for instructions on how to setup JMS or JGroups

backends.

12

Chapter 4. JPA/Hibernate 2L Cache

Hibernate manages a second-level cache where it moves data into and out as a result of operations

performed by Session or EntityManager (JPA). The second-level cache is pluggable via an SPI which

Infinispan implements. This enables Infinispan to be used as second-level cache for Hibernate.

Hibernate documentation contains a lot of information about second-level cache, types of caches…

etc. This chapter focuses on what you need to know to use Infinispan as second-level cache

provider with Hibernate.

Applications running in environments where Infinispan is not default cache provider for Hibernate

will need to depend on the correct cache provider version.

The Infinispan cache provider version suitable for your application depends on the Hibernate

version in use:

Hibernate 5.3

Use the following Maven coordinates:

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache-v53</artifactId>

 <version>${version.infinispan}</version>

</dependency>

Hibernate 5.2

 Hibernate 5.2 is supported in Infinispan 9.2.x only.

Use the following Maven coordinates:

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache</artifactId>

 <version>${version.infinispan}</version>

</dependency>

Hibernate 5.1

Use the following Maven coordinates:

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache-v51</artifactId>

</dependency>

13

Hibernate version 5.0 and earlier: the Infinispan cache provider is shipped by

Hibernate. Documentation and Maven coordinates are located in the Hibernate

documentation.

Apart from Infinispan specific configuration, it’s worth noting that enabling second cache requires

some changes to the descriptor file (persistence.xml for JPA or application.properties for Spring).

To use second level cache, you first need to enable the second level cache so that entities and/or

collections can be cached:

Table 1. Enable second-level cache

JPA <property name="hibernate.cache.use_second_level_cache" value="true"/>

Spring spring.jpa.properties.hibernate.cache.use_second_level_cache=true

To select which entities/collections to cache, first annotate them with javax.persistence.Cacheable.

Then make sure shared cache mode is set to ENABLE_SELECTIVE:

Table 2. Enable selective shared cached mode

JPA <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Spring spring.jpa.properties.javax.persistence.sharedCache.mode=ENABLE_SELECTIVE

This is the most common way of selecting which entities/collections to cache.

However, there are alternative ways to which are explained in the Hibernate

documentation.

Optionally, queries can also be cached but for that query cache needs to be enabled:

Table 3. Enable query cache

JPA <property name="hibernate.cache.use_query_cache" value="true"/>

Spring spring.jpa.properties.hibernate.cache.use_query_cache=true

As well as enabling query cache, forcing a query to be cached requires the query

to be made cacheable. For example, for JPA queries:

query.setHint("org.hibernate.cacheable", Boolean.TRUE).

The best way to find out whether second level cache is working or not is to inspect the statistics. By

inspecting the statistics you can verify if the cache is being hit, if any new data is stored in cache…

etc. Statistics are disabled by default, so it is recommended that you enable statistics:

Table 4. Enable statistics

JPA <property name="hibernate.generate_statistics" value="true" />

Spring spring.jpa.properties.hibernate.generate_statistics=true

14

4.1. Deployment Scenarios

How to configure Infinispan to be the second level cache provider varies slightly depending on the

deployment scenario:

4.1.1. Single-Node Standalone Hibernate Application

In standalone library mode, a JPA/Hibernate application runs inside a Java SE application or inside

containers that don’t offer Infinispan integration.

Enabling Infinispan second level cache provider inside a JPA/Hibernate application that runs in

single node is very straightforward. First, make sure the Hibernate Infinispan cache provider is

available in the classpath. Then, modify the persistence.xml to include these properties:

<!-- Use Infinispan second level cache provider -->

<property name="hibernate.cache.region.factory_class" value="infinispan"/>

<!--

 Force using local configuration when only using a single node.

 Otherwise a clustered configuration is loaded.

-->

<property name="hibernate.cache.infinispan.cfg"

 value="org/infinispan/hibernate/cache/commons/builder/infinispan-configs-

local.xml"/>

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan

configuration that’s designed for clustered environments. However, Infinispan also provides a

configuration designed for local, single node, environments. To enable that configuration, set

hibernate.cache.infinispan.cfg to org/infinispan/hibernate/cache/commons/builder/infinispan-

configs-local.xml value. You can find more about the configuration check the Default Local

Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a standalone

application can be found here.

