Deploying and Configuring Infinispan
12.1 Servers

Table of Contents

1. Getting Started with Infinispan Server

1.1. Infinispan Server Requirements
1.2. Downloading Server Distributions
1.3. Installing Infinispan Server
1.4. Starting Infinispan Servers
1.5. Creating and Modifying Users
1.5.1. Adding Credentials
1.5.2. Assigning Roles to Users
1.5.3. Adding Users to Groups
1.5.4. User Roles and Permissions
1.6. Verifying Cluster Views
1.7. Shutting Down Infinispan Server
1.7.1. Restarting Infinispan Clusters
1.8. Infinispan Server Filesystem
1.8.1. Server Root Directory

2. Network Interfaces and Endpoints

2.1. Network Interfaces
2.2. Socket Bindings

2.3. Changing the Default Bind Address for Infinispan Servers

2.4. Specifying Port Offsets
2.5. Infinispan Endpoints
2.5.1. Hot Rod
2.5.2. REST
2.5.3. Memcached
2.5.4. Protocol Comparison
2.6. Endpoint Connectors
2.6.1. Hot Rod Connectors
2.6.2. REST Connectors
2.6.3. Memcached Connectors

2.7. Infinispan Server Ports and Protocols

2.8. Single Port

2.8.1. Configuring Network Firewalls for Remote Connections
3. Security Realms

3.1. Property Realms
3.1.1. Creating and Modifying Users
3.2. LDAP Realms

3.2.1. LDAP Realm Principal Rewriting

3.3. Token Realms

© 00 00 J O O U B b W W DD DD DD

[N CC R NS NS R S S N o o o i i i e e e e i
N OO RN R R, O OO O 00NN N0y Ul Ul W R e

3.4. Trust Store Realms
4. Configuring Endpoint Authentication Mechanisms
4.1. Infinispan Server Authentication
4.2. Manually Configuring Hot Rod Authentication
4.2.1. Hot Rod Authentication Configuration

4.2.2. Hot Rod Endpoint Authentication Mechanisms

4.2.3. SASL Quality of Protection (QoP)
4.2.4. SASL Policies
4.3. Manually Configuring REST Authentication
4.3.1. REST Authentication Configuration
4.3.2. REST Endpoint Authentication Mechanisms
4.4. Disabling Authentication
5. Encrypting Infinispan Server Connections
5.1. Configuring Infinispan Server Keystores
5.1.1. Automatically Generating Keystores
5.1.2. Configuring TLS versions and cipher suites

5.2. Configuring Client Certificate Authentication

5.3. Configuring Authorization with Client Certificates

6. Configuring Kerberos Identities for Infinispan Server

6.1. Setting Up Kerberos Identities
6.2. Kerberos Identity Configuration
7. Storing Infinispan Server Credentials in Keystores
7.1. Setting Up Credential Keystores
7.2. Credential Keystore Configuration
8. Endpoint IP Filtering

8.1. Infinispan Server IP Filter Configuration

8.2. Inspecting and Modifying Infinispan Server IP Filter Rules

9. Configuring User Authorization
9.1. Enabling Authorization in Cache Configuration
9.2. User Roles and Permissions
9.3. How Security Authorization Works
9.3.1. Permissions
9.3.2. Role Mappers
9.4. Access Control List (ACL) Cache
9.5. Customizing Roles and Permissions

9.6. Disabling Security Authorization

9.7. Configuring Authorization with Client Certificates

10. Setting Up Infinispan Clusters
10.1. Default JGroups Stacks
10.2. Cluster Discovery Protocols

10.2.1. PING

28
31
31
32
32
33
35
35
36
36
37
38
39
39
40
41
42
44
45
45
46
47
47
48
50
50
51
52
52
52
53
54
35
56
57
58
58
39
39
60
60

10.2.2. TCPPING
10.2.3. MPING
10.2.4. TCPGOSSIP
10.2.5. JDBC_PING
10.2.6. DNS_PING
10.2.7. Cloud Discovery Protocols
10.3. Using the Default JGroups Stacks
10.4. Customizing JGroups Stacks
10.4.1. Inheritance Attributes
10.5. Using JGroups System Properties
10.5.1. Cluster Transport Properties
10.5.2. System Properties for Cloud Discovery Protocols
10.6. Using Inline JGroups Stacks
10.7. Using External JGroups Stacks
10.8. Encrypting Cluster Transport
10.8.1. Infinispan Cluster Security
10.8.2. Configuring Cluster Transport with Asymmetric Encryption
10.8.3. Configuring Cluster Transport with Symmetric Encryption
10.9. TCP and UDP Ports for Cluster Traffic

11. Remotely Creating Infinispan Caches

11.1. Cache Configuration with Infinispan Server
11.2. Default Cache Manager

11.3. Creating Caches with the Infinispan Console

11.4. Creating Caches with the Infinispan Command Line Interface (CLI)

11.5. Creating Remote Caches with Hot Rod Clients
11.6. Creating Infinispan Caches with HTTP Clients
11.7. Cache Configuration

12. Configuring Infinispan Server Datasources

12.1. Datasource Configuration for JDBC Cache Stores
12.2. Using Datasources in JDBC Cache Stores
12.3. Testing Data Sources

13. Remotely Executing Server-Side Tasks

13.1. Creating Server Tasks

13.1.1. Server Tasks

13.1.2. Deploying Server Tasks to Infinispan Servers
13.2. Creating Server Scripts

13.2.1. Server Scripts

13.2.2. Adding Scripts to Infinispan Servers

13.2.3. Programmatically Creating Scripts
13.3. Running Server-Side Tasks and Scripts

13.3.1. Running Tasks and Scripts

60
61
61
62
62
62
63
64
65
66
66
67
68
69
70
70
71
73
74
75
75
75
76
76
77
78
79
80
80
81
82
83
83
83
84
85
85
87
88
88
88

13.3.2. Programmatically Running Scripts
13.3.3. Programmatically Running Tasks
14. Enabling and Customizing Logging
14.1. Server Logs
14.1.1. Configuring Server Logs
14.1.2. Log Levels
14.1.3. Infinispan Log Categories
14.1.4. Log Appenders
14.1.5. Log Patterns

14.1.6. Enabling and Configuring the JSON Log Handler

14.2. Access Logs
14.2.1. Enabling Access Logs
14.2.2. Access Log Properties
14.3. Audit Logs
14.3.1. Enabling Audit Logging
14.3.2. Configuring Audit Logging Appenders
14.3.3. Using Custom Audit Logging Implementations
15. Configuring Infinispan Server Statistics
15.1. Enabling Infinispan Statistics
15.2. Configuring Infinispan Metrics
15.3. Collecting Infinispan Metrics
15.4. Configuring Infinispan to Register JMX MBeans
15.4.1. Enabling JMX Remote Ports
15.4.2. Infinispan MBeans
16. Retrieving Health Statistics
16.1. Accessing the Health API via JMX
16.2. Accessing the Health API via REST
17. Performing Rolling Upgrades for Infinispan Servers
17.1. Setting Up Target Clusters
17.1.1. Remote Cache Stores for Rolling Upgrades
17.2. Synchronizing Data to Target Clusters
18. Patching Infinispan Server Installations
18.1. Infinispan Server Patches
18.2. Creating Server Patches
18.3. Installing Server Patches
18.4. Rolling Back Server Patches
19. Troubleshooting Infinispan Servers

19.1. Getting Diagnostic Reports for Infinispan Servers

19.2. Changing Infinispan Server Logging Configuration at Runtime

19.3. Resource Statistics

88
89
90
90
90
90
91
91
92
92
93
93
93
94
94
95
95
97
97
97
98
99
99
100
101
101
101
103
103
103
104
106
106
106
107
108
110
110
110
112

Infinispan server is a managed, distributed, and clusterable data grid that
provides elastic scaling and high performance access to caches from multiple
endpoints, such as Hot Rod and REST.

Chapter 1. Getting Started with Infinispan
Server

Quickly set up Infinispan Server and learn the basics.
[Get started icon] You can also visit our Get Started with Infinispan tutorial and run the server

image in 4 easy steps.

1.1. Infinispan Server Requirements

Infinispan Server requires a Java Virtual Machine and works with Java 11 and later.

0 Infinispan Server does not support Java 8. However, you can use Java 8 with Hot
Rod Java clients.

1.2. Downloading Server Distributions

The Infinispan server distribution is an archive of Java libraries (JAR files), configuration files, and a
data directory.

Procedure

1. Download Infinispan 12.1 Server from Infinispan downloads.

2. Run the shalsum command with the server download archive as the argument, for example:
$ shalsum infinispan-server-${version}.zip

3. Compare with the SHA-1 checksum value on the Infinispan downloads page.

Reference

The Infinispan Server README, available in the distribution, provides example commands for
running the server, describes folders in the $ISPN_HOME directory, and lists system properties you
can use to customize the filesystem.

1.3. Installing Infinispan Server

Install the Infinispan Server distribution on a host system.

Prerequisites

Download a Infinispan Server distribution archive.

Procedure

» Use any appropriate tool to extract the Infinispan Server archive to the host filesystem.

$ unzip infinispan-server-12.1.10.Final.zip

The resulting directory is your $ISPN_HOME.

1.4. Starting Infinispan Servers

Run Infinispan Server instances in a Java Virtual Machine (JVM).

Prerequisites

 Download and install the server distribution.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Start Infinispan Server instances with the server script.

Linux

$ bin/server.sh

Microsoft Windows

bin\server.bat

Infinispan Server is running successfully when it logs the following messages:

ISPN080004: Protocol SINGLE_PORT listening on 127.0.0.1:11222
ISPNO8@034: Server '..."' listening on http://127.0.0.1:11222
ISPN080001: Infinispan Server <version> started in <mm>ms

Verification

1. Open 127.0.0.1:11222/console/ in any browser.

2. Enter your credentials at the prompt and continue to Infinispan Console.

1.5. Creating and Modifying Users

Add Infinispan user credentials and assign permissions to control access to data.

Infinispan server installations use a property realm to authenticate users for the Hot Rod and REST
endpoints. This means you need to create at least one user before you can access Infinispan.

By default, users also need roles with permissions to access caches and interact with Infinispan
resources. You can assign roles to users individually or add users to groups that have role

permissions.

You create users and assign roles with the user command in the Infinispan command line interface
(CLD.

O Run help user from a CLI session to get complete command details.
-

1.5.1. Adding Credentials

You need an admin user for the Infinispan Console and full control over your Infinispan
environment. For this reason you should create a user with admin permissions the first time you add
credentials.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Create an admin user with the user create command in the CLI.
$ bin/cli.sh user create myuser -p changeme -g admin
Alternatively, the username "admin" automatically gets admin permissions.
$ bin/cli.sh user create admin -p changeme
3. Open user.properties and groups.properties with any text editor to verify users and groups.

$ cat server/conf/users.properties
#$REALM_NAME=default$
#$ALGORITHM=encrypted$
myuser=scram-sha-1\:BYGcIAwvfbb...

$ cat server/conf/groups.properties

myuser=admin

1.5.2. Assigning Roles to Users

Assign roles to users so they have the correct permissions to access data and modify Infinispan
resources.

Procedure

1. Start a CLI session with an admin user.
$ bin/cli.sh

2. Assign the deployer role to "katie".

[//containers/default]> user roles grant --roles=deployer katie
3. List roles for "katie".

[//containers/default]> user roles 1s katie
["deployer"]

1.5.3. Adding Users to Groups

Groups let you change permissions for multiple users. You assign a role to a group and then add
users to that group. Users inherit permissions from the group role.

Procedure

1. Start a CLI session with an admin user.
2. Use the user create command to create a group.
a. Specify "developers" as the group name with the --groups argument.

b. Set a username and password for the group.

In a property realm, a group is a special type of user that also requires a username and
password.

[//containers/default]> user create --groups=developers developers -p changeme
3. List groups.

[//containers/default]> user 1s --groups
["developers"]

4. Assign the application role to the "developers" group.
[//containers/default]> user roles grant --roles=application developers
5. List roles for the "developers" group.

[//containers/default]> user roles 1s developers
["application"]

6. Add existing users, one at a time, to the group as required.

[//containers/default]> user groups john --groups=developers

1.5.4. User Roles and Permissions

Infinispan includes a default set of roles that grant users with permissions to access data and
interact with Infinispan resources.

ClusterRoleMapper is the default mechanism that Infinispan uses to associate security principals to
authorization roles.

ClusterRoleMapper matches principal names to role names. A user named admin gets

o admin permissions automatically, a user named deployer gets deployer permissions,
and so on.
Role Permissions Description
admin ALL Superuser with all permissions

including control of the Cache
Manager lifecycle.

deployer ALL_READ, ALL_WRITE, Can create and delete
LISTEN, EXEC, MONITOR, Infinispan resources in addition
CREATE to application permissions.
application ALL_READ, ALL_WRITE, Has read and write access to
LISTEN, EXEC, MONITOR Infinispan resources in addition

to observer permissions. Can
also listen to events and execute
server tasks and scripts.

observer ALIL_READ, MONITOR Has read access to Infinispan
resources in addition to monitor
permissions.

monitor MONITOR Can view statistics via JMX and

the metrics endpoint.

Reference

* org.infinispan.security.AuthorizationPermission Enumeration

* Infinispan Configuration Schema Reference

1.6. Verifying Cluster Views
Infinispan nodes on the same network automatically discover each other and form clusters.

Complete this procedure to observe cluster discovery with the MPING protocol in the default TCP
stack with locally running Infinispan Server instances. If you want to adjust cluster transport for
custom network requirements, see the documentation for setting up Infinispan clusters.

This procedure is intended to demonstrate the principle of cluster discovery and is

o not intended for production environments. Doing things like specifying a port
offset on the command line is not a reliable way to configure cluster transport for
production.
Prerequisites

Have one instance of Infinispan Server running.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Copy the root directory to server?2.
$ cp -r server server?
3. Specify a port offset and the server?2 directory.

$ bin/server.sh -o 100 -s server?

Verification

You can view cluster membership in the console at 127.0.0.1:11222/console/cluster-membership.
Infinispan also logs the following messages when nodes join clusters:
INFO [org.infinispan.CLUSTER] (jgroups-11,<server_hostname>)

ISPN00OQ094: Received new cluster view for channel cluster:
[<server_hostname>|3] (2) [<server_hostname>, <server2_hostname>]

INFO [org.infinispan.CLUSTER] (jgroups-11,<server_hostname>)
ISPN100000: Node <server2_hostname> joined the cluster

Reference

Setting Up Infinispan Clusters

1.7. Shutting Down Infinispan Server

Stop individually running servers or bring down clusters gracefully.

Procedure

1. Create a CLI connection to Infinispan.
2. Shut down Infinispan Server in one of the following ways:

o Stop all nodes in a cluster with the shutdown cluster command, for example:

[//containers/default]> shutdown cluster

This command saves cluster state to the data folder for each node in the cluster. If you use a
cache store, the shutdown cluster command also persists all data in the cache.

o Stop individual server instances with the shutdown server command and the server
hostname, for example:

[//containers/default]> shutdown server <my_server@1>

The shutdown server command does not wait for rebalancing operations to

o complete, which can lead to data loss if you specify multiple hostnames at the
same time.
(r) Run help shutdown for more details about using the command.
w
Verification

Infinispan logs the following messages when you shut down servers:

ISPN080002: Infinispan Server stopping

ISPN@Q@0080: Disconnecting JGroups channel cluster

ISPNO@@390: Persisted state, version=<$version> timestamp=YYYY-MM-DDTHH:MM:SS
ISPN080003: Infinispan Server stopped

1.7.1. Restarting Infinispan Clusters

When you bring Infinispan clusters back online after shutting them down, you should wait for the
cluster to be available before adding or removing nodes or modifying cluster state.

If you shutdown clustered nodes with the shutdown server command, you must restart each server
in reverse order.

For example, if you shutdown server1 and then shutdown server2, you should first start server?2
and then start server.

If you shutdown a cluster with the shutdown cluster command, clusters become fully operational
only after all nodes rejoin.

You can restart nodes in any order but the cluster remains in DEGRADED state until all nodes that
were joined before shutdown are running.

1.8. Infinispan Server Filesystem

Infinispan Server uses the following folders on the host filesystem under $ISPN_HOME:

—— bin
—— boot
—— docs
F—— 1ib
F—— server

L—— static

See the Infinispan Server README, available in the distribution, for descriptions
@ of the each folder in your $ISPN_HOME directory as well as system properties you
' can use to customize the filesystem.

1.8.1. Server Root Directory

Apart from resources in the bin and docs folders, the only folder under $ISPN_HOME that you should
interact with is the server root directory, which is named server by default.

You can create multiple nodes under the same $ISPN_HOME directory or in different directories, but
each Infinispan Server instance must have its own server root directory. For example, a cluster of 5
nodes could have the following server root directories on the filesystem:

—— server
—— server1
F—— server2
F—— server3

L—— server4

Each server root directory should contain the following folders:

F—— server
| F—— conf
| —— data
| F——— 1ib
|

L—— 1log

server/conf

Holds infinispan.xml configuration files for a Infinispan Server instance.
Infinispan separates configuration into two layers:

Dynamic
Create mutable cache configurations for data scalability.
Infinispan Server permanently saves the caches you create at runtime along with the cluster
state that is distributed across nodes. Each joining node receives a complete cluster state that
Infinispan Server synchronizes across all nodes whenever changes occur.

Static

Add configuration to infinispan.xml for underlying server mechanisms such as cluster transport,
security, and shared datasources.

server/data

Provides internal storage that Infinispan Server uses to maintain cluster state.

Never directly delete or modify content in server/data.

o Modifying files such as caches.xml while the server is running can cause
corruption. Deleting content can result in an incorrect state, which means clusters
cannot restart after shutdown.

server/1lib

Contains extension JAR files for custom filters, custom event listeners, JDBC drivers, custom
ServerTask implementations, and so on.

server/log

Holds Infinispan Server log files.

10

Chapter 2. Network Interfaces and
Endpoints

Expose Infinispan Server through a network interface by binding it to an IP address. You can then
configure endpoints to use the interface so Infinispan Server can handle requests from remote
client applications.

o By default, Infinispan Server exposes a single port that automatically detects the
protocol of inbound requests.

2.1. Network Interfaces

Infinispan Server multiplexes endpoints to a single TCP/IP port and automatically detects protocols
of inbound client requests. You can configure how Infinispan Server binds to network interfaces to
listen for client requests.

Internet Protocol (IP) address

<!-- Selects a specific IPv4 address, which can be public, private, or loopback.
This is the default network interface for Infinispan Server. -->
<interfaces>
<interface name="public">
<inet-address value="${infinispan.bind.address:127.0.0.1}"/>
</interface>
</interfaces>

Loopback address

<!-- Selects an IP address in an IPv4 or IPv6 loopback address block. -->
<interfaces>
<interface name="public">
<loopback/>
</interface>
</interfaces>

Non-loopback address

<!-- Selects an IP address in an IPv4 or IPvb non-loopback address block. -->
<interfaces>
<interface name="public">
<non-loopback/>
</interface>
</interfaces>

11

Any address

<!-- Uses the ‘INADDR_ANY' wildcard address which means Infinispan Server
listens for inbound client requests on all interfaces. -->
<interfaces>
<interface name="public">
<any-address/>
</interface>
</interfaces>

Link local

<!I-- Selects a link-local IP address in an IPv4 or IPv6 address block. -->
<interfaces>
<interface name="public">
<link-local/>
</interface>
</interfaces>

Site local

<!-- Selects a site-local (private) IP address in an IPv4 or IPv6 address block. -->
<interfaces>
<interface name="public">
<site-local/>
</interface>
</interfaces>

Match and fallback strategies

Infinispan Server can enumerate all network interfaces on the host system and bind to an
interface, host, or IP address that matches a value, which can include regular expressions for
additional flexibility.

