Security Guide for Infinispan 12.0

Table of Contents

1. Infinispan Security
2. Configuring Infinispan Authorization
2.1. Infinispan Authorization
2.1.1. Permissions
2.1.2. Role Mappers
2.2. Programmatically Configuring Authorization
2.3. Declaratively Configuring Authorization
2.4. Code Execution with Secure Caches
3. Securing JGroups
3.1. Configuring JGroups Authentication
4. Infinispan Ports and Protocols
4.1. Infinispan Server Ports and Protocols

4.1.1. Configuring Network Firewalls for Remote Connections

4.2. TCP and UDP Ports for Cluster Traffic

© © J O = b= NN DN =

[S
[N T N

Chapter 1. Infinispan Security

Infinispan provides security for components as well as data across different layers:
* Within the core library to provide role-based access control (RBAC) to CacheManagers, Cache
instances, and stored data.
* Over remote protocols to authenticate client requests and encrypt network traffic.
* Across nodes in clusters to authenticate new cluster members and encrypt the cluster transport.
The Infinispan core library uses standard Java security libraries such as JAAS, JSSE, JCA, JCE, and
SASL to ease integration and improve compatibility with custom applications and container

environments. For this reason, the Infinispan core library provides only interfaces and a set of
basic implementations.

Infinispan servers support a wide range of security standards and mechanisms to readily integrate
with enterprise-level security frameworks.

Chapter 2. Configuring Infinispan
Authorization

Authorization restricts the ability to perform operations with Infinispan and access data. You assign
users with roles that have different permission levels.

2.1. Infinispan Authorization

Infinispan lets you configure authorization to secure Cache Managers and cache instances. When
user applications or clients attempt to perform an operation on secured Cached Managers and
caches, they must provide an identity with a role that has sufficient permissions to perform that
operation.

For example, you configure authorization on a specific cache instance so that invoking Cache.get()
requires an identity to be assigned a role with read permission while Cache.put() requires a role
with write permission.

In this scenario, if a user application or client with the reader role attempts to write an entry,
Infinispan denies the request and throws a security exception. If a user application or client with
the writer role sends a write request, Infinispan validates authorization and issues a token for
subsequent operations.

Identity to Role Mapping

Identities are security Principals of type java.security.Principal. Subjects, implemented with the
javax.security.auth.Subject class, represent a group of security Principals. In other words, a
Subject represents a user and all groups to which it belongs.

Infinispan uses role mappers so that security principals correspond to roles, which represent one
Or more permissions.

The following image illustrates how security principals map to roles:

Principal Permission

Principal Permission

Principal Permission

2.1.1. Permissions

Permissions control access to Cache Managers and caches by restricting the actions that you can
perform. Permissions can also apply to specific entities such as named caches.

Table 1. Cache Manager Permissions

Permission

CONFIGURATION

LISTEN

LIFECYCLE
ALL

Table 2. Cache Permissions

Permission

READ

WRITE

EXEC

LISTEN

BULK_READ

BULK_WRITE
LIFECYCLE
ADMIN

ALL
ALL_READ

ALL_WRITE

Function

defineConfiguration

addListener

stop

Function
get, contains

put, putIfAbsent, replace, remove,
evict

distexec, streams

addListener

keySet, values, entrySet, query

clear, putAll
start, stop

getVersion, addInterceptor®,
removelInterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager, evict,
getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContainer,
setAvailability,

getDataContainer, getStats,
getXAResource

Description

Defines new cache
configurations.

Registers listeners against a
Cache Manager.

Stops the Cache Manager.

Includes all Cache Manager
permissions.

Description
Retrieves entries from a cache.

Writes, replaces, removes,
evicts data in a cache.

Allows code execution against a
cache.

Registers listeners against a
cache.

Executes bulk retrieve
operations.

Executes bulk write operations.
Starts and stops a cache.

Allows access to underlying
components and internal
structures.

Includes all cache permissions.

Combines the READ and
BULK_READ permissions.

Combines the WRITE and
BULK_WRITE permissions.

Combining permissions

You might need to combine permissions so that they are useful. For example, to allow "supervisors"
to run stream operations but restrict "standard" users to puts and gets only, you can define the
following mappings:

<role name="standard" permission="READ WRITE" />
<role name="supervisors" permission="READ WRITE EXEC BULK"/>

Reference

* Infinispan Security API

2.1.2. Role Mappers

Infinispan includes a PrincipalRoleMapper API that maps security Principals in a Subject to
authorization roles. There are two role mappers available by default:

IdentityRoleMapper

Uses the Principal name as the role name.