4.1.2. Single-Node Standalone Spring Application

Using Hibernate within Spring applications is a very common use case. In this section you will

learn what you need to do configure Hibernate within Spring to use Infinispan as second-level

cache provider.

As in the previous case, start by making sure that Hibernate Infinispan Cache provider is available

in the classpath. Then, modify application.properties file to contain:

15

Use Infinispan second level cache provider

spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

#

Force using local configuration when only using a single node.

Otherwise a clustered configuration is loaded.

spring.jpa.properties.hibernate.cache.infinispan.cfg=org/infinispan/hibernate/cache/co

mmons/builder/infinispan-configs-local.xml

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan

configuration that’s designed for clustered environments. However, Infinispan also provides a

configuration designed for local, single node, environments. To enable that configuration, set

spring.jpa.properties.hibernate.cache.infinispan.cfg to

org/infinispan/hibernate/cache/commons/builder/infinispan-configs-local.xml value. You can find

more about the configuration check the Default Local Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a Spring

application can be found here.

4.1.3. Single-Node WildFly Application

In WildFly, Infinispan is the default second level cache provider for JPA/Hibernate. This means that

when using JPA in WildFly, region factory is already set to infinispan. Infinispan’s configuration is

located in WildFly’s standalone.xml file. It follows the same settings explained in Default Local

Configuration section.

When running in WildFly, do not set hibernate.cache.infinispan.cfg. The

configuration of the caches comes from WildFly’s configuration file.

Several aspects of the Infinispan second level cache provider can be configured directly in

persistence.xml. This means that some of those tweaks do not require changing WildFly’s

standalone.xml file. You can find out more about these changes in the Configuration Properties

section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-

level cache. This is explained in detail in the introduction of this chapter.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a WildFly

application can be found here.

4.1.4. Multi-Node Standalone Hibernate Application

When running a JPA/Hibernate in a multi-node environment and enabling Infinispan second-level

cache, it is necessary to cluster the second-level cache so that cache consistency can be guaranteed.

Clustering the Infinispan second-level cache provider is as simple as adding the following property

to the persistence.xml file:

16

<!-- Use Infinispan second level cache provider -->

<property name="hibernate.cache.region.factory_class" value="infinispan"/>

The default Infinispan configuration used by the second-level cache provider is already configured

to work in a cluster environment, so no need to add any extra properties. You can find more about

the configuration check the Default Cluster Configuration section.

4.1.5. Multi-Node Standalone Spring Application

If interested in running a Spring application that uses Hibernate and Infinispan as second level

cache, the cache needs to be clustered. Clustering the Infinispan second-level cache provider is as

simple as adding the following property to the application.properties file:

Use Infinispan second level cache provider

spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

The default Infinispan configuration used by the second-level cache provider is already configured

to work in a cluster environment, so no need to add any extra properties. You can find more about

the configuration check the Default Cluster Configuration section.

4.1.6. Multi-Node WildFly Application

As mentioned in the single node WildFly case, Infinispan is the default second level cache provider

for JPA/Hibernate when running inside WildFly. This means that when using JPA in WildFly, region

factory is already set to infinispan.

When running WildFly multi-node clusters, it is recommended that you start off by using

clustered.xml configuration file. Within this file you can find Hibernate Infinispan caches

configured with the correct settings to work in a clustered environment. You can find more about

the configuration check the Default Cluster Configuration section.

Several aspects of the Infinispan second level cache provider can be configured directly in

persistence.xml. This means that some of those tweaks do not require changing WildFly’s

standalone-ha.xml file. You can find out more about these changes in the Configuration Properties

section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-

level cache. Enabling second-level cache is explained in detail in the introduction of this chapter.

4.2. Configuration Reference

This section is dedicated at explaining configuration in detail as well as some extra configuration

options.

17

4.2.1. Default Local Configuration

Infinispan second-level cache provider comes with a configuration designed for local, single node,

environments. These are the characteristics of such configuration:

Entities, collections, queries and timestamps are stored in non-transactional local caches.