Match host

<!-- Selects an IP address that is assigned to a matching host name. -->
<interfaces>
<interface name="public">
<match-host value="my_host_name"/>
</interface>
</interfaces>

12

Match interface

<!--Selects an IP address assigned to a matching network interface. -->
<interfaces>
<interface name="public">
<match-interface value="eth0"/>
</interface>
</interfaces>

Match address

<!-- Selects an IP address that matches a regular expression. -->
<interfaces>
<interface name="public">
<match-address value="132\..*"/>
</interface>
</interfaces>

Fallback

<!-- Includes multiple strategies that Infinispan Server tries in the
declared order until it finds a match. -->
<interfaces>
<interface name="public">
<match-host value="my_host_name"/>
<match-address value="132\..*"/>
<any-address/>
</interface>
</interfaces>

2.2. Socket Bindings

Socket bindings map endpoint connectors to server interfaces and ports.

By default, Infinispan servers provide the following socket bindings:

<socket-bindings default-interface="public" port-offset=
"${infinispan.socket.binding.port-offset:0}">
<socket-binding name="default" port="${infinispan.bind.port:11222}"/>
<socket-binding name="memcached" port="11221"/>
</socket-bindings>

* socket-bindings declares the default interface and port offset.
* default binds to hotrod and rest connectors to the default port 11222.

* memcached binds the memcached connector to port 11221.

13

0 The memcached endpoint is disabled by default.

To override the default interface for socket-binding declarations, specify the interface attribute.

For example, you add an interface declaration named "private":

<interfaces>

<interface name="private">
<inet-address value="10.1.2.3"/>
</interface>
</interfaces>

You can then specify interface="private" in a socket-binding declaration to bind to the private IP
address, as follows:

<socket-bindings default-interface="public" port-offset=
"${infinispan.socket.binding.port-offset:0}">

<socket-binding name="private_binding" interface="private" port="1234"/>
</socket-bindings>

2.3. Changing the Default Bind Address for Infinispan
Servers

You can use the server -b switch or the infinispan.bind.address system property to bind to a
different address.

For example, bind the public interface to 127.0.0.2 as follows:

Linux

$ bin/server.sh -b 127.0.0.2

Windows

bin\server.bat -b 127.0.0.2

2.4. Specifying Port Offsets

Configure port offsets with Infinispan servers when running multiple instances on the same host.
The default port offset is 0.

Use the -o switch with the Infinispan CLI or the infinispan.socket.binding.port-offset system
property to set port offsets.

14

For example, start a server instance with an offset of 100 as follows. With the default configuration,
this results in the Infinispan server listening on port 11322.

Linux

$ bin/server.sh -o 100

Windows

bin\server.bat -o 100

2.5. Infinispan Endpoints

Infinispan endpoints expose the CacheManager interface over different connector protocols so you
can remotely access data and perform operations to manage and maintain Infinispan clusters.

You can define multiple endpoint connectors on different socket bindings.

2.5.1. Hot Rod

Hot Rod is a binary TCP client-server protocol designed to provide faster data access and improved
performance in comparison to text-based protocols.

Infinispan provides Hot Rod client libraries in Java, C++, C#, Node.js and other programming
languages.

Topology state transfer

Infinispan uses topology caches to provide clients with cluster views. Topology caches contain
entries that map internal JGroups transport addresses to exposed Hot Rod endpoints.

When client send requests, Infinispan servers compare the topology ID in request headers with the
topology ID from the cache. Infinispan servers send new topology views if client have older
topology IDs.

Cluster topology views allow Hot Rod clients to immediately detect when nodes join and leave,
which enables dynamic load balancing and failover.

In distributed cache modes, the consistent hashing algorithm also makes it possible to route Hot
Rod client requests directly to primary owners.

Reference

 Infinispan Hot Rod Server

* Hot Rod client implementations

2.5.2. REST

Infinispan exposes a RESTful interface that allows HTTP clients to access data, monitor and
maintain clusters, and perform administrative operations.

15

You can use standard HTTP load balancers to provide clients with load balancing and failover
capabilities. However, HTTP load balancers maintain static cluster views and require manual
updates when cluster topology changes occur.

Reference

* Infinispan REST Server

 mod_cluster HTTP load balancer

2.5.3. Memcached

Infinispan provides an implementation of the Memcached text protocol for remote client access.

o The Memcached endpoint is deprecated and planned for removal in a future
release.

The Infinispan Memcached endpoint supports clustering with replicated and distributed cache
modes.

There are some Memcached client implementations, such as the Cache::Memcached Perl client, that
can offer load balancing and failover detection capabilities with static lists of Infinispan server
addresses that require manual updates when cluster topology changes occur.

Reference

* Infinispan Memcached Server

* Memcached text protocol

2.5.4. Protocol Comparison

Hot Rod HTTP / REST Memcached
N

z

Topology-aware
Hash-aware
Encryption
Authentication
Conditional ops
Bulk ops
Transactions
Listeners

Query

Execution

Kk KKK
Z z < Z2 z z2 <K < K
2 2z 2z 2 z z < 2 2 Z

Cross-site failover

16

2.6. Endpoint Connectors

You configure Infinispan server endpoints with connector declarations that specify socket bindings,
authentication mechanisms, and encryption configuration.

The default endpoint connector configuration is as follows:
<endpoints socket-binding="default" security-realm="default"/>

* endpoints contains endpoint connector declarations and defines global configuration for
endpoints such as default socket bindings, security realms, and whether clients must present
valid TLS certificates.

e <hotrod-connector/> declares a Hot Rod connector.
e <rest-connector/> declares a REST connector.

» <memcached-connector socket-binding="memcached"/> declares a Memcached connector that uses
the memcached socket binding.

Declaring an empty <endpoints/> element implicitly enables the Hot Rod and REST connectors.

It is possible to have multiple endpoints bound to different sockets. These can use different security
realms and offer different authentication and encryption configurations. The following
configuration enables two endpoints on distinct socket bindings, each one with a dedicated security
realm. Additionally, the public endpoint disables administrative features, such as the console and
CLL

<endpoints socket-binding="public" security-realm="application-realm" admin="false">
<hotrod-connector/>
<rest-connector/>

</endpoints>

<endpoints socket-binding="private" security-realm="management-realm">
<hotrod-connector/>
<rest-connector/>

</endpoints>

Reference

urn:infinispan:server schema provides all available endpoint configuration.

2.6.1. Hot Rod Connectors

Hot Rod connector declarations enable Hot Rod servers.

17

<hotrod-connector name="hotrod">
<topology-state-transfer />
<authentication>
<!-- Hot Rod endpoint authentication configuration. -->
</authentication>
<encryption>
<!-- Hot Rod endpoint SSL/TLS encryption confiquration. -->
</encryption>
</hotrod-connector>

* name="hotrod" logically names the Hot Rod connector. By default the name is derived from the
socket binding name, for example hotrod-default.

* topology-state-transfer tunes the state transfer operations that provide Hot Rod clients with
cluster topology.

» authentication configures SASL authentication mechanisms.

* encryption configures TLS settings for client connections.

Reference

urn:infinispan:server schema provides all available Hot Rod connector configuration.

2.6.2. REST Connectors

REST connector declarations enable REST servers.

<rest-connector name="rest">
<authentication>
<!-- REST endpoint authentication configuration. -->
</authentication>
<cors-rules>
<!-- Cross-0rigin Resource Sharing (CORS) rules. -->
</cors-rules>
<encryption>
<!-- REST endpoint SSL/TLS encryption configuration. -->
</encryption>
</rest-connector>

* name="rest" logically names the REST connector. By default the name is derived from the socket
binding name, for example rest-default.

* authentication configures authentication mechanisms.
» cors-rules specifies CORS (Cross Origin Resource Sharing) rules for cross-domain requests.

» encryption configures TLS settings for client connections.

Reference

urn:infinispan:server schema provides all available REST connector configuration.

18

2.6.3. Memcached Connectors

Memcached connector declarations enable Memcached servers.

o Infinispan servers do not enable Memcached connectors by default.

<memcached-connector name="memcached" socket-binding="memcached" cache="mycache" />

* name="memcached" logically names the Memcached connector.
* socket-binding="memcached" declares a unique socket binding for the Memcached connector.
* cache="mycache" names the cache that the Memcached connector exposes. The default is

memcachedCache.

Memcached connectors expose a single cache only. To expose multiple caches through the
Memcached endpoint, you must declare additional connectors. Each Memcached connector
must also have a unique socket binding.

Reference

urn:infinispan:server schema provides all available Memcached connector configuration.

2.7. Infinispan Server Ports and Protocols

Infinispan Server exposes endpoints on your network for remote client access.

Port Protocol Description

11222 TCP Hot Rod and REST endpoint

11221 TCP Memcached endpoint, which is
disabled by default.

2.8. Single Port

Infinispan Server exposes multiple protocols through a single TCP port, which is 11222 by default.
Handling multiple protocols with a single port simplifies configuration and reduces management
complexity when deploying Infinispan clusters. Using a single port also enhances security by
minimizing the attack surface on the network.

Infinispan Server handles HTTP/1.1, HTTP/2, and Hot Rod protocol requests from clients via the
single port in different ways.

HTTP/1.1 upgrade headers

Client requests can include the HTTP/1.1 upgrade header field to initiate HTTP/1.1 connections with
Infinispan Server. Client applications can then send the Upgrade: protocol header field, where
protocol is a server endpoint.

Application-Layer Protocol Negotiation (ALPN)/Transport Layer Security (TLS)

19

Client requests include Server Name Indication (SNI) mappings for Infinispan Server endpoints to
negotiate protocols over a TLS connection.

o Applications must use a TLS library that supports the ALPN extension. Infinispan
uses WildFly OpenSSL bindings for Java.

Automatic Hot Rod detection

Client requests that include Hot Rod headers automatically route to Hot Rod endpoints.
2.8.1. Configuring Network Firewalls for Remote Connections
Adjust any firewall rules to allow traffic between the server and external clients.

Procedure

On Red Hat Enterprise Linux (RHEL) workstations, for example, you can allow traffic to port 11222
with firewalld as follows:

firewall-cmd --add-port=11222/tcp --permanent
success

firewall-cmd --list-ports | grep 11222
11222/tcp

To configure firewall rules that apply across a network, you can use the nftables utility.

20

Chapter 3. Security Realms

Security realms define identity, encryption, authentication, and authorization configuration for
Infinispan Server endpoints.

3.1. Property Realms

Property realms use property files to define users and groups.
users.properties maps usernames to passwords in plain-text format. Passwords can also be pre-

digested if you use the DIGEST-MD5 SASL mechanism or Digest HTTP mechanism.

myuser=a_password
user2=another_password

groups.properties maps users to roles.

myuser=supervisor,reader,writer
user2=supervisor

Endpoint authentication mechanisms

When you configure Infinispan Server to use a property realm, you can configure endpoints to use
the following authentication mechanisms:

* Hot Rod (SASL): PLAIN, DIGEST-*, and SCRAM-*
* REST (HTTP): Basic and Digest

21

Property realm configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<!-- Defines groups as roles for server authorization. -->
<properties-realm groups-attribute="Roles">
<!-- Specifies the properties file that holds usernames and passwords. -->
<!-- The plain-text="true" attribute stores passwords in plain text. -->
<user-properties path="users.properties"
relative-to="infinispan.server.config.path"
plain-text="true"/>
<!-- Specifies the properties file that defines roles for users. -->
<group-properties path="groups.properties"
relative-to="infinispan.server.config.path"/>
</properties-realm>
</security-realm>
</security-realms>
</security>

3.1.1. Creating and Modifying Users

Add Infinispan user credentials and assign permissions to control access to data.

Infinispan server installations use a property realm to authenticate users for the Hot Rod and REST
endpoints. This means you need to create at least one user before you can access Infinispan.

By default, users also need roles with permissions to access caches and interact with Infinispan
resources. You can assign roles to users individually or add users to groups that have role
permissions.

You create users and assign roles with the user command in the Infinispan command line interface
(CLD.

@ Run help user from a CLI session to get complete command details.
w
Adding Credentials

You need an admin user for the Infinispan Console and full control over your Infinispan
environment. For this reason you should create a user with admin permissions the first time you add
credentials.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Create an admin user with the user create command in the CLI.

22

$ bin/cli.sh user create myuser -p changeme -g admin

Alternatively, the username "admin" automatically gets admin permissions.

$ bin/cli.sh user create admin -p changeme

3. Open user.properties and groups.properties with any text editor to verify users and groups.

$ cat server/conf/users.properties
#$REALM_NAME=default$
#$ALGORITHM=encrypted$
myuser=scram-sha-1\:BYGcIAwvfbb...

$ cat server/conf/groups.properties

myuser=admin

Assigning Roles to Users

Assign roles to users so they have the correct permissions to access data and modify Infinispan
resources.

Procedure

1. Start a CLI session with an admin user.

$ bin/cli.sh

2. Assign the deployer role to "katie".

[//containers/default]> user roles grant --roles=deployer katie

3. List roles for "katie".

[//containers/default]> user roles 1s katie
["deployer"]

Adding Users to Groups

Groups let you change permissions for multiple users. You assign a role to a group and then add
users to that group. Users inherit permissions from the group role.

Procedure

23

1. Start a CLI session with an admin user.
2. Use the user create command to create a group.
a. Specify "developers" as the group name with the --groups argument.

b. Set a username and password for the group.

In a property realm, a group is a special type of user that also requires a username and
password.

[//containers/default]> user create --groups=developers developers -p changeme
3. List groups.

[//containers/default]> user 1s --groups
["developers"]

4. Assign the application role to the "developers" group.
[//containers/default]> user roles grant --roles=application developers
5. List roles for the "developers" group.

[//containers/default]> user roles 1s developers
["application"]

6. Add existing users, one at a time, to the group as required.

[//containers/default]> user groups john --groups=developers

3.2. LDAP Realms

LDAP realms connect to LDAP servers, such as OpenLDAP, Red Hat Directory Server, Apache
Directory Server, or Microsoft Active Directory, to authenticate users and obtain membership
information.

LDAP servers can have different entry layouts, depending on the type of server
and deployment. It is beyond the scope of this document to provide examples for
all possible configurations.

Endpoint authentication mechanisms

When you configure Infinispan Server to use an LDAP realm, you can configure endpoints to use
the following authentication mechanisms:

24

* Hot Rod (SASL): PLAIN, DIGEST-*, and SCRAM-*
* REST (HTTP): Basic and Digest

LDAP realm configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<!-- Names an LDAP realm and specifies connection properties. -->
<ldap-realm name="1dap"
url="1dap://my-1dap-server:10389"
principal="uid=admin,ou=People,dc=infinispan,dc=org"
credential="strongPassword"
connection-timeout="3000"
read-timeout="30000"
connection-pooling="true"
referral-mode="1ignore"
page-size="30"
direct-verification="true">
<!-- Defines how principals are mapped to LDAP entries. -->
<identity-mapping rdn-identifier="uid"
search-dn="ou=People,dc=infinispan,dc=org"
search-recursive="false">
<!-- Retrieves all the groups of which the user is a member. -->
<attribute-mapping>
<attribute from="cn"
to="Roles"
filter="(& (objectClass=groupOfNames)(member={1}))"
filter-dn="ou=Roles,dc=infinispan,dc=org"/>
</attribute-mapping>
</identity-mapping>
</1ldap-realm>
</security-realm>
</security-realms>
</security>

o The principal for LDAP connections must have necessary privileges to perform
LDAP queries and access specific attributes.

As an alternative to verifying user credentials with the direct-verification attribute, you can
specify an LDAP password with the user-password-mapper element.

The rdn-identifier attribute specifies an LDAP attribute that finds the user entry based on a
provided identifier, which is typically a username; for example, the uid or sAMAccountName attribute.
Add search-recursive="true" to the configuration to search the directory recursively. By default, the
search for the user entry uses the (rdn_identifier={0}) filter. Specify a different filter with the

25

filter-name attribute.

The attribute-mapping element retrieves all the groups of which the user is a member. There are
typically two ways in which membership information is stored:

* Under group entries that usually have class groupOfNames in the member attribute. In this case, you

can use an attribute filter as in the preceding example configuration. This filter searches for
entries that match the supplied filter, which locates groups with a member attribute equal to the
user’s DN. The filter then extracts the group entry’s CN as specified by from, and adds it to the
user’s Roles.

In the user entry in the memberOf attribute. In this case you should use an attribute reference
such as the following:

<attribute-reference reference="memberOf" from="cn" to="Roles" />

This reference gets all memberOf attributes from the user’s entry, extracts the CN as specified by
from, and adds them to the user’s Roles.

3.2.1. LDAP Realm Principal Rewriting

Some SASL authentication mechanisms, such as GSSAPI, GS2-KRB5 and Negotiate, supply a username
that needs to be cleaned up before you can use it to search LDAP servers.

26

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<ldap-realm name="1dap"
url="1dap://${org.infinispan.test.host.address}:10389"
principal="uid=admin,ou=People,dc=infinispan,dc=org"
credential="strongPassword">
<name-rewriter>
<!-- Defines a rewriter that extracts the username from the principal
using a reqular expression. -->
<regex-principal-transformer name="domain-remover"
pattern="(.*)@INFINISPAN\.ORG"
replacement="$1"/>
</name-rewriter>
<identity-mapping rdn-identifier="uid"
search-dn="ou=People,dc=infinispan,dc=org">
<attribute-mapping>
<attribute from="cn" to="Roles"
filter="(& (objectClass=groupOfNames)(member={1}))"
filter-dn="ou=Roles,dc=infinispan,dc=org" />
</attribute-mapping>
<user-password-mapper from="userPassword" />
</identity-mapping>
</1ldap-realm>
</security-realm>
</security-realms>
</security>

3.3. Token Realms

Token realms use external services to validate tokens and require providers that are compatible
with RFC-7662 (OAuth2 Token Introspection), such as KeyCloak.

Endpoint authentication mechanisms

When you configure Infinispan Server to use a token realm, you must configure endpoints to use
the following authentication mechanisms:

¢ Hot Rod (SASL): OAUTHBEARER
e REST (HTTP): Bearer

27

Token realm configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<!-- Specifies the URL of the authentication server. -->
<token-realm name="token"
auth-server-url="https://oauth-server/auth/">
<!-- Specifies the URL of the token introspection endpoint. -->
<oauth2-introspection
introspection-url="https://oauth-
server/auth/realms/infinispan/protocol/openid-connect/token/introspect"”
client-id="infinispan-server"
client-secret="1fdcadec-c416-47e0-867a-3d471af7050f" />
</token-realm>
</security-realm>
</security-realms>
</security>

3.4. Trust Store Realms

Trust store realms use certificates, or certificates chains, that verify Infinispan Server and client
identities when they negotiate connections.