* Java class: org.infinispan.security.mappers.IdentityRoleMapper

* Declarative configuration: <identity-role-mapper />

CommonNameRoleMapper

Uses the Common Name (CN) as the role name if the Principal name is a Distinguished Name
(DN). For example the cn=managers,ou=people,dc=example,dc=com DN maps to the managers role.
* Java class: org.infinispan.security.mappers.CommonRoleMapper
* Declarative configuration: <common-name-role-mapper />
You can also use custom role mappers that implement the

org.infinispan.security.PrincipalRoleMapper interface. To configure custom role mappers
declaratively, use: <custom-role-mapper class="my.custom.RoleMapper" />

Reference

* Infinispan Security API

« org.infinispan.security.PrincipalRoleMapper

2.2. Programmatically Configuring Authorization

When using Infinispan as an embedded library, you can configure authorization with the
GlobalSecurityConfigurationBuilder and ConfigurationBuilder classes.

Procedure

1. Construct a GlobalConfigurationBuilder that enables authorization, specifies a role mapper, and
defines a set of roles and permissions.

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global
.security()

.authorization().enable() @
.principalRoleMapper(new IdentityRoleMapper()) @
.role("admin") ®

.permission(AuthorizationPermission.ALL)
.role("reader")
.permission(AuthorizationPermission.READ)
.role("writer")
.permission(AuthorizationPermission.WRITE)
.role("supervisor")
.permission(AuthorizationPermission.READ)
.permission(AuthorizationPermission.WRITE)
.permission(AuthorizationPermission.EXEC);

@ Enables Infinispan authorization for the Cache Manager.
@ Specifies an implementation of PrincipalRoleMapper that maps Principals to roles.

® Defines roles and their associated permissions.

2. Enable authorization in the ConfigurationBuilder for caches to restrict access based on user
roles.

ConfigurationBuilder config = new ConfigurationBuilder();
config
.security()
.authorization()
.enable(); @

@ Implicitly adds all roles from the global configuration.

If you do not want to apply all roles to a cache, explicitly define the roles that are authorized for
caches as follows:

ConfigurationBuilder config = new ConfiqurationBuilder();
config
.security()
.authorization()
.enable()
.role("admin") @
.role("supervisor")
.role("reader");

@ Defines authorized roles for the cache. In this example, users who have the writer role only
are not authorized for the "secured" cache. Infinispan denies any access requests from those
users.

Reference

* org.infinispan.configuration.global.GlobalSecurityConfigurationBuilder

 org.infinispan.configuration.cache.ConfigurationBuilder

2.3. Declaratively Configuring Authorization

Configure authorization in your infinispan.xml file.

Procedure

1. Configure the global authorization settings in the cache-container that specify a role mapper,
and define a set of roles and permissions.

2. Configure authorization for caches to restrict access based on user roles.

<infinispan>
<cache-container default-cache="secured" name="secured">
<security>
<authorization> @
<identity-role-mapper /> @
<role name="admin" permissions="ALL" /> ®
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC"/>
</authorization>
</security>
<local-cache name="secured">
<security>
<authorization/> @
</security>
</local-cache>
</cache-container>
</infinispan>

@ Enables Infinispan authorization for the Cache Manager.
@ Specifies an implementation of PrincipalRoleMapper that maps Principals to roles.

® Defines roles and their associated permissions.

@ Implicitly adds all roles from the global configuration.

If you do not want to apply all roles to a cache, explicitly define the roles that are authorized for
caches as follows:

<infinispan>
<cache-container default-cache="secured" name="secured">
<security>
<authorization>
<identity-role-mapper />
<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC"/>
</authorization>
</security>
<local-cache name="secured">
<security>
<authorization roles="admin supervisor reader"/> @
</security>
</local-cache>
</cache-container>

</infinispan>

@ Defines authorized roles for the cache. In this example, users who have the writer role only

are not authorized for the "secured" cache. Infinispan denies any access requests from those
users.

Reference

 Infinispan Configuration Schema Reference

2.4.