Entities and collections query caches are configured with the following eviction settings:

• Eviction wake up interval is 5 seconds.

• Max number of entries are 10,000.

• Max idle time before expiration is 100 seconds.

• Default eviction algorithm is LRU, least recently used.

You can change these settings on a per entity or collection basis or per individual entity or

collection type. More information in the Configuration Properties section below.

No eviction/expiration is configured for timestamp caches, nor it’s allowed.

4.2.2. Default Cluster Configuration

Infinispan second-level cache provider default configuration is designed for multi-node clustered

environments. The aim of this section is to explain the default settings for each of the different

global data type caches (entity, collection, query and timestamps), why these were chosen and what

are the available alternatives. These are the characteristics of such configuration:

Entities and Collections

By default all entities and collections are configured to use a synchronous invalidation as clustering

mode. Whenever a new entity or collection is read from database and needs to be cached, it’s only

cached locally in order to reduce intra-cluster traffic. This option can be changed so that

entities/collections are cached cluster wide, by switching the entity/collection cache to be replicated

or distributed. How to change this option is explained in the Configuration Properties section.

When data read from the database is put in the cache, with replicated or

distributed caches, the data is propagated to other nodes using asynchronous

communication. In the presence of concurrent database loads, one operation will

succeed while others might fail (silently). This is fine because they’d all be trying to

put the same data loaded from the database. This has the side effect that under

these circumstances, the cache might not be up to date right after making the JPA

call that leads to the database load. However, the cache will eventually contain the

data loaded, even if it happens after a short delay.

All entities and collections are configured to use a synchronous invalidation as clustering mode. This

means that when an entity is updated, the updated cache will send a message to the other members

of the cluster telling them that the entity has been modified. Upon receipt of this message, the other

nodes will remove this data from their local cache, if it was stored there. This option can be

changed so that both local and remote nodes contain the updates by configuring entities or

collections to use a replicated or distributed cache. With replicated caches all nodes would contain

18

the update, whereas with distributed caches only a subset of the nodes. How to change this option

is explained in the Configuration Properties section.

All entities and collections have initial state transfer disabled since there’s no need for it.

Entities and collections are configured with the following eviction settings. You can change these

settings on a per entity or collection basis or per individual entity or collection type. More

information in the Configuration Properties section below.

• Eviction wake up interval is 5 seconds.

• Max number of entries are 10,000.

• Max idle time before expiration is 100 seconds.

• Default eviction algorithm is LRU, least recently used.

Queries

Assuming that query caching has been enabled for the persistence unit (see chapter introduction),

the query cache is configured so that queries are only cached locally. Alternatively, you can

configure query caching to use replication by selecting the replicated-query as query cache name.

However, replication for query cache only makes sense if, and only if, all of this conditions are true:

• Performing the query is quite expensive.

• The same query is very likely to be repeatedly executed on different cluster nodes.

• The query is unlikely to be invalidated out of the cache

Hibernate must aggressively invalidate query results from the cache any time any

instance of one of the entity types targeted by the query. All such query results are

invalidated, even if the change made to the specific entity instance would not have

affected the query result. For example: the cached result of SELECT id FROM cars

where color = 'red' is thrown away when you call INSERT INTO cars VALUES …,

color = 'blue'. Also, the result of an update within a transaction is not visible to

the result obtained from the query cache.

query cache uses the same eviction/expiration settings as for entities/collections.

query cache has initial state transfer disabled. It is not recommended that this is enabled.

Up to Hibernate 5.2 both transactional and non-transactional query caches have been supported,

though non-transactional variant is recommended. Hibernate 5.3 drops support for transactional

caches, only non-transactional variant is supported. If the cache is configured with transactions this

setting is ignored and warning is logged.

Timestamps

The timestamps cache is configured with asynchronous replication as clustering mode. Local or

invalidated cluster modes are not allowed, since all cluster nodes must store all timestamps. As a

result, no eviction/expiration is allowed for timestamp caches either.