Keystores

Contain server certificates that provide a Infinispan Server identity to clients. If you configure a
keystore with server certificates, Infinispan Server encrypts traffic using industry standard
SSL/TLS protocols.

Trust stores

Contain client certificates, or certificate chains, that clients present to Infinispan Server. Client
trust stores are optional and allow Infinispan Server to perform client certificate authentication.

Client certificate authentication

You must add the require-ssl-client-auth="true" attribute to the endpoint configuration if you
want Infinispan Server to validate or authenticate client certificates.

Endpoint authentication mechanisms

If you configure Infinispan Server with a keystore only, you can use encryption in combination
with any authentication mechanism.

When you configure Infinispan Server to use a client trust store, you must configure endpoints to
use the following authentication mechanisms:

* Hot Rod (SASL): EXTERNAL

28

o REST (HTTP): CLIENT_CERT

Trust store realm configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<ssl>
<!-- Provides an SSL/TLS identity with a keystore that
contains server certificates. -->
<keystore path="server.p12"
relative-to="infinispan.server.config.path"
keystore-password="secret"
alias="server"/>
<!-- Configures a trust store that contains client certificates
or part of a certificate chain. -->
<truststore path="trust.p12"
relative-to="infinispan.server.config.path"
password="secret"/>
</ssl>
</server-identities>
<!-- Authenticates client certificates against the trust store.
If you configure this, the trust store must contain
the public certificates for all clients. -->
<truststore-realm/>
</security-realm>
</security-realms>
</security>
<!-- Configures Infinispan Server to require client certificates
with the "require-ssl-client-auth" attribute. -->
<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default"
require-ssl-client-auth="true">
<hotrod-connector>

<!-- Configures the Hot Rod endpoint for client certificate authentication.

<authentication>
<sasl mechanisms="EXTERNAL"
server-name="infinispan"
qop="auth"/>
</authentication>
</hotrod-connector>
<rest-connector>

<!-- Configures the REST endpoint for client certificate authentication. -->

29

30

<authentication mechanisms="CLIENT CERT"/>
</rest-connector>
</endpoints>

Chapter 4. Configuring Endpoint
Authentication Mechanisms

Configure Hot Rod and REST connectors with SASL or HTTP authentication mechanisms to
authenticate with clients.

Infinispan servers require user authentication to access the command line interface (CLI) and
console as well as the Hot Rod and REST endpoints. Infinispan servers also automatically configure
authentication mechanisms based on the security realms that you define.

4.1. Infinispan Server Authentication

Infinispan servers automatically configure authentication mechanisms based on the security realm
that you assign to endpoints.

SASL Authentication Mechanisms
The following SASL authentication mechanisms apply to Hot Rod endpoints:

Security Realm SASL Authentication Mechanism
Property Realms and LDAP Realms SCRAM-* DIGEST-* CRAM-MD5
Token Realms OAUTHBEARER

Trust Realms EXTERNAL

Kerberos Identities GSSAPI, GS2-KRB5

SSL/TLS Identities PLAIN

HTTP Authentication Mechanisms
The following HTTP authentication mechanisms apply to REST endpoints:

Security Realm HTTP Authentication Mechanism
Property Realms and LDAP Realms DIGEST

Token Realms BEARER_TOKEN

Trust Realms CLIENT_CERT

Kerberos Identities SPNEGO

SSL/TLS Identities BASIC
Default Configuration

Infinispan servers provide a security realm named "default" that uses a property realm with plain
text credentials defined in $ISPN_HOME/server/ conf/users.properties, as shown in the following
snippet:

31

<security-realm name="default">
<properties-realm groups-attribute="Roles">
<user-properties path="users.properties"
relative-to="infinispan.server.config.path"
plain-text="true"/>
<group-properties path="groups.properties”
relative-to="infinispan.server.config.path" />
</properties-realm>
</security-realm>

The endpoints configuration assigns the "default" security realm to the Hot Rod and REST
connectors, as follows:

<endpoints socket-binding="default" security-realm="default">
<hotrod-connector name="hotrod"/>
<rest-connector name="rest"/>

</endpoints>

As a result of the preceding configuration, Infinispan servers require authentication with a
mechanism that the property realm supports.

4.2. Manually Configuring Hot Rod Authentication

Explicitly configure Hot Rod connector authentication to override the default SASL authentication
mechanisms that Infinispan servers use for security realms.

Procedure

1. Add an authentication definition to the Hot Rod connector configuration.
2. Specify which Infinispan security realm the Hot Rod connector uses for authentication.
3. Specify the SASL authentication mechanisms for the Hot Rod endpoint to use.

4. Configure SASL authentication properties as appropriate.

4.2.1. Hot Rod Authentication Configuration

32

Hot Rod connector with SCRAM, DIGEST, and PLAIN authentication

<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default">
<hotrod-connector>
<authentication>
<!-- Specifies SASL mechanisms to use for authentication. -->
<!-- Defines the name that the server declares to clients. -->
<sasl mechanisms="SCRAM-SHA-512 SCRAM-SHA-384 SCRAM-SHA-256
SCRAM-SHA-1 DIGEST-SHA-512 DIGEST-SHA-384
DIGEST-SHA-256 DIGEST-SHA DIGEST-MD5 PLAIN"
server-name="infinispan"
qop="auth"/>
</authentication>
</hotrod-connector>
</endpoints>

Hot Rod connector with Kerberos authentication

<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default">
<hotrod-connector>
<authentication>
<!-- Enables the GSSAPI and GS2-KRB5 mechanisms for Kerberos authentication.
-->
<!-- Defines the server name, which is equivalent to the Kerberos service
name, and specifies the Kerberos identity for the server. -->
<sasl mechanisms="GSSAPI GS2-KRB5"
server-name="datagrid"
server-principal="hotrod/datagrid@INFINISPAN.ORG" />
</authentication>
</hotrod-connector>
</endpoints>

4.2.2. Hot Rod Endpoint Authentication Mechanisms

Infinispan supports the following SASL authentications mechanisms with the Hot Rod connector:

33

Authentication mechanism

PLAIN

DIGEST-*

SCRAM-*

GSSAPI

@S2-KRB5

EXTERNAL

OAUTHBEARER

34

Description

Uses credentials in plain-text
format. You should use PLAIN
authentication with encrypted
connections only.

Uses hashing algorithms and
nonce values. Hot Rod
connectors support DIGEST-MD5,
DIGEST-SHA, DIGEST-SHA-256,
DIGEST-SHA-384, and DIGEST-SHA-

512 hashing algorithms, in order

of strength.

Uses salt values in addition to
hashing algorithms and nonce
values. Hot Rod connectors
support SCRAM-SHA, SCRAM-SHA-
256, SCRAM-SHA-384, and SCRAM-
SHA-512 hashing algorithms, in
order of strength.

Uses Kerberos tickets and
requires a Kerberos Domain
Controller. You must add a
corresponding kerberos server
identity in the realm
configuration. In most cases,
you also specify an 1dap-realm
to provide user membership
information.

Uses Kerberos tickets and
requires a Kerberos Domain
Controller. You must add a
corresponding kerberos server
identity in the realm
configuration. In most cases,
you also specify an 1dap-realm
to provide user membership
information.

Uses client certificates.

Related details

Similar to the Basic HTTP
mechanism.

Similar to the Digest HTTP
mechanism.

Similar to the Digest HTTP
mechanism.

Similar to the SPNEGO HTTP
mechanism.

Similar to the SPNEGO HTTP
mechanism.

Similar to the CLIENT _CERT HTTP
mechanism.

Uses OAuth tokens and requires Similar to the BEARER_TOKEN

a token-realm configuration.

HTTP mechanism.

4.2.3. SASL Quality of Protection (QoP)

If SASL mechanisms support integrity and privacy protection settings, you can add them to your
Hot Rod connector configuration with the qop attribute.

QoP Description

setting

auth Authentication only.

auth-int Authentication with integrity protection.

auth-conf Authentication with integrity and privacy protection.
4.2.4. SASL Policies

SASL policies let you control which authentication mechanisms Hot Rod connectors can use.

Policy

forward-
secrecy

pass-
credentials

no-plain-
text

no-active
no-
dictionary

no-anonymous

Q

Description Default
value
Use only SASL mechanisms that support forward secrecy between false

sessions. This means that breaking into one session does not
automatically provide information for breaking into future sessions.

Use only SASL mechanisms that require client credentials. false

Do not use SASL mechanisms that are susceptible to simple plain passive false
attacks.

Do not use SASL mechanisms that are susceptible to active, non- false
dictionary, attacks.

Do not use SASL mechanisms that are susceptible to passive dictionary false
attacks.

Do not use SASL mechanisms that accept anonymous logins. true

Infinispan cache authorization restricts access to caches based on roles and
permissions. If you configure cache authorization, you can then set <no-anonymous
value=false /> to allow anonymous login and delegate access logic to cache
authorization.

35

Hot Rod connector with SASL policy configuration

<hotrod-connector socket-binding="hotrod" cache-container="default">
<authentication security-realm="ApplicationRealm">
<!-- Specifies multiple SASL authentication mechanisms for the Hot Rod
connector. -->
<sasl server-name="myhotrodserver"
mechanisms="PLAIN DIGEST-MD5 GSSAPI EXTERNAL"

qop="auth">
<!-- Defines policies for SASL mechanisms. -->
<policy>

<no-active value="true" />
<no-anonymous value="true" />
<no-plain-text value="true" />
</policy>
</sasl>
</authentication>
</hotrod-connector>

As a result of the preceding configuration, the Hot Rod connector uses the GSSAPI mechanism
because it is the only mechanism that complies with all policies.

4.3. Manually Configuring REST Authentication

Explicitly configure REST connector authentication to override the default HTTP authentication
mechanisms that Infinispan servers use for security realms.

Procedure

1. Add an authentication definition to the REST connector configuration.
2. Specify which Infinispan security realm the REST connector uses for authentication.

3. Specify the authentication mechanisms for the REST endpoint to use.

4.3.1. REST Authentication Configuration

REST connector with BASIC and DIGEST authentication

<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default">
<rest-connector>
<!-- Specifies SASL mechanisms to use for authentication. -->
<authentication mechanisms="DIGEST BASIC"/>
</rest-connector>
</endpoints>

36

REST connector with Kerberos authentication

<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default">
<rest-connector>
<!-- Enables the ‘SPENGO' mechanism for Kerberos authentication and specifies an
identity for the server. -->
<authentication mechanisms="SPNEGO"
server-principal="HTTP/1localhost@INFINISPAN.ORG" />
</rest-connector>
</endpoints>

4.3.2. REST Endpoint Authentication Mechanisms

Infinispan supports the following authentications mechanisms with the REST connector:

Authentication mechanism Description Related details

BASIC Uses credentials in plain-text ~ Corresponds to the Basic HTTP
format. You should use BASIC authentication scheme and is
authentication with encrypted similar to the PLAIN SASL
connections only. mechanism.

DIGEST Uses hashing algorithms and Corresponds to the Digest HTTP
nonce values. REST connectors authentication scheme and is
support SHA-512, SHA-256 and MD5 similar to DIGEST-* SASL

hashing algorithmes. mechanisms.

SPNEGO Uses Kerberos tickets and Corresponds to the Negotiate
requires a Kerberos Domain HTTP authentication scheme
Controller. You must add a and is similar to the GSSAPI and

corresponding kerberos server GS2-KRB5 SASL mechanisms.
identity in the realm

configuration. In most cases,

you also specify an 1dap-realm

to provide user membership

information.
BEARER_TOKEN Uses OAuth tokens and requires Corresponds to the Bearer HTTP
a token-realm configuration. authentication scheme and is
similar to OAUTHBEARER SASL
mechanism.
CLIENT_CERT Uses client certificates. Similar to the EXTERNAL SASL
mechanism.

37

4.4. Disabling Authentication

In local development environments or on isolated networks you can configure Infinispan to allow
unauthenticated client requests.

When you disable user authentication you should also disable authorization in your Infinispan
security configuration.

Procedure

1. Open infinispan.xml for editing.
2. Remove any security-realm attributes from the endpoints configuration.

3. Ensure that the Hot Rod and REST connectors do not include any authentication configuration.

For example, the following configuration allows unauthenticated access to Infinispan:
<endpoints socket-binding="default">
<hotrod-connector name="hotrod"/>

<rest-connector name="rest"/>
</endpoints>

4. Remove any authorization elements from the security configuration for the cache-container
and each cache configuration.

38

Chapter 5. Encrypting Infinispan Server
Connections

You can secure Infinispan Server connections using SSL/TLS encryption by configuring a keystore
that contains public and private keys for Infinispan. You can also configure client certificate
authentication if you require mutual TLS.

5.1. Configuring Infinispan Server Keystores

Add keystores to Infinispan Server and configure it to present SSL/TLS certificates that verify its
identity to clients. If a security realm contains TLS/SSL identities, it encrypts any connections to
Infinispan Server endpoints that use that security realm.

Prerequisites

* Create a keystore that contains certificates, or certificate chains, for Infinispan Server.

Infinispan Server supports the following keystore formats: JKS, JCEKS, PKCS12, BKS, BCFKS, and
UBER.

o In production environments, server certificates should be signed by a trusted
Certificate Authority, either Root or Intermediate CA.

Procedure

1. Add the keystore that contains SSL/TLS identities for Infinispan Server to the
$ISPN_HOME/server/conf directory.

2. Add a server-identities definition to the Infinispan Server security realm.
3. Specify the keystore file name with the path attribute.

4. Provide the keystore password and certificate alias with the keystore-password and alias
attributes.

39

Infinispan Server keystore configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<ssl>
<!-- Adds a keystore that contains server certificates
that provide SSL/TLS identities to clients. -->
<keystore path="server.pfx"
relative-to="infinispan.server.config.path"
keystore-password="secret"
alias="rhdg-server"/>
</ssl>
</server-identities>
</security-realm>
</security-realms>
</security>

Next steps

Configure clients with a trust store so they can verify SSL/TLS identities for Infinispan Server.
Additional resources

* Configuring Hot Rod client encryption
5.1.1. Automatically Generating Keystores

Configure Infinispan servers to automatically generate keystores at startup.

Automatically generated keystores:

* Should not be used in production environments.

o » Are generated whenever necessary; for example, while obtaining the first
connection from a client.

* Contain certificates that you can use directly in Hot Rod clients.

Procedure

1. Include the generate-self-signed-certificate-host attribute for the keystore element in the
server configuration.

2. Specify a hostname for the server certificate as the value.

40

SSL server identity with a generated keystore

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<ssl>
<!-- Generates a keystore that includes a self-signed certificate with
the specified hostname. -->
<keystore path="server.p12"
relative-to="infinispan.server.config.path"
keystore-password="secret"
alias="server"
generate-self-signed-certificate-host="1ocalhost"/>
</ssl>
</server-identities>
</security-realm>
</security-realms>
</security>

5.1.2. Configuring TLS versions and cipher suites

When using SSL/TLS encryption to secure your deployment, you can configure Infinispan Server to
use specific versions of the TLS protocol as well as specific cipher suites within the protocol.

Procedure

1. Add the engine element to the SSL configuration for Infinispan Server.

2. Configure Infinispan to use one or more TLS versions with the enabled-protocols attribute.

Infinispan Server supports TLS version 1.2 and 1.3 by default. If appropriate you can set TLSv1.3
only to restrict the security protocol for client connections. Infinispan does not recommend
enabling TLSv1.1 because it is an older protocol with limited support and provides weak
security. You should never enable any version of TLS older than 1.1.

If you modify the SSL engine configuration for Infinispan Server you must

explicitly configure TLS versions with the enabled-protocols attribute. Omitting
g the enabled-protocols attribute allows any TLS version.

<engine enabled-protocols="TLSv1.3 TLSv1.2" />
3. Configure Infinispan to use one or more cipher suites with the enabled-ciphersuites attribute.

You must ensure that you set a cipher suite that supports any protocol features you plan to use;
for example HTTP/2 ALPN.

41

SSL engine configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<ssl>
<keystore path="server.p12"
relative-to="infinispan.server.config.path"
keystore-password="secret" alias="server"/>
<!-- Configures Infinispan Server to use specific TLS versions and
->
<engine enabled-protocols="TLSv1.3"
enabled-ciphersuites="TLS_AES_256_GCM_SHA384
TLS_AES_128_GCM_SHA256 TLS_AES_128_CCM_8_SHA256"/>
</ssl>
</server-identities>
</security-realm>
</security-realms>
</security>

cipher suites.

5.2. Configuring Client Certificate Authentication

Configure Infinispan Server to use mutual TLS to secure client connections.
You can configure Infinispan to verify client identities from certificates in a trust store in two ways:
* Require a trust store that contains only the signing certificate, which is typically a Certificate

Authority (CA). Any client that presents a certificate signed by the CA can connect to Infinispan.

* Require a trust store that contains all client certificates in addition to the signing certificate.
Only clients that present a signed certificate that is present in the trust store can connect to
Infinispan.

@ Alternatively to providing trust stores you can use shared system certificates.
w

Prerequisites
* Create a client trust store that contains either the CA certificate or all public certificates.

* Create a keystore for Infinispan Server and configure an SSL/TLS identity.

Procedure

1. Add the require-ssl-client-auth="true" parameter to your endpoints configuration.
2. Add the client trust store to the $ISPN_HOME/server/conf directory.

3. Specify the path and password attributes for the truststore element in the Infinispan Server
security realm configuration.

42

4. Add the <truststore-realm/> element to the security realm if you want Infinispan Server to
authenticate each client certificate.

Infinispan Server trust store realm configuration

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<ssl>
<!-- Provides an SSL/TLS identity with a keystore that
contains server certificates. -->
<keystore path="server.p12"
relative-to="infinispan.server.config.path"
keystore-password="secret"
alias="server"/>
<!-- Configures a trust store that contains client certificates
or part of a certificate chain. -->
<truststore path="trust.p12"
relative-to="infinispan.server.config.path"
password="secret"/>
</ssl>
</server-identities>
<!-- Authenticates client certificates against the trust store.
If you configure this, the trust store must contain
the public certificates for all clients. -->
<truststore-realm/>
</security-realm>
</security-realms>
</security>
<!-- Confiqures Infinispan Server to require client certificates
with the "require-ssl-client-auth" attribute. -->
<endpoints xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1"
socket-binding="default"
security-realm="default"
require-ssl-client-auth="true">
<hotrod-connector>
<!-- Configures the Hot Rod endpoint for client certificate authentication. -->
<authentication>
<sasl mechanisms="EXTERNAL"
server-name="infinispan"
qop="auth"/>
</authentication>
</hotrod-connector>
<rest-connector>

43

<!-- Configures the REST endpoint for client certificate authentication. -->
<authentication mechanisms="CLIENT_CERT"/>
</rest-connector>
</endpoints>

Next steps

» Set up authorization with client certificates in the Infinispan Server configuration if you control
access with security roles and permissions.

 Configure clients to negotiate SSL/TLS connections with Infinispan Server.