Code Execution with Secure Caches

When you configure Infinispan authorization and then construct a DefaultCacheManager, it returns a
SecureCache that checks the security context before invoking any operations on the underlying
caches. A SecureCache also ensures that applications cannot retrieve lower-level insecure objects
such as DataContainer. For this reason, you must execute code with an identity that has the required
authorization.

In Java, executing code with a specific identity usually means wrapping the code to be executed
within a PrivilegedAction as follows:

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {

}
1

cache.put("key", "value");

With Java 8, you can simplify the preceding call as follows:

Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

The preceding call uses the Security.doAs() method instead of Subject.doAs(). You can use either
method with Infinispan, however Security.doAs() provides better performance.

If you need the current Subject, use the following call to retrieve it from the Infinispan context or
from the AccessControlContext:

Security.getSubject();

Chapter 3. Securing JGroups

Configure JGroups to secure Infinispan clusters.

3.1. Configuring JGroups Authentication

Configure JGroups authentication to restrict Infinispan cluster membership. When joining or
merging, nodes must authenticate with the cluster.

Procedure

* Add the SASL mechanism to your JGroups configuration before the GMS protocol, as in the
following example:

<SASL mech="DIGEST-MD5"
client _name="node user"
client_password="node_password"
server_callback handler class=
"org.example.infinispan.security.JGroupsSaslServerCallbackHandler"
client _callback _handler_class=
"org.example.infinispan.security.JGroupsSaslClientCallbackHandler"
sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

The preceding example uses DIGEST-MD5 so that each node must declare valid credentials when
joining a Infinispan cluster.

Within the cluster, coordinator nodes act as SASL servers. All other nodes act as SASL clients. For
this reason you need two different CallbackHandlers, a server_callback_handler_class for the
coordinator and a client_callback_handler_class for the other nodes.

Cluster authorization

To implement node authorization, configure the server callback handler to throw an exception as
in the following example:

10

public class AuthorizingServerCallbackHandler implements CallbackHandler {

@0verride
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (Callback callback : callbacks) {

if (callback instanceof AuthorizeCallback) {
AuthorizeCallback acb = (AuthorizeCallback) callback;
UserProfile user = UserManager.loadUser(acb.getAuthenticationID());
if (luser.hasRole("myclusterrole")) {
throw new SecurityException("Unauthorized node

tuser);

}

Chapter 4. Infinispan Ports and Protocols

As Infinispan distributes data across your network and can establish connections for external client
requests, you should be aware of the ports and protocols that Infinispan uses to handle network
traffic.

If run Infinispan as a remote server then you might need to allow remote clients through your
firewall. Likewise, you should adjust ports that Infinispan nodes use for cluster communication to
prevent conflicts or network issues.

4.1. Infinispan Server Ports and Protocols

Infinispan Server exposes endpoints on your network for remote client access.

Port Protocol Description

11222 TCP Hot Rod and REST endpoint

11221 TCP Memcached endpoint, which is
disabled by default.

4.1.1. Configuring Network Firewalls for Remote Connections
Adjust any firewall rules to allow traffic between the server and external clients.

Procedure

On Red Hat Enterprise Linux (RHEL) workstations, for example, you can allow traffic to port 11222
with firewalld as follows:

firewall-cmd --add-port=11222/tcp --permanent
success

firewall-cmd --list-ports | grep 11222
11222/tcp

To configure firewall rules that apply across a network, you can use the nftables utility.

4.2. TCP and UDP Ports for Cluster Traffic

Infinispan uses the following ports by default:

Default Port Protocol Description

7800 TCP/UDP JGroups cluster bind port

46655 UDP JGroups multicast

7200 TCP JGroups RELAY?2 for cross-site
replication

11

Reference

Setting Up Cluster Transport

12

	Security Guide for Infinispan 12.0
	Table of Contents
	Chapter 1. Infinispan Security
	Chapter 2. Configuring Infinispan Authorization
	2.1. Infinispan Authorization
	2.1.1. Permissions
	2.1.2. Role Mappers

	2.2. Programmatically Configuring Authorization
	2.3. Declaratively Configuring Authorization
	2.4. Code Execution with Secure Caches

	Chapter 3. Securing JGroups
	3.1. Configuring JGroups Authentication

	Chapter 4. Infinispan Ports and Protocols
	4.1. Infinispan Server Ports and Protocols
	4.1.1. Configuring Network Firewalls for Remote Connections

	4.2. TCP and UDP Ports for Cluster Traffic