19

Asynchronous replication was selected as default for timestamps cache for

performance reasons. A side effect of this choice is that when an entity/collection

is updated, for a very brief period of time stale queries might be returned. It’s

important to note that due to how Infinispan deals with asynchronous replication,

stale queries might be found even query is done right after an entity/collection

update on same node.

Hibernate must aggressively invalidate query results from the cache any time any

instance of one of the entity types is modified. All cached query results referencing

given entity type are invalidated, even if the change made to the specific entity

instance would not have affected the query result. The timestamps cache plays

here an important role - it contains last modification timestamp for each entity

type. After a cached query results is loaded, its timestamp is compared to all

timestamps of the entity types that are referenced in the query. If any of these is

higher, the cached query result is discarded and the query is executed against DB.

This requires synchronization of the wall clock across the cluster to work as

expected.

4.2.3. Configuration Properties

As explained above, Infinispan second-level cache provider comes with default configuration in

infinispan-config.xml that is suited for clustered use. If there’s only single JVM accessing the DB,

you can use more performant infinispan-config-local.xml by setting the

hibernate.cache.infinispan.cfg property. If you require further tuning of the cache, you can

provide your own configuration. Caches that are not specified in the provided configuration will

default to infinispan-config.xml (if the provided configuration uses clustering) or infinispan-

config-local.xml.

It is not possible to specify the configuration this way in WildFly. Cache

configuration changes in WildFly should be done either modifying the cache

configurations inside the application server configuration, or creating new caches

with the desired tweaks and plugging them accordingly. See examples below on

how entity/collection specific configurations can be applied.

Use custom Infinispan configuration

<property

 name="hibernate.cache.infinispan.cfg"

 value="my-infinispan-configuration.xml" />

If the cache is configured as transactional, Infinispan cache provider automatically

sets transaction manager so that the TM used by Infinispan is the same as TM used

by Hibernate.

Cache configuration can differ for each type of data stored in the cache. In order to override the

cache configuration template, use property hibernate.cache.infinispan.data-type.cfg where data-

20

type can be one of:

• entity: Entities indexed by @Id or @EmbeddedId attribute.

• immutable-entity: Entities tagged with @Immutable annotation or set as mutable=false in mapping

file.

• naturalid: Entities indexed by their @NaturalId attribute.

• collection: All collections.

• timestamps: Mapping entity type → last modification timestamp. Used for query caching.

• query: Mapping query → query result.

• pending-puts: Auxiliary caches for regions using invalidation mode caches.

For specifying cache template for specific region, use region name instead of the data-type:

Use custom cache template

<property

 name="hibernate.cache.infinispan.entities.cfg"

 value="custom-entities" />

<property

 name="hibernate.cache.infinispan.query.cfg"

 value="custom-query-cache" />

<property

 name="hibernate.cache.infinispan.com.example.MyEntity.cfg"

 value="my-entities" />

<property

 name="hibernate.cache.infinispan.com.example.MyEntity.someCollection.cfg"

 value="my-entities-some-collection" />

Use custom cache template in WildFly

When applying entity/collection level changes inside JPA applications deployed in WildFly, it is

necessary to specify deployment name and persistence unit name (separated by # character):

<property

 name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.cfg"

 value="my-entities" />

<property

 name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.someCol

lection.cfg"

 value="my-entities-some-collection" />

Cache configurations are used only as a template for the cache created for given

region. Usually each entity hierarchy or collection has its own region

21

Except for eviction/expiration settings, it is highly recommended not to deviate

from the template configuration settings.

Some options in the cache configuration can also be overridden directly through properties. These

are:

• hibernate.cache.infinispan.something.eviction.strategy: Available options are NONE, LRU and

LIRS.

• hibernate.cache.infinispan.something.eviction.max_entries: Maximum number of entries in

the cache.

• hibernate.cache.infinispan.something.expiration.lifespan: Lifespan of entry from insert into

cache (in milliseconds).

• hibernate.cache.infinispan.something.expiration.max_idle: Lifespan of entry from last

read/modification (in milliseconds).

• hibernate.cache.infinispan.something.expiration.wake_up_interval: Period of thread checking

expired entries.

• hibernate.cache.infinispan.statistics: Globally enables/disable Infinispan statistics collection,

and their exposure via JMX.