Additional resources

* Configuring Hot Rod client encryption

» Using Shared System Certificates (Red Hat Enterprise Linux 7 Security Guide)

5.3. Configuring Authorization with Client Certificates

Enabling client certificate authentication means you do not need to specify Infinispan user
credentials in client configuration, which means you must associate roles with the Common Name
(CN) field in the client certificate(s).

Prerequisites

* Provide clients with a Java keystore that contains either their public certificates or part of the
certificate chain, typically a public CA certificate.

* Configure Infinispan Server to perform client certificate authentication.

Procedure

1. Enable the common-name-role-mapper in the security authorization configuration.

2. Assign the Common Name (CN) from the client certificate a role with the appropriate
permissions.

<cache-container name="certificate-authentication" statistics="true">
<security>
<authorization>
<!-- Declare a role mapper that associates the common name (CN) field
in client certificate trust stores with authorization roles. -->
<common-name-role-mapper/>
<!-- In this example, if a client certificate contains ‘CN=Client1‘ then
clients with matching certificates get ALL permissions. -->
<role name="Client1" permissions="ALL"/>
</authorization>
</security>
</cache-container>

44

Chapter 6. Configuring Kerberos Identities
for Infinispan Server

Provide Infinispan Server endpoints with Kerberos identities to secure connections with clients.

6.1. Setting Up Kerberos Identities

Kerberos identities use keytab files that contain service principal names and encrypted Kkeys,
derived from Kerberos passwords.

keytab files can contain both user and service account principals. However,

0 Infinispan servers use service account principals only. As a result, Infinispan
servers can provide identity to clients and allow clients to authenticate with
Kerberos servers.

In most cases, you create unique principals for the Hot Rod and REST connectors. For example, you
have a "datagrid" server in the "INFINISPAN.ORG" domain. In this case you should create the
following service principals:

* hotrod/datagrid@INFINISPAN.ORG identifies the Hot Rod service.
* HTTP/datagrid@INFINISPAN.ORG identifies the REST service.

Procedure

1. Create keytab files for the Hot Rod and REST services.

Linux

$ ktutil

ktutil: addent -password -p datagrid@INFINISPAN.ORG -k 1 -e aes256-cts
Password for datagrid@INFINISPAN.ORG: [enter your password]

ktutil: wkt http.keytab

ktutil: quit

Microsoft Windows

$ ktpass -princ HTTP/datagrid@INFINISPAN.ORG -pass * -mapuser
INFINISPAN\USER_NAME
$ ktab -k http.keytab -a HTTP/datagrid@INFINISPAN.ORG

2. Copy the keytab files to the $ISPN_HOME/server/conf directory.
3. Add a server-identities definition to the Infinispan server security realm.

4. Specify the location of keytab files that provide service principals to Hot Rod and REST
connectors.

5. Name the Kerberos service principals.

45

6

.2. Kerberos Identity Configuration

The following example configures Kerberos identities for Infinispan Server:

46

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<security-realms>
<security-realm name="default">
<server-identities>
<!-- Specifies a keytab file that provides a Kerberos identity for the Hot
Rod connector. -->
<!-- Names the Kerberos service principal for the Hot Rod connector. -->
<!-- The required="true" attribute specifies that the keytab file must be
present when the server starts. -->
<kerberos keytab-path="hotrod.keytab"
principal="hotrod/datagrid@INFINISPAN.ORG"
required="true"/>
<!-- Specifies a keytab file that provides a Kerberos identity for the
REST connector. -->
<!-- Names the Kerberos service principal for the REST connector. -->
<kerberos keytab-path="http.keytab"
principal="HTTP/localhost@INFINISPAN.ORG"
required="true"/>
</server-identities>
</security-realm>
</security-realms>
</security>

Chapter 7. Storing Infinispan Server
Credentials in Keystores

External services require credentials to authenticate with Infinispan Server. To protect sensitive
text strings such as passwords, add them to a credential keystore rather than directly in Infinispan
Server configuration files.

You can then configure Infinispan Server to decrypt passwords for establishing connections with
services such as databases or LDAP directories.

Plain-text passwords in $ISPN_HOME/server/conf are unencrypted. Any user account
with read access to the host filesystem can view plain-text passwords.

While credential keystores are password-protected store encrypted passwords,
o any user account with write access to the host filesystem can tamper with the
keystore itself.

To completely secure Infinispan Server credentials, you should grant read-write
access only to user accounts that can configure and run Infinispan Server.

7.1. Setting Up Credential Keystores

Create keystores that encrypt credential for Infinispan Server access.

A credential keystore contains at least one alias that is associated with an encrypted password.
After you create a keystore, you specify the alias in a connection configuration such as a database
connection pool. Infinispan Server then decrypts the password for that alias from the keystore
when the service attempts authentication.

You can create as many credential keystores with as many aliases as required.

Procedure

1. Open a terminal in $ISPN_HOME.

2. Create a keystore and add credentials to it with the credentials command.

(r') By default, keystores are of type PKCS12. Run help credentials for details on
- changing keystore defaults.

The following example shows how to create a keystore that contains an alias of "dbpassword"
for the password "changeme". When you create a keystore you also specify a password for the
keystore with the -p argument.

Linux

$ bin/cli.sh credentials add dbpassword -c changeme -p "secret1234!"

47

Microsoft Windows

$ bin\cli.bat credentials add dbpassword -c changeme -p "secret1234!"
3. Check that the alias is added to the keystore.

$ bin/cli.sh credentials 1s -p "secret1234!"
dbpassword

4. Configure Infinispan to use the credential keystore.

a. Specify the name and location of the credential keystore in the credential-stores
configuration.

b. Provide the credential keystore and alias in the credential-reference configuration.

Attributes in the credential-reference configuration are optional.

3
Q = store is required only if you have multiple keystores.

= alias is required only if the keystore contains multiple aliases.

Reference

* Credential Keystore Configuration

7.2. Credential Keystore Configuration

Review example configurations for credential keystores in Infinispan Server configuration.

Credential keystore

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<!-- Uses a keystore to manage server credentials. -->
<credential-stores>
<!-- Specifies the name and filesystem location of a keystore. -->
<credential-store name="credentials" path="credentials.pfx">
<!-- Specifies the password for the credential keystore. -->
<clear-text-credential clear-text="secret1234!"/>
</credential-store>
</credential-stores>
</security>

48

Datasource connection

<data-sources xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<data-source name="postgres" jndi-name="jdbc/postgres">
<!-- Specifies the database username in the connection factory. -->
<connection-factory driver="org.postgresql.Driver"
username="dbuser"
url="${org.infinispan.server.test.postgres.jdbcUr1}">
<!-- Specifies the credential keystore that contains an encrypted password
and the alias for it. -->
<credential-reference store="credentials" alias="dbpassword"/>
</connection-factory>
<connection-pool max-size="10" min-size="1" background-validation="1000" idle-
removal="1" initial-size="1" leak-detection="10000"/>
</data-source>
</data-sources>

LDAP connection

<security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:server:12.1
https://infinispan.org/schemas/infinispan-server-12.1.xsd"
xmlns="urn:infinispan:server:12.1">
<credential-stores>
<credential-store name="credentials" path="credentials.pfx">
<clear-text-credential clear-text="secret12341"/>
</credential-store>
</credential-stores>
<security-realms>
<security-realm name="default">
<!-- Specifies the LDAP principal in the connection factory. -->
<ldap-realm name="1dap" url="1dap://my-1dap-server:10389"
principal="uid=admin,ou=People,dc=infinispan,dc=org"
connection-timeout="3000"
read-timeout="30000"
connection-pooling="true"
referral-mode="ignore"
page-size="30">
<!-- Specifies the credential keystore that contains an encrypted password
and the alias for it. -->
<credential-reference store="credentials" alias="1ldappassword"/>
</ldap-realm>
</security-realm>
</security-realms>
</security>

Chapter 8. Endpoint IP Filtering

Configure IP Filtering rules on the endpoints to accept or reject connections based on the client
address.

8.1. Infinispan Server IP Filter Configuration

Infinispan endpoints and connectors can specify one or more IP filtering rules. These rules specify
the type of action to take when a client which matches a supplied CIDR block connects. IP filtering
rules are applied in order up until the first one that matches.

A CIDR block is a compact representation of an IP address and its associated network mask. CIDR
notation specifies an IP address, a slash ('/') character, and a decimal number. The decimal number
is the count of leading 1 bits in the network mask. The number can also be thought of as the width,
in bits, of the network prefix. The IP address in CIDR notation is always represented according to
the standards for IPv4 or IPv6.

The address can denote a specific interface address, including a host identifier, such as 10.0.0.1/8,
or it can be the beginning address of an entire network interface range using a host identifier of 0,
asin10.0.0.0/8 or 10/8.

For example:

192.168.100.14/24 represents the IPv4 address 192.168.100.14 and its associated network prefix
192.168.100.0, or equivalently, its subnet mask 255.255.255.0, which has 24 leading 1-bits.

the IPv4 block 192.168.100.0/22 represents the 1024 IPv4 addresses from 192.168.100.0 to
192.168.103.255.

the IPv6 block 2001:db8::/48 represents the block of IPv6 addresses from 2001:db8:0:0:0:0:0:0
t0 2001:db8:0: ffffiffff: fEffiffff fffe.

::1/128 represents the IPv6 loopback address. Its prefix length is 128 which is the number of
bits in the address.

<endpoints socket-binding="default" security-realm="default">
<ip-filter>
<accept from="192.168.0.0/16"/>
<accept from="10.0.0.0/8"/>
<reject from="/0"/>
</ip-filter>
<hotrod-connector name="hotrod"/>
<rest-connector name="rest"/>
</endpoints>

As a result of the preceding configuration, Infinispan servers accept connections only from
addresses in the 192.168.0.0/16 and 10.0.0.0/8 CIDR blocks. Infinispan servers reject all other
connections.

50

8.2. Inspecting and Modifying Infinispan Server IP
Filter Rules

Server IP filter rules can be manipulated via the CLIL

Procedure

1. Open a terminal in $ISPN_HOME.
2. Inspect and modify the IP filter rules server connector ipfilter command as required.

a. List all IP filtering rules active on a connector across the cluster:
[//containers/default]> server connector ipfilter 1s endpoint-default

b. Set IP filtering rules across the cluster.

0 This command replaces any existing rules.

[//containers/default]> server connector ipfilter set endpoint-default
--rules=ACCEPT/192.168.0.0/16,REJECT/10.0.0.0/8"

c. Remove all IP filtering rules on a connector across the cluster.

[//containers/default]> server connector ipfilter clear endpoint-default

51

Chapter 9. Configuring User Authorization

Authorization is a security feature that requires users to have certain permissions before they can
access caches or interact with Infinispan resources. You assign roles to users that provide different
levels of permissions, from read-only access to full, super user privileges.

9.1. Enabling Authorization in Cache Configuration

Use authorization in your cache configuration to restrict user access. Before they can read or write
cache entries, or create and delete caches, users must have a role with a sufficient level of
permission.

Procedure

1. Open your infinispan.xml configuration for editing.

2. If it is not already declared, add the <authorization /> tag inside the security elements for the
cache-container.

This enables authorization for the Cache Manager and provides a global set of roles and
permissions that caches can inherit.

3. Add the <authorization /> tag to each cache for which Infinispan restricts access based on user
roles.

The following configuration example shows how to use implicit authorization configuration with
default roles and permissions:

<infinispan>
<cache-container default-cache="rbac-cache" name="restricted">
<security>
<!-- Enable authorization with the default roles and permissions. -->
<authorization />
</security>
<local-cache name="rbac-cache">
<security>
<!-- Inherit authorization settings from the cache-container. -->
<authorization/>
</security>
</local-cache>
</cache-container>
</infinispan>

9.2. User Roles and Permissions

Infinispan includes a default set of roles that grant users with permissions to access data and
interact with Infinispan resources.

(lusterRoleMapper is the default mechanism that Infinispan uses to associate security principals to

52

authorization roles.

ClusterRoleMapper matches principal names to role names. A user named admin gets

o admin permissions automatically, a user named deployer gets deployer permissions,
and so on.
Role Permissions Description
admin ALL Superuser with all permissions

including control of the Cache
Manager lifecycle.

deployer ALL READ, ALL, WRITE, Can create and delete
LISTEN, EXEC, MONITOR, Infinispan resources in addition
CREATE to application permissions.
application ALL_READ, ALL__WRITE, Has read and write access to
LISTEN, EXEC, MONITOR Infinispan resources in addition

to observer permissions. Can
also listen to events and execute
server tasks and scripts.

observer ALL _READ, MONITOR Has read access to Infinispan
resources in addition to monitor
permissions.

monitor MONITOR Can view statistics via JMX and

the metrics endpoint.

Reference

* org.infinispan.security.AuthorizationPermission Enumeration

* Infinispan Configuration Schema Reference

9.3. How Security Authorization Works

Infinispan authorization secures your installation by restricting user access.

User applications or clients must belong to a role that is assigned with sufficient permissions before
they can perform operations on Cache Managers or caches.

For example, you configure authorization on a specific cache instance so that invoking Cache.get()
requires an identity to be assigned a role with read permission while Cache.put() requires a role
with write permission.

In this scenario, if a user application or client with the io role attempts to write an entry, Infinispan
denies the request and throws a security exception. If a user application or client with the writer
role sends a write request, Infinispan validates authorization and issues a token for subsequent
operations.

Identities

53

Identities are security Principals of type java.security.Principal. Subjects, implemented with the
javax.security.auth.Subject class, represent a group of security Principals. In other words, a
Subject represents a user and all groups to which it belongs.

Identities to roles

Infinispan uses role mappers so that security principals correspond to roles, which you assign one
or more permissions.

The following image illustrates how security principals correspond to roles:

Principal Permission

Principal Permission

Principal Permission

9.3.1. Permissions

Authorization roles have different permissions with varying levels of access to Infinispan.
Permissions let you restrict user access to both Cache Managers and caches.

Cache Manager permissions

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache
configurations.

LISTEN addListener Registers listeners against a

Cache Manager.
LIFECYCLE stop Stops the Cache Manager.

CREATE createCache, removeCache Create and remove container
resources such as caches,
counters, schemas, and scripts.

MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.

ALL - Includes all Cache Manager
permissions.

Cache permissions

Permission Function Description

READ get, contains Retrieves entries from a cache.

WRITE put, putIfAbsent, replace, remove, Writes, replaces, removes,
evict evicts data in a cache.

54

Permission

EXEC

LISTEN

BULK_READ

BULK_WRITE
LIFECYCLE
ADMIN

MONITOR

ALL
ALL_READ

ALL_WRITE

Reference

* Infinispan Security API

9.3.2. Role Mappers

Function

distexec, streams

addListener

keySet, values, entrySet, query

clear, putAll
start, stop

getVersion, addInterceptor¥,
removelnterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager, evict,
getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContainer,
setAvailability,
getDataContainer, getStats,
getXAResource

getStats

Description

Allows code execution against a
cache.

Registers listeners against a
cache.

Executes bulk retrieve
operations.

Executes bulk write operations.
Starts and stops a cache.

Allows access to underlying
components and internal
structures.

Allows access to JMX statistics
and the metrics endpoint.

Includes all cache permissions.

Combines the READ and
BULK_READ permissions.

Combines the WRITE and
BULK_WRITE permissions.

Infinispan includes a PrincipalRoleMapper API that maps security Principals in a Subject to
authorization roles that you can assign to users.

Cluster role mappers

(lusterRoleMapper uses a persistent replicated cache to dynamically store principal-to-role
mappings for the default roles and permissions.

55

By default wuses the Principal name as the role name and implements
org.infinispan.security.MutableRoleMapper which exposes methods to change role mappings at
runtime.

 Java class: org.infinispan.security.mappers.ClusterRoleMapper
* Declarative configuration: <cluster-role-mapper />

Identity role mappers

IdentityRoleMapper uses the Principal name as the role name.
* Java class: org.infinispan.security.mappers.IdentityRoleMapper

* Declarative configuration: <identity-role-mapper />

CommonName role mappers

CommonNameRoleMapper uses the Common Name (CN) as the role name if the Principal name is a
Distinguished Name (DN).

For example this DN, cn=managers,ou=people,dc=example,dc=com, maps to the managers role.

* Java class: org.infinispan.security.mappers.CommonRoleMapper

* Declarative configuration: <common-name-role-mapper />

Custom role mappers
Custom role mappers are implementations of org.infinispan.security.PrincipalRoleMapper.
* Declarative configuration: <custom-role-mapper class="my.custom.RoleMapper" />

Reference

* Infinispan Security API

« org.infinispan.security.PrincipalRoleMapper

9.4. Access Control List (ACL) Cache

Infinispan caches roles that you grant to users internally for optimal performance. Whenever you
grant or deny roles to users, Infinispan flushes the ACL cache to ensure user permissions are
applied correctly.

If necessary, you can disable the ACL cache or configure it with the cache-size and cache-timeout
attributes.

<security cache-size="1000" cache-timeout="300000">
<authorization />
</security>

Reference

56

 Infinispan Configuration Schema Reference

9.5. Customizing Roles and Permissions

You can customize authorization settings in your Infinispan configuration to use role mappers with
different combinations of roles and permissions.

Procedure

1. Open your infinispan.xml configuration for editing.

2. Configure authorization for the cache-container by declaring a role mapper and a set of roles
and permissions.

3. Configure authorization for caches to restrict access based on user roles.

The following configuration example shows how to configure security authorization with roles and
permissions:

<infinispan>
<cache-container default-cache="restricted" name="custom-authorization">
<security>
<authorization>
<!-- Declare a role mapper that associates a security principal
to each role. -->
<identity-role-mapper />
<!-- Specify user roles and corresponding permissions. -->
<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC"/>
</authorization>
</security>
<local-cache name="implicit-authorization">
<security>
<!-- Inherit roles and permissions from the cache-container. -->
<authorization/>
</security>
</local-cache>
<local-cache name="restricted">
<security>
<!-- Explicitly define which roles can access the cache. -->
<authorization roles="admin supervisor"/>
</security>
</local-cache>
</cache-container>
</infinispan>

57

9.6. Disabling Security Authorization

In local development environments you can disable authorization so that users do not need roles
and permissions. Disabling security authorization means that any user can access data and interact
with Infinispan resources.

Procedure

1. Open your infinispan.xml configuration for editing.

2. Remove any authorization elements from the security configuration for the cache-container
and each cache configuration.

9.7. Configuring Authorization with Client Certificates

Enabling client certificate authentication means you do not need to specify Infinispan user
credentials in client configuration, which means you must associate roles with the Common Name
(CN) field in the client certificate(s).

Prerequisites

* Provide clients with a Java keystore that contains either their public certificates or part of the
certificate chain, typically a public CA certificate.

* Configure Infinispan Server to perform client certificate authentication.

Procedure

1. Enable the common-name-role-mapper in the security authorization configuration.

2. Assign the Common Name (CN) from the client certificate a role with the appropriate
permissions.

<cache-container name="certificate-authentication" statistics="true">
<security>
<authorization>
<!-- Declare a role mapper that associates the common name (CN) field
in client certificate trust stores with authorization roles. -->
<common-name-role-mapper/>
<!-- In this example, if a client certificate contains ‘CN=Client1‘ then
clients with matching certificates get ALL permissions. -->
<role name="Client1" permissions="ALL"/>
</authorization>
</security>
</cache-container>

58

Chapter 10. Setting Up Infinispan Clusters

Infinispan requires a transport layer so nodes can automatically join and leave clusters. The
transport layer also enables Infinispan nodes to replicate or distribute data across the network and
perform operations such as re-balancing and state transfer.