Example:

<property name="hibernate.cache.infinispan.entity.eviction.strategy"

 value= "LRU"/>

<property name="hibernate.cache.infinispan.entity.eviction.wake_up_interval"

 value= "2000"/>

<property name="hibernate.cache.infinispan.entity.eviction.max_entries"

 value= "5000"/>

<property name="hibernate.cache.infinispan.entity.expiration.lifespan"

 value= "60000"/>

<property name="hibernate.cache.infinispan.entity.expiration.max_idle"

 value= "30000"/>

With the above configuration, you’re overriding whatever eviction/expiration settings were defined

for the default entity cache name in the Infinispan cache configuration used. This happens

regardless of whether it’s the default one or user defined. More specifically, we’re defining the

following:

• All entities to use LRU eviction strategy

• The eviction thread to wake up every 2 seconds (2000 milliseconds)

• The maximum number of entities for each entity type to be 5000 entries

• The lifespan of each entity instance to be 1 minute (60000 milliseconds).

• The maximum idle time for each entity instance to be 30 seconds (30000 milliseconds).

You can also override eviction/expiration settings on a per entity/collection type basis. This allows

overrides that only affects a particular entity (i.e. com.acme.Person) or collection type (i.e.

22

com.acme.Person.addresses). Example:

<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy"

 value= "LIRS"/>

Inside of WildFly, same as with the entity/collection configuration override, eviction/expiration

settings would also require deployment name and persistence unit information (a working

example can be found here):

<property name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.eviction.str

ategy"

 value= "LIRS"/>

<property name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.expiration.l

ifespan"

 value= "65000"/>

4.3. Cache Strategies

Infinispan cache provider supports all Hibernate cache strategies: transactional, read-write,

nonstrict-read-write and read-only.

Integrations with Hibernate 4.x required transactional invalidation caches and in

integrations with Hibernate ≤ 5.2 transactional invalidation caches are supported (in

JTA environment). However for all 5.x versions non-transactional caches are preferred.

With Hibernate 5.3 the support for transactional caches has been dropped completely, and both

<code>read-write</code> and <code>transactional</code> use the same implementation. Infinispan

provides the same consistency guarantees for both <code>transactional</code> and <code>read-

write</code> strategies, use of transactions is considered an implementation detail.

In integrations with Hibernate 5.2 or lower the actual setting of cache concurrency mode (read-

write vs. transactional) is not honored on invalidation caches, the appropriate strategy is selected

based on the cache configuration (non-transactional vs. transactional).

Support for replicated/distributed caches for read-write and read-only strategies has been added

during 5.x development and this requires exclusively non-transactional configuration. Also eviction

should not be used in this configuration as it can lead to consistency issues. Expiration (with

reasonably long max-idle times) can be used.

Nonstrict-read-write strategy is supported on non-transactional distributed/replicated caches, but

the eviction should be turned off as well. In addition to that, the entities must use versioning. This

means that this strategy cannot be used for caching natural IDs (which are never versioned). This

mode mildly relaxes the consistency - between DB commit and end of transaction commit a stale

read may occur in another transaction. However this strategy uses less RPCs and can be more

performant than the other ones.

23

Read-only mode is supported in all configurations mentioned above but use of this mode currently

does not bring any performance gains.

The available combinations are summarized in table below:

Table 5. Cache concurrency strategy/cache mode compatibility table

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≤ 5.2 transactional invalidation yes

transactional ≥ 5.3 non-

transactional

invalidation yes

read-write non-transactional invalidation yes

read-write non-transactional distributed/replicated no

nonstrict-read-write non-transactional distributed/replicated no

Changing caches to behave different to the default behaviour explained in previous section is

explained in the Configuration Properties section.

Use of transactional caches is possible only in JTA environment. Hibernate

supports JDBC-only transactions but Infinispan transactional caches do not

integrate with these. Therefore, in non-JTA environment the only option is to use

read-write, nonstrict-read-write or read-only on non-transactional cache.

Configuring the cache as transactional in non-JTA can lead to undefined

behaviour.

Stale read with nonstrict-read-write strategy

A=0 (non-cached), B=0 (cached in 2LC)

TX1: write A = 1, write B = 1

TX1: start commit

TX1: commit A, B in DB

TX2: read A = 1 (from DB), read B = 0 (from 2LC) // breaks transactional atomicity

TX1: update A, B in 2LC

TX1: end commit

Tx3: read A = 1, B = 1 // reads after TX1 commit completes are consistent again

4.4. Using minimal puts

Hibernate offers a configuration option hibernate.cache.use_minimal_puts which is off by default in

Infinispan implementation. This option checks if the cache contains given key before updating the

value from database (put-from-load) and omits the update if the cached value is already present.

When using invalidation caches it makes sense to keep this off as the put-from-load is local node-

only and silently fails if the entry is locked. With replicated/distributed caches the update is applied

to remote nodes, even if the local node already contains the entry, and this has higher performance

impact, so it might make sense to turn this option on and avoid updating the cache.

24

Chapter 5. JPA/Hibernate OGM

Hibernate can perform CRUD operations directly on an Infinispan cluster.

Hibernate OGM is an extension of the popular Hibernate ORM project which makes the Hibernate

API suited to interact with NoSQL databases such as Infinispan.

When some of your object graphs need high scalability and elasticity, you can use Hibernate OGM

to store these specific entities into Infinispan instead of your traditional RDBMS. The drawback is

that Infinispan - not being a relational database - can not run complex relational queries.

Hibernate OGM allows you to get started with Infinispan in minutes, as:

• the JPA API and its annotations are simple and well known

• you don’t need to learn Protobuf or Externalizer encoding formats

• no need to learn the Infinispan API

• the Hot Rod client is also setup and managed for you

It will still be beneficial to eventually learn how to configure Infinispan for top performance and

learn about all capabilities it has, but you can get a proof of concept application done quickly with

the example configuration.

Hibernate OGM also gives you several more benefits; being designed and implemented in

collaboration with the Infinispan team it incorporates experience and deep understanding of how

to best perform some common operations.

For example a common mistake for people new to Infinispan is to "serialize" Java POJOs for long

term storage of important information; the Infinispan API allows this as it’s useful for short lived

caching of metadata, but you wouldn’t be able to de-serialize your data when you make any

changes to your model. You wouldn’t want to wipe your database after any and each update of your

application, would you?

In the best of cases such an encoding wouldn’t be very efficient; in some worse scenarios your team

might not have thought such details though and you get stuck into a complex migration on your live

data.

Just like when using Hibernate ORM with a relational database, data stored over Hibernate OGM is

easy to recover even using other tools as it’s encoded using a well defined Protobuf schema.

Being able to "map" new domain objects by simply adding a couple of annotations is going to make

you more productive than re-inventing such error-prone encoding techniques, or figuring out how

to best store object graphs and relations into Infinispan.

Finally, using Hibernate OGM allows you to use all existing framework integration points, such as

injecting an EntityManager as usual: it’s not yet another tool but it’s the real Hibernate, so inheriting

all well known integrations: this will work in Java EE, Spring, Grails, Jhipster, … and all other

technologies integrating with Hibernate.

It’s booted like any Hibernate instance: compared to using it with an RDBMS you just have to

25

change some configuration properties, and of course omit the DataSource as Infinispan won’t use

one.

For more details, check the Hibernate OGM project and the Hibernate OGM / Infinispan section of

the documentation.

26

Chapter 6. Using Infinispan with Spring

Infinispan integrates with the Spring Framework to make it easy to add caching capabilities to your

applications.

6.1. Setting Up Infinispan as a Spring Cache Provider

Infinispan implements the Spring SPI to offer high-performance, in-memory caching capabilities.

6.1.1. Adding Spring Cache Support

The Spring Framework offers a cache abstraction with two simple annotations:

• @Cacheable adds entries to the cache.

• @CacheEvict removes entries from the cache.