10.1. Default JGroups Stacks

Infinispan provides default JGroups stack files, default-jgroups-*.xml, in the default-configs
directory inside the infinispan-core-12.1.10.Final.jar file.

You can find this JAR file in the $ISPN_HOME/1ib directory.

File name Stack name
default-jgroups-udp.xml udp
default-jgroups-tcp.xml tep

default-jgroups-kubernetes.xml kubernetes

default-jgroups-ec2.xml ec?
default-jgroups-google.xml google
default-jgroups-azure.xml azure

Additional resources

* JGroups Protocols

Description

Uses UDP for transport and UDP multicast for
discovery. Suitable for larger clusters (over 100
nodes) or if you are using replicated caches or
invalidation mode. Minimizes the number of
open sockets.

Uses TCP for transport and the MPING protocol for
discovery, which uses UDP multicast. Suitable for
smaller clusters (under 100 nodes) only if you
are using distributed caches because TCP is
more efficient than UDP as a point-to-point
protocol.

Uses TCP for transport and DNS_PING for
discovery. Suitable for Kubernetes and Red Hat
OpenShift nodes where UDP multicast is not
always available.

Uses TCP for transport and NATIVE_S3_PING for
discovery. Suitable for Amazon EC2 nodes where
UDP multicast is not available. Requires
additional dependencies.

Uses TCP for transport and GOOGLE_PING2 for
discovery. Suitable for Google Cloud Platform
nodes where UDP multicast is not available.
Requires additional dependencies.

Uses TCP for transport and AZURE_PING for
discovery. Suitable for Microsoft Azure nodes
where UDP multicast is not available. Requires
additional dependencies.

59

10.2. Cluster Discovery Protocols

Infinispan supports different protocols that allow nodes to automatically find each other on the
network and form clusters.

There are two types of discovery mechanisms that Infinispan can use:

* Generic discovery protocols that work on most networks and do not rely on external services.

* Discovery protocols that rely on external services to store and retrieve topology information for
Infinispan clusters.
For instance the DNS_PING protocol performs discovery through DNS server records.

0 Running Infinispan on hosted platforms requires using discovery mechanisms that
are adapted to network constraints that individual cloud providers impose.

Additional resources

* JGroups Discovery Protocols

10.2.1. PING

PING, or UDPPING is a generic JGroups discovery mechanism that uses dynamic multicasting with
the UDP protocol.

When joining, nodes send PING requests to an IP multicast address to discover other nodes already
in the Infinispan cluster. Each node responds to the PING request with a packet that contains the
address of the coordinator node and its own address. C=coordinator’s address and A=own address.
If no nodes respond to the PING request, the joining node becomes the coordinator node in a new
cluster.

PING configuration example

<PING num_discovery_runs="3"/>

Additional resources

* JGroups PING

10.2.2. TCPPING

TCPPING is a generic JGroups discovery mechanism that uses a list of static addresses for cluster
members.

With TCPPING, you manually specify the IP address or hostname of each node in the Infinispan
cluster as part of the JGroups stack, rather than letting nodes discover each other dynamically.

60

TCPPING configuration example

<TCP bind_port="7800" />
<TCPPING timeout="3000"
initial_hosts="${jgroups.tcpping.initial_hosts:hostname1[port1], hostname2[por

tz]}u
port_range="0"
num_initial_members="3"/>

Additional resources

* JGroups TCPPING

10.2.3. MPING

MPING uses IP multicast to discover the initial membership of Infinispan clusters.

You can use MPING to replace TCPPING discovery with TCP stacks and use multicasing for
discovery instead of static lists of initial hosts. However, you can also use MPING with UDP stacks.

MPING configuration example

<MPING mcast_addr="${jgroups.mcast_addr:228.6.7.8}"
mcast_port="${jgroups.mcast_port:46655}"
num_discovery_runs="3"
ip_tt1="${jgroups.udp.ip_tt1:2}"/>

Additional resources

* JGroups MPING

10.2.4. TCPGOSSIP

Gossip routers provide a centralized location on the network from which your Infinispan cluster
can retrieve addresses of other nodes.

You inject the address (IP:PORT) of the Gossip router into Infinispan nodes as follows:

1. Pass the address as a system property to the JVM; for example,
-DGossipRouterAddress="10.10.2.4[12001]".

2. Reference that system property in the JGroups configuration file.

Gossip router configuration example
<TCP bind_port="7800" />
<TCPGOSSIP timeout="3000"

initial_hosts="${GossipRouterAddress}"
num_initial_members="3" />

Additional resources

61

* JGroups Gossip Router

10.2.5. JDBC_PING

JDBC_PING uses shared databases to store information about Infinispan clusters. This protocol
supports any database that can use a JDBC connection.

Nodes write their IP addresses to the shared database so joining nodes can find the Infinispan
cluster on the network. When nodes leave Infinispan clusters, they delete their IP addresses from
the shared database.

JDBC_PING configuration example

<JDBC_PING connection_url="jdbc:mysql://1localhost:3306/database_name"
connection_username="user"
connection_password="password"
connection_driver="com.mysql.jdbc.Driver"/>

o Add the appropriate JDBC driver to the classpath so Infinispan can use JDBC_PING.

Additional resources
* JDBC_PING

* JDBC_PING Wiki
10.2.6. DNS_PING

JGroups DNS_PING queries DNS servers to discover Infinispan cluster members in Kubernetes
environments such as OKD and Red Hat OpenShift.

DNS_PING configuration example

<dns.DNS_PING dns_query="myservice.myproject.svc.cluster.local" />

Additional resources

* JGroups DNS_PING

* DNS for Services and Pods (Kubernetes documentation for adding DNS entries)

10.2.7. Cloud Discovery Protocols

Infinispan includes default JGroups stacks that use discovery protocol implementations that are
specific to cloud providers.

Discovery protocol Default stack file Artifact Version
NATIVE_S3_PING default-jgroups- org.jgroups.aws.s3:nat 1.0.0.Final
ec2.xml ive-s3-ping

62

Discovery protocol Default stack file Artifact Version

GO0GLE_PING2 default-jgroups- org.jgroups.google:jgr 1.0.0.Final
google.xml oups-google

AZURE_PING default-jgroups- org.jgroups.azure:jgro 1.3.0.Final
azure.xml ups-azure

Providing Dependencies for Cloud Discovery Protocols

To use NATIVE_S3_PING, GOOGLE_PING2, or AZURE_PING cloud discovery protocols, you need to provide
dependent libraries to Infinispan.

Procedure
1. Download the artifact JAR file and all dependencies.
2. Add the artifact JAR file and all dependencies to the $ISPN_HOME/server/lib directory of your

Infinispan Server installation.

For more details see the Downloading artifacts for JGroups cloud discover protocols for Data
Grid Server ({RedHat} knowledgebase article)

You can then configure the cloud discovery protocol as part of a JGroups stack file or with system
properties.

Additional resources

* JGroups NATIVE_S3_PING
* JGroups GOOGLE_PING2
* JGroups AZURE_PING

10.3. Using the Default JGroups Stacks

Infinispan uses JGroups protocol stacks so nodes can send each other messages on dedicated cluster
channels.

Infinispan provides preconfigured JGroups stacks for UDP and TCP protocols. You can use these
default stacks as a starting point for building custom cluster transport configuration that is
optimized for your network requirements.

Procedure

Do one of the following to use one of the default JGroups stacks:

* Use the stack attribute in your infinispan.xml file.

63

<infinispan>
<cache-container default-cache="replicatedCache">
<!-- Use the default UDP stack for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="udp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

» Use the cluster-stack argument to set the JGroups stack file when Infinispan Server starts:

$ bin/server.sh --cluster-stack=udp

Verification

Infinispan logs the following message to indicate which stack it uses:

[org.infinispan.CLUSTER] ISPN@@@@78: Starting JGroups channel cluster with stack udp

10.4. Customizing JGroups Stacks

Adjust and tune properties to create a cluster transport configuration that works for your network
requirements.

Infinispan provides attributes that let you extend the default JGroups stacks for easier
configuration. You can inherit properties from the default stacks while combining, removing, and
replacing other properties.

Procedure

1. Create a new JGroups stack declaration in your infinispan.xml file.
2. Add the extends attribute and specify a JGroups stack to inherit properties from.

3. Use the stack.combine attribute to modify properties for protocols configured in the inherited
stack.

4. Use the stack.position attribute to define the location for your custom stack.

5. Specify the stack name as the value for the stack attribute in the transport configuration.

For example, you might evaluate using a Gossip router and symmetric encryption with the
default TCP stack as follows:

64

<infinispan>
<jgroups>
<!-- Creates a custom JGroups stack named "my-stack". -->
<!-- Inherits properties from the default TCP stack. -->
<stack name="my-stack" extends="tcp">

<!-- Uses TCPGOSSIP as the discovery mechanism instead of MPING -->

<TCPGOSSIP initial_hosts=
"${jgroups.tunnel.gossip_router_hosts:localhost[12001]}"
stack.combine="REPLACE"
stack.position="MPING" />
<!-- Removes the FD_SOCK protocol from the stack. -->
<FD_SOCK stack.combine="REMOVE"/>

<!-- Modifies the timeout value for the VERIFY_SUSPECT protocol.

<VERIFY_SUSPECT timeout="2000"/>
<!-- Adds SYM ENCRYPT to the stack after VERIFY_ SUSPECT. -->
<SYM_ENCRYPT sym_algorithm="AES"
keystore_name="mykeystore.p12"
keystore_type="PK(CS12"
store_password="changeit"
key_password="changeit"
alias="myKey"
stack.combine="INSERT AFTER"
stack.position="VERIFY_SUSPECT" />
</stack>
<cache-container name="default" statistics="true">
<!-- Uses "my-stack" for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="my-stack"
node-name="${infinispan.node.name:}"/>
</cache-container>
</jgroups>
</infinispan>

6. Check Infinispan logs to ensure it uses the stack.

[org.infinispan.CLUSTER] ISPN@@@@78: Starting JGroups channel cluster with stack

my-stack

10.4.1. Inheritance Attributes

When you extend a JGroups stack, inheritance attributes let you adjust protocols and properties in

the stack you are extending.

 stack.position specifies protocols to modify.

* stack.combine uses the following values to extend JGroups stacks:

65

Value Description

COMBINE Overrides protocol properties.
REPLACE Replaces protocols.
INSERT_AFTER Adds a protocol into the stack after another protocol. Does not

affect the protocol that you specify as the insertion point.

Protocols in JGroups stacks affect each other based on their
location in the stack. For example, you should put a protocol
such as NAKACK?2 after the SYM_ENCRYPT or ASYM_ENCRYPT protocol
so that NAKACK? is secured.

INSERT_BEFORE Inserts a protocols into the stack before another protocol.
Affects the protocol that you specify as the insertion point.

REMOVE Removes protocols from the stack.

10.5. Using JGroups System Properties
Pass system properties to Infinispan at startup to tune cluster transport.

Procedure

* Use -D<property-name>=<property-value> arguments to set JGroups system properties as
required.

For example, set a custom bind port and IP address as follows:

$ bin/server.sh -Djgroups.bind.port=1234 -Djgroups.bind.address=192.0.2.0

10.5.1. Cluster Transport Properties

Use the following properties to customize JGroups cluster transport.

System Description Default Value Required/O
Property ptional
jgroups.bind Bind address for cluster transport. SITE_LOCAL Optional
.address

jgroups.bind Bind port for the socket. 7800 Optional
.port

jgroups.mcas [P address for multicast, both discovery ~ 228.6.7.8 Optional
t_addr

and inter-cluster communication. The IP
address must be a valid "class D" address
that is suitable for IP multicast.

jgroups.mcas Port for the multicast socket. 46655 Optional
t_port

66

System Description
Property

jgroups.ip_t Time-to-live (TTL) for IP multicast
tl

is dropped.

jgroups.thre Minimum number of threads for the
ad_pool.min

- - thread 1.
threads reac poo
jgroups.thre Maximum number of threads for the
ad_pool.max_ ¢ reaq pool.
threads

jgroups.join Maximum number of milliseconds to
~timeout wait for join requests to succeed.

jgroups.thre Number of times a thread pool needs to
be full before a thread dump is logged.

ad_dumps_thr
eshold

Reference

* JGroups System Properties

* JGroups Protocol List

packets. The value defines the number of
network hops a packet can make before it

Default Value

200

2000

10000

10.5.2. System Properties for Cloud Discovery Protocols

Required/O
ptional

Optional

Optional

Optional

Optional

Optional

Use the following properties to configure JGroups discovery protocols for hosted platforms.

Amazon EC2

System properties for configuring NATIVE_S3_PING.

System Description
Property

jgroups.s3.r Name of the Amazon S3 region.
egion_name

jgroups.s3.b Name of the Amazon $3 bucket. The
ucket_name 1 ame must exist and be unique.

Google Cloud Platform

System properties for configuring GOOGLE_PING2.

System Description
Property

jgroups.goog Name of the Google Compute Engine

le.bucket_na bucket. The name must exist and be
me .
unique.

Default Value

No default value.

No default value.

Default Value

No default value.

Required/O
ptional

Optional

Optional

Required/O
ptional

Required

67

Azure

System properties for AZURE_PING.

System
Property

jboss.jgroup
S.azure_ping
.storage_acc
ount_name

jboss.jgroup
S.azure_ping
.storage_acc
ess_key

jboss.jgroup
s.azure_ping
.container

Kubernetes

Description

Name of the Azure storage account. The
name must exist and be unique.

Name of the Azure storage access key.

Valid DNS name of the container that
stores ping information.

System properties for DNS_PING.

System
Property

jgroups.dns.

query

Description

Sets the DNS record that returns cluster

members.

Default Value

No default value.

No default value.

No default value.

Default Value

No default value.

10.6. Using Inline JGroups Stacks

You can insert complete JGroups stack definitions into infinispan.xml files.

Procedure

* Embed a custom JGroups stack declaration in your infinispan.xml file.

68

Required/O
ptional

Required

Required

Required

Required/O
ptional

Required

<infinispan>
<!-- Contains one or more JGroups stack definitions. -->
<jgroups>
<!-- Defines a custom JGroups stack named "prod". -->
<stack name="prod">
<TCP bind_port="7800" port_range="30" recv_buf_size="20000000" send_buf_size
="640000"/>
<MPING break_on_coord_rsp="true"
mcast_addr="${jgroups.mping.mcast_addr:228.2.4.6}"
mcast_port="${jgroups.mping.mcast_port:43366}"
num_discovery_runs="3"
ip_tt1="${jgroups.udp.ip_tt1:2}"/>
<MERGE3 />
<FD_SOCK />
<FD_ALL timeout="3000" interval="1000" timeout_check interval="1000" />
<VERIFY_SUSPECT timeout="1000" />
<pbcast.NAKACK2 use_mcast_xmit="false" xmit_interval="100"
xmit_table_num_rows="50"
xmit_table_msgs_per_row="1024"
xmit_table_max_compaction_time="30000" />
<UNICAST3 xmit_interval="100" xmit_table_num_rows="50"
xmit_table_msgs_per_row="1024"
xmit_table_max_compaction_time="30000" />
<pbcast.STABLE stability_delay="200" desired_avg_gossip="2000" max_bytes="1M"
/>
<pbcast.GMS print_local_addr="false" join_timeout=
"${jgroups.join_timeout:2000}" />
<UFC max_credits="4m" min_threshold="0.40" />
<MFC max_credits="4m" min_threshold="0.40" />
<FRAG3 />
</stack>
</jgroups>
<cache-container default-cache="replicatedCache">
<!-- Uses "prod" for cluster transport. -->
<transport cluster="${infinispan.cluster.name}"
stack="prod"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

10.7. Using External JGroups Stacks
Reference external files that define custom JGroups stacks in infinispan.xml files.

Procedure

1. Add custom JGroups stack files to the $ISPN_HOME/server/conf directory.

Alternatively you can specify an absolute path when you declare the external stack file.

69

2. Reference the external stack file with the stack-file element.

<infinispan>
<jgroups>
<!-- Creates a "prod-tcp" stack that references an external file. -->
<stack-file name="prod-tcp" path="prod-jgroups-tcp.xml"/>
</jgroups>
<cache-container default-cache="replicatedCache">
<!-- Use the "prod-tcp" stack for cluster transport. -->
<transport stack="prod-tcp" />
<replicated-cache name="replicatedCache"/>
</cache-container>
<!-- Cache configuration goes here. -->
</infinispan>

10.8. Encrypting Cluster Transport

Secure cluster transport so that nodes communicate with encrypted messages. You can also
configure Infinispan clusters to perform certificate authentication so that only nodes with valid
identities can join.

10.8.1. Infinispan Cluster Security

To secure cluster traffic, you configure Infinispan nodes to encrypt JGroups message payloads with
secret keys.

Infinispan nodes can obtain secret keys from either:

* The coordinator node (asymmetric encryption).

* A shared keystore (symmetric encryption).

Retrieving secret keys from coordinator nodes

You configure asymmetric encryption by adding the ASYM_ENCRYPT protocol to a JGroups stack in
your Infinispan configuration. This allows Infinispan clusters to generate and distribute secret keys.

When using asymmetric encryption, you should also provide keystores so that
o nodes can perform certificate authentication and securely exchange secret keys.
This protects your cluster from man-in-the-middle (MitM) attacks.

Asymmetric encryption secures cluster traffic as follows:

1. The first node in the Infinispan cluster, the coordinator node, generates a secret key.

2. A joining node performs certificate authentication with the coordinator to mutually verify
identity.

3. The joining node requests the secret key from the coordinator node. That request includes the
public key for the joining node.

70

4. The coordinator node encrypts the secret key with the public key and returns it to the joining
node.

5. The joining node decrypts and installs the secret key.

6. The node joins the cluster, encrypting and decrypting messages with the secret key.

Retrieving secret keys from shared keystores

You configure symmetric encryption by adding the SYM_ENCRYPT protocol to a JGroups stack in your
Infinispan configuration. This allows Infinispan clusters to obtain secret keys from keystores that
you provide.

1. Nodes install the secret key from a keystore on the Infinispan classpath at startup.

2. Node join clusters, encrypting and decrypting messages with the secret key.

Comparison of asymmetric and symmetric encryption

ASYM_ENCRYPT with certificate authentication provides an additional layer of encryption in
comparison with SYM_ENCRYPT. You provide keystores that encrypt the requests to coordinator nodes
for the secret key. Infinispan automatically generates that secret key and handles cluster traffic,
while letting you specify when to generate secret keys. For example, you can configure clusters to
generate new secret keys when nodes leave. This ensures that nodes cannot bypass certificate
authentication and join with old keys.

SYM_ENCRYPT, on the other hand, is faster than ASYM_ENCRYPT because nodes do not need to exchange
keys with the cluster coordinator. A potential drawback to SYM_ENCRYPT is that there is no
configuration to automatically generate new secret keys when cluster membership changes. Users
are responsible for generating and distributing the secret keys that nodes use to encrypt cluster
traffic.

10.8.2. Configuring Cluster Transport with Asymmetric Encryption
Configure Infinispan clusters to generate and distribute secret keys that encrypt JGroups messages.

Procedure

1. Create a keystore with certificate chains that enables Infinispan to verify node identity.

2. Place the keystore on the classpath for each node in the cluster.
For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

3. Add the SSL_KEY_EXCHANGE and ASYM_ENCRYPT protocols to a JGroups stack in your Infinispan
configuration, as in the following example:

71

<infinispan>
<jgroups>
<!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the
default TCP stack. -->
<stack name="encrypt-tcp" extends="tcp">
<!-- Adds a keystore that nodes use to perform certificate authentication.
-->
<!-- Uses the stack.combine and stack.position attributes to insert
SSL_KEY_EXCHANGE into the default TCP stack after VERIFY_SUSPECT. -->
<SSL_KEY_EXCHANGE keystore_name="mykeystore.jks"
keystore_password="changeit"
stack.combine="INSERT AFTER"
stack.position="VERIFY_SUSPECT"/>
<!-- Configures ASYM_ENCRYPT -->
<!-- Uses the stack.combine and stack.position attributes to insert
ASYM_ENCRYPT 1into the default TCP stack before pbcast.NAKACK2. -->
<!-- The use_external_key_exchange = "true" attribute configures nodes to use
the “SSL_KEY_EXCHANGE' protocol for certificate authentication. -->
<ASYM_ENCRYPT asym_keylength="2048"
asym_algorithm="RSA"
change_key_on_coord_leave = "false"
change_key_on_leave = "false"
use_external_key_exchange = "true"
stack.combine="INSERT BEFORE"
stack.position="pbcast.NAKACK2"/>
</stack>
</jgroups>
<cache-container name="default" statistics="true">
<!-- Configures the cluster to use the JGroups stack. -->
<transport cluster="${infinispan.cluster.name}"
stack="encrypt-tcp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using
the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN@@@@78: Starting JGroups channel cluster with stack
<encrypted_stack_name>

Infinispan nodes can join the cluster only if they use ASYM_ENCRYPT and can obtain the secret key
from the coordinator node. Otherwise the following message is written to Infinispan logs:

72

[org.jgroups.protocols.ASYM_ENCRYPT] <hostname>: received message without encrypt
header from <hostname>; dropping it

Reference

The example ASYM_ENCRYPT configuration in this procedure shows commonly used parameters. Refer
to JGroups documentation for the full set of available parameters.

* JGroups 4 Manual
* JGroups 4.2 Schema

10.8.3. Configuring Cluster Transport with Symmetric Encryption

Configure Infinispan clusters to encrypt JGroups messages with secret keys from keystores that you
provide.

Procedure

1. Create a keystore that contains a secret key.

2. Place the keystore on the classpath for each node in the cluster.
For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

3. Add the SYM_ENCRYPT protocol to a JGroups stack in your Infinispan configuration.

<infinispan>
<jgroups>
<!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the default
TCP stack. -->
<stack name="encrypt-tcp" extends="tcp">
<!-- Adds a keystore from which nodes obtain secret keys. -->
<!-- Uses the stack.combine and stack.position attributes to insert SYM_ENCRYPT
into the default TCP stack after VERIFY SUSPECT. -->
<SYM_ENCRYPT keystore_name="myKeystore.p12"
keystore_type="PK(CS12"
store_password="changeit"
key_password="changeit"
alias="myKey"
stack.combine="INSERT AFTER"
stack.position="VERIFY_SUSPECT"/>
</stack>
</jgroups>
<cache-container name="default" statistics="true">
<!-- Configures the cluster to use the JGroups stack. -->
<transport cluster="${infinispan.cluster.name}"
stack="encrypt-tcp"
node-name="${infinispan.node.name:}"/>
</cache-container>
</infinispan>

73

Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using
the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN@@@@78: Starting JGroups channel cluster with stack
<encrypted_stack_name>

Infinispan nodes can join the cluster only if they use SYM_ENCRYPT and can obtain the secret key from
the shared keystore. Otherwise the following message is written to Infinispan logs:

[org.jgroups.protocols.SYM_ENCRYPT] <hostname>: received message without encrypt
header from <hostname>; dropping it

Reference

The example SYM_ENCRYPT configuration in this procedure shows commonly used parameters. Refer
to JGroups documentation for the full set of available parameters.

* JGroups 4 Manual

* JGroups 4.2 Schema

10.9. TCP and UDP Ports for Cluster Traffic

Infinispan uses the following ports for cluster transport messages:

Default Port Protocol Description
7800 TCP/UDP JGroups cluster bind port
46655 UDP JGroups multicast

Cross-Site Replication

Infinispan uses the following ports for the JGroups RELAY2 protocol:

7900
For Infinispan clusters running on Kubernetes.

7800
If using UDP for traffic between nodes and TCP for traffic between clusters.

7801
If using TCP for traffic between nodes and TCP for traffic between clusters.

74

Chapter 11. Remotely Creating Infinispan
Caches

Add caches to Infinispan Server so you can store data.

11.1. Cache Configuration with Infinispan Server

Caches configure the data container on Infinispan Server.

You create caches at run-time by adding definitions based on org.infinispan templates or
Infinispan configuration through the console, the Command Line Interface (CLI), the Hot Rod
endpoint, or the REST endpoint.

When you create caches at run-time, Infinispan Server replicates your cache
definitions across the cluster.

o Configuration that you declare directly in infinispan.xml is not automatically
synchronized across Infinispan clusters. In this case you should use configuration
management tooling, such as Ansible or Chef, to ensure that configuration is
propagated to all nodes in your cluster.

11.2. Default Cache Manager

{ProductName} Server provides a default Cache Manager configuration. When you start Infinispan
Server, it instantiates the Cache Manager so you can remotely create caches at run-time.

Default Cache Manager

<!-- (Creates a Cache Manager named "default" and exports metrics. -->
<cache-container name="default"
statistics="true">
<!-- Adds cluster transport that uses the default JGroups TCP stack. -->
<transport cluster="${infinispan.cluster.name:cluster}"
stack="${infinispan.cluster.stack:tcp}"
node-name="${infinispan.node.name:}"/>
</cache-container>

Examining the Cache Manager

After you start Infinispan Server and add user credentials, you can access the default Cache
Manager through the Command Line Interface (CLI) or REST endpoint as follows:

e CLI: Use the describe command in the default container.

[//containers/default]> describe

75

* REST: Navigate to <server_hostname>:11222/rest/v2/cache-managers/default/ in any browser.

11.3. Creating Caches with the Infinispan Console
Dynamically add caches from templates or configuration files through the Infinispan console.

Prerequisites

Create a user and start at least one Infinispan server instance.

Procedure

1. Navigate to <server_hostname>:11222/console/ in any browser.
2. Log in to the console.
3. Open the Data Container view.

4. Select Create Cache and then add a cache from a template or with Infinispan configuration in
XML or JSON format.

5. Return to the Data Container view and verify your Infinispan cache.

11.4. Creating Caches with the Infinispan Command
Line Interface (CLI)

Use the Infinispan CLI to add caches from templates or configuration files in XML or JSON format.

Prerequisites

Create a user and start at least one Infinispan server instance.

Procedure

1. Create a CLI connection to Infinispan.
2. Add cache definitions with the create cache command.

> Add a cache definition from an XML or JSON file with the --file option.
[//containers/default]> create cache --file=configuration.xml mycache
o Add a cache definition from a template with the --template option.

[//containers/default]> create cache --template=org.infinispan.DIST_SYNC mycache

G Press the tab key after the --template= argument to list available cache
- templates.

3. Verify the cache exists with the 1s command.

76

[//containers/default]> 1s caches
mycache

4. Retrieve the cache configuration with the describe command.

[//containers/default]> describe caches/mycache

Reference

* Creating Infinispan CLI Connections

* Performing Cache Operations with the Infinispan CLI

11.5. Creating Remote Caches with Hot Rod Clients

When Hot Rod Java clients attempt to access caches that do not exist, they return null for
remoteCacheManager.getCache("myCache") invocations. To avoid this scenario, you can configure Hot
Rod clients to create caches on first access using cache configuration.

Procedure

* Use the remoteCache() method in the ConfigurationBuilder or use the configuration and
configuration_uri properties in hotrod-client.properties.

ConfigurationBuilder

File file = new File("path/to/infinispan.xml")

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.remoteCache("another-cache")
.configuration("<distributed-cache name=\"another-cache\"/>");

builder.remoteCache("my.other.cache")
.configurationURI(file.toURI());

hotrod-client.properties

infinispan.client.hotrod.cache.another-cache.configuration=<distributed-cache
name=\"another-cache\"/>
infinispan.client.hotrod.cache.[my.other.cache].configuration_uri=file:///path/to/infi
nispan.xml

When using hotrod-client.properties with cache names that contain the
o character, you must enclose the cache name in square brackets as in the preceding
example.

You can also create remote caches through the RemoteCacheManager API in other ways, such as the

following example that adds a cache configuration with the XMLStringConfiguration() method and
then calls the getOrCreateCache() method.

77

However, Infinispan does not recommend this approach because it can more difficult to ensure
XML validity and is generally a more cumbersome way to create caches. If you are creating
complex cache configurations, you should save them to separate files in your project and reference
them in your Hot Rod client configuration.

String cacheName = "CacheWithXMLConfiguration";
String xml = String.format("<distributed-cache name=\"%s\" mode=\"SYNC\">" +
"<encoding media-type=\"application/x-protostream\"/>" +
"<locking isolation=\"READ_COMMITTED\"/>" +
"<transaction mode=\"NON_XA\"/>" +
"<expiration lifespan=\"60000\" interval=\"20000\"/>" +
"</distributed-cache>" , cacheName);
remoteCacheManager.administration().getOrCreateCache(cacheName, new
XMLStringConfiguration(xml));

Hot Rod code examples

Try some Infinispan code tutorials that show you how to create remote caches in different ways
with the Hot Rod Java client.

Visit Infinispan code examples.

Additional resources

* Hot Rod Client Configuration

+ org.infinispan.client.hotrod.configuration.RemoteCacheConfigurationBuilder

11.6. Creating Infinispan Caches with HTTP Clients

Add cache definitions to Infinispan servers through the REST endpoint with any suitable HTTP
client.

Prerequisites

Create a user and start at least one Infinispan server instance.

Procedure

* Create caches with POST requests to /rest/v2/caches/$cacheName.

Use XML or JSON configuration by including it in the request payload.
POST /rest/v2/caches/mycache

Use the 7template= parameter to create caches from org.infinispan templates.
POST /rest/v2/caches/mycache?template=org.infinispan.DIST_SYNC

Reference

78

* Creating and Managing Caches with the REST API

11.7. Cache Configuration

You can provide cache configuration in XML or JSON format.
XML

<distributed-cache name="myCache" mode="SYNC">
<encoding media-type="application/x-protostream"/>
<memory max-count="1000000" when-full="REMOVE"/>

</distributed-cache>

JSON

{
"distributed-cache": {

“name": "myCache",

"mode": "SYNC",

"encoding": {

"media-type": "application/x-protostream"
I,

"memory": {
"max-count": 1000000,
"when-full": "REMOVE"

}

}
}

JSON format

Cache configuration in JSON format must follow the structure of an XML configuration. * XML
elements become JSON objects. * XML attributes become JSON fields.

79

Chapter 12. Configuring Infinispan Server
Datasources

Create managed datasources to optimize connection pooling and performance for database
connections.

You can specify database connection properties as part of a JDBC cache store configuration.
However, you must do this for each cache definition, which duplicates configuration and wastes
resources by creating multiple distinct connection pools.

By using shared, managed datasources, you centralize connection configuration and pooling for
more efficient usage.

12.1. Datasource Configuration for JDBC Cache Stores

Infinispan server configuration for datasources is composed of two sections:

* A connection factory that defines how to connect to the database.

* A connection pool that defines how to pool and reuse connections.

<data-sources>
<!-- Defines a unique name for the datasource, INDI name, and enables statistics.
-->
<data-source name="ds" jndi-name="jdbc/datasource" statistics="true">
<!-- Specifies the JDBC driver that creates connections. -->
<connection-factory driver="org.database.Driver"
username="db_user"
password="secret"
url="jdbc:db://database-host:10000/dbname"
new-connection-sql="SELECT 1"
transaction-isolation="READ_COMMITTED">
<!-- Sets optional JDBC driver-specific connection properties. -->
<connection-property name="name">value</connection-property>
</connection-factory>
<!-- Defines connection pool properties. -->
<connection-pool initial-size="1"
max-size="10"
min-size="3"
background-validation="1000"
idle-removal="1"
blocking-timeout="1000"
leak-detection="10000"/>
</data-source>
</data-sources>

Connection pools can be tuned using the following parameters:

80

* initial-size: Initial number of connections the pool should hold.
* max-size: Maximum number of connections in the pool.
* min-size: Minimum number of connections the pool should hold.

* blocking-timeout: Maximum time in milliseconds to block while waiting for a connection before
throwing an exception. This will never throw an exception if creating a new connection takes
an inordinately long period of time. Default is 0 meaning that a call will wait indefinitely.

* background-validation: Time in milliseconds between background validation runs. A duration of
0 means that this feature is disabled.

* validate-on-acquisition: Connections idle for longer than this time, specified in milliseconds,
are validated before being acquired (foreground validation). A duration of 0 means that this
feature is disabled.

e idle-removal: Time in minutes a connection has to be idle before it can be removed.

* leak-detection: Time in milliseconds a connection has to be held before a leak warning.

12.2. Using Datasources in J]DBC Cache Stores

Use a shared, managed datasource in your JDBC cache store configuration instead of specifying
individual connection properties for each cache definition.

Prerequisites

Create a managed datasource for JDBC cache stores in your Infinispan server configuration.

Procedure

» Reference the JNDI name of the datasource in the JDBC cache store configuration of your cache
configuration, as in the following example:

<distributed-cache-configuration name="persistent-cache" xmlns:jdbc=
"urn:infinispan:config:store:jdbc:12.1">
<persistence>
<jdbc:string-keyed-jdbc-store>
<!-- Specifies the INDI name that you provided for the datasource
connection in the server configuration. -->
<jdbc:data-source jndi-url="jdbc/postgres"/>
<jdbc:string-keyed-table drop-on-exit="true"
create-on-start="true"
prefix="TBL">
<jdbc:id-column name="ID" type="VARCHAR(255)"/>
<jdbc:data-column name="DATA" type="BYTEA"/>
<jdbc:timestamp-column name="TS" type="BIGINT"/>
<jdbc:segment-column name="S" type="INT"/>
</jdbc:string-keyed-table>
</jdbc:string-keyed-jdbc-store>
</persistence>
</distributed-cache-configuration>

81

12.3. Testing Data Sources

Verify that connections to data sources are functioning correctly with the CLIL

Procedure
1. Start the CLI.

$ bin/cli.sh
[disconnected]>

2. List all data sources:
[//containers/default]> server datasource 1s
3. Test a data source connection.

[//containers/default]> server datasource test my-datasource

82

Chapter 13. Remotely Executing Server-Side
Tasks

Define and add tasks to Infinispan servers that you can invoke from the Infinispan command line
interface, REST API, or from Hot Rod clients.

You can implement tasks as custom Java classes or define scripts in languages such as JavaScript.

13.1. Creating Server Tasks

Create custom task implementations and add them to Infinispan servers.

13.1.1. Server Tasks

Infinispan server tasks are classes that extend the org.infinispan.tasks.ServerTask interface and
generally include the following method calls:

setTaskContext()

Allows access to execution context information including task parameters, cache references on
which tasks are executed, and so on. In most cases, implementations store this information
locally and use it when tasks are actually executed.

getName()
Returns unique names for tasks. Clients invoke tasks with these names.

getExecutionMode()
Returns the execution mode for tasks.

» TaskExecutionMode.ONE_NODE only the node that handles the request executes the script.
Although scripts can still invoke clustered operations.

* TaskExecutionMode.ALL_NODES Infinispan uses clustered executors to run scripts across nodes.
For example, server tasks that invoke stream processing need to be executed on a single
node because stream processing is distributed to all nodes.

call()
Computes a result. This method is defined in the java.util.concurrent.Callable interface and is
invoked with server tasks.

o Server task implementations must adhere to service loader pattern requirements.
For example, implementations must have a zero-argument constructors.

The following HelloTask class implementation provides an example task that has one parameter:

83

package example;

import org.infinispan.tasks.ServerTask;
import org.infinispan.tasks.TaskContext;

public class HelloTask implements ServerTask<String> {

private TaskContext ctx;

public void setTaskContext(TaskContext ctx) {
this.ctx = ctx;

}

public String call() throws Exception {
String name = (String) ctx.getParameters().qget().get("name");
return "Hello " + name;

public String getName() {
return "hello-task";

}

Reference
« org.infinispan.tasks.ServerTask
o java.util.concurrent.Callable.call()

o java.util.Serviceloader

13.1.2. Deploying Server Tasks to Infinispan Servers
Add your custom server task classes to Infinispan servers.

Prerequisites

Stop any running Infinispan servers. Infinispan does not support runtime deployment of custom
classes.

Procedure

1. Add a META-INF/services/org.infinispan.tasks.ServerTask file that contains the fully qualified
names of server tasks, for example:

example.HelloTask

2. Package your server task implementation in a JAR file.

84

3. Copy the JAR file to the $ISPN_HOME/server/1ib directory of your Infinispan server.

4. Add your classes to the deserialization allow list in your Infinispan configuration. Alternatively
set the allow list using system properties.

Reference

* Adding Java Classes to Deserialization Allow Lists

 Infinispan 12.1 Configuration Schema

13.2. Creating Server Scripts

Create custom scripts and add them to Infinispan servers.

13.2.1. Server Scripts

Infinispan server scripting is based on the javax.script API and is compatible with any JVM-based
ScriptEngine implementation.

Hello World Script Example

The following is a simple example that runs on a single Infinispan server, has one parameter, and
uses JavaScript:

// mode=1local,language=javascript,parameters=[greetee]
"Hello " + greetee

When you run the preceding script, you pass a value for the greetee parameter and Infinispan
returns "Hello ${value}".

Script Metadata

Metadata provides additional information about scripts that Infinispan servers use when running
scripts.

Script metadata are property=value pairs that you add to comments in the first lines of scripts, such

as the following example:

// name=test, language=javascript
// mode=1local, parameters=[a,b,c]

* Use comment styles that match the scripting language (//, ;;, #).
» Separate property=value pairs with commas.

» Separate values with single (') or double (") quote characters.

Table 1. Metadata Properties

85

Property

mode

language

extension

role

parameters

datatype

Script Bindings

Description

Defines the execution mode and has the
following values:

local only the node that handles the request
executes the script. Although scripts can still
invoke clustered operations.

distributed Infinispan uses clustered executors
to run scripts across nodes.

Specifies the ScriptEngine that executes the
script.

Specifies filename extensions as an alternative
method to set the ScriptEngine.

Specifies roles that users must have to execute
scripts.

Specifies an array of valid parameter names for
this script. Invocations which specify
parameters not included in this list cause
exceptions.

Optionally sets the MediaType (MIME type) for
storing data as well as parameter and return
values. This property is useful for remote clients
that support particular data formats only.