To add caching support to your application, do the following:

1. Enable cache annotations in your application context either declaratively or programmatically.

◦ Declaratively: Add <cache:annotation-driven/> to your application context.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cache="http://www.springframework.org/schema/cache"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/cache

http://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven />

</beans>

◦ Programmatically: Enable cache support as follows:

@EnableCaching @Configuration

public class Config {

}

2. Add Infinispan and the Spring integration module to your pom.xml.

◦ Embedded mode: infinispan-spring5-embedded

◦ Remote client-server mode: infinispan-spring5-remote

27

The following is an example with embedded mode:

<dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-spring5-embedded</artifactId>

 </dependency>

 <!-- Tip: Use the Spring Boot starter

 instead of the spring-boot artifact. -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${version.spring}</version>

 </dependency>

</dependencies>

6.1.2. Configuring Infinispan as the Spring Cache Provider

The Spring cache provider SPI has two interfaces through which it interacts with Infinispan:

org.springframework.cache.CacheManager and org.springframework.cache.Cache. The CacheManager

interface acts as a factory for named Cache instances.

At runtime Spring looks for a CacheManager implementation that has a bean named cacheManager in

the application context.

You can configure your application context either declaratively or programmatically.

• Declaratively:

<!-- Infinispan cache manager -->

<bean id="cacheManager"

 class=

"org.infinispan.spring.embedded.provider.SpringEmbeddedCacheManagerFactoryBean"

 p:configurationFileLocation=

"classpath:/org/infinispan/spring/embedded/provider/sample/books-infinispan-

config.xml" />

• Programmatically:

28

@EnableCaching

@Configuration

public class Config {

 @Bean

 public CacheManager cacheManager() {

 return new SpringEmbeddedCacheManager(infinispanCacheManager());

 }

 private EmbeddedCacheManager infinispanCacheManager() {

 return new DefaultCacheManager();

 }

}

6.2. Adding Caching to Your Application

Add the @Cacheable and @CacheEvict annotations to your application code.

6.2.1. Adding Cache Entries

The @Cacheable annotation adds returned values to a defined cache.

For instance, you have a data access object (DAO) for books. You want book instances to be cached

after they have been loaded from the underlying database using BookDao#findBook(Integer bookId).

Annotate the findBook(Integer bookId) method with @Cacheable as follows:

@Transactional

@Cacheable(value = "books", key = "#bookId")

public Book findBook(Integer bookId) {...}

Any Book instances returned from findBook(Integer bookId) are stored in a cache named books,

using bookId as the key.

Note that "#bookId" is an expression in the Spring Expression Language that evaluates the bookId

argument.

If your application needs to reference entries in the cache directly, you should

include the key attribute. Without this attribute, Spring generates a hash from the

supplied method arguments to use as the cache key.

6.2.2. Deleting Cache Entries

The @CacheEvict annotation deletes entries from a defined cache.

Annotate the deleteBook(Integer bookId) method with @CacheEvict as follows:

29

// Evict all entries in the "books" cache

@Transactional

@CacheEvict (value="books", key = "#bookId", allEntries = true)

public void deleteBookAllEntries() {...}

// Evict entries in the "books" cache that match #bookId

@Transactional

@CacheEvict (value="books", key = "#bookId")

public void deleteBook(Integer bookId) {...]}

6.3. Configuring Timeouts for Cache Operations

The Infinispan Spring cache provider defaults to blocking behaviour when performing read and

write operations. By default operations are synchronous and do not time out. However, you might

want to set a maximum time to wait for operations before timing out in some situations. For

example, timeouts are useful if you need to ensure that an operation completes within a certain

time and you can ignore the cached value.

infinispan.spring.operation.read.timeout

Specifies the time, in milliseconds, to wait for read operations to complete. The default is 0 which

means unlimited wait time.

infinispan.spring.operation.write.timeout

Specifies the time, in milliseconds, to wait for write operations to complete. The default is 0

which means unlimited wait time.

To configure timeouts for cache operations, set the properties in the context XML for your

application on either SpringEmbeddedCacheManagerFactoryBean or

SpringRemoteCacheManagerFactoryBean.

In remote client-server mode, you can also add these properties to hotrod-

client.properties.