Currently you can set only text/plain;
charset=utf-8 to use the String UTF-8 format for
data.

Infinispan exposes internal objects as bindings for script execution.

Binding

cache

marshaller

cacheManager

scriptingManager

86

Description

Specifies the cache against which the script is
run.

Specifies the marshaller to use for serializing
data to the cache.

Specifies the cacheManager for the cache.

Specifies the instance of the script manager that
runs the script. You can use this binding to run
other scripts from a script.

Script Parameters

Infinispan lets you pass named parameters as bindings for running scripts.

Parameters are name,value pairs, where name is a string and value is any value that the marshaller
can interpret.

The following example script has two parameters, multiplicand and multiplier. The script takes the

value of multiplicand and multiplies it with the value of multiplier.

// mode=1local, language=javascript
multiplicand * multiplier

When you run the preceding script, Infinispan responds with the result of the expression
evaluation.

13.2.2. Adding Scripts to Infinispan Servers
Use the command line interface to add scripts to Infinispan servers.

Prerequisites

Infinispan Server stores scripts in the ___script_cache cache. If you enable cache authorization,
users must have CREATE permissions to add to ___script_cache.

Assign users the deployer role at minimum if you use default authorization settings.

Procedure

1. Define scripts as required.

For example, create a file named multiplication.js that runs on a single Infinispan server, has
two parameters, and uses JavaScript to multiply a given value:

// mode=1local, language=javascript
multiplicand * multiplier

2. Create a CLI connection to Infinispan.

3. Use the task command to upload scripts, as in the following example:
[//containers/default]> task upload --file=multiplication.js multiplication
4. Verify that your scripts are available.

[//containers/default]> 1s tasks
multiplication

87

13.2.3. Programmatically Creating Scripts

Add scripts with the Hot Rod RemoteCache interface as in the following example:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");
scriptCache.put("multiplication.js",

"// mode=local,language=javascript\n" +

"multiplicand * multiplier\n");

Reference

org.infinispan.client.hotrod.RemoteCache

13.3. Running Server-Side Tasks and Scripts

Execute tasks and custom scripts on Infinispan servers.

13.3.1. Running Tasks and Scripts
Use the command line interface to run tasks and scripts on Infinispan clusters.

Procedure

1. Create a CLI connection to Infinispan.
2. Use the task command to run tasks and scripts, as in the following examples:

o Execute a script named multipler.js and specify two parameters:

[//containers/default]> task exec multipler.js -Pmultiplicand=10 -Pmultiplier=20
200.0

o Execute a task named @@cache@names to retrieve a list of all available caches:

//containers/default]> task exec @@cache@names

["___protobuf_metadata", "mycache","___script_cache"]

13.3.2. Programmatically Running Scripts

Call the execute() method to run scripts with the Hot Rod RemoteCache interface, as in the following
example:

88

RemoteCache<String, Integer> cache = cacheManager.getCache();
// Create parameters for script execution.

Map<String, Object> params = new HashMap<>();
params.put("multiplicand", 10);

params.put("multiplier", 20);

// Run the script with the parameters.

Object result = cache.execute("multiplication.js", params);

Reference

org.infinispan.client.hotrod.RemoteCache

13.3.3. Programmatically Running Tasks

Call the execute() method to run tasks with the Hot Rod RemoteCache interface, as in the following
example:

// Add configuration for a locally running server.
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer().host("127.0.0.1").port(11222);

// Connect to the server.
RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());

// Retrieve the remote cache.
RemoteCache<String, String> cache = cacheManager.getCache();

// Create task parameters.
Map<String, String> parameters = new HashMap<>();
parameters.put("name", "developer");

// Run the server task.

String greet = cache.execute("hello-task", parameters);
System.out.println(greet);

Reference

org.infinispan.client.hotrod.RemoteCache

89

Chapter 14. Enabling and Customizing
Logging

Infinispan uses Apache Log4j 2 to provide configurable logging mechanisms that capture details
about the environment and record cache operations for troubleshooting purposes and root cause
analysis.

14.1. Server Logs

Infinispan writes server logs to the following files in the $ISPN_HOME/server/log directory:

server.log

Messages in human readable format, including boot logs that relate to the server startup.
Infinispan creates this file when you start the server.

server.log.json

Messages in JSON format that let you parse and analyze Infinispan logs.
Infinispan creates this file when you enable the JSON-FILE appender.

14.1.1. Configuring Server Logs

Infinispan uses Apache Log4j technology to write server log messages. You can configure server
logs in the 1og4j2.xml file.

Procedure

1. Open $ISPN_HOME/server/conf/log4j2.xml with any text editor.
2. Change server logging as appropriate.

3. Save and close 1og4j2.xml.

Additional resources

* Apache Log4j manual

14.1.2. Log Levels

Log levels indicate the nature and severity of messages.

Log level Description

TRACE Fine-grained debug messages, capturing the flow
of individual requests through the application.

DEBUG Messages for general debugging, not related to
an individual request.

INFO Messages about the overall progress of
applications, including lifecycle events.

90

Log level Description

WARN Events that can lead to error or degrade
performance.
ERROR Error conditions that might prevent operations

or activities from being successful but do not
prevent applications from running.

FATAL Events that could cause critical service failure

and application shutdown.

In addition to the levels of individual messages presented above, the configuration allows two more
values: ALL to include all messages, and OFF to exclude all messages.

14.1.3. Infinispan Log Categories

Infinispan provides categories for INFO, WARN, ERROR, FATAL level messages that organize logs by
functional area.

org.infinispan.CLUSTER

Messages specific to Infinispan clustering that include state transfer operations, rebalancing
events, partitioning, and so on.

org.infinispan.CONFIG
Messages specific to Infinispan configuration.

org.infinispan.CONTAINER

Messages specific to the data container that include expiration and eviction operations, cache
listener notifications, transactions, and so on.

org.infinispan.PERSISTENCE
Messages specific to cache loaders and stores.

org.infinispan.SECURITY
Messages specific to Infinispan security.

org.infinispan.SERVER
Messages specific to Infinispan servers.

org.infinispan.XSITE
Messages specific to cross-site replication operations.
14.1.4. Log Appenders

Log appenders define how Infinispan records log messages.

CONSOLE

Write log messages to the host standard out (stdout) or standard error (stderr) stream.
Uses the org.apache.logging.log4j.core.appender.ConsoleAppender class by default.

91

FILE

Write log messages to a file.
Uses the org.apache.logging.log4j.core.appender.RollingFileAppender class by default.

JSON-FILE

Write log messages to a file in JSON format.
Uses the org.apache.logging.log4j.core.appender.RollingFileAppender class by default.

14.1.5. Log Patterns

The CONSOLE and FILE appenders use a PatternlLayout to format the log messages according to a
pattern.

An example is the default pattern in the FILE appender:
%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%t) [%c{1}] %m%throwable%n
* %d{yyyy-MM-dd HH:mm:ss,SSS} adds the current time and date.
* %-5p specifies the log level, aligned to the right.
» %t adds the name of the current thread.
* %c{1} adds the short name of the logging category.
* %m adds the log message.
* %throwable adds the exception stack trace.

* %n adds a new line.

Patterns are fully described in the PatternLayout documentation .

14.1.6. Enabling and Configuring the JSON Log Handler
Infinispan provides a JSON log handler to write messages in JSON format.

Prerequisites

 Stop Infinispan Server if it is running.
You cannot dynamically enable log handlers.

Procedure

1. Open $ISPN_HOME/server/conf/log4j2.xml with any text editor.

2. Uncomment the JSON-FILE appender and comment out the FILE appender:

<!--<AppenderRef ref="FILE"/>-->
<AppenderRef ref="JSON-FILE"/>

3. Optionally configure the JSON appender and JSON layout as required.

4. Save and close 1og4j2.xml.

When you start Infinispan, it writes each log message as a JSON map in the following file:

92

$ISPN_HOME/server/log/server.log.json

Additional resources

* RollingFileAppender
* JSONLayout

14.2. Access Logs

Access logs record all inbound client requests for Hot Rod and REST endpoints to files in the
$ISPN_HOME/server/1log directory.

org.infinispan.HOTROD_ACCESS_LOG
Logging category that writes Hot Rod access messages to a hotrod-access.log file.

org.infinispan.REST_ACCESS_LOG
Logging category that writes REST access messages to a rest-access. log file.
14.2.1. Enabling Access Logs

To record Hot Rod and REST endpoint access messages, you need to enable the logging categories in
log4j2.xml.

Procedure

1. Open $ISPN_HOME/server/conf/log4j2.xml with any text editor.

2. Change the level for the org.infinispan.HOTROD_ACCESS_LOG and org.infinispan.REST_ACCESS_LOG
logging categories to TRACE.

3. Save and close 1og4j2.xml.

<Logger name="org.infinispan.HOTROD_ACCESS_LOG" additivity="false" level="TRACE">
<AppenderRef ref="HR-ACCESS-FILE"/>
</Logger>

14.2.2. Access Log Properties

The default format for access logs is as follows:

%X{address} %X{user} [%d{dd/MMM/yyyy:HH:mm:ss Z}] "%X{method} %m
%X{protocol}" %X{status} %X{requestSize} %X{responseSize} %X{duration}%n

The preceding format creates log entries such as the following:
127.0.0.7 - [DD/MM/YYYY:HH:MM:SS +0000] "PUT /rest/v2/caches/default/key HTTP/1.1" 404 5 77 10

Logging properties use the %X{name} notation and let you modify the format of access logs. The
following are the default logging properties:

93

Property Description

address Either the X-Forwarded-For header or the client
IP address.

user Principal name, if using authentication.

method Method used. PUT, GET, and so on.

protocol Protocol used. HTTP/1.1, HTTP/2, HOTROD/2.9, and
SO on.

status An HTTP status code for the REST endpoint. 0K or
an exception for the Hot Rod endpoint.

requestSize Size, in bytes, of the request.

responseSize Size, in bytes, of the response.

duration Number of milliseconds that the server took to

handle the request.

@ Use the header name prefixed with h: to log headers that were included in
- requests; for example, %X{h:User-Agent}.

14.3. Audit Logs

Audit logs let you track changes to your Infinispan environment so you know when changes occur
and which users make them. Enable and configure audit logging to record server configuration
events and administrative operations.

org.infinispan.AUDIT
Logging category that writes security audit messages to an audit.log file in the
$ISPN_HOME/server/1log directory.

14.3.1. Enabling Audit Logging
To record security audit messages, you need to enable the logging category in 1og4j2.xml.

Procedure

1. Open $ISPN_HOME/server/conf/log4j2.xml with any text editor.
2. Change the level for the org.infinispan.AUDIT logging category to INFO.

3. Save and close 10og4j2.xml.

<!-- Set to INFO to enable audit logging -->

<Logger name="org.infinispan.AUDIT" additivity="false" level="INF0">
<AppenderRef ref="AUDIT-FILE"/>

</Logger>

94

14.3.2. Configuring Audit Logging Appenders

Apache Log4j provides different appenders that you can use to send audit messages to a destination
other than the default log file. For instance, if you want to send audit logs to a syslog daemon, JDBC
database, or Apache Kafka server, you can configure an appender in 1og4j2.xml.

Procedure

1. Open $ISPN_HOME/server/conf/log4j2.xml with any text editor.

2. Comment or remove the default AUDIT-FILE rolling file appender.

<!--RollingFile name="AUDIT-FILE"

</RollingFile-->

3. Add the desired logging appender for audit messages.
For example, you could add a logging appender for a Kafka server as follows:
<Kafka name="AUDIT-KAFKA" topic="audit">
<PatternlLayout pattern="%date %message"/>
<Property name="bootstrap.servers">localhost:9092</Property>
</Kafka>
4. Save and close log4j2.xml.
Additional resources
* Log4j Appenders
14.3.3. Using Custom Audit Logging Implementations

You can create custom implementations of the org.infinispan.security.AuditLogger API if
configuring Log4j appenders does not meet your needs.

Prerequisites

* Implement org.infinispan.security.AuditlLogger as required and package it in a JAR file.

Procedure

1. Add your JAR to the server/1ib directory in your Infinispan Server installation.

2. Specify the fully qualified class name of your custom audit logger as the value for the audit-
logger attribute on the authorization element in your cache container security configuration.

For example, the following configuration defines my.package.CustomAuditLogger as the class for
logging audit messages:

95

<infinispan>
<cache-container>
<security>
<authorization audit-logger="my.package.CustomAuditLogger"/>
</security>
</cache-container>
</infinispan>

Additional resources

« org.infinispan.security.AuditlLogger

96

Chapter 15. Configuring Infinispan Server
Statistics

Enable statistics that Infinispan exports to a metrics endpoint or via JMX MBeans. Registering JMX
MBeans also exposes management operations that you can perform remotely.

15.1. Enabling Infinispan Statistics

Configure Infinispan to export statistics for Cache Managers and caches.

Infinispan Server enables Cache Manager statistics by default. You must explicitly enable statistics
for your caches.

Procedure

Modify your configuration to enable Infinispan statistics in one of the following ways:

* Declarative: Add the statistics="true" attribute.

* Programmatic: Call the .statistics() method.

Declarative

<!-- Enables statistics for the Cache Manager. -->
<cache-container statistics="true">
<!-- Enables statistics for the named cache. -->
<local-cache name="mycache" statistics="true"/>
</cache-container>

Programmatic

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
//Enables statistics for the Cache Manager.
.cacheContainer().statistics(true)

.build();

Configuration config = new ConfigurationBuilder()
//Enables statistics for the named cache.
.statistics().enable()

.build();

15.2. Configuring Infinispan Metrics
Configure Infinispan to export gauges and histograms via the metrics endpoint.

Procedure

* Turn gauges and histograms on or off in the metrics configuration as appropriate.

97

Declarative

<!-- Computes and collects statistics for the Cache Manager. -->
<cache-container statistics="true">
<!-- Exports collected statistics as gauge and histogram metrics. -->
<metrics gauges="true" histograms="true" />
</cache-container>

Programmatic

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
//Computes and collects statistics for the Cache Manager.
.statistics().enable()

//Exports collected statistics as gauge and histogram metrics.
.metrics().qauges(true).histograms(true)
.build();

15.3. Collecting Infinispan Metrics

Collect Infinispan metrics with monitoring tools such as Prometheus.

Prerequisites

* Enable statistics. If you do not enable statistics, Infinispan provides @ and -1 values for metrics.

* Optionally enable histograms. By default Infinispan generates gauges but not histograms.

Procedure

* Get metrics in Prometheus (OpenMetrics) format:
$ curl -v http://localhost:11222/metrics
* Get metrics in MicroProfile JSON format:

$ curl --header "Accept: application/json" http://localhost:11222/metrics

Next steps

Configure monitoring applications to collect Infinispan metrics. For example, add the following to
prometheus.yml:

static_configs:
- targets: ['localhost:11222']

Reference

* Prometheus Configuration

98

* Enabling Infinispan Statistics

15.4. Configuring Infinispan to Register JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform
administrative operations. You must enable statistics separately to JMX otherwise Infinispan
provides @ values for all statistic attributes.

Procedure

Modify your cache container configuration to enable JMX in one of the following ways:

* Declarative: Add the <jmx enabled="true" /> element to the cache container.

* Programmatic: Call the .jmx().enable() method.

Declarative

<cache-container>
<jmx enabled="true" />
</cache-container>

Programmatic

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.jmx().enable()
.build();

15.4.1. Enabling JMX Remote Ports

Provide unique remote JMX ports to expose Infinispan MBeans through connections in
JMXServiceURL format.

Infinispan Server does not expose JMX remotely via the single port endpoint. If
o you want to remotely access Infinispan Server via JMX you must enable a remote
port.

Procedure

* Pass the following system properties to Infinispan at startup:

-Dcom.sun.management. jmxremote

-Dcom. sun.management. jmxremote.port=9999
-Dcom.sun.management. jmxremote.authenticate=false
-Dcom. sun.management. jmxremote.ssl=false

99

15.4.2. Infinispan MBeans
Infinispan exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache
Attributes and operations available for cache instances.

org.infinispan:type=CacheManager
Attributes and operations available for cache managers, including Infinispan cache and cluster
health statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and
attributes, see the Infinispan JMX Components documentation.

Additional resources

 Infinispan JMX Components

100

Chapter 16. Retrieving Health Statistics

Monitor the health of your Infinispan clusters in the following ways:

* Programmatically with embeddedCacheManager.getHealth() method calls.
* JMX MBeans

* Infinispan REST Server

16.1. Accessing the Health API via JMX

Retrieve Infinispan cluster health statistics via JMX.

Procedure

1. Connect to Infinispan server using any JMX capable tool such as JConsole and navigate to the
following object:

org.infinispan:type=CacheManager,name="default", component=CacheContainerHealth

2. Select available MBeans to retrieve cluster health statistics.

16.2. Accessing the Health API via REST

Get Infinispan cluster health via the REST API.

Procedure

* Invoke a GET request to retrieve cluster health.

GET /rest/v2/cache-managers/{cacheManagerName}/health

Infinispan responds with a JSON document such as the following:

101

"cluster_health":{
"cluster _name":"ISPN",
"health_status":"HEALTHY",
"number_of nodes":2,
"node_names": [
"NodeA-36229",
"NodeB-28703"

]
}
"cache_health":[
{
"status":"HEALTHY",
"cache_name":"___protobuf_metadata"
I¥
{
"status":"HEALTHY",
"cache_name":"cache2"
iy
{
"status":"HEALTHY",
"cache_name": "mycache"
H
{
"status":"HEALTHY",
"cache_name":"cachel"
}

Get cache manager status as follows:

Q

GET /rest/v2/cache-managers/{cacheManagerName}/health/status

Reference

See the REST v2 (version 2) API documentation for more information.

102

Chapter 17. Performing Rolling Upgrades for
Infinispan Servers

Perform rolling upgrades of your Infinispan clusters to change between versions without downtime
or data loss. Rolling upgrades migrate both your Infinispan servers and your data to the target
version over Hot Rod.

17.1. Setting Up Target Clusters

Create a cluster that runs the target Infinispan version and uses a remote cache store to load data
from the source cluster.

Prerequisites

* Install a Infinispan cluster with the target upgrade version.

Ensure the network properties for the target cluster do not overlap with those for
the source cluster. You should specify unique names for the target and source

o clusters in the JGroups transport configuration. Depending on your environment
you can also use different network interfaces and specify port offsets to keep the
target and source clusters separate.

Procedure

1. Add a RemoteCacheStore on the target cluster for each cache you want to migrate from the source
cluster.

Remote cache stores use the Hot Rod protocol to retrieve data from remote Infinispan clusters.
When you add the remote cache store to the target cluster, it can lazily load data from the
source cluster to handle client requests.

2. Switch clients over to the target cluster so it starts handling all requests.
a. Update client configuration with the location of the target cluster.

b. Restart clients.

17.1.1. Remote Cache Stores for Rolling Upgrades

You must use specific remote cache store configuration to perform rolling upgrades, as follows:

103

<!-- Remote cache stores for rolling upgrades must disable passivation. -->
<persistence passivation="false">
<!-- The value of the cache attribute matches the name of a cache in the source
cluster. Target clusters load data from this cache using the remote cache store. -->
<!-- The "protocol-version" attribute matches the Hot Rod protocol version of the
source cluster. 2.5 is the minimum version and is suitable for any upgrade path. -->
<!-- You should enable segmentation for remote cache stores only if the number of
segments in the target cluster matches the number of segments for the cache in the
source cluster. -->
<remote-store xmlns="urn:infinispan:config:store:remote:12.1"
cache="myDistCache"
protocol-version="2.5"
hotrod-wrapping="true"
raw-values="true"
segmented="false">
<!-- Confiqures authentication and encryption according to the security realm of
the source cluster. -->
<security>
<authentication server-name="infinispan">
<digest username="admin"
password="changeme"
realm="default"/>
</authentication>
</security>
<!-- Points to the location of the source cluster. -->
<remote-server host="127.0.0.1" port="11222"/>
</remote-store>
</persistence>

Reference

* Remote cache store configuration schema
* RemoteStore

* RemoteStoreConfigurationBuilder

17.2. Synchronizing Data to Target Clusters

When your target cluster is running and handling client requests using a remote cache store to load
data on demand, you can synchronize data from the source cluster to the target cluster.

This operation reads data from the source cluster and writes it to the target cluster. Data migrates
to all nodes in the target cluster in parallel, with each node receiving a subset of the data. You must
perform the synchronization for each cache in your Infinispan configuration.

Procedure

1. Start the synchronization operation for each cache in your Infinispan configuration that you
want to migrate to the target cluster.

Use the Infinispan REST API and invoke POST requests with the 7action=sync- data parameter.

104

For example, to synchronize data in a cache named "myCache" from a source cluster to a target
cluster, do the following:

POST /v2/caches/myCache?action=sync-data

When the operation completes, Infinispan responds with the total number of entries copied to
the target cluster.

Alternatively, you can use JMX by invoking synchronizeData(migratorName=hotrod) on the
RollingUpgradeManager MBean.

2. Disconnect each node in the target cluster from the source cluster.

For example, to disconnect the "myCache" cache from the source cluster, invoke the following
POST request:

POST /v2/caches/myCache?action=disconnect-source

To use JMX, invoke disconnectSource(migratorName=hotrod) on the RollingUpgradeManager MBean.

Next steps

After you synchronize all data from the source cluster, the rolling upgrade process is complete. You
can now decommission the source cluster.

105

Chapter 18. Patching Infinispan Server
Installations

Install and manage patches for Infinispan Server installations.

You can apply patches to multiple Infinispan Server installations with different versions to upgrade
to a desired target version. However, patches do not take effect if Infinispan Server is running. If
you want to upgrade Infinispan clusters without downtime, create a new cluster with the target
version and perform a rolling upgrade to that version instead of patching.

18.1. Infinispan Server Patches

Infinispan Server patches are .zip archives that contain artifacts that you can apply to your
$ISPN_HOME directory to fix issues and add new features.

Patches also provide a set of rules for Infinispan to modify your server installation. When you
apply patches, Infinispan overwrites some files and removes others, depending on if they are
required for the target version.

However, Infinispan does not make any changes to configuration files that you have created or
modified when applying a patch. Server patches do not modify or replace any custom configuration
or data.

18.2. Creating Server Patches

You can create patches for Infinispan Server from an existing installation.

You can create patches for Infinispan Server starting from version 10.1.7. You can patch any 10.1 or
later server installation. However you cannot patch 9.4.x or earlier servers with 10.1.7 or later.

You can also create patches that either upgrade or downgrade the Infinispan Server version. For
example, you can create a patch from version 10.1.7 and use it to upgrade version 10.1.5 or
downgrade version 11.0.0.

Procedure

1. Navigate to $ISPN_HOME for a Infinispan Server installation that has the target version for the
patch you want to create.

2. Start the CLI.

$ bin/cli.sh
[disconnected]>

3. Use the patch create command to generate a patch archive and include the -q option with a
meaningful qualifier to describe the patch.

106

[disconnected]> patch create -q "this is my test patch" path/to/mypatch.zip \
path/to/target/server/home path/to/source/server/home

The preceding command generates a .zip archive in the specified directory. Paths are relative to
$ISPN_HOME for the target server.

Create single patches for multiple different Infinispan versions, for example:

[disconnected]> patch create -q "this is my test patch”
path/to/mypatch.zip \

@ path/to/target/server/home \

t path/to/source/server1/home path/to/source/server2/home

Where server1 and server?2 are different Infinispan versions where you can
install "mypatch.zip".

4. Describe the generated patch archive.

[disconnected]> patch describe path/to/mypatch.zip

Infinispan patch target=$target_version(my test patch) source=$§source_version
created=$timestamp

o $target_version is the Infinispan version from which the patch was created.

> $source_version is one or more Infinispan versions to which you can apply the patch.

You can apply patches to Infinispan Server installations that match the $source_version only.

18.3. Installing Server Patches
Apply patches to Infinispan Server to upgrade or downgrade an existing version.

Prerequisites

* Create a server patch for the target version.
Procedure
1. Navigate to $ISPN_HOME for the Infinispan Server installation you want to patch.
2. Stop the Infinispan Server if it is running.
If you patch a server while it is running, the version changes take effect after

0 restart. If you do not want to stop the server, create a new cluster with the
target version and perform a rolling upgrade to that version instead of

patching.

107

3. Start the CLI.

$ bin/cli.sh
[disconnected]>

4. Install the patch.

[disconnected]> patch install path/to/patch.zip

Infinispan patch target=$target_version source=$source_version \
created=$timestamp installed=$timestamp

o $target_version displays the Infinispan version that the patch installed.
> $source_version displays the Infinispan version before you installed the patch.

5. Start the server to verify the patch is installed.

$ bin/server.sh

ISPN@80@01: Infinispan Server $version
If the patch is installed successfully $version matches $target_version.

Use the --server option to install patches in a different $ISPN_HOME directory, for
example:

Q

[disconnected]> patch install path/to/patch.zip
--server=path/to/server/home

18.4. Rolling Back Server Patches

Remove patches from Infinispan Server by rolling them back and restoring the previous Infinispan
version.

If a server has multiple patches installed, you can roll back the last installed patch
only.

o Rolling back patches does not revert configuration changes you make to Infinispan
Server. Before you roll back patches, you should ensure that your configuration is
compatible with the version to which you are rolling back.

Procedure

1. Navigate to $ISPN_HOME for the Infinispan Server installation you want to roll back.

108

2. Stop the server if it is running.

3. Start the CLI.

$ bin/cli.sh
[disconnected]>

4. List the installed patches.

[disconnected]> patch 1s

Infinispan patch target=$target_version source=$source_version
created=$timestamp installed=$timestamp

o $target_version is the Infinispan server version after the patch was applied.
o $source_version is the version for Infinispan server before the patch was applied. Rolling
back the patch restores the server to this version.
5. Roll back the last installed patch.
[disconnected]> patch rollback
6. Quit the CLIL.
[disconnected]> quit

7. Start the server to verify the patch is rolled back to the previous version.

$ bin/server.sh

ISPN@80Q01: Infinispan Server $version
If the patch is rolled back successfully $version matches $source_version.

Use the --server option to rollback patches in a different $ISPN_HOME directory, for
example:
@,
-
[disconnected]> patch rollback --server=path/to/server/home

109

Chapter 19. Troubleshooting Infinispan
Servers

Gather diagnostic information about Infinispan server deployments and perform troubleshooting
steps to resolve issues.

19.1. Getting Diagnostic Reports for Infinispan Servers

Infinispan servers provide aggregated reports in tar.gz archives that contain diagnostic
information about both the Infinispan server and the host. The report provides details about CPU,
memory, open files, network sockets and routing, threads, in addition to configuration and log files.

Procedure

1. Create a CLI connection to Infinispan.

2. Use the server report command to download a tar.gz archive:

[//containers/default]> server report
Downloaded report 'infinispan-<hostname>-<timestamp>-report.tar.gz’

3. Move the tar.gz file to a suitable location on your filesystem.

4. Extract the tar.qgz file with any archiving tool.

19.2. Changing Infinispan Server Logging
Configuration at Runtime

Modify the logging configuration for Infinispan servers at runtime to temporarily adjust logging to
troubleshoot issues and perform root cause analysis.

Modifying the logging configuration through the CLI is a runtime-only operation, which means that
changes:

* Are not saved to the log4j2.xml file. Restarting server nodes or the entire cluster resets the
logging configuration to the default properties in the 1og4j2.xml file.
» Apply only to the nodes in the cluster when you invoke the CLI. Nodes that join the cluster after

you change the logging configuration use the default properties.

Procedure

1. Create a CLI connection to Infinispan.
2. Use the logging to make the required adjustments.

o List all appenders defined on the server:

[//containers/default]> logging list-appenders

110

The preceding command returns:

{
"STDOUT" : {
"name" : "STDOUT"
+
"JSON-FILE" : {
"name" : "JSON-FILE"
+
"HR-ACCESS-FILE" : {
"name" : "HR-ACCESS-FILE"
+
"FILE" : {
"name" : "FILE"
I
"REST-ACCESS-FILE" : {
"name" : "REST-ACCESS-FILE"
}
}

« List all logger configurations defined on the server:
[//containers/default]> logging list-loggers

The preceding command returns:

[{
"name" : "",
"level™ : "INFOQ",
"appenders" : ["STDOUT", "FILE"]
by AL
“name" : "org.infinispan.HOTROD_ACCESS_L0G",
"level" : "INFO",
“appenders" : ["HR-ACCESS-FILE"]
bo o
"name" : "com.arjuna",
"level™ : "WARN",
"appenders" : []
oA
"name" : "org.infinispan.REST_ACCESS_LOG",
"level™ : "INFOQ",
"appenders" : ["REST-ACCESS-FILE"]

}]

* Add and modify logger configurations with the set subcommand

For example, the following command sets the logging level for the org.infinispan package to DEBUG:

111

[//containers/default]> logging set --level=DEBUG org.infinispan

* Remove existing logger configurations with the remove subcommand.

For example, the following command removes the org.infinispan logger configuration, which
means the root configuration is used instead:

[//containers/default]> logging remove org.infinispan

19.3. Resource Statistics

You can inspect server-collected statistics for some of the resources within a Infinispan server using
the stats command.

Use the stats command either from the context of a resource which collects statistics (containers,
caches) or with a path to such a resource:

[//containers/default]> stats

{
"statistics_enabled" : true,
"number_of _entries" : 0,
"hit_ratio" : 0.0,
"read write_ratio" : 0.0,
"time_since_start" : 0,
"time_since_reset" : 49,
"current_number of entries" : 0,
"current_number_of_entries_in_memory" : 0,
"total_number_of _entries" : 0,
"off_heap_memory_used" : 0,
"data_memory_used" : @,
"stores" : 0,
"retrievals" : 0,
"hits" : 0,
"misses" : 0,
"remove_hits" : 0,
"remove_misses" : 0,
"evictions" : 0,
"average_read_time" : @,
"average_read_time_nanos" : 0,
"average_write_time" : 0,
"average_write_time_nanos" : 0,
"average_remove_time" : 0,
"average_remove_time_nanos" : 0,
"required_minimum_number_of_nodes" : -1
}

112

[//containers/default]> stats /containers/default/caches/mycache

{
"time _since start" : -1,
"time_since_reset" : -1,
"current_number_of _entries" : -1,
"current_number_of_entries_in_memory" : -1,
"total _number_of _entries" : -1,
"off_heap_memory_used" : -1,
"data_memory_used" : -1,
"stores" : -1,
"retrievals" : -1,
"hits" : -1,
"misses" : -1,
"remove_hits" : -1,
"remove _misses" : -1,
"evictions" : -1,
"average_read_time" : -1,
"average_read_time_nanos" : -1,
"average_write_time" : -1,
"average_write_time_nanos" : -1,
"average_remove_time" : -1,
"average_remove_time_nanos" : -1,
"required_minimum_number_of_nodes" : -1
}

113

	Deploying and Configuring Infinispan 12.1 Servers
	Table of Contents
	Chapter 1. Getting Started with Infinispan Server
	1.1. Infinispan Server Requirements
	1.2. Downloading Server Distributions
	1.3. Installing Infinispan Server
	1.4. Starting Infinispan Servers
	1.5. Creating and Modifying Users
	1.5.1. Adding Credentials
	1.5.2. Assigning Roles to Users
	1.5.3. Adding Users to Groups
	1.5.4. User Roles and Permissions

	1.6. Verifying Cluster Views
	1.7. Shutting Down Infinispan Server
	1.7.1. Restarting Infinispan Clusters

	1.8. Infinispan Server Filesystem
	1.8.1. Server Root Directory

	Chapter 2. Network Interfaces and Endpoints
	2.1. Network Interfaces
	2.2. Socket Bindings
	2.3. Changing the Default Bind Address for Infinispan Servers
	2.4. Specifying Port Offsets
	2.5. Infinispan Endpoints
	2.5.1. Hot Rod
	2.5.2. REST
	2.5.3. Memcached
	2.5.4. Protocol Comparison

	2.6. Endpoint Connectors
	2.6.1. Hot Rod Connectors
	2.6.2. REST Connectors
	2.6.3. Memcached Connectors

	2.7. Infinispan Server Ports and Protocols
	2.8. Single Port
	2.8.1. Configuring Network Firewalls for Remote Connections

	Chapter 3. Security Realms
	3.1. Property Realms
	3.1.1. Creating and Modifying Users

	3.2. LDAP Realms
	3.2.1. LDAP Realm Principal Rewriting

	3.3. Token Realms
	3.4. Trust Store Realms

	Chapter 4. Configuring Endpoint Authentication Mechanisms
	4.1. Infinispan Server Authentication
	4.2. Manually Configuring Hot Rod Authentication
	4.2.1. Hot Rod Authentication Configuration
	4.2.2. Hot Rod Endpoint Authentication Mechanisms
	4.2.3. SASL Quality of Protection (QoP)
	4.2.4. SASL Policies

	4.3. Manually Configuring REST Authentication
	4.3.1. REST Authentication Configuration
	4.3.2. REST Endpoint Authentication Mechanisms

	4.4. Disabling Authentication

	Chapter 5. Encrypting Infinispan Server Connections
	5.1. Configuring Infinispan Server Keystores
	5.1.1. Automatically Generating Keystores
	5.1.2. Configuring TLS versions and cipher suites

	5.2. Configuring Client Certificate Authentication
	5.3. Configuring Authorization with Client Certificates

	Chapter 6. Configuring Kerberos Identities for Infinispan Server
	6.1. Setting Up Kerberos Identities
	6.2. Kerberos Identity Configuration

	Chapter 7. Storing Infinispan Server Credentials in Keystores
	7.1. Setting Up Credential Keystores
	7.2. Credential Keystore Configuration

	Chapter 8. Endpoint IP Filtering
	8.1. Infinispan Server IP Filter Configuration
	8.2. Inspecting and Modifying Infinispan Server IP Filter Rules

	Chapter 9. Configuring User Authorization
	9.1. Enabling Authorization in Cache Configuration
	9.2. User Roles and Permissions
	9.3. How Security Authorization Works
	9.3.1. Permissions
	9.3.2. Role Mappers

	9.4. Access Control List (ACL) Cache
	9.5. Customizing Roles and Permissions
	9.6. Disabling Security Authorization
	9.7. Configuring Authorization with Client Certificates

	Chapter 10. Setting Up Infinispan Clusters
	10.1. Default JGroups Stacks
	10.2. Cluster Discovery Protocols
	10.2.1. PING
	10.2.2. TCPPING
	10.2.3. MPING
	10.2.4. TCPGOSSIP
	10.2.5. JDBC_PING
	10.2.6. DNS_PING
	10.2.7. Cloud Discovery Protocols

	10.3. Using the Default JGroups Stacks
	10.4. Customizing JGroups Stacks
	10.4.1. Inheritance Attributes

	10.5. Using JGroups System Properties
	10.5.1. Cluster Transport Properties
	10.5.2. System Properties for Cloud Discovery Protocols

	10.6. Using Inline JGroups Stacks
	10.7. Using External JGroups Stacks
	10.8. Encrypting Cluster Transport
	10.8.1. Infinispan Cluster Security
	10.8.2. Configuring Cluster Transport with Asymmetric Encryption
	10.8.3. Configuring Cluster Transport with Symmetric Encryption

	10.9. TCP and UDP Ports for Cluster Traffic

	Chapter 11. Remotely Creating Infinispan Caches
	11.1. Cache Configuration with Infinispan Server
	11.2. Default Cache Manager
	11.3. Creating Caches with the Infinispan Console
	11.4. Creating Caches with the Infinispan Command Line Interface (CLI)
	11.5. Creating Remote Caches with Hot Rod Clients
	11.6. Creating Infinispan Caches with HTTP Clients
	11.7. Cache Configuration

	Chapter 12. Configuring Infinispan Server Datasources
	12.1. Datasource Configuration for JDBC Cache Stores
	12.2. Using Datasources in JDBC Cache Stores
	12.3. Testing Data Sources

	Chapter 13. Remotely Executing Server-Side Tasks
	13.1. Creating Server Tasks
	13.1.1. Server Tasks
	13.1.2. Deploying Server Tasks to Infinispan Servers

	13.2. Creating Server Scripts
	13.2.1. Server Scripts
	13.2.2. Adding Scripts to Infinispan Servers
	13.2.3. Programmatically Creating Scripts

	13.3. Running Server-Side Tasks and Scripts
	13.3.1. Running Tasks and Scripts
	13.3.2. Programmatically Running Scripts
	13.3.3. Programmatically Running Tasks

	Chapter 14. Enabling and Customizing Logging
	14.1. Server Logs
	14.1.1. Configuring Server Logs
	14.1.2. Log Levels
	14.1.3. Infinispan Log Categories
	14.1.4. Log Appenders
	14.1.5. Log Patterns
	14.1.6. Enabling and Configuring the JSON Log Handler

	14.2. Access Logs
	14.2.1. Enabling Access Logs
	14.2.2. Access Log Properties

	14.3. Audit Logs
	14.3.1. Enabling Audit Logging
	14.3.2. Configuring Audit Logging Appenders
	14.3.3. Using Custom Audit Logging Implementations

	Chapter 15. Configuring Infinispan Server Statistics
	15.1. Enabling Infinispan Statistics
	15.2. Configuring Infinispan Metrics
	15.3. Collecting Infinispan Metrics
	15.4. Configuring Infinispan to Register JMX MBeans
	15.4.1. Enabling JMX Remote Ports
	15.4.2. Infinispan MBeans

	Chapter 16. Retrieving Health Statistics
	16.1. Accessing the Health API via JMX
	16.2. Accessing the Health API via REST

	Chapter 17. Performing Rolling Upgrades for Infinispan Servers
	17.1. Setting Up Target Clusters
	17.1.1. Remote Cache Stores for Rolling Upgrades

	17.2. Synchronizing Data to Target Clusters

	Chapter 18. Patching Infinispan Server Installations
	18.1. Infinispan Server Patches
	18.2. Creating Server Patches
	18.3. Installing Server Patches
	18.4. Rolling Back Server Patches

	Chapter 19. Troubleshooting Infinispan Servers
	19.1. Getting Diagnostic Reports for Infinispan Servers
	19.2. Changing Infinispan Server Logging Configuration at Runtime
	19.3. Resource Statistics