The following example shows the timeout properties in the context XML for

SpringRemoteCacheManagerFactoryBean:

<bean id="springRemoteCacheManagerConfiguredUsingConfigurationProperties"

 class="

org.infinispan.spring.remote.provider.SpringRemoteCacheManagerFactoryBean">

 <property name="configurationProperties">

 <props>

 <prop key="infinispan.spring.operation.read.timeout">500</prop>

 <prop key="infinispan.spring.operation.write.timeout">700</prop>

 </props>

 </property>

</bean>

30

6.4. Externalizing Sessions Using Spring Session

Spring Session lets you externalize user session information into Infinispan.

To configure Spring Session integration in your application, do the following:

1. Add dependencies to your pom.xml.

◦ Embedded mode: infinispan-spring5-embedded

◦ Remote client-server mode: infinispan-spring5-remote

The following is an example with remote client-server mode:

<dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-spring5-remote</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-session-core</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>${version.spring}</version>

 </dependency>

</dependencies>

2. Specify the appropriate FactoryBean to expose a CacheManager instance.

◦ Embedded mode: SpringEmbeddedCacheManagerFactoryBean

◦ Remote client-server mode: SpringRemoteCacheManagerFactoryBean

3. Enable Spring Session with the appropriate annotation.

◦ Embedded mode: @EnableInfinispanEmbeddedHttpSession

◦ Remote client-server mode: @EnableInfinispanRemoteHttpSession

These annotations have optional parameters:

31

▪ maxInactiveIntervalInSeconds sets session expiration time in seconds. The default is 1800.

▪ cacheName specifies the name of the cache that stores sessions. The default is sessions.

The following example shows a complete, annotation-based configuration:

@EnableInfinispanEmbeddedHttpSession

@Configuration

public class Config {

 @Bean

 public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {

 return new SpringEmbeddedCacheManagerFactoryBean();

 }

 //An optional configuration bean responsible for replacing the default

 //cookie that obtains configuration.

 //For more information refer to the Spring Session documentation.

 @Bean

 public HttpSessionStrategy httpSessionStrategy() {

 return new HeaderHttpSessionStrategy();

 }

}

32

	Integrating Infinispan 11.0
	Table of Contents
	Chapter 1. Infinispan modules for WildFly / EAP
	1.1. Installation
	1.2. Application Dependencies

	Chapter 2. Apache Lucene
	2.1. Lucene compatibility
	2.2. Maven dependencies
	2.3. How to use it
	2.4. Configuration
	2.4.1. Lock Cache
	2.4.2. Metadata Cache
	2.4.3. Data Cache

	2.5. Using a CacheLoader
	2.6. Storing the index in a database
	2.7. Loading an existing Lucene Index
	2.8. Architectural limitations
	2.9. Suggestions for optimal performance
	2.9.1. JGroups and networking stack
	2.9.2. Using a CacheStore
	2.9.3. Apply standard Lucene tuning
	2.9.4. Disable batching and transactions
	2.9.5. Set the right chunk size

	2.10. Demo
	2.11. Additional Links

	Chapter 3. Directory Provider for Hibernate Search
	3.1. Maven dependencies
	3.2. How to use it
	3.3. Configuration
	3.4. Architecture considerations

	Chapter 4. JPA/Hibernate 2L Cache
	4.1. Deployment Scenarios
	4.1.1. Single-Node Standalone Hibernate Application
	4.1.2. Single-Node Standalone Spring Application
	4.1.3. Single-Node WildFly Application
	4.1.4. Multi-Node Standalone Hibernate Application
	4.1.5. Multi-Node Standalone Spring Application
	4.1.6. Multi-Node WildFly Application

	4.2. Configuration Reference
	4.2.1. Default Local Configuration
	4.2.2. Default Cluster Configuration
	4.2.3. Configuration Properties

	4.3. Cache Strategies
	4.4. Using minimal puts

	Chapter 5. JPA/Hibernate OGM
	Chapter 6. Using Infinispan with Spring
	6.1. Setting Up Infinispan as a Spring Cache Provider
	6.1.1. Adding Spring Cache Support
	6.1.2. Configuring Infinispan as the Spring Cache Provider

	6.2. Adding Caching to Your Application
	6.2.1. Adding Cache Entries
	6.2.2. Deleting Cache Entries

	6.3. Configuring Timeouts for Cache Operations
	6.4. Externalizing Sessions Using Spring Session

